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Abstract

We demonstrate that under believable cryptographic hardness assumptions, Gap versions of
standard meta-complexity problems, such as the Minimum Circuit Size Problem (MCSP) and
the Minimum Time-Bounded Kolmogorov Complexity problem (MKTP) are not NP-complete
w.r.t. Levin (i.e., witness-preserving many-to-one) reductions.
In more detail:

• Assuming the existence of indistinguishability obfuscation, and subexponentially-secure one-
way functions, an appropriate Gap version of MCSP is not NP-complete under randomized
Levin-reductions.

• Assuming the existence of subexponentially-secure indistinguishability obfuscation,
subexponentially-secure one-way functions and injective PRGs, an appropriate Gap version
of MKTP is not NP-complete under randomized Levin-reductions.
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1 Introduction

As described by Trakhtenbrot [Tra84], starting in the 1960s, there has been an on-going effort study-
ing the computational complexity of so-called “meta-complexity” problems; notably (a) the Min-
imum Circuit Size problem (MCSP) [KC00; Tra84]—determining the size of the smallest Boolean
circuit that computes a given function x, and (b) the Time-Bounded Kolmogorov Complexity Prob-
lem (MKTP) [Kol68; Sol64; Cha69; Ko86; Har83; Sip83]—determining the the length, denoted
Kt(x) of the shortest program (evaluated on some particular Universal Turing machine U) that
generates a given string x, within time t, where t = poly(|x|) is a polynomial. In particular, a ma-
jor problem since the 1960s is whether these problems, or the Gap versions of them (where the goal
is to determine whether the size is above a threshold s2 or below a threshold s1) are NP-complete.
Indeed, as recounted by [AKRR11; Ila20; Ila23], Levin is said to have delayed the publication of
his theory of NP-completeness [Lev73a] in order to show NP-completeness of MCSP.

In the following decades, there has been a lot of amazing progress—providing evidence pointing
towards both a positive and a negative answer:

Towards NP-completeness: While it is still unknown whether the original problems are NP-
complete, several generalizations of them have been proven to beNP-complete. Most notably,
Ilango first demonstrated this for an oracle version of MCSP [Ila20]; this was subsequently
extended to a multi-bit version of MCSP referrer to as Multi-MCSP [ILCO20], to a conditional
version of the MKTP problem, McKTP [LP22], and to other variants [Hir22a]. [HIR23]
recently improved the parameters of the reduction to McKTP [LP22], assuming that witness
encryption scheme exists. Additionally, Ilango [Ila23] very recently demonstrates that NP-
hardness of a variant of MCSP and MKTP where the programs are allowed to access a
random oracle, yielding a heuristic NP-completeness Karp (i.e., many-one) reduction for
these problems (if instantiating the random oracle with a concrete hash function). Finally,
a recent work by Impagliazzo, Kabanets, and Volkovich [IKV23b] provides various different
results that can be interpreted as giving evidence that MCSP is NP-complete with respect
to randomized reductions.

Towards Non NP-completeness: There is also evidence pointing towards non NP complete-
ness: Allender and Hirahara [AH19] showed that assuming one-way functions, the gap version
of MCSP is not NP complete for super-polynomial gap. Ko [Ko91] showed that a version of
MKTP is not NP complete with respect to an oracle, and Ren and Santhanam [RS22] gave
an oracle with respect to which MCSP is not NP complete. Other works prove limitations
on the structure of reduction to meta-complexity problems. Murray and Williams [MW17]
prove that MCSP is not NP complete under so-called local reductions. Kabanets and Cai
[KC00] and Saks and Santhanam [SS20] show that the NP-completeness of MCSP under Tur-
ing reductions with certain properties implies circuit lower bounds. For example if MCSP is
complete under so-called parametric honest Turing reductions, then E ⊈ SIZE(poly). More
recently, Saks and Santhanam [SS22] gave evidence that the running time of any randomized
non-adaptive reduction from SAT to Kt approximation must grow with the time parameter
t. These results, however, only rule out quite limited types of reductions.

Despite this progress, the original question, however, remains wide open.
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1.1 Our Results

The current paper provides strong evidence that the Gap versions of MCSP and MKTP are not
NP-complete w.r.t. Levin reductions—that is witness-preserving many-to-one reductions. In par-
ticular, we demonstrate that under somewhat strong, but generally believed, cryptographic hardness
assumptions, the Gap version of MCSP is not NP-complete w.r.t. Levin reductions.

Levin Reductions: The three original ways [Coo71; Kar72; Lev73b] of definingNP completeness
differ in how reductions from a language L to a language L′ are defined (see e.g., [Gol08] for a
discussion). Cook [Coo71] considers the most permissive notion: a Turing machine deciding L
having oracle access to a decider for L′. Karp’s notion—called a Karp reduction (or many-one
reduction) is more restrictive: it requires efficiently mapping an instance x into an instance x′ such
that x ∈ L iff x′ ∈ L′. Levin’s notion, called a Levin reduction (or a witness preserving many-
one reduction) is the most restrictive: it additionally requires efficiently mapping any witness w
for x into a witness for x′, and furthermore any witness w′ for x′ into a witness w for x. While
Karp reductions are most commonly used, as far as we are aware, most natural NP-completeness
reductions are actually of the Levin type as well. Furthermore, for constructive applications of
NP-completeness, NP-hardness demonstrated using a Levin reduction is typically what is needed:
In particular, for cryptographic application to interactive proofs (e.g., demonstrating that every
language in NP has a zero-knowledge proof of knowledge [FFS87], or that every language in NP
has a succinct argument [BG09], the notion of a Levin reduction is crucial (see e.g., [BG09] that in
particular notes that even the most sophisticated NP completeness reductions, as those provided
by the PCP theorem [ALMSS98; AS98], are Levin reductions). Our focus here is on such Levin
reductions; in particular, we will present the (conditional) impossibility of Levin reductions for
demonstrating NP-completeness; in fact, our impossibility will apply not only to deterministic but
also randomized Levin reductions (where the reduction is allowed to fail with some small constant
probability).

We mention that e.g,. the NP-completeness results of [Ila23] and [LP22] rely on the NP-
completeness of approximation for the Set-Cover problem [DGKR03; Tre01]. In both works, the
reductions from Set-Cover to the GapMCSP and GappMKtP (or the conditional version in the
case of [LP22]) are (randomized) Levin reductions (see Appendix A for a discussion of the result of
[Ila23]). The Set-cover NP-completeness itself relies on a long sequence of the reductions that we
have not been able to verify whether they are all Levin (although, as mentioned above, the main
technical core, the PCP theorem, is).

Our Cryptographic Hardness Assumptions: Indistinguishability Obfuscation: We will
rely on the existence of indistinguishability obfuscation (iO) for circuits [Bar+01]. Roughly speak-
ing, an indistinguishability obfuscator is an efficient algorithm iO that given a circuit C outputs an
“obfuscated” version of C having the property that obfuscations of any two functionally equivalent
circuits are indistinguishable. Following the ground-breaking work of [Gar+16], several heuristic
candidates were proposed, as well as provably secure constructions based on various assumptions
[PST14; GLSW15; Lin16; WW21; LT17; LV16; Lin17; AJS18; JLMS19; JLMS19; AJLMS19;
GJLS21; APM20; Agr19]. Most notable, the recent breakthrough result presents a construction
based on several well-founded (and generally believed) hardness assumption [JLS21]. (Construc-
tions based on less standard, but seemingly quantum-safe, “circular-security” assumptions also
appear in [BDGM23; GP21; BDGM20]).
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For our main results on MCSP, we will simply rely on indistinguishability obfuscation and
subexponentially-secure one-way function. For our results on MKTP, we will rely on iO with
subexponential security as well as other standard cryptographic assumptions such as injective
pseudorandom generators (PRGs), that e.g., are implied by the existence of one-way permutations.

