
Plan your defense: A comparative analysis of
leakage detection methods on RISC-V cores

Konstantina Miteloudi, Asmita Adhikary, Niels van Drueten, Lejla Batina, and
Ileana Buhan

Digital Security Group, Radboud University, Nijmgegen, The Netherlands
firstname.lastname@ru.nl, niels@vandrueten.nl

Abstract. Hardening microprocessors against side-channel attacks is a
critical aspect of ensuring their security. A key step in this process is iden-
tifying and mitigating “leaky" hardware modules, which leak information
during the execution of cryptographic algorithms. In this paper, we ex-
plore how different leakage detection methods, the Side-channel Vulner-
ability Factor (SVF) and the Test Vector Leakage Assessment (TVLA),
contribute to hardening of microprocessors. We conduct experiments on
two RISC-V cores, SHAKTI and Ibex, using two cryptographic algo-
rithms, SHA-3 and AES. Our findings suggest that SVF and TVLA can
provide valuable insights into identifying leaky modules. However, the
effectiveness of these methods can vary depending on the specific core
and cryptographic algorithm in use. We conclude that the choice of leak-
age detection method should be based not only on computational cost
but also on the specific requirements of the system, the implementation
of the algorithm examined and the nature of the potential threats.

Keywords: Pre-Silicon Design · Side-Channel Analysis · Leakage De-
tection Methods · Hardening Microprocessors.

1 Introduction

Microprocessors are at the heart of modern digital systems, from everyday con-
sumer electronics to critical infrastructure. Ensuring their security against var-
ious forms of attacks is crucial. One such form of attack, side-channel attacks,
exploits information leaked during the execution of cryptographic algorithms,
potentially compromising the system’s security. As such, a key step in hardening
microprocessors against side-channel attacks is identifying and mitigating these
“leaky" hardware modules.

Several methods exist for detecting such leakages, each with strengths and
weaknesses. Two methods, the Side-channel Vulnerability Factor (SVF) [5] and
the Test Vector Leakage Assessment (TVLA) [9], have been commonly used in
the field. SVF provides a measure of the potential exploitability of a leak, while
TVLA offers a statistical framework for identifying whether a device under test
is vulnerable to information leakage. However, the effectiveness of these methods
can vary depending on the specific hardware and algorithm in use [20], [2]. In

2 Miteloudi et al.

this work, we applied these leakage assessment methods on two RISC-V cores:
SHAKTI and Ibex. These cores, popular in various applications for their open-
source nature, present a range of opportunities and challenges for security.

Our research question is: ”How effectively can we harden microprocessors
of varying sizes that run full cryptographic algorithms against side-channel at-
tacks?”. We aim to provide insights into how SVF and TVLA can be used to
identify vulnerabilities in RISC-V cores of different sizes and how these findings
can enforce the best strategies for hardening these cores. Through our experi-
ments with different cryptographic algorithms, i.e. SHA-3 and AES, we seek to
offer a comprehensive understanding of the ways these leakage detection meth-
ods can contribute to the hardening of RISC-V cores. Our findings will be of
interest to security designers and architects, contributing to the development of
more secure microprocessors/tools. [18].

2 Related work

Several approaches have been developed to identify and eliminate leaks during
the pre-silicon phase [12]. These approaches can be roughly divided based on
which device layer or development phase they aim to harden [4]. The level of
leakage can be detected at top architectural choices [1] or/and can emerge from
the micro-architectural behaviour [14].

