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Abstract

Secure two-party computation (2PC) in the RAM model has attracted huge attention in recent years.
Most existing results only support semi-honest security, with the exception of Keller and Yanai (Euro-
crypt 2018) with very high cost. In this paper, we propose an efficient RAM-based 2PC protocol with
active security and one-bit leakage.

1. We propose an actively secure protocol for distributed point function (DPF), with one-bit leakage,
that is essentially as efficient as the state-of-the-art semi-honest protocol. Compared with previous
work, our protocol takes about 50× less communication for a domain with 220 entries, and no longer
requires actively secure generic 2PC.

2. We extend the dual-execution protocol to allow reactive computation, and then build a RAM-based
2PC protocol with active security on top of our new building blocks. The protocol follows the
paradigm of Doerner and shelat (CCS 2017). We are able to prove that the protocol has end-to-end
one-bit leakage.

3. Our implementation shows that our protocol is almost as efficient as the state-of-the-art semi-honest
RAM-based 2PC protocol, and is at least two orders of magnitude faster than prior actively secure
RAM-based 2PC without leakage, providing a realistic trade-off in practice.

1 Introduction
Secure two-party computation (2PC) protocols [Yao86] allow two parties each with a private input x, y
respectively, to obtain f(x, y) for some public function f but nothing else. There has been a huge amount
of work to build efficient protocols and tools when f can be efficiently represented as a circuit; however, not
all functions can be converted to a compact circuit since normal programs are in the random-access machine
(RAM) model. To address this, secure 2PC in the RAM model [GKK+12] was proposed to support private
accesses in 2PC protocols. It has found a lot of applications for building efficient and secure protocols for
database queries [BEE+17], stable matching [DEs16] and various graph algorithms [LWN+15].

The high-level approach of RAM-based 2PC is to combine oblivious RAMs (ORAMs) [GO96] and
2PC protocols. In more detail, one can use a 2PC protocol to emulate an ORAM client securely while
having the parties act as the ORAM server(s): since the ORAM ensures that the server does not learn the
private accesses, the parties cannot learn the accesses either. Although there has been huge progress in push-
ing the efficiency of RAM-based 2PC by means of optimized ORAM for secure computation [GGH+13,
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GKK+12, KS14, WHC+14, WCS15, ZWR+16] and customized protocols leveraging the fact that there
are two non-colluding ORAM servers with computational resources [GKW18, AFN+17, Ds17, FJKW15,
LO13, VHG23, HV21], all of them are in the semi-honest setting. The only exception is the work of
Keller and Yanai [KY18] (dubbed KY18), where they proposed an optimized protocol based on the Circuit
ORAM [WCS15] and the SPDZ-BMR protocol [LPSY15]. When comparing its performance with state-of-
the-art semi-honest protocols [Ds17], we observe a huge gap of at least two orders of magnitude slowdowns,
making it essentially infeasible to run any RAM-based 2PC applications in the malicious setting. When div-
ing into the details, there are two main sources of slowdown.

1. Actively secure circuit-based 2PC has a high overhead. The generic approach of RAM-based 2PC
can be done with malicious security by emulating the ORAM client in a reactive 2PC with malicious
security. Indeed, this is the approach that KY18 took. However, due to the high depth of circuits needed
to emulate ORAM circuits, a constant-round malicious 2PC is the only option. KY18 used the SPDZ-
BMR protocol, which allows identification in the event of abort; this feature is crucial to enable their
efficient representation of the server verifiable secret sharing, which can lead to two orders of magnitude
improvements in memory usage. KY18 also posted an open problem on how to make it compatible with
more efficient authenticated garbling [WRK17a] approach, which is still open to this date. Regardless,
constant-round maliciously secure 2PC generally incurs a significant performance slowdown and this
overhead will be amplified in a RAM protocol when emulating the ORAM algorithm in 2PC.

2. Tricks in semi-honest protocols no longer work directly. State-of-the-art RAM-based 2PC protocols
use a crucial tool, namely distributed point function (DPF) [GI14, BGI16], which allows two parties with
secret shares of α and β to homomorphically evaluate the point function f(α,β)(x), that evaluates to β
only when x equals α and 0 otherwise; recent DPFs [Ds17, GYW+23] let parties obtain secret shares
of the output with communication sublinear to the number of evaluations. This implies an efficient
protocol to read or write an array but not both at the same time. Doerner and shelat [Ds17] first proposed
a protocol, namely Floram, using DPF on top of the square-root ORAM, which was later improved
in a sequence of works [HV21, VHG23]. However, bringing the same trick to malicious security is
challenging: 1) it is not clear how to efficiently distribute DPF keys based on shares of α and β with
malicious security; 2) it is unclear how to ensure the correctness of the local computation, an important
feature of DPF-based ORAMs.

Contribution. In this paper, we design and implement a maliciously secure RAM-based 2PC protocol with
high concrete performance. The protocol would leak one bit of information to the adversary but enjoys
performance essentially the same as state-of-the-art semi-honest RAM 2PC protocols.

1. We design an efficient and maliciously secure protocol for distributed point functions (DPFs). Compared
to previous malicious protocols, our protocol follows a different route in generating the DPF correlation
and no longer needs generic malicious 2PC. As a result, our protocol improves the communication by a
factor of 50×. What’s more, the cost of this protocol is almost the same as the state-of-the-art semi-honest
DPF protocols [GYW+23]. It also has huge applications beyond RAM-based 2PC, e.g., in malicious
pseudorandom correlation generators.

2. We extend the normal dual-execution with one-bit leakage protocol [HKE12] to support reactive 2PC.
Then we incorporate both building blocks to build a malicious RAM-based 2PC based on the blueprint
of Floram. Although DPF is invoked repeatedly, we show an optimization that allows end-to-end leakage
to be a single bit by carefully controlling the abort event.

3. We implement all of the protocols and hook them with generic malicious 2PC for end-to-end applications.
Our benchmark shows that the performance of our active-secure one-bit leakage protocol is almost as fast
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as semi-honest protocols in common network settings and is two orders of magnitude faster than prior
full malicious RAM-based 2PC [KY18].

Paper organization. Section 2 provides an overview of our techniques and improvements. In Section 3,
we introduce preliminaries. In Section 4, we provide details of our reactive 2PC protocol; in Section 5, we
show our efficient DPF protocol details. We combine them together to build a RAM-based 2PC protocol in
Section 6. Finally, in Section 7, we discuss the concrete performance of our protocols.

2 Technical Overview
2.1 Recap of Floram
First, we review the high-level ideas of Floram [Ds17], one of the state-of-the-art semi-honest RAM-based
2PC protocols. The protocol has a read-only memory (ROM), a write-only memory (WOM), and a stash (S)
supporting both read and write. Suppose that the initial values are in both the ROM and WOM; the protocol
will ensure that 1) WOM always contains the most recent data (but we cannot read from it) and 2) ROM and
S as a whole also contain the most recent data where the version in S takes priority. For a read operation, one
just needs to query from the ROM structure and then linearly scan all elements in S; for a write operation,
one first updates the WOM, and then appends this update to S. Both ROM and WOM can be efficiently built
using DPFs. When S reaches σ elements, a refresh protocol will be executed that copies over the data in
WOM to ROM and clears the stash S. Due to the advances in DPF, the communication cost of an operation
on ROM and WOM is O(logN) for an array of size N ; the stash is instead implemented using generic 2PC
protocols. Thus the amortized communication cost is O(logN + σ +N/σ), which minimizes to O(

√
N).

In order to bring this idea to malicious security, we need to make all building blocks maliciously se-
cure and allow them to be composed without causing inconsistency. Below, we discuss the details of each
component.

2.2 Reactive 2PC with One-Bit Leakage
Next, we briefly discuss the intuition in our reactive 2PC protocol. Active 2PC with one-bit leakage was
studied before [HKE12, MF06], but was only assumed as two parties evaluate a function for one shot.
Their intuition is to run Yao’s garbled circuit protocol twice with opposite directions along with malicious
oblivious transfer and run a check protocol in the end to ensure the consistency of two executions. Either the
output is correct, or the protocol will abort; thus the adversary can only learn one bit of information from
the fact that the protocol aborts or proceeds. However, in our setting, two parties need to hold a “state” (e.g.,
stash) that is fed to a reactive 2PC and gets updated by the protocol.

To enable this upgrade, we hook the idea of dual execution with BDOZ authenticated shares [BDOZ11].
To authenticate a secret sharing of a bit b as BDOZ share (namely ⟨⟨b⟩⟩), party P0 holds (b0,M0[b0],K0[b1])
and P1 holds (b1,M1[b1],K1[b0]), such that M0[b0] = K1[b0] ⊕ b0∆1 and M1[b1] = K0[b1] ⊕ b1∆0 where
∆0,∆1 are private MAC keys held by P0 and P1 respectively. When P0 is the garbler, we let it produce a
garbled circuit (GC) where the free-XOR delta is ∆0. For an input bit b in BDOZ share, P0 can define a
zero garbled key as L0 = K0[b1]⊕ b0∆0 and P1 defines L∗ = M1[b1], we can see that

L∗ = M1[b1] = K0[b1]⊕ (b0 ⊕ b) ·∆0 = L0 ⊕ b∆0.

This means that L∗ held by P1 as an evaluator and L0 held by P0 as a garbler have a correct relationship
needed for GC generation/evaluation. In summary, this is an approach where two parties can locally convert
BDOZ shares to garbled labels compatible with dual execution. There is a similar process making dual-
execution garbled labels back to BDOZ shares locally, although the shares may not be valid if one of the
parties cheats during GC execution. To obtain the output with guaranteed correctness, two parties need first
to check the validity of the authenticated share and only reveal it if it is valid. One bit of leakage is due to
the validity check.
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With this intuition, two parties store any state in BDOZ shares and convert them to garbled labels when
they need to run 2PC, where the results can be converted back to BDOZ shares. The overhead compared to
semi-honest Yao’s protocol is exactly twice, but it can be parallelized easily.

