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Abstract. EdDSA is a standardized signing algorithm, by both the
IRTF and NIST, that is widely used in blockchain, e.g., Hyperledger,
Cardano, Zcash, etc. It is a variant of the well-known Schnorr signature
scheme that leverages Edwards curves. It features stateless and deter-
ministic nonce generation, meaning it does not rely on a reliable source
of randomness or state continuity. Recently, NIST issued a call for multi-
party threshold EdDSA signatures, with one approach verifying nonce
generation through zero-knowledge (ZK) proofs.

In this paper, we propose a new stateless and deterministic multi-
party EdDSA protocol in the full-threshold setting, capable of tolerat-
ing all-but-one malicious corruption. Compared to the state-of-the-art
multi-party EdDSA protocol by Garillot et al. (Crypto’21), our proto-
col reduces communication cost by a factor of 56× while maintaining the
same three-round structure, albeit with a roughly 2.25× increase in com-
putational cost. We utilize information-theoretic message authentication
codes (IT-MACs) in a multi-verifier setting to authenticate values and
transform them from the Boolean domain to the arithmetic domain by
refining multi-verifier extended doubly-authenticated bits (mv-edaBits).
Additionally, we employ pseudorandom correlation functions (PCF) to
generate IT-MACs in a stateless and deterministic manner. Combining
these elements, we design a multi-verifier zero-knowledge (MVZK) proto-
col for stateless and deterministic nonce generation. Our protocol can be
used to build secure blockchain wallets and custody solutions, enhancing
key protection.

Keywords: Multi-Party EdDSA Signing · Multi-Verifier Zero-Knowledge
Proof · Threshold Signature · Key Protection.

1 Introduction

Threshold signatures enable a user to distribute its secret key among multiple
parties, allowing a quorum of parties, exceeding a predefined threshold, to col-
laboratively sign a message. This concept was explored in earlier works (see, e.g.,
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[Des88,GJKR96,SG98,Sho00,MR01,MOR01]) and has recently garnered signif-
icant attention due to its applications in key protection—such as safeguarding
users’ wallets in blockchain-based systems. Recent research has focused on de-
signing concrete and efficient threshold signature protocols for ECDSA (e.g.,
[Lin17,LN18,GG18,DKLs18,DKLs19,CCL+19,CGG+20,XAX+21,DKLS24]) and
Schnorr signatures (e.g., [KG20,RRJ+22,BHK+24,CKM23,CGRS23,BLSW24]).

The Edwards-curve Digital Signature Algorithm (abbr. EdDSA)[BDL+11]
has been widely adopted in practice, particularly in blockchain applications.
Several blockchain projects, such as Hyperledger [hyp24], Cardano [Car24], Stel-
lar [Ste24] and Decred [dec24] have integrated EdDSA. Additionally, the cryp-
tocurrency Zcash [Zca24] announced its transition to the Ed25519 variant of
EdDSA for the JoinSplit signature in its rpcwallet. Technically, EdDSA is a deter-
ministic variant of the Schnorr signature scheme, designed for twisted Edwards
curves. It has been standardized by both NIST [Nat19] and the IRTF [JL17].
The structure of the EdDSA signature is that for each message msg, it derives
nonce as r = PRFdk(msg) ∈ {0, 1}ℓ using a pseudorandom function PRF. Here,
dk represents the right half of the hash output H(sk) associated with the secret
key sk. Informally, a signature on a message msg consists of a pair (R, σ), where

R = r ·G and σ = r + s · H(R, pk,msg). Here, r =
∑ℓ

i=1 r[i] · 2i−1, s is the left
half of H(sk), and pk = s · G is the public key. EdDSA benefits from determin-
istic nonce generation, as relying on a source of randomness for signing can be
challenging in certain contexts, such as public cloud environments [GKMN21].
Another advantage of EdDSA is its stateless design, meaning it does not require
the reliable maintenance of counters, which—when used with PRF-can generate
fresh randomness. As noted in [PLD+11,BHH+15,GKMN21], reliably updating
the state in practice is challenging, and reusing a counter would result in repeated
randomness, compromising security.

In this work, we seek to extend the benefits of deterministic and stateless Ed-
DSA signing to threshold signatures. Recently, NIST announced plans to stan-
dardize multi-party threshold EdDSA signatures with stateless and determinis-
tic nonce derivation, motivating the development of concretely efficient threshold
EdDSA protocols. Our focus is on the full-threshold setting7, where all secret key
shares are required to sign messages. This includes the two-party case and en-
sures security even in a malicious setting tolerating any corruption. Thresholdiz-
ing EdDSA in a malicious setting is a challenging task [MPSW19,GKMN21]. The
difficulty arises from the fact that honest parties must use identical randomness
across two protocol executions for the same message, while a malicious adversary
may introduce inconsistent randomness across executions. Thus, the key chal-
lenge is to ensure the correctness of nonce derivation, i.e., r = PRFdk(msg), even
in the presence of malicious actors, given the non-linear nature of the function
PRF. Without such a guarantee, a malicious adversary could mount a forking
attack to recover the secret key [MPSW19]. Therefore, the core challenge now

7 A full-threshold signature protocol is also referred to as a multi-party signature
protocol.
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is deterministically generating an EdDSA signature in the presence of malicious
adversaries.

Two approaches can ensure the correctness of nonce derivation: secure multi-
party computation (MPC) and zero-knowledge (ZK) proofs. The MPC approach
allows all parties to jointly compute r = PRFdk(msg) securely, but it incurs
significant costs in terms of communication, computation, and the number of
rounds. This is exemplified by the work of Bonte et al. [BST21], which employs
the MPC approach for nonce derivation under the assumptions of an honest-
majority setting, a malicious adversary, and security with abort. In contrast,
the ZK approach has each party Pi locally compute ri = PRFdki(msg) using its
share dki and prove its correctness with a ZK proof. The shares {ri}i∈[n] are then
combined into a group element R = r ·G, where dk =

⊕
i∈[n] dki, r =

⊕
i∈[n] ri

with n parties and jointly nonce r =
∑ℓ

j=1 r[j] · 2j−1 of ℓ bit length. Compared
to the MPC approach, the ZK approach is more efficient.

The NIST call [BP23] supports multi-party threshold EdDSA protocols under
the ‘pseudorandom per quorum’ mode, where nonce derivation is verified using
ZK proofs (referred to as Type II in [BP23]). The state-of-art work by Garil-
lot et al.[GKMN21] adopts the zero-knowledge from garbled circuits (ZKGC)
paradigm[JKO13] to prove the correctness of nonce derivation, achieving sig-
nificantly lower communication and fewer rounds compared to the MPC-based
protocol [BST21]. Although the multi-party EdDSA protocol in [GKMN21] offers
fast computation and requires only three rounds, it still requires high communi-
cation costs.

Recent work [KOR23] (resp., [CGG+20]) proposed efficient approaches for
designing stateless and deterministic Schnorr signature protocols in the two-
party (resp., multi-party) setting. However, these methods rely on customized
functions for nonce derivation, making them incompatible with the EdDSA stan-
dard, which uses either SHA512 or SHAKE256 to instantiate PRF. Concurrent
work by Komlo and Goldberg [KG24] introduced an approach based on verifi-
able pseudorandom secret sharing to achieve stateless and deterministic nonce
derivation. While their method features minimal communication and requires
only two rounds, it is limited to the honest-majority setting (i.e., fewer than half
the parties can be corrupted).

1.1 Our Contributions

This paper proposes a new stateless and deterministic multi-party EdDSA pro-
tocol that remains secure even in the presence of malicious adversaries capable of
corrupting any number of parties. Our primary technical contribution is a low-
communication approach for designing a multi-verifier zero-knowledge (MVZK)
protocol to ensure the stateless and deterministic derivation of EdDSA nonces.

Specifically, we leverage the concept of pseudorandom correlation functions
(PCF) with programmability properties [BCG+20,BCG+22,CD23,BCE+23] to
generate information-theoretic message authentication codes (IT-MACs) in a
stateless and deterministic manner. Building on IT-MACs over F2, we extend the
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Table 1: Comparison of stateless and deterministic nonce derivation proto-
cols with malicious security in the two-party setting. |C| denotes the size of
a PRF circuit, κ is the computational security parameter, s is the statistical security
parameter, |q| represents the bit-length of an element in Zq, ℓ is the bit length of PRF
outputs and m is a large parameter used in [KOR23]. Concrete costs are given for
|C| = 58K, κ = 128, s = 60, |q| = 256, ℓ = 512 and m = 3597 when thresholdiz-
ing HashEdDSA [Nat19] over the Edwards curve Ed25519, where PRF is instantiated
by SHA512. SRSA denotes the strong RSA assumption, DL represents the discrete-
logarithm assumption, CRHF denotes collision-resistant hash function and LPN de-
notes the learning parity with noise assumption.

Protocols
EdDSA Asymptotic Concrete

Rounds Assumptions
PRF Comm. Comm.

[NRSW20] no O(|q|) 1.1 KB 2 DDH

[KOR23] no O(m+ |q|+ κ) 0.88 KB 1 DCR+SRSA

[GKMN21] yes O(|C|κ+ |q|κ) 1.01 MB 3 PRF+CRHF

This work yes O(|C|+ log(|C|)κ+ ℓκ) 32.47 KB 2 LPN

VOLE-based ZK protocol [BMRS21] from the single-verifier to the multi-verifier
setting, enabling each party Pi to prove ri = PRFdki(msg). The MVZK protocol
for nonce derivation can be made non-interactive, stateless, and deterministic
through the Fiat-Shamir (FS) transformation. We then convert IT-MACs over
F2 into IT-MACs over Zq, where q is a prime, by generalizing and refining the
edaBits technique [EGK+20]. Specifically, we extend edaBits from the MPC set-
ting to the MVZK setting and enhance the underlying check protocol using a
‘sacrificing’ technique, ensuring that only one correct edaBit is needed per sign-
ing. Subsequently, we locally convert IT-MACs over Zq into IT-MACs over an
elliptic-curve group G without requiring communication, following the observa-
tions in [STA19,KOR23]. As a result, each party obtains an IT-MAC for the
group element Ri = ri · G. These IT-MACs are then opened to compute the
correct group element R =

∑
i∈[n] Ri = r · G, where ri ∈ Zq is the arithmetic

representation of ri, r =
∑

i∈[n] ri, and n is the number of parties. For further
technical details, please refer to Section 3.

Comparison of two-party protocols for stateless and deterministic
nonce derivation. For the two-party case, Table 1 compares our protocol with
existing protocols for deterministic, stateless, and verifiable nonce derivation in
the malicious setting. The concrete communication cost is calculated for state-
lessly and deterministically generating R = r ·G, where r ∈ Zq is the arithmetic
representation of PRFdk(msg).

Both works by Nick et al.[NRSW20] and Kondi et al.[KOR23] achieve signif-
icantly lower communication costs than other protocols. The protocol by Kondi
et al.[KOR23] achieves the optimal one-round execution. However, these ap-
proaches rely on customized functions for nonce derivation rather than the
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Table 2: Comparison between our protocol and the state-of-the-art proto-
col for generating multi-party EdDSA signatures statelessly and determin-
istically. n denotes the total number of parties. Concrete communication costs are
given for |C| = 58K, κ = 128, |q| = 256 and ℓ = 512, when thresholdizing HashEd-
DSA [Nat19] over the Edwards curve Ed25519 among three parties and five parties.

Protocols
Asymptotic Comm. Cost Comm. Cost

Rounds
Communication (n = 3) (n = 5)

[GKMN21] O(n2(|C|κ+ |q|κ)) 10.76 MB 35.89 MB 3

This work O(n2(|C|+ log |C|κ+ ℓκ)) 0.19 MB 0.63 MB 3

PRF function used in the EdDSA standard. The prior work by Garillot et
al.[GKMN21], which is closest to ours, employs the ZKGC approach to prove
r = PRFdk(msg). Our nonce-derivation protocol leverages the recent LPN-based
PCF construction [BCG+22] and achieves approximately a 31.9× reduction in
communication cost compared to the protocol by Garillot et al.[GKMN21] in the
two-party setting. As such, our work represents a trade-off between efficiency and
the functionality supported by NIST[BP23].

Comparison of multi-party EdDSA signature protocols with malicious
security. Table 2 compares our multi-party EdDSA signature protocol with the
state-of-the-art protocol [GKMN21], both of which are stateless and determinis-
tic. We focus solely on the signing phase, as the key generation phase is executed
only once. The primary cost of multi-party EdDSA signature protocols lies in
generating R = r ·G. A detailed comparison of communication costs and rounds
for the two-party case between our protocol and [GKMN21] is provided in Ta-
ble 1. Thus, Table 2 focuses on cases involving more than two parties, specifically
considering n = 3 and n = 5. Both our protocol and that of [GKMN21] are secure
in the dishonest-majority setting (i.e., with a corruption threshold of t = n− 1).
We do not include a comparison with the protocols in [BST21,KG24], which are
designed for the honest-majority setting (i.e., t = ⌊(n− 1)/2⌋).

Compared to the state-of-the-art protocol [GKMN21], our protocol reduces
the communication cost by a factor of 56× for both n = 3 and n = 5, while
maintaining the same number of rounds. As a trade-off, the computational
cost increases by approximately 2.25×. The communication cost is evaluated
for HashEdDSA over the Edwards curve Ed25519. In HashEdDSA, msg rep-
resents the hash digest of the original message, while in another EdDSA vari-
ant, PRFdk(msg) is computed directly on the original message msg. For this
variant, the circuit size required to compute PRFdk(msg) increases significantly,
especially for longer messages. In such cases, our protocol would achieve even
greater communication improvements. While both our protocol and [GKMN21]
have O(n2) communication complexity, we leverage a simple binary tree opti-
mization from [QYYZ22] to reduce the communication complexity to O(n), at
the cost of requiring an additional O(log n) rounds (see Section 4.2 for more de-
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tails).8 Therefore, one practical application of our protocol is the construction of
secure cryptocurrency wallets, where key shares are distributed across multiple
devices, making them difficult to steal. Another application is bandwidth-limited
scenarios (e.g., mobile computing, Internet of Things, etc.), making protocols
with significantly lower communication costs (e.g., our protocol) advantageous
for achieving faster running times.

