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Abstract—A Bitcoin miner who owns a sufficient amount of
mining power can perform selfish mining to increase its relative
revenue. Studies have demonstrated that the time-averaged profit
of a selfish miner starts to rise once the mining difficulty level
gets adjusted in favor of the attacker. Selfish mining profitability
lies in the fact that orphan blocks are not incorporated into
the current version of Bitcoin’s difficulty adjustment mechanism
(DAM). Therefore, it is believed that considering the count of
orphan blocks in the DAM can result in complete unprofitability
for selfish mining. In this paper, we disprove this belief by
providing a formal analysis of the selfish mining time-averaged
profit. We present a precise definition of the orphan blocks that
can be incorporated into calculating the next epoch’s target
and then introduce two modified versions of DAM in which
both main-chain blocks and orphan blocks are incorporated. We
propose two versions of smart intermittent selfish mining, where
the first one dominates the normal intermittent selfish mining,
and the second one results in selfish mining profitability under
the modified DAMs. Moreover, we present the orphan exclusion
attack with the help of which the attacker can stop honest
miners from reporting the orphan blocks. Using combinatorial
tools, we analyze the profitability of selfish mining accompanied
by the orphan exclusion attack under the modified DAMs.
Our results show that even when considering orphan blocks in
the DAM, selfish mining can still be profitable. However, the
level of profitability under the modified DAMs is significantly
lower than that observed under the current version of Bitcoin
DAM, suggesting that orphan reporting can be an effective
countermeasure against a payoff-maximizing selfish miner.

Index Terms—Selfish mining, Bitcoin, Blockchain.

I. INTRODUCTION

One of the key challenges in designing blockchain networks
is developing the underlying consensus mechanism, which
ensures that all users agree on a unified ledger without
the need for a central authority [If]. Bitcoin [2] employs
a Proof-of-Work (PoW) mechanism to achieve consensus,
where miners solve cryptographic puzzles to add new blocks
to the blockchain. The first miner to solve the puzzle adds
the block and receives a cryptocurrency reward. In Bitcoin,
this puzzle requires finding a nonce that makes the block’s
hash fall below a specified difficulty target [3]. A difficulty
adjustment mechanism (DAM) recalculates this target every
2016 blocks to maintain consistent transaction throughput.
It was initially assumed that if more than half the mining
power in Bitcoin follows the honest protocol, rewards would
be distributed proportionally to miners’ computing power [4].
However, the selfish mining attack, introduced by Eyal and
Sirer in 2014, challenged this belief [S]]. They demonstrated

that an attacker with over 25% of the total mining power can
increase its relative revenue, i.e., the ratio of its reward to
the total distributed reward, by conducting selfish mining. In
selfish mining, the attacker withholds newly mined blocks and
continues mining privately. This causes honest miners to waste
their mining power on a shorter public chain. As a result,
some honest blocks become orphaned, i.e., excluded from the
canonical chain, enabling the attacker to earn more profit than
they would by mining honestly.

In 2018, Grunspan and Pérez-Marco presented the temporal
analysis of selfish mining [6]. The authors of the paper argued
that the previous selfish mining papers used the Markov
model [7] to analyze the selfish mining attack and thus ignored
the time considerations in their analysis. More precisely, they
mentioned that relative revenue is not an adequate benchmark
for assessing the attacker’s profitability. To properly analyze
profitability, one should consider the attacker’s profit per unit
of time, which we refer to as time-averaged profit. The authors
in [6] demonstrated that before a DAM, no mining strategy is
more profitable than honest mining. The selfish mining attack
must wait for the difficulty adjustment at the end of the attack’s
initial epoch to reduce the difficulty. Once the difficulty is
adjusted, the time-averaged profit of selfish mining starts to
rise. The authors in [[6] concluded that selfish mining exploits
Bitcoin’s current DAM and suggested incorporating the count
of orphan blocks in the DAM to mitigate the attack.

Selfish mining is often considered impractical because it
is believed that the attack must be continued for a couple
of epochs to become profitable. To challenge this belief,
the authors in [8] introduced the intermittent selfish mining
strategy, where the selfish miner alternates between selfish
and honest mining at the end of each epoch. They showed
that by conducting selfish mining for just one epoch and
then switching to honest mining for the next epoch, a selfish
miner can achieve a higher time-averaged profit over two
epochs compared to mining honestly in both. The concept
of intermittent selfish mining is similar to smart mining [9],
where the attacker switches between honest mining and idling.
Despite introducing the intermittent selfish mining attack, the
paper [8] lacks a formal analysis of the attack. To address
this issue, the paper [10] provided a formal analysis of
intermittent selfish mining and introduced the concept of profit
lag, defined as the earliest point after which a strategy becomes
consistently profitable. The authors in [[10]] analyzed the profit
lag for several mining strategies and demonstrated that the



profit lag of intermittent selfish mining is significantly higher
than that of consistent selfish mining. The intuition behind the
long profit lag in intermittent selfish mining is that, although
the attacker’s profit at the end of an even epoch can surpass
what they would have earned by following the honest strategy,
the attack enters another loss period when the attacker returns
to selfish mining in the subsequent odd epoch. Therefore, the
profit from intermittent selfish mining, compared to honest
mining, may fluctuate several times before eventually reaching
a point where the attack becomes definitely profitable. The
profit lag analysis of intermittent selfish mining shows that
although this attack aims to reduce the initial loss period of
selfish mining, it actually prolongs the loss period.

Knowing that selfish mining can raise the attacker’s relative
revenue, this paper takes a closer look at the time-averaged
profit of selfish mining. Although the authors in [[6] have
suggested incorporating the count of orphan blocks in DAM
to mitigate selfish mining, the precise definition of the
orphan blocks in Bitcoin needs yet to be addressed. While
it is believed that orphan inclusion in DAM can make
selfish mining non-profitable, in this paper, we challenge
this belief by introducing two attacks: smart intermittent
selfish mining and the orphan exclusion attack. These two
attacks demonstrate that selfish mining can still be profitable
even when orphan blocks are included in the DAM. Our
contributions include:

Smart intermittent selfish mining (version 1): In Sec-
tion we introduce the smart intermittent selfish mining
attack (version 1), which enjoys a lower profit lag and achieves
higher profitability compared to the standard intermittent self-
ish mining introduced in [§]]. In smart intermittent selfish
mining (version 1), instead of alternating between full epochs
of selfish mining and honest mining, the attacker divides each
epoch into two parts: one for selfish mining and the other for
honest mining. This approach allows the attacker to stabilize
mining difficulty, which our analysis shows can enhance the
attack’s profitability.

Precise definition of orphan blocks: Authors in [6] intro-
duced a new difficulty adjustment mechanism to incorporate
orphaned blocks; however, they did not present a formal defini-
tion for the orphan blocks. In Section[VI-A] we introduce uncle
blocks—orphan blocks in the same epoch—to specify the
properties of the valid orphan blocks that can be incorporated
in the difficulty adjustment mechanism. After defining the
uncle blocks, in Sections and we present two
modified versions of the difficulty adjustment mechanism (the
modified DAM) for Bitcoin in which, in addition to the main-
chain blocks, the count of uncle blocks affects the mining
difficulty of the next epoch.

Smart intermittent selfish mining (version 2): In Sec-
tion we introduce the smart intermittent selfish mining
attack (version 2) that disproves the belief that incorporating
the orphan blocks in the DAM can result in the unprofitability
of selfish mining.

Orphan exclusion attack: In Section we introduce the
orphan exclusion attack with the help of which the attacker can
prevent the honest miners from reporting the orphan blocks

in the main chain. We show that selfish mining accompanied
by the orphan exclusion attack can be profitable under the
modified DAMs.

Comparison of selfish mining countermeasures: In Sec-
tion [X| we present a comprehensive discussion of existing
selfish mining countermeasures, including the orphan reporting
method.

II. RELATED WORKS

In this section, we provide a brief overview of the liter-
ature on the profitability of selfish mining and methods for
mitigating this attack in longest-chain-based blockchains.

The concept of selfish mining was first introduced in [11],
with the first theoretical analysis provided by Eyal and
Sirer [5]. Research on selfish mining profitability generally fol-
lows two main directions: 1) analyzing the block ratio (relative
revenue) achieved through selfish mining, and 2) analyzing the
time-averaged profit of selfish mining. To analyze the block
ratio, [|12] proposed an MDP-based approach with a non-linear
optimization function to derive the optimal selfish mining
strategy, which was later refined by [13] with a linear MDP
approach. A reinforcement learning tool to examine selfish
mining in more realistic environments was introduced in [14].
The authors in [[I5]-[[17] discussed how selfish mining also
threatens longest-chain-based Proof-of-Stake (PoS) protocols,
where factors such as proposer predictability and the nothing-
at-stake phenomenon make the attack even more destructive. A
deep Q-learning tool for analyzing selfish mining in PoS con-
texts was proposed in [[17]. Several studies have analyzed the
time-averaged profitability of selfish mining. [6] showed that
although selfish mining increases relative revenue, it does not
become profitable before difficulty adjustments. [8] introduced
intermittent selfish mining to reduce the initial loss period
associated with selfish mining. [[10] introduced the concept of
profit lag, the time it takes for strategies to become consistently
profitable, and demonstrated that intermittent selfish mining
has a longer profit lag compared to consistent selfish mining.

Various countermeasures have been proposed to mitigate
selfish mining. One group of these countermeasures relies
on time metrics to detect withheld blocks. [[18]] introduced
the freshness-preferred scheme, where blocks use unforgeable
timestamps to detect withheld blocks, allowing miners to
choose the freshest block during fork races. Transaction cre-
ation times were employed in [[19]], and expected confirmation
heights of transactions were proposed in [20] to identify with-
held blocks. Zero-blocks, where miners create dummy blocks
if no block is mined within a given time interval, were intro-
duced in [21] and expanded with alarming blocks and block
interval times in [22]. [4]] proposed a fork choice rule where
chain weight is determined by in-time blocks and uncles,
forcing selfish miners to either publish quickly or risk losing
the fork race. Other countermeasures, such as Fruitchain [23]],
redefine reward distribution. In Fruitchain, miners are re-
warded for fruits, bundles of transactions that point to earlier
blocks and are less vulnerable to being orphaned by selfish
miners. Another approach to limit selfish mining profitability
focuses on modifying the difficulty adjustment mechanism.



[24] introduced a dynamic DAM that increases difficulty when
selfish mining is detected. [25] proposed a DAM sensitive to
both the previous difficulty level and the estimation of current
active mining power, slowing difficulty reductions caused by
selfish mining. In [6], the authors suggested incorporating the
number of orphaned blocks into the DAM to counter selfish
mining.

For further details on selfish mining defenses, readers are
referred to [26]—[28].

III. PRELIMINARIES

In this section, we first present our system model. Then,
we define the concepts of relative revenue and time-averaged
profit. Finally, we discuss the effect of the difficulty adjustment
mechanism on selfish mining profitability.

A. System model and definitions

In this paper, we use the system model introduced in [29].

We assume the system comprises a set of honest miners
denoted by H and an adversarial miner denoted by A. We
denote by ay and a4 the total honest mining power share
and the adversarial mining power share, respectively, where
ag + ay = 1. In our model, time is divided into rounds
denoted by r. In each round, a miner can calculate multiple
mining (hash) queries, the number of which is proportional
to his mining power. We assume our system model is syn-
chronous, i.e., the block published by one of the miners in
round r will be delivered to all the other miners at the end of
round 7.
Communication capability: We denote by 4 the communi-
cation capability of attacker A. This means, in the case of a
block race, where two blocks are published simultaneously by
attacker A and an honest miner, the fraction of total honest
miners that receive the block proposed by the attacker first is
equal to 4. Honest miners who receive the attacker’s block
first will mine on top of it.

The honest miners follow the honest strategy 7*, which is

explained as follows:
Honest strategy: At the start of a new round, a miner chooses
to mine on top of the longest chain available in his view. If the
miner manages to mine a new block, he immediately publishes
the block to all the other miners.

Attacker A may, however, deviate from the honest strategy
and mine in a selfish way. In recent years, different selfish
mining strategies have been presented such as Eyal and
Sirer’s selfish mining strategy 75! introduced in [3]], the
optimal selfish mining strategy 75" introduced in [12], and
the intermittent selfish mining strategy 7" introduced in [8].
Strategies 5" and 7°" are specifically designed to increase
a miner’s relative revenue, while strategy 75" aims to increase
a miner’s time-averaged profit. A summary of selfish mining
strategies 75" and 79 is presented in Appendix |Al Note
that when referring to the selfish mining attack in a general
context, we represent it using the notation 75",

M

Definition 1 (Relative revenue). The relative revenue of at-
tacker A following strategy w is defined as follows:

N’I”
RelRevy(r;m) = Z—AN’"’ and
Me{AH} M (D

RelRev(m) = lim RelRevy(r;m),
r—00

where N}, for M € {A, "} denotes the number of blocks
added to the main chain by miner M during interval [1,r].

We model block mining as a Poisson process, where the
block interval time (the time between two consecutive mined
blocks) follows an exponential distribution with rate parameter
. Note % represents the average number of rounds it takes
for the whole system to mine a new block. We denote by
RA(r) and C4(r) the revenue and the mining cost of attacker
A in round r, respectively. As demonstrated in [29], if all the
miners including attacker A follow the honest strategy, the
average per-round revenue of attacker A can be obtained as
follows:

E[RA(r)] = a4 AK | 2

where K denotes the value of the mining reward per block.
As outlined in [29]], we assume that if attacker .4 mines with
his whole mining power, his average mining cost per round
can be obtained as follows:

E[Ca(r)] =aa-ca , 3)

where c4 denotes the average normalized mining cost of
miner A per round. Note that to compare the profitability of a
strategy 7 with honest mining, we can disregard mining costs
if, in strategy 7, the attacker utilizes its entire mining power
with no idle portion. In such cases, the costs are identical
for both honest mining and strategy 7w, making the results
independent of the cost formula assumption.

The profitability factor of attacker A is denoted by w4 and
defined as follows:

E[R4(r)] MK
Wy == — .
E[Ca(r)]  ca
The profitability factor w 4 represents the amount of return per

each unit of money invested by attacker A provided that all
the miners follow the honest strategy.

“4)

Definition 2 (Time-averaged profit). The time-averaged profit
(per-round profit) of attacker A following strategy 7 is defined
as follows:

Profita(r;m) = Y (RA(:/) _ CA(T/)),

profita(m) = lim Profit,(r;m) .

700

and

(&)

If assuming that time is divided into a set of round intervals
denoted by cycle, according to the renewal reward process
theorem, the time-averaged profit defined in Definition [2] can
be obtained as follows:

E[R4(cycle)] —E[C4(cycle)]
Elt(cycle)]

Profit(m) = , (6)



where t(cycle) represents the duration of cycle, and
Ra(cycle) and Cy(cycle) denote the revenue and the
mining cost of attacker A within the cycle, respectively.