De Mulder et al. [15] proposed a solution to protect an AES implementa-
tion against side channel leakage related to memory accesses on a RISC-V core.
Gigerl et al. [8] introduced COCO, a tool that can detect gate-level leakage by
simulating execution with Verilator. They annotate the registers and memory
that hold secret data and trace their flow through the circuit to find possible
sources of leakage. He et al. [10] estimate the power profile of a hardware de-
sign using functional simulation at the RTL level. Gao et al. [7] designed and
implemented an ISE (Instruction Set Extension) called FENL that localizes and
reduces microarchitectural leakage. The ISE acts as a leakage fence that pre-
vents interaction between instructions. A similar approach is taken by Pham et
al. [16], which combines a diversified ISE with hardware diversification through
a co-processor to achieve leakage mitigation. Bloem et al. [3] extended the con-
cept of hardware-software contracts to power-side channels and formally verified
a wide range of instructions for implementing cryptographic algorithms for the
RISC-V Ibex core. ACA [19] uses a gate-level model for a target design, typically
available after logic synthesis and a side-channel leakage model. Kiaei and Schau-
mont proposed Root Canal [11], a framework to help a designer with white-box
access to the embedded CPU system uncover the origin of a side-channel leak.
Root Canal can eliminate side-channel leaks before tape-out. After tape-out,
changes to the hardware are no longer possible.

To our knowledge, none of the previous work investigates the impact of the
leakage detection methods on identifying leaky modules. Arsath et al. [6] devel-
oped a framework, PLAN, that analyzes the RTL description of a processor and
reports the information leakage in each of the processor modules. In PLAN, they

Plan your defense: A comparative analysis 3

use a modified version of SVF as a leakage detection method, and they apply
this method to a simulated RISC-V core running different cryptographic algo-
rithms. The results of their analysis provide a ranking of the hardware modules
based on their contribution to the overall leakage. In our work, we replicate the
experimental setup of [6], applying both the SVF and the TVLA methods to
compare their effectiveness in identifying leaky modules. This replication is the
foundation for further exploration and comparison of these two leakage detection
methods.

3 Preliminaries

3.1 Leakage detection methods

Let X (N, d) be a set of N traces. A trace is a time series with d samples recorded
during the processing of an algorithm on a given device (e.g., an encryption
operation) for a given input x.
Test Vector Leakage Assessment (TVLA) [9] is the most popular leakage
detection method due to its simplicity and relative effectiveness. It comes in two
flavours: specific and non-specific. The ‘fixed-vs-random’ is the most common
non-specific test and compares a set of traces acquired with a fixed plaintext
with another set of traces acquired with random plaintext. In the case of a
specific test, the traces are divided according to a known intermediate value
tested for leakage. Welch’s two-sample t-value for equality of means applies to
all trace samples in both cases. A difference between two sets larger than a given
threshold is evidence of a leak’s presence.
Side-channel Vulnerability Factor (SVF) [5] measures side-channel infor-
mation leakage by recognizing leaked execution patterns. SVF quantifies the
similarity between patterns in the observations of the attackers or side-channel
traces (S, defined in (1), with the actual execution patterns of the victim or
oracle traces (O, defined in (2).

S = {(xi; s
i
1, s

i
2, ...s

i
d),where 1 ≤ xi ≤ N} (1)

O = {(xi; o
i
1, o

i
2, ...o

i
d),where 1 ≤ xi ≤ N} (2)

where sij (and oij) is sample j in side channel trace (and oracle trace, respectively)
corresponding to input xi.

The original version of the SVF algorithm proposed in [5], which we denote
with SVFtime, quantifies patterns in the time-domain between an oracle and a
side-channel trace. Arsath et al. [6] implemented a modified version of SVFinput
that is adapted to capture patterns related to changes in the input data, the typ-
ical cause of side-channel vulnerabilities. After data collection, both algorithms
extract patterns in parallel for the oracle and side-channel trace. The difference
between the implementation of SVFtime and SVFinput is apparent in the con-
struction of the similarity matrices as shown in equation (3), (4) and (5), (6)
respectively.

4 Miteloudi et al.

MS
time(s

i
j , s

i
k) =

{
D(sij , s

i
k), if j < k

0, if not.
(3)

and

MO
time(o

i
j , o

i
k) =

{
D′(oij , o

i
k), if j < k

0, if not.
(4)

When computing SVFtime, the first step is to construct MS
time, the similarity

matrix for a side-channel trace, using equation (3), where D is a distance (of
choice) between samples sij , sik. The next step is to compute the similarity matrix,
MO

time, for the oracle trace by computing the distance D′ between the samples in
the same power trace oi, oj , using equation (4). The correlation between MS

time
and MO

time will give the SVFtime value.