2 Preliminaries

2.1 Notation

Let κ be the security parameter and n be the number of parties. We denote by
[n] the set {1, . . . , n} and [a, b] the set {a, . . . , b}. Bold lower-case letters, e.g., x,
denote the vectors, and x[i] is the i-th element of x with x[1] as the first entry
and x[a : b] as the sub-vector {x[a], . . . ,x[b]}. Let G be an additive cycle group
of generator G and order q, and upper-case letters, e.g., X, denote the group
element. For a circuit C, we use |C| to denote the number of multiplication gates.
We use [[x]]2 denote the multi-verifier authenticated share of x over F2κ and [[x]]q
denotes the multi-verifier authenticated share of x over Zq. We use P1, . . . , Pn to
denote n parties, P to denote the prover and V1, . . . ,VN to denote N verifiers.
For multi-party signature, we let N = n− 1.

2.2 Security Model

Universal ComposabilityWe prove the security of our protocols in the univer-
sal composability (UC) framework [Can01] against a static, malicious adversary
who corrupts up to n− 1 out of n parties. We say that a protocol Π UC-realizes
an ideal functionality F if for any probabilistic polynomial time (PPT) adver-
sary A, there exists a PPT adversary (called the simulator) S such that for any
PPT environment Z with arbitrary auxiliary input z, the output distribution of
Z in the real-world execution where the parties interact with A and execute Π
is computationally indistinguishable from the output distribution of Z in the
ideal-world execution where the parties interact with S and F. Environment Z
is a powerful entity with total control over adversary A and can choose the
inputs and see the outputs of all parties.

Security in the presence of malicious adversaries We use P1, . . . , Pn to
denote n parties and I to denote the set of corrupted parties. In this paper, we
consider security with abort, meaning that a corrupted party can obtain output
while the honest party does not. In this case, the ideal-world adversary receives
output first and then sends either (continue, i) or (abort, i) to the ideal function-
ality, for i /∈ I to instruct the functionality either to deliver the output to Pi or
to send abort to Pi. We always assume that output is sent this way and omit it
hereafter for the sake of simplicity.

8 It remains unclear how to apply the tree-based communication optimization to the
previous protocol[GKMN21], which is based on ZKGC.
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2.3 EdDSA Signature Algorithm

This section provides details on EdDSA. According to the NIST and IRTF
standards [JL17,Nat19], EdDSA has two variants based on how randomness
is generated: in the first variant, r = PRF(dk,msg), and in the second, r =
PRF(dk,H(msg)). This paper focuses on the second variant, as the PRF circuit
processes a fixed message length in this case. For simplicity, we denote H(msg)
as msg, which has minimal impact when the message is publicly known. EdDSA
offers two versions, based on the Edwards curves Ed25519 and Ed448. This paper
focuses on Ed25519, implemented with SHA-512 and ℓb = 256, a widely adopted
configuration for EdDSA-based applications. Our multi-party EdDSA signature
protocol is also compatible with Ed448, which uses SHAKE256 and ℓb = 456.
Formally, EdDSA includes three core algorithms (i.e., KeyGen, Sign, Verify)
and the security of plain EdDSA has been proven recently in [BCJZ21,BDD23].

Parameters: EdDSA is parameterized by params= (Ep,G, q, G, ℓb, ℓ,Hsig,PRF),
where Ep is the twisted elliptic curve, G is an additive cycle group of generator
G and order q, ℓb is the bit-length of secret EdDSA scalars, PRF : {0, 1}ℓb+ℓ →
{0, 1}ℓ is a pseudorandom function with ℓ-bit output (satisfying ℓ = 2ℓb) and
Hsig : {0, 1}∗ → Zq is a hash-to-integer function.

KeyGen(params):

1. Sample a secret key sk← {0, 1}ℓb of ℓb bit length, and compute a hash value
(h[1],h[2], . . . ,h[2ℓb]) := PRF(sk).

2. Assign h[1] = h[2] = h[3] = h[ℓb] = 0, h[ℓb − 1] = 1. Then use the updated

vector h[1 : ℓb] to define a secret scalar s ∈ Zq i.e., s =
∑ℓb

i=1 h[i] · 2i−1

mod q, and use the higher second half h[ℓb + 1 : 2ℓb] as the derived key dk.
3. Compute the public key pk = s ·G.

Sign(dk, s, pk,msg):

1. Derive pseudorandom value as r = PRF(dk,msg) and compute r =
∑ℓ

i=1 2
i−1·

r[i] mod q.
2. Compute R = r ·G, h = Hsig(R, pk,msg) and σ = r + h · s mod q.
3. Output a signature (R, σ).

Verify(pk,msg, (R, σ)):

1. Compute h′ = H(R, pk,msg).
2. Output 1 (accept) iff (23 · σ) · G = 23 · R + (23 · h′) · pk holds; otherwise,

output 0 (reject).

2.4 Functionality of Commitment FCom

To realize multi-party EdDSA signing, we use an ideal commitment functional-
ity FCom, formally defined in Fig. 1.
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Functionality FCom

This functionality runs with parties P1, . . . , Pn, as follows:

– Upon receiving (commit, sid, i, x) from a party Pi (for i ∈ [n]), record
(commit, sid, i, x) and send (receipt, sid, i) to all the other parties. If some
(commit, sid, i, ∗) is already recorded, ignore the message.

– Upon receiving (test, sid, j, k) from a corrupted party Pj , if (commit, sid, i, x)
has been stored then send (reveal, sid, j, xk) to Pj , where xk is k-th bit of
committed value x.

– Upon receiving (decommit, sid, i) from a party Pi (for i ∈ [n]): if
(commit, sid, i, x) has been stored then send (decommit, sid, i, x) to all the
other parties.

Fig. 1: The Commitment Functionality

In our protocol, all the inputs to be committed have a sufficient high entropy.
In this case, we can securely realize FCom by defining Com(x) = H(x) for high-

entropy input, where H(·) : {0, 1}∗ → {0, 1}2κ is a cryptographic hash function
with security parameter κ. Thus, in this case, all other parties can test guesses on
some bits of input after it has been committed. This has no impact on security,
as the simulation of commitments and the extraction of inputs still work in the
random-oracle model.

2.5 Functionality of Committed NIZK FRDL

com-zk

Fig. 2 overviews the committed non-interactive zero-knowledge proof function-
ality for discrete logarithm relation, denoted as FRDL

com-zk.

Functionality FRDL
com-zk

This functionality runs with parties P1, . . . , Pn, as follows:

– Upon receiving (com-prove, sid,Q, x) from a party Pi (for i ∈ [n]), if Q ̸= x ·G
or sid has been previously used then ignore the message. Otherwise, store
(sid, i, Q) and send (proof-receipt, sid) to the other parties.

– Upon receiving (decom-proof, sid) from a party Pi (for i ∈ [n]): (sid, i, Q) has
been stored then send (decom-proof, sid,Q) to the other parties.

Fig. 2: The Committed NIZK Functionality for DL Relation

The NIZK proof of knowledge in the random oracle model can be imple-
mented following several multi-party signing protocols, such as related works
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[Lin17,LN18,DKLs18,DKLs19]. In this paper, we employ the standard Schnorr
proof to demonstrate knowledge of the discrete logarithm of an elliptic curve
point. Note that the function H(·) : {0, 1}∗ → Zq used in Schnorr is a cryp-
tographic hash-to-integer function. This protocol can be converted into a non-
interactive version using the Fiat-Shamir heuristic [FS87]. By combining the
above instantiation of FCom with the Schnorr proof, we obtain an efficient imple-
mentation of the FRDL

com-zk functionality, which will be applied in the key generation
phase of the multi-party EdDSA signing protocol. Additionally, since a ‘high-
entropy random source’ is available during the key generation phase of EdDSA,
this instantiation does not affect our contribution.

2.6 Pseudorandom Correlation Function

The Pseudorandom Correlation Function (PCF) was first introduced by Boyle
et al.[BCG+20] based on the Learning Parity with Noise (LPN) assumption and
has since been further studied [BCG+22,CD23]. It enables the incremental and
on-demand local generation of an arbitrary polynomial number of pseudorandom
correlations from a pair of short correlated keys. Below, we define PCF-based
Vector Oblivious Linear Evaluation (VOLE) correlations.

Definition 1. Let 1 ≤ τ0(κ), τ1(κ) ≤ poly(κ) be the output-length functions,
and let M ⊆ F be a set of allowed master keys for verifier. Let (Setup,Y) be
probabilistic algorithms such that:

– Setup(1κ,M) sample a master secret key fromM, for example, msk := ∆;

– Y(1κ,msk) return a pair of outputs (y0, y1) ∈ {0, 1}τ0(κ)×{0, 1}τ1(κ), defining
a correlation on the outputs.

We say that (Setup,Y) define a reverse sampleable correlation, if there exists a
probabilistic polynomial time (ppt) algorithm RSample such that

– RSample(1κ,msk, b ∈ {0, 1}, yb ∈ {0, 1}τb(κ)) return y1−b ∈ {0, 1}τ1−b(κ),
such that for all msk ∈ M and b ∈ {0, 1} the following distributions are
statistically close:
• {(y0, y1)|(y0, y1 ← Y(1κ,msk)} and
• {(y0, y1)|(y∗0 , y∗1 ← Y(1κ,msk), yb ← y∗b , y1−b ← RSample(1κ,msk, b, y∗b )}

To show how this reverse sampling definition works, we adopt the distribution
for vector oblivious linear evaluation (VOLE) correlations if Y(1κ, ∆) samples
x ← F, k ← Fp, computes m = k + x ·∆ ∈ Fp and outputs ((x,m), k), where F
could be F2 (with p = 2κ) or Zq (with p = q).

Definition 2. Let (Setup,Y) fix a reverse-sampleable correlation with setup which
has output length functions τ0(κ), τ1(κ) and setsM of allowed master keys, and
let κ ≤ n(κ) ≤ poly(κ) be an input length function. Let (PCF.Gen,PCF.Eval) be
a pair of algorithms with the following syntax:

– PCF.Gen(1κ,msk) is a ppt algorithm that outputs a pair of keys (k0, k1);
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Experiment exppr
0 (κ)

for i = 1 to Q(κ):

vi ← {0, 1}n(κ)

(y
(i)
0 , y

(i)
1 )← Y(1κ,msk)

b← A(1κ, (vi, y(i)
0 , y

(i)
1 )i∈[Q(κ)])

return b

Fig. 3: Correlated outputs of the Y-function

Experiment exppr
1 (κ)

(k0, k1)← PCF.Gen(1κ,msk)
for i = 1 to Q(κ):

vi ← {0, 1}n(κ)

for b← {0, 1}: y(i)
b ← PCF.Eval(b, kb, v

(i))

b← A(1κ, (vi, y(i)
0 , y

(i)
1 )i∈[Q(κ)])

return b

Fig. 4: Pseudorandom Y-correlated outputs of a PCF

Experiment expsec
0 (κ)

(k0, k1)← PCF.Gen(1κ,msk)
for i = 1 to Q(κ):

vi ← {0, 1}n(κ)

y
(i)
1−b ← PCF.Eval(1− b, k1−b, v

(i))

b← A(1κ, kb, (vi, y(i)
1−b)i∈[Q(κ)])

return b

Fig. 5: Output distributions of a PCF

– PCF.Eval(b, kb, v) is a deterministic polynomial-time algorithm that on input

b ∈ {0, 1}, key kb and value v ∈ {0, 1}n(κ), outputs a value yb ∈ {0, 1}τb(κ)

The (PCF.Gen,PCF.Eval) (in Definition 2) is a (weak) pseudorandom corre-
lation function (PCF) for Y, if the following conditions hold:
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Experiment expsec
1 (κ)

kb ← Sb(1
κ,msk)

for i = 1 to Q(κ):

vi ← {0, 1}n(κ)

y
(i)
b ← PCF.Eval(b, kb, v

(i))

y
(i)
1−b ← RSample(1κ,msk, b, y

(i)
b )

b← A(1κ, kb, (vi, y(i)
1−b)i∈[Q(κ)])

return b

Fig. 6: Output distributions with RSample algorithm as in Definition 1

– Pseudorandom Y-correlated outputs. For every msk ∈ M, and non-
uniform adversary A of size poly(κ), and every Q = poly(κ), it holds that

|Pr[exppr0 (κ) = 1| − |Pr[exppr1 (κ) = 1| ≤ negl(κ)

for all sufficiently large κ, where expprb (κ) for b ∈ {0, 1} is defined in Fig. 3
and Fig. 4 (with Q(κ) samples given access to A).

– Security. For each b ∈ {0, 1} there is a simulator Sb such that for every
msk ∈ M, any every non-uniform adversary A of size B(κ), and every Q =
poly(κ), it holds that

|Pr[expsec0 (κ) = 1| − |Pr[expsec1 (κ) = 1| ≤ negl(κ)

for all sufficiently large κ, where expsecb (κ) for b ∈ {0, 1} is defined in Fig. 5
and Fig. 6 (again, with Q(κ) samples).

To simplify, we define “PCF assumption” which means the underlying PCF
primitive satisfies the standard security property defined by Boyle et al. [BCG+20]
and PCF can be instantiated under the LPN assumption [BCG+22,CD23]. Thus,
our protocol essentially relies on the LPN assumption (as discussed in Table 1).

2.7 Multi-Verifier Programmable PCF

Fig. 7 illustrates a multi-verifier extension of the two-party PCF described in
Section 2.6.

In the multi-verifier setting, P generates a VOLE correlation with each
verifier Vi, for i ∈ [N ], such that P obtains the same x ∈ Fℓ, and each Vi
receives the same ∆i ∈ F across all VOLE correlations. Existing PCF schemes
satisfy the programmability property defined in [BCG+19] and have been used
in [BCG+22] so that one value can be programmed to be the same across multiple
PCF instances. Specifically, a multi-verifier programmable PCF takes additional
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Macro Multi-verifier PCF

PCF.Genmv (1κ,F) runs N executions of PCF.Gen(1κ,msk) to generate (k0, k1, . . . ,

kN ) such that the size of every seed ki is at most Oκ(N log2(ℓ)). In particular,
PCF.Genmv (1κ) executes as follows:

1. For each i ∈ [N ], sample ∆i ← Fp.
2. For each i ∈ [N ], run PCF.Gen(1κ,∆i) to generate a pair of seeds (ki

0, k
i
1).

