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Abstract

Recent work has introduced the “Quantum-Computation Classical-Communication”
(QCCC) (Chung et. al.) setting for cryptography. There has been some evidence that
One Way Puzzles (OWPuzz) are the natural central cryptographic primitive for this
setting (Khurana and Tomer). For a primitive to be considered central it should have
several characteristics. It should be well behaved (which for this paper we will think of
as having amplification, combiners, and universal constructions); it should be implied
by a wide variety of other primitives; and it should be equivalent to some class of
useful primitives. We present combiners, correctness and security amplification, and a
universal construction for OWPuzz. Our proof of security amplification uses a new and
cleaner construction of EFI from OWPuzz (in comparison to the result of Khurana and
Tomer) that generalizes to weak OWPuzz and is the most technically involved section
of the paper. It was previously known that OWPuzz are implied by other primitives of
interest including commitments, symmetric key encryption, one way state generators
(OWSG), and therefore pseudorandom states (PRS). However we are able to rule out
OWPuzz’s equivalence to many of these primitives by showing a black box separation
between general OWPuzz and a restricted class of OWPuzz (those with efficient ver-
ification, which we call EV − OWPuzz). We then show that EV − OWPuzz are also
implied by most of these primitives, which separates them from OWPuzz as well. This
separation also separates extending PRS from highly compressing PRS answering an
open question of Ananth et. al.
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1 Introduction

In the realm of cryptography, there is perhaps no primitive more important than one-way
functions. A one-way function is an efficiently computable deterministic function which is
easy to compute, but hard to invert. Although at first glance the definition seems simple,
one-way functions are special for several reasons. First and foremost, one-way functions
are “minimal.” If modern cryptography exists in any form, then one-way functions must
also exist [HILL99, IL89, Imp95]. Furthermore, pretty much all of these constructions are
obvious. Second, one-way functions are “useful.” There is a large class of cryptographic
primitives (known as Minicrypt) which can all be built from and are equivalent to one-way
functions [Imp95]. Included in Minicrypt are symmetric key encryption, pseudorandom
generators, and commitment schemes [HILL99, GGM86, Nao91]. Finally, one-way func-
tions are “well-behaved.” They satisfy several natural properties [Lev87], and are equiva-
lent to most of their variants [Yao82, IL89]. Due to these three characteristics of one-way
functions, one of the most useful things to do when trying to understand a new classical
cryptographic primitive is to compare it to a one-way function.

This centrality of one-way functions no longer holds once quantum computation en-
ters the picture. In particular, in the quantum setting, it seems that one-way functions
are no longer minimal [Kre21]. In particular, there exists a quantum oracle relative to
which one-way functions do not exist, but quantum cryptography (in the form of pseu-
dorandom state generators, quantum bit commitments, and many other primitives) is
still possible. Recently, there has been strong evidence in support of a new simple prim-
itive, the EFI pair, being minimal [KT24, BCQ22]. An EFI pair is a pair of efficiently



samplable quantum mixed states which are indistinguishable yet statistically far. Further-
more, EFI pairs are also useful. They can be used to build a large number of quantum
cryptographic primitives, from quantum bit commitments to secure multiparty computa-
tion [BCQ22, AQY22]. Finally, EFI pairs are fairly well-behaved. The security of EFI
pairs can be amplified [BQSY23], there exists combiners and universal constructions for
EFI pairs [HKNY23], and EFI pairs are also equivalent to some of their variants [HMY23].

In the classical setting, it appears that one-way functions serve as an effective minimal
primitive. In the quantum output setting, EFI pairs are a promising candidate for our
minimal primitive. A number of recent works have also considered a hybrid setting,
primitives where the cryptographic algorithms are quantum, but all communication and
outputs are classical [ACC+22, ALY23a] [CLM23, KT24]. In the style of [ACC+22], we
will refer to this as the quantum computation classical communication (QCCC) setting. An
immediate and natural question about this setting is “what is a good central primitive?”