MS
input(s

i
t, s

j
t) =

{
D̄(sit, s

j
t), if i < j

0, if not.
(5)

and

MO
input(o

i
t, o

j
t) =

{
D̃(oit; o

j
t), if i < j

0, if not.
(6)

For computing SVFtime, one side-channel trace is sufficient however for comput-
ing SVFinput, multiple side-channel traces are required (to capture changes in
the input). The procedure for computing SVFinput is very similar to SVFtime.
The difference is in the choice of samples for computing the similarity matrix
is illustrated in equations (5) and (6). We first construct MS

input, the similarity
matrix for the side-channel traces by computing the distance D̃ between the
sample st corresponding to different input values xi, xj . In the same way, we
calculate MO

input, the similarity matrix for the oracle traces, by computing the
distance D̄ between the sample ot and the input xi, xj . All similarity matrices
are triangular, as the main diagonal, which contains only zero values, is removed,
and distance measures are commutative. In this work we implement SVFinput.

4 Experimental setup

Simulation setup. In our setup, we use two different 32-bit RISC-V cores,
SHAKTI-C and Ibex, and two different algorithms, AES and SHA-3. SHAKTI-
C [17] is a 5-stage pipeline in-order processor, while Ibex [13] is a 2-stage in-order
processor. From each core, we selected specific modules to examine. We targeted
the ones responsible for processing data and instructions and we excluded those
that do other work, such as error checking. Specifically, for SHAKTI-C, we ex-
amine:

1. RF (Register File): integer and floating point registers.
2. CSR (Control and Status Register): raises interrupts on the processor.

Plan your defense: A comparative analysis 5

3. ALU (Arithmetic Logic Unit): performs the arithmetic and logic operations.
4. FPU (Floating Point Unit): handles operations with floating point numbers.
5. Dcache: cache memory connected with the ALU.
6. MBOX: implements the multiplication and division operations.
7. BPU (Branch Prediction Unit): decides the next program counter.
8. ITLB (Instruction Translation-Look aside Buffer): keeps track of instructions

recently used to avoid second access to memory.
9. DTLB (Data Translation Look aside Buffer): keeps track of data recently used

to avoid second access to memory.

For Ibex, we examine modules with the same functionality:

1. RF (Register File): integer registers.
2. CSR (Control and Status Register): raises interrupts on the processor.
3. ALU (Arithmetic Logic Unit): performs the arithmetic and logic operations.
4. MULT/DIV (Muliplier/Divider Block): performs multiplication and division.
5. PF-BUF (Prefetch Buffer): fetches instructions from the memory.
6. LSU (Load-Store Unit): interfaces with the RF and the main memory to deal

with load/store operations.

We ran simulations of every algorithm with Verilator simulator (Ver. 4.210)
for 256 different inputs, randomly generated. For each simulation run, we took
one Value Change Dump (VCD) file. VCD files show the value of every signal,
of every module of the RISC-V core for every timestamp of an implementation.
We processed the vcd files, as well as analyzed them, using Python. We parsed
every file, and for each module, signals were concatenated for each timestamp,
creating a composite signal. This signal represents the collective behaviour of
all signals and the module’s state at that specific point in time. Then, all the
concatenated signals for all the selected timestamps, were processed differently,
depending on the methodology selected.
SVF computation. For SVF computation, the concatenated signals are re-
tained in their original form. These signals serve as a complex representation of
the module’s state. Each module contains N rows of signal values per timestamp
st. Computing SVF requires the generation of oracle traces, which contain the
intermediate values of the cryptographic algorithm during its execution. They
are the expected values that the algorithm will produce at each time step given
a particular input. We run simulations with the gcc compiler on a Linux system,
using the same 256 inputs that we used in the simulations on RISC-V. We record
different intermediate values in order to examine how the choice of the oracle
trace affects the SVF. For the oracle set, we use the Hamming distance metric to
compute MO

input, as described in 5 and 6. The oracle set will contain one sample
for each input, so the size of O is N .