3. For each i ∈ [N ], output ki := ki
1 to Vi and k0 := {ki

0}i∈[N ] to P.

PCF.Evalmv (i, ki, v) runs N executions of PCF.Eval to generate parties’ shares on
a vector of multi-verifier authenticated sharing [[x]]2. For each i ∈ [N ], PCF.Evalmv

(i, ki) performs the following:

1. For each i ∈ [N ], run PCF.Eval(1, ki
1, v) to generate yi

1 = {k(i),∆i}.
2. For each i ∈ [N ], run PCF.Eval(0, ki

0, v) to generate yi
0 = {x,m(i)} such that

m(i) = k(i) + x ·∆i.

Fig. 7: Multi-verifier PCF scheme

input (x, ∆i) from one single P and multiple verifier Vi, and outputs seeds that
expand into the multi-verifier VOLE correlations with fixed x and ∆i. Using
this programmability, one can extend PCF from the two-party setting to the
multi-party setting (see [BCG+22] for details). Building on the multi-verifier
programmable PCF, we present the construction of multi-verifier authenticated
sharing, as defined in Section 3.1, while ensuring security.

3 Technical Overview

This section provides a technical overview of our work, with detailed descriptions
and security proofs deferred to later sections. Fig. 8 outlines the key techniques
in our designed protocols. Specifically, we define IT-MACs over a group and
leverage them to design a non-interactive, stateless, and deterministic multi-
verifier zero-knowledge proof (MVZK) for nonce derivation. Finally, we present
a multi-party EdDSA signing protocol that achieves optimal communication
efficiency.

3.1 Multi-Verifier IT-MACs over Groups

We begin by defining the concept of multi-verifier information-theoretic message
authentication codes (IT-MACs), which generalizes the single-verifier VOLE-
based ZK protocol [BMRS21]. The values to be authenticated are in either
F2 or F2κ , with authentication performed over the binary extension field F2κ .
Specifically, let V1, . . . ,VN represent N verifiers, and let ∆i ∈ F2κ be a uniform
global key known only to each verifier Vi. A value x ∈ F2 or F2κ , known by the
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prover P, is authenticated as [[x]]2 = (x,m1, . . . ,mN ), k1, . . . , kN , where each
mi = ki + x ·∆i ∈ F2κ , with the same value of x. Each verifier Vi holds a local
MAC key ki, i ∈ [N ], while the prover P retains the secret value along with the
corresponding MAC tags (x,m1, . . . ,mN ). Additionally, we extend this notation
to vectors, arithmetic operations, and groups of authenticated values as follows:

– Multi-Verifier IT-MACs over Vectors. Let [[x]]2 = {(x,m1, . . . ,mN ),k1,
. . . ,kN} as the multi-verifier IT-MACs over vectors such that P holds x ∈
Fℓ
2,m1, . . . ,mN ∈ Fℓ

2κ while Vi holds global key ∆i ∈ F2κ and local MAC
key ki ∈ Fℓ

2κ with mi = ki +∆i · x ∈ F2κ .

– Multi-Verifier IT-MACs over Arithmetic. Let [[x]]q = {(x,m1, . . . ,mN ),
k1, . . . , kN} as the multi-verifier IT-MACs over arithmetic operations such
that P holds x,m1, . . . ,mN ∈ Zq and Vi holds global key Λi ∈ Zq and local
MAC key ki ∈ Zq with mi = ki + Λi · x mod q.

– Multi-Verifier IT-MACs over Groups. Let [[X]]q = {(X,M1, . . . ,MN ),K1,
. . . ,KN} as the multi-verifier IT-MACs over groups such that P holdsX,M1,
. . . ,MN ∈ G while Vi holds glocal key Λi ∈ Zq and local MAC key Ki ∈ G
with Mi = Ki + Λi ·X ∈ G.

All authenticated values support additive homomorphism. For instance, given
authenticated bits over F2, i.e., [[x1]]2, . . . , [[xℓ]]2 and public coefficients c1, . . . , cℓ,

c ∈ F2κ , the parties can locally compute [[y]]2 =
∑ℓ

i=1 ci · [[xi]]2 + c. Below, we
define four macros that will be used throughout this paper.

Random. To generate an authenticated value [[r]]2, where r ∈ F2 is a uniformly
random value, P and the verifiers Vs can invoke PCF.Evalmv (c.f. Fig. 7 in Sec-
tion 2.7) in a stateless and deterministic manner, using precomputed k0 for P
and ki for each Vi, where i ∈ [N ]. We use Random to denote this macro.

Assign. Given an input x ∈ F2 from P, P and the verifiers Vs execute [[r]]2 ←
Random. Then, P sends y = r − x ∈ F2 to the verifiers, and all parties compute
[[x]]2 = [[r]]2 + y. We denote this assignment procedure as Assign(x).

13



Shr. Given an input x ∈ Fℓ
2 from P, the protocol simply invokes Assign(x) ℓ

times in parallel to generate [[x]]2. We denote this sharing procedure as Shr(x).
Note that the Shr macro is used only during key generation with a reliable source
of randomness.

Checking Zero. An authenticated value [[x]]2 can be checked for x = 0 by
having P send mi to the corresponding verifier Vi, who then verifies whether
mi = ki. We denote this verification process with the macro CheckZero([[x]]2).

In this case, a broadcast is not required, which means a malicious P could
send the correct (mi) to verifier Vi, while sending incorrect (mj) to verifier Vj ,
resulting in mi = ki, but mj ̸= kj . This could cause Vi to continue while Vj
aborts. All verifiers can resolve this by announcing their responses and checking
for consistency. As long as at least one verifier is honest, any inconsistency will
be detected. Since any EdDSA signature generated by our secure signing proto-
col must be verified by the original EdDSA verification algorithm (see Section
2.3), we eliminate the need for broadcast channels, reducing the communication
rounds to O(1). Consequently, the security follows that of two-party IT-MACs
and PCF scheme.

3.2 Multi-Verifier Stateless Deterministic Nonce Derivation

The previous section explains why a stateless and deterministic approach is
essential. Recent works [NRSW20,GKMN21,KOR23] have contributed to zero-
knowledge proof frameworks, all following a similar paradigm outlined below.

1. In the key generation phase, the prover P commits to the same nonce deriva-
tion key dk using verifiable commitments. Specifically, P commits to each
bit of dk, while the verifier V (i.e., the party responsible for checking the
correctness of the nonce derivation) holds the authentication keys.

2. Subsequently, in the signing phase, P proves an unbounded number of state-
ments (i.e., the correct evaluation of the PRF and exponentiation circuit).
Specifically, P and V jointly evaluate the target circuit while masking the
inputs with the committed nonce derivation keys. If P uses the correct dk,
they must open the same nonce R = PRFdk(msg) ·G for each message msg.

Unlike previous works, we aim to simultaneously prove nonce derivation to
multiple verifiers. The parties first evaluate the PRF circuit gate by gate. Since
all wire values are authenticated using the defined multi-verifier IT-MACs, the
ADD gates can be computed locally, while the MULT gates are jointly processed
by invoking the Assign(ωα ·ωβ) macro. Next, all parties prove the correctness of t
multiplication triples {ωα,j , ωβ,j , ωγ,j}j∈[t]. Here, we adopt the polynomial-based
batch verification technique from [BMRS21] and extend it to a multi-verifier
setting. First, let’s organize these multiplication triples into a 2× t

2 matrix, i.e.,

ωα,1 ωα,2 ωα,3 . . . ωα, t2
ωα, t2+1 ωα, t2+2 ωα, t2+3 . . . ωα,t
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Now, each column could define a 2-degree polynomial. Specifically, if the
prover P is honest, it will define t

2 polynomials for all α-wires as f1, . . . , f t
2

and another t
2 polynomials for all β-wires as g1, . . . , g t

2
. Consider the following

crucial equation:∑
i∈[ t2 ]

∑
j∈[2]

fi(j) · gi(j) =
∑
i∈[t]

(ωα,i · ωβ,i) =
∑
i∈[t]

ωγ,i

Let’s generalize the product polynomial as h =
∑

i∈[ t2 ]
fi · gi ∈ F[X]. If all the

multiplication triples are correct, the aggregated output must lie on the polyno-
mial h. At this point, all parties can jointly verify whether

∑
j∈[2][[h(j)]]2−[[z]]2 =

[[0]]2 by invoking the CheckZero subroutine. To complete the proof, the prover P
must also demonstrate that the commitment to the polynomial h corresponds
precisely to the inner product of f1, . . . , f t

2
and g1, . . . , g t

2
. The key insight is

that all parties can leverage the IT-MACs {[[ωα,i]]2, [[ωβ,i]]2}i∈[t] to homomorphi-
cally derive authenticated sharings of these t

2 polynomials, i.e., [[f1]]2, . . . , [[f
t
2 ]]2

and [[g1]]2, . . . , [[g t
2
]]2. A further verification of these commitments is performed

by checking that
∑

i∈[ t2 ]
[[fi]]2 · [[gi]]2 − [[h]]2 = [[0̃]]2, where 0̃ denotes a zero poly-

nomial that always evaluates to 0. By the Schwartz-Zippel lemma, this can be
verified by checking ∑

i∈[ t2 ]

[[fi(η)]]2 · [[gi(η)]]2 − [[h(η)]]2 = [[0]]2

for a random η ∈ F2κ . To ensure that this procedure is non-interactive, stateless,
and deterministic, we generate η using the Fiat-Shamir heuristic, i.e., by hashing
all transcripts.

Note that verifying [[f1(η)]]2, . . . , [[f t
2
(η)]]2, [[g1(η)]]2, . . . , [[g t

2
(η)]]2, and [[h(η)]]2

evaluated at the public value η reduces to another t
2 -batched verification of mul-

tiplication triples. The parties can recursively perform this process until only
one or two triples remain. The final multiplication triples can then be efficiently
verified using the sacrifice technique [KOS16]. If any check fails, the party out-
puts false. Otherwise, all parties obtain a correctly authenticated vector [[r]]2,
which represents the secure evaluation output of PRF[[dk]]2(msg).

We then convert IT-MACs over F into IT-MACs over the group G with prime
order q. Previously, Smart et al.[STA19] and Kondi et al.[KOR23] observed that
IT-MACs over a group can be applied such that, for a group element R ∈ G
with R = r · G, it is secretly shared using correlations {Ri,Mi}i ∈ [n], where
R =

∑
i∈[n] Riand

∑
i∈[n] Mi = Λ · R. Here, Λ ∈ Zq is the same global key used

in [[r]]q. We extend their approach by converting [[r]]2 to [[R]]q. The core challenge
lies in the fact that r ∈ Fℓ, which is secretly shared over F, cannot be directly
aggregated into [[r]]q or [[R]]q, both of which are shared over Zq or a group.

Building on prior work [BST21], we adopt the concept of extended doubly-
authenticated bits (edaBits) [EGK+20]. Specifically, we transform the original
edaBits from the MPC setting into a multi-verifier zero-knowledge (MVZK)-
friendly form mv-edaBits:= {([[ρ]]q, [[ρ[1]]]2, . . . , [[ρ[ℓ]]]2)}, where the random value
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ρ ∈ Zq is secret-shared over the arithmetic field Zq in the multi-verifier setting.

Its binary representation (i.e., ρ =
∑ℓ

j=1 2
j−1ρ[j] mod q) is also secret-shared

over the boolean field F2 within the same multi-verifier setting.
An important observation is that we need ρs in both fields to keep identical.

Prior work [EGK+20] applied heavy cut-and-choose technique. This method is
uneconomic to design multi-party EdDSA as just one mv-edaBits is used for a sig-
nature. Therefore, we improve the check protocol using a “sacrificing” technique.
In particular, parties generate two edaBits, with ([[a]]q, [[a]]2) and ([[ρ]]q, [[ρ]]2) re-
spectively. Incorporated with an affine circuit Caff , P and Vs can securely evaluate
to b = a+χ · ρ mod q in clear, where χ ∈ Zq is an unpredictable random value.

An important observation is that the values of ρ must remain identical across
both fields. Prior work [EGK+20] used a heavy cut-and-choose technique, which
is inefficient for designing multi-party EdDSA since each signature requires only
one mv-edaBits. To address this, we improve the verification protocol using a
‘sacrificing’ technique. Specifically, the parties generate two edaBits: ([[a]]q, [[a]]2)
and ([[ρ]]q, [[ρ]]2). By incorporating an affine circuit Caff , the prover P and verifiers
Vs can securely compute b = a + χ · ρ mod q in the clear, where χ ∈ Zq is an
unpredictable random value.

Suppose a dishonest P uses inconsistent values for a and ρ. All parties can
detect this by invoking CheckZero([[a]]q +χ · [[ρ]]q − b). This works because, if the
equation holds, we get:

a+ χ · ρ− (a+ χ · ρ),

where the red a and ρ are aggregated from the binary representations ofmv-edaBits,
and the blue a and ρ are generated from the integer part of the mv-edaBits. If Λ
is uniformly random and χ ∈ Zq is computationally unpredictable, the adversary
A’s advantage in forging inconsistent mv-edaBits is negligible, i.e., negl(κ).

After the consistency of mv-edaBits, they can correctly convert the vector
[[r]]2 into the IT-MACs over group by [[R]]q = (c − [[ρ]]q) · G where c = r + ρ
mod q is evaluated by an addition circuit Cadd, with inputs of [[r]]2 and [[ρ]]2.

3.3 Multi-Party EdDSA Signing

We focus on the Ed25519 version of the EdDSA signature, with the Ed448 case
being nearly identical, differing only in the choice of PRF and elliptic curve. The
multi-party EdDSA signing process follows two phases. In the key generation
phase, each party generates all necessary keys: the secret key ski, signing key si,
random seed k∗, derived key dki, and global keys ∆i and Λi. Additionally, the
public key for the signature is easily constructed using the additive cyclic group.