2.3 Efficient DPF with Malicious Security
Prior protocol. Recall that in a DPF protocol, two parties have secret sharing of α ∈ [n] and β ∈ F and
should get secret sharings of a size-n vector x ∈ Fn, which is all zeros except that x(α) = β. To make the
DPF protocol maliciously secure, there are two important tasks: 1) use authenticated sharing for the input
and output of the DPF protocol, and 2) prevent the parties from cheating during the execution of the protocol.
Ensuring DPF to output authenticated sharing can be done via appending β with β ·∆, where ∆ is the secret
shared MAC key; this works as long as the DPF scheme allows any ring element as β. However, ensuring in-
put authentication, consistency, and protocol security is much more complicated, as the state-of-the-art DPF
protocol involves logN rounds and extensive local computation. The only maliciously secure protocol was
proposed by Boyle et al. [BCG+20]. Their protocol works by first generating additive shares of vector in the
form of ([0], . . . , [0], [r], [0], . . . , [0]), where the share of a random value r is in the α-th location, following
the classical semi-honest DPF protocol but replace all joint computation using a generic malicious 2PC.
Then, two parties further expand a level to obtain shares of 2n elements: ([0], . . . , [0], [L], [R], [0], . . . , [0]),
where L,R are random values and [L] is the 2α-th element. Two parties then again use generic malicious
2PC to compute authenticated shares of L−1 and R−1 while only revealing R−1. Next, two parties pick
a public random value χ and compute two linear combinations on their secret sharings which will end up
being XL = χα · L and XR = χα · R. Finally, they can check whether [XL] · [L−1] = [XR] · R−1 in
malicious 2PC.

Their analysis shows that this protocol unfortunately leaks one bit of information about α to the adver-
sary. In terms of the cost, this protocol requires heavy use of generic malicious 2PC and, in particular, needs
to compute three field multiplications in 2PC, which is very expensive. For example, MASCOT [KOS16]
requires about 33,000 bytes of communication to compute one such multiplication even without counting
the cost of underlying oblivious transfer, while the rest part of this protocol only needs 2(logN + 1)κ bits
of communication. This means that the cost of this field multiplication is going to be the main bottleneck
of the whole DPF protocol for any reasonable size of N . Another potential issue is that this malicious DPF
protocol requires β to be a field element (so that inverse exists), and thus it is not immediately clear how to
efficiently support output authentication, where β has two field elements.

Our protocol. The prior protocol is costly and also heavily relies on malicious generic 2PC, making it
complicated to implement. In this work, we propose a completely different way to generate DPF with
malicious security without using generic malicious 2PC or field multiplication, while still maintaining the
same level of security. As a result, the protocol is much easier to implement and is almost as efficient as
state-of-the-art semi-honest DPF protocols.

Different from the prior work that first generates the whole vector of shares and then checks the relation-
ship in a modular way, our protocol maintains the invariance that after each level of expansion, two parties
hold authenticated sharing of partial prefix expansion. To be more specific, we assume that the two parties
start with a SPDZ authenticated share of 1, namely J1K. A SPDZ authentication is similar to BDOZ but
instead parties hold secret shares of the value b and its MAC b · ∆ (along with secret shares of the MAC
key), i.e., (b0,M0) and (b1,M1) such that M1 ⊕M0 = (b0 ⊕ b1) · (∆0 ⊕ ∆1). See Section 3.3 for com-
plete details. Two parties use one level of expansion to either get (J0K, J1K) or (J1K, J0K), depending on the
most significant bit of α. This process can be iteratively executed to obtain (J0K, . . . , J0K, J1K, J0K, . . . , J0K),
where J1K is at the α-th location. Finally, a correction word is used to correct J1K to JβK while maintaining
J0K unchanged.

Given this high-level approach, the key is to expand one level of the tree. Our high-level idea follows
a semi-honest optimization of DPF, namely Half-Tree [GYW+23]. Suppose two parties hold (x0, X0) and
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(x1, X1) respectively as their SPDZ share of 1 at the root such that X0 ⊕ X1 = ∆0 ⊕ ∆1 To obtain
(JaK, Ja⊕ 1K) for some private a ∈ {0, 1}, with a hash functionH the correction word CW would be

CW := H(x0∥X0)⊕H(x1∥X1)⊕ (a⊕ 1) · (∆0 ⊕∆1).

Each party can locally expand the left-child node as (lb, Lb) := H(xb∥Xb)⊕xb ·CW and the right-child node
as (rb, Rb) := H(xb∥Xb)⊕Xb⊕xb·CW. In addition, computing CW boils down to compute a·∆ efficiently;
when a is authenticated, their shares can be used to reconstruct shares of a ·∆ locally; thus computing shares
of CW can all be done via local computation. Our crucial observation is that, the adversary can only cheat
by corrupting CW with an additive value. However, if such corruption happens, the only type of change is
to make the authenticated shares on the next level ((lb, Lb), (rb, Rb) in the above example) invalid, which
can be easily discovered by an almost-free MAC check protocol. Unfortunately, the adversary can still learn
one-bit information since its cheat could lead to an abort event or not, depending on the bit a. However, it is
sufficient in our application and many other applications in pseudorandom correlation generators. We refer
to Section 5 for more details.

2.4 Putting Everything Together
Given the above two important building blocks already optimized with high efficiency, we can now build an
efficient RAM-based 2PC protocol with active security. We follow the blueprint of Floram [Ds17] and use
authenticated shares, either in BDOZ or SPDZ, to connect various building blocks. Here the main challenge
is to avoid secure computation of pseudorandom functions (PRFs) during refresh protocols, which would
be prohibitive. It is clear that for WOM, two parties would store the authenticated shares, but the design
of ROM is more complicated (as we elaborate below). Our final solution in the end only requires 2 PRF
computations in 2PC for each operation.
Write-only memory. Suppose elements stored in the RAM model are represented as an array D with
totally N elements. For WOM, two parties need to hold authenticated shares of D(i). To update the α-th
value to D∗, two parties first read from ROM to obtain JD(α)K and then use DPF to obtain an authenticated
vector of field elements (. . . , J0K, JD(α) ⊕D∗K, J0K, . . .), where the non-zero element is at location α, and
then locally XOR each element in the list to the authenticated shares of D(0), . . . , D(N−1) corresponding.
Although this version requires two separate DPFs, one can apply the optimization in Floram to reduce it to
call the DPF protocol only once. We provide full details in Section 6.
Read-only memory: First attempt. Two parties hold authenticated sharing of two PRF keys Jk0K and Jk1K.
For ROM, we can think of a scheme where the i-th data block D(i) is encrypted as E(i) = PRF(k0, i) ⊕
PRF(k1, i) ⊕ D(i) and is public to both parties. For a read operation at α, two parties would use the
above malicious DPF protocol to obtain a unit vector (. . . , J0K, J1K, J0K, . . .), where J1K is specified by
α. Then two parties can compute JE(α)K by computing the inner product between the vector E and the
authenticated unit vector, and then use 2PC to decrypt it to obtain the authenticated share JD(α)K. So far,
everything works great, but the challenge appears when connecting WOM to ROM via a refresh procedure.
Essentially, the problem setup is that two parties have Jk0K, Jk1K and JD(i)K; we need a protocol so that they
obtain E(i) = PRF(k0, i) ⊕ PRF(k1, i) ⊕ D(i). To defend against a malicious adversary, the values held
by the honest party should be correct even if the adversary cheats in some way. One way to ensure this
property is to mask all PRFs in a 2PC protocol, but this would require 2N PRF computation in 2PC. This
computation would blow up the cost since it can only cover about

√
N writes efficiently, leading to perform

PRF computation O(
√
N) times in 2PC per access. Alternatively, two parties can compute PRF locally,

supply them to 2PC to compute the masking step, and then reveal the result; however, this approach would
allow parties to change the value as the adversary can claim any value as their PRF evaluation. In summary,
it is not clear how to ensure consistency between WOM and ROM.
Read-only memory: Our approach. Our alternative method is to put the value and its SPDZ MAC to-
gether into the ROM. Since data are doubly encrypted by both parties, no information can be revealed.
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Furthermore, the additional MAC allows us to ensure consistency. In more detail, we now have E(i) =
PRF(k0, i) ⊕ PRF(k1, i) ⊕ (D(i), D(i) · ∆), where ∆ = ∆0 ⊕ ∆1 is the SPDZ MAC key and the output
length of PRF is sufficient for two elements. To read the α-th element from the array, two parties first
compute [PRF(k0, α)⊕ PRF(k1, α)] in 2PC, and use malicious DPF to obtain XOR-secret sharing of a
unit vector [u] = (. . . , [0], [1], [0], . . .), where the non-zero value is at index α. Two parties locally com-
pute

(⊕
i [u

(i)] · E(i)
)
⊕ [PRF(k0, α)⊕ PRF(k1, α)] = [(D(α), D(α) ·∆)], which is essentially the SPDZ

authenticated sharing JD(α)K. Here we no longer need MACs on the output of DPF as long as DPF is mali-
ciously secure: if any party cheats in any way, SPDZ shares as the output will be invalid independent of the
underlying data.

Back to refresh procedure: now two parties have sharings Jk0K, Jk1K, JD(i)K and need to obtain E(i) =
PRF(k0, i)⊕PRF(k1, i)⊕(D(i), D(i) ·∆). Two parties can treat the SPDZ sharing JD(i)K as additive sharing
[(D(i), D(i) ·∆)]. Since P0 can compute PRF(k0, i) while P1 can compute PRF(k1, i), they effectively
have additive shares [PRF(k0, i)⊕ PRF(k1, i)⊕ (D(i), D(i) ·∆)]. To reveal the underlying value, we can
just allow them to exchange the shares. Since the public values themselves will eventually be used as
authenticated values, any change of values will cause abort.

Bounding the leakage. With the above changes, the protocol is essentially as cheap as its semi-honest
counterpart. However, a naive argument would lead to an amount of leakage linear to the number of RAM
access operations, since every operation requires outputting some value, where checks are needed, leaving
an opportunity to leak a bit. To reduce the amount of leakage, we batch all checks since they all verify
consistency between values and their MACs, and defer these checks right before revealing the designated
output (i.e., f(x, y) where f is the function in the RAM model to be evaluated). For any intermediate values,
we will open them without a check. This will not leak any information because all opened intermediate
values are masked by authenticated shares of random values as how we design the protocol. This way, all
intermediate values can be simulated while the only abort end is in the end.

3 Preliminaries
3.1 Notation
We use λ to denote the computational security parameter. We denote by log(·) the logarithm in base 2. We
write x ← S to denote sampling x uniformly at random from a set S. We define [a, b) := {a, . . . , b − 1}
and [a, b] := {a, . . . , b}. For an n-bit integer x, we denote by (x(0), . . . , x(n−1)) its bit decomposition, that
is, x(i) ∈ {0, 1} for i ∈ [0, n) and x =

∑
i∈[0,n) x

(i) · 2i. We use bold lower-case letters like x to denote
a vector and x(i) to denote the i-th component of x with x(0) the first component. We use lsb(x) to denote
the least significant bit (LSB) of a string x (i.e., x(0)). We write F2λ

∼= F2[X]/f(X) for a monic irreducible
polynomial f(X) of degree λ. We use X ∈ F2λ to denote the element corresponding to X ∈ F2[X]/f(X).
Depending on the context, we use {0, 1}λ, Fλ

2 and F2λ interchangeably, and thus addition in Fλ
2 and F2λ

corresponds to XOR in {0, 1}λ. We use unit(N,α) ∈ FN
2λ

for a vector with exact one non-zero entry 1 at
position α ∈ [0, N).