IV. BACKGROUND ON SELFISH MINING PROFITABILITY

a) Unprofitability of selfish mining before a difficulty
adjustment mechanism: In Bitcoin, an interval of rounds in
which a set of L = 2016 consecutive blocks is added to the
main chain is called an epoch. At the end of each epoch, there
is a difficulty adjustment mechanism (DAM), which calculates
the difficulty target of the upcoming epoch based on the hash
power estimation of the previous epoch. Assume attacker .4
starts the selfish mining attack at the beginning of epoch;.
As it is discussed in [6]] and [8]], the time-averaged profit of at-
tacker .4 under selfish mining cannot exceed his time-averaged
profit under the honest strategy during epoch;, i.e., before
the next DAM. To illustrate this fact, we need to compare
the attacker’s profitability when following the honest strategy
versus the selfish strategy. Note that the mining difficulty of
epoch; is specified before the start of epoch;, and thus, the
attacker’s strategy during epoch; cannot change the epoch’s
mining difficulty. If attacker A follows the honest strategy
in epoch;, he can mine a new block every ﬁ rounds on
average, and if ignoring the natural orphan occurrence, all
of his blocks will be added to the main chain. If attacker
A performs the selfish mining attack during epoch;, since
the mining difficulty is the same as the former scenario, his
average mining rate is still equal to ﬁ; however, in this
scenario, some of the attacker’s blocks may get orphaned and
remain out of the main chain due to the block races caused
by the selfish mining attack. Therefore, before a DAM, the
time-averaged profit of selfish mining cannot exceed the time-
averaged profit of honest mining. Note that selfish mining can
potentially increase the attacker’s relative revenue in epoch;.
However, despite this increase in relative revenue, the attacker
cannot gain a higher time-averaged profit during the first epoch
of the attack.

b) The effect of DAM on selfish mining profitability: In
Bitcoin, DAM is responsible for adjusting the block generation
rate to ensure that, on average, it takes 10 minutes for the
system to mine a new block. Therefore, the average epoch
duration is equal to 2 weeks. Let epoch; and epoch, denote
two consecutive epochs. If attacker A starts selfish mining in
epochy, some of the both honest and adversarial blocks will
get orphaned in epoch;. Consequently, the duration in which
L blocks are added to the main chain will be extended. This
implies that the duration of epoch; will increase, exceeding
the standard two-week period. At the end of epoch;, there
is a DAM that calculates the mining difficulty of epoch,
based on the hash power estimation of epoch;. Since the
current version of Bitcoin DAM does not consider orphan
blocks when estimating the active hash power of the previous
epoch, the increase in the length of epoch; will result in a
decrease in the mining difficulty of epoch,. Therefore, during
epoch,, attacker 4 can mine a new block, on average, within
a shorter period than ﬁ rounds. This shows that starting
from epoch,, the attacker’s time-averaged profit begins to
increase.

c) Selfish mining profitability after the adjustment of
mining difficulty: Assume attacker A has started selfish mining
in epoch;. Therefore, the mining difficulty of the next epoch,
i.e., epoch,, is adjusted in favor of the attacker. The time-
averaged profit of attacker A in epoch, under the selfish
mining strategy can be obtained as follows:

Profit4(7®) = AK -RelRev (™) —aqca . (7)

Note that the time-averaged profit of attacker A under the
honest strategy is equal to:

ProfitA(WH) =as(AK —cy) . (8)

This shows that if the attacker’s selfish mining relative rev-
enue is greater than his honest mining relative revenue, i.e.,
RelRev 4 (m™) > a4, the selfish mining strategy dominates
the honest strategy after the adjustment of mining difficulty. It
has been shown that attacker A with a normal communication
capability v4 = 0.5 needs to own more than 25% of the total
mining power to achieve Re1Rev 4(m%") > a4 [3].

Knowing that selfish mining profit can surpass honest min-
ing profit, a question arises as to why miners are unwilling
to perform the selfish mining attack. One of the main reasons
that answers this question is the belief that an attacker should
perform selfish mining for a relatively long time to gain
profit. In other words, selfish mining always begins with an
initial period of loss. Once the attacker starts selfish mining in
epochy, since some of the attacker’s blocks get orphaned,
his gained profit in epoch; will be lower than his profit
under honest mining. Therefore, to consider selfish mining
as a profitable strategy, the gained profit by the attacker in
epoch, (or even later epochs) should compensate for the loss
the attacker has faced in epoch;. However, if the attacker
continues selfish mining for a considerable number of epochs,
honest miners may decide to stop mining to avoid financial
losses.

d) Intermittent selfish mining and profit lag: The authors
in [8]] introduced the intermittent selfish mining (ISM) attack to
reduce the initial loss period of selfish mining. In ISM strategy,
the attacker alternates between selfish mining and honest
mining at every DAM. In other words, for two consecutive
epochs denoted by epoch; and epochs, the attacker applies
the selfish mining attack in epoch; and returns to honest
mining in epoch,. As already discussed, by selfish mining in
epochy, the attacker cannot increase his time-averaged profit
immediately in epochy; however, the selfish mining attack
in epoch; can lead to a decrease in the mining difficulty
of epoch,. To take full advantage of the decreased mining
difficulty in epoch,, the authors in [8] suggested that, instead
of continuing selfish mining, the attacker should mine honestly
in epochy to collect all the possible blocks and maximize
its rewards. The authors in [8] concluded that intermittent
selfish mining can shorten the attack’s loss period. However,
the authors in [10] revisited this conclusion, emphasizing
that the profit achieved by following a mining strategy can
fluctuate multiple times before definitively surpassing honest
mining profitability. They argued that while ISM profit at
the end of the second epoch may exceed that of honest



mining, once the third epoch begins and the attacker returns to
selfish mining, the profitability of the attack again falls below
what could have been achieved through honest mining over
the previous three epochs. To better analyze the initial loss
period of a mining strategy, the authors in [[10] introduced
the concept of profit lag. The profit lag of a mining strategy
7w is defined as the smallest time point 7, where for any
t > 7, the following property holds for the attacker’s time-
averaged profit: E[profit4(t;m)] > E[Profita(t;7?)].
Intuitively, the profit lag is the smallest time since the start of
the attack after which the attacker’s time-averaged profit con-
sistently surpasses that of honest mining. The authors in [[10]
demonstrated that the profit lag of intermittent selfish mining
is significantly longer than that of consistent selfish mining,
implying that intermittent selfish mining cannot effectively
reduce the initial loss period of selfish mining.

V. INTERMITTENT SELFISH MINING

Despite introducing intermittent selfish mining (ISM) in [{]],
the authors did not provide a formal analysis. The authors
in [[10] formalized the analysis of ISM based on the selfish
mining strategy from [5]. We extend this analysis in Sec-
tion by considering the optimal selfish mining strategy
introduced in [12]]. Besides, in Section we introduce the
smart intermittent selfish mining attack.

A. Normal intermittent selfish mining

We denote by 715" the ISM strategy. In the ISM strategy,
the attacker performs selfish mining in odd epochs, i.e.,
{epoch;,epochs,---}, and applies honest mining in even
epochs, i.e., {epochy, epochy,---}. Using equation [6] the
attacker’s time-averaged profit under the intermittent selfish
mining can be obtained as follows:

Profit (™) =
E[R.A(epOChodd)] - ]E[C.A(epOChodd)}
E[t(epOChodd)] + E[t(epOCheven)] (9)

E[RA(ePOCheven)] - E[CA(ePOCheven)]
]E[t(epOChodd)] + E[t(epOCheven)]

For simplicity, we refrain from using the expected value
notation, denoted as E[-], throughout the rest of the paper.
The average revenue gained by the attacker in epoch 4y and

his mining cost in epoch_yq can be obtained as follows:
Rs(epochygq) = RelRev(r™) - LK

(10)

Ca(epoch,qg) = asca - t(epochyyy) -

Similarly, the average revenue gained by the attacker in
epochg,., and his mining cost in epoch,,., can be obtained

as follows:
R.A(epC)Cheven) =y - LK s
C.A(epOCheven) = QACA - t(epOCheven) .

(1)

To obtain the epoch duration, we first define the concepts of
active and effective mining power.

Definition 3 (Active and effective mining power). The nor-
malized active mining power of an epoch is defined as the
ratio of mining power dedicated to mining both orphan and
main-chain blocks during that epoch to the total available
mining power. The normalized effective mining power of an
epoch is defined as the ratio of mining power dedicated solely
to mining main-chain blocks during that epoch to the total
available mining power.

We denote by MESHet and MISin chein the normalized
active mining power in epoch gy and the normalized effec-
tive mining power extending the main chain in epoch gy,
respectively. As there is no idle power in epoch gy, We
have M52t = 1. The effective mining power Mgin-chain
represents the ratio of the number of main-chain blocks
in epoch,yq to the total number of blocks mined during
epoch_yy. Due to the selfish mining attack in epoch gy
and orphan occurrence, some part of the mining power in
epoch,qq gets wasted and does not contribute to extending
the main chain. This implies that MZ5i77°P@" g less than
1. We define MZ3*"chein to be the normalized effective
mining power under selfish mining. We have MIgin-chain —
Mgzin—chain = qn - Appendix the methods for calculat-
ing MI2in-ehain ypder both selfish mining strategies 75"
and 7°%" are explained. Similar terms can be defined for
epochg,e,. Since all the miners follow the honest strategy in
epoChayen, We have MIein-chain — prtotal — 1 According
to the design of the current version of Bitcoin’s DAM, the
duration of epoch_gyq can be calculated as follows:

main-chain
even _ L
main-chain
AMES

Mgain—chain -
dd (12)

where t19¢2L represents the ideal epoch duration and is equal
to % Note that under the current version of Bitcoin DAM,
the epoch duration t(epoch,yq) is inversely related to the
epoch’s main-chain effective power MTsinchain The greater
the amount of mining power working to extend the main chain
within an epoch, the shorter the time it takes for the epoch
to complete. However, the epoch duration t(epoch,gyy) is
directly related to the previous epoch’s main-chain effective
power MIain-chain The reason is that a lower amount of
main-chain effective mining power in the previous epoch
results in a decrease in the mining difficulty and consequently
the duration of the current epoch. Similarly, the duration of
epoch.,., can be calculated as follows:

Mgngénfchaln B LMénD?lnfchaln

Afmainfchain
even

t(epocheaq) = praeat.

_ tideal .

t(ePOCheven) *
(13)
Therefore, the attacker’s time-averaged profit under intermit-
tent selfish mining can be obtained as follows:

AK (RelRev(wSM) + aA>

1 main-chain
+ Mg

Mmainfchaln
SM

Profit4(n"") =

—ACHA -
(14)

Mining power threshold values: We aim to address the
question of how much mining power is required to make



the intermittent selfish mining strategy more profitable than
the honest strategy. By fixing the attacker’s communication
capability v4, we want to calculate the minimum amount
of the attacker’s mining power that satisfies the following
inequality:

Profit4(7"*") > Profita(n") . (15)

Using equations [§] and [T4] we can obtain that to achieve the
inequality above, the following inequality should hold:

RelRev(m™") > ( + MEainmehain _ 1yq .

(16)
As the coefficient of a4 is greater than 1 in the inequality
above, the minimum amount of mining power that makes
ISM profitable is more than that in normal selfish mining. For
instance, for a normal communication capability y4 = 0.5,
the minimum amount of mining power share that makes ISM
profitable is equal to 0.2773.

Mmainfchain
SM

B. Smart intermittent selfish mining (version 1)

In intermittent selfish mining, the attacker performs the
attack every other epoch. This shows that the ratio of the
selfish mining period length (measured by the number of
blocks added to the main chain) to the main-chain length
is equal to % In the smart intermittent selfish mining attack
(version 1) denoted by SISMI, the attacker gains a higher
amount of profit while his ratio of selfish mining period length
to the main-chain length is still equal to % Assume epoch,yqg
and epoch,,., are two consecutive epochs in which 2L
blocks are added to the main chain. In SISM1, the attacker
performs selfish mining for (1 —»)L blocks in epoch gy and
for nL blocks in epochg,.,, where 0 < n < 0.5. For the
remaining blocks in these two epochs, the attacker follows the
honest mining strategy. It is clear that in SISM1, the ratio of
selfish mining period length to the main-chain length is equal
to % Note that if n = 0, SISM1 is the same as the normal
intermittent selfish mining attack. The duration of epoch gy

and epoch,,., in SISM1 can be calculated as follows:
1-n
. Mmai:rchaln
t(epochodd) — tldeal sM 7 ,
1—n+ Mo
) (17)
- 1 =0+ e
t(QPOCheven) =t 15_Mn

77 + A{g\ﬁin*chaln

Therefore, the attacker’s time-averaged profit under SISM1 is
equal to:

Profit 4(m°M)

MK (Re 1Rev(7) + 04,4)
- —agch -

i—n
N+ S rmain-chain 1=n+ s chan
Mgy Mgy

(18)

1—n
main-chain
IVISM

.
1=n+ MEgin-chain n+

The maximum amount of the attacker’s time-averaged profit
under SISM1 occurs when 7 = 0.5:

Profit 4 (m*™™|n=0.5) =
MK (Re 1Rev(m") + aA>
2

19)

—ACA -

—— Honest mining
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—— Intermittent selfish mining
Smart Intermittent selfish mining (version 1)
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Fig. 1. Time-averaged profit under the Bitcoin’s DAM.

Comparing equations [14] and [I9] it is clear that the optimal
SISM1 dominates the normal intermittent selfish mining strat-
egy, ie., Profit 4(75*™|n = 0.5) > Profit (7).
One can consider the optimal SISM1 as the normal intermittent
selfish mining with the difference that the DAM is exactly
placed in the middle of the selfish mining period. Therefore,
the optimal SISM1 is equivalent to performing selfish mining
for half of each epoch. This shows that to increase his time-
averaged profit, the attacker should keep the mining difficulty
level constant and avoid inducing fluctuations. Note that the
minimum amount of mining power that makes the optimal
SISM1 profitable is the same as that in normal selfish mining.
This implies that for a normal communication capability
v4 = 0.5, the minimum amount of mining power share that
makes SISM1 profitable is equal to 0.25.

The normalized time-averaged profit, which is equal to
%}{‘(”), is depicted in Figure for multiple strategies.
In this figure, the profitability factor w4 is set to 2, and
the optimal selfish mining strategy 7% is used to calculate
RelRev(m™") and MZ3*" P2i"  An interesting observation
regarding Figure [I] is that the time-averaged profit of in-
termittent selfish mining does not necessarily increase with
the amount of mining power. The reason is that 7% is
specifically designed to maximize the relative revenue of
selfish mining. However, Profit 4(7**") not only depends
on Re1Rev(m"), but it also depends on MZg+" "2 4 point
that is not considered in the design of 7. This shows that
the strategy optimizing the time-averaged profit of intermittent
selfish mining differs from the strategy that maximizes selfish
mining relative revenue.

We define the revenue advantage of strategy 7 as the differ-
ence between the revenues achieved by following strategy 7
and the honest strategy, measured from the start of employing
strategy 7. To compare the profit lag [10] of different selfish
mining strategies, Figures [2]and [3]depict the revenue advantage
of mining strategies as a function of time (in 2-week units)
since the start of the attack, for an adversary with a mining
share of 0.27 and %, respectively, both assuming a normal
communication capability of 0.5. In Figures 2] and 3] the
total epoch reward is normalized to 1. It is also assumed
that in SISM1, the adversary dedicates the second half of
each epoch to conducting the selfish mining attack. In [[10],
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it is shown that the profit lag of consistent selfish mining
is shorter than that of intermittent selfish mining. As seen
in Figures 2| and [3] the SISM1 strategy achieves a shorter
profit lag, i.e., the initial period of loss, compared to both
consistent and intermittent selfish mining strategies. Note that
when the adversary’s mining share is 0.27, the intermittent
selfish mining attack is unprofitable, and its revenue advantage
remains consistently below zero.

VI. SELFISH MINING UNDER THE MODIFIED DAM

In this section, we introduce two versions of a modified Bit-
coin DAM, incorporating both main-chain and orphan blocks
in the difficulty calculation. We define the orphan blocks
eligible for consideration in the modified DAMs and evaluate
the impact of modified DAMs on selfish mining profitability.

A. The uncle blocks

The current Bitcoin DAM is presented in Appendix [B} To
present the modified DAMs, we first need to define the uncle
blocks. In the modified DAMs, we aim to consider the orphan
blocks in the hash rate estimation. The uncles are the orphan
blocks that are mined during the same epoch.

Definition 4 (Uncle). A block B is considered an uncle of
another block Bs if all of the following conditions are met:
(1) they are in the same epoch, sharing the same difficulty; (2)
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Fig. 3. Profit lag under the Bitcoin’s DAM. Adversarial mining power share
and communication capability are % and 0.5, respectively.

height(Bz2) > height(B1); (3) The chains containing blocks
By and Bs share a common subchain, which includes at least
the genesis block; and (4) Bs is the first block in its chain to
refer to Bj.