Main Theorem We present the following main result:

• Assuming the existence of indistinguishability obfuscation and subexponentially-secure one-way
function, an appropriate Gap version of MCSP is not NP-complete under randomized Levin-
reductions.

• Assuming the existence of subexponentially-secure indistinguishability obfuscation,
subexponentially-secure one-way function and injective PRGs, an appropriate Gap version of
MKTP is not NP-complete under randomized Levin-reductions.

In more detail, let GapMCSP[s0, s1] be the promise problem in which given a truth table x we need
to distinguish between the following two cases:

• Yes instances: There exists a circuit C of size at most s0(|x|) that computes x.

• No Instances: There is no circuit of size s1(|x|) that computes x.

Our first theorem states that when the gap between s0 and s1 is large enough, and under crypto-
graphic assumptions, GapMCSP[s0, s1] is not NP-complete with respect to Levin reductions.

Theorem 1.1. Assume that iO and subexponentially-secure one-way functions exist. Then there
exists a polynomial p, such that for any pair of efficiently computable functions s0, s1 : N → N for
which s1(n) > p(s0(n)), it holds that GapMCSP[s0(n), s1(n)] is not NP complete with respect to
Levin reductions.

We remark that if all of the assumed cryptographic primitives are secure against sub-exponential
adversaries (in contrast to just polynomial adversaries), then our results rule out also randomized
Levin reductions that run in sub-exponential time.

Additionally, the assumption of subexponentially-secure one-way functions in Theorem 1.1 is
only to handle so-called non honest reductions: A Karp reduction f is to be honest if for every
x ∈ {0, 1}∗, |f(x)| ≥ |x|δ for some constant δ > 0 (i.e., the mapping from statements x to x′ is
polynomially preserving).

To exclude only honest reductions, it is enough to assume one-way function with polynomial
security. Such one-way functions are known to exist assuming iO and the minimal assumption that
NP ⊈ ioBPP [Kom+14]. We get the following theorem.

Theorem 1.2. Assume that iO exists, and that NP ⊈ ioBPP. Then there exists a polynomial p,
such that for every ϵ > 0, for any pair of efficiently computable functions s0, s1 : N→ N for which
s1(n) > p(s0(n)) and s0(n) > nϵ, it holds that GapMCSP[s0(n), s1(n)] is not NP complete with
respect to honest Levin reductions.

Our second result is a similar result for the GappMKtP problem. Recall that Kt(x) is the
minimal length of a program that outputs x within t(|x|) steps. For polynomials t and p, let
GappMKtP[s0, s1] be the promise problem in which given a string x we need to distinguish between
the following two cases:
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• Yes instances: Kt(x) ≤ s0(|x|)

• No Instances: Kp(t)(x) > s1(|x|).

We prove the following theorem.

Theorem 1.3. Assume that subexponentially-secure iO, subexponentially-secure one-way functions
and injective PRG exist. Then there exist a polynomial q such that for any t ∈ poly and any
efficiently computable functions s0, s1 : N → N for which s1(n) > q(log t(n), s0(n)), and for every
large enough polynomial p, it holds that GappMKtP[s0, s1] is not NP complete with respect to Levin
reductions.

Achieving a smaller gap under stronger assumptions As discussed above, several gener-
alizations of the GapMCSP and GappMKtP problem have been proven NP complete. The work
of [Ila23] showed that the same problems we consider here are NP complete relative to a random
oracle. There, the gap between the Yes and No instances is a multiplicative (1+ ϵ) gap, for a small
constant ϵ > 0 while in the theorems above we need the gap to be larger. Similarly, [LP22] showed
that deciding a conditional version of MKTP is NP-hard, and their result can be generalized to a
gap problem with a larger constant multiplicative factor. Hirahara [Hir22b] used a reduction from
the Minimum Monotone Satisfying Assignment problem to McKTP, resulting with a NP-hardness
of the GapMcKTP with a larger multiplicative gap, but still sub polynomial in the input length
(no(1)).

The polynomial p in Theorems 1.1 and 1.2 is the overhead of the iO algorithm we use. By
assuming a stronger assumption—that iO with a small overhead exists—we can improve the gap.
For example, we say that iO has additive overhead if on input C and security parameter λ, the size
of the obfuscated circuit is |C| + poly(λ). If we assume iO with additive overhead, we would get
the hardness of GapMCSP also for the additive gap case. Unfortunately, such iO constructions are
currently not known (but as far as we know, there are also no results indicating that this should
be impossible). However, if we consider slightly stronger assumptions, we can get iO for TM with
a factor 2 + ϵ overhead (for any constant ϵ > 0) [AJS17], yielding the following theorem.1

Theorem 1.4. Assume subexponential-secure iO, and subexponentially-secure one-way function
exist and assume subexponential DDH or LWE. Then for every very constant ϵ > 0, for every large
enough polynomial p, and for every efficiently computable function s0 it holds that GappMKtP[s0, (2+
ϵ)s0(n)] is not NP complete with respect to Levin reductions.

Proof Overview In this proof outline, we will for simplicity focus on ruling out deterministic
Levin reductions for the GapMCSP problem. Additionally, on top of the existence of iO , we will
here assume the existence of a collision-resistant hash function; that is the existence of a family
of compressing functions such that for a randomly sampled h, it is infeasible to find two inputs
x1, x2 that “collide” (i.e., h(x1) = h(x2)) although such collision exists. (In our actual proof, we
instead rely on the weaker primitive of a target collision-resistant hash function (TCR; also known
as, universal one-way hash function [NY89]) which can be constructed from one-way functions

1In a previous version of this paper, we claimed a similar result for GapMCSP using iO for circuits with a factor
2 + ϵ overhead. iO with such small overhead w.r.t. circuits does not appear to be known; while [AJS17] claim an iO
where the size of an obfuscation of a circuit C is of length 2|C|+ poly(λ), it appears that this “program” may need
to be further interpreted, which may result in larger circuit size.
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[Rom90]. Finally, let us start by assuming that the reduction is ”honest” (i.e., mapping statements
x to statements x′ of polynomially-related length.

x = h(w̃1) (x′, w̃′1)

x = h(w1) (x′, w′1)
Levin

Reduction

iO

Levin

Reduction

Figure 1: The proof overview. Given a witness w1 such that h(w1) = x, we use the Levin reduction
to get MCSP witness. Then we use the iO to get a new MCSP witness, and use the Levin reduction
again to get back w̃1 such that h(w̃1) = x

The key idea will be to use the Levin reduction and the iO in order to find a collision for h.
Roughly speaking, we start by sampling some w1 and compute x = h(w1); we think of x as a
statement for the language of images of h, and of w1 as the witness for x. We next use the Levin
reduction to get an MCSP statement x′ and its corresponding witness w′1. Note that the witness w

′
1

is a circuit computing x′. We then obfuscate w′1 using the iO to get a new witness w̃′1 for x′. Using
the Levin reduction, we can finally turn w̃′1 into a (hopefully new) witness w̃1 for x. Indeed, the key
point is that if we had started with a different preimage w2 ̸= w1 for x = h(w1) and done the same
process, then w′2 would become a functionally equivalent circuit to w′1 and thus by the security of
the iO, the distributions of w̃′2 and w̃′1 are computationally indistinguishable, so we conclude that
w̃2 and w̃1 also are. In particular, it follows that w̃1 ̸= w1 with probability at least 1/2, and we
have thus found a collision.

Note that we here rely on the NP-completeness of the Gap version of the MCSP problem since
when applying the iO we get a new witness for x′ but this witness (i.e, the circuit) is bigger than
the original one. In particular, the overhead of the iO translates into the gap of the problem—for
instance, if the overhead of the iO is only linear, we can handle a linear gap, and if it has polynomial
overhead then we can only rule out reductions for the polynomial gap version of the problem.