3.2 Security Model and Ideal Functionalities
We use the standard ideal/real paradigm [Can00, Gol04] to prove security of our two-party protocols in the
presence of a malicious, static adversary. In the ideal-world execution, two parties P0 and P1 interact with
an ideal functionality F, and one of them may be corrupted by an ideal-world adversary (a.k.a., simulator)
S. In the real-world execution, P0 interacts with P1 via executing a protocol Π, and one of them may be
corrupted by a real-world adversary A. We say that a protocol Π securely realizes an ideal functionality F,
if the real-world execution is computationally indistinguishable from the ideal-world execution.

Our protocols call the standard two-party functionalities: the coin-tossing functionality Fcoin and the
commitment functionality Fcom, which can be securely realized using a random oracle [DKL+13].
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Functionality FaBit

Initialize: This command is called only once. Upon receiving (init,∆0) from P0 and (init,∆1) from P1, where
∆0,∆1 ∈ F2λ , abort if lsb(∆0 ⊕∆1) ̸= 1; otherwise store (∆0,∆1).

Authenticate bits: This command can be called multiple times. For b ∈ {0, 1}, upon receiving (auth, b,x, ℓ)
from Pb and (auth, b, ℓ) from P1−b, where x ∈ Fℓ

2, do the following:

• Sample K1−b[x]← Fℓ
2λ . If P1−b is corrupted, instead receive K1−b[x] ∈ Fℓ

2λ from the adversary.

• Compute Mb[x] := K1−b[x] + x ·∆1−b ∈ Fℓ
2λ . If Pb is corrupted, receive Mb[x] ∈ Fℓ

2λ from the adversary,
and then recompute K1−b[x] := Mb[x] + x ·∆1−b ∈ Fℓ

2λ .

• Output Mb[x] to Pb and K1−b[x] to P1−b.

Figure 1: Functionality for authenticated bits.

3.3 Authenticated Secret Sharings
We consider two kinds of authenticated secret sharings in the two-party setting, i.e., SPDZ style [DPSZ12,
DKL+13] and BDOZ style [BDOZ11]. Suppose that P0 (resp., P1) holds a global key ∆0 ∈ F2λ (resp.,
∆1 ∈ F2λ).

We use JxK to denote a SPDZ-style authenticated secret sharing on x ∈ F2λ . In particular, we have
JxK = (JxK0, JxK1) and, for each b ∈ {0, 1}, Pb holds

JxKb := (xb,Mb[x]) ∈ F2
2λ

such that x = x0 + x1 and M0[x] + M1[x] = x · (∆0 + ∆1) ∈ F2λ . We use [x] = ([x]0, [x]1) to
denote an unauthenticated additive sharing, i.e., [x]0 + [x]1 = x. So, we have JxK = ([x], [x ·∆]) with
∆ = ∆0 +∆1. Note that SPDZ-style authenticated sharings are additively homomorphic, i.e., two parties
can locally compute Ja · x+ b · yK = a · JxK + b · JyK for any public constants a, b ∈ F2λ . Besides, for any
public constant c, both parties can locally compute JcK by setting x0 := c, x1 := 0, M0[x] := c · ∆0 and
M1[x] := c · ∆1. For a vector x ∈ Fℓ

2λ
, we write JxK = (Jx(0)K, . . . , Jx(ℓ−1)K). In Figure 2, we describe

the batch-check protocol with essentially no communication, which can verify the correctness of multiple
values opened in a batch.

For a bit x ∈ F2, we write ⟨⟨x⟩⟩ to denote a BDOZ-style authenticated secret sharing. In particular, we
have ⟨⟨x⟩⟩ := (⟨⟨x⟩⟩0, ⟨⟨x⟩⟩1) and, for each b ∈ {0, 1}, Pb holds

⟨⟨x⟩⟩b = (xb,Kb[x1−b],Mb[xb]) ∈ F2 × F2
2λ

such that secret bit x = x0 ⊕ x1 and MAC tag Mb[xb] = K1−b[xb] + xb · ∆1−b ∈ F2λ . The BDOZ-style
authenticated sharings can be generated by calling the functionality FaBit (shown in Figure 1). In this fig-
ure, for the sake of simplicity, we write x = (x(0), . . . , x(ℓ−1)), K1−b[x] = (K1−b[x

(0)], . . . ,K1−b[x
(ℓ−1)])

and Mb[x] = (Mb[x
(0)], . . . ,Mb[x

(ℓ−1)]). This functionality has been used in previous works [WRK17a,
WRK17b, HSS17, YWZ20]. Functionality FaBit can be securely realized against malicious adversaries
by executing a correlated oblivious transfer (COT) protocol [KOS15, BCG+19, YWL+20, WYKW21,
Roy22, BCG+22, GYW+23]. To guarantee lsb(∆0 ⊕ ∆1) = 1, the consistency check in [CWYY23]
can be adopted (particularly, λ random authenticated sharings need to be sacrificed). It is clear that BDOZ-
style authenticated sharings are also additively homomorphic. For a bit vector x ∈ Fℓ

2, we write ⟨⟨x⟩⟩ =
(⟨⟨x(0)⟩⟩, ⟨⟨x(1)⟩⟩, . . . , ⟨⟨x(ℓ−1)⟩⟩).

Both parties can locally compute an authenticated sharing on a field element x ∈ F2λ from λ authenti-
cated sharings ⟨⟨x(0)⟩⟩, . . . , ⟨⟨x(λ−1)⟩⟩ where x(i) ∈ {0, 1} for each i ∈ [0, λ). In particular, both parties are
able to locally compute ⟨⟨x⟩⟩ := ∑

i∈[0,λ) ⟨⟨x(i)⟩⟩ · Xi. We denote by ⟨⟨x⟩⟩ := B2F(⟨⟨x(0)⟩⟩, . . . , ⟨⟨x(λ−1)⟩⟩)

7



Protocol ΠBatchCheck

Input: Two parties P0 and P1 hold ℓ SPDZ-style authenticated sharings Jy(0)K, . . . , Jy(ℓ−1)K along with their
opened values y(i) ∈ F2λ for each i ∈ [0, ℓ).
Batch check: Two parties do the following.

1. Two parties call Fcoin to sample a random χ ∈ F2λ .

2. Two parties locally compute JzK :=
∑

i∈[0,ℓ) χ
i · Jy(i)K and z :=

∑
i∈[0,ℓ) χ

i · y(i) ∈ F2λ .

3. For each b ∈ F2, Pb computes Vb := Mb[z] + z ·∆b and calls Fcom to commit to Vb.

4. For each b ∈ F2, Pb calls Fcom to open Vb. Then, two parties check V0 = V1 and abort if the check fails.

Figure 2: Protocol for batch-checking the values authenticated by SPDZ-style MACs in the (Fcoin,Fcom)-hybrid
model.

this local computation. Besides, we can transform a BDOZ-style authenticated sharing to a SPDZ-style
authenticated sharing without any interaction [BLN+21]. Specifically, given ⟨⟨x⟩⟩ = (⟨⟨x⟩⟩0, ⟨⟨x⟩⟩1), both
parties locally compute JxK by setting JxKb := (xb,Kb[x1−b] ⊕ Mb[xb] ⊕ xb∆b) for each b ∈ {0, 1}. We
write JxK := Convert(⟨⟨x⟩⟩) for this computation.

3.4 Garbling Scheme
Following the previous work [BHR12], we give the definition of garbling schemes, which is specified for our
usage. For a bit x ∈ {0, 1}, we use K[x] ∈ {0, 1}λ to denote the 0-label and M[x] ∈ {0, 1}λ to denote the
garbled label on bit x. We always consider that the free-XOR technique [KS08] is adopted, which is the case
for the state-of-the-art garbling schemes [ZRE15, RR21]. In this case, a random global key ∆ ∈ {0, 1}λ
is sampled, and M[x] = K[x] ⊕ x∆ for any bit x ∈ {0, 1}. We observe that garbled labels have the same
form of BDOZ-style authenticated bits (modeled in functionality FaBit). In our 2PC protocol shown in
Section 4, we will call functionality FaBit to generate garbled labels on input wires. Thus, ∆ and 0-labels
corresponding to input bits have been defined by the BDOZ-style authenticated bits, and are able to be used
as the input of garbling algorithm Garble. Similarly, the garbled labels on input bits are defined by the MAC
tags in the authenticated bits, and can be used as the input of evaluation algorithm Eval. We will transform
the garbled labels on output bits into authenticated bits, instead of decoding them to obtain the output bits.
Overall, our 2PC protocol only needs two algorithms Garble and Eval, where the encoding and decoding
algorithms are not required.

Definition 1. A garbling scheme GS = (Garble,Eval), which is specific to our application, consists of the
following two algorithms.

• (GC ,K[y])← Garble(K[x],∆, C): Given a vector of 0-labels K[x] on input wires, a global key ∆ and a
Boolean circuit C : {0, 1}n → {0, 1}m, this algorithm outputs a garbled circuit GC along with a vector
of 0-labels K[y] on output wires.

• M[y] ← Eval(GC ,M[x]): Given a garbled circuit GC and a vector of garbled labels M[x] on input
vector x, this algorithm outputs a vector of garbled labels M[y] on output vector y.

For security, we assume that the garbling scheme satisfies obliviousness [BHR12]. That is, there exists
a simulator S, given a circuit C, that can simulate a garbled circuit GC and a vector of garbled labels M[x],
which are computationally indistinguishable from the real values.
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Functionality F2PC

This functionality initializes two identifier-value lists Bit and Val, where each value in Bit (resp., Val) is an
element in F2 (resp., F2λ ). It interacts with two parties P0 and P1.

Input: Upon receiving (input, id, b, x) from Pb and (input, id, b) from P1−b, where b, x ∈ F2, set Bit[id] := x.

Eval: Upon receiving (eval, {id(xi)}i∈[0,n), {id(yi)}i∈[0,m), C) from both parties, where C :

Fn
2 → Fm

2 is a boolean circuit, compute (Bit[id(y0)],Bit[id(y1)], . . . ,Bit[id(ym−1)]) :=

C(Bit[id(x0)],Bit[id(x1)], . . . ,Bit[id(xn−1)]).

Rand: Upon receiving (rand, id) from both parties, sample Val[id]← F2λ .