Just like in the fully quantum setting, it is unlikely that one-way functions can be a
minimal primitive in the QCCC setting. In particular, there is a barrier to building one-
way functions from a QCCC primitive known as the one-way puzzle [KT24, Kre21]. A
one-way puzzle consists of an efficient quantum sampler which produces keys and puzzles
along with a (possibly inefficient) verification procedure. The one-wayness corresponds to
the idea that given a puzzle, it should be hard to find a matching key. Although one-way
functions cannot serve as a central QCCC primitive, at first glance one-way puzzles make
a fairly good candidate. In particular, one-way puzzles are minimal in the sense that
almost all QCCC primitives can be used to build one-way puzzles [KT24].

On the other hand, their well-behavedness and usefulness are less clear. It is known
that one-way puzzles can be used to build EFI pairs (and thus everything which follows
from EFI pairs) [KT24]. However, as far as the authors are aware, there are no existing
constructions of QCCC style primitives from one-way puzzles. The well-behavedness of
one-way puzzles is similarly unstudied.

Our results In this work, we seek to investigate what primitives can be built from
one-way puzzles, as well what useful properties one-way puzzles may or may not satisfy.
Whether or not one-way puzzles are adopted as a central primitive in the same manner as
one-way functions or EFI pairs is a community matter, but we hope that our results help
shed light onto the question. To summarize our results, we show that

1. There exists a robust combiner for one-way puzzles. That is, given two candidate
one-way puzzles, there is a way to combine the candidates to get a construction
which is secure as long as one of the candidates is secure.

2. There exists a universal construction of a one-way puzzle. That is, a construction
which is secure as long as one-way puzzles exist.

3. There exist amplification theorems for one-way puzzles. That is, there is a method
to take a one-way puzzle with weakened correctness or security guarantees and trans-
form it into a full one-way puzzle.

4. We show that one-way puzzles can be built from EFID pairs (the QCCC version of
EFI pairs).

5. We show that one-way puzzles are equivalent to one-way puzzles whose key is gen-
erated uniformly at random, answering an open question of [KT24].
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6. We show that one-way puzzles are equivalent to ”distributional” one-way puzzles.
For a distributional one-way puzzle, given a puzzle it is hard to sample from the
distribution over keys.

We also consider in detail an important restricted variant of one-way puzzles, which was
first introduced under the name “hard quantum planted problem for QCMA,” [KNY23],
but which we will refer to as efficiently verifiable one-way puzzles. We show the following
results about this variant

1. There exists combiners, a universal construction, and amplification theorems for
efficiently verifiable one-way puzzles.

2. Most QCCC primitives which can be used to build one-way puzzles can also be used
to build efficiently verifiable one-way puzzles, with the notable exception of interac-
tive commitment schemes. In particular, we show explicitly that pseudodeterministic
PRGs and non-interactive commitments imply efficiently verifiable one-way puzzles.

3. There exists a quantum oracle relative to which one-way puzzles and pseudorandom
states exist but efficiently verifiable one-way puzzles do not.

The last two points here together provide a barrier to building most QCCC primitives
from one-way puzzles. Perhaps this means that efficiently verifiable one-way puzzles make
a better candidate for centrality. However, if QCCC commitments can be built from one-
way puzzles, then it may make sense to treat one-way puzzles as a central primitive on a
lower level than efficiently verifiable one-way puzzles. We compare the relationship to the
separation between one-way functions and one-way permutations.

In addition to this, since pesudorandom states also exist under the same oracle, our
results provide a barrier to building most QCCC primitives from pseudorandom states.

Note that our separation in fact separates efficiently verifiable one-way puzzles from
pseudorandom state generators with linear output. But it is not hard to show that pseudo-
random state generators with logarithmic output can be used to build efficiently verifiable
one-way puzzles. Thus, our final separation also provides a barrier to length reduction for
pseudorandom state generators, answering an open question of [ALY23b].

A summary of known relationships between QCCC primitives is included in Figure 1.

A better construction of EFI pairs from one-way puzzles The most technically
demanding of our results is, surprisingly, the amplification theorem for one-way puzzles.
It turns out that due to the inefficient nature of verification, most natural techniques fail.
The techniques we use to achieve amplification for one-way puzzles can be also be used to
construct EFI pairs from one-way puzzles, recreating a result from [KT24]. In addition,
our construction has several advantages over the existing construction in the literature.