Condition (1) allows uncles to contribute to a more accurate
hash rate estimation and prevents adversarial behavior such
as revealing old orphan blocks to manipulate the mining
difficulty. A violation of (2) contradicts the longest-chain rule.
Condition (3) is to ensure that two blockchain instances with
different genesis blocks do not accidentally recognize each
other’s blocks as uncles. Besides, B;’s parent is needed to
verify the validity of B;. Condition (4) is to prevent honest
miners from reporting the same uncle multiple times.

Incorporating uncles: Miners are requested to refer to
uncles—orphaned blocks in the same epoch—by embedding
their hashes in the blocks. Embedding uncles contributes to
a more accurate estimation of the network hash rate, thus
contributing to the system’s selfish mining resistance. Even
a single honest block can report all previously unreported
uncles in the same epoch. Note that our uncle’s definition
differs from that of Ethereum’s deprecated PoW version [30]]
in that our uncle’s validity does not consider how far away
the uncle and the nephew’s first common ancestor is. The
reward distribution regarding uncles is also different from
that of Ethereum. Our design issues neither uncle rewards to
compensate uncle miners, nor nephew rewards to incentivize
miners to embed uncles. This is because uncle and nephew
rewards raise the selfish mining profit and lower the mining
power threshold to perform the attack [31]], [32].

In the following, two versions of the modified DAM are
introduced. These two versions differ from each other in their
definition of the epoch, the period at the end of which the
DAM is applied. Note that our modified DAMs are nearly the
same as the DAM introduced in [6], with the difference that
our modified DAMs only incorporate the orphan blocks that
satisfy Definition ] In the remainder of this paper, we use the
terms uncle and orphan blocks interchangeably.

B. Modified DAM with a fixed total block count per epoch

Let L denote the length of each epoch in the current version
of Bitcoin DAM, i.e., L = 2016. In this version of the modified
DAM, denoted by DAMTOdified, an epoch is defined as an
interval of rounds in which a set of L blocks (comprising both
main-chain and orphan blocks) are mined and subsequently
reported in the main chain. Let CNT}="7"1"  CNT; P27,
and CNTEOtal denote the number of main-chain blocks, the
number of orphan blocks embedded in the main chain, and
the total number of both main-chain and reported orphan
blocks mined during epoch ¢, respectively. Note that if
assuming that all the orphan blocks are reported, the ratio
CNTrinainfchain/(CNTiorphan + CNTrinainfchain) represents
the epoch’s effective main-chain power, i.e., M™ain-chain
According to the definition of epoch in DAM]°%* % we
have CNT;°“*" = L and CNT}*™ "*™™ < [_ This indicates
that in DAM[°**°? the total number of blocks mined
per epoch is fixed; however, the total amount of distributed
reward per epoch can vary across different epochs.



Inputs and outputs: Similar to the Bitcoin DAM, our modi-
fied DAM is executed at the end of every epoch. It takes two
inputs: the last epoch’s target denoted by TGT,; and the last
epoch’s duration—the timestamp difference between epoch i
and i — 1’s last blocks—denoted by ¢;. Note that TGT; is
decided by the last DAM iteration, and ¢; is measured after
the epoch ends. The algorithm outputs the next epoch’s target
denoted by TGT;11.

To adjust the target TGT based on the network hash rate, the
modified DAM}°*****? is triggered at the end of each epoch
as follows:

TGT1 . %, t; < % * tideal
TGTZ‘+1 = TG!TZ - T, t; > T - tideal s 20)
TGT, - L, otherwise

Lideal ’
where ¢ is the epoch number, and 7 is a dampening filter to
prevent rapid changes of TGT. Similar to the Bitcoin DAM,
we assume t+9°21 for DAM[°** ¢ is two weeks.

C. Modified DAM with a fixed main-chain block count per
epoch

We use the same notations as those introduced in the
DAM[°?**°? explanation. In this version of the modified
DAM, denoted by DAMSOdified, an epoch is defined as an
interval of rounds in which a set of L consecutive blocks
is added to the main chain. According to the definition of
epoch in DAMS® %9 we have CNT;*™ "*'" — [ and
CNTEOtal > L. This indicates that in DAMQOdified, the total
amount of distributed reward per epoch is fixed; however,
the total number of blocks mined per epoch may vary across
different epochs.

Inputs and outputs: The modified DAM takes three inputs:
the last epoch’s target denoted by TGT,, the last epoch’s
duration—the timestamp difference between epoch ¢ and i—1’s
last blocks—denoted by ?;, and the last epoch’s orphaned
block count—the number of uncles embedded in epoch i’s
main chain—denoted by CNT{"™""*". Among these inputs,
TGT, is decided by the last DAM iteration, while ¢; and
CNT{™"*" are measured after the epoch ends.

To adjust the target TGT based on the network hash rate, the
modified DAMS°*****? is triggered at the end of each epoch
as follows:

TGT7%, t¢<%'T
TGT; 1 =< TGT;-7, t>7-T 21
TGT, - %, otherwise

where t19°3! is two weeks, and period T is defined as follows:

B CNT;)rphan =+ CNT?ain—chain
- CNT?ain—chain

In both versions of the modified DAM, in addition to the
main-chain blocks, the count of orphan blocks is considered
in the calculation of the mining target. In the remainder of the
paper, whenever we want to refer to a DAM that incorporates
the orphan blocks, we will use the term “the modified DAM”
without explicitly indicating its exact version.

. tideal

T

(22)

D. Normal selfish mining under the modified DAM

In this section, we analyze the normal selfish mining prof-
itability under the modified DAM. By normal selfish mining
attack, we mean that the attacker follows the selfish mining
strategy continuously for all the epochs.

1) Analysis under DAME°?*"7°9: We first obtain the av-
erage revenue gained by the attacker in each epoch and his
mining cost. Note that due to the selfish mining attack and
the definition of epoch in DAM}°*****? the average number
of main-chain blocks in each epoch is equal to MZa+n-chaing,
As a result, the total amount of distributed reward per epoch

is equal to Mggtrchain LK,
Ra(epoch;) = RelRev(r™) - Mig" " " LK | 23)
Cy(epoch) = agcy - t(epoch;) .

Then, we calculate the epoch duration. Note that Mot =
MFetal = 1. According to the design of DAM]°“* "™ the

duration of each epoch can be calculated as follows.
ML
Mftotal = 2\ 24

Therefore, the time-averaged profit of normal selfish mining
under DAM[°?* ¢ is equal to:

Profit (7™, DAMTOdified) =

AK (RelRev(WSM)MgﬁiWChai“) —aacy .

— tideal 3

t(epoch;)

(25)

2) Analysis under DAMG°**¥*°%: According to the defi-
nition of epoch in DAM;‘Odlfled, the number of main-chain
blocks and the total amount of distributed reward in each epoch
are equal to L and LK, respectively. Therefore, the average
revenue gained by the attacker in each epoch and his mining
cost can be obtained as follows:

Ra(epoch;) = RelRev(r™) - LK , 26)
Ca(epoch) = a4cy - t(epochy) .
To calculate the epoch duration, one should consider that
Mtjc_o‘lcal = 1 and thain—chain — Mlsnl\‘?lin_(:hain' ACCOI‘dil’lg
to the design of DAM5°*****?  the duration of each epoch can
be calculated as follows.
total L

i1 = .27

main—-chain main—-chain
M: AME:

Therefore, th§: ;ime—averaged profit of normal selfish mining
under DAM5°? ¢ is equal to:

Profit (7™, DAMgOdified) =

AK (RelRev(wSM)Mgﬁin'Chai“) —aucy -

t(epoch;) = tt4eat.

(28)

3) Profitability of normal selfish mining under the modified
DAM: As can be seen in equations [25] and 28] the time-
averaged profit of normal selfish mining under both versions
of the modified DAM is the same. In this section, we show
that the time-averaged profit of normal selfish mining under
the modified DAM is less than the honest strategy time-
averaged profit, which can be calculated as Profit 4(7") =
AKay — agcy. To prove this claim, we need to show that:

RelRev(wSM)Mé“Qi"*cmin <ay . 29)



Let Mg; 2 "' and MZ3%;°"*™" denote the normalized
adversarial and honest mining power share extending the main
chain during the selfish mining attack, respectively. Therefore,
the total power share extending the main chain during the at-
tack iS equal to Ménﬁinfchain — M;nﬁjﬁfchain _i_Ménl\ii’;—rzfchain_
The attacker’s relative revenue under selfish mining can be
obtained as follows:

A [main—chain

RelRev(’n‘SM) = Mmainfchain Mmainfchain (30)
sM, A + SM,H
Therefore,
RelReV(ﬂ_SM>MSm§infchain — stnﬁi:fchain . (31)

Note that due to the selfish mining attack, some of the adver-
sarial blocks may get orphaned, and as a result M/J2*p~cPain <
a 4. This proves the correctness of equation [29]

VII. SMART INTERMITTENT SELFISH MINING (VERSION 2)

In the previous section, we showed that the normal selfish
mining attack is unprofitable under the modified DAM. In
this section, we present a new version of the selfish mining
attack called smart intermittent selfish mining (version 2),
which can be profitable even under the modified version of
DAM. This attack can be considered as the combination of
smart mining [9] and ISM. In the smart intermittent selfish
mining (version 2) denoted by SISM2, during epoch, ., €
{epochy, epochs,, - - - }, attacker A divides his mining power
share a4 into two parts: the idle mining power and the
honest mining power. We assume the attacker’s idle mining
power share and honest mining power share are equal to
eay and (1 — e)aq, where 0 < e < 1. However, during
epochgyq € {epoch;, epochs, -}, attacker .4 uses all his
mining power share to perform selfish mining. Our goal is to
show that SISM2 can be more profitable than honest mining
under the modified DAM. Note that for the analysis of this
section, we assume that all the orphan blocks are reported,
and thus, incorporated in the modified DAM.

A. Analysis under DAM9 724

The average revenue gained by the attacker in epoch, e,
and his mining cost in epoch,,., can be obtained as follows:

(1—e)ay
R h =—>.LK
A(epoc even) 1—eas ) (32)
C.A(epOCheven) = (1 - 6)Q.AC.A : t(epOCheven) .

Note that due to the selfish mining in epoch,yy and the
definition of epoch in DAMTOdified, the number of main-
chain blocks in epoch gy is equal to MI2inchaing, Ag g
result, the total amount of distributed reward in epoch gy i8S
equal to MIgin-chain[ K The average revenue gained by the
attacker in epoch_gyy and his mining cost in epoch,ygq can
be obtained as follows.

Ra(epoch,yy) = RelRev(n™") - ML " " " LK

" (33)
Ca(epochyyy) = aaca - t(epochyyy) -

Note that ME35% =1 and M52t =1 — e 4. According to

even

the design of DAM{°?**? " the duration of epoch,,., and
epoch,qq can be calculated as follows:
) Mtotal L
t h — tldeal odd — 34
and
) Mtotal L(l _ COZA)
t(epoch,yg) = tH9eat . —=¥en_ — (35)
MESE= A
Therefore, the time-averaged profit of SISM2 under
DAM[°% 224 ig equal to:
ProfitA(ﬂ'SISMz DAMmodified) _
main-chain (1-e)a
MK (RelRev( SM)M hain 4 A= eaA"‘)
1—eaa+ =5 eaA (36)
eqCA 71—;1/4 e
1 — QACA .
1—eay+ T—cax

B. Analysis under DAM°* 719

The average revenue gained by the attacker in epoch, .,
and his mining cost in epoch,,., can be obtained as follows:

(1—e)aa
A(epoc even) 1—cay s 37)
C-A(ePOCheven) = (1 - B)OZACA ' t(ePOCheven) .
According to the definition of epoch in DAMj°* ¢

the number of main-chain blocks and the total amount of
distributed reward in epoch,yy are equal to L and LK,
respectively. The average revenue gained by the attacker in
epoch, gy and his mining cost in epoch_ gy can be obtained
as follows.

Ra(epoch,yy) = RelRev (™) - LK | %)
Cy(epochyyy) = auca - t(epochyyy) -
Note that Mgggal =1, Mmain-chain _ Mmain—chain and

MEoral = prain-chain — 1 — eqy 4. According to the design
of DAMmOdlflEd the duration of epochg,., and epoch yq

can be calculated as follows:

) Mtotal L
t h — tldeal odd —
(epOC even) Mem\‘?elr? chain /\(1 _ E(JZA) )
(39
and
) total L(l . 60[_,4)
ideal even
t(epOChodd) =t ’ Méngén—chain = )\Ménﬁinfchain
(40)
Therefore, the time-averaged profit of SISM2 under

DAM°4H£1e4 i equal to:
Profit 4(mS5"2 DAMSCY ety =

AK(RelRev( M) + %) +eaaca Ty

(41)

l—eay 1
Mmal"] Chaln + 1— eaq

—aaca -



C. Profitability of SISM2 under the modified DAM

In this section, we show that SISM2 can be more profitable
than honest mining even under the modified DAM (when the
orphan blocks are reported). We first define the profitability
advantage of strategy m, which is denoted by P*%(7), as
follows:

_ Profitg(m) —Profit4(n")
B AK

P24 (7r) > 0 indicates that strategy 7 is more profitable than
honest mining. Depending on the profitability factor w4, the
mining power share o 4, the communication capability v 4, and
the version of the modified DAM, the amount of attacker’s
idle mining power share in epoch.,., that maximizes the
SISM2 time-averaged profit may vary. The maximum amount
of profitability advantage of SISM2 under DAM}°***¢ anqd
under DAM3°?**? are depicted in Figure @ and Figure [3]
respectively. These figures represent the profitability advantage
as a function of a4 and wy for two distinct values of
communication capability. Note that to draw these figures, we
have used the optimal selfish mining strategy [12] to calculate
the attacker’s relative revenue and main-chain effective power
in epoch_gy. As can be seen, at some points in the maps
depicted in Figure 4] and Figure[5] pa<v(751542) > 0, showing
that selfish mining can be profitable even when the orphan
blocks are incorporated into the DAM.

Intuition behind SISM2 profitability: SISM2 profitability
lies in the fact that the idle mining power in epoch.ye,
results in a decrease in the mining difficulty of epoch gy,.
As a result, the attacker can mine a new block in a shorter
period of time during epoch_yy, Which leads to collecting a
greater reward. If the extra collected reward in epoch gy can
compensate for the loss of being idle in epoch,,.,, the attack
becomes profitable. For the attackers whose profitability factor
w4 is relatively low, being idle does not cause a huge profit
loss, and consequently, SISM2 can be more profitable than
honest mining. At the time of writing on February 26, 2024,
the average Bitcoin profitability factor is equal to 1.071 [33]].
In Appendix |C| we show that under DAM{°***¢?  SISM2
cannot be more profitable than smart honest mining [9], in
which the miner switches between honest mining and being
idle. However, under DAM;“Odified, SISM?2 can even be more
profitable than smart honest mining.

padv(r) : (42)
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VIII. ORPHAN EXCLUSION ATTACK

As already shown in the previous section, an intelligently
executed selfish mining attack can be more profitable than
honest mining even if orphan blocks are considered in the
DAM. In the analysis of the previous section, we have as-
sumed that all the orphan blocks get reported by the honest
miners and subsequently incorporated in the modified DAM.
However, the attacker can impose an attack, we refer to as
the orphan exclusion attack (OEA), that stops honest miners
from reporting some of the orphan blocks. By performing the
orphan exclusion attack, a selfish miner can increase his time-
averaged profit under the modified DAM. In this section, we
explain the orphan exclusion attack and try to analyze for how
long the attacker can prevent the honest miners from reporting
the orphan blocks.

A. The attack description

In this attack, the attacker tries to orphan a set of consecutive
honest blocks at the end of each epoch including the last honest
block of the epoch. Whenever a few blocks are left to the end
of each epoch, the attacker starts orphaning the public chain.
To do so, the attacker separates his private chain from the
public chain, i.e., forks the public chain, and tries to extend
his private chain. The attack is considered to be successful if
the following two conditions are satisfied:

1) Starting from the fork point, the attacker’s private chain
manages to orphan the public chain.