Pack: Upon receiving (pack, {id(i)}i∈[0,λ), id) from both parties, compute Val[id] :=
∑

i∈[0,λ) Bit[id
(i)] ·Xi ∈

F2λ .

Unpack: Upon receiving (unpack, id, {id(i)}i∈[0,λ)) from both parties, decompose
Val[id] :=

∑
i∈[0,λ) x

(i) ·Xi ∈ F2λ and define Bit[id(i)] := x(i) ∈ F2 for each i ∈ [0, λ).

Open: Upon receiving (open, id) from both parties, send Val[id] ∈ F2λ to the adversary, wait for x ∈ F2λ from
the adversary, and send x to both parties. If x ̸= Val[id], set a cheat flag.

Check: This command is allowed to be called only once. Upon receiving (check) from both parties, do the
following:

1. Wait for a predicate P : F|I|
2 × F|J |

2λ
→ F2 from the adversary, where I (resp., J ) is the set of all available

identifiers in list Bit (resp., Val).

2. If P ({Bit[id]}id∈I , {Val[id]}id∈J ) = 0 or a cheat flag is set, abort.

Figure 3: Functionality for secure two-party computation with one-bit leakage.

4 Constant-Round 2PC with Active Security
In Figure 3, we give a 2PC functionality F2PC in the active setting. This functionality allows two parties
to input bits via the (input) command and generate random elements in F2λ via the (rand). By calling the
(eval), two parties can compute any Boolean circuit. Two parties are able to call the (open) command to
open some elements in F2λ to both of them. We do not consider the (output) command to output values to
only one party, as it is not required for our RAM-based 2PC protocol (shown in Section 6). In addition, we
define the (pack) and (unpack) commands to realize the conversion between λ bits and one element in F2λ .
Finally, a malicious adversary, who corrupts either P0 or P1, can leak at most one-bit information on secret
elements by inputting a predicate P only once.

Based on a garbling scheme and functionality FaBit, we present an efficient 2PC protocol Π2PC with
active security in Figure 4. This protocol adopts the dual-execution framework [MF06], and securely realizes
functionality F2PC (Figure 3). Note that the check procedure works as the batch check of SPDZ-style
authenticated sharings, where BDOZ-style authenticated sharings are converted into SPDZ-style ones. The
checking result allows a malicious adversary to make a selective-failure attack, i.e., an incorrect guess on
the secret values will lead to the protocol aborts, and a correct guess will make the honest party accept.
All the checks are done at the end of protocol execution, and thus the adversary can reveal at most one-bit
information.

We use the Yao’s 2PC protocol [Yao86] based on garbling schemes to securely compute any Boolean
circuit, and adopt dual execution to achieve active security with one-bit leakage. In the original dual exe-
cution [MF06, HKE12], each of two parties first acts as a garbler and then acts as an evaluator, and then
both parties execute an equality check immediately after the circuit was computed. Different from the orig-
inal dual execution, we defer the check to the open phase, and use sub-protocol ΠBatchCheck to perform the
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Protocol Π2PC (Part I)

This protocol invokes ΠBatchCheck (Figure 2) as a sub-protocol, and adopts a garbling scheme GS =
(Garble,Eval).

Initialize: For each b ∈ F2, Pb samples ∆b ← F2λ such that lsb(∆b) = b, and sends (init, b,∆b) to FaBit.

Input: For each b ∈ F2, for each input bit x ∈ F2 held by Pb, two parties P0 and P1 do the following:

1. Pb and P1−b call FaBit on respective inputs (auth, b, x, 1) and (auth, b, 1) to obtain respective outputs Mb[x]
and K1−b[x]. Then, P1−b samples r ← F2λ and send r to Pb. Next, P1−b updates K1−b[x] := K1−b[x] ⊕ r,
and Pb updates Mb[x] := Mb[x]⊕ r.

2. Pb defines Kb[0] = s and P1−b sets M1−b[0] = s by letting Pb sample s← F2λ and send s to P1−b.

3. Both parties define ⟨⟨x⟩⟩ = (⟨⟨x⟩⟩b, ⟨⟨x⟩⟩1−b), where ⟨⟨x⟩⟩b := (x,Kb[0],Mb[x]) and ⟨⟨x⟩⟩1−b :=
(0,K1−b[x],M1−b[0]).

Eval: To compute (y(0), . . . , y(m−1)) ← C(x(0), . . . , x(n−1)), two parties P0 and P1 use
BDOZ-style authenticated sharings {⟨⟨x(i)⟩⟩}i∈[0,n) to compute {⟨⟨y(i)⟩⟩}i∈[0,m) as follows, where
⟨⟨x(i)⟩⟩b = (x

(i)
b ,Kb[x

(i)
1−b],Mb[x

(i)
b ]) for each b ∈ F2 and i ∈ [0, n).

1. For each b ∈ F2, Pb computes Kb[x
(i)] := Kb[x

(i)
1−b]⊕x

(i)
b ·∆b and P1−b computes M1−b[x

(i)] := M1−b[x
(i)
1−b]

such that M1−b[x
(i)] = Kb[x

(i)]⊕ x(i) ·∆b for each i ∈ [0, n).

2. As a garbler, for each b ∈ F2, Pb runs (GC b, {Kb[y
(i)]}i∈[0,m)) ← Garble({Kb[x

(i)]}i∈[0,n),∆b, C), and
sends GC b to P1−b.

3. As an evaluator, for each b ∈ F2, P1−b runs {M1−b[y
(i)]}i∈[0,m) ← Eval({M1−b[x

(i)]}i∈[0,n),GC b).

4. For each b ∈ F2, Pb computes y
(i)
b := lsb(Kb[y

(i)] ⊕Mb[y
(i)]) ∈ F2 and ⟨⟨y(i)⟩⟩b := (y

(i)
b ,Kb[y

(i)] ⊕ y
(i)
b ·

∆b,Mb[y
(i)]) for each i ∈ [0,m). As a result, both parties hold BDOZ-style authenticated sharing ⟨⟨y(i)⟩⟩ for

each i ∈ [0,m).

Figure 4: Actively secure constant-round 2PC protocol with one-bit leakage in the (FaBit,Fcoin,Fcom)-hybrid model.

verification of dual execution, where garbled labels in the dual execution are transformed into BDOZ-style
authenticated sharings which are in turn converted into SPDZ-style ones.

Our 2PC protocol requires a garbling scheme (e.g., half-gates [ZRE15]) to be compatible with free
XOR [KS08]. In this case, we can set the global key in authenticated sharings as the global offset in free
XOR. As a result, garbled labels can be converted to BDOZ-style authenticated sharings. To obtain garbled
labels to evaluate a garbled circuit, the two parties maintain the invariant that, for each wire carrying bit
x, they hold a BDOZ-style authenticated sharing ⟨⟨x⟩⟩. Such a sharing can be obtained from (i) calling
FaBit to authenticate an input bit, or (ii) computing it from garbled labels on the wire. Functionality FaBit

allows the corrupted party to choose its output, and thus it fails to comply with the uniform distribution of
0-labels on input wires. Thus, we randomize each 0-label with a public randomness r. The correctness
of garbling scheme gives M1−b[y

(i)] = Kb[y
(i)] ⊕ y(i) · ∆b for each b ∈ {0, 1} and output bit y(i). From

lsb(∆0 ⊕∆1) = 1, we have

y
(i)
b ⊕ y

(i)
1−b = lsb(Kb[y

(i)]⊕Mb[y
(i)])⊕ lsb(K1−b[y

(i)]

⊕M1−b[y
(i)]) = y(i) · lsb(∆b ⊕∆1−b) = y(i).

Reactive 2PC. For the sake of simplicity, we describe the protocol Π2PC (Figure 4) to securely compute
a single Boolean circuit. Nevertheless, protocol Π2PC is natural to support reactive computation, as the
state information can be transferred via BDOZ-style authenticated sharings, and this protocol realizes the
efficient conversion between BDOZ-style authenticated sharings and garbled labels in the dual execution.
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Protocol Π2PC (Part II)

Rand: To compute SPDZ-style authenticated sharing JrK for a random r ← F2λ , two parties P0 and P1 do the
following:

1. For each b ∈ F2, Pb samples rb ← Fλ
2 , and then Pb and P1−b call functionality FaBit on respective inputs

(auth, b, rb, λ) and (auth, b, λ) to obtain respective outputs Mb[rb] and K1−b[rb].

2. Two parties define ⟨⟨r⟩⟩ = (⟨⟨r⟩⟩0, ⟨⟨r⟩⟩1), where ⟨⟨r⟩⟩b := (rb,Kb[r1−b],Mb[rb]) for each b ∈ F2, and run
⟨⟨r⟩⟩ := B2F(⟨⟨r⟩⟩) and JrK := Convert(⟨⟨r⟩⟩).

Pack: To pack BDOZ-style authenticated sharings {⟨⟨x(i)⟩⟩}i∈[0,λ) into one SPDZ-style authenticated sharing
JxK such that x =

∑
i∈[0,λ) x

(i) · Xi ∈ F2λ , both parties run ⟨⟨x⟩⟩ := B2F(⟨⟨x(0)⟩⟩, . . . , ⟨⟨x(λ−1)⟩⟩) and JxK :=

Convert(⟨⟨x⟩⟩).
Unpack: To unpack JxK into {⟨⟨x(i)⟩⟩}i∈[0,λ) such that x =

∑
i∈[0,λ) x

(i) · Xi ∈ F2λ , two parties P0 and P1 do
the following:

1. For each b ∈ F2, Pb decomposes xb ∈ F2λ in JxKb as xb = (x
(0)
b , . . . , x

(λ−1)
b ) ∈ Fλ

2 such that
xb =

∑
i∈[0,λ) x

(i)
b · Xi, and then Pb and P1−b call FaBit on respective inputs (auth, b,xb, λ) and (auth, b, λ)

to obtain respective outputs Mb[xb] and K1−b[xb].

2. Both parties define (⟨⟨x(0)⟩⟩, . . . , ⟨⟨x(λ−1)⟩⟩) = ⟨⟨x⟩⟩ := (⟨⟨x⟩⟩0, ⟨⟨x⟩⟩1), where ⟨⟨x⟩⟩b :=
(xb,Kb[x1−b],Mb[xb]) for each b ∈ F2.

3. Both parties run ⟨⟨x̃⟩⟩ := B2F(⟨⟨x⟩⟩) and Jx̃K := Convert(⟨⟨x̃⟩⟩),
4. Both parties locally compute JyK := JxK − Jx̃K, and run sub-protocol ΠBatchCheck (Figure 2) on input (JyK, 0)

to check y = 0.