Dealing with Non-honest Reductions If the reduction is not honest, the statement x′ could
be a lot shorter than x; the problem then becomes if we run the iO on a security parameter that is
polynomially related to |x′| (which we require to ensure that we stay within the promise), we may
no longer have security with respect to an attacker who runs in time polynomial in |x| = n (which
is required to ensure that we find a collision). However, if we start off with a collision-resistant hash
function with sub-exponential security (i.e., 2n

ϵ
security), we can resolve this problem using a case-

analysis. If |x′| ≤ nϵ, then we simply find a new witness w̃′ using brute-force search, and otherwise
use the iO. This ensures that we only run the iO in case the reduction behaves ”honestly”; on the
other hand, when the reduction chooses a short x′, we still contradict the subexponential security
of the collision-resistant hash function.

Extensions for GappMKtP. We next generalize the above proof for the GappMKtP problem.
To be able to do so, we need a way to move from one GappMKtP witness to another, when a
GappMKtP witness is a t-time TM P of size at most s0(|x|) that outputs x. A naive approach
is to first convert the TM P into a circuit, then apply the iO for circuits, and lastly, convert the
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circuit back to a TM. The problem in this approach is that since the program P outputs x, the
time bound t must be at least |x|. This means that the circuit we construct from P will have a
trivial size, and we will not be able to get back a non-trivial program that outputs x.

Luckily, we can use iO for TMs directly on P , or even it suffices to rely on a weaker primitive of
a randomized encoding. Randomized encoding for TMs is known to exist assuming subexponential-
secure iO for circuits and injective PRGs [KLW15; LPST15].

Discussion. The results presented yield give a strong evidence that the GapMCSP and GappMKtP
are not NP-complete w.r.t. Levin reductions, at least when the gap is at least a factor 2. Fur-
thermore, although there are no known constructions of iO with only additive overhead based on
well-founded hardness assumptions, one can come up with candidate constructions with only lin-
ear additive overhead and heuristically assume that they satisfy the notion of indistinguishability
obfuscation.2 Under these more heuristic assumptions (which in our eyes seem reasonable), our
results thus give evidence that these problems are not NP-complete w.r.t. Levin reductions even
when the gap is a small additive term. These results thus provide (in our eyes) convincing cryp-
tographic evidence that the original task set out by Levin is impossible (since he indeed defined
NP-completeness through the notion of what today is referred to as a Levin reduction.)

Of course, it could still be that a weaker notion of a reduction (e.g., a Karp) reduction can be
used to prove NP-completeness of these problems. In particular, consider the results of [Ila23],
which shows NP-completeness of GapMCSP in the random oracle model. While, as discussed, his
reduction from (approximate) Set-Cover to GapMCSP is a Levin reductions (see Appendix A), the
witness preserving part of the reduction relies on the random oracle—in particular, the witness
reconstruction step relies on observing the queries to the random oracle performed by the circuit
w̃′ (i.e., the witness for the transformed statement x′).3 If instantiating the random oracle with a
concrete hashfunction h, it is no longer clear how to perform this task—in particular if the circuit
has been obfuscated so that it (intuitively) becomes hard to find the code of h in the description
of the circuit. As such, when instantiating the random oracle with a hashfunction, the reduction
most likely is no longer a Levin reduction, but conceivably it could still be a Karp reduction.

In contrast, as was shown in [IKV23a], if iO exists and MCSP ∈ BPP (and using similar ideas,
even if GapMCSP or GapMKTP with polynomial gap are in BPP), then NP ⊆ BPP. Indeed, if
GapMCSP[nϵ, n1−ϵ] ∈ BPP then (infinitely-often) one-way functions do not exist, and thus by the
result of [Kom+14], NP ⊆ BPP. This result gives, assuming obfuscation, a randomized reduction
from NP to GapMCSP. This reduction however is not a Karp (or Levin) reduction.

2 Preliminaries

2.1 Notations

All logarithms are taken in base 2. We use calligraphic letters to denote sets and distributions,
uppercase for random variables, and lowercase for values and functions. Given a set S ⊆ {0, 1}∗,
we let S = {0, 1}∗ \S. Let poly stand for the set of all polynomials. Let ppt stand for probabilistic

2In particular, take the constructions from e.g. [BCP14; AJS17] and instead of encrypting the program twice under
an FHE with additive linear overhead, simply encrypt the program once. While the two encryptions are needed for
the security proof, the construction without the two encryptions seems heuristically secure.

3Interestingly, a similar method of observing the queries to the random oracle was used by [GR14] to show that
there is no obfuscation for circuits with oracle access to a random oracle.
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poly-time, and n.u.-poly-time stand for non-uniform poly-time. An n.u.-poly-time algorithm A is
equipped with a (fixed) poly-size advice string set {zn}n∈N. Let neg stand for a negligible function.
For a SAT formula ϕ over n variables and an assignment v ∈ {0, 1}n, we use ϕ[v] ∈ {0, 1} to denote
the truth value of the evaluation of ϕ on v.

2.2 Distributions and Random Variables

When unambiguous, we will naturally view a random variable as its marginal distribution. The
support of a finite distribution P is defined by Supp(P) := {x : PrP [x] > 0}. For a (discrete)
distribution P, let x ← P denote that x was sampled according to P. Similarly, for a set S, let
x← S denote that x is drawn uniformly from S.

2.3 Kolmogorov Complexity

Roughly speaking, the t-time-bounded Kolmogorov complexity, Kt(x), of a string x ∈ {0, 1}∗ is
the length of the shortest program Π = (M,y) such that, when simulated by a universal Turing
machine, Π outputs x in t(|x|) steps. Here, a program Π is simply a pair of a Turing Machine M
and an input y, where the output of Π is defined as the output of M(y). When there is no running
time bound (i.e., the program can run in an arbitrary number of steps), we obtain the notion of
Kolmogorov complexity.

In the following, let U(Π, 1t) denote the output of Π when emulated on U for t steps. We now
define the notion of Kolmogorov complexity with respect to the universal TM U.

Definition 2.1. Let t ∈ N be a number. For all x ∈ {0, 1}∗, define

Kt
U(x) = min

Π∈{0,1}∗
{|Π| : U(Π, 1t) = x}

where |Π| is referred to as the description length of Π.

It is well known that for every x, Kt(x) ≤ |x| + c, for some constant c depending only on the
choice of the universal TM U.

Fact 2.2. For every universal TM U, there exists a constant c such that for every x ∈ {0, 1}∗, and
for every t such that t(n) > 0, Kt

U(x) ≤ |x|+ c.

In the following we fix some universal TM U and omit it from the notation.

2.4 Levin Reductions

For a relation R ⊆ {0, 1}∗ × {0, 1}∗, let L(R) = {x ∈ {0, 1}∗ : ∃w ∈ {0, 1}∗ s.t. (x,w) ∈ R}. We
say that a relation R is the witness relation of a language L ⊆ {0, 1}∗ if L(R) = L.

Definition 2.3 (Levin reduction). Let R1 and R2 be relations. A triplet of efficiently computable
functions (f, g, h) is a Levin reduction from R1 to R2 if

• For every (x,w) ∈ R1, (f(x), g(x,w)) ∈ R2.

• If (f(x), w) ∈ R2 then (x, h(x,w)) ∈ R1.
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Remark 2.4. Notice that if (f, g, h) a Levin reduction from R1 to R2, then f is a Karp reduction
from L(R1) to L(R2). Indeed, the first item above implies that if x ∈ L(R1) then f(x) ∈ L(R2),
and the second item implies the other direction.

A Levin reduction (f, g, h) is honest if there exists a constant δ > 0 such that for every large
enough n ∈ N and every x ∈ {0, 1}n, f(x) ≥ nδ.