Given the message msg, a core step is to derive mv-edaBits non-interactively,
statelessly, and deterministically through PCF evaluation. The session identifier
is set as sid = msg, and all necessary common randomness is generated via
H(k∗, sid,mvnd). The verifiable nonce derivation can then proceed as follows:

1. Each Pi acts as the prover P to prove its Ri, while all other parties Pj , where
j ∈ [n] \ {i}, act as the N verifiers V.
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2. Pi aborts if it detects any false in the multi-verifier nonce derivation process.
Otherwise, it computes R =

∑
i∈[n] Ri.

The remaining steps are straightforward. Each Pi computes h = Hsig(R, pk,msg)
and σi = ri+h·si mod q. All parties then open σ =

∑n
i=1 σi mod q. Finally, each

party verifies the signature by checking if verify(pk,msg, (R, σ)) = false. If the
verification fails, the process is aborted; otherwise, the parties output (R, σ).
As a result, the overall computation and communication costs are primarily
influenced by the multi-verifier nonce derivation.

4 The Designed Multi-Party EdDSA Signing Protocol

Recall that we have defined multi-party IT-MACs over groups in Section 3.1.
Thus, this section directly shows the detailed multi-verifier nonce derivation
protocol and its application in multi-party EdDSA signatures.

4.1 Extended Doubly-Authenticated Bits for MVZK Proof

Extended doubly-authenticated bits (mv-edaBits) for multi-verifier zero-knowledge
proof are a key tool in this work, enabling the efficient conversion of [[r]]2 into
an authenticated sharing [[R]]q over the group. mv-edaBits are defined as a tu-
ple ([[ρ]]q, {[[ρ[1]]]2, . . . , [[ρ[ℓ]]]2}) where the identical random value ρ ∈ Zq is
secret-shared in the arithmetic domain Zq, and its binary representation bits are

secret-shared in the binary domain F2κ , i.e., ρ =
∑ℓ

i=1 2
i−1 · ρ[i] mod q. We

present the ideal functionality for mv-edaBits in Fig. 9.
Before introducing the achievement of FMV-edaBits, we first present a core check

subroutine. This subroutine operates in the multi-verifier setting and utilizes
a polynomial-based batch verification technique. A macro for this procedure is
defined in Fig. 10. The secure instantiation protocol, CheckMuls, is detailed in the
full version. It extends the AssertMultVec protocol from[BMRS21] to the multi-
verifier setting. As a result, the security of CheckMuls is analogous to the single-
verifier protocol, with the distinction that an adversary may influence which
honest verifier aborts, while others continue to output results. This issue can be
resolved by having all verifiers broadcast their results and check for consistency.
Any inconsistency will be detected as long as at least one verifier is honest. Since
the simulator can simulate the input round of any subprotocol as described,
it remains secure even if the adversary behaves inconsistently. Moreover, the
protocol

∏
MV-edaBits ensures consistency, meaning that any malicious behavior

where a corrupted prover sends different values to different honest verifiers will
be detected.

The prover P and N verifiers V1, . . . ,VN can generate faulty mv-edaBits by
simply invoking the PCF macro. We need to ensure the consistency between the
bits {ρ[1], . . . ,ρ[ℓ]} and the random value ρ shared across two fields. This can be
achieved through the cut-and-choose verification phase from [EGK+20]. In this
paper, however, we observe that these values can be more efficiently verified using
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Functionality FMV-edaBits

Let C be the set of corrupted parties. This functionality runs with two types of
parties, i.e., multiple verifiers V1, . . . ,VN and the prover P. We use the symbols
{[[·]]q, [[·]]2} to distinguish the authenticated fields in the Zq and F2κ respectively.

Initialize: For each Vi, i ∈ [N ], upon receiving (init, i) from Vi and P, sample
∆i ← F2κ , Λ

i ← Zq. If Vi is corrupted then receive (∆i ∈ F2κ , Λ
i ∈ Zq) from

the adversary. Here, ∆i is global key for [[·]]2-sharing and Λi is global key for [[·]]q-
sharing. Store (∆i, Λi) and send them to Vi, and ignore all subsequent (init, i)
commands.

Create edaBits: Upon receiving (edaBits, str) from Vs and P, if (∆i, Λi) for
i ∈ [N ] have been stored:

– If sid has never been received before, generates ([[ρ]]q, {[[ρ[1]]]2, . . . , [[ρ[ℓ]]]2})
satisfying ρ =

∑
i∈[ℓ] 2

i−1 · ρ[i] mod q, sends them to all parties and stores

(sid, ([[ρ]]q, {[[ρ[1]]]2, . . . , [[ρ[ℓ]]]2}));
– Otherwise, it finds the record as (sid, ∗) and sends ([[ρ]]q, {[[ρ[1]]]2, . . . , [[ρ[ℓ]]]2})

to all parties.

Fig. 9: The Ideal Functionality for mv-edaBits

Macro CheckMuls

This macro is executed with P and N verifiers V1, . . . ,VN , and inherit all the
features of PCF (shown in Fig. 7) and FMV-ND (shown in Fig. 12). Furthermore,
this macro is invoked by the following commands.

Check Multiplications: Upon receiving t multiplication triples {([[ωα,j ]]2,
[[ωβ,j ]]2, [[ωγ,j)]]2}j∈[t] from P and Vs, where t multiplication tuples are equipped
with IT-MACs. The details of this macro are provided in Appendix A and Fig. 16.
Finally, if for any j ∈ [t] s.t. ωγ,j ̸= ωα,j ·ωβ,j , then set res = false. Otherwise, set
res = true.

Fig. 10: The Multi-Verifier Check Multiplications Macro

the sacrifice of another set of mv-edaBits. As shown in Theorem 1, if the red ρi
values (the Binary parts) are inconsistent with the blue ρ (the Arithmetic part),
the check subroutine will fail, except with a probability of at most 1

q + negl(κ).

Communication and Round Complexity. The transcripts sent from P to
Vs are mainly caused during the gate-by-gate paradigm and polynomial-based
batch verification process. The former consumes t2 bits, where t2 is the number
of AND gates in Caff ; the latter consumes log(t2) ·4κ+9κ bits. Thus, the commu-
nication complexity of

∏
MV-edaBits is roughly O(t2+log(t2)·κ). In terms of round

complexity, since the affine circuit Caff is publicly known, all transcripts for the
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Protocol
∏

MV-edaBits

This protocol runs with two types of parties, i.e., multiple verifiers V1, . . . ,VN
and the prover P. We use the symbols {[[·]]q, [[·]]2} to distinguish the authenticated
fields in the Zq and F2κ respectively. Parameterized by the security parameter κ.
All parties hold an affine circuit Caff : {x+χ ·y = z}, where x, χ, y are ℓ-bit inputs,
and z is an ℓ-bit output. The number of multiplication gates in Caff is denoted as
t2 = |Caff |. Let H : {0, 1}∗ → Zq.

Setup runs PCF.Genmv to generates keys for each Vi, i ∈ [N ] and P.

1. P and Vs run PCF.Genmv(1
κ,Zq) to generate (k

(q)
0 ) for P and (k

(q)
i ) for Vi.

2. P and Vs run PCF.Genmv(1
κ,F2) to generate (k

(2)
0 ) for P and (k

(2)
i ) for Vi.

3. Parties jointly sample common random source k∗ ← F2κ .

Create mv-edaBits runs PCF.Evalmv to derive authenticated mv-edaBits for each
Vi, i ∈ [N ] and P. Besides, Create needs an input of a common string str. All
parties execute as follows:

1. P runs PCF.Evalmv(0, k
(q)
0 ,H(str||1)), while for each i ∈ [N ], Vi runs

PCF.Evalmv(i, k
(q)
i ,H(str||1)) to generate two [[ρ]]q, [[a]]q.

2. In parallel, P runs PCF.Evalmv(0, k
(2)
0 ,H(str||2)) and for each i ∈ [N ], Vi runs

PCF.Evalmv(i, k
(2)
i ,H(str||2)) to generate [[ρ]]2, [[a]]2.

3. Each party generates a common random by H(str||H(str||1)||H(str||2)) = χ ∈
Zq and append str := str||H(str||1)||H(str||2)||χ.

4. For circuit Caff , they evaluate it with the inputs of [[a]]2, χ and [[ρ]]2. The
gate-by-gate circuit evaluations are executed as follows:
(a) In a topological order, for each gate (α, β, γ, T ) ∈ Caff with input wire

values of (ωα, ωβ) and output wire value of ωγ :
- If T = ADD, P and Vs locally compute [[ωγ ]]2 = [[ωα]]2 + [[ωβ ]]2.
- If T = MULT and this is j-th multiplication gate, P and Vs execute

[[ωγ ]]2 ← Assign(ωα · ωβ).
- Append str := str||dj where dj is the transcript sent by P.

(b) P and Vs jointly check the correctness of multiplication triples by invoking

CheckMuls({[[ωα,j ]]2, [[ωβ,j ]]2, [[ωγ,j ]]2}j∈[t2])

with seed str := H(str). If any failure happens, the parties output false.
5. Parties now obtain the output wires [[b]]2 that satisfy

∑ℓ
j=1 2

j−1 · b[j] =

(
∑ℓ

j=1 2
j−1 · a[j]) + χ · (

∑ℓ
j=1 2

j−1 · ρ[j]) mod q.
6. Parties open b. Then, all parties invoke CheckZero([[a]]q + χ · [[ρ]]q − b).
7. If any checking fails, the parties output false and abort. Otherwise, they output

([[ρ]]q, {[[ρ[1]]]2, . . . , [[ρ[ℓ]]]2}).

Fig. 11: The Generation Protocol of mv-edaBits

AND gates can be sent in a single round. Similarly, for the polynomial-based
batch verification process, P can transmit all verification proofs in one round
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Functionality FMV-ND

This functionality runs with P and V1, . . . ,VN . This functionality is parameterized
by the nonce derivation circuit C∗ := {R = PRFdk(msg) ·G} where G is a generator
of the elliptic curve group G with order q.

1. Upon receiving (mvzk-input, did, dk) from P and (mvzk-input, i) from all the
verifiers V1, . . . ,VN , with a fresh identifier sid, store (did, dk).

2. Upon receiving (mvzk-prove, did,msg) from P and (mvzk-verify, did,msg) from
V1, . . . ,VN . If (did, dk) has been stored, set res = true, R := C∗(dk,msg) and
res = false otherwise.

3. If res = true, send (mvzk-proof,msg, [[R]]q) to the parties; otherwise, send abort
to the parties.

Fig. 12: Multi-Verifier Zero-Knowledge Proof Functionality for Nonce Derivation

using the Fiat-Shamir heuristic. As a result, this protocol can be executed in a
non-interactive setting.

Theorem 1.
∏

MV-edaBits UC-realizes FMV-edaBits in the presence of an adversary
statically corrupting up to n − 1 parties, in the (FMV-CheckMULs)-hybrid random
oracle model and PCF assumption.

The security proof could be found in the full version.

4.2 Multi-Verifier Nonce Derivation

Our multi-verifier zero-knowledge proof (MVZK)-based nonce derivation proto-
col follows a gate-by-gate paradigm, where the value on each wire is formally
secretly shared as [[x]]2 = {(x,m1, . . . ,mN ), k1, . . . , kN} for N verifiers, such that
mi = ki +x ·∆i ∈ F2κ , and each Vi holds (ki, ∆i), i ∈ [N ]. It could be generated
by invoking PCF (see Fig. 7). FMV-ND shown in Fig. 12 defines our multi-verifier
nonce derivation functionality. Our multi-verifier zero-knowledge proof (MVZK)-
based nonce derivation protocol follows a gate-by-gate paradigm, where the value
on each wire is secret-shared as [[x]]2 = {(x,m1, . . . ,mN ), k1, . . . , kN} for N veri-
fiers. Here, mi = ki+x·∆i ∈ F2κ , and each Vi holds (ki, ∆i) for i ∈ [N ]. This can
be generated by invoking PCF (see Fig.7). Our multi-verifier nonce derivation
functionality is formally defined by FMV-ND in Fig.12.

Given the FMV-CheckMULs and FMV-edaBits ideal functionalities, we design an in-
stance protocol for multi-verifier zero-knowledge (MVZK) proof of nonce deriva-
tion within the (FMV-CheckMULs, FMV-edaBits)-hybrid model and under the PCF
assumption, as illustrated in Fig. 13. The

∏
MV-ND phase is designed to be deter-

ministic and stateless to support multi-party EdDSA signing, where the com-
mon random generators are instantiated using H(long-term key||transcripts) with
a cryptographic hash function H : {0, 1}∗ → {0, 1}∗.
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Protocol
∏

MV-ND

Parameterized by the security parameter κ, an elliptic curve group G generated by
G with order q. n parties hold a circuit for a keyed PRF function C := PRFdk(msg).
The circuit C consists of t multiplication gates, with inputs including the secret
shared derived key dk ∈ F2κ and the message msg ∈ {0, 1}ℓ, and it produces a
secretly-shared nonce r ∈ {0, 1}ℓ as the output. Furthermore, all parties consensus
on an addition circuit Cadd : {x+ y = z} with t′ = |Cadd| multiplication gates. Let
C̃ being a circuit computed via the C followed by Cadd and t̃ = t + t′. When each
party acts as prover P and the other N = n− 1 parties act as verifiers V1, . . . ,VN
in turns.

Setup: Run once, with P and Vs invoke the Setup phase of FMV-edaBits (in Fig. 9).
Furthermore, it receives [[dk]]2 from P.

Proof: Each party inputs publicly known message msg:

1. Each party initializes a string as str := H(mvnd||msg||k∗).
2. All parties generates mv-edaBits by sending (edaBits, str) to FMV-edaBits.