Open: To open x ∈ F2λ in JxK, where JxKb = (xb,Mb[x]) for each b ∈ F2, P0 sends x0 ∈ F2λ to P1, and P1

sends x1 ∈ F2λ to P0 in parallel. Two parties output x̃ := x0 ⊕ x1, and run sub-protocol ΠBatchCheck (Figure 2)
on input (JxK, x̃) to check x = x̃.

Check: The consistency of values, sent to FaBit or two parties, has been checked by running sub-protocol
ΠBatchCheck. All these checks are done in a batch at the end of protocol execution.

Figure 4: Actively secure constant-round 2PC protocol with one-bit leakage in the (FaBit,Fcoin,Fcom)-hybrid model.

Specifically, a reactive computation consists of a series of circuits (C0, . . . , Cℓ), and each circuit Cj takes as
input a state σj−1 and a bit string xj ∈ {0, 1}n, and outputs an updated state σj and a bit string yj ∈ {0, 1}m.
For each Boolean circuit Cj , our protocol Π2PC is able to take as input ⟨⟨σj−1⟩⟩ and ⟨⟨xj⟩⟩ and then output
⟨⟨σj⟩⟩ and ⟨⟨yj⟩⟩. When computing circuit Cj+1, Π2PC can use ⟨⟨σj⟩⟩ and ⟨⟨xj+1⟩⟩ to compute ⟨⟨σj+1⟩⟩ and
⟨⟨yj+1⟩⟩. In this way, protocol Π2PC is able to securely perform the whole reactive computation.

Security. The active security of protocol Π2PC is stated in Theorem 1, and we give its proof in Appendix A.

Theorem 1. Let GS be a garbling scheme with obliviousness. Then, protocol Π2PC (Figure 4) securely re-
alizes functionality F2PC (Figure 3) against malicious adversaries in the (FaBit,Fcoin,Fcom)-hybrid model.

5 Actively Secure Distributed Point Function
In Figure 6, we define an ideal functionality FDPF for distributed point function in the active setting. Sim-
ilarly, it allows the adversary to make a single selective-failure query by inputting a predicate. Then, we
present an actively secure two-party protocol ΠDPF (shown in Figure 5) to instantiate FDPF. In this pro-
tocol, we suppose that the BDOZ-style and SPDZ-style authenticated sharings input by two parties have
been generated by executing the Input and Pack of protocol Π2PC. Our actively secure DPF protocol builds

11



Protocol ΠDPF

This protocol invokes ΠBatchCheck (Figure 2) as a sub-protocol.

Initialize: For each b ∈ F2, Pb samples ∆b ← F2λ such that lsb(∆b) = b, and sends (init, b,∆b) to FaBit.

Protocol inputs: Two parties P0 and P1 hold n BDOZ-style authenticated sharings ⟨⟨α(i)⟩⟩ = (⟨⟨α(i)⟩⟩0, ⟨⟨α(i)⟩⟩1)
for all i ∈ [0, n) as well as a SPDZ-style authenticated sharing JβK = (JβK0, JβK1). Let N = 2n for some
n ∈ N. Let H0 : {0, 1}λ → {0, 1}λ be a CCR hash function and H1 : {0, 1}λ → {0, 1}2λ such that H1(x) :=
H0(x) ∥H0(x⊕ 1).

Generate SPDZ-style authenticated sharings of DPF outputs: Let ⟨⟨α(i)⟩⟩b = (α
(i)
b ,Kb[α

(i)
1−b],Mb[α

(i)
b ]) and

JβKb = (βb,Mb[β]) for each b ∈ {0, 1}. The parties P0 and P1 do the following.

1. Both parties call Fcoin to sample a public randomness W ∈ F2λ . Each party Pb sets (s
(0,0)
b ∥ t(0,0)b ) :=

∆b ⊕W ∈ {0, 1}λ.

2. For each b ∈ {0, 1}, for each i ∈ [0, n), Pb computes the following:

CW
(i)
b :=

(⊕
j∈[0,2i)H0(s

(i,j)
b ∥ t(i,j)b )

)
⊕∆b ⊕

(
α
(i)
b ·∆b ⊕ Kb[α

(i)
1−b]⊕Mb[α

(i)
b ]

)
∈ {0, 1}λ,

and sends CW(i)
b to P1−b. For each i ∈ [0, n), both parties compute CW(i) := CW

(i)
0 ⊕CW

(i)
1 , and each party

Pb computes:(
s
(i+1,2j)
b ∥ t(i+1,2j)

b

)
:= H0

(
s
(i,j)
b ∥ t(i,j)b

)
⊕ t

(i,j)
b · CW(i) for each j ∈ [0, 2i),(

s
(i+1,2j+1)
b ∥ t(i+1,2j+1)

b

)
:= H0

(
s
(i,j)
b ∥ t(i,j)b

)
⊕

(
s
(i,j)
b ∥ t(i,j)b

)
⊕ t

(i,j)
b · CW(i) for each j ∈ [0, 2i).

3. For each b ∈ {0, 1}, Pb computes

CW
(n)
b :=

(⊕
j∈[0,N)H1(s

(n,j)
b ∥ t(n,j)b )

)
⊕ (βb ∥Mb[β]) ∈ {0, 1}2λ,

and sends CW(n)
b to P1−b. Then, both parties compute CW(n) := CW

(n)
0 ⊕ CW

(n)
1 . For each b ∈ {0, 1}, Pb

computes

Ju(j)Kb :=
(
u
(j)
b = t

(n,j)
b ,Mb[u

(j)] = (s
(n,j)
b ∥ t(n,j)b )

)
for each j ∈ [0, N),

Jv(j)Kb =
(
v
(j)
b ∥Mb[v

(j)]
)
:= H1

(
s
(n,j)
b ∥ t(n,j)b

)
⊕ t

(n,j)
b · CW(n) for each j ∈ [0, N).

4. As in the Rand process of protocol Π2PC (Figure 4), both parties call functionality FaBit to generate JrK with
a random r ∈ F2λ . Then, both parties call functionality Fcoin to sample a random challenge χ ∈ F2λ , and
locally compute

JaK :=
∑

j∈[0,N) χ
j · Ju(j)K +

∑
j∈[0,N) χ

N+j · Jv(j)K + JrK.

5. As in the Open process of protocol Π2PC, both parties open JaK to obtain ã = a0 + a1 ∈ F2λ by letting P0

send a0 to P1 and P1 send a1 to P0 in parallel. Then, both parties run sub-protocol ΠBatchCheck (Figure 2) on
input (JaK, ã) to check a = ã.

6. For each j ∈ [0, N), both parties obtain Ju(j)K = (Ju(j)K0, Ju(j)K1) and Jv(j)K = (Jv(j)K0, Jv(j)K1).

Figure 5: Actively secure two-party protocol for DPF with one-bit leakage in the (FaBit,Fcoin,Fcom)-hybrid model.

upon the semi-honest DPF protocol [GYW+23], which is based on circular correlation robust (CCR) hash
functions [GKWY20, GKW+20].
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Functionality FDPF

This functionality initializes two identifier-value lists Bit and Val, where each value in Bit (resp., Val) is an
element in F2 (resp., F2λ ). It interacts with two parties P0 and P1.

Input: For b ∈ {0, 1}, upon receiving (input, id, b, x) from Pb and (input, id, b) from P1−b, where either x ∈ F2

or x ∈ F2λ , set either Bit[id] := x or Val[id] := x depending on whether x is a bit or not.

Gen: Upon receiving (gen, {id(αi)}i∈[0,n), id, {id(i)}i∈[0,2N)) from P0 and P1 where N = 2n, do the following:

1. Compute α :=
∑

i∈[0,n) Bit[id
(αi)] · 2i ∈ [0, N) and set β := Val[id] ∈ F2λ .

2. Perform the following:

(Val[id(0)], . . . ,Val[id(N−1)]) := unit(N,α) ∈ FN
2λ ,

(Val[id(N)], . . . ,Val[id(2N−1)]) := unit(N,α) · β ∈ FN
2λ .

Check: This command is allowed to be called only once. Upon receiving (check) from both parties, do the
following:

1. Wait for a predicate P : F|I|
2 × F|J |

2λ
→ F2 from the adversary, where I (resp., J ) is the set of all available

identifiers in list Bit (resp., Val).

2. If P ({Bit[id]}id∈I , {Val[id]}id∈J ) = 0, abort.

Figure 6: Functionality for DPF with one-bit leakage.

Definition 2. Let H : {0, 1}λ → {0, 1}λ, χ be a distribution on {0, 1}λ, Fλ+1,λ be a family of functions
with (λ+1)-bit input and λ-bit output, andOccr

H,∆(x, b) := H(x⊕∆)⊕b ·∆ be an oracle for x,∆ ∈ {0, 1}λ
and b ∈ {0, 1}.

We say thatH is (t, q, ρ, ϵ)-CCR if for any distinguisherD running in time at most t and making at most
q queries to Occr

H,∆(·, ·), and any χ with min-entropy at least ρ, it holds∣∣∣∣ Pr∆←χ

[
DOccr

H,∆(·,·)(1λ) = 1
]
− Pr

f←Fλ+1,λ

[
Df(·,·)(1λ) = 1

]∣∣∣∣
is at most ϵ, where D cannot query both (x, 0) and (x, 1) for any x ∈ {0, 1}λ.

Compared to the prior semi-honest DPF protocol [GYW+23], our actively secure protocol ΠDPF per-
forms a consistency check on all leaf nodes. If a corrupted party sends an incorrect share of a correction
word and makes a wrong guess on some prefix of α to remove this error, then the error will propagate in the
tree expansion of ΠDPF and fail the check. Allowing the adversary to guess a prefix of α leads to one-bit
leakage.

Through a simple induction, protocol ΠDPF ensures that, for i ∈ [0, n] and j ∈ [0, 2i),

(s
(i,j)
b ∥ t(i,j)b )⊕ (s

(i,j)
1−b ∥ t

(i,j)
1−b ) =

{
0, j ̸= α(0), . . . , α(i−1)

∆b ⊕∆1−b, otherwise

As lsb(∆0 ⊕ ∆1) = 1, one can check that JuK is a vector of SDPZ-style authenticated sharings on u =

unit(N,α). Moreover, given the above equality, v(j) := v
(j)
b ⊕v

(j)
1−b = β ∈ F2λ and Mb[v

(j)]⊕M1−b[v
(j)] =

Mb[β] ⊕ M1−b[β] if and only if j = α. Thus, JvK is a vector of SPDZ-style authenticated sharings on
v = unit(N,α) · β.
Security. We state the security of our DPF protocol ΠDPF in Theorem 2, and provide its proof in Ap-
pendix B.
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Functionality FRAM2PC

This functionality initialize an identifier-value array Bit, where each entry in Bit is an element in F2. It interacts
with two parties P0 and P1.