First, the proof of security for our construction is significantly more straightforward
than the existing argument. In particular, the argument does not rely on techniques deal-
ing explicitly with a preimage space (such as leftover hash lemma or Goldreich-Levin), and
so more naturally fits with the quantum nature of the primitive. Second, our construc-
tion produces an EFI pair even when instantiated with a one-way puzzle with weakened
security guarantees. This is the essential reason that this technique is useful for proving
amplification.
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Figure 1: All implications known about one-way puzzles (OWPuzz) and efficiently verifi-
able one-way puzzles (EV − OWPuzz).

2 Technical Overview

2.1 A cleaner construction of EFI pairs from any one-way puzzle

In a recent work by Khurana and Tomer [KT24], it was shown that there is a black-box
construction of an EFI pair from any one-way puzzle. Since one-way puzzles can be built
from one-way state generators, this then shows that if one-way state generators exist, so
do EFI pairs (and thus quantum bit commitments).

Since EFI pairs intuitively are a “pseudorandom” primitive while one-way puzzles
are a “one-way” primitive, the argument presented in [KT24] is heavily inspired by the
classical construction of a pseudorandom generator from any one-way function, first shown
in [HILL99].

The key idea behind [HILL99] is to first use the one-way function to construct some-
thing called a pseudoentropy generator. A pseudoentropy generator is simply a samplable
distribution which is indistinguishable from another (not necessarily samplable) distri-
bution with greater entropy. Then, the pseudoentropy generator is used to construct a
non-uniform PRG. That is, a PRG where the construction takes in a short advice string
of length O(log λ) depending on the security parameter. This gives out a different PRG
candidate for each possible value of the advice string. Applying a PRG combiner to all of
these candidates then gives a standard PRG.

[KT24] follows the same overall structure to build an EFI pair from any one-way
puzzle. In particular, they show how to build a pseudoentropy generator from any one-
way puzzle, and then show how to use a one-way puzzle to build something they refer to
as an imbalanced EFID pair. An EFID pair is classical version of an EFI pair. We recall
that a non-uniform EFID pair is an EFID pair that takes in a short advice string. An
imbalanced EFID pair is a stronger primitive than a non-uniform EFID pair, where there
are additional requirements on hiding and/or binding when the primitive is instantiated
with incorrect advice. Finally, they show how to use an imbalanced EFID pair to build a
standard EFI pair, although this technique requires switching to quantum output.

In this work, we present an alternate construction of EFI pairs from one-way puzzles,
with several advantages. The foremost advantage, which is useful for our other results,
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is that our construction works even when instantiated with weak one-way puzzles. In
addition to this, the proof of our construction is significantly simpler, and relies almost
entirely on standard classical techniques.

Theorem 1 (Informal version of Corollary 15). If there exists a weak one-way puzzle,
then there exists an EFI pair.

The overall approach. While [KT24] relies on the techniques of [HILL99] to realize
their construction, there have been a number of follow-up works succeeding [HILL99]
providing more efficient constructions of PRGs from OWFs [HRV10] [VZ12, MP23]. In
particular, we observe that the techniques of [VZ12] are particularly “quantum-friendly,”
much more so than the techniques of [HILL99]. Furthermore, we make the (as far as we are
aware) novel observation that the construction of [VZ12] gives a pseudorandom generator
even when instantiated with a weak one-way function.

The failure of Goldreich-Levin for weak one-way puzzles. One key idea un-
derlying [HILL99], as well as most other constructions of PRGs from one-way func-
tions [VZ12, MP23], is to extract Hmin(x|f(x)) + O(log n) bits of pseudoentropy from x
given f(x). The leftover hash lemma gives the ability to extract Hmin(x|f(x))−O(log n)
bits of entropy from x, and Goldreich-Levin provides an extra O(log n) bits of pseudoen-
tropy [GL89], so these two techniques together can extract a pseudorandom string of length
Hmin(x|f(x)) +O(log n) from x given f(x).

In particular, the Goldreich-Levin theorem shows that if there is an algorithm dis-
tinguishing Ext(x) from uniform given f(x) with advantage ϵ, then there is an algorithm
computing x from f(x) with probability poly(ϵ) [GL89]. Since ϵ2 is negligible for a strong
one-way function, so is ϵ, and so these distributions are indistinguishable. However, if f
is only a weak one-way function, then we only get a constant bound on the distinguishing
advantage, and so the approaches of [HILL99, VZ12, MP23] all break down.