2) The last block of the epoch is included in the attacker’s
private chain.

epoch end

v
: epochi+1

LOEA

. adversarial block

honest orphaned block

Q honest block

Fig. 6. Orphan exclusion attack



By performing this attack, the attacker manages to orphan
some of the honest blocks that will never be reported inside
the other honest blocks of the main chain. The scenario of
the orphan exclusion attack is depicted in Figure [6] Assume
the attacker starts the attack when LFA blocks are left to
the end of epoch ¢ and manages to orphan the public chain
after LOFA blocks, where L?EA < LOFA We use LOFA to
denote the length of the orphan exclusion attack. As a result
of the attack, L?EA blocks get orphaned at the end of epoch i.
Because there is no honest block included in the main chain
from the start of the attack till the end of epoch ¢, these LloEA
orphaned honest blocks cannot be reported and consequently
cannot be incorporated in the DAM deciding the difficulty of
epoch i + 1. In addition, if assuming LOFA = [QFA | [OFA
the attacker manages to orphan LSEA honest blocks at the
start of epoch ¢ + 1. According to condition (3) in the uncle
definition, prior to reporting the L9FA honest blocks orphaned
at the start of epoch ¢ 4 1, the honest miners should report
their ancestors, i.e., the L?EA honest blocks orphaned at the
end of epoch <. However, according to condition (1) in the
uncle definition, the honest blocks in epoch ¢+ 1 cannot report
the orphaned blocks of the previous epochs. As a result, these
L(Q)EA orphaned honest blocks cannot be reported by the honest
blocks in epoch i+ 1 and consequently cannot be incorporated
in the DAM deciding the difficulty of epoch i + 2. Therefore,
by imposing a successful orphan exclusion attack, in total,
LOFA orphaned honest blocks cannot be reported in the current
and next epochs. The orphan exclusion reduces the mining
difficulty calculated by the modified DAM in favor of the
attacker, which can result in an increase in the selfish mining
time-averaged profit.

The attacker should decide on the starting and ending time
of the orphan exclusion attack. The greater the length of the
orphan exclusion attack, the more profitable the selfish mining.
However, increasing the length of the orphan exclusion attack
reduces the success probability of the attack. Assume the
attacker starts the attack when a few blocks are left to the end
of an epoch. If during the attack until the end of the epoch, the
attacker’s private chain always has a lead over the public chain,
the attacker can easily orphan the public chain and finish the
attack successfully. However, there is a possibility that in the
middle of the attack and before reaching the end of the epoch,
the public chain gets a lead over the attacker’s private chain. In
this situation, the attacker should decide whether he wants to
continue mining on top of his private chain or stop the orphan
exclusion attack and join the public chain. On the one hand, if
the attacker decides to stop the attack before reaching the end
of the epoch, regardless of whether he managed to orphan the
honest blocks or not, the attack cannot cause a reduction in
the difficulty level specified by the upcoming modified DAM
because the remaining honest blocks added to the main chain
before the end of the epoch can report the orphaned blocks.
On the other hand, if the attacker decides to continue mining
on top of his private chain, he will risk losing more blocks.
Therefore, the attacker should devise a strategy for the orphan
exclusion attack that can maximize the length of the orphan
exclusion attack.

We aim to calculate the attacker’s time-averaged profit under

the modified DAMs while performing both selfish mining and
orphan exclusion attacks. The first step towards calculating
the attacker’s time-averaged profit is to calculate the length of
the orphan exclusion attack. This length represents the period
during which the attacker can prevent the honest miners from
adding an honest block to the blockchain and reporting the
orphaned blocks. It is obvious that if the attacker’s mining
power is less than the honest miners’, the attacker cannot
continue orphaning all the honest blocks forever, and there
will be an honest block that gets added to the blockchain
and terminates the orphan exclusion attack [34]. Note that the
concept of honest block exclusion is similar to the suppression
concept introduced in [35]], where the attacker tries to suppress
the honest blocks and put them out of the main chain. While
the authors in [35] have focused on calculating the number
of suppressed honest blocks, in this paper, we try to find the
length of consecutive suppressed honest blocks.

B. The length of the orphan exclusion attack

In this section, we aim to calculate the average length of the
orphan exclusion attack performed by attacker A at the end of
each epoch under the modified DAMs. To calculate the length
of the longest possible orphan exclusion attack, we assume
attacker A enjoys the highest communication capability and
can predict future block miners. We first explain the impact
of communication capability and predictability on the orphan
exclusion attack.

Definition 5 (Mining sequence). A mining sequence, which
is denoted by S, is an ordered list of blocks that specifies
the miner of each block. B! (B;) is used to represent the
i honest (adversarial) block in the mining sequence S. The
blocks in S are ordered by the time at which they are mined.

Note that not all the blocks of S are included in the main

chain since some of them may get orphaned. We assume all
the orphans in S are caused by the attack, namely, there is no
naturally orphaned block in S. We first explain the predictive
capability.
Predictive capability: The attacker can predict the elements
of mining sequence S in advance. In other words, the attacker
knows which of the upcoming blocks are mined either by
himself or by the honest miners.
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TABLE 1
THE LENGTH OF THE ORPHAN EXCLUSION ATTACK
mining power share 0.25 0.3 0.35 0.4 0.45
LOFA (DAMGedEEed) 1145 | 2,99 | 6.83 | 18.36 | 87.02
LOFA (DAM5°dEEed) {1 15,48 | 23.87 | 40.02 | 78.67 | 225.79

Note that, in Bitcoin, no miner knows who is the next

block proposer until they solve the puzzle or receive a new
block from the blockchain network, i.e., no miners enjoy
the predictive capability. In Appendix [D} we discuss how an
attacker without the predictive capability can perform the OEA
attack. In this section, to calculate the maximum length of
the orphan exclusion attack, we assume that A enjoys the
predictive capability and his communication capability (y.4) is
equal to 1. In the following, we argue that in such a scenario,
A can impose the longest possible orphan exclusion attack at
the end of each epoch:
Possessing the predictive capability helps A not only to suc-
cessfully finish all the orphan exclusion attacks but to impose
the longest possible attack. Consider the mining sequence
S = {B B, BY BY. Bf', B{*, B, Bil, BY ...} depicted
in Figure Assume a real-world attacker, who has mined
block B, decides to keep the block secret and start the orphan
exclusion attack. Since the next block, i.e., Bg‘, is mined by
the honest miners, the block race situation occurs. In this case,
the real-world attacker should decide whether he wants to
publish block Bjf* or continue the orphan exclusion attack.
Continuing the attack can increase the risk of losing mined
blocks for the real-world attacker. However, since A is aware
of the mining sequence, he knows he will eventually win the
chain race and successfully finish the attack. Therefore, at the
end of each epoch, A either does not start the orphan exclusion
attack or imposes a successful one. Moreover, at the end of
each epoch, there is a possibility that an attacker can impose
successful orphan exclusion attacks of different lengths. For
instance, consider the mining sequence depicted in Figure
The attacker can start a successful orphan exclusion attack
both at block Bf* and block Bs'. However, the length of the
former attack is equal to 4 and the length of the latter one is
equal to 3 (assuming a long set of consecutive honest blocks
after block BY). This shows that A can specify the start and
end points of the attack in a way that maximizes the length of
the attack. Having yv4 = 1 helps A to orphan the maximum
possible number of honest blocks (the same number as the
orphan exclusion attack length).

A comprehensive analysis for calculating the length
of the orphan exclusion attack under DAM[°®***°¢ and
DAM;°?* 7% are presented in Appendix [E[ and Appendix @
respectively. Table [I| presents the average length of the or-
phan exclusion attack under DAM{°#**¢% and DAMj°¢ <4
performed by attacker A, who enjoys the predictive capabil-
ity and the highest possible communication capability. The
results presented in Table [I] show that the length of orphan
exclusion attack under DAMj°%***°% is longer than that under
DAM;°*£¢4 This indicates that selfish mining accompanied
by the orphan exclusion attack can be more profitable under
DAM;°? 24 compared to that under DAM}¢ <%,

IX. SELFISH MINING ACCOMPANIED BY THE ORPHAN
EXCLUSION ATTACK

In this section, we aim to assess the effect of the orphan
exclusion attack on selfish mining profitability under the
modified DAM. As shown in Section [VI-D} the normal selfish
mining attack in which the attacker follows selfish mining
continuously for all the epochs is not profitable under the
modified DAM. Here, we show that applying the orphan
exclusion attack can make the normal selfish mining attack
profitable under the modified DAM. For our analysis in this
section, we assume that the attacker manages to perform a
successful orphan exclusion attack at the end of each epoch,
where the attack length is denoted by LOFA. This indicates
that the last LOFA blocks of the main chain in each epoch
are adversarial, and LOFA honest blocks get orphaned without
being reported in each epoch.

A. Analysis under DAwodi fied

We first calculate the average revenue gained by the attacker
in each epoch and his mining cost. We denote by Lepoch the
total number of both orphaned and main-chain blocks mined
during one epoch under DAM?°***¢? Note that out of the first
Lepoch — LOFA blocks of the epoch, only M, pain-chain ([ o och—
LOFA) blocks are added to the main chain, out of which
RelRev(rM) MIginehain(L o — LOFA) blocks are adver-
sarial. The last LOFA blocks of the epoch that are added to the
main chain are adversarial blocks.

Ra(epoch;) =
RelRev(,ﬂ_SM)Mén@infchain(Lepoch _ LOEA)K+ LOEAK ,

Cy(epoch;) = agca - t(epoch;) .
(43)

According to the design of the modified DAM introduced
in section [VI-B] the target of epoch; can be calculated as
follows:

t h;
TGT, = TGT,_, {&Pochi-1)

tideal

(44)

Since the total amount of mining power and the miners’ strat-
egy are consistent throughout the whole epochs, the duration
and the mining target of all the epochs would be the same, i.e.,
TGT, = TGT,_; and t(epoch;) = t(epoch;_,). Therefore,
by using equation the duration of each epoch can be
calculated as follows:
Lepoch
== - (45)
Therefore, the time-averaged profit of normal selfish min-
ing accompanied by the orphan exclusion attack under
DAM %24 is equal to:

t(epoch;) = tdeat

ProfitA(ﬂ'SM_OEA7 DAMTodified) _

LOEA LOEA

o)
Lepoch

. L o
AK (RelReV(’]TSM)MéHD?ln*Chaln( epoch
Lepoch
—ACA -
(46)



B. Analysis under DAMG 719

We first calculate the average revenue gained by the attacker
in each epoch and his mining cost. We denote by Lepocn the
total number of main-chain blocks mined during one epoch
under DAM;°?* 7 Note that out of the first Lepoch — LOEA
main-chain blocks, only Re lRev(wSM) (Lepoch —LOEA) blocks
are adversarial. The last LOFA blocks of the main chain are
adversarial blocks.

Ra(epoch;) = RelRev(7™)(Lepoch — LOEMK 4+ [OFAK
Ca(epoch;) = agcy - t(epoch;) .
(47)
According to the design of the modified DAM introduced
in section the target of epoch; can be calculated as
follows:
t(epoch;_,)

rphan-total OEA )
CNT‘; phan-tota + Lepoch—L tideal

TGT, =TGT, 4 (48)

L epoch

where CNT{™P*" 5921 represents the total number of both
reported and non-reported orphan blocks in epoch;. Since
the total amount of mining power and the miners’ strategy
are consistent throughout the whole epochs, the duration and
the mining target of all the epochs would be the same, i.e.,
TGT, = TGT,_; and t(epoch;) = t(epoch;_,). Therefore,
by using equation the duration of each epoch can be
calculated as follows:

CNT?rphan—total + Lepoch _ LOEA

tideal
Lepoch

t(epoch;) =
(49)

Lo . L h
AS Mmaln chain — 7epoc
SM CNT?rphan totalJrLepoch

Lepoch o MénﬁinfchainLOEA Lepoch
Mflsnb‘/?in_ChainLepoch Y

, we have:

t(epoch;) = (50)
Therefore, the time-averaged profit of normal selfish min-
ing accompanied by the orphan exclusion attack under

DAM; 44 is equal to:
PIOfitA(WSM?OEA, DAMrQnodified) —
Mgn@lnfchalnLepoch ) "
Lepoch _ MénﬁlnfchalnLOEA
LOEA

(Re lRev(wSM) (Lepocl},j — ) +
epoch

)\K( (51)

[OEA

—QACHA .
Lepoch>

C. Profitability of normal selfish mining accompanied by the
orphan exclusion attack under the modified DAM

Due to the orphan exclusion attack, the mining difficulty of
the subsequent epoch decreases, which results in an increase
in selfish mining profitability. In Figure |8} the profitability
advantage of normal selfish mining accompanied by the orphan
exclusion attack is depicted as a function of epoch length
Lepoch for the attacker with a4 = 0.4 and 4 = 1 under both
versions of the modified DAM. As can be seen in Figure [§]
padv(rSM-OER) > (), indicating that the normal selfish mining
attack can be profitable even if the orphans are incorporated
in the DAM. Additionally, it can be observed that a reduction
in the epoch length can result in a more destructive selfish

—— Attacker with predictive capability under modified DAM:

0.6 —— Attacker with predictive capability under modified DAM1
Real-world attacker under modified DAM:

—— Real-world attacker under modified DAM:

0.4 1

0.3 A

Profitability advantage

o
N}
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Epoch Length
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Fig. 8. The profitability advantage of 75" °F# under the modified DAM

mining attack. This highlights a trade-off in the design of the
DAM between resistance to selfish mining and sensitivity to
hash rate fluctuations.

X. DISCUSSION

There has been significant debate about the lack of oc-
currence of selfish mining attacks against Bitcoin. Although
selfish mining is profitable under the current DAM, Bitcoin
has operated smoothly for over a decade without strong
evidence of such attacks. This raises the question of why
miners avoid selfish mining despite its potential profitability.
Beyond the high mining power required for profitable selfish
mining, another argument is miners’ goodwill to secure the
network [[36] and preserve Bitcoin’s reputation. While a miner
could earn more through selfish mining, detection of such an
attack could harm Bitcoin’s reputation and decrease its value.
However, if an attacker maintains an acceptable forking rate,
the attack may go undetected [37]. Additionally, as protocols
evolve, the cryptocurrency may recover its price, making past
selfish mining rewards valuable again. Moreover, rising energy
prices or falling Bitcoin values may lead mining pools to find
their earnings insufficient to cover costs, potentially forcing
them to stop mining or abandon the honest strategy. In such
cases, miners might prioritize profits over the coin’s reputation
and consider deviating from the protocol. These possibilities
indicate that the lack of selfish mining attacks in Bitcoin thus
far does not prevent future occurrences, emphasizing the need
for thorough research into potential countermeasures.

A. Selfish mining countermeasures

The countermeasures proposed in the literature can be
divided into two general categories: those that aim to improve
chain quality (by reducing the adversarial block ratio), referred
to as better-chain-quality protocols, and those that seek to
modify the reward distribution or difficulty adjustment mech-
anisms, known as mechanism-altering protocols [28]].

1) Better-chain-quality protocols: In these protocols, the
goal is to help miners distinguish between honest and adver-
sarial blocks. A key factor for this distinction is the delay



between block generation and its publication on the network.
If a block is published immediately after it is generated, it can
be considered honest; otherwise, it is viewed as adversarial.
However, since the concept of timeliness in blockchains is
entirely subjective to each miner’s local view of the chain, any
selfish mining mitigation relying on time-based metrics—such
as block timestamps, transaction times, propagation delays,
or block receipt times—faces inherent limitations in fully
addressing the selfish mining threat. While these protocols
may work under synchrony, in practice, and under partial
asynchrony, it becomes impossible to distinguish whether a
block’s delay is due to adversarial behavior or temporary
network partitioning.