Initialize: Upon receiving (init, N) from both parties where N = 2n, initialize a memory list D :=
(D(0), ..., D(N−1)) = (0, . . . , 0) ∈ FN

2λ .

Input: For b ∈ {0, 1}, upon receiving (input, id, b, x) from Pb and (input, id, b) from P1−b with x ∈ F2, set
Bit[id] := x.

Private RAM read/write access: Upon receiving (access, F, {id(α,i)}i∈[0,n), {id(aux,i)}i∈[0,ℓ), {id(aux
′,i)}i∈[0,ℓ))

from P0 and P1, where ℓ ∈ N and F : {0, 1}λ×{0, 1}ℓ → {0, 1}λ×{0, 1}ℓ is a Boolean circuit, do the following:

1. Compute α :=
∑

i∈[0,n) Bit[id
(α,i)] · 2i ∈ [0, N) and aux :=

(
Bit[id(aux,0)], . . . ,Bit[id(aux,ℓ−1)]

)
∈ {0, 1}ℓ.

2. Compute (D′(α), aux′) := F (D(α), aux).

3. Update D(α) := D′(α).

4. Set
(
Bit[id(aux

′,0)], . . . ,Bit[id(aux
′,ℓ−1)]

)
:= aux′.

Check: This command is allowed to be called only once. Upon receiving (check) from both parties, do the
following:

1. Wait for a predicate P : F|I|
2 × FN

2λ → F2 from the adversary, where I is the set of all identifiers in Bit.

2. If P ({Bit[id]}id∈I ,D) = 0, abort.

Figure 7: Functionality for RAM-based 2PC with one-bit leakage.

Theorem 2. LetH0 be a CCR hash function. Then, protocol ΠDPF (Figure 5) securely realizes functionality
FDPF (Figure 6) against malicious adversaries in the (FaBit,Fcoin,Fcom)-hybrid model.

6 RAM-based 2PC with Active Security
We present our RAM-based two-party computation functionality FRAM2PC in Figure 7, along with its in-
stantiation ΠRAM2PC in Figure 8. As discussed in Section 2, we follow the blueprint in Floram [Ds17],
which was designed for the semi-honest setting. We use a Read-Only Memory (ROM), a Write-Only Mem-
ory (WOM), a refresh procedure synchronizing these two types of memory, and a linear-scan stash to store
updates between two refresh procedures. For readers who are familiar with Floram, we note that the main
difference is in the structure of ROM and WOM, which now needs to store authenticated shares to prevent
active attacks.

ROM and WOM structure. Consider an N -element memory D. In our protocol, two parties construct a
WOM W from D with each holding JW (i)K := JD(i)K for every i ∈ [0, N). They also build a ROM R
where each has the same value R(i) := (D(i) ∥D(i) · ∆) ⊕ F (k0, i) ⊕ F (k1, i) for every i ∈ [0, N), with
k0, k1 ∈ F2λ held by P0 and P1 respectively. Here, F : F2λ × [0, N)→ F2

2λ
is a PRF.

To realize a read operation on position α from ROM, two parties input ⟨⟨α⟩⟩ and a dummy JβK (e.g.,
JβK = J0K) to ΠDPF. Then, JD(α)K can be computed from using inner product ⟨R, {[u(i)]}i∈[0,N)⟩ to select
its masked entry [R(α)] and removing mask [F (k0, α)⊕ F (k1, α)], which is computed using 2PC.

To implement a write operation from WOM such that JD(α)K is updated to JD(α) ⊕ ϵK, two parties input
⟨⟨α⟩⟩ and a random JβK to ΠDPF to obtain JuK and JvK. Then, they open Jϵ⊕ βK to obtain ϵ⊕β and compute
the difference JδK = JuK · (ϵ ⊕ β) ⊕ JvK with δ = unit(N,α) · ϵ ∈ FN

2λ
. Two parties update WOM

JW K := JW K⊕ JδK.
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Protocol ΠRAM2PC

This protocol invokes Π2PC (Figure 4) and ΠDPF (Figure 5) as two sub-protocols, and maintains three memories:
the ROM R, WOM JW K and stash ⟨⟨S⟩⟩. Let PRF : {0, 1}λ × [0, N)→ {0, 1}2λ be a pseudo-random function
(PRF) and σ ∈ N denote the maximum number of entries in a stash.

Initialize: Two parties P0 and P1 execute Initialize of sub-protocol Π2PC to initialize two global keys ∆0 ∈ F2λ

and ∆1 ∈ F2λ . Then, both parties execute as follows:

1. Both parties set JW (i)K := J0K for each i ∈ [0, N) to initialize WOM JWK, and initialize stash ⟨⟨S⟩⟩ := ∅.
2. Both parties run the following Refresh procedure to initialize ROM R ∈ FN

2λ .

3. For an initial auxiliary input aux, both parties execute Input of sub-protocol Π2PC to generate ⟨⟨aux⟩⟩.

Full private access: To obliviously read or write an entry in the α-th position with α ∈ [0, N) and N = 2n, P0

and P1 hold ⟨⟨α⟩⟩ = (⟨⟨α(0)⟩⟩, . . . , ⟨⟨α(n−1)⟩⟩) such that α(i) ∈ {0, 1} for i ∈ [0, n) and
∑

i∈[0,n) α
(i) · 2i = α,

and then do the following:

1. Both parties execute Rand of sub-protocol Π2PC to generate JβK with a random element β ∈ F2λ .

2. Both parties execute sub-protocol ΠDPF on the input {⟨⟨α(i)⟩⟩}i∈[0,n) and JβK to obtain JuK and JvK such that
u (resp., v) is an unit vector with exactly one nonzero entry u(α) = 1 (resp., v(α) = β).

3. Both parties locally compute a pair of unauthenticated additive sharings ([c], [d]) :=∑
i∈[0,N)(R

(i)[0], R(i)[1]) · [u(i)], where R(i) = (R(i)[0], R(i)[1]) ∈ {0, 1}2λ for i ∈ [0, N), and
[u(i)] for all i ∈ [0, N) are the additive secret sharings defined in JuK.

4. P0 and P1 execute Eval of sub-protocol Π2PC on the input (⟨⟨k0⟩⟩, ⟨⟨k1⟩⟩, ⟨⟨α⟩⟩, ⟨⟨aux⟩⟩) to perform the following
computation:

(a) If there exists an entry (⟨⟨α⟩⟩, ⟨⟨x⟩⟩) in ⟨⟨S⟩⟩, set ⟨⟨y⟩⟩ := ⟨⟨x⟩⟩. Otherwise, compute ([y], [y · ∆]) :=
PRF(⟨⟨k0⟩⟩, ⟨⟨α⟩⟩)⊕ PRF(⟨⟨k1⟩⟩, ⟨⟨α⟩⟩)⊕ ([c]0, [d]0)⊕ ([c]1, [d]1), set JyK = ([y], [y ·∆]) and unpack JyK
as ⟨⟨y⟩⟩. (Note that both parties can run Unpack of sub-protocol Π2PC on the input JyK to generate ⟨⟨y⟩⟩.)

(b) Compute (⟨⟨y′⟩⟩, ⟨⟨aux′⟩⟩) := F (⟨⟨y⟩⟩, ⟨⟨aux⟩⟩).
(c) If there exists an entry (⟨⟨α⟩⟩, ⟨⟨x⟩⟩) in ⟨⟨S⟩⟩, set the entry as (⊥,⊥) and add (⟨⟨α⟩⟩, ⟨⟨y′⟩⟩) to ⟨⟨S⟩⟩.

5. Both parties update ⟨⟨aux⟩⟩ as ⟨⟨aux′⟩⟩, and run Pack of sub-protocol Π2PC on the input ⟨⟨y⟩⟩ to generate JyK.

6. P0 and P1 run Jy′K := Convert(⟨⟨y′⟩⟩), and then locally compute JδK := JβK⊕ JyK⊕ Jy′K. Then, both parties
execute Open of sub-protocol Π2PC open JδK to obtain δ ∈ {0, 1}λ.

7. For i ∈ [0, N), both parties locally compute and update JW (i)K := JW (i)K⊕ δ · Ju(i)K⊕ Jv(i)K, meaning that
JW K is updated.

8. If the number of entries in stash ⟨⟨S⟩⟩ is identical to σ, both parties run the following Refresh procedure.

Refresh: Both parties clear the stash, i.e., set ⟨⟨S⟩⟩ := ∅, and then do the following:

1. For each b ∈ {0, 1}, Pb samples kb = (k
(0)
b , . . . , k

(λ−1)
b ) ← {0, 1}λ, which is used as a PRF key, and both

parties execute Input of sub-protocol Π2PC on the input bits k(i)b for i ∈ [0, λ) to generate ⟨⟨kb⟩⟩.

2. For each b ∈ {0, 1}, for each i ∈ [0, N), Pb computes R(i)
b = (R

(i)
b [0], R

(i)
b [1]) := JW (i)Kb ⊕ PRF(kb, i) ∈

{0, 1}2λ and sends R(i)
b to P1−b.

3. Both parties compute R by setting R(i) := R
(i)
0 ⊕ R

(i)
1 ∈ {0, 1}2λ for each i ∈ [0, N), and also obtain ⟨⟨k0⟩⟩

and ⟨⟨k1⟩⟩.

Figure 8: Actively secure protocol for RAM-based 2PC with one-bit leakage.
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Stash-based lookup. After a write operation, the data in ROM will no longer be current. we implement a
linear-scan stash, ⟨⟨S⟩⟩, in secure computation with maximum size σ. It is a temporary storage for all WOM
updates that have not yet been applied to ROM. Each element in ⟨⟨S⟩⟩ includes BDOZ-style authenticated
sharings of an index and the updated value at this index. The two parties use ⟨⟨S⟩⟩ with our ROM and WOM
structures as follows:

• For a read operation, the two parties also search for a valid value in ⟨⟨S⟩⟩ with the index they intend to
read. If found, this value, rather than the value from ROM, will returned as the output.

• For a write operation, the two parties clear all values in ⟨⟨S⟩⟩ with the same index in the current operation.
Then, they append this new updated value to ⟨⟨S⟩⟩.