A similar approach, with some technically involved adjustments to handle quantum
sampling, is done in [KT24] by using a quantum version of the Goldre-ich-Levin theo-
rem [AC01]. In particular, [KT24] also relies on using Goldreich-Levin to extract O(log n)
from the key k given the puzzle s. But for the same reason as before, this approach does
not hold when the sampler is only weakly one-way.

Furthermore, there is a lot of technical care needed when using the leftover hash
lemma and Goldreich-Levin on puzzles sampled using quantum randomness [KT24]. This
is because the pre-image space of a puzzle is now a distribution over keys instead of a
set, and so hashing techniques become significantly more complicated. Luckily, [VZ12]
demonstrates a way to construct PRGs from one-way functions without relying on either
of these techniques, providing an approach that is both quantum-friendly and applies even
with weak security. We adapt their techniques to give a construction of EFI pairs from
weak one-way puzzles illustrated in Figure 2.

The construction of [VZ12]. To build a PRG from a one-way function f , [VZ12]
makes the observation that the distribution (f(x), x) satisfies a property which they call
KL-hard to sample. In particular, this means that for any sampler S (which in this case
can be thought of as a distributional inverter),

KL(f(x), x||f(x),S(f(x))) ≥ δ

for some value of δ ≥ 1
poly(λ) . Here KL refers to Kullback-Leibler divergence, or “relative

entropy.” They then adapt the techniques of [HRV10] to build a PRG from a distribution
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Figure 2: The construction of [VZ12, HRV10] applied to a one-way puzzle Samp → (k, s).
The idea is that many samples are taken and arranged in a grid. Then, each row is
given a random offset, with both sides truncated. Finally, some number of random bits
are extracted from each column using a pairwise-independent hash Ext. This produces a
pseudorandom string with less than full entropy, and we can repeat to get a non-uniform
EFID pair.

which is KL-hard to sample. Note that this construction requires knowledge of the entropy
of the KL-hard to sample distribution. However, for a one-way function, H(f(x), x) = |x|
the input length of the one-way function.

For an ϵ one-way function, the KL-hardness parameter is δ = − log ϵ. Thus, for a
standard one-way function, δ = ω(log λ). But the techniques of [HRV10] apply whenever
δ = 1

poly(λ) , and so the techniques of [VZ12] work just as well for weak one-way functions.
Thus, the same construction gives a PRG from any weak one-way functions.

Building a KL-hard to sample distribution from a one-way puzzle The key
observation underlying [VZ12] is that KL divergence can only decrease from computation.
That is, for any function F ,

KL(F (X)||F (Y )) ≤ KL(X||Y )

But the boolean function F (y, x) = 1 if and only if f(x) = y is well-defined. So if S is any
sampler,

KL(f(x), x||f(x),S(f(x))) ≥ KL(F (f(x), x)||F (f(x),S(f(x))))

= KL(1||Bern(p)) = − log p

where p is the advantage of S in the one-way function security game. This immediately
gives that the distribution (f(x), x) is KL-hard to sample.

We observe that the same exact technique also works for one-way puzzles. In particular,
let (Samp,Ver) be a one-way puzzle and let Samp → (k, s). The equivalent of checking if
f(x) = y is simply to run verification. And so

KL(s, k||s,S(k)) ≥ KL(Ver(s, k)||Ver(s,S(k))) = KL(Bern(q)||Bern(p))
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where p is the success probability of S in the one-way puzzle game and q is the correctness
parameter of the one-way puzzle. Although we do not have KL(Bern(q)||Bern(p)) =
− log p, when Samp is a weak one-way puzzle, we can still lower bound KL(s, k||s,S(k))
by 1

poly(λ) . And so (s, k) is KL-hard to sample.