When for two languages L1 and L2 we fix canonical relations R1 and R2, we say that there is
a Levin reduction from L1 to L2 if there is a Levin reduction from R1 to R2. We say that L ∈ NP
is NP complete under Levin reductions if there exists a Levin reduction from SAT to L, where the
canonical relation for SAT is

RSAT = {(ϕ, v) : ϕ is a SAT formula and ϕ[v] = 1}.

We also define Levin reductions for promise problems. In the following, we consider promise problem
(Y,N ) that is associated with two relations (RY ,RN ) such thatRY ⊆ RN , whereRY is the witness

relation for Y, and RN is the witness relation for N . That is, (Y,N ) = (L(RY),L(RN )).

Definition 2.5 (Levin reduction, promise problems). Let (R1
Y ,R1

N ) and (R2
Y ,R2

N ) be pairs of

relations such that R1
Y ⊆ R1

N and R2
Y ⊆ R2

N . A triplet of efficiently computable functions (f, g, h)

is a Levin reduction from (R1
Y ,R1

N ) to (R2
Y ,R2

N ) if

• For every (x,w) ∈ R1
Y , (f(x), g(x,w)) ∈ R2

Y .

• If (f(x), w) ∈ R2
N then (x, h(x,w)) ∈ R1

N .

Note that we can define reductions from language to promise problem by taking RY = RN .
Lastly, our results hold even when the reductions are allowed to be randomized. In this case,
f(x; r) can be a randomized function (that uses randomness r), and both g, h get access to r (and
possibly use more randomness). We then only require that the above requirements hold with high
probability over r.

Definition 2.6 (Randomized Levin reduction, promise problems). Let (R1
Y ,R1

N ) and (R2
Y ,R2

N ) be

pairs of relations such that R1
Y ⊆ R1

N and R2
Y ⊆ R2

N . A triplet of efficiently computable functions

(f, g, h) is a randomized Levin reduction with ϵ-error from (R1
Y ,R1

N ) to (R2
Y ,R2

N ) if

• For every x ∈ L(R1
Y), with probability at least 1− ϵ over the choice of r1 the following holds:

1. (f(x; r1), g(x,w; r1)) ∈ R2
Y , and,

2. for every w′ such that (f(x; r1), w
′) ∈ R2

N it holds that

Prr2←{0,1}∗
[
(x, h(x,w′; r1, r2)) ∈ R1

N
]
≥ 1− ϵ.

• For every x /∈ L(R1
N ) it holds that Prr1←{0,1}∗

[
f(x; r1) ∈ L(R2

N )
]
≤ ϵ.
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2.5 Cryptographic Primitives

In this part we define the cryptographic tools we will use. We start with the definition of one-way
function.

Definition 2.7 (One-way function). A polynomial-time computable function f : {0, 1}∗ → {0, 1}∗
is called a one-way function if for every ppt algorithm A, there is a negligible function µ : N→ [0, 1]
such that for every n ∈ N

Prx←{0,1}n
[
A(f(x)) ∈ f−1(f(x))

]
≤ µ(n).

A one-way function is subexponentially-secure if there exists a constant δ > 0 such that for every
2n

δ
time algorithm A, and for every large enough n ∈ N

Prx←{0,1}n
[
A(f(x)) ∈ f−1(f(x))

]
≤ 2−n

δ
.

Next, we define iO.

Definition 2.8 (indistinguishability obfuscation). An efficiently randomized algorithm iO is an
indistinguishability obfuscator if for every λ, n ∈ N and any circuit C : {0, 1}n → {0, 1},

Pr
Ĉ←iO(1λ,C),x←{0,1}n

[
C(x) = Ĉ(x)

]
= 1,

and for every s ∈ poly and every n.u.-poly-time algorithm A, there exists a negligible function µ,
such that for every λ ∈ N and every two circuit C,C ′ : {0, 1}n → {0, 1} with |C| = |C ′| ≤ s(λ) and
n ≤ λ, ∣∣∣Pr[A(1λ, iO(1λ, C)) = 1

]
− Pr

[
A(1λ, iO(1λ, C ′)) = 1

]∣∣∣ ≤ µ(λ).

We say that iO has overhead p if for every C and λ,
∣∣iO(1λ, C)

∣∣ ≤ p(|C|, λ) with probability 1.

Next we define Target collision-resistant hash functions, also known as universal one-way hash
functions.

Definition 2.9 (Target collision resistant hash). An efficiently computable function

T : {0, 1}n → {0, 1}n−s(n)

is a Target collision resistant hash function (TCR) if s(n) ≥ 1 and for every ppt algorithm A,

Prx←{0,1}n
[
x′ ← A(x);T (x) = T (x′) and x ̸= x′

]
= neg(n).

We say that a TCR is secure against subexponential adversaries if there exists a constant δ > 0
such that for every 2n

δ
time algorithm A,

Prx←{0,1}n
[
x′ ← A(x);T (x) = T (x′) and x ̸= x′

]
= neg(n).

Rompel [Rom90] showed that TCR can be constructed from one-way functions.

Theorem 2.10 ([Rom90]). Assume that one-way functions exist. Then TCR T : {0, 1}n → {0, 1}n−s(n)
with s(n) ∈ ω(log n) exists.
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Since the proof of the theorem above is black-box, the same holds for subexponential adversaries.

Theorem 2.11. Assume that subexponentially-secure one-way functions exist. Then there exists a
TCR T : {0, 1}n → {0, 1}n−s(n) secure against subexponential adversaries, with s(n) ∈ ω(log n).

We will also use the following theorem, by [Kom+14].

Theorem 2.12 ([Kom+14]). Assume that iO exists and NP ⊈ ioBPP. Then one-way functions
exist.

Lastly, we will also use the fact that a TCR is a one-way function.

Claim 2.13. Let T : {0, 1}n → {0, 1}n−s(n) be a TCR with s(n) ∈ ω(log n). Then T is a one-way
function. That is, for every ppt algorithm A,

Prx←{0,1}n
[
A(f(x)) ∈ T−1(T (x))

]
= neg(n).

Moreover, if secure against subexponential adversaries, the above holds for any algorithm A with
running time at most 2n

δ
, for some constant δ.

We sketch the proof here.

Proof. Assume that algorithm A can invert T with non-negligible probability. We claim that
A can be used to find a collision with non-negligible probability. Indeed, let X ← {0, 1}n be
a uniformly distributed random variable. Let A′ be the algorithm that given random input X,
executes A(T (X)) and outputs its output.

Given that A(T (X)) found a pre-image x′ of T (X), we get that the input of A′, X, uniformly
distributed over the set T−1(T (x′)). Since the size of T−1(T (x′)) is large (the probability that∣∣T−1(T (x′))∣∣ ≤ k is at most k · 2−s(n)), with high probability it holds that x ̸= X, and thus A′
found a collision. □

3 GapMCSP is not NP-complete under Levin Reductions

In this section we prove our main result for GapMCSP. We first define GapMCSP[s0, s1]. In the
following, a circuit C computes a string x if the truth table of C is x.

Definition 3.1. For two functions s0, s1 : N → N, let GapMCSP[s0, s1] denote the following
promise problem.

• Y = {x ∈ {0, 1}n : There exists a circuit C of size at most s0(n) that computes x}

• N = {x ∈ {0, 1}n : There is no circuit of size s1(n) that computes x}

We define the relations RY and RN for GapMCSP[s0, s1] in the natural way:

RY = {(x,C) : C is a circuit of size at most s0(n) that computes x},

and,
RN = {(x,C) : C is a circuit of size at most s1(n) that computes x}.

We start with the following theorem for deterministic reductions. In Section 3.2 we prove a similar
theorem for randomized Levin reductions.
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Theorem 3.2. Let p : N × N → N be a function. Assume that there exists iO with overhead p,
and subexponentially-secure one-way function. Then for any constant α > 0 and for any pair of
efficiently computable functions s0, s1 : N → N for which s1(n) > p(s0(n), (s0(n))

α), it holds that
GapMCSP[s0(n), s1(n)] is not NP complete with respect to Levin reductions.