Refresh procedure. Every write operation updates the authenticated shares in WOM to reflect the most
recent content. However, as the stash grows, the cost to access it will grow; thus we need a refresh procedure
to update the content of ROM so that ⟨⟨S⟩⟩ can be emptied. In this procedure, each party Pb samples an secret
key kb to mask their authenticated shares for every i ∈ [0, N) to obtain R

(i)
b := (W

(i)
b ∥Mb[W

(i)])⊕F (kb, i).
Then, it sends this masked value to P1−b and computes R := Rb ⊕ R1−b. Finally, each party inputs its
secret key kb to the secure computation to allow read operations. Note that a refresh procedure requires no
secure computation due to the ROM and WOM structure.

Similar to Floram, a refresh procedure is invoked after σ write operations, and the stash-based lookup
incurs an O(σ) overhead for both read and write operations. So, setting σ to O(

√
N) can achieve the best

in the overall complexity.

Full private access. Similar to Floram, protocol ΠRAM2PC considers full private access to RAM. A full
private access refers to the functionality that, on input an oblivious function F , an element D(α) in the
memory, and auxiliary input aux, update (D(α), aux) := F (D(α), aux).

We follow the blueprint of Floram to implement full private accesses from our ROM and WOM structure
and stash. More specifically, the two parties do:

1. Perform a read operation to retrieve D(α).

2. Run 2PC protocol to compute F (D(α), aux).

3. Perform a write operation to update D(α).

Optimization on read operations. In read operations of our protocol, we only utilize {[u(i)]}i∈[0,N) from
ΠDPF, which is independent of β. We use a technique called tree-trimming optimization [BGI16], to avoid
the expansion of last log λ levels of the tree in our DPF protocol and set β = 2(α mod λ). We note that
JβK can be computed from secure computation, and the bit decomposition of the only non-zero position in
{[v(i)]}i∈[0,N/2λ) corresponds to that in the above utilized {[u(i)]}i∈[0,N). This optimization significantly
improves the efficiency of read operations for a large RAM size.

Achieving overall one-bit leakage. Note that our RAM-based 2PC protocol ΠRAM2PC calls the interfaces
of Π2PC and ΠDPF, each of which invokes a consistency check that leads to 1-bit leakage therein. Since
the two checks follow the same form (i.e., calling sub-protocol ΠBatchCheck), they can be merged at the
end of protocol ΠRAM2PC. Intuitively, this merged consistency check is performed only once so that the
adversary can only learn a one-bit predicate of all inputs of the honest party and intermediate results from
whether the check passes or not. Meanwhile, all intermediate transcripts exchanged by the two parties are
indistinguishable from truly random values.

Security. We present our main theorem in Theorem 3. A critical aspect of our protocol ΠRAM2PC is its
non-black-box utilization of authenticated secret sharings generated in our DPF protocol ΠDPF. Thus, it will
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Figure 9: Wall-clock time of an access operation using our protocol, Floram and Duoram in LAN and WAN
settings. Solid lines are for full-access operations, which support both read and write operations; dashed lines are for
read-only operations. Each entry in the array has 8 bytes. All timings are average of a sufficiently large number of
accesses.

invoke ΠDPF directly instead of FDPF in a hybrid model. We provide a sketched proof of this theorem in
Appendix C.

Theorem 3. Let H0 be a CCR hash function and GS be a garbling scheme whose obliviousness can be
based on CCR H0. Then, protocol ΠRAM2PC (Figure 8) securely realizes functionality FRAM2PC (Figure 7)
against malicious adversaries in the (FaBit, Fcoin, Fcom)-hybrid model.

7 Evaluation
We would like to study the performance of our protocol in the following four aspects.

Q1 What is the cost of our actively secure protocol compared to the state-of-the-art semi-honest ones?

Q2 How many improvements in efficiency are there when comparing our protocol to state-of-the-art mali-
ciously secure ones?

Q3 What is the bottleneck of our protocol in different scenarios and array sizes?

Q4 What is the practical performance when putting our protocol in end-to-end applications?

To answer these questions, we implement our protocol and made code available in EMP [WMK16]. Below,
we provide implementation details and setup, with the answers to all questions.

7.1 Experimental Setup
We implement all of our protocol in C++ based on EMP toolkit [WMK16]. We instantiate FCOT using
Ferret OT [YWL+20] and instantiate PRFs using AES-128. All code is compiled using gcc version 11.4.0,
with -O3 optimization flag enabled.

Our benchmark is performed on a pair of AWS R5.8xlarge instances, each with 32 vCPUs and 256
GB memory. To simulate a LAN network, we use two instances in the same availability zone, and manually
limit the network bandwidth to 2 Gbps; the round-trip time (RTT) between two instances is roughly 0.1 ms.
To simulate a WAN network, we limit the bandwidth to 100 Mbps and set RTT to 60 ms using tc command.
These settings are similar to related prior works [VHG23].

If not specified otherwise, we vary the number of elements in the array from 212 to 229, and use an
element size of 8 bytes, corresponding to up to 4 GiB of data. Read-only operations refer to reading an
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element in the array without any modification, and full-access operations support both reading an element
from the array and writing a new value back. Our implementation of the dual-execution-based 2PC is always
single-threaded; other parts of our protocol are multi-threaded when possible. We use 16 threads by default.
We set the stash size σ of our protocol to

√
N/T/20 in the LAN setting, and σ :=

√
N/16 in the WAN

setting, where N is the size of RAM and T is the number of threads.

7.2 Overhead Compared to Semi-Honest Protocols
Floram [Ds17] and Duoram [VHG23] are the state-of-the-art RAM-based 2PC protocols secure against
semi-honest adversaries in the LAN and WAN settings, respectively. To understand the overhead of our
protocol, we compare our cost with the cost of Floram and Duoram in both network settings and on both
read-only and full-access operations. Since some protocols need cost amortization, we run a sufficient
number of accesses and report the average wall-clock time across all operations.

We show the result in Figure 9. In the LAN setting, Floram is approximately 2× faster than our protocol
on both read-only and full-access operations. On the other hand, our protocol is about 1 − 2 orders of
magnitude faster than Duoram on both operations. In the WAN setting, our protocol, interestingly, is roughly
2× faster than Floram on full-access operations and has an advantage on read-only operations. Compared
with Duoram, it is slower when the array size is less than 221 elements. Regarding the impact of access
operation types, full-access operations require about a 50% extra cost compared to read-only operations in
the WAN setting and incur a five-fold overhead in the LAN setting in our protocol and Floram. For Duoram,
their read-only and full access have similar performance.

Our protocol only imposes a constant overhead on top of Floram; thus its performance is similar to Flo-
ram’s. In particular, we need roughly 2× overhead in both secure computation and local expansion of trees
needed in DPF. At the same time, since our underlying malicious secure DPF protocol integrates optimiza-
tions shown in Half-Tree [GYW+23], our protocol shows nearly no overhead for active security compared
to Floram. When compared to Duoram, our protocol needs O(logN) rounds for an access operation to an
array of size N , but Duoram has an amortized constant roundtrips by performing an offline phase for logN
operations together. As a result, our protocol performs worse than Duoram when the array size is small
in the WAN setting. However, when the array size is sufficiently large or in the LAN setting, our protocol
still outperforms Duoram because computation is the bottleneck, not the roundtrip. Regardless, one can
conclude that our active protocol is competitive with state-of-the-art semi-honest protocols.

7.3 Comparison to SOTA Active Protocols
The state-of-the-art maliciously secure protocol is KY18 [KY18]. As mentioned before, this protocol uses
a generic compilation from malicious MPC [LPSY15, LSS16, KOS16] and ORAM protocol [WCS15] to
RAM-based MPC. Their actively secure MPC is instantiated by a SPDZ protocol with an offline and an
online phase. We contacted the authors and utilized their script to obtain an accurate estimation of the
cost of KY18. We first calculate the number of field multiplication triples for an access operation from the
number of AND gates required; then we estimate the wall-clock time based on the state-of-the-art triple
generation protocol [KPR18] instead of MASCOT used in KY18 for the most up-to-date estimation. We
also compare against a possible combination by using the authenticated garbling [WRK17a] (dubbed KY18-
AGC) instead of SPDZ-BMR. KY18 noted that such a combination might not be compatible with their
memory optimizations and put it an open problem; nevertheless, it represents a hypothetical best possible
solution. Since KY18 has the same complexity on read and write operations, we compare one full-access
operation of our protocol (which supports both), and one write operation of KY18 and KY18-AGC. Note that
the results for KY18 and KY18-AGC are depicted for array sizes ranging from 29 to 224 8-byte elements;
this is because KY18 only provides the number of AND gates required for these array sizes.

We report the comparison result in Figure 10 and can observe that our protocol consistently outperforms
KY18 by about two orders of magnitude in both network settings. It is also nearly one order of magnitude
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Figure 10: Wall-clock time of a full-access operation using our protocol, KY18 and KY18-AGC in both network
settings. Solid lines are in LAN settings; dashed lines are in WAN settings.

faster than the hypothetical result KY18-AGC. However, it’s important to mention that our protocol has
a one-bit leakage to the overall protocol (not each access operation); thus it presents a trade-off between
security and efficiency. Additionally, we observe a trend that the performance gap of our protocol between
LAN and WAN settings narrows as the array size increases due to the increasing cost of computation. This
does not happen for KY18, as their computation complexity is also sublinear. So, for the commonly used
array size in MPC applications, our protocol provides a much better trade-off and enables efficient access
with just one-bit leakage.

7.4 Microbenchmarks
We delve into our protocol and analyze the cost of each part of an access operation. We divide the cost of
an access operation into six steps: 1) DPF generation; 2) memory access to read secret shares from public
encrypted ROM; 3) secure evaluation of PRFs; 4) secure linear scan of stash; 5) memory access to write
authenticated secret shares to WOM; 6) refresh cost amortized over each full-access operation. Note that a
full-access operation has all these 6 steps while a read-only operation only has the first 4 steps.

We record the average wall-clock time of each part for a full-access operation as well as a read-only
operation for array of size 224, 226, and 228 in different network settings.

Figure 11a presents the cost breakdown of an access operation in different scenarios with LAN settings.
In a full-access operation, the cost of securely computing PRF remains constant, but other costs increase as
the array size increases. Notably, the cost of computing PRF becomes the bottleneck with small array sizes,
but it is minor when the size is sufficiently large. Refresh and stash scanning costs take an insignificant
portion of the total costs across all scenarios. Conversely, the costs of DPF generation and memory access
increase approximately linearly with the array size, becoming the primary expense when the array size is
sufficiently large. Applying parallelization can efficiently mitigate it, and our protocol with 16 threads per-
forms approximately twice as fast as using only one thread by utilizing multithreading in local computation.
We also notice the bottleneck in a read-only operation differs from that in a full-access operation, where
scanning ROM memory rather than DPF generation becomes the primary cost in read-only operations since
our protocol requires a relatively small DPF tree with tree-trimming optimization in Section 6.