// Gate-by-Gate Evaluation of C̃
3. For circuit PRF, they evaluate it with the inputs of [[dk]]2 and msg, while for

circuit Cadd, they evaluate it with the inputs of [[r]]2 and [[ρ]]2. Initializing str
as msg. The gate-by-gate circuit evaluations are executed as follows:
(a) In a topological order, for each gate (α, β, γ, T ) ∈ C̃ with input wire values

of (ωα, ωβ) and output wire value of ωγ :
- If T = ADD, P and Vs locally compute [[ωγ ]]2 = [[ωα]]2 + [[ωβ ]]2.
- If T = MULT and this is j-th multiplication gate, P and Vs execute

[[ωγ ]]2 ← Assign(ωα · ωβ). (Append str := str||dj where dj is the
transcript sent by P)

(b) P and Vs jointly check the correctness of multiplication triples by invoking

CheckMuls({[[ωα,j ]]2, [[ωβ,j ]]2, [[ωγ,j ]]2}j∈[t̃]).

with seed str := H(str). If any failure happens, the parties output false.
Otherwise, they obtain [[c]]2 satisfying

∑
j∈[ℓ] 2

j−1 · c[j] =
∑

j∈[ℓ] 2
j−1 ·

r[j] +
∑

j∈[ℓ] 2
j−1 · ρ[j] mod q and r = PRFdk(msg).

// Conversion between F2κ field and G group
4. All parties opens c and computes c =

∑
j∈[ℓ] 2

j−1 · c[j].
5. If any failure happens, the parties output false. Otherwise, each party outputs

the authenticated nonce as [[R]]q = (c− [[ρ]]q) ·G and [[r]]q = c− [[ρ]]q.

Fig. 13: Multi-Verifier Stateless Deterministic Nonce Derivation based on MVZK

Communication and Round Complexity. The communication complexity
consists of three parts: (1) the gate-by-gate paradigm requires t̃ bits, where t̃
is the number of multiplication gates in the combined circuit C̃, resulting one
round communication; (2) the polynomial-based batch verification technique
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consumes log(t̃) · 4κ + 9κ bits, resulting in a total communication complexity
of approximately O(t̃+log(t̃) ·κ) in a non-interactive setting; (3) the generation
of mv-edaBits requires t2 + log(t2) · 4κ+ 9κ+ ℓ+ 2ℓ · κ bits per party, with one
rounds of communication. Considering the sizes of the PRF and the affine circuit,
we have t̃ ≫ t2. The three components mentioned above are communication-
independent, meaning they can all be merged into a single round. Therefore, the
communication complexity of the

∏
MV-ND protocol is O(n(t̃+ log(t̃) · κ+ κ · ℓ))

bits per party, with only one round of communication in total.
Here, P only needs to send di to all Vs. With a binary tree pattern [QYYZ22],

the amortized communication complexity can be optimized from O(n) to O(1)
among the n signing parties, at the cost of increasing the rounds from O(1) to
O(n). Alternatively, a parent node forwards the same di to its three or more
child nodes and this process iterates until the edge nodes are reached, providing
a trade-off between communication and rounds. Compared to the protocol by
Garillot et al. [GKMN21], where each Vi for i ∈ [N ] sends an independent
garbled circuit to P, our FMV-ND protocol is better suited for large-scale ZK
implementations in high-speed networks, such as LANs.

We prove that the multi-verifier stateless deterministic nonce derivation pro-
tocol is UC-secure, even when an adversary statically corrupts up to n−1 parties.

Theorem 2.
∏

MV-ND UC-realizes FMV-ND in the presence of an adversary stat-
ically corrupting up to n − 1 parties, in the (FMV-CheckMULs, FMV-edaBits)-hybrid
random oracle model and PCF assumption.

The security proof can be found in the full version.

4.3 Multi-Party EdDSA Signature Protocol

Building on prior definitions [LN18,BST21], we present the ideal functionality
for EdDSA, as illustrated in Fig. 14. In FEdDSA, the (KeyGen) command can be
called only once, while the (Sign) command can be invoked multiple times.

In Fig. 15, we present the details of the multi-party EdDSA signing protocol,
which allows us to achieve O(n) communication bandwidth. This protocol oper-
ates within the (FMV-ND, FCom, FRDL

com-zk)-hybrid model and is executed by n par-
ties. During the key generation phase, each party Pi, where i ∈ [n], generates its
secret key ski and jointly computes the public key as pk =

∑
i∈[n] si ·G. Party Pi

also invokes FMV-ND to commit to the PRF key dki := PRF(ski)[ℓb+1; 2ℓb], where
Pi acts as the prover and the other n−1 parties serve as verifiers (N = n−1). It
is important to note that at this stage, each party Pi generates all necessary uni-
formly random long-term keys, including k∗, ∆i, Λi, and PCF keys for

∏
MV-ND.

The PCF can be implemented using a client-server model, where key manage-
ment servers hold the client’s keys in escrow, and the client runs PCF.Genmv on
behalf of the servers. This approach is becoming a popular service in lightweight
internet environments due to its features of availability and scalability. Benefit-
ing from the stateless and deterministic design, our protocol offers a promising
solution, as it eliminates the need for key management servers to handle state
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Functionality FEdDSA

This functionality is parameterized by a set of EdDSA parameters, i.e., params
= (Ep,G, q, G, ℓb, ℓ,Hsig,PRF) and runs with parties P1, . . . , Pn as follows:

– Upon receiving (KeyGen, params) from all parties, generate a key pair
(dk, s, pk) by running KeyGen(params), and store (pk, dk, s). Then, send pk
to P1, . . . , Pn, and ignore all subsequent (KeyGen) commands.

– Upon receiving (Sign, msg) from all parties, if (KeyGen) has not been called
then abort; if msg has been signed previously, then send (msg, (σ,R)) back;
otherwise, generate an EdDSA signature (σ,R) by running Sign(dk, s, pk,msg)
and output (msg, (σ,R)) to all parties.

Fig. 14: The EdDSA Functionality

synchronization or rely on high-entropy random number generators, thereby re-
ducing deployment costs.

During the signing phase, each party verifiably generates [[Ri]]q that equals to
PRF[[dki]]2(msg)·G by invoking FMV-ND. If all parties receive res ̸=⊥ from FMV-ND,
they obtain an authenticated [[Ri]]q. After opening and verifying R1, . . . , Rn, all
parties can correctly compute R =

∑
i∈[n] Ri. The communication overheads

required is |FMV-ND|+ 2 ∗ ℓG + q for each party. As discussed in Section 4.2, we
instantiate FMV-ND in a single round using the Fiat-Shamir heuristic; therefore,
the communication rounds required for the signing phase total three.

Theorem 3. Assume that PRF is a pseudorandom function. Then,
∏

MP,Sign

UC-realizes FEdDSA in the presence of an adversary statically corrupting up to
n− 1 parties, in the (FMV-ND, FCom, FRDL

com-zk)-hybrid random oracle model.

The security proof can be found in the full version.

Extension to Threshold Case. Our multi-party EdDSA protocol can be ex-
tended to the generic-threshold setting, where any t+1-out-of-n parties can gen-
erate a signature, and at most t parties can be corrupted This extension adopts
the approach in prior works, e.g., [GG18,DKLs18,LN18,DKLs19,DKLS24] using
Feldman’s VSS and Shamir secret sharing (SSS). Specifically, the randomized
key-generation protocol involves: (1) generating the public key: all parties se-
curely compute public/private keys following the approach in prior works; (2)
producing short PCF keys: either all parties run a threshold MPC protocol to
generate PCF keys, or a client generates and distributes them. For deterministic
signing protocol, any t+ 1 parties can locally convert the SSS-based key shares
into an additively-shared piece and finish the signing. This conversion is standard
and highly efficient. One caveat is that signatures produced by different sets of
t+1 parties on the same message differ yet can be verified with the same public
key. However, this still satisfies the deterministic requirement when considering
the fixed set of t+ 1 parties.
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Protocol
∏

MP,Sign

This protocol is run among multiple parties P1, . . . , Pn and is parameterized by
the EdDSA parameters params = (Ep,G, q, G, ℓb, ℓ,Hsig,PRF), with ℓ = 2ℓb, Hsig

is hash function for signature and PRF is instantiated by SHA512. This protocol
makes use of the ideal oracle FMV-ND (Fig. 12).

Distributed Key Generation: Upon receiving (KeyGen, params), each party Pi, i ∈
[n] executes as follows:

1. Pi samples private key as ski ← {0, 1}ℓb and computes (hi[1], . . . ,hi[ℓ]) :=
PRF(ski).

2. Pi sets derived key as dki := {hi[ℓb + 1], . . . ,hi[2ℓb])}, sends
(mvzk-input, didi, dki) to FMV-ND with constant identifier didi.

3. Pi sets hi[1] = hi[2] = hi[3] = hi[ℓb] := 0 and hi[ℓb − 1] := 1, then use the
updated vector (hi[1], . . . , hi[ℓb]) to define si =

∑ℓb
j=1 2

j−1 · hi[j] mod q.
4. Pi computes public key share as pki = si ·G.
5. All parties send pki for i ∈ [n] using FRDL

com-zk.

6. After receiving correct pki for all i ∈ [n] from FRDL
com-zk, Pi computes common

public key pk =
∑

i∈[n] pki and stores {pk, ski, dki, si}.
7. The key generation phase is run only once.

Distributed Signing: With common input (Sign,msg), each party Pi, i ∈ [n] executes
as follows:

1. Each party Pi acts as P by sending (mvzk-prove, didi,msg) to FMV-ND while
all other Pj , j ̸= i, send (mvzk-verify, didi,msg) to FMV-ND acting as Vs with
N = n− 1.

2. Upon receiving [[R1]]q, . . . , [[Rn]]q and ri from FMV-ND, each Pi computes [[R]]q =∑
i∈[n][[Ri]]q. All parties jointly open to R. Pi aborts if any resj = abort for

j ̸= i or R is incorrectly opened.
3. Pi locally computes h = Hsig(pk, R,msg) and the signature share σi = si ·h+ri

mod q. Then Pi sends σi to all the parties using commitment FCom.
4. Upon receiving all the σj , j ̸= i from FCom, each party computes σ =

∑
i∈[n] σi

mod q. If (σ,R) is not a valid signature on msg, then Pi aborts. Otherwise,
Pi outputs (σ,R).

Fig. 15: The Stateless Deterministic Multi-Party EdDSA Signing Protocol

5 Performance and Evaluation

The evaluation is configured using the Ed25519 curve, providing a security level
of κ = 128 and utilizing SHA512 as the PRF nonce derivation function, as speci-
fied by the EdDSA standard. According to the estimates in [AAL+24], SHA512
involves approximately 58k AND gates. The multi-party signing protocol is es-
sentially a lightweight wrapper around FMV-ND, with the primary cost driven
by executing FMV-ND among the parties. Notably, the structure of our signing
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protocol,
∏

MV-ND, ensures minimal computational overhead when instantiating
FMV-ND in both directions. While P evaluates the circuit, the Vs remain idle, and
when the Vs validate the circuit,P has no additional tasks. As a result, when a
party Pi acts as P during its nonce verification session, it idles in its Vj role for
j ∈ [N ] during the other parties’ nonce verification sessions. Consequently, the
workload is evenly distributed across all parties.

– Gate-by-Gate Evaluation. As discussed in Section 4.2, each AND gate re-
quires one VOLE instance for a single transfer and secret addition. Therefore,
each party primarily needs approximately 58k VOLEs for the gate-by-gate
evaluation phase. The evaluations of affine circuit Caff during the genera-
tion of mv-edaBits and addition circuit Cadd after the PRF circuit introduce
minimal additional VOLE overhead.

– CheckMuls. For EdDSA, using the Fiat-Shamir heuristic, the parties need to
hash 50.9KB of messages, followed by log(58k) computational iterations
within a single transfer. Each iteration involves hashing 112B messages,
performing one polynomial inter-product over F2κ [X] of degree 2, executing
3κ VOLEs, and conducting 2t polynomial evaluations of degree 1. The final
iteration requires four VOLE correlations and hashing 128B messages. Thus,
each party needs approximately 3κ× log(58k) + 4 ≈ 6.1k VOLEs, with only
minor overhead.

– Consistency Check. Each party additionally generates up to two mv-edaBits,
consuming around 2|q|+ 2ℓ VOLEs, and performs n elliptic curve multipli-
cations and additions with negligible overhead.

In summary, the workload for each party is approximately 65.6k VOLEs, with
minimal additional overhead. Boyle et al. [BCG+22] provide estimates for PCF
evaluation times. Specifically, VOLEs can be instantiated using fixed-key AES,
measured by AES-NI instructions on modern CPUs. On a 3GHz processor, a
single PCF evaluation takes approximately 3.57 × 10−3 milliseconds. Based on
this, we estimate that generating one signature between two parties with one
corruption takes around 230 ms. This process can be scaled linearly using GPUs,
as the AES calls in PCF are fully independent and thus parallelizable. However,
the lack of publicly available open-source code for PCF [BCG+22] presents a
significant challenge to our evaluation, meaning the timing estimates provided
here are purely theoretical.

We compare our work with two existing multi-party EdDSA signing proto-
cols: Bonte et al. [BST21], which operates in the honest majority setting, and
Garillot et al. [GKMN21], which targets the dishonest majority setting. Bonte et
al. [BST21] conducted their experiments using SCALE-MAMBA in a LAN envi-
ronment, with each party running on an Intel i7-7700K CPU (4 cores at 4.2GHz,
2 threads per core) and 32GB of RAM, connected via a 10Gb/s network switch.
The protocol achieved an average runtime of 1406 ms under the Shamir (3,1)
access structure, based on 100 trials. The total computational burden for each
party in Garillot et al. [GKMN21] involves approximately 132k AES invocations
on 128-bit ciphertexts, hashing a 245KB message, performing three elliptic curve
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multiplications, and executing 256 additions in Zq. However, Garillot et al. did
not provide empirical measurements for their πn,Sign protocol. To offer a peer-
to-peer comparison, we estimate the performance of Garillot et al. ’s protocol
using the benchmarks from Boyle et al. [BCG+22], where each byte of fixed-key
AES requires approximately 1.3 CPU cycles. On a 3GHz processor, this results
in an estimated signature time of 102 ms. Although our computation time is
relatively modest, we achieve one to two orders of magnitude improvement in
communication efficiency compared to prior works.
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Supplementary Material

A Multi-Verifier Check Multiplication Subprotocol

Functionality FMV-CheckMULs

This functionality runs with P and N verifiers V1, . . . ,VN , and inherit all the
features of PCF (shown in Fig. 7) and FMV-ND (shown in Fig. 12). Let H ⊂ [n]
be the set of honest verifiers. Furthermore, this functionality is invoked by the
following commands.