The next step is to calculate a similarity matrix for the oracle trace and
a similarity matrix for the side channel trace as described in 3.1. This step is
necessary for correlation because the two traces contain different information
and cannot be compared directly. We get two lists of Hamming distance values,
and for each timestamp, we compute the Pearson correlation value between

6 Miteloudi et al.

the oracle list and the side-channel list. This value shows whether there is a
linear correlation between the two lists in our implementation. The SVF value
of a module and an oracle is the maximum of all Pearson correlation values. A
module’s final SVF value is the oracles’ maximum SVF value. Arsath et al. [6]
use 4 categories to show how much a module leaks: (1) 0.0 - 0.1: No leakage,
(2) 0.1 - 0.3: Mild leakage, (3) 0.3 - 0.6: Medium leakage, (4) 0.6 - 1.0: Severe
leakage.
TVLA computation. Our TVLA computation is based on the nonspecific fixed
versus random test as specified in [9]. Since we worked on simulated executions,
we needed a hypothetical power consumption model. This model is implemented
with the Hamming weight (HW), and every timestamp of the concatenated sig-
nals takes an HW value. To calculate the t-value per timestamp, we used the
ttest_ind function from the SciPy Python library, that calculates the t-value for
the means of two independent samples of values. The non-specific fixed versus
random test executes the fixed set multiple times to eliminate noise during a
run. In our case, the runs do not contain noise because the run is simulated, and
we know exactly all the signal values at any given time. Once all data for TVLA
had been collected, we computed a t-value per cycle. This t-value is calculated
from the fixed set of size one and the random set of size N = 128 for SHAKTI
and N = 256 for Ibex.

4.1 Target cryptographic implementations

We chose unprotected implementations without any countermeasures, as our goal
was to examine how leaks impact the different hardware modules. We ran the
full algorithms, then chose to zoom in on different parts of them. We wanted to
find any vulnerabilities that could arise, regardless of their nature or the specific
type of data that might be exposed.
AES: We used the Tiny-AES1 implementation, written in C. There are options
for 128-bit, 192-bit, or 256-bit key sizes and options for ECB, CTR, and CBC
modes. We used a key size of 128 bits in the ECB mode, and we encrypted one
block of data.
SHA-3: We used the tiny_sha32 implementation, written in C. SHA-3 is a
sponge function with the KECCAK-f[1600] as permutation function. We pro-
vided 832 bits of data as input, so we did not need padding. The output of
SHA-3 is 384 bits.

5 Experimental results

To determine whether the choice of the leakage detection function influences
the decision about the leakiness of a module, we used the experimental setup
described in 4. We selected nine and six modules for the SHAKTI core and
1 https://github.com/kokke/tiny-AES-c
2 https://github.com/mjosaarinen/tiny_sha3

Plan your defense: A comparative analysis 7

the Ibex core, respectively, that target processing instructions and data. We
determined how “leaky" a module is by recording the maximum SVF value. In
addition, we ran TVLA in fixed versus random mode. As this is a nonspecific
test, we did not explicitly target intermediate variables. When comparing the
results of TVLA with the results of SVF, we expected that TVLA will reveal
more leaky points since our SVF procedure did not target all the intermediates.

AES. For experiments, we chose the typical candidate intermediate variables
as the target: the first byte of the S-box output, sbox_out1, fifth byte of the
S-box output, sbox_out5, and the first byte of the S-box input, p⊕k (sbox_in1).
For the round output, we have oracles for the full round output (mc_out) and
for the first byte of the round output (mc_out1).

SHA3. SHA-3 is the other implementation we analyzed. From the first round
of the Keccak permutation function, we targeted χ as the only nonlinear opera-
tion. We defined three oracles based on the χ step: bc, a SHA-3 implementation-
specific operation bc[i] = st[j + i] where i = 0 and j = 0, not operation in
x ← x ⊕ (¬y&z) where i = 0 and j = 0 and xor operation in x ← x ⊕ (¬y&z)
where i = 0 and j = 0.