Since iO is an efficient algorithm, the overhead of any iO is polynomial. Combining this
observation with Theorem 3.2 yields Theorem 1.1.

3.1 Proving Theorem 3.2

To prove Theorem 3.2, let iO be an indistinguishability obfuscator, and let p ∈ poly be the overhead
of iO. Let T : {0, 1}n → {0, 1}n−ω(logn) be a TCR with security against subexponential algorithms.

Consider the following distribution ensemble D = {Dn}n∈N over SAT formulas and assignments
(ϕ, v). For every n ∈ N, to sample from Dn: sample a random x ∈ {0, 1}n. Let ϕT (x) be a formula
such that ϕT (x)[x

′] = 1 if and only if T (x′) = T (x). Output (ϕT (x), x). We remark that ϕT (x) only
depends on the value of T (x) and not on x itself.

We start with the following claim.

Claim 3.3. The following hold for every n ∈ N:

• Pr(ϕ,v)←Dn
[ϕ[v] = 1] = 1

• Pr(ϕ,v)←Dn
[∃v′ s.t. v ̸= v′ and ϕ[v′] = 1] = 1− neg(n), and,

• for every ppt algorithm A

Pr(ϕ,v)←Dn

[
A(ϕ, v) = v′; v ̸= v′ and ϕ[v′] = 1

]
= neg(n).

Proof. The first and last items follow directly from the definition of the distribution D and the
definition of TCR. The second item holds since T is shrinking. □

We also prove the following claim, which states that for any reduction f from SAT to GapMCSP,
the output of f on inputs samples from Dn must have length polynomial in n. Here we need the
subexponential security of T .

Claim 3.4. Let (f, g, h) be a Levin reduction from SAT to GapMCSP[s0, s1]. Then there exists a
constant δ > 0 such that

Pr(ϕ,v)←Dn

[
s0(|f(ϕ)|) ≥ nδ

]
≥ 1− neg(n)

Remark 3.5. Claim 3.4 is the only place in which we use the subexponential security assumption.
We need it to make sure that (with high probability over D) |s0(f(ϕ))| is not too small. While we
can require that s0(n) ≥ nϵ for some ϵ > 0, the reduction f itself can return short outputs.

When the reduction f is honest (that is, |f(x)| ≥ |x|α for all inputs x and for some α > 0), we
can replace the assumption on exponentially-secure one-way function with the above requirement
that s0(n) ≥ nϵ, and minimal assumption that NP ⊈ ioBPP. The latter assumption is known to
imply (together with iO) one-way function (see Theorem 2.12). Using the same proof as follows we
get Theorem 1.2.
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Proof. Assume toward a contradiction that this is not the case for all constant δ > 0. We will show
how to invert T . That is, we will show an algorithm A that runs in time 2n

c·δ
for some constant c

such that
Prx←{0,1}n

[
A(T (x)) ∈ T−1(T (x))

]
≥ Pr(ϕ,v)←Dn

[
s0(|f(ϕ)|) < nδ

]
.

The claim will then follow by Claim 2.13, as by assumption Pr(ϕ,v)←Dn

[
s0(|f(ϕ)|) < nδ

]
is non-

negligible for all choices of δ > 0 (and for infinitely many n’s).
Let A be the algorithm that given y = T (x), constructs the formula ϕy, and then uses brute

force to find a minimal circuit C of size at most nδ that computes f(ϕy). Lastly, if such C exists,
A outputs h(ϕy, C).

It is not hard to see that A runs in time 2poly(n
δ). By the definition of Levin reductions,

when s0(
∣∣f(ϕT (x))

∣∣) < nδ, A always outputs x′ such that T (x′) = T (x). Lastly, observe that the
distribution of ϕy for y = T (x) when x← {0, 1}n, is exactly the distribution of ϕ when (ϕ, v)← Dn.

□

The next lemma shows it is possible to use iO to find collisions in the TCR.

Lemma 3.6. Let iO be an indistinguishability obfuscator with overhead p, and let s0 and s1 as
in Theorem 3.2. Assume that there exists a Levin reduction from SAT to GapMCSP[s0, s1]. Then
there exists an efficient algorithm A such that for every large enough n ∈ N

Pr(ϕ,v)←Dn

[
A(ϕ, v) = v′; v ̸= v′ and ϕ[v′] = 1

]
> 1/4.

Proof. We start with the definition of A. Let f, g, h be the Levin reduction between SAT to
GapMCSP[s0, s1]. Define A(ϕ, v) = h(ϕ, iO(1|g(ϕ,v)|

α

, g(ϕ, v))). In the following we omit the secu-
rity parameter 1|g(ϕ,v)|

α

from the notation.
Next, we show that A(ϕ, v) returns v′ ̸= v that satisfies ϕ with probability at least 1/4. By

Claim 3.3, such v′ exists with all but negligible probability over a random sample (ϕ, v)← Dn. For
the constant δ > 0 from Claim 3.4 let G be the set of all (ϕ, v) such that s0(|f(ϕ)|) ≥ nδ and that
exists v′ ̸= v with ϕ[v′] = 1. By Claim 3.4, Pr(ϕ,v)←Dn

[(ϕ, v) ∈ G] ≥ 1 − neg(n). In the following,
fix n ∈ N, and fix (ϕ, v) ∈ G, and v′ ̸= v with ϕ[v′] = 1.

By the correctness of f and g, g(ϕ, v) and g(ϕ, v′) are two circuits with size at most s0(|f(ϕ)|)
with the same truth table f(ϕ). We assume without loss of generality that |g(ϕ, v)| = |g(ϕ, v′)| =
s0(|f(ϕ)|). By the assumption on the overhead time of the obfuscator iO, we get that the size of
the output of iO(g(ϕ, v)) and iO(g(ϕ, v)) is at most

p(|g(ϕ, v)|, |g(ϕ, v)|α) = p(s0(|f(ϕ)|), (s0(|f(ϕ)|))α) < s1(|f(ϕ)|).

Thus, the output iO(g(ϕ, v)) is a witness that f(ϕ) is not a No instance of GapMCSP[s0, s1], and
by the definition of h, h(ϕ, iO(g(ϕ, v))) returns a witness that ϕ ∈ SAT. Similarly, the same holds
for v′: h(ϕ, iO(g(ϕ, v′))) returns a witness that ϕ ∈ SAT.

Lastly, we use the security of iO to claim that h(ϕ, iO(g(ϕ, v))) ̸= v with a good probability. By
the security of the obfuscator, and since g(ϕ, v) and g(ϕ, v′) compute the same function f(ϕ) the
output distributions of iO(g(ϕ, v)) and iO(g(ϕ, v′)) are indistinguishable. Moreover, since the iO
is secure against non-uniform algorithms, the above distributions are indistinguishable also given
(ϕ, v, v′) (importantly, the size of (ϕ, v, v′) is polynomial in the security parameter and in the size
of the circuit g(ϕ, v) when s0(|f(x)|) ≥ nδ). In particular, by data processing, the distributions
h(ϕ, iO(g(x, v))) and h(ϕ, iO(g(x, v′))) must be indistinguishable.
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By the definition of A, we get that

Pr[A(ϕ, v) = v] ≤ Pr
[
A(ϕ, v′) = v

]
+ µ(s0(|f(ϕ)|))

for some negligible function µ. Since (ϕ, v) ∈ G, for every large enough n we get that

Pr[A(ϕ, v) = v] ≤ Pr
[
A(ϕ, v′) = v

]
+ µ(s0(|f(ϕ)|)) ≤ Pr

[
A(ϕ, v′) ̸= v′

]
+ 1/3,

which implies that
1− Pr[A(ϕ, v) ̸= v] ≤ Pr

[
A(ϕ, v′) ̸= v′

]
+ 1/3,

or that

1/2 · (Pr[A(ϕ, v) ̸= v] + Pr
[
A(ϕ, v′) ̸= v′

]
) ≥ 1/3. (1)

To finish the proof, consider the distribution D′n, in which we sample (ϕ, v) ← Dn, and then if
(ϕ, v) ∈ G, we sample a random v′ ̸= v such that ϕ[v′] = 1 (or let v′ = v if (ϕ, v) /∈ G). We then
output (ϕ, v, v′).