In the freshness-preferred scheme [18]], the countermeasure
relies on unforgeable timestamps, which necessitates trust
in a third party. In schemes [19], [20], the countermeasure
is based on information embedded in transactions, such as
transaction creation time and expected confirmation height.
A sufficient number of adversarial transactions can bypass
these countermeasures. Countermeasures that rely on dummy
blocks [21], block interval times [22], and in-time blocks [4] to
detect immediate block publication face significant challenges
under partial asynchrony, where a block may be considered
honest by some miners but adversarial by others, depending
on their network partition. Under partial asynchrony, some of
these approaches may not only fail to mitigate selfish mining
but could also threaten the validity of honest blocks that
experience propagation delays.

2) Mechanism-altering protocols: Mechanism-altering pro-
tocols modify how rewards are distributed or how difficulty is
adjusted to make selfish mining unprofitable or, at the very
least, to reduce its profitability.

The Fruitchain protocol [23]] aims to mitigate selfish mining
through its reward distribution method. In Fruitchain, a fruit
mined on a recent block, a block that is no more than l ccent
blocks deep, receives a reward. Assuming the maximum length
of an adversarial fork during selfish mining is less than l,ccent,
these fruits cannot be orphaned and will eventually be included
in an honest block in the main chain. Fruitchain mitigates
selfish mining to an acceptable extent, but at the cost of longer
confirmation times and higher storage costs due to repetitive
transactions in fruits. Besides, as shown in [28], Fruitchain
performs worse than the current Bitcoin protocol when the
attacker’s communication capability is zero. This is because,
in Fruitchain, blocks have no rewards, allowing even a weak
attacker to withhold its blocks in hopes of creating a fork
longer than [ ccene, a strategy that is not profitable in the
current Bitcoin protocol.

Another important consideration is that Fruitchain can mit-
igate selfish mining only if the rewards for all fruits are
assumed to be the same. In practice, however, to incentivize
miners to include transactions in their fruits, the reward for a
fruit should depend on the fees of the transactions included in
it. Since fruits in Fruitchain protocols are mined in parallel
(they can be mined on the same block), it is possible for
different fruits to share many transactions in common. This
raises the question of which miner should receive the fee for
a transaction included in multiple fruits. One naive design is

to divide the fee of a transaction among all the fruit miners
who include that transaction; however, this could incentivize
miners to include repetitive transactions in their fruits, posing
a significant liveness threat to the chain. A more reasonable
design would be to award the fee to the miner of the first fruit
that includes the transaction. However, since the order of fruits
in the Fruitchain protocol is determined by the blocks, any
attack that results in reordering fruits can become a profitable
strategy. Consequently, a miner is incentivized to orphan
blocks by conducting selfish mining to reorder transactions,
allowing it to gain higher transaction fees than its fair share.

Another approach to making selfish mining unprofitable
is to modify the difficulty adjustment mechanism. Here, we
discuss the design of three proposals from the literature: (i)
increasing the mining difficulty after the detection of a suc-
cessful selfish mining attack [24]], (ii) adjusting the difficulty of
the next epoch as the average of the current epoch’s difficulty
and the estimated difficulty [25]], and (iii) incorporating the
count of orphan blocks into the difficulty adjustment [6]. The
last approach is the one we analyzed in this paper, and we will
further discuss its strengths and limitations in Section [X-B

In the first approach [24], assuming the adjusted mining
difficulty under selfish mining is normalized to 1, the authors
propose a mitigation strategy to increase the difficulty to
a predefined value (3, where 1 < [ < 2. The intuition
behind this approach is to compensate for the reduction in
mining difficulty resulting from selfish mining by increasing
the difficulty. Although the authors have obtained the optimal
value of 3 for different adversarial mining power shares, the
main practical challenge facing this scheme is how miners
should estimate the adversarial mining share and subsequently
determine the appropriate value for the difficulty-increasing
factor B in practice—an issue that remains unanswered. The
advantage of reporting orphans is that it provides a metric
for miners to estimate the total active mining share in the
network, allowing them to adjust the mining difficulty pro-
portionally. This eliminates the need for a predefined value of
[ that requires consensus among miners. Another point worth
mentioning is that the authors assume the difficulty after selfish
mining as the normalized difficulty, and based on that, they
suggest the mining difficulty should be increased. However, if
we normalize the mining difficulty before the attack to one,
we only need to keep the mining difficulty fixed and prevent
its reduction to make selfish mining unprofitable.

In the second scheme [25], assuming the difficulty of the ini-
tial selfish mining epoch is denoted by Dy, and the calculated
difficulty based on Bitcoin’s current DAM for the subsequent
epoch is Fs, the authors propose setting the difficulty for
the next epoch as Dy = %. The intuition behind this
approach is that modifying the DAM in this way slows down
the reduction in mining difficulty resulting from selfish mining.
This creates a much longer profit lag, i.e., an initial loss period,
which demotivates miners from engaging in selfish mining.
The first limitation of this approach is that despite the extended
profit lag, the difficulty under long-range selfish mining will
eventually decrease to the same level as it would under the
current DAM, making selfish mining profitable in the long
run. The primary limitation of the proposed DAM is that it



cannot distinguish whether the reduced block generation rate is
due to an ongoing selfish mining attack or some miners going
offline. In the latter case, the proposed DAM would prevent the
reduction of mining difficulty, causing the difficulty to remain
improperly adjusted based on the active online mining power.
Reporting orphaned blocks can help distinguish between a
selfish mining attack and miners going offline.

B. Reporting orphan blocks: Can it solve all the problems?

In this paper, we introduced two versions of a modified
DAM that incorporate the count of orphan blocks when
estimating the active mining power share. We demonstrate
that these modified DAMSs, which can be viewed as the most
natural DAMs that include the count of orphan blocks, are
not entirely attack-resistant. Attacks such as smart intermittent
selfish mining and orphan exclusion attacks can still threaten
Bitcoin’s security even under these modified DAMs. Despite
the existence of such attacks, as shown in Figure the
modified versions of the DAM introduced in this paper can
significantly limit the increase in a selfish miner’s time-
averaged profit in the real world, particularly when the epoch
length is relatively long. This suggests that reporting orphan
blocks can discourage payoff-maximizing selfish miners to
an acceptable extent, making these modified DAMs a viable
countermeasure against selfish mining.

Implementing a solution to defend against selfish mining
can be a reasonable decision provided that the overhead
caused by the proposed solution does not exceed its benefits.
Compared to the Bitcoin DAM, the modified DAM imposes
higher communication and storage costs to the Bitcoin network
because referring to orphans in the honest blocks would
increase the block size. However, firstly since only the hash
of orphan blocks is reported, and secondly, due to the very
low forking rate in the normal situation, the added network
and storage costs by the modified DAM would be negligible.
Therefore, by applying the modified DAM, at the cost of
a very small increase in communication and storage costs,
we can significantly decrease selfish mining profitability. As
a comparison between two versions of the modified DAM
introduced in this paper, it is worth mentioning that under
DAM{°#+£+¢9  the profitability of the SISM2 attack cannot
surpass smart honest mining profitability. However, under
DAM;°?+ 224 SISM2 profitability can surpass smart honest
mining profitability. Moreover, the average length of the
orphan exclusion attack under DAM}°®***°? is less than that
under DAMEOdified. Therefore, between these two versions,
DAM;°4 £ seems to be the superior choice to implement.

Although the modified DAM can significantly reduce the
profitability of selfish mining, it has its limitations and cannot
counter all adversarial mining strategies. A Byzantine ad-
versary, who is unconcerned about profitability, can execute
selfish mining only to harm honest miners. While selfish
mining may not yield profits under the modified DAM, it can
negatively impact honest miners’ profitability by lowering the
block generation rate and reducing chain quality. This raises
the concern that, in practice, rational non-adversarial miners
may avoid reporting orphans to minimize the attack’s impact.

Additionally, other mining strategies, such as smart mining [9]]
and coin hopping, remain profitable under the modified DAM.
In coin hopping, the miner shifts between mining on different
blockchains that use the same PoW mechanism, such as Bit-
coin and Bitcoin Cash. These strategies can manipulate mining
difficulty to increase profitability without generating orphan
blocks. As a result, in the absence of evidence indicating an
attack, the modified DAM is unable to detect and mitigate
these strategies. For a detailed analysis of the coin-hopping
attack profitability, readers are referred to [[10]], [38], [39].

C. Future work

The analysis conducted in this paper to measure the orphan
exclusion attack assumes that no natural orphan blocks occur,
meaning honest blocks do not orphan each other. However, in
practice, network delays in block propagation can cause non-
adversarial blocks to orphan one another, making the orphan
exclusion attack more destructive. Prior works such as [40]],
[41] models network delays by discounting honest mining
power. Applying the same approach allows us to assess system
security under such delays. Nonetheless, as shown in [41]
and evidenced by the minimal number of orphaned blocks
in recent years [42]], Bitcoin’s long block interval reduces the
likelihood of honest blocks orphaning each other, suggesting
that delays should not significantly extend the impact of
the orphan exclusion attack. However, an interesting future
research direction is to analyze the severity of the orphan
exclusion attack combined with network partitioning and an
eclipse attack [41]], [43]]. This partitioning can lead to honest
blocks orphaning each other, amplifying the attack’s impact.

Our paper analyzed the profitability of selfish mining under
period-based DAMs, where the difficulty is adjusted at the end
of a fixed period [8]]. However, other types of DAMs exist,
such as sliding window-based DAMs that can be modified
to incorporate orphan blocks. The orphan exclusion attack
introduced in this paper is not limited to period-based DAMs
and can also be applied to sliding window-based DAMs. As
future work, one could analyze selfish mining profitability
under a sliding window DAM that accounts for orphan blocks.

Another potential direction would be to use the Bitcoin
backbone model introduced in [40] to demonstrate that, under
the modified DAM and uncle block definition, Bitcoin can still
satisfy the common-prefix and chain-quality properties.

XI. CONCLUSION

While it was widely believed that incorporating orphan
block counts into Bitcoin’s difficulty adjustment mechanism
(DAM) would render selfish mining unprofitable, this paper
disproves that belief by introducing two new attacks: the smart
intermittent selfish mining attack and the orphan exclusion
attack. These attacks demonstrated that selfish mining remains
more profitable than the honest strategy, even when orphan
blocks are considered in the DAM. In this paper, we analyzed
the profitability of various selfish mining strategies under
different DAMs. Additionally, using probability analysis and
combinatorial tools, we assessed the impact of the orphan
exclusion attack on selfish mining profitability. Our findings



indicated that while including orphan blocks in Bitcoin’s DAM
cannot entirely eliminate selfish mining profitability, it can
limit the selfish miner’s gains to an acceptable level, making
orphan reporting a viable countermeasure.
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APPENDIX A
SELFISH MINING STRATEGIES

A. Eyal and Sirer’s selfish mining strategy

The authors in [S] presented the first selfish mining strategy
w5M! that increases the attacker’s relative revenue. In this
paper, the Markov chain is used to analyze the strategy m>"!.
Let [4 and l3; denote the length of the attacker’s chain and
the length of the honest chain, respectively. The set of actions
is composed of four different actions, which are adopt,
overwrite, match, and wait. adopt means the selfish
miner leaves his secret chain and continues mining on top
of the honest chain. overwrite represents that the attacker
publishes his secret chain that is longer than the honest chain.
match means once the honest miners mine a new block, the
attacker publishes a conflicting block with the same height.
And finally, wait means that the attacker continues mining
on top of his secret chain. The attacker’s strategy is as follows:

o ly >l 4: adopt

e I3y =14 =1: match

e lyy=1l4—1>1: overwrite

o Otherwise: wait
Formulas for calculating the attacker’s relative revenue
RelRev4(7m) and the effective active mining power
Mzain-chain are presented in [3].

B. Optimal selfish mining

The optimal selfish mining strategy 7°" introduced in [12]
aims to maximize the attacker’s relative revenue. The authors
have used Markov Decision Process (MDP) to find the optimal
strategy. Each state of selfish mining can be represented using
a tuple (l4,l3, fork), where [4 denotes the length of the
attacker’s chain, [4 is the length of the honest chain, and fork
gives information regarding the miner of the latest block. The
set of actions is similar to 75"!. The implementation presented
in [44]] can be used to calculate the attacker’s relative rev-

enue RelRev 4(7°%") and the effective active mining power

Mmaln chaln
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APPENDIX B
BiTcoIN DAM

To mine a new block, miners try to find a nonce for
which the block hash is smaller than a target TGT, which
is computed by the last iteration of DAM at the end of the
previous epoch. DAM aims to maintain the block production
rate constant, which results in relatively stable transaction
throughput regardless of the total mining power available in
the network.

To adjust the target TGT based on the network hash rate,
a DAM is triggered after every epoch of Lepoen main-chain
blocks [40]:

TGTl . %, t; < % * Tideal
TGT; 11 = TGT; - 7, t; > T - lideal (52)
TGT; - ﬁ, otherwise

where ¢ is the epoch number, tige, is the ideal time duration
of an epoch, 7 is a dampening filter to prevent rapid changes
of TGT, and ¢; is the actual time duration of the last epoch,
as reported in the blocks. In Bitcoin, Lepoch = 2016, 7 = 4,
and tigea 18 two weeks.

APPENDIX C
COMPARISON BETWEEN SISM2 AND SHM

In the smart honest mining [9] denoted by SHM, during
epocheyen, attacker A4 divides his mining power into two
parts: the idle mining power and the honest mining power.
We assume the attacker’s idle mining power share and honest
mining power share are equal to ecq and (1 — e)a 4, where
0 < e < 1. However, attacker A mines honestly in epoch,q.
Therefore, the SHM time-averaged profit is equal to:

l—eay

XK(QA4*U @“A)—%eaACA'T:%J
Profit (™) =

1—eaA+71 P~

—QACH -

(53)
If the attacker enjoys the highest possible communication
capability v4 = 1, SISM2 time-averaged profit under
DAM;°%£5e9 is the same as smart honest mining time-
averaged profit obtained in equation [53] However, if attacker
enjoys the highest possible communication capability v4 = 1,
SISM2 time-averaged profit under DAMj°?* "¢ is equal to:

ProfitA(ﬂ'SISM2 DAMgodified) _

)\K( + (1 e)aa

l—eay

) +eanca i (54)

l—eay 1
l—aa l—eaq

l—aa

—QApACH -

For all the values of e greater than zero, we have:
Profit (w1542 DAM3°?e%) > profit 4(n5™). The
intuitive reason is that the relative revenue gained in
epoch.,., and the duration of epoch.,., are the same
in both strategies. Therefore, the key difference lies in
epoch,gyq. The time-averaged profit during epoch gy is the
same for both strategies. However, the duration of epoch g
in SISM2 under DAM;°#**** is longer than that in SHM.
Since the time-averaged profit during epoch_yy iS greater
than that during epoch,,.,, the longer duration of epoch gy
in SISM2 under DAM;°“****% makes SISM2 more profitable
than smart honest mining.

APPENDIX D
ORPHAN EXCLUSION ATTACK PERFORMED BY A
REAL-WORLD ATTACKER

Let A be an attacker who does not possess the predictive
capability. To perform the orphan exclusion attack, attacker A
follows the subsequent strategy:



o Keep the adversarial chain secret whenever the length
of the adversarial chain is greater than the length of the
honest chain.

o Publish the adversarial chain once the length of the honest
chain becomes equal to the length of the adversarial
chain.

If the attacker’s communication capability v 4 is equal to 1,
the attacker does not risk losing any blocks while performing
the orphan exclusion attack. If the epoch end is placed in
the middle of one of the chain race iterations, the attack is
considered to be successful.

APPENDIX E
THE ORPHAN EXCLUSION ATTACK LENGTH UNDER
MODIFIED
DAM!

As the first step toward obtaining the orphan exclusion
attack length, we define the terms “chain race” and “longest
dominant chain”.

Definition 6 (Chain race). For two adversarial blocks
B;“,BJA € S, where i < j, the chain race started at BZA
and ended at B]“-A is the race between A’s private chain and
the public chain that satisfies the following properties:

o Before B;“, both the private chain and the public chain
share the same chain denoted as CrB’A.

« A’s private chain is C'P {BA, - ,B]A}, where
{BA,--- ,B;“} is the set of consecutive adversarial
blocks in mining sequence S starting at BZ.A and ending
at B;“.