5.1 Case study: the SHAKTI Core

Figure 1 shows the leakage in ALU from the SHAKTI core, for both AES and
SHA-3. The first plot shows the evolution in time of the SVF value, during
the first round of AES. We represented the different target intermediates with
different unique symbols. Horizontal dotted lines are drawn to indicate leakage
thresholds. The yellow dotted line at 0.3 shows the minimum threshold for what
we consider to be medium leakage and the red dotted line at 0.6 is for the severe
leakage. Also, the oracles are highlighted with yellow where the SVF value is
≥ 0.3 and red when SVF ≥ 0.6. The second plot shows the combined SVF with
the t-value for the same module, i.e., ALU. In TVLA, we see leaks in almost all
cycles and for most of the cycles, it shows leaks unrelated to the SVF oracles. For
example, during the execution of the SubBytes operation (cycle 23.000 - 25.000),
the SVF only finds leaks when the first or fifth S-box is computed. TVLA looks
at all S-box operations and shows more leaks in cycles 23.000 - 25.000. This ob-
servation also holds for the cycles after SubBytes. TVLA indicates leaks in cycles
where SVF does not show leakage. There are two possible explanations for this
behaviour. The first is that TVLA shows false positives. The second is that the
Hamming distance between the power traces and the oracles, that were used to
calculate the SVF values, does not capture all the relations between the samples.
The third plot shows the evolution in time of the SVF value, during the first
round of the first execution of KECCAK-f, the SHA-3 permutation, for ALU.
The fourth plot shows the combined SVF with the t-value for the same module
and implementation, i.e., ALU and SHA3. We observe that SHA-3 is extremely
leaky, according to TVLA. While SHA-3 executes the KECCAK-f function mul-
tiple times, and one execution of KECCAK-f takes multiple rounds, SVF will
only find leaks in the intermediate values we target. TVLA finds multiple leaks
during the whole execution of SHA3.

8 Miteloudi et al.

5.2 Case study: the Ibex Core

Figure 2 shows the leakage in ALU from the Ibex core for both AES and SHA-3.
Similar to SHAKTI, the first plot shows the evolution in time of the SVF value,
during the first round of AES and the second plot shows combined the SVF with
the t-value. Also, the third plot shows the evolution in time of the SVF value
during the first execution of SHA3 and the fourth plot shows the combined SVF
with the t-value for the same module, ALU. As we observed in SHAKTI, for
ALU, TVLA shows leakage in almost all cycles, while SVF shows only at some.
We also observe that both methods find the same pattern of leaky cycles. This
might indicate that the leakage is not caused only by one instruction but by a
sequence of instructions as they are processed over time.

Figure 3 shows the leakage in the Register File from Ibex core for both AES
and SHA-3. The second plot shows the SVF combined with the t-value for the
same module. The Register File and ALU identify the same sequence of leaky
operations. Again, TVLA shows more leaky points than SVF. The third plot
shows the leakage value for SHA3, and the fourth plot, the combined SVF-
TVLA. We observe that SVF shows severe leakage in the second half of this
execution timing window. Specifically, the oracle not shows the same leaky points
as TVLA, while in the first half of the execution, it identifies only a couple of
leaky instructions. We also observe that oracle xor identifies leaky instructions,
while oracle bc does not.

Figure 4 shows the combined SVF-TVLA on module MBOX from SHAKTI
and Mult/Div from Ibex. Both modules are responsible for multiplication divi-
sion. The first two plots show AES and SHA-3, respectively, for MBOX, while
the last two show AES and SHA3, respectively, for Mult/Div. If we compare
these plots with the plots from ALU, we observe a similar pattern of leakage,
unexpected given the absence of multiplications or divisions in our code. Our ex-
amination of Ibex’s RTL code revealed that the Register File outputs are directly
connected to both the ALU and Mult/Div unit, keeping both components active
within the processor, regardless of their usage. Similar behavior was observed
between the Register File and LSU, with leakage patterns on LSU mirroring
those of the Register File, even while not only load/store instructions were exe-
cuted. These observations confirmed that even non-utilized components within
the processor can become sources of information leakage.

Fig. 1. SVF AES, combined SVF-TVLA AES, SVF SHA-3, combined SVF-TVLA
SHA-3. For ALU module on SHAKTI core (left to right).