Building a non-uniform EFID pair from a KL-hard to sample distribution
Note that the techniques [VZ12] uses to build a PRG from a KL-hard to sample distribution
are entirely black box, and so also work in the quantum setting. Thus, applying the
same construction to (s, k) produces a pseudorandom distribution D with length d = |D|
depending on H(k, s). When building a PRG, the approach [HRV10, VZ12] take is to
argue that D can be sampled by applying some function G to a uniformly random string
of length d′ < d, and so G is a PRG. Here, the randomness of the distribution is quantum,
and so this idea will not apply directly. But similar reasoning can be used to show a upper
bound on the entropy of D. In particular, we produce such an argument directly and show
that H(D) < d− poly(λ). For a visualization of the construction of D, see Figure 2.

We then observe that any distribution with sufficiently less entropy than its length
must have some statistical distance from the uniform distribution. Thus, the [VZ12] con-
struction applied to a one-way puzzle produces a distribution D which is indistinguishable
from uniform but has noticeable statistical distance from uniform. We then use parallel
repetition to boost the statistical distance to 1− negl(λ), and so the pair (U t, Dt) forms a
EFID pair.

Unfortunately, this construction has a number of pseudorandom bits dependent on
H(k, s). Thus, the EFID pair construction has to have knowledge of the entropy of the
one-way puzzle sampler output. This can be done by giving the construction Θ(log λ) bits
of advice, and so instead of a full EFID pair, we get a non-uniform EFID pair.

From non-uniform EFID pairs to EFI pairs To recap, [KT24] built imbalanced
EFID (a stronger version of non-uniform EFID) from one-way puzzles, while our technique
only builds non-uniform EFID from one-way puzzles. Note that this is not a fundamental
difference, upon observation it is clear that our construction also satisfies the requirements
of imbalanced EFID.

However, the reason [KT24] required this stronger notion of non-uniform EFID was
because, at the time that work was published, it was unknown how to build combiners for
EFI pairs. Recent work (interestingly using similar techniques to [KT24]) has shown how
to combine EFI pairs [HKNY23], and so using these techniques EFI pairs follow directly
from non-uniform EFID.

2.2 Combiners and universal constructions

One major property satisfied by one-way functions is the existence of a universal con-
struction [Lev87]. By this, we mean that there exists a specific construction of a one-way
function which is secure if any one-way functions exist.

As shown originally by Levin [Lev87] and formalized in [HKN+05], this useful fact is
essentially a corollary of the fact that there exists robust combiners for one-way functions.
That is, given any two one-way function candidates f and g, there is a construction hf,g

such that h is one-way as long as one of f or g is one-way.
The universal one-way function is then defined as follows. Take the first log λ Turing

machines and treat them as one-way function candidates. Running the combiner on all
these candidates results in a universal one-way function fU . As long as one-way functions
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exist, there is a Turing machine with some constant length which acts as a good one-way
function. Thus, for all sufficiently large λ, fU will also be a one-way function.

Since both combiners and universal constructions are highly desirable properties, we
would like to investigate whether robust combiners also exist for one-way puzzles. We
thus prove the following theorem

Theorem 2 (Informal version of Corollary 11). There exists a robust combiner for one-
way puzzles.

with the following corollary

Corollary 1 (Informal version of Theorem 27). There exists a pair of algorithms (SampU ,VerU )
such that as long as one-way puzzles exist, (SampU ,VerU ) is a one-way puzzle.

Note that it has been shown that combiners and universal constructions exist for
quantum primitives which both imply one-way puzzles and are implied by one-way puzzles,
namely one-way state generators and EFI pairs respectively [HKNY23]. Thus, this result
should not be particularly surprising. However, none of the arguments for constructing
combiners for one-way state generators, EFI pairs, or one-way functions translate directly
into building combiners for one-way puzzles.

Note that if we know that both candidate one-way puzzles satisfy correctness, then it
is easy to construct a combiner. In particular, running both candidate samplers in parallel
and having the verification algorithm accept if and only if both candidate verification algo-
rithms accept is enough to ensure that the combined construction satisfy both correctness
and security.

However, if we omit the correctness requirement, then it is possible that the “bad”
verification algorithm always rejects. In this case, the combiner we defined previously will
also not satisfy correctness.