A

o The public chain is C'P {Bfl,---, B4}, where
{B]l,---,Bll} is the set of consecutive honest blocks
in mining sequence S starting at B and ending at B;{,
where Bl as well as Bj?f are respectively the first honest
block after BiA and the last honest block before Bf‘ in
S.

We say A wins the chain race starting at B{“ and ending at
Bf‘ if the length of the set {B#, - - 7B]A} is grater than the
length of the set {B, .- ,B;{}. The length of a chain race
is defined as the length of the adversarial fork.

The expression “A wins the chain race starting at By* and
ending at B;“” indicates that if A forks the main chain at B;“,
he can orphan the honest miners’ consecutive blocks mined
after B{* and before Bf‘.

Definition 7 (Longest dominant chain). The longest dominant
chain of an adversarial block B;“, which is represented by
LDC(B{"), is a set of consecutive adversarial blocks sampled
from the mining sequence S that satisfies the following prop-
erties:

e LDC(B#) starts at B and ends at an adversarial
block, e.g., B]A, where i < j. We have LDC(Bf) =
{BZA’ 7BjA}'

o A wins the chain race starting at B{“ and ending at BJA.

o Thereis no k > j such that A wins the chain race starting
at B and ending at Bj*.

Let L'PC(BA) denote the length of the longest dominant
chain starting at B, ie., L'P¢(B#) = |LDC(B')|. Note
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atx > 1

that min(L'PC(BA)) = 1, and this occurs when LDC(B#!)
comprises only By*.

Theorem 1. The average length of the longest dominant chain

starting at an adversarial block, e.g., B;“, can be calculated
as follows:
2a(1 — @)
E[L*PC(BAY = =2 +1 . 55
(L9B)] = g + 9)

Note that through this paper, we use a two-dimensional
(z,y)-grid to depict the chain race as shown in Figure
The mining sequence is represented by a path on this grid.
Whenever the honest miners mine a new block, the mining
path moves one step up, and whenever .4 mines a new block,
the mining path moves one step to the right. The grid-based
chain race representation provides us with a strong tool to
analyze different event probabilities within blockchains. To
prove Theorem 2] we first need to present Lemma [I]

Lemma 1. The probability of the event that the mining path
starting at (0,0) never reaches the line y = x for x > 1,
which is denoted by Pnpg, is equal to 1 — 2.

Proof of Lemma [I| This lemma can be proved using straight-
forward methods such as a normal random walk. However, as
a warm-up, we use the grid-based chain race representation to
prove this theorem. Later in this paper, we will use the grid-
based approach to prove other complicated theorems where the
straightforward methods are insufficient. Consider the mining
path represented in Figure [9] We first calculate the probability
of the complementary event. The complementary event occurs
when the mining path for at least one time reaches one of the
cross marks depicted in Figure [0] At the start, if the mining
path moves one to the right, it reaches the cross mark in
point (1,0). To reach the other cross marks, the path needs
to move one up and reach the first blue dot in point (0, 1).
The number of paths that start from the blue dot in (0, 1) and
reach one of the cross marks for the first time at (,%), for
i > 1, is equal to the number of paths from (0,1) to the blue
dot in (¢ — 1,7) without passing below the line y = x + 1.



The latter one is equal to the i — 1™ Catalan number [435].
The i Catalan number, denoted by C;, can be calculated as
C;, = H%l (212) [46]. Therefore, we have:
m:a—&—a(l—a)ZCi(a(l—a))i =2x . (56)
i=0
The result of the series above is presented in [47]. Finally, we
have:

Pr=1-RBgr=1-2a. (57)

O

Proof of Theorem[I} The chain race starting at B is depicted
in Figure [TI0] Since the chain race starts with an adversarial
block, i.e., B;“, the mining path always moves to the right,
i.e., point (1,0), as the first step. Assume L'PC(BA) = n,
where n > 1. This indicates that the mining path reaches
the line y = = — 1 for the last time at point (n,n — 1).
The number of paths from point (1,0) to point (n,n — 1) is
equal to (2(::11)). Therefore, the probability that the mining
path starting at point (0,1) reaches the point (n,n — 1) is
equal to (2= V) (a(1 — a))n_l. According to Lemma ,
the probability that the mining path starting at (n,n — I
never reaches the line y = x — 1 again is equal to 1 — 2a.
As a result, the probability that L-P¢(BA) = n is equal to
(=Y (a1 - a))n_l(l — 20). Finally, the expected value
of L'PC(BA) can be obtained as follows:

E[L"C(BY)] = i n<2(” B 1)) (a(l —a)" (1 - 2a)

= n—1

=> -0 et - @)t - 20)
# 3 (07t -t - )

> 2n
= n (a(l — )" (1 -2a)

()
+ n; <2:> (a1 — a)"(1 - 2a) = m(l ~2q)
+ 1 —12a(1 B ZQ) - icly(—l 2ac)v2) +1.

(58)

Formulas to solve the series above, which involve central
binomial coefficients, are presented in [47]. O

In order to have a successful orphan exclusion attack at
the end of epoch;, there should exist an adversarial block
B4 in epoch; whose longest dominant chain includes the
epoch end. The existence of such a longest dominant chain
LDC(B) indicates that a subset of adversarial blocks within
LDC(B*) forms the last main-chain blocks of epoch;. In
other words, there is no honest block that can get added to
the main chain after LDC(B*') within epoch;. Consequently,
the honest blocks that get orphaned by the adversarial fork
LDC(B*) cannot be reported and included in the modified
DAM. Let BS = {Bf',--- ,B#} be the set of adversarial

Honest fork length (y) 4
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Fig. 10. Chain race representation

blocks within epoch; whose longest dominant chains can
result in a successful orphan exclusion attack. Note that not
all the adversarial blocks in epoch; can be the starting
block of a successful orphan exclusion attack. For instance,
the orphan exclusion attack starting at one of the adversarial
blocks that is far from the epoch end has almost no chance of
being successful since the epoch end would not be included
in that longest dominant chain. To maximize his profit, the
attacker should perform the longest possible orphan exclusion
attack. Therefore, the length of the orphan exclusion attack
is equal to the length of the longest LDC among the set
{LDC(B#)|B# € BS}.

Here, we first define a promising block within epoch;,,
characterized by having one of the longest LDCs that can
result in a successful orphan exclusion attack. The longest
dominant chain of this block can help us calculate a lower
bound and upper bound for the length of the orphan exclusion
attack.

Definition 8 (Block height). Let S = {By, B1,Ba, -} be
the mining sequence, where the block miners can be honest or
adversarial. Let h; denote the height of block B;. We define
the height of genesis block By to be equal to 0. The height of
the block B; for i > 1 can be obtained as follows:

hi—1—1,
hi=4 '
hic1+1,
The height of the block B; with respect to the block Bj is
defined to be equal to h; — h;.

if block B; is adversarial.

: . (59)
if block B; is honest.

Definition 9 (Epoch promising block). Let B.,q € S represent
the last block of epoch; under the condition that all the blocks
within the mining sequence get added to the main chain. The
promising block of epoch; is defined to be an adversarial
block that has the highest height among all the adversarial
blocks before and including block Bgpg. If multiple of these
blocks exist, the one that is farthest from B,y is considered
the promising block.



As an example, assume S; = {--- B!t o Bt o Bt .
BzzlfG’B;éfS’BﬁfszZL{fB’BréfQ’Bg‘fl’BZf} represent the

mining sequence of epoch;. The height of blocks within
mining sequence S; with respect to the last block of epoch,,
i.e., BX, is as follows: {---,—1,0,1,2,1,0,1,0,—1,0}. As
can be seen, the highest height among adversarial blocks
belongs to block B;ft5 with h,,_s = 1. Note that since the
adversarial mining power share is less than half, the height of
blocks has an increasing pattern in a long-term perspective.
This indicates that the height of blocks before B} and after
Bt with respect to B/t converge to —oo and oo, respectively.
Therefore, if assuming that there is no other adversarial block
before B7' . whose height with respect to B! is greater
than or equal to h, 5 = 1, B{* - is the promising block
of epoch,;.

Lemma 2. Let B{4 and BJA denote two adversarial blocks,

where j > i. The attacker can win the chain race starting at
BIA and ending at B]A if and only if h; > h;.

Proof. Let n denote the number of adversarial blocks in the
adversarial fork starting at B;“ and ending at B;“. hi; > h;
indicates that the number of honest blocks in the mining
sequence between two adversarial blocks By and B;“ is less
than or equal to n—1. Therefore, the attacker can win the chain
race starting at By* and ending at B]A. The reverse direction
can be proved in an analogous way. O

We first explain why the longest dominant chain starting at
the epoch promising block is among the longest LDCs that
can result in a successful orphan exclusion attack. Since the
promising block of an epoch is located near the epoch end,
its longest dominant chain has a relatively high probability
of ending after and including the epoch end. Therefore, the
LDC starting at the epoch promising block has a high chance
of leading to a successful orphan exclusion attack. Moreover,
the LDC starting at the epoch promising block is among
the longest LDCs that start prior to the epoch end and end
afterward. According to Lemma [2, the LDC starting at the
promising block continues as long as the height of subsequent
adversarial blocks remains less than or equal to that of the
promising block. Since the promising block has the highest
height among the adversarial blocks before the epoch end, a
relatively long list of blocks after the epoch end is required to
exceed the epoch’s promising height.

To find a lower bound and an upper bound for the length
of the orphan exclusion attack, we use the grid-based repre-
sentation of the mining path. In the grid-based representation,
we assume that point (0,0) represents the end of epoch;.
This implies that the mining path in the upper right quadrant
and in the lower left quadrant belong to the mining sequence
within epoch,,; and epoch;,, respectively. The mining path
in epoch;, starts at point (0,0) and moves forward within
the upper right quadrant. For epoch; which is located in the
lower left quadrant, we define the term “reversed mining path”.
The reversed path originates at point (0, 0), which corresponds
to the last block of epoch;, and moves backward within the
lower left quadrant, towards the previous blocks in epoch;.
Let moving to point P on the mining path represent a block

20

liney=x+r+1/
linery=x+r

Honest ’
fork length ’
(=r—-1r+1 s ¢
Reflected path y e
ré
Bad path <= ’ ’
4
4
/’ ©00)
L7 n.0) Adversarial
4 fork length
4
4
0,-s)
(=r—=s,-5)

Fig. 11. Mining path representation

B. To find the height of block B with respect to the last block
of epoch; in the grid representation, one should draw a line
with slop 1 at point P. The y-intercept of the line is equal to
the height of block B with respect to the last block of epoch;.

Lemma 3. Let r > 1 and s > 0. The probability that the
reversed mining path (within the lower left quadrant) starting
at (0,0) reaches the line y = x + r for the last time at point
(=s — r,—s) without never passing the line y = x + r is
denoted by P(r,s) and can be obtained as follows:

2 1
o= () e
S r S

Proof. We first find the number of paths from point (0,0) to
point (—s—r, —s) without passing the line y = x+r. Consider
the mining path depicted in Figure The total number of
paths from point (0, 0) to point (—s—r, —s) is equal to (7":28).
Some of these (Hfs) paths, however, pass the line y = =+,
which we refer to as bad paths. Being a bad path implies that
the path reaches the line y = x + r + 1 before reaching the
point (—s —r, —s). For each bad path P, we define the initial
part of the path to be equal to the part of the path P before
reaching the line y = x+r+1. For each bad path P, we define
a new path P’ by reflecting the initial part of the path across
the line y = x + r + 1 as depicted in Figure By doing
S0, we can generate a one-to-one mapping between the bad
paths and the reflected paths that start at point (—r — 1,7+ 1)
and end at point (—s — r, —s). Therefore, the number of bad
paths is equal to ("**°). Consequently, the number of paths
from point (0,0) to point (—s — r, —s) without passing the
line y = = 4 r can be obtained as follows:

r 4 2s r+2s\  (r+2s\ r+1

( s ) <sl)_( s )r+s+1'
The probability that the reversed mining path starting at (0, 0)
reaches point (—s —r, —s) without passing the line y = x +r
is equal to ("**) 2t 0"+ (1—a)*. According to Lemma
the probability that the reversed mining path starting at (—s —
r, —s) never reaches the line y = = + r again in the future is
equal to 1 — 2. Therefore, the probability that the reversed
mining path starting at (0, 0) reaches the line y = x -+ for the

T (1 —a)*(1—2a) . (60)

(61)




last time at point (—s — r, —s) without never passing the line
y=xz+risequal to (") 0 (1 - ) (1 -2a). O
Lemma 4. Let r > 0 and s > 1. The probability that the
reversed mining path (within the lower left quadrant) starting
at (0,0) reaches the point (0, —r) and afterward reaches the
line y = x — r for the last time at point (—s —r, —s) without
never passing the line y = x — r is denoted by P?(r,s) and
can be obtained as follows:

P2r,s) = <2:> - 41r “0(1 - a) (1 -

Proof. The probability that the reversed mining path starting
at (0,0) reaches the point (0, —r) is equal to (1 — «)”. The
number of paths from point (0, —r) to point (—s,—r — s)
without passing the line y = 2 — r is equal to the s Catalan
number, which can be obtained as (*%) —+7- The probability
that the reversed mining path starting at (0,0) reaches the
point (0, —r) and afterwards reaches the point (—s — r, —s)
without never passing the line y = z — r is equal to
(%) s3@*(1—a)**". According to Lemma 1| the probability
that the reversed mining path starting at (—s — r, —s) never
reaches the line y = = — r again in the future is equal to
1 — 2c. Therefore, the probability that the reversed mining
path starting at (0,0) reaches the point (0, —r) and afterward

2a) . (62)

reaches the line y = x — r for the last time at point
(—s — r,—s) without never passing the line y = x — r is
equal to (*) 70 (1 — a)™+*(1 - 2q). O

Lemma 5. Let v > 1 and k > 0. The probability that the
mining path (within the upper right quadrant) starting at (0, 0)
passes the line y = x + r for the last time at point (k,k + 1)
is denoted by P3(r, k) and can be obtained as follows:

P3(r, k) = (7’+2k1
k

Proof. The number of paths from point (0, 0) to point (k, k+
r—1) is equal to (""2""). Therefore, the probability that the
mining path starting at (0, 0) reaches the point (k, k+r—1) is
equal to ("2 "")ak (1 — a)"+*~L. The event that the mining
path starting at (0,0) passes the line y = x + r for the last
time at point (k,k + r) is equivalent to the event that the
mining path starting at (0, 0) reaches the point (k,k + 17 — 1)
and afterward never reaches the line y = = + r — 1 again.
According to Lemma (1| the probability that the mining path
starting at (k, k +r — 1) never reaches the liney =z +r—1
again in the future is equal to 1 —2«. Therefore, the probability
that the mining path starting at (0, 0) passes the line y = z+r
for the last time at point (k, k+7) is equal to ("2 ") ak(1—
) TR - 2q). O
Lemma 6. Let r > 0 and k > 1. The probability that the
mining path (within the upper right quadrant) starting at (0, 0)
gets below the line y = x — r (reaches the line y = x —r —

1) and then passes the line y = x — r for the last time at
point (k + r,k) is denoted by P*(r,k) and can be obtained

as follows:
r+2k—1

P4(T’k)_( r+k

The proof of Lemma [6]is similar to the proof of Lemma [3]

>o¢k(1 —a)" "1 - 2a) . (63)

>of+’<(1 —a)" (1 -2a) . (64)
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1) A lower bound for the length of the orphan exclusion
attack under DAM{°%***%; Assume LDC(B;') contains N7},
adversarial blocks belonging to epoch;,; and orphans N/*
honest blocks belonging to epoch;. If N;il > N}, the epoch
end is included in LDC(B;), and therefore, LDC(B}) results
in a successful orphan exclusion attack. Let LOFA™N denote
a lower bound for the length of the orphan exclusion attack.
We consider as follows:

o If LDC(B;) does not result in a successful orphan

exclusion attack, LOEAMIN — (.

o If LDC(B}) results in a successful orphan exclusion

attack, LOFA™N — LLDC(px),

Let B} and h} denote the epoch;’s promising block and its
height with respect to the last block of epoch;, respectively.
We analyze the orphan exclusion attack in both scenarios
where h] is non-negative and negative.