Plan your defense: A comparative analysis 9

Fig. 2. SVF AES, combined SVF-TVLA AES, SVF SHA-3, combined SVF-TVLA
SHA-3. For ALU module on Ibex core (left to right).

Fig. 3. SVF AES, combined SVF-TVLA AES, SVF SHA-3, combined SVF-TVLA
SHA-3. For Register File on Ibex core(left to right).

Fig. 4. SVF-TVLA for: AES MBOX(SHAKTI), SHA-3 MBOX(SHAKTI), AES
Mult/Div(Ibex) and SHA-3 Mult/Div(Ibex) (left to right).

Table 1. Results for AES and SHA-3 on SHAKTI core

AES SHA-3
Type max(SVF) TVLA max(SVF) TVLA

sbox_in1 sbox_out1 sbox_out5 mc_out1 mc_out bc not xor
Dcache 1 1 1 1 0.05 ✓ 0.99 1 1 ✓
RF 1 1 1 1 0.05 ✓ 1 1 1 ✓
CSR 0.98 0.98 0.98 0.98 0.05 ✓ 0.97 0.97 .97 ✓
ALU 1 1 1 1 0.05 ✓ 1 1 1 ✓
FPU 1 1 1 1 0.05 ✓ 1 1 1 ✓
MBox 1 1 1 1 0.05 ✓ 1 1 1 ✓
BPU 0 0 0 0 0 - 0 0 0 -
ITLB 0 0 0 0 0 - 0 0 0 -
DTLB 0.87 0.87 0.87 0.87 0.06 ✓ 0.3 0.3 0.31 ✓

5.3 Performance results

All experiments, for both the SHAKTI and the Ibex core, were done on an
AMD Ryzen THREADRIPPER 3990X 4.3GHz CPU with 128 cores and 256GB

10 Miteloudi et al.

Table 2. Results for AES and SHA-3 on Ibex core

AES SHA-3
Type max(SVF) TVLA max(SVF) TVLA

sbox_in1 sbox_out1 sbox_out5 mc_out1 mc_out bc not xor
RF 0.94 0.9 0.9 0.82 0.05 ✓ 0.59 0.81 0.58 ✓
CSR 0.97 0.97 0.97 0.95 0.05 ✓ 0.69 0.70 0.70 ✓
ALU 1 0.99 1 0.99 0.06 ✓ 0.70 0.70 0.70 ✓
MULT/DIV 0.99 0.99 1 0.84 0.04 ✓ 0.63 0.63 0.64 ✓
PF-BUF 0 0 0 0 0 - 0 0 0 -
LSU 1 0.99 1 0.98 0.06 ✓ 0.96 0.96 0.96 ✓

RAM. On this PC, the run-time of the two methods is significantly different.
For the SHAKTI core, the SVF computation of all the modules for the AES
case study took around 30k cycles, which lasted approximately eight hours. The
same experiment for the SHA-3 case study took around one day of computation.
On the other hand, TVLA computation lasted about an hour for all modules for
all case studies. For the Ibex core, the SVF computation of the algorithms took
about twice the time compared to the SHAKTI core. The TVLA computation
lasted less than an hour for all the modules of AES and SHA3. We can easily
observe the contrast in run-time efficiency between the SVF and TVLA, which
is crucial when choosing the appropriate method.

6 Conclusions and Future work

In this study, we compared the performance of two different leakage detection
methods, SVF and TVLA, in detecting leaky modules on microprocessors. We
have conducted experiments on two RISC-V cores, SHAKTI and Ibex, using the
cryptographic algorithms AES and SHA3. Our investigation has revealed inter-
esting differences in how these methods identify potential leaks. Specifically, we
observe peaks in cycles where SVF does not find any correlation between the
oracle trace and the side-channel trace. In contrast, TVLA identifies a difference
in the probability density functions of our fixed set and random set. This distinc-
tion can be explained by the fact that SVF targets an intermediate computation
when determining leaks. Consequently, leakage points of any other intermediate
data value are not included in a single SVF test. TVLA, on the other hand,
adopts a much broader approach, evaluating the overall difference in probability
density functions between the fixed and random sets, which allows it to detect
potential leaks that SVF might miss.