Check Multiplications: Upon receiving t multiplication triples (CheckMuls, sid,
{[[ωα,j ]]2, [[ωβ,j ]]2, [[ωγ,j ]]2}j∈[t]) from P and Vs, where t multiplication tuples are
defined in multi-verifier IT-MACs. If for any j ∈ [t] s.t. ωγ,j ̸= ωα,j · ωβ,j , then
set res = false. Otherwise, set res = true. Send the set of {resi} to the adversary
where i ∈ [N ] − H and Vi’s authenticated shares cause failure. For each i ∈ H,
wait for an input from the adversary and perform as follows:

– If it is continuei, send res to Vi.
– If it is aborti, send abort to Vi.

Fig. 16: The Multi-Verifier Check Multiplications Functionality

Fig. 18 presents a secure instantiation protocol CheckMuls for the multi-
verifier check multiplications macro in Section 4.2 and Fig. 10. We follow the
paradigm of AssertMultVec protocol of [BMRS21] and design a multi-verifier
protocol. The security of ideal functionality FMV-CheckMULs is similar to one-
verifier protocol, except that we allow an adversary to control which honest
verifier aborts while other verifiers output results. Fig. 17 gives an example
of CheckMuls when t = 24.

Communication and Round Complexity. There are log(t) iterations when
checking t multiplication triples. In each iteration, P first sends dc,0, dc,1, dc,2 ∈
F2κ to all Vs during the Assign(·) macro. Then, P sends the MAC tag mi ∈ F2κ

to the verifier Vi during the execution of the CheckZero(·) macro. Throughout,
all verifiers only receive the data and perform computations and verifications
locally. As a result, the communication cost for each iteration is 4 · κ in one
round. Since P does not need to wait for any messages from the verifiers, and
the iteration structure is publicly known among all participants, P can merge
all log(t) iterations into a single communication round. The proof is given as
{{(dhc,0, dhc,1, dhc,2),mh}h∈[log(t)]}, with a size of log(t) · 4κ bits. After these itera-
tions, the final communications involve four Assign macros, two open operations,
and three CheckZero macros. All of these follow the same pattern, where P sends
elements to each verifier, who performs computations locally. The complete proof
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t=16

CheckMuls

                  

def CheckMuls                
  :

if t == 2 :
return CheckZero

else :

if !CheckZero(        ) :
return 0

else :

CheckMuls              

         

 

t=16

t=8

def CheckMuls               
  :

if t == 2 :
return CheckZero

else :

if !CheckZero(        ) :
return 0

else :

CheckMuls              

         

 

t=8

def CheckMuls               
  :

if t == 2 :
return CheckZero

else :

if !CheckZero(        ) :
return 0

else :

CheckMuls              

         

 

t=4

t=4

def CheckMuls             :

for i = 1 to 2 :

var   = Open(       )

if !CheckZero(                 ):

return 0

else :

return CheckZero(        ) 

t=2

t=2

         

Fig. 17: An Example of CheckMuls When t = 24 Multiplication Triples Given

can then be appended to {{(dhc,0, dhc,1, dhc,2),mh
i }h∈[log(t)], {dz,h, dẑ,h, εh,mh

ez,i}h∈[2],
mz,i}, with a total length of log(t) · 4κ+ 9κ bits, all sent in one round.

Lemma 1. If the one-verifier protocol AssertMultVec passes, then the input
commitments have the required relation except with probability t+4 log t+1

2κ−2 .

Proof. The proof follows from [[BMRS21], Theorem.4] where the case
∑

i∈[t] ωα,i·
ωβ,i · χi ̸=

∑
i∈[t] ωγ,i · χi has soundness error

t+4 log t+1
2κ−2 .

Based on Lemma 1, we then have the following theorem.

Theorem 4. CheckMuls UC-realizes FMV-CheckMULs in the presence of an adver-
sary statically corrupting up to N − 1 verifiers, in the PCF assumption.

Proof. The security of CheckMuls shown in Fig. 18 in the presence of N mali-
cious parties crucially depends on the iterative check procedure. As in previous
work [BBC+19,BMRS21], we first consider the case of a malicious prover and
N − 1 malicious verifiers, then consider an honest prover and N malicious veri-
fiers. In each case, we always implicitly assume that S passes all communication
between adversary A and environment Z. Besides, S is given access to function-
ality FMV-CheckMULs, which runs an adversary A as a subroutine when emulat-
ing PCF and RO. In both cases, we show that no environment Z can distinguish
the real-world execution from the ideal-world execution.
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Protocol CheckMuls

The CheckMuls is a subroutine for
∏

MV-ND. The prover P and N verifier V1, . . . ,VN
perform the consistency check on t multiplication triples each of the form
([[ωα,i]]2, [[ωβ,i]]2, [[ωγ,i]]2), for i ∈ [t]. All the parties execute as follows:

1. Each verifier Vi, i ∈ [N ] and P inherit the string as str :=
H(mvnd||sid||k∗||{dj}j∈[t])

a, run H(str) to generate common randoms
χ1, . . . , χt ∈ F2κ , and append str := str||χ1|| . . . ||χt. The parties random-
ize [[z]]2 =

∑
i∈[t] χi · [[ωγ,i]]2 and [[ω̂α,i]]2 = χi · [[ωα,i]]2 for i ∈ [t].

2. While t > 2:
(a) Set t = t

2
. All parties define t polynomial shares as [[f1]]2, . . . , [[ft]]2 ∈

F2κ [X] and another t polynomial shares [[g1]]2, . . . , [[gt]]2 ∈ F2κ [X] such
that [[fi(j)]]2 = [[ω̂α,j×t+i]]2, [[gi(j)]]2 = [[ωβ,j×t+i]]2 for j ∈ {0, 1}, i ∈
{1, . . . , t}.

(b) P generalizes a polynomial as h =
∑

i∈[t] fi · gi ∈ F2κ [X]. Note that h has
a degree ≤ 2.

(c) Let {c0, c1, c2} being the coefficients of h, P and Vs execute Assign(cj)
and define [[h]]2 using [[cj ]]2, j ∈ {0, 1, 2}. (Denote the transcripts sent by
P here as dc,j , for j ∈ {0, 1, 2})

(d) The parties run CheckZero(
∑2

j=1[[h(j)]]2 − [[z]]2). If this check fails, the
parties output false and abort.

(e) Each verifier Vi and P append str := str||{dc,j}j∈{0,1,2}, runs H(str) to
generate a common random η ∈ F2κ and append str := str||η.

(f) All parties locally evaluate [[f1(η)]]2, . . . , [[ft(η)]]2, [[g1(η)]]2, . . . , [[gt(η)]]2
and [[h(η)]]2. They recursively back to 2.(a) until t ≤ 2.

3. Now P and Vs have at most two multiplication triples, denoted as
([[xi]]2, [[yi]]2, [[z]]2), for i ∈ [t] and t ≤ 2. They check the validity as follows:
(a) For i ∈ [t], all parties generate authenticated random using [[vi]]2 ←

Random and compute

[[zi]]2 = Assign(xi · yi), [[ẑi]]2 = Assign(yi · vi)

(Denote the transcripts sent by P here as {dz,i, dẑ,i}i∈[t])
(b) Each verifier Vi and P append str := str||{dz,i||dẑ,i}i∈[t], runs H(str) to

generate common random e ∈ F2κ and append str := str||e.
(c) For i ∈ [t], the parties open εi with [[εi]]2 = e · [[xi]]2 − [[vi]]2 and run

CheckZero(e · [[zi]]2 − [[ẑi]]2 − εi · [[yi]]2).
(d) All parties run CheckZero(

∑
i∈[t][[zi]]2 − [[z]]2). If any checking fails, the

parties output false. Otherwise, they output true and pass the string pa-
rameter str to

∏
MV-ND.

a The keys and transcripts, i.e., sid, k∗, {dj}j∈[t] are defined
∏

MV-ND

Fig. 18: Multi-Verifier Check Multiplication Subprotocol
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Malicious prover. Assume that if P and N−1 verifiers are corrupted, without
loss of generality, we let V1 denote the honest verifier and other Vi, i ∈ [2, N ]
denote the corrupted verifiers. S interacts with A as follows:

1. In the input phase, S sampling “dummy” global key∆1 ← F2κ and simulates
PCF for A by recording all the values {ωα,i, ωβ,i, ωγ,i}i∈[t] and their corre-
sponding MAC tags received from the adversary A. Note that these values
and MAC tags naturally define corresponding MAC keys. Furthermore, S
sends χ1, . . . , χt ← F2κ to A and computes [[z]]2, {[[ω̂α,i]]2}i∈[t] honestly.

2. While t > 2:

(a) S executes Step 4.(a)-(f) honestly as an honest verifier, except that S
checks the zero-sharing using transcripts of corrupted P, i.e., check-
ing whether what it received from A equal to

∑2
j=1 kh(j) − kz using

“dummy” global key and local key kh of the polynomial h. This equa-
tion is checkable as S knows all the secret values {ωα,i, ωβ,i, ωγ,i}i∈[τ ]

and µj , j ∈ {0, 1, 2} in the Assign subroutine.

3. For i ∈ [t], S simulates RO by receiving vi,mv,i from A and computes their
corresponding “dummy” local keys.

4. S simulates RO for A by sampling uniform e← F2κ and sending it to P
5. S plays the role of the honest verifier V1 to perform the CheckZero procedures

with A, using the “dummy” global key and local keys.
6. If the honest V1 (simulated by S) aborts in any CheckZero procedure, then S

sends abort to FMV-CheckMULs and aborts. Otherwise, S sends the multiplica-
tion triples {[[ωα,i]]2, [[ωβ,i]]2, [[ωγ,i]]2}i∈[τ ] to functionality FMV-CheckMULs on
behalf of corrupted prover P and corrupted verifiers V2, . . . ,VN .

The simulated view of A has the identical distribution as its view in the
real execution. Note that the “dummy” global key sampled by S has the same
distribution as the real global key, S emulates PCF , and, in each extend exe-
cution, the MAC tags sent to A are computed as follows. S has access to the
Sσ (c.f. Definition 2) using its chosen mski := ∆i, i ∈ [N ]. At the beginning of

each concurrent execution: S first compute y
(j)
σ := PCF.Eval(σ, kσ, sid). Then it

queries RSample with (1κ,msk, σ, y
(j
σ ) and receives y

(j)
1−σ as the local MAC keys.

Based on the security definition of PCF, the simulated view is computationally
indistinguishable from that in the real execution. Furthermore, whenever honest
verifier V1 in the real execution aborts, S acts as V1 in the ideal execution aborts.
Thus, it remains to bound the probability that the V1 in the real execution ac-
cepts but the transcripts received by S pass the CheckZero subcheck. In this
case, the malicious P will successfully trick honest V1 into accepting a forged
MAC tag. According to Lemma 1, the probability that the honest V1 in the real
execution doesn’t abort is at most t+4 log t+1

2κ−2 . Thus, the output distribution of
the honest verifier in the real-world execution is indistinguishable from that in
the ideal-world execution.

Malicious verifiers. Assume that if P is honest and N verifiers are corrupted.
S interacts with A as follows:
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1. In the input phase, S emulates PCF by recording global key ∆1, . . . ,∆N ∈
F2κ and the local MAC keys for all input values, which are sent by A.

2. Upon receiving {[[ωα,i]]2, [[ωβ,i]]2, [[ωγ,i]]2}i∈[t], S sends them to FMV-CheckMULs

and receives {resi}, where i ∈ B ⊆ [N ] denotes Vi’s authenticated share
cause the failure result.

3. S emulates RO by sending χ1, . . . , χt ← F2κ to A and computes [[z]]2 and
{[[ω̂α,i]]2, [[ωβ,i]]2}i∈[t].

4. While t > 2:

(a) S emulates PCF by recording the local MAC keys for the random value
used in the Assign subroutine, sent by A.

(b) S samples {d0,t, d1,t, d2,t} and sends them to A in the Assign subroutine.
Then, it computes their MAC keys using the keys received from A.

(c) S runs the CheckZero subroutine withA according to the set of {resi}, i ∈
B: If resi, S sends random m∗ ← F2κ to Vi; Otherwise, S computes and
sends

∑2
i=1 kh(j) − kz to Vi where the local MAC keys kh and kz are

computed with the global keys and local keys recorded by S.
5. For i ∈ [t], S simulates PCF by receiving kv,i from A.
6. S simulates RO for A by sampling uniform e← F2κ and sending it to Vs.
7. S plays the role of the honest prover P to perform the remaining CheckZero

procedures with A, using the global keys and local keys received from A.
Specifically, if resj , j ∈ B, S sends random m∗ ← F2κ to Vj ; Otherwise, S
computes 0-sharing using kv,i, kx,i, ky,i, kz and global keys recorded by S,
and then sends it to Vj .

We use a hybrid argument to prove that the two worlds are computationally
indistinguishable.

– Hybrid0. This is the real world.
– Hybrid1. This hybrid is identical to the previous one, except that S emulates

PCF and, in each Extend execution, the transcripts {di,0, di,1, di,2}i∈[t] sent
to A is computed as follows.
S has access to the Sσ (c.f. Definition 2) using the global keys mski := ∆i, i ∈
[N ] received from A. At the beginning of each concurrent execution:

- In the input phase, S first compute ki := PCF.Eval(σ, kσ, sid). Then it
queries RSample with (1κ,mski, σ,ki) and receives (xi,mi) where xi

denotes all the input values corresponding with Vi and mi = ki+∆i ·xi.
- For Assign(cj) for j ∈ {0, 1, 2}, S computes kiµ,j := PCF.Eval(σ, kσ, sid+ j).

Then it queries RSample with (1κ,mski, σ, kiµ,j) and receives (µi
j ,m

i
µ,j)

where µi
j denotes the authenticated random values used in Assign sub-

routine and mi
µ,j = kiµ,j +∆i · µi

j .
- For the final t multiplication triples, i.e., Assign(xj · yj) and Assign(yj · vj)

for j ∈ [t], S similarly compute

kixy,j := PCF.Eval(σ, kσ, sid+ log t+ 2j),

kiyv,j := PCF.Eval(σ, kσ, sid+ log t+ 2j+ 1).
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Then it queries RSample with the following operations:

(µi
xy,j ,m

i
xy,j) := RSample((1κ,mski, σ, kixy,j),

(µi
yv,j ,m

i
yv,j) := RSample((1κ,mski, σ, kiyv,j).