In WAN settings, as illustrated in Figure 11b, the cost distribution significantly differs. Local memory
access takes a minor fraction of the total cost of an access operation, thus multithreading has a minor effect
on mitigating the overall costs. Meanwhile, 2PC (including PRF and stash scanning) along with the refresh
procedure incur a considerably higher cost due to bandwidth limitations, and become the bottlenecks of an
access operation for large array sizes. While DPF generation remains the principal cost factor, unlike in
LAN settings, it does not increase linearly with the array size. This is because the latency from round com-
plexity contributes significantly to the cost since there is an O(logN) round complexity on DPF generation.
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Figure 11: Cost breakdown of an access operation in different scenarios. N is the size of an array
and T is the maximum number of threads used. Op=R denotes a read-only operation, and Op=W denotes
a full-access operation. Elements in the array have a size of 8 bytes. The wall-clock time of each part is
averaged from a number of access operations, which is multiple of the refresh period.

Compared to a full-access operation, DPF generation in a read-only operation is faster since roughly log λ
rounds are eliminated from tree-trimming optimization.

7.5 RAM Applications
To benchmark the performance of our protocol in real-world scenarios, we extend our protocol to several
RAM applications: oblivious binary search, stable matching and the scrypt function. We report all the
results in Table 1 and present our experiments in detail below.

Benchmark Parameters LAN (sec) WAN (sec)

Binary Search
1 search 81.68 185.2

25 searches 120.42 1118.7
210 searches 1894.23 30989.6

Gale-Shapley
23 pairs 9.2 268.7
26 pairs 670.3 19975.0
29 pairs 44476.1 about 19 days

Scrypt
N = 25, r = 8 42.1 1159.1
N = 210, r = 1 167.6 4721.4
N = 210, r = 8 1396.4 41022.7

Table 1: Summary of benchmark results. All results are wall-clock time in seconds if not specified. The
array contains 225 8-byte elements for all binary search benchmarks.

Binary search. RAM-based MPC protocols can obliviously execute binary searches on an array with a
few access operations. The performance of such searches in an array has been benchmarked in various
protocols [GKK+12, ZWR+16, Ds17].

We extend our protocol and implement an oblivious binary search. It needs O(logN) read-only opera-
tions for each search on an array of N elements. To evaluate it, we set the array size of 225 8-byte elements,
and record the wall-clock time of executing 1, 25, and 210 searches on both network settings. This time is
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composed of initialization of RAM structure and performing read-only operations.

Stable matching. Gale-Shapley algorithm [GS62] is a typical solution to the stable matching problem. We
extend our RAM-based 2PC protocol to implement an oblivious version of the Gale-Shapley algorithm,
aimed at benchmarking performance in a complex, end-to-end application.

Our implementation closely follows the origin Gale-Shapley algorithm, and it requires O(n2) access
operations of arrays size of up to n2 elements for matching n pairs.

We evaluate the wall-clock time for full protocol execution, including tests with 8, 64 and 512 pairs in
LAN settings and 8 and 64 pairs in WAN settings. We also estimate the wall-clock time for 512 pairs in
WAN settings based on the microbenchmark results mentioned above. We notice since the array size is not
sufficiently large, securely computing PRF is the primary overhead for access operations. Consequently, our
protocol shows a relatively poor performance when the number of pairs is small, but becomes efficient as the
pair count increases. Doerner et al. [DEs16] proposed serveral optimzied algorithms for stable matching, all
of which can be implemented using the building blocks proposed in this paper as well.

Scrypt. Scrypt is a key derivation function intended to provide resistance against parallelized brute-force
attacks by using a large amount of memory. We implement an oblivious scrypt function to enable securely
executing some cryptographic functions using RAM-based 2PC.

We denote the cost factor of a scrypt function by N , the parallelization factor by p, and the block size
factor by r. Our implementation requires O(Nr) read-only operations of an array size of Nr 1Kbit elements
for computing a function. We select three representative parameters [Per09] and benchmark each of them in
both network settings.

8 Future Work
Castro and Polychroniadou [dCP22] proposed a malicious DPF protocol in a weaker model with two servers
and one client where at most one party can be corrupted. It is a future work to apply our optimizations to
their model. It would also be interesting to apply this protocol to improve the concrete efficiency of slient
correlation generation.
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A Proof of Theorem 1

Theorem 1. Let GS be a garbling scheme with obliviousness. Then, protocol Π2PC (Figure 4) securely re-
alizes functionality F2PC (Figure 3) against malicious adversaries in the (FaBit,Fcoin,Fcom)-hybrid model.
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Proof (Sketch). As the two parties are symmetric in Π2PC, we w.l.o.g. assume that Pb is corrupted and P1−b
is honest for some fixed b ∈ {0, 1}. Simulator S2PC extracts ∆b ∈ F2λ from emulated FaBit (and aborts if
lsb(∆b) ̸= b) and maintains the secret share of corrupted Pb for each BDOZ- or SPDZ-style authenticated
sharing.

In particular, maintaining such shares is straightforward for all input bits (in Input), random values
(in Rand) and unpacked bits (in Unpack) since S2PC emulates FaBit. In Eval, S2PC sends a uniformly
random GC 1−b (which is indistinguishable from a real one due to obliviousness) to corrupted Pb, and uses
∆b and the extracted secret shares of Pb to evaluate garbled circuit GC 1−b to compute Pb’s secret shares of
the BDOZ-style authenticated sharings of circuit outputs. As Pack only includes local computation, S2PC
follows the same computation to maintain shares.

Given the extracted secret shares of corrupted Pb, S2PC works as follows. In Input, S2PC extracts all
input bits of corrupted Pb from emulated FaBit and sends them to F2PC. In Open, S2PC receives x ∈ F2λ

from F2PC and sends x1−b := x ⊕ xb to Pb, where xb is given by the extracted Pb’s secret share of SPDZ-
style authenticated sharing JxK. In Check, S2PC emulates Fcoin to get χ ∈ F2λ and extracts Vb ∈ F2λ from
emulated Fcom. Moreover, S2PC constructs a predicate (i.e., a mixed circuit) P such that, on input all values
authenticated in BDOZ or SPDZ style in Π2PC (or equivalently, all values stored in F2PC), it uses these
inputs, the extracted inputs and secret shares of Pb, and the public random coins to define V1−b ∈ F2λ in an
equivalent way and outputs 1 if and only if V1−b = Vb.

The two worlds are indistinguishable unless the adversary breaks the obliviousness of garbling schemes
or leads to a non-negligible difference in abort probability. Note that the latter difference is negligible given
uniform χ.

B Proof of Theorem 2

Theorem 2. LetH0 be a CCR hash function. Then, protocol ΠDPF (Figure 5) securely realizes functionality
FDPF (Figure 6) against malicious adversaries in the (FaBit,Fcoin,Fcom)-hybrid model.

Proof (Sketch). As the two parties are symmetric in ΠDPF, we w.l.o.g. assume that Pb is corrupted and P1−b
is honest for some fixed b ∈ {0, 1}. Simulator SDPF extracts ∆b ∈ F2λ from emulated FaBit (and aborts
if lsb(∆b) ̸= b) and maintains all secret shares held by corrupted Pb. These shares can be computed from
public randomness W and the extracted ∆b, each ⟨⟨α(i)⟩⟩b, and JβKb.
SDPF sends a uniformly sampled CW

(i)
1−b to corrupted Pb for each i ∈ [0, n]. This is indistinguishable

from the real-world execution, where CW(i)
1−b = CW(i)⊕CW

(i)
b , since CW(i) is pseudorandom given a CCR

hash functionH0 and the entropy of ∆1−b. SDPF also receives CW(i)
b
′ from corrupted Pb to extracts additive

noise δ(i) := CW
(i)
b
′ ⊕ CW

(i)
b for each i ∈ [0, n].

To simulate batch check, SDPF sends a uniformly random a1−b to corrupted Pb. Then, it constructs a
predicate P such that, on input all values authenticated in BDOZ or SPDZ style in ΠDPF (or equivalently,
all values stored in FDPF), it uses a prefix α(0), . . . , α(ℓ−1) for some maximal ℓ ∈ [0, n] such that δ(ℓ) ̸= 0,
the extracted secret shares of corrupted Pb, and the public random coins to (i) remove additive noises on the
prefix path per level, and (ii) follow the protocol specification of Pb to compute V ′b ∈ F2λ . This predicate
outputs 1 if and only if V ′b = Vb, which is extracted from emulated Fcom.

The two worlds are indistinguishable unless the adversary breaks the CCR security of H0 or leads to
a non-negligible difference in abort probability. Note that the latter difference is negligible given uniform
χ.
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C Proof of Theorem 3

Theorem 3. Let H0 be a CCR hash function and GS be a garbling scheme whose obliviousness can be
based on CCR H0. Then, protocol ΠRAM2PC (Figure 8) securely realizes functionality FRAM2PC (Figure 7)
against malicious adversaries in the (FaBit, Fcoin, Fcom)-hybrid model.

Proof (Sketch). Since the two parties are symmetric in ΠRAM2PC, we w.l.o.g. assume that Pb is corrupted
and P1−b is honest for some fixed b ∈ {0, 1}. Note that protocol ΠRAM2PC invokes two sub-protocols
Π2PC and ΠDPF as subroutines. Simulator SRAM2PC can invoke simulator S2PC and SDPF to simulate the
transcripts of the two sub-protocols. A subtle issue is that, since Π2PC and ΠDPF share the same global
authentication keys ∆0 and ∆1, the indistinguishability between these transcripts and truly random values
sampled in SRAM2PC (as per invoked S2PC and SDPF) cannot be reduced to the obliviousness of garbling
schemes or the CCR security ofH0 in a black-box way. However, we note that the obliviousness of garbling
schemes can also be based on CCR [ZRE15, RR21]. So, we can use a CCR-based garbling scheme in a
non-black-box way and prove the above indistinguishability using CCR.

Except the transcripts sent in the two sub-protocols, the only additional transcript exchanged between
the two parties is in Refresh procedure. This transcript is indistinguishable from a truly random value,
which is sampled by SRAM2PC, due to the PRF security.

To incur abort in the ideal world with nearly the same probability in the real world, SRAM2PC constructs
a predicate P in Check such that it “stacks” the predicates in S2PC and SDPF according to how the real
execution of ΠRAM2PC invokes the commands in Π2PC and ΠDPF. The abort probability can have negligible
difference in the two worlds due the uniformness of χ.
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