We get that

Pr(ϕ,v)←Dn
[A(ϕ, v) ̸= v]

≥ Pr(ϕ,v)←Dn
[A(ϕ, v) ̸= v | (ϕ, v) ∈ G] · Pr(ϕ,v)←Dn

[(ϕ, v) ∈ G]
= Pr(ϕ,v)←Dn

[A(ϕ, v) ̸= v | (ϕ, v) ∈ G] · (1− neg(n))

= Pr(ϕ,v0,v1)←D′
n
[A(ϕ, v0) ̸= v0 | (ϕ, v0) ∈ G] · (1− neg(n))

= Pr(ϕ,v0,v1)←D′
n,b←{0,1}[A(ϕ, vb) ̸= vb | (ϕ, vb) ∈ G] · (1− neg(n))

= 1/2 ·
∑

b∈{0,1}

Pr(ϕ,v0,v1)←D′
n
[A(ϕ, vb) ̸= vb | (ϕ, vb) ∈ G] · (1− neg(n))

≥ 1/3− neg(n).

where the third equality holds since the distribution of (ϕ, v0) and (ϕ, v1) are identical for (ϕ, v0, v1)←
D′n, and the last inequality by Equation (1). □

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. Assume that iO and subexponential one-way functions exist. By Theo-
rem 2.11, there exists a TCR with security against subexponential adversaries.

Assume there exists Levin reduction from SAT to GapMCSP[s0, s1], and let D be the distribu-
tion defined above. By Claim 3.3, there is no efficient algorithm that given a random sample (ϕ, v)
from Dn finds v′ ̸= v such that ϕ[v′] = 1 with non-negligible probability. But by Lemma 3.6, there
exists such an algorithm that succeeds with probability 1/4, which is a contradiction. □

3.2 Randomized Levin Reductions

In this part we generalize Theorem 3.2 to hold with respect to randomized reductions. We prove
the following theorem.
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Theorem 3.7. Let 0 ≤ ϵ ≤ 1/30 be a constant, and let p : N × N → N be a function. Assume
that there exist iO with overhead p, and subexponentially-secure one-way function. Then for any
constant α > 0 and for any pair of efficiently computable functions s0, s1 : N → N for which
s1(n) > p(s0(n), (s0(n))

α), it holds that GapMCSP[s0(n), s1(n)] is not NP complete with respect
to randomized Levin reductions with ϵ-error.

Theorem 1.1 (for randomized reductions) directly follows by Theorem 3.7 and the observa-
tion that the overhead p is always bounded by polynomial. The proof of Theorem 3.7 is sim-
ilar to the proof of Theorem 3.2. Let iO be an indistinguishability obfuscator with overhead
p, and T : {0, 1}n → {0, 1}n−ω(logn) be a TCR secure against subexponential adversaries. Let
D = {Dn}n∈N be the same distribution as defined in the proof of Theorem 3.2.

The following claim is the analog of Claim 3.4 for randomized reductions.

Claim 3.8. Let (f, g, h) be a randomized Levin reduction with ϵ-error from SAT to GapMCSP[s0, s1].
Then there exists a constant δ > 0 such that

Pr(ϕ,v)←Dn,r1←{0,1}∗
[
s0(|f(ϕ; r1)|) ≥ nδ

]
≥ 1− 2ϵ− neg(n)

Proof. The proof follows the same lines as the proof of Claim 3.4. Specifically, let δ > 0, A be the
algorithm described in the proof of Claim 3.4. We will show that

Prx←{0,1}n
[
A(T (x)) ∈ T−1(T (x))

]
≥ Pr(ϕ,v)←Dn,r1←{0,1}∗

[
s0(|f(ϕ)|) < nδ

]
− 2ϵ.

The claim will then follow by Claim 2.13.
By the definition of randomized Levin reductions, with probability at least 1− ϵ over the choice

of r1, it holds that h succeed to convert a witness for f(ϕ; r1) to a witness for ϕ with probability
at least 1− ϵ. By the union bound, with probability at least

1− Pr(ϕ,v)←Dn,r1←{0,1}∗
[
s0(|f(ϕ; r1)|) < nδ

]
− ϵ

over the choice of (ϕ, v) ← Dn and r1, it holds that both s0(|f(ϕ; r1)|) < nδ, and h converts
witnesses for f(ϕ; r1) to witnesses for ϕ with probability at least 1 − ϵ. In this case, A finds a
witness for f(ϕ; r1) and outputs a pre-image of T with probability 1− ϵ.

Using the union bound again, we get that A finds such a pre-image with probability at least

1− Pr(ϕ,v)←Dn,r1←{0,1}∗
[
s0(|f(ϕ; r1)|) ≥ nδ

]
− 2ϵ

as claimed. □

The next lemma generalized Lemma 3.6, to shows it is possible to use iO and randomized Levin
reduction to find collisions in the TCR.

Lemma 3.9. Let iO be indistinguishability obfuscator with overhead p, and let ϵ, s0 and s1 as
in Theorem 3.7. Assume that there exists a randomized Levin reduction with ϵ-error from SAT
to GapMCSP[s0, s1]. Then there exists an efficient algorithm A such that for every large enough
n ∈ N

Pr(ϕ,v)←Dn

[
A(ϕ, v) = v′; v ̸= v′ and ϕ[v′] = 1

]
> 1/4− 7ϵ.
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Proof. We start with the definition of A. Let f, g, h be the Levin reduction between SAT to
GapMCSP[s0, s1], and define A to be the algorithm that on input ϕ, v, outputs

h(ϕ, iO(1|g(ϕ,v;r1)|
α

, g(ϕ, v; r1)); r1, r2),

for a random choice of randomness r1, r2 for g, h. In the following we omit the security parameter
1|g(ϕ,v;r1)|

α

from the notation.
Next, we show that A(ϕ, v) returns v′ ̸= v that satisfies ϕ with probability at least 1/4. Let G

be the set of all SAT formulas ϕ such that there are v ̸= v′ such that ϕ[v] = ϕ[v′] = 1.
Let δ > 0 be the constant from Claim 3.8. In the following, we say that a randomness r1 is

good for a formula ϕ and a satisfying assignments v, if it holds that (1) s0(|f(ϕ; r1)|) ≥ nδ, (2)
g(ϕ, v; r1) is a circuit of size at most s0(|f(ϕ; r1)|) that computes f(ϕ; r1), and (3), for any circuit
C of size less than s1(|f(ϕ; r1)|) which computes f(ϕ; r1), it holds that h(ϕ,C; r1, r2) is a satisfying
assignment for ϕ with probability at least 1 − ϵ over the choice of r2. That is, r1 is good if the
output of f(ϕ; r1) is not too short, and if the reduction succeed in converting witnesses from SAT
to GapMCSP using the randomness r1.

By the definition of Levin reductions with ϵ-error a random r1 fulfils the last two requirements
with probability at least 1− ϵ. Using Claim 3.8 and the union bound, we get that a random r1 is
good for (ϕ, v) with probability at least 1− 3ϵ− neg(n).