Assume the scenario in which A} =r —1, where > 1. In
this case, i is non-negative. The illustration of this scenario is
depicted in Figure [I2] Assume further that the promising block
is located where the mining path moves from point (—r —
s, —s) to point (—r — s+ 1, —s). This implies that LDC(B})
starts at point (—r — s, —s). The event that LDC(B}") starts at
point (—r — s, —s) is equivalent to the event that the reversed
mining path starting at point (0, 0) reaches the line y = x +r
at x < 0 for the last time at point (—r — s, —s) without
never passing the line y = x + 7 at © < 0. LDC(B}) ends at
an adversarial block that is the last adversarial block located
below the line y = = + 7. Let the mining path in the upper
right quadrant pass the line y = x + r for the last time at
point (k,k + r). This implies that the length of LDC(BY) is
equal to 7+ s+ k. Note that the longest dominant chain of the
promising block B; does not necessarily lead to a successful
orphan exclusion attack. To have a successful attack, the final
block of epoch; should be included in LDC(B;). Based on
our assumption, LDC(B) starts when there are r + 2s blocks
left to the end of the epoch. To include the epoch end, the
length of LDC(B;) should be equal to or greater than r + 2s.
Note that LDC(B}) result in orphaning s honest blocks of
epoch;. Therefore, to complete r + 2s remaining blocks, the
number of adversarial blocks within LDC(B]) belonging to
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Fig. 13. Mining path representation

epoch;,; should be equal or greater than s. As a result, to
have a successful orphan exclusion attack starting at B, the
condition k£ > s should be satisfied.

If k£ > s, the lower bound of the orphan exclusion attack
length is equal to LOFAMN — y 4 51 k. Otherwise, LOFA™MN —
0. The probability that the reversed mining path starting at
point (0, 0) in the lower left quadrant reaches the line y = z+r
for the last time at point (—r — s, —s) without never passing
the line y = x +r is equal to P'(r, s) presented in Lemma
The probability that the mining path starting at point (0, 0)
in the upper right quadrant passes the line y = = + r for the
last time at point (k, k + r) is equal to P3(r, k) presented in
Lemrna Therefore, in the case where A} is non-negative, the
expected lower bound for the length of the orphan exclusion
attack can be calculated as follows:

oo 0 X

LOEA m'” Z (r+ s+ k)P (r,s)P3(r, k) .
r=1s=0 k=s
(65)
Assume the scenario in which h] = —r — 1, where r > 0.

In this case, h; is negative. The illustration of this scenario is
depicted in Figure |13} Assume further that the promising block
is located where the mining path moves from point (—s, —r —
s) to point (—s+1, —r—s). The event that the promising block
is located where the mining path moves from point (—s, —r —
s) to point (—s + 1, —r — s) is equivalent to the event that
the reversed mining path starting at (0,0) reaches the point
(0, —) and afterward reaches the line y = x — r for the last
time at point (—s, —r — s) without never passing the line y =
x — r, the probability of which is equal to P?(r, s) presented
in Lemma 4| LDC(B;) ends at an adversarial block that is
the last adversarial block located below the line y = x — . To
ensure that LDC(B]) leads to a successful orphan exclusion
attack, the mining path in the upper right quadrant needs to
get below the line y = x — r; and if assuming that the mining
path passes the line y = x — r for the last time at point
(r + k, k), the inequality k& > s must hold. k£ > s guarantees
that LDC(B) ends at the subsequent epoch. In this scenario,
if £ > s, the lower bound of the orphan exclusion attack length
is equal to LOBAmMIn — 4. 4 ¢ 4 k. Otherwise, LOEAMIN — (.
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The probability that the mining path starting at point (0, 0)
in the upper right quadrant passes the line y = z — r for the
last time at point (k + 7, k) is equal to P%(r, k) presented in
Lemma @ Therefore, in the case where h] is negative, the
expected lower bound for the length of the orphan exclusion
attack can be calculated as follows:
E(LSEAMIN) — (r+ s+ k)P?(r,s)P*(r,k) .
r=0s=1k=s

(66)

Finally, the lower bound of the orphan exclusion attack can
be obtained as follows:

E(LOEA—min) — E(L?EA—min) + ]E(Lg)EA—min) ,

where E(LPEA™MN) and E(LEAMN) are calculated in equa-
tions [65] and [66] respectively.

2) An upper bound for the length of the orphan exclusion
attack under DAM{°¥**?; Assume LDC(B;") contains N7+,
adversarial blocks belonging to epoch;; and orphans N/*
honest blocks belonging to epoch;. Let LOFA™M denote an
upper bound for the length of the orphan exclusion attack. We
consider as follows:

o If N“i < N}, [OEAmax —

o If N7ty > N7t LOBAmax —

1).
We first explain why defined above is an upper
bound for the length of the orphan exclusion attack. Let
hf = r — 1, where LDC(B}) starts at point (—r — s, —s)
and ends at point (k, k+ ). This indicates that N7}, = k and
N}t =s.

If £ < s, we claim there is no adversarial block before
B whose longest dominant chain can result in a successful
orphan exclusion attack. Let B denote a block before Bj.
Since B} is the promising block of the epoch, the number
of honest blocks belonging to epoch; that get orphaned by
LDC(B) is greater than s, and the number of adversarial
blocks belonging to epoch;, that are included in LDC(B)
is less than or equal to k. As we have k < s, LDC(B) cannot
result in a successful orphan exclusion attack. The longest
dominant chains of adversarial blocks after B may result
in a successful attack; however, their length is shorter than
L'PC(B?). Therefore, in case where k < s, L*PC(B?) is an
upper bound for the length of orphan exclusion attack.

If k£ > s, there may exist plenty of adversarial blocks before
B} whose longest dominant chain is longer than LDC(B}).
Let B denote a block before B;. The number of adversarial
blocks belonging to epoch;, that are included in LDC(B)
is less than or equal to k. Therefore, if the number of honest
blocks belonging to epoch; that are included in LDC(B)
exceeds k, LDC(B) cannot result in a successful orphan
exclusion attack. There exist s honest blocks between B; and
the epoch;’s end. Therefore, the number of honest blocks
between B and B should be less than or equal to k£ — s.
Knowing that there exist at most £k—s honest blocks between B
and B}, we want to find the maximum number of adversarial
blocks that can exist between blocks B and B, including
block B itself. Since B; is the promising block of epoch,,

(67)

LLDC(B*)

LYC(BY) + (N7, — N =

LOEA—max
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TABLE 11
THE LENGTH OF THE ORPHAN EXCLUSION ATTACK UNDER DAMj®2+¥ 52
mining power share 0.25 0.3 0.35 0.4 0.45
[E[,OFA-min] 1.2859 | 2.5963 | 5.7596 | 15.6328 | 63.6105
E[LOFA] (simulation result) || 1.4594 | 2.9917 | 6.8328 | 18.3697 | 87.0262
[E[LOEA-max] 22870 | 4.8142 | 10.9720 | 30.2100 | 123.0720

the reversed mining path starting at point (—r — s, —s) within
the lower left quadrant never reaches the line y = x4 r again.
As a result, while the reversed mining path moves k — s steps
downward, it can move at most kK — s — 1 steps to the left,
showing that block B is at most k¥ — s — 1 adversarial blocks
away from block B;.

Therefore, the upper bound for the length of the orphan
exclusion attack can be obtained as follows:

]E[LOEA-max] _ i i i: (r+ s+ k)P(r, s)P?(r, k)

r=1s=0 k=0
[SSINeS)
2.2

> (r+2k—1)P'(r,5)P3(r, k)
r=1s=0 k=s+1
+ Z Z Z (r+ s+ k)P*(r,s)P*(r, k)
r=0s=1 k=0

+ZZ Z (r + 2k — 1)P%(r, s)P*(r, k) .

r=0 s=1 k=s+1
(68)

In Table we provide a comparison among the lower
bound calculated in equation the upper bound calculated
in equation [68] and the average length of the orphan exclusion
attack under DAM|°?***°? obtained from the simulation.

APPENDIX F
THE ORPHAN EXCLUSION ATTACK LENGTH UNDER
MODIFIED
DAM;

In this section, we first discuss why the orphan exclusion
attack under DAM3°?***°? can be more severe than that under
DAM[°?* 4 Then, we calculate an upper bound for the
length of the orphan exclusion attack under DAMj°® ¢,

When there is no selfish mining and orphan exclusion attack,
after every Lepoch blocks in the mining sequence S, an epoch
ends and the DAM is applied. Under difficulty adjustment
mechanism DAM3°* "% performing selfish mining during
the epoch can shift the epoch end in mining sequence .S and,
consequently, affect the length of the orphan exclusion attack
at the end of the epoch. Let Lespoch represent the number of con-
secutive blocks consumed from the sequence .S to generate one
epoch. According to the epoch definition in DAM5°* %9  the
epoch ends when the number of main-chain blocks gets equal
t0 Lepoch- If there is no selfish mining and no orphan exclusion
attack, Lepoch 1S equal to proch. However, if the attacker
performs selfish mining during the epoch and tries to orphan
some of the honest blocks, Lepoch < E(proch) < 1{% The
lower bound occurs when there is no selfish mining, and the
upper bound occurs when .4 orphans one honest block for each

of his blocks. This shows that there is a level of freedom for

A to decide when to end the epoch. By orphaning the honest
blocks during the epoch, A can adjust the end of the epoch
in a way that increases the length of the orphan exclusion
attack. For instance, consider the mining sequence depicted in
Figure [4] If A does not perform selfish mining during the
epoch, he cannot impose a successful orphan exclusion attack
at the end of the epoch. However, if A decides to orphan 7
honest blocks during the epoch, he can shift the epoch end
7 blocks ahead and impose a successful attack. This shows
that adjusting the epoch end can help A to impose a longer
orphan exclusion attack. Note that, under difficulty adjustment
mechanism DAM{°****¢¢  performing selfish mining during
the epoch cannot shift the epoch end in mining sequence S.
This is due to the fact that in DAMTQdified, the epoch ends
when the total number of main-chain and orphan blocks gets
equal to Lepoch-

High-level proof overview We first present a road map for
calculating an upper bound for the average length of the
orphan exclusion attack under DAMj° 9

o In the first step, we calculate the probability that the
length of the longest dominant chain for an adversarial
block is less than or equal to a specific amount in
Theorem

o In the second step, we assume there exist several inde-
pendent adversarial blocks that are sampled from separate
mining sequences. Each of these adversarial blocks has
its own longest dominant chain. Using the probability
calculated in Theorem [2] we calculate the average length
of the longest chain among all the available longest
dominant chains in Theorem [3

« In the next step, we assume there exists a set of consec-
utive adversarial blocks sampled from the same mining
sequence. Each of these adversarial blocks has its own
longest dominant chain. However, these longest dominant
chains are dependent on each other. Using the result of

epoch end

O O-O-O~O-@-@-@-

No selfish
mining:

epoch end
Orphaning 7 .

siocks aurng. (—~(O~(O~O~O- @@~ @

the epoch: 1

O honest block ‘ adversarial block

Fig. 14. The effect of selfish mining during the epoch on the end of the
epoch
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Theorem [3] we calculate an upper bound for the average
length of the longest chain among all the dependent
longest dominant chains in Theorem [4]

o In the last step, using Theorem [ we find an upper bound
for the average length of the orphan exclusion attack
under DAM5°?***°? in Theorem

A. The length of the longest dominant chain
Theorem 2. The probability of the event that the length of the

longest dominant chain for an adversarial block, e.g., BZ.A, is
less than or equal to n can be calculated as follows:

Pr(L*P6(B{) <n) =1 - 2Ta(n,n) | ©

Where I is the regularized incomplete beta function.

Proof of Theorem [2| The chain race starting at B# is depicted
in Figure [T3] Since the chain race starts with an adversarial
block, i.e., Bf‘, the first move is always to the right. In order
to have L'P¢(B#) < n, the mining path should never reach
the cross marks depicted in Figure [I3] Otherwise, there exists
an adversarial dominant chain whose length is greater than n.
All the acceptable paths pass through at least one of the green
dots. Assume L-PC(B:) = I, where | < n. This means the
last time that the mining path visits the line y = = — 1 happens
at the I green dot in point (I,! — 1). The probability that A
can win a chain race whose length is equal to [ is denoted by
P\fVCR. Winning a chain race with length [ is equivalent to the
event that the mining path reaches the /™" green dot. P&VCR can
be calculated using the equation below:

21— 1)
P\fVCR:( 11

The probability of the event that after the mining path reaches
the /™ green dot in the diagonal line y = x— 1, it never reaches
the line again is equal to Pyg, calculated in Lemma [T} Note
that Pyr is independent of /. Having P\fVCR and Pyr, we can

)(a(l —a))'7t. (70)
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calculate the probability that the length of the longest dominant
chain is equal to [:

Pr(L"°(By') = 1) = Pjyca - Piw
_ (2(zl—11)> (a(1 =) (1 - 20) .

Finally, the probability that the length of the longest dominant
chain at B is less than or equal to n can be calculated as
below:

() <m =3 (7P -ap -0

=1

(71)

-y (2:> (a1 = @))'(1 = 20) = 1 = 2Za(n,n) .
i=0
(72)

In this part, we try to simplify equation [72} We define a
function F(-) as F(z) = 31— (*)a". Taking the derivative

of F(z) results in: '
29\
2(2i + 1)( ,Z) zt
i
n—1

—_n (2:> 2"+ 220+ 1) <2ZZ> zt

=0

n—1 2% n—2
Fl(z) = le(l)xll = ZO
= = (73)

Therefore, we obtain the following differential equation:
2
Fl(z) = —n< ”) 2" 4 2F(2) + daF (z) . (74)
n
By solving equation [74} we obtain:

Flz) = (75)

1 2n Toqgnt
L () [
V1 —4dzx n o V1—4u
Using the variable substitution u = z(1 — z), we can modify
the integral above as below:

1-n(*" fli@ 21— )Ll dz
F(x) = 0 NieT
— ﬁ(l — n<2:)[)’(1_ V21_4$;n, n)) .

In the equation above, B(-) is the incomplete beta function
which is defined as [48]]:

B(x;a,b):/ 211 =) tar .
0

(76)

(77)

The incomplete beta function is a generalization of the
complete beta function which is defined as B(a,b) =
fol ta= (1 — ¢)*=1dt. Z(-) is the regularized incomplete beta
function and is defined as below:
B(x;a,b)
B(a,b)

Since we have n(zn)B(z; n,n) = 2Z,(n,n), equation (76| can

n
be simplified as follows:
1

V1 —dx

Z.(a,b) = (78)

F(z) =

(1—2ZI,W(n,n)) .19



Since Pr(L; < n) = (1 — 2a)F(a(1 — «)), we finally obtain
the following result:

Pr(L'PC(BA) < n) =1—2Z.(n,n) . (80)

O

B. The longest chain among independent LDCs

Definition 10 (Longest LDC). Assume there exist N adver-
sarial blocks denoted by BiA, 1 < ¢ < N. These adversarial
blocks can be sampled from the same or separate mining
sequences. The longest LDC of the adversarial block set
BS = {B{\,--- , B{}, which is denoted by LLDC(BS), is
the longest chain(s) among the set {LDC(B{')|B* € BS}.

LY2C denotes the length of the longest LDC chain of the
adversarial block set BS, i.e., Lt2¢ = |LLDC(BS)|.