Our results, presented in Table 1 and Table 2 for SHAKTI and Ibex cores
respectively, for all examined modules, reveal no leaks in the BPU and ITLB
modules on SHAKTI or the Prefetch buffer on Ibex, with both algorithms. This
finding shows the importance of selecting the appropriate method based on the
desired level of analysis granularity. For more coarse-grained analysis where a
broad overview is beneficial, TVLA is recommended due to its lower compu-

Plan your defense: A comparative analysis 11

tational effort and quicker results. On the other hand, SVF is better suited
for fine-grained analysis that requires examining micro-architectural behavior in
detail.

Moreover, our analysis highlights that TVLA and SVF show leaks in differ-
ent cycles, opening questions about which metric more indicates the “correct"
leak. This aspect, alongside the critical role of selecting the appropriate oracles,
emphasizes the complexity of accurately detecting leakage. Not all oracles show
leakage, potentially leading to incorrect conclusions about a module’s security.
Also, SVF uses the Pearson correlation coefficient to detect linear correlations.
This means it might not find any non-linear relationships between the oracle
trace and the side-channel trace. The generality of TVLA allows for broader ap-
plications, while the specificity of SVF, although powerful, necessitates careful
oracle selection to ensure comprehensive leakage detection.

Moving forward, we plan to investigate further the differences between the
SVF and TVLA methods, aiming to refine the process of hardening micropro-
cessors against side-channel attacks. We also aim to explore other leakage de-
tection methods and the impact of different implementations of cryptographic
algorithms on the leakage profile of microprocessors. Ultimately, our goal is to
contribute to developing more secure microprocessors that are robust against
side-channel attacks.

Acknowledgments. This work was partially funded by the Dutch Research Council
(NWO) through the PROACT project (NWA.1215.18.014).

References

1. Althoff, A., McMahan, J., Vega, L., Davidson, S., Sherwood, T., Taylor, M.B.,
Kastner, R.: Hiding intermittent information leakage with architectural sup-
port for blinking. In: 45th ACM/IEEE Annual International Symposium on
Computer Architecture, ISCA, Los Angeles, CA, USA. pp. 638–649 (2018).
https://doi.org/10.1109/ISCA.2018.00059

2. Arora, V., Buhan, I., Perin, G., Picek, S.: A tale of two boards: On the influence of
microarchitecture on side-channel leakage. In: Smart Card Research and Advanced
Applications - 20th International Conference, CARDIS. pp. 80–96. LNCS, Springer
(2021). https://doi.org/10.1007/978-3-030-97348-3_5

3. Bloem, R., Gigerl, B., Gourjon, M., Hadzic, V., Mangard, S., Primas, R.: Power
contracts: Provably complete power leakage models for processors. In: Conference
on Computer and Communications Security, CCS , Los Angeles, CA, USA. pp.
381–395. ACM (2022). https://doi.org/10.1145/3548606.3560600

4. Buhan, I., Batina, L., Yarom, Y., Schaumont, P.: Sok: Design tools for side-
channel-aware implementations. In: ASIA CCS ’22: ACM Asia Conference on Com-
puter and Communications Security, Nagasaki, Japan. pp. 756–770. ACM (2022).
https://doi.org/10.1145/3488932.3517415

5. Demme, J., Martin, R., Waksman, A., Sethumadhavan, S.: Side-channel vul-
nerability factor: A metric for measuring information leakage. In: 39th Inter-
national Symposium on Computer Architecture (ISCA. pp. 106–117 (2012).
https://doi.org/10.1109/ISCA.2012.6237010

12 Miteloudi et al.

6. F, M.A.K., Ganesan, V., Bodduna, R., Rebeiro, C.: PARAM: A microprocessor
hardened for power side-channel attack resistance. In: International Symposium
on Hardware Oriented Security and Trust, HOST, San Jose, CA, USA. pp. 23–34.
IEEE (2020). https://doi.org/10.1109/HOST45689.2020.9300263