- In the rest of the execution, S uses these oracle responses to transcript the
honest P.

The resulting view is equivalently defined as in the previous hybrid under
the security definition of PCF (c.f. Definition 2) with probability negl(κ).
Therefore, this hybrid is computationally indistinguishable from the previous
one.

– Hybrid2. This hybrid is identical to the previous one, except that PCF
accesses the Y-function to generate the authenticated secret shares instead of
the real-world PCF function. It follows from the assumption of pseudorandom
Y-correlated outputs that this hybrid is computationally indistinguishable
from the previous one.

– Hybrid3. This hybrid is identical to the previous one, except that in each it-
eration execution, i.e., while t > 2, S replaces {d0,t, d1,t, d2,t} and {dxy,i, dyv,i}
by random values. Observe that in each Assign subroutine, the difference
d-values are pseudorandomly due to the Y-function and serve as pseudo-
random one-time pad for all the coefficients {c0,t, c1,t, c2,t} and products
{xi · yi, yi · vi}. Therefore, this hybrid is computationally indistinguishable
from the previous one.

– Hybrid4. This hybrid is identical to the previous one, except that S emulates
PCF and, upon receiving tmultiplication triples {[[ωα,i]]2, [[ωβ,i]]2, [[ωγ,i]]2}i∈[t],
it follows protocol CheckMuls to run CheckZero and control the output of
the corrupted Vi, i ∈ B ⊆ [N ] by using the transcripts received from A, and
the responses from FMV-CheckMULs. This hybrid is computationally indistin-
guishable from the previous one: (1) if Vi, i ∈ B ⊆ [N ], the polynomial points
evaluated by random η ∈ F2κ essentially serve as the one-time pad for MAC
tags of

∑2
j=1 h(j)− z, except with collision probability of 1

q . (2) if Vi, i /∈ B,
the output of Vi is exactly as expected.
It is clear that this hybrid is the ideal world.

The above hybrid argument completes the proof.

B Security Proof of Theorem 1

This section presents the security proof of the generation protocol of mv-edaBits,
as shown in Fig. 11. The high-level of this security proof includes correctness and
privacy, i.e. firstly, a correct mv-edaBits should be generated after the protocol∏

MV-edaBits; secondly, A will extract no additional information. The privacy will
be proven via UC-framework 2.2 when A has corrupted up to n−1 parties. The
core challenge is to prove that if the random ρs are inconsistent between the
boolean and arithmetic fields, one can find it with non-negligible probability.
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Theorem 5. (Restate of Theorem 1) Protocol
∏

MV-edaBits UC-realizes FMV-edaBits

in the presence of an adversary statically corrupting up to n − 1 parties, in the
FMV-CheckMULs-hybrid random oracle model and PCF assumption.

Proof. First, we analyze its correctness as follows: The correctness of
∏

MV-edaBits

protocol as described in Fig. 11 relies on the gate-by-gate evaluation and consis-
tency check. In the honest case, all the parties obtain b := {b[1], . . . , b[ℓ]} such
that

∑ℓ
j=1 2

j−1 ·b[j] =
∑ℓ

j=1 2
j−1 ·a[j]+χ·

∑ℓ
j=1 2

j−1 ·ρ[j] mod q and therefore

b = (

ℓ∑
j=1

2j−1 · b[j] mod q) = (r + χ · ρ) mod q

0 = r + χ · ρ− b

with r and ρ are boolean parts of mv-edaBits, r and ρ are integer parts of
mv-edaBits, for any χ unpredictably generated by a hash chain as H(str||H(str||1)
||H(str||2)).

In the following, we prove the security of our
∏

MV-edaBits protocol in the multi-
party malicious setting. We consider the case that n − 1 parties are corrupted.
We always implicitly assume that S passes all communication between adversary
A and environment Z. Specifically, S separately simulates honest P in the case
of malicious verifiers and honest one verifier V∗ in the case of malicious prover.
Our goal is to prove that S, knowing publicly available information and the
adversary’s input, could produce a view of A (including transmitted message
and output) that is indistinguishable from that produced within the real world,
then proves that A does not know additional information in the secure protocol.
Thus, S must extract the corrupted prover’s witness or corrupted verifier’s global
key to send to the trusted party. This is possible because in the (FMV-CheckMULs)-
hybrid model and PCF assumption S receives the secret inputs from A.

Malicious Verifiers. Assume that if P is honest and N verifiers are corrupted.
S interacts with A as follows:

1. In the Setup phase, S invokes expsec1 (κ) (In Fig. 5) using the global keys

∆1, . . . ,∆N ∈ F2κ and Λ1, . . . , ΛN ∈ Zq sampled uniformly, receiving ki1 for
i ∈ [N ] from expsec1 (κ). S generates k∗ honestly.

2. In the Create mv-edaBits phase, for given common string str:
(a) S records all the randomness used by A from the set of queries made by
Vi to RO.

(b) S query expsec1 (κ) with input H(str||1) and H(str||2) to learn [[ρ]]q, [[a]]q,
[[ρ]]2 and [[a]]2.

(c) S generates χ and evaluate the circuit Caff cooperated with Vs:
i. In the subroutine Assign, S receives the MAC keys for all random

values (i.e., kµi ∈ Ft2
2κ) from A by emulating PCF.

ii. S executes Step 4.(a) as an honest prover, except that for j-th multi-
plication gates, S samples random dj ← F2 for all j ∈ [t2] and sends
them to Vs.
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iii. S receives {[[ω∗
α,j ]]2, [[ω

∗
β,j ]]2, [[ω

∗
γ,j ]]2}j∈[t2] from A on behalf of the

functionality FMV-CheckMULs, if ∃j, s.t. [[ω∗
l,j ]]2 ̸= [[ωl,j ]]2, l ∈ {α, β, γ}

where [[ωl,j ]]2 is computed by S following the protocol, sends false on
behalf of FMV-CheckMULs and aborts.

(d) S computes b = a + χ · ρ and reveals its binary representation b (along
with their MAC tags as m[i]j = k[i]j +∆j · b[i], for j ∈ [N ]) to all the
verifiers.

(e) S computes zi, the secret shares of [[a]]q + χ · [[ρ]]q − b for each Vi (this is
computable as it knows Λi, ρ, a and their corresponding MAC tags). S
sends zi to the corresponding Vi, i ∈ [N ] on behalf of P.

(f) S outputs whatever A outputs.

We use a hybrid argument to prove that the two worlds are computationally
indistinguishable.

– Hybrid0. This is the real world.
– Hybrid1. This hybrid is identical to the previous one, except that S emulates

PCF . Specifically, in each edaBits creation execution, S has access to the
Sσ (c.f. Definition 2) using the global keys mski := ∆i, i ∈ [N ] received from
A. The different executions are:
• S firstly computes the MAC keys as ki

ρ := PCF.Eval(σ, kσ,H(str||1) and
ki
a := PCF.Eval(σ, kσ,H(str||2)). Then it queries RSample (in Fig. 6)

with (1κ,mski, σ,ki
ρ) and (1κ,mski, σ,ki

a). S will receives (ρ,mi
ρ) and

(a,mi
a).

• For the t2 multiplication triples, i.e., Assign(xj · yj) and Assign(yj · vj)
for j ∈ [t2], S similarly compute

kixy,j := PCF.Eval(σ, kσ,H(str||2j)),
kiyv,j := PCF.Eval(σ, kσ,H(str||2j + 1)).

Then it queries RSample with the following operations:

(µi
xy,j ,m

i
xy,j) := RSample((1κ,mski, σ, kixy,j),

(µi
yv,j ,m

i
yv,j) := RSample((1κ,mski, σ, kiyv,j).

• In the rest of the execution, S uses these oracle responses to transcript
the honest P.

The resulting view is equivalently defined as in the previous hybrid under
the security definition of PCF (c.f. Definition 2) with probability negl(κ).
Therefore, this hybrid is computationally indistinguishable from the previous
one.

– Hybrid2. This hybrid is identical to the previous one, except that PCF
accesses the Y-function to generate the authenticated secret shares instead of
the real-world PCF function. It follows from the assumption of pseudorandom
Y-correlated outputs that this hybrid is computationally indistinguishable
from the previous one.
It is clear that this hybrid is the ideal world.
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The above hybrid argument completes the proof.

Malicious Prover. We consider the case that n − 1 parties are corrupted.
Without loss of generality, we let V1 denote the honest verifier and Vi, i ∈ I =
[2, n] are corrupted. Also, P is malicious in this simulation. S interacts with A
as follows:

1. In the Setup phase, S receives ∆1 from mv-edaBits and samples other global

keys ∆2, . . . ,∆N ∈ F2κ . S sends them to invokes expsec1 (κ) (In Fig. 5) us-
ing the global keys and receives ki0 for i ∈ [N ] and ki1 for i ∈ [2, N ] from
expsec1 (κ). S generates k∗ honestly.

2. In the Create mv-edaBits phase, for given common string str:

(a) S records all the randomness used by A from the set of queries made by
P and Vi, i ∈ [2, N ] to RO.

(b) S records all the edaBits values (i.e., ρ,a ∈ Fℓ
2, ρ, a ∈ Zq) and corre-

sponding MAC tags (i.e., mj
ρ,m

j
a ∈ Fℓ

2κ ,m
j
ρ,m

j
a ∈ Zq for j ∈ [1, N ]),

which are extracted by emulating PCF for corrupted P. S defines the
corresponding MAC keys of edaBits, i.e., kj

ρ,k
j
a ∈ Fℓ

2κ , k
j
ρ, k

j
a ∈ Zq).

(c) S evaluate the circuit Caff cooperated with other parties:
– In the subroutine Assign, S records all the values (i.e., µ[1], . . . ,µ[t2] ∈

F2) and their corresponding MAC tags (i.e., mµ ∈ Ft2
2κ) by emulat-

ing PCF for A. Here, S can define the corresponding MAC keys of
these values (i.e., kµ ∈ Ft2

2κ).
– S executes Step 4.(a) as an honest verifier.
– S receives {[[ω∗

α,j ]]2, [[ω
∗
β,j ]]2, [[ω

∗
γ,j ]]2}j∈[t2] from A on behalf of the

functionality FMV-CheckMULs, if ∀j, s.t. ω∗
α,j · ω∗

β,j = ω∗
γ,j , and ∃i, s.t.

[[ω∗
l,i]]2,∈ {α, β, γ} is not a valid IT-MAC, sends abort to Vi and sends

true to all the other Vj , j ∈ [2, N ]\{i} on behalf of FMV-CheckMULs.
(d) Upon opening [[b]]2, if any b[j]’ IT-MACs is invalid, S aborts. Otherwise,
S continues.

(e) S aborts if [[0]]q ̸= [[a]]q + χ · [[ρ]]q − b revealed from P, it is computable
as S knows all the a, ρ,ma,mρ and b.

(f) S outputs whatever A outputs.

Indistinguishability of the simulation is argued as follows: the only non-
syntactic difference between the simulation and the real protocol is that when
a ̸=

∑ℓ
i=1 2

i−1 ·a[i] and ρ ̸=
∑ℓ

i=1 2
i−1 ·ρ[i]. As the CheckMuls subroutine guar-

antees that the b = a+ χ · ρ is correctly computed from binary parts of edaBits
except with the negligible probability negl(κ). Now we consider when red ρ, a
(aggregated by binary representations of mv-edaBits) is not consistent with blue
ρ, a (generated from integer part of mv-edaBits). Assume that ρ = ρ + eρ and
a = a+ ea, if CheckZero([[a]]q + χ · [[ρ]]q − b) successes, we have

0 =a+ χ · ρ− (a+ χ · ρ)
=a+ ea + χ · (ρ+ eρ)− (a+ χ · ρ)
=ea + χ · eρ
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Since that H(str||H(str||1)||H(str||2)) = χ ∈ Zq is unpredictable uniformly
from RO, this equation holds with probability at most 1

q . In conclusion, Z cannot
distinguish between the real execution and ideal execution, except with proba-
bility negl(κ) + 1

q .

C Security Proof of Theorem 2

This section presents the security proof of multi-verifier stateless deterministic
nonce derivation based on MVZK, as shown in Fig. 13. Similarly, this security
proof begins by correctness where the nonce R could be verifiably generated.
Then, the privacy will be proven via UC-framework 2.2 with the case that n−1
parties are corrupted.

Theorem 6. (Restate of Theorem 2) Protocol
∏

MV-ND UC-realizes FMV-ND in
the presence of an adversary statically corrupting up to n − 1 parties, in the
(FMV-CheckMULs, FMV-edaBits)-hybrid random oracle model and PCF assumption.

Proof. First, we analyze its correctness as follows.

Correctness. The correctness of MV-ND protocol
∏

MV-ND as described in
Fig. 13 relies on the gate-by-gate evaluation and conversion. In the honest
case, the parties obtain c := {c[1], . . . , c[ℓ]} such that c =

∑ℓ
j=1 2

j−1 · c[j] =∑ℓ
j=1 2

j−1 · r[j] +
∑ℓ

j=1 2
j−1 · ρ[j] = r + ρ mod q and therefore [[R]]q = (c −

[[ρ]]q) ·G = (
∑ℓ

j=1 2
j−1 · r[j]) ·G.

In the following, we prove the security of our
∏

MV-ND protocol in the multi-
party malicious setting. We consider the case that n − 1 parties are corrupted.
Similar to

∏
MV-edaBits, we construct the S that separately simulates honest P in

the case of malicious verifiers and honest one verifier V∗ in the case of malicious
prover. Our security proof is based on the (FMV-CheckMULs, FMV-edaBits)-hybrid
model and PCF assumption.

Malicious Verifiers. Assume that if P is honest and N verifiers are corrupted.
S interacts with A as follows:

1. In the Setup phase, S emulates FMV-edaBits by invoking expsec1 (κ) (In Fig. 5)

using the global keys ∆1, . . . ,∆N ∈ F2κ and Λ1, . . . , ΛN ∈ Zq sampled uni-
formly, receiving ki1 for i ∈ [N ] from expsec1 (κ). Note that S knows [[dk]]2
acting as Vs.