Theorem 3. Assume there exist N independent mining se-
quences, where each of them starts with an adversarial block
denoted by B{*, 1 <i < N. Let BS = {B{*,--- , B{} and
LDC(B{") denote the longest dominant chain of adversarial
block B{“. The average length of the longest LDC among the
set {LDC(B#")|B#* € BS} can be calculated as follows:

B[ L42°] = S nPr(L40° —n) |

n=1

1)

where
Pr(LEE =n) =

(1_20[)]\/7
(1=2Za(n,n)) Y = (1=2T,(n—1,n—1))", n>1
(82)

Proof of Theorem B} L%2° = 1 means that the length of
LDC(BA) = 1 for all Bf* € BS. The event that the length of
the longest dominant chain is 1 happens when the chain race
starting at (1, 0) never reaches the line y = z—1 again. There-
fore, using Lemmal1} we have Pr(L'P¢(B/) = 1) = 1 - 2a,
and since there exist N adversarial blocks in BS, we have
Pr(LE0C =1) = (1 —2a)".

In order to have L'BLEC = n, where n > 1, there should exist
one or more adversarial blocks whose longest dominant chain
length is equal to n, and for the other remaining adversarial
blocks, the longest dominant chain length should be less than
n. Assume P, and P, respectively represent the probability
that the length of the longest dominant chain is exactly equal
to n and the probability that the length of the longest dominant
chain is less than or equal to n. For n > 1, we have:

N O/NY .
Pr(Lg8%=n) =" ( Z_ )P;Pivn’l

i=1
:(Pn"‘Psn—l)N_PN

<n—1

— (1-2T,(n,n))" = (1= 2T, (n—1,n—1))"

n=1

=pN - PN

<n—1

(83)

The second equality holds based on the Binomial theorem,
and the last equality is obtained from Theorem Having
Pr(L'BLEC = n) for all values of n, the expected length can
be calculated as > oo, nPr(LEEC = n). O

, n>1.
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C. The longest chain among dependent LDCs:

One can use Theorem [3| to calculate E[L2C], provided
that the mining sequences of all the adversarial blocks in BS
are independent. However, if we sample a set of N consecutive
adversarial blocks from the mining sequence S to generate
the adversarial block set B.S, the longest dominant chains of
those N adversarial blocks in B.S are dependent on each other.
Due to the dependency, the average length of the longest LDC
will significantly decrease. In this part, we aim to calculate an
upper bound for IE[L%EC] , where BS is a set of consecutive
adversarial blocks sampled from the same mining sequence.

Theorem 4. Assume that LHEC(Niind.) represents
|LLDC(BS')|, where BS' consists of N adversarial
blocks whose longest dominant chains are independent of
each other, and L5-DC(N;dep.,S) represents |LLDC(BS)),
where BS consists of N consecutive adversarial blocks
sampled from the mining sequence S whose longest dominant
chains are dependent on each other. We have:
)2;ind.)] ,

l1—«
(84)

E{L,LBLS?C(N;dep.,S)] < E[L%LQC(N/( —

12«

where E L}LLBLS?’C (N/( l—a )2; ind.)} can be calculated using
Theorem
First, we review some definitions and lemmas.

Definition 11 (Chain race advantage). For a chain race

starting at the adversarial block BZ.A and ending at Bf‘,
BA BA A BA BA
where C',' 77 = CclZ I{BA,--- ,BAY and C) 77 =
A
cli {B, ... ,Bﬁ} are respectively A’s private chain and
theApu}‘)lic chain, the chain race advantage is denoted by
68787 and defined as follows:

A pA
6BiﬁBj

By, B BB
=10, =G (85)

Note that B as well as Bf, are respectively the first honest
block after B{“ and the last honest block before Bf‘ in S.

Lemma 7. If 6%75" > 0, then LLDC({B{, BA}) =
LDC(B).

Proof. 1t §57B' > 0, we have LDC(B#) C LDC(BA).
Therefore, LLDC({By*, B/}) is always equal to the longest

dominant chain starting at By*. O

Lemma 8. Let S be a mining sequence starting with BZA.
The average number of adversarial blocks, e.g., B, in S

2
A gA
that satisfy 65757 > 0 is equal to (11:;;) .

Proof. Consider the chain race starting at By* and ending at
BJA whose length is equal to n. In order to have §BEB S 0,
the first time that the mining path reaches the line x = n
should happen in a point with y < n. Note that the chain
race always passes through the point (1,0). For n > 2, the
probability that a mining path starts at (1,0) and reaches

the line x = n for the first time in point (n,4) is equal
to ("t"2?)a" (1 — a)’. Therefore, the probability that the



advantage of a chain race with length n, which is denoted by
0™, is greater than O is calculated as follows:

11— a) (86)

n—1 .
Pr(g" >0) =" (Z Zﬁ; z)an

i=0

The average number of adversarial blocks that satisfy
5B B S 0 s equal to

ZPr6”>O —1+inzl(l+n ) 11— a)t .

n=2 =0
(87)
We use o to represent the double sum above. We have:
oo n+1 Z+7’L
=3 ( ) - )
n=0 t=0 (88)

We define a function G(-) as G(z) = 214 (“I™")«". Taking
the derivative, we obtain:

G’(x)—?ili i xiil—i(n+l+i) it !
71‘:1 " 71‘:0 "
2n +1 = NIEROW
=—(2n+2 et 1 "
(2n + )(n+1)x +;(n+ +1) I £

(89)

Therefore, we obtain the following differential equation:

G'(z) = —(2n+2) <2::11> 2" 4 (n 1) F(z) + 2 F () .
(90)
Solving equation [90] results in:
(1 - (2n+2) (?jll) fo n“( u)" d“)
Gla) = -
1 -z o1)
1 (2n + 2)(2"+1)B(x; n+2,n+1)
B (1 —z)ntt '

Since for positive integers w and z, we have B(z,w) =
mz(tifw), we can write G(x) as follows:

(Cn+2Crh L umta-
(1 — )t

:(l_i)nH(QQn—&-l)(%?) /1: w1 — )" du) .
92)

Gla) = u)" du)
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Therefore, we can calculate o as follows:

o= Z Q"M E(1 - a)
n=0
o0 9 1
> 2(2n+ 1)( ”) / (1 — u)" du
0 n -«

n=

- /11a QUZ <2n> (1—u)" du

(93)
1
+/ 4uz ( > (w(l —w))" du
11—«
B ! 2u 8u?(1 — u)
- /l,a (—(1 “ou) T = 2u)3> du
! 2u _a(l-a) a
_/1_a_(172u)3 =T 502 T 10
Finally,
= n 1—a\2
;Pr(é >0)=(172Q) . (94)
[

To better understand the effect of LDC dependencies on
E[L%EC], consider the following example. Let BS; be a set
of consecutive adversarial blocks sampled from the mining
sequence S, which starts with By, and BS, = {BJA €
5\531 B S 0} \ {B#}. Assume BS; is sufficiently long
to have BS; C BS;. In this case, according to Lemma
we have LLDC(BS;) = LLDC(BS; \ BSz). Therefore,
according to Lemma [§] if we have already considered the
longest dominant chain of By ir; calculation of |LLDC(BS1)],

— 1 other adversarial blocks

in average, there exist

2
in BSy, i.e., members og B.S,, whose longest dominant chain
has no chance to increase |LLDC(BS1)].

Definition 12 (Future advantage). For an adversarzal block
BA the future advantage is denoted by AB and defined as
follows.

A A pA
ABTT = max 657 B

i<k (95)

Lemma 9. If assuming the number of paths in a mining grid
from start point (0,0) to the point (s,r + s) without passing
through the line y = x + r is denoted by C7, then we have:

%) ) . 1
; Os (a(l - a)) - (1 — a)7.+1 )

Z sCL (a1 — a))s =

s=0

Proof. The set PS, = {(s,7 + s)|s € W} consists of all the
points on the line y = x +r. Since we have 1 —a > «, all the
mining paths will finally pass through the line y = = + r in
one of the points in the set P.S,.. Therefore, the probabilities
that a mining path passes the line y = x + r for the first time
in (s,r+s) for all s € W should sum up to 1. The probability
that the mining path starting in (0,0) passes through the line

(r+1)a )
(1-2a)(1 —a)rtt ~




y = x + r for the first time in (s,r + s) € PS, is equal to
(1—a) 01 (a(l - a))s. Therefore, we have:

T“ZCT l1-a)' =1=

Yol —a)) = —
;Cs( (]‘ )) (1_a)r+1 :

To prove the second equality in Lemma [0} we use the variable
substitution a(1 — ) = x in the equality above. We have:

o7

. 1
Y Clat = ———— (98)
= <1+\/1—4:v>
2
By taking the derivative from both sides, we obtain:
(o)
1
> sCratt = r t+2 . (99)
= (g==) Vi@
By multiplying both sides to x and substituting z = (1 — «),
we obtain:
= s (r+1a
Cla(l — = . 100
2 Crlelt =) = gy gy - 10
O

Lemma 10. The probabllzty of the event that ABM =y s

equal 1o (1 — 2a)(1 R

Proof. AB1 = r means that the chain race starting at Byt
reaches the line y = x—r but never passes it. Note that a chain
race always starts at point (1,0). The number of paths from
point (1,0) to point (r+s, s) without passing through the line
y = x — r is the same as C"~!. Therefore, the probability of
reaching the point (r + s, s) from point (1,0) without passing
the line y = x — 7 is equal to &”'C7*(a(l — ))”. The
probability that once the mining path reaches the point (r +
s,8) on the line y = x — r, it never reaches the line again
is 1 — 2. Thus, the probability of reaching the line y =
x — r for the last time in the point (r + s,s) is equal to
a" 1077 (a(1 - a))’(1 — 2«). Finally, the probability that a
chain race reaches the line y = = — r but never passes it can
be calculated as follows using Lemma [9}

o’ 1207” 1

r—1

(1—=a)
(101)
0

a(l—a))’(1-2a) = (1 - 2a)

Lemma 11. The average future advantage of an adversarial
block is calculated as follows:

JE[ABf‘q =14+

1 — 2«

Proof. We just need to calculate the expected value of ABT
over all the values of r. Using Lemma we have:

= ZT.Pr(ABm = r)

r=1

(102)

E(AP)
(103)

r—1

o0
(0% (6%
;r( Vi ay ' tiTm
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Lemma 12. Let B# and B;-4 be two adversarial blocks
sampled from the same mining sequence, where j < i. We
have:

BB L AP 150« LDC(B)NLDC(B{) # 2.

(104)
Proof. §B;B¢* + AB?T — 1 > 0 means that there exist a
block, e.g, BA with ¢ < k, that satisfies both 6B B S
0 and 057 ’Bk = AB'T > . Therefore, the block set
{BA,---,B{"} is a common subset of both LDC(BA) and

LDC(BA) The reverse direction can be proved in an analo-
gous way. O

Proof of Theorem [d] 1t is obvious that:

E[LLLDC(l;dep.,S)} :E[ng,c(l;ind.)} . (105)

We first prove:

E[LLLDC(( -«

1 -2«

)*: dep., S)} <E [ng’,o(z ind.)}

(106)
Let BS3 = {B#,B#*,,---} be a set of consecutive adver-
sarial blocks sampled from the mining sequence S, whose
indexes are ordered in a descending way. Let B{‘i ¢, Tepresent
the first block in B.S3 that satisfies 5B B LT ABM <0.
Let BSy = {B#,,, -, B, B{'}. In this case:

V¥ BA € BS,: 655 4 AP 15 Lemme R
¢ B! € 15, DG(E) LDO(E £

Thus, the longest dominant chain of each of the adversarial
blocks in BS4 has an intersection with the longest dominant
chain of block BA This means that for all BA € BS,, the
longest dominant chains of BA and BA are dependent on each
other. Let BA be an adversarlal block that has sampled from
a separate mining sequence S’, where the mining sequences

S and S’ are independent, and BS’ = { By}, B{*}. Therefore,
we have:

VB € BS,:
E[JLLDC ({8} B/Y)[] < E[|LLDC({BA. BA))|]

(107)

= EU'—LDC(BSO H < E[LLBLg’,C(2; ind.)} (108)

= E{L'ﬁgf(\BSﬂ;dep.,S)} < E[L'B"SD,C(Q;ind.)] .

Note that |BS,| = ¢, Therefore, we just need to show E[¢] =
1—a )2

(1—2a) : A
Consider the chain race starting at By* ,. Assume A5 =

7. To have By, be the first block in BS3 = {B#, B ,,---}

that satisfies 65757 + 7 — 1 < 0, block Bs* should be the
first adversarial block that appears after that the mining path
reaches the line y = x + r for the first time. Note that a chain
race always starts from (1,0). The number of paths from point
(1,0) to the point (s,s + 7 — 1) for s € N without passing
through the line y = x + r — 1 is equal to C}_;. Therefore,
starting from point (1,0), the number of paths to reach the
line y = x + r for the first time at the point (s, s+ r) is equal
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TABLE III
COMPARISON BETWEEN SIMULATION AND THEORETICAL RESULTS
Mining power share (c) 0.05 0.1 0.15 02 | 025 0.3 0.35 0.4 0.45
Simulation result: E L;}gC(L( 1292 | dep., S) 122 | 151 | 1.93 | 2,55 | 3.57 | 542 | 941 | 20.78 | 82.16
Theoretical result: E [L%gc(z; ind.)} 131 | 1.67 | 2.11 | 272 | 399 | 6.00 | 9.74 | 21.60 | 82.83

to C;_,. We aim to find the average distance to the y axis of
the point where the mininf path reaches the line y = = +r

for the first time, i.e., E[{]

ABiA]:T
E[e]‘AB;‘H:T = z; sCi_ja” 11— )™
_ (5 + 1)C§a5(1 o a)s+r+1
s=0
=(1—-a) ! (ZCga(l —a)’ + Zscga(l - a)s> .
s=0 s=0
(109)
Using Lemma [9} we have:
B (r+1a
B o1, =1+ (T (110)

By taking expected value over variable 7 and using Lemma [0}
we can find E({) as follows:

.Pr(ABiA] = r)

i) (02057 )
=1t 1—aQa ?1(1—_22?2‘) - (11—_;;)2 '

Now assume M is the greatest number that satisfies:

IE)[L';BLEC (M;dep.,S)} < E[L'B"E,C(N;ind.)} .

(111)

(112)
Using the same approach, we can show:
l1-«o

1— 2a)2 - l;dep"s)] =

E {L';g'-E,C(N + 1 ind.)} .

E[L45C (M + ( )

Therefore, we obviously obtain equation [84] O

A comparison between the simulation and theoretical results
of the LLDC length is presented in Table [T

D. An upper bound for the length of the orphan exclusion
attack

Theorem S. Under the difficulty adjustment mechanism
DAM; 2% the average length of the orphan exclusion
attack, i.e., E[LOEA], performed by an attacker who owns
predictive capability is upper bounded as follows:

Le och .
LLBLSDCG(OZZ )’Qw;md.ﬂ . (114)
1—2«

]E[LOEA} <E

where Lepoch represents the standard epoch length, which is
equal to 2016 in Bitcoin.

Proof of Theorem ] As already discussed, the attacker has
a level of freedom to decide when to end the epoch under
DAMEOdified. In favor of the attacker, we assume all the
longest dominant chains of adversarial blocks within epoch;
can lead to a successful orphan exclusion attack. In other
words, we assume that the attacker can adjust the epoch end to
guarantee that it gets included in the longest LDC of the epoch.
The average number of adversarial blocks in each epoch is
equal to aLepoch- Therefore, the length of the orphan exclusion
attack is equal to the length of the longest LDC among the
LDCs that start in one of these oLepocn adversarial blocks.
Note that these aLepoch blocks form a set of consecutive
adversarial blocks all sampled from the same mining sequence.
Therefore, E[LOFA] E[L%Lgc(aLepoch;dep.,S) . Using
Theorem [] we obtain the upper bound in equation O

In Table [Vl we provide a comparison between the upper
bound calculated in equation [IT4]and the average length of the
orphan exclusion attack under DAM5°*****? obtained from the
simulation.

TABLE IV
THE LENGTH OF THE ORPHAN EXCLUSION ATTACK UNDER DAM5°2+¥ 5P

mining power share 0.25 0.3 0.35 0.4 0.45
E[LOFA] (simulation) || 15.48 | 23.87 | 40.02 | 78.67 | 225.79
[E[LOFAmax] 16.67 | 26.39 | 45.58 | 93.07 | 282.09
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