For ϕ ∈ G, and two satisfying assignments v ̸= v′, let Rϕ,v,v′ be the set of all random strings r1
such that r1 is good both for (ϕ, v) and for (ϕ, v′). Using the union bound again, we get that

Prr1←{0,1}∗
[
r1 ∈ Rϕ,v,v′

]
≥ 1− 6ϵ− neg(n). (2)

We continue as in the proof of Lemma 3.6. In the following, fix ϕ ∈ G and two satisfying
assignments v ̸= v′, and fix r1 ∈ Rϕ,v,v′ .

By the definition of Rϕ,v,v′ , g(ϕ, v; r1) and g(ϕ, v′; r1) are two circuits with size at most s0(f(ϕ))
with the same truth table f(ϕ; r1). We assume without loss of generality that |g(ϕ, v)| = |g(ϕ, v′)| =
s0(|f(ϕ)|). As in the proof of Lemma 3.6, by the assumption on the overhead of the obfuscator iO,
we get that the size of the output of iO(g(ϕ, v; r1)) and iO(g(ϕ, v′; r1)) is less than s1(|f(ϕ; r1)|).
Thus, the output iO(g(ϕ, v; r1)) is a witness that f(ϕ; r1) is not a No instance of GapMCSP[s0, s1],
and by the definition of h and Rϕ,v,v′ , h(ϕ, iO(g(ϕ, v; r1, r2))) returns a witness that ϕ ∈ SAT with
probability at least 1 − ϵ over the choice of r2. Similarly, the same holds for v′: h(ϕ, iO(g(ϕ, v′)))
returns a witness that ϕ ∈ SAT with the same probability.

Lastly, we use the security of iO to claim that h(ϕ, iO(g(ϕ, v; r1); r1, r2) outputs an satisfying
assignment to ϕ which is not equal to v with a good probability. By the security of the obfuscator,
and since g(ϕ, v; r1) and g(ϕ, v′; r1) computes the same function f(ϕ; r1) the output distributions of
iO(g(ϕ, v; r1)) and iO(g(ϕ, v′; r1)) are indistinguishable. Moreover, by the non-uniform security, the
above distributions are indistinguishable also given (x, v, v′, r1). In particular, by data processing,
the distributions h(ϕ, iO(g(x, v; r1)); r1, r2) and h(ϕ, iO(g(x, v′; r1)); r1, r2) must be indistinguish-
able. Let A(ϕ, v; r1) be the output of A(ϕ, v) when we fix the randomness A uses for f to be r1.
In the following we assume without loss of generality that whenever A do not output a satisfying
assignment for ϕ, it outputs ⊥. By the definition of A, when r1 ∈ Rϕ,v,v′ we get that

Pr[A(ϕ, v; r1) = v] ≤ Pr
[
A(ϕ, v′; r1) = v

]
+ µ(s0(|f(ϕ)|))

for some negligible function µ. As in the proof of Lemma 3.6, this implies that

1/2 · (Pr[A(ϕ, v; r1) ̸= v] + Pr
[
A(ϕ, v′; r1) ̸= v′

]
) ≥ 1/3. (3)
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Since h fails with probability at most ϵ, we get that

1/2 · (Pr[A(ϕ, v; r1) /∈ {v,⊥}] + Pr
[
A(ϕ, v′; r1) /∈

{
v′,⊥

}]
) ≥ 1/3− ϵ. (4)

To finish the proof, consider the distribution D′n, in which we sample (ϕ, v)← Dn, and then if
ϕ ∈ G, we sample a random v′ ̸= v such that ϕ[v′] = 1 (otherwise we let v′ = v). We then output
(ϕ, v, v′).

We get that

Pr(ϕ,v)←Dn,r1←{0,1}∗ [A(ϕ, v; r1) /∈ {v,⊥}]
= Pr(ϕ,v0,v1)←D′

n,r1←{0,1}
∗ [A(ϕ, v0; r1) /∈ {v0,⊥}]

≥ Pr(ϕ,v0,v1)←D′
n,

r1←{0,1}∗
[A(ϕ, v0; r1) /∈ {v0,⊥} | ϕ ∈ G, r1 ∈ Rϕ,v0,v1 ]

· Pr[r1 ∈ Rϕ,v0,v1 | ϕ ∈ G] · Pr[ϕ ∈ G]
≥ Pr(ϕ,v0,v1)←D′

n,
r1←{0,1}∗

[A(ϕ, v0; r1) /∈ {v0,⊥} | ϕ ∈ G, r1 ∈ Rϕ,v0,v1 ]

· (1− 6ϵ− neg(n))(1− neg(n))

≥ Pr(ϕ,v0,v1)←D′
n,

r1←{0,1}∗
b←{0,1}

[A(ϕ, vb; r1) /∈ {vb,⊥} | ϕ ∈ G, r1 ∈ Rϕ,v0,v1 ]

· (1− 6ϵ− neg(n))(1− neg(n))

≥ (1/3− ϵ) · (1− 6ϵ− neg(n))(1− neg(n))

≥ 1/4− 7ϵ.

where the second inequality holds by Equation (4) and by Claim 3.8, the third equality holds since
the distribution of (ϕ, v0) and (ϕ, v1) are identical for (ϕ, v0, v1)← D′n, in by a similar argument as
in the proof of Lemma 3.6, and the last inequality holds for large enough n and for a small enough
constant ϵ. □

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. Assume that iO and subexponentially-secure one-way function exist. By
Theorem 2.11, there exists a TCR with security against subexponential adversaries..

Assume there exists Levin reduction from SAT to GapMCSP[s0, s1], and let D be the distribu-
tion defined above. By Claim 3.3, there is no efficient algorithm that given a random sample (ϕ, v)
from Dn finds v′ ̸= v such that ϕ[v′] = 1 with non-negligible probability. But by Lemma 3.9, there
exists such an algorithm that succeeds with probability 1/4 − 7ϵ, which is a contradiction when
ϵ < 1/28. □

4 GappMKtP is not NP-complete under Levin Reductions

In this section we prove our result for MKtP. That is, we prove that (under cryptographic assump-
tions) there is no Levin reduction from SAT to the following promise problem. For p, t ∈ poly, let
GappMKtP[s0, s1] be the following promise problem:

• Y =
{
x ∈ {0, 1}n : Kt(n)(x) ≤ s0(n)

}
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• N =
{
x ∈ {0, 1}n : Kp(t(n))(x) > s1(n)

}
We define the relations RY and RN for GappMKtP[s0, s1] in the natural way:

RY =
{
(x, P ) : P is a program of length at most s0(n) such that U(P, 1t(|x|)) = x

}
,

and,

RN =
{
(x, P ) : P is a program of length at most s1(n) such that U(P, 1p(t(|x|))) = x

}
.

The proof follows the same line as the proof of Theorem 3.2, where we replace the iO with
randomized encoding for Turing machines with indistinguishability-based security [AJ15].

Definition 4.1 (Randomized encoding for TM). A pair of efficient randomized algorithms (Enc,Dec)
is randomized encoding for TMs if the following holds: Let M be a TM and x ∈ {0, 1}∗ be an input,
λ ∈ N be a security parameter and let T ∈ N be a bound on the running time of M(x). Then

1. (Correctness:) Pr
[
Dec(Enc(1λ,M, x, T )) = M(x)

]
= 1

2. (Efficiency:) Enc(1λ,M, x, T ) runs in time poly(λ, |M |, |x|, log T ) and Dec(M̂(x)) runs in time

poly(λ, |M |, |x|, t) for M̂(x)← Enc(1λ,M, x, T ) and where t ≤ T is the running time of M(x),
and,

3. (Security:) For every n.u.− poly− time algorithm A and every s ∈ poly there exists a negligible
function µ, such that for every TM M and two inputs x0, x1 such that M(x0) = M(x1), |M | ≤
s(λ), |x0| ≤ s(λ), |x1| ≤ s(λ) and the running time of M on x0 at most s(λ) and is the same as
the running time of M on x1, the following holds:∣∣∣Pr[A(Enc(1λ,M, x0, T )) = 1

]
− Pr

[
A(Enc(1λ,M, x1, T )) = 1

]∣∣∣ = µ(λ).