2. In the Proof, for given message msg:
(a) S computes str = RO(mvnd||msg||k∗). Furthermore, S records all the

randomness used by A from the set of queries made by Vi, i ∈ [N ] to
RO.

(b) S samples ρ ∈ {0, 1}ℓ, generates [[ρ]]q, [[ρ]]2 where ρ =
∑ℓ

i=1 2
i−1 · ρ[i]. S

emulates FMV-edaBits by sending [[ρ]]q, [[ρ]]2 to the correspond Vs.
(c) S records all the randomness used by A from the set of queries made by
Vi to RO.

40



(d) S generates χ and evaluate the circuit C̃ cooperated with Vs:
i. In the subroutine Assign, S receives the MAC keys for all random

values (i.e., kµi
∈ Ft̃

2κ) from A by emulating PCF.
ii. S executes Step 4.(a) as an honest prover, except that for j-th mul-

tiplication gates, S samples random dj ← F2 for all j ∈ [t̃] and sends
them to Vs.

iii. S receives {[[ω∗
α,j ]]2, [[ω

∗
β,j ]]2, [[ω

∗
γ,j ]]2}j∈[t̃] fromA on behalf of the func-

tionality FMV-CheckMULs, if ∃j, s.t. [[ω∗
l,j ]]2 ̸= [[ωl,j ]]2, l ∈ {α, β, γ} where

[[ωl,j ]]2 is computed by S following the protocol, sends false on behalf
of FMV-CheckMULs and aborts.

(e) S samples random c and reveals its binary representation c (along with
their MAC tags as c[i]j = k[i]j +∆j ·c[i], for j ∈ [N ]) to all the verifiers.

(f) S outputs whatever A outputs.

We use a hybrid argument to prove that the two worlds are computationally
indistinguishable.

– Hybrid0. This is the real world.
– Hybrid1. This hybrid is identical to the previous one, except that S emulates

PCF for the circuit evaluation. Specifically, for the t̃ multiplication triples,
i.e., Assign(xj · yj) and Assign(yj · vj) for j ∈ [t̃], S computes

kixy,j := PCF.Eval(σ, kσ,H(str||2j)),
kiyv,j := PCF.Eval(σ, kσ,H(str||2j + 1)).

Then it queries RSample with the following operations:

(µi
xy,j ,m

i
xy,j) := RSample((1κ,mski, σ, kixy,j),

(µi
yv,j ,m

i
yv,j) := RSample((1κ,mski, σ, kiyv,j).

In the rest of the execution, S uses these oracle responses to transcript the
honest P.
The resulting view is equivalently defined as in the previous hybrid under
the security definition of PCF (c.f. Definition 2) with probability negl(κ).
Therefore, this hybrid is computationally indistinguishable from the previous
one.

– Hybrid2. This hybrid is identical to the previous one, except that PCF
accesses the Y-function to generate the authenticated secret shares instead of
the real-world PCF function. It follows from the assumption of pseudorandom
Y-correlated outputs that this hybrid is computationally indistinguishable
from the previous one.
It is clear that this hybrid is the ideal world.

The above hybrid argument completes the proof.

Malicious Prover. We consider the case that n − 1 parties are corrupted.
Without loss of generality, we let V1 denote the honest verifier and Vi, i ∈ I =
[2, n] are corrupted. Also, P is malicious in this simulation. S interacts with A
as follows:
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1. In the Setup phase, S samples∆1, ∆2, . . . ,∆N ∈ F2κ emulating as FMV-edaBits.
S sends them to invokes expsec1 (κ) (In Fig. 5) using the global keys and re-
ceives ki0 for i ∈ [N ] and ki1 for i ∈ [2, N ] from expsec1 (κ). S generates k∗

honestly.
2. In the Proof phase, for given message msg:

(a) S computes str = RO(mvnd||msg||k∗). Furthermore, S records all the
randomness used by A from the set of queries made by P and Vi, i ∈
[2, N ] to RO.

(b) S samples ρ ∈ {0, 1}ℓ, generates [[ρ]]q, [[ρ]]2 where ρ =
∑ℓ

i=1 2
i−1 · ρ[i].

S emulates FMV-edaBits by sending [[ρ]]q, [[ρ]]2 to the correspond P and Vj
for j ∈ [2, N ].

(c) S evaluate the circuit C̃ cooperated with other parties:

– In the subroutine Assign, S records all the values (i.e., µ[1], . . . ,µ[t̃] ∈
F2) and their corresponding MAC tags (i.e., mµ ∈ Ft̃

2κ) by emulating
PCF for A. Here, S can define the corresponding MAC keys of these
values (i.e., kµ ∈ Ft̃

2κ).
– S executes Step 4.(a) as an honest verifier.
– S receives {[[ω∗

α,j ]]2, [[ω
∗
β,j ]]2, [[ω

∗
γ,j ]]2}j∈[t̃] fromA on behalf of the func-

tionality FMV-CheckMULs, if ∀j, s.t. ω∗
α,j · ω∗

β,j = ω∗
γ,j , and ∃i, s.t.

[[ω∗
l,i]]2,∈ {α, β, γ} is not a valid IT-MAC, sends abort to Vi and sends

true to all the other Vj , j ∈ [2, N ]\{i} on behalf of FMV-CheckMULs.

(d) Upon opening [[c]]2, if any c[j]’ IT-MACs is invalid, S aborts. Otherwise,
S continues.

(e) S outputs whatever A outputs.

Indistinguishability of the simulation is obliviously based on the PCF assump-
tion (Definited in Section 2.7): the only non-syntactic difference between the sim-

ulation and the real protocol is that when c ̸=
∑ℓ

i=1 2
i−1 · r[i] +

∑ℓ
i=1 2

i−1 · ρ[i]
with r ̸= PRFdk(msg). As the CheckMuls subroutine guarantees that the c = r+ρ
is correctly computed from binary parts of edaBits and PRF evaluation except
with the negligible probability negl(κ). On the other hand, FMV-edaBits guarantee
red ρ (aggregated by binary representations ofmv-edaBits) is consistent with blue
ρ (generated from integer part of mv-edaBits). Therefore, we have [[R]]q = [[r]]q ·G
except negligible probability.

D Security Proof of Theorem 3

This section presents the security proof of stateless deterministic multi-party Ed-
DSA signing protocol, as shown in Fig. 15. Similarly, this security proof begins
by correctness where an EdDSA signature (R, σ) could be verifiably generated.
Then, the privacy will be proven via UC-framework 2.2 on the basis of plain
EdDSA (which has been proven in [BCJZ21,BDD23]). There is a slightly gap
between plain EdDSA and our

∏
MP,Sign where R = PRFdk(msg) ·G in the plain
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EdDSA scheme and R =
∑

i∈[1,n] Ri =
∑

i∈[1,n](PRFdki(msg) · G) in our pro-
tocol. However, as PRF is a pseudorandom function, the value R in the plain
scheme and the values R1, . . . , Rn in the secure protocol are pseudorandom, both
under the constraint that is fixed with the same message. Thus, these Ris are
computationally indistinguishable except with probability negl(λ).

Theorem 7. (Restate of Theorem 3) Assume that PRF is a pseudorandom func-
tion. Then,

∏
MP,Sign UC-realizes FEdDSA in the presence of an adversary stati-

cally corrupting up to n−1 parties, in the (FMV-ND, FCom, FRDL

com-zk)-hybrid random
oracle model.

Proof. We begin by showing that
∏

MP,Sign computes FEdDSA (all honest parties
running the protocol generate the correct signature). This holds since when all
parties are honest, we have:

R =
∑
i∈[n]

Ri =
∑
i∈[n]

ri ·G =
∑
i∈[n]

PRFdki(msg) ·G

σ =
∑
i∈[n]

σi mod q =
∑
i∈[n]

si · H(pk, R,msg) + ri mod q

= (
∑
i∈[n]

si) · H(pk, R,msg) + (
∑
i∈[n]

ri) mod q

Thus, (R, σ) would be a valid signature with r =
∑

i∈[n] PRFdki(msg) and pk =∑
i∈[n] si ·G.
We now proceed to prove security and consider the case that n − 1 parties

are corrupted. Similarly, let P1 denote the honest party and Pi, i ∈ I = [2, n]
denotes the set of corrupted parties. First, the simulator S needs to extract the
corrupted party’s input in order to send it to the trusted party. As we will show,
this is possible by the fact that in the (FMV-ND, FRDL

com-zk, FCom)-hybrid model S
receives the secret keys si and dki from A. We always implicitly assume that S
passes all communication between adversary A and environment Z. Simulating
this protocol for an adversary corrupting Pi is done as follows:

Key Generation:

1. The simulator S extract ski from the set of queries made by Pi to H.
2. S emulates FMV-ND for A by recording all the values (mvzk-input, i, dki) that

are received by FMV-ND from A.
3. S also emulates the functionality FRDL

com-zk by sending (proof-receipt, sidpk,1)
to the adversary A and recording the values (com-prove, sidpk,i, pki, si) that

are received by FRDL

com-zk from A.
4. Upon receiving pk from FEdDSA, S computes pk1 = pk −

∑
i∈[2,n] pki and

sends (decom-proof, sidpk,1, pk1) to A on behalf of FRDL

com-zk.
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5. S receives the messages (decom-proof, sidpk,i) that A sends to FRDL

com-zk, if
pki ̸= si ·G in the associated com-prove values of Step 2 above, then S sends
abort to FEdDSA, outputs whatever A outputs and halts. Else, S stores all
the values {dki, ski, si, pki, pk}i∈[2,n].

Signing: Upon receiving the message msg

1. If msg has previously been seen, S reuses the value R1, σ1 stored in the
memory from the last time. Otherwise, S proceeds to the next step.

2. The simulator S receives (nonce,msg, R) from FEdDSA. S computes R1 =
R−

∑
i∈[2,n] PRFdki(msg) ·G.

3. Upon receiving (mvzk-verify, did1,msg)) that A sends to FMV-ND, S sends
(mvzk-proof,msg, [[R1]]q) to A.

4. S receives (mvzk-prove, didi,msg) from A, if Ri ̸= PRFdki(msg) · G, then
sends (mvzk-proof,msg, res) to A with res =⊥.

5. If no res =⊥ happens, S sends (proceed,msg) to FEdDSA and receives
(msg, (σ,R)) in response.

6. S simulates (receipt, sid, 1) toA on behalf of FCom and receives (commit, sid, i, σ∗
i )

from A.
7. S computes the signature share σ1 = σ −

∑
i∈[2,n](si · H(pk, R,msg) + ri)

mod q with ri = PRFdki(msg) mod q and sends (decommit, sid, 1, σ1) to A.
8. Upon receiving (decommit, sid, i) from A sent to FCom, S instructs FEdDSA to

send (R, (
∑

i∈[2,n] σ
∗
i + σ1)) to P1. If σ

∗
i ̸= si ·H(pk, R,msg) + ri mod q, S

aborts. Otherwise, it stores the records (msg, σ, R, {σi, Ri}i∈[2,n], σ1, R1) in
the memory.

Indistinguishability of simulation. We show that the simulation by S in the ideal
model results in a distribution identical to that of an execution of

∏
MP,Sign in

the (FMV-ND, FRDL

com-zk, FCom)-hybrid random oracle model.

The simulation of the key generation phase is merely syntactically differ-
ent from the real protocol. Note that S successfully extracts si from the query
of FRDL

com-zk. In the simulation of the signing phase, the actual values obtained
by the corrupted party Pi during the execution are pk, pk1(in the key genera-
tion), nonce R1 and signature share σ1. The distribution of these values in a real
execution is

R1 = PRFdk1(msg) ·G,R = R1 +
∑

i∈[2,n]

Ri,

σ1 = s1 · h+ r1 ∈ Zq, σ = σ1 +
∑

i∈[2,n]

σi ∈ Zq,

where dk1 are random but fixed in the key generation phase, the same in all
signing executions.
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The distributions over these values in the simulated execution are

R1 = R−
∑

i∈[2,n]

PRFdki(msg) ·G,R,

σ1 = σ −
∑

i∈[2,n]

(si · h+ ri) mod q, σ,

where dki are fixed in the key generation phase, and R = PRFdk(msg) · G, σ =
s ·h+r mod q correctly computed by FEdDSA. Observe that the simulation does
not know dk and s, but this is the distribution since it is derived from the output
from FEdDSA.

As PRF is a pseudorandom function, the value R1 in the real protocol and
the values Ri, R in both protocols are pseudorandom, under the constraint that
is fixed with the same message. In the simulation, R1 = R −

∑
i∈[2,n] Ri is also

pseudorandomly and set with the same message. Thus, these R1s are computa-
tionally indistinguishable except with probability negl(λ).

Finally, in the real protocol, we have the following holds

σ1 ·G = h · pk1 +R1

Similarly, in the simulation, since pk = pk1 +
∑

i∈[2,n] pki, R = R1 +
∑

i∈[2,n] Ri

and σ = σ1+
∑

i∈[2,n](si ·h+ ri) mod q, and σ,R are correct signature received
from FEdDSA, we have

σ1 ·G = σ ·G−
∑

i∈[2,n]

(si · h+ ri) ·G

= h · (pk−
∑

i∈[2,n]

pki) + (R−
∑

i∈[2,n]

ri ·G) = h · pk1 +R1,

Thus, these σjs are identical.
If S does not abort and msg is first called, then we have σ∗ = σ1+

∑
i∈[2,n] σi

where σi is received from A, which has the same distribution as the output in
the real protocol. That is if any modified σ∗

i ̸= si · h + ri mod q, the honest
party will abort by checking σ∗

i +
∑

j ̸=i σj ̸= h · pk+R except with probability
negl(λ), just as what the S behaves in Step 8.

Thus, the simulator S aborts in the ideal-world execution only if the real-
world execution aborts. Furthermore, this also implies that the outputs of hon-
est parties have the same distribution in both executions. In conclusion, any
unbounded environment Z cannot distinguish between the real execution and
ideal execution, except with probability negl(κ). This completes the proof.
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