7. Gao, S., Großschädl, J., Marshall, B., Page, D., Pham, T.H., Regaz-
zoni, F.: An instruction set extension to support software-based mask-
ing. IACR Trans. Cryptogr. Hardw. Embed. Syst. pp. 283–325 (2021).
https://doi.org/10.46586/tches.v2021.i4.283-325

8. Gigerl, B., Hadzic, V., Primas, R., Mangard, S., Bloem, R.: Coco: Co-design and co-
verification of masked software implementations on cpus. In: 30th USENIX Security
Symposium, USENIX. pp. 1469–1468 (2021)

9. Gilbert Goodwill, B.J., Jaffe, J., Rohatgi, P., et al.: A testing methodology for
side-channel resistance validation. In: NIST non-invasive attack testing workshop.
vol. 7, pp. 115–136 (2011)

10. He, M.T., Park, J., Nahiyan, A., Vassilev, A., Jin, Y., Tehranipoor, M.M.: RTL-
PSC: automated power side-channel leakage assessment at register-transfer level.
In: 37th IEEE VLSI Test Symposium, VTS Monterey, CA, USA. pp. 1–6 (2019).
https://doi.org/10.1109/VTS.2019.8758600

11. Kiaei, P., Schaumont, P.: Soc root canal! root cause analysis of power side-channel
leakage in system-on-chip designs. IACR Trans. Cryptogr. Hardw. Embed. Syst.
pp. 751–773 (2022). https://doi.org/10.46586/tches.v2022.i4.751-773

12. Lakshmy, A.V., Rebeiro, C., Bhunia, S.: FORTIFY: analytical pre-silicon side-
channel characterization of digital designs. In: 27th Asia and South Pa-
cific Design Automation Conference, ASP-DAC. pp. 660–665. IEEE (2022).
https://doi.org/10.1109/ASP-DAC52403.2022.9712551

13. lowRISC: Lowrisc/ibex-demo-system: A demo system for ibex, https://github.
com/lowRISC/ibex-demo-system

14. Marshall, B., Page, D., Webb, J.: MIRACLE: micro-architectural leakage
evaluation A study of micro-architectural power leakage across many de-
vices. IACR Trans. Cryptogr. Hardw. Embed. Syst. pp. 175–220 (2022).
https://doi.org/10.46586/TCHES.V2022.I1.175-220

15. Mulder, E.D., Gummalla, S., Hutter, M.: Protecting RISC-V against side-channel
attacks. In: Proceedings of the 56th Annual Design Automation Conference 2019,
DAC, Las Vegas, NV, USA. p. 45 (2019). https://doi.org/10.1145/3316781.3323485

16. Pham, T.H., Marshall, B., Fell, A., Lam, S., Page, D.: XDIVINSA: extended diver-
sifying instruction agent to mitigate power side-channel leakage. In: 32nd IEEE In-
ternational Conference on Application-specific Systems, Architectures and Proces-
sors, ASAP. pp. 179–186 (2021). https://doi.org/10.1109/ASAP52443.2021.00034

17. SHAKTI: Family of processors. https://shakti.org.in/processors.html (2021)
18. SLPSK, P., Vairam, P.K., Rebeiro, C., Kamakoti, V.: Karna: A gate-sizing based

security aware EDA flow for improved power side-channel attack protection. In:
Proceedings of the International Conference on Computer-Aided Design. pp. 1–8
(2019). https://doi.org/10.1109/ICCAD45719.2019.8942173

19. Yao, Y., Kathuria, T., Ege, B., Schaumont, P.: Architecture correlation analysis
(ACA): identifying the source of side-channel leakage at gate-level. In: International
Symposium on Hardware Oriented Security and Trust, HOST, San Jose, CA, USA.
pp. 188–196. IEEE (2020). https://doi.org/10.1109/HOST45689.2020.9300271

20. Zhang, T., Liu, F., Chen, S., Lee, R.B.: Side channel vulnerability metrics: the
promise and the pitfalls. In: HASP 2013, The Second Workshop on Hardware and
Architectural Support for Security and Privacy, Tel-Aviv, Israel. p. 2. ACM (2013).
https://doi.org/10.1145/2487726.2487728