We say that (Enc,Dec) has overhead p if
∣∣Enc(1λ,M, x, T )

∣∣ ≤ p(|M |, |x|, T, λ) with probability 1.

Using randomized encoding, we get the following theorem.

Theorem 4.2. Let 0 ≤ ϵ ≤ 1/30 be a constant. Assume that randomized encoding for TMs
with overhead q, and subexponentially-secure one-way function exists. Then there exists a constant
c ∈ N such that for every constant α > 0, for any t ∈ poly and any efficiently computable functions
s0, s1 : N→ N for which

s1(n) > q(c, s0(n) + c log(t(n)) + c log(s0(n)), log t(n), (s0(n))
α),

and for every large enough polynomial p, it holds that GappMKtP[s0, s1] is not NP complete with
respect to randomized Levin reductions with ϵ-error.

By the results of [LPST15; KLW15] such randomized encoding with polynomial overhead q
for poly-time TMs can be constructed assuming one-way functions, subexponentially-secure iO
for circuits and injective PRG (that can be constructed from one-way permutation). Together
with Theorem 4.2 we get Theorem 1.3. As in Theorem 3.2, we can relax the requirement for
subexponentially-secure one-way function if we only want to exclude honest reductions.

[AJS17] constructed iO for TM with multiplicative overhead. By combining the construction
of randomized encoding for TMs of [LPST15] with the iO of [AJS17], we get randomized encoding
with multiplicative overhead.
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Theorem 4.3. Assuming subexponentially-secure iO and subexponentially secure rerandomizable
encryption schemes, there exists a randomized encoding for TMs scheme with overhead q(|M |, |x|, T, λ) =
2(|M |+ |x|) + poly(λ, log T ).

We get the following corollary.

Corollary 4.4. Let 0 ≤ ϵ ≤ 1/30 be a constant. Assume subexponential-secure iO, and subexponentially-
secure one-way function exist and assume subexponential DDH or LWE. Then for every constant
α > 0, and for any efficiently computable function s0, it holds that GappMKtP[s0(n), (2 +α)s0(n)]
is not NP complete with respect to randomized Levin reductions with ϵ-error.

Proof of Theorem 4.2. For ease of notation, we explain how to modify the proof of Theorem 3.2
to get the proof of Theorem 4.2 for deterministic reductions. Similar changes to the proof of
Theorem 3.7 yield the result for randomized reductions.

We only need to change the proof of Lemma 3.6. Let (f, g, h) be the Levin reduction from
SAT to GappMKtP[s0, s1], and assume that for every (ϕ, v) in the support of D, g(ϕ, v) output
a program of length exactly s0(|f(ϕ)|) that runs in time exactly t(|f(ϕ)|) (this can be assume by
adding O(log t(n) + log s0(n)) bits to the description of g(ϕ, v)). Let U be a universal TM and
(Enc,Dec) be randomized encoding for TMs. Consider the algorithm

A(ϕ, v) = h(ϕ, ĝ(ϕ, v))),

where ĝ(ϕ, v) is a program that runs Dec on P̂ for P̂ ← Enc(1|g(ϕ,v)|
α

,U, g(ϕ, v), t(|f(ϕ)|)). That is,
we replace the iO in the construction ofA from the proof of Lemma 3.6, with a randomized encoding
of U(g(ϕ, v)). Since for every two witnesses v, v′ of ϕ it holds that U(g(ϕ, v)) = U(g(ϕ, v′)) = f(ϕ),

we get that ĝ(ϕ, v) and ĝ(ϕ, v′) are indistinguishable.
By the overhead of the randomized encoding scheme,∣∣∣ĝ(ϕ, v′)∣∣∣ ≤ q(|U|, s0(n) +O(log(t(n)) + log(s0(n)), log t(n), |g(ϕ, v)|α).

By the efficiency of Dec, the running time of ĝ(ϕ, v′) is at most poly(s0(|f(ϕ)|), t(|f(ϕ)|)) =
poly(t(|f(ϕ)|)), where the equality holds since s0(|f(ϕ)|) ≤ |f(ϕ)|+O(1) or the
GappMKtP[s0, s1] problem is trivial. Thus, by taking p be a polynomial that bound the running

time of ĝ(ϕ, v′), we get that ĝ(ϕ, v′) is a witness that f(ϕ) is not a No instance. The proof continues
along the same lines as the proof of Lemma 3.6. □
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A [Ila23]’s Reduction is a Levin Reduction (in the ROM)

Ilango [Ila23] show a reduction from τ -Frequency Set Cover to both GapMCSP and GappMKtP
with a random oracle O. Here we explain why this reduction is a Levin reduction.

Given a witness to the τ -Frequency Set Cover, the construction of a witness for the output of the
reduction form GappMKtP is straightforward, and the construction of the witness for GapMCSP
uses the construction of [Lup58] that can be made efficient (recall that the running time can be
polynomial in the truth-table of the circuit).

We briefly explain how the proof in [Ila23] implies that given a witness for the GapMCSP
or GappMKtP instances that we get from the reduction, we can reconstruct a witness for the τ -
Frequency Set Cover instance. Specifically, this can be done by considering the set of queries made
by the GapMCSP or GappMKtP witnesses to the random oracle O. For concreteness, we focus on
the reduction for GapMCSP (the proof for GappMKtP is of the same lines).

We start with a short description of the reduction. Given a instance ϕ = (S1, . . . ,Sm ⊆ [n]),
recall that we want to find a small subset of J ⊆ [m] such that ∪j∈JSj = [n]. The reduction
samples for each such set Sj a secret key skj , and for every element in i ∈ [n] a random value vi. It
then finds for each i and for each j such that i ∈ Sj , a value ci,j such that O(i, skj , ci,j) = vi. Then
the truth table that the reduction outputs is the concatenation of ci,j and vi for all i ∈ [n], j ∈ [m].
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The hope is that any circuit that computes this truth table will have the values of skj hardcoded
to it for every j in the minimal cover J . While this is not true, we explain below that (with high
probability over the oracle O) we can extract an approximation of J using the oracle calls the
circuit makes to O. Specifically, for the gap problem used in [Ila23], we need to find a set cover of
size smaller than n/3.

Let ϕ be a τ -Frequency Set Cover, and let x = f(ϕ) be the output of the reduction. [Ila23]
shows that when ϕ is a No instance, the probability over the choice of O that any fixed algorithm
that makes bounded number of queries to O can output x is exponentially small in the length of
x. Then, by the union bound over all possible small circuits (or program), [Ila23] shows that no
such circuit that outputs x exists (with high probability over O). We observe that with the same
exponentially small probability, if an algorithm can output x, then we can extract from it a set
cover of size smaller than n/3. By the same union bound over all circuits, we get that we can
extract such a solution from all of the small circuits that output x.

The way the probability of a algorithm A to output x is bounded in [Ila23] by considering
the set skHit of all the indexes j ∈ [m] such that A queried O on (i, skj , c) for some i and c.
Then, let Missed = [n] \ ∪j∈skHitSj . Now, if the total size of skHit and Missed is less than n/3,
we can take skHit together with some trivial cover of Missed as our set cover, and we are done
(impotently, skHit and Missed can be computed from the algorithm). We thus left to show that
for any algorithm A, the probability that A outputs x and |skHit|+|Missed| ≥ n/3 is exponentially
small.

This follows by the proof in [Ila23]: In the proof of Proposition 37, we can just remove from
the first sum terms with |skHit|+ |Missed| < n/3. Note that by the the information revealed by
the third step in the proof, we can compute the sets skHit and Missed, and thus we can check if
|skHit|+ |Missed| < n/3 without revealing any new information.
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