To resolve this issue, we follow the template of [HKNY23] and show that there is a
“correctness guaranteeing” procedure for any one-way puzzle. Namely

Theorem 3 (Informal version of Corollary 9). Let (Samp,Ver) be a one-way puzzle can-
didate. There exists a construction (Samp′, Ver′) where Samp′,Ver′ depend on (Samp,Ver)
satisfying the following

1. If (Samp,Ver) is a one-way puzzle, then so is (Samp′,Ver′).

2. Regardless of whether (Samp,Ver) is a one-way puzzle, (Samp′,Ver′) satisfies one-
way puzzle correctness.

If we apply this correctness amplification procedure to the candidate one-way puzzles
and then apply the security combiner described earlier, we achieve a robust combiner for
one-way puzzles.

The main question remaining is how to actually do this correctness amplification. The
natural approach to correctness guaranteeing (which is analogous to the approach used
by [HKNY23]) is to have the sampler check whether verification passes on its produced
key-puzzle pair. If not, the sampler will output a special symbol ⊥, on which the verifier
will always accept. However, this approach requires that the sampler be able to run the
verifier. But for one-way puzzles, the verification algorithm may not be efficient.

Our solution is to defer the checking step to the verification algorithm itself. In par-
ticular, we will say that a puzzle is good if the probability that verification passes when
it is naturally generated is high. Since our verification algorithm is inefficient, it has the
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computational resources to check if a given puzzle is good. The key idea, then is that we
modify verification to automatically accept any good puzzle.

If the scheme originally satisfied correctness, then all but a negligible fraction of puzzles
will be good and so we do not compromise security. Furthermore, since the probability that
verification fails on a good puzzle is by definition low, the probability that the modified
verification fails will also be low. Note that this style of correctness guaranteeing will only
give a guarantee that the correctness error is below some constant (say 1/2). We can then
boost to full correctness through parallel repetition.

A note on the definition of one-way puzzles The original definition of one-way
puzzles introduced required that the verification procedure be represented by a Turing
machine which is guaranteed to halt (i.e. a decider) [KT24]. When defining a robust
combiner for use in a universal construction, it is necessary that the combiner work even if
one of the candidate verification algorithms does not halt. This makes building a combiner
seemingly as difficult as solving the halting problem.

We instead define one-way puzzles so that verification can be any arbitrary function.
Note that, because Ver is never actually run, all known constructions using one-way puz-
zles go through when using this weakened definition. In addition, under our definition,
combiners and universal constructions exist. Thus, we believe that this generalized defi-
nition is the “right” definition of a one-way puzzle, and that the restriction of verification
to halting Turing machines used by [KT24] is unnecessarily restrictive.

2.3 Amplification of one-way puzzles

A second desirable property for a central primitive to have is an amplification theorem.
In particular, given a one-way function with a weaker security guarantee, it is possible to
build a normal one-way function. This makes it significantly easier to construct one-way
functions from other primitives as well as produce candidate one-way functions.

Thus, one may wonder whether the same is true for one-way puzzles. That is, given a
one-way puzzle with a weakened security guarantee, is it possible to build a normal one-
way puzzle? We can also ask the same question of correctness. Given a one-way puzzle
with a weakened correctness guarantee, is it possible to build a normal one-way puzzle?

In particular, we define (α, β) one-way puzzles, where α is the correctness error and
β the security error. Observe that standard one-way puzzles are simply (negl(λ), negl(λ))
one-way puzzles. We show the following

Theorem 4 (Restatement of Theorem 21). If there exists a (1− 1/poly(λ), negl(λ)) one-
way puzzle, then there exists a (negl(λ), negl(λ)) one-way puzzle.

Theorem 5 (Restatement of Theorem 23). If there exists a (negl(λ), 1− 1/poly(λ)) one-
way puzzle, then there exists a (negl(λ), negl(λ)) one-way puzzle.

Amplifying Security For the purposes of this section, we will refer to a (negl(λ),
1 − 1/poly(λ)) one-way puzzle as a weak one-way puzzle. We will also refer to the stan-
dard notion of a one-way puzzle as a strong one-way puzzle. The question of security
amplification can then be rephrased as “can we build a strong one-way puzzle from any
weak one-way puzzle?”

Recently, [BQSY23] showed that parallel repetition amplifies soundness guarantees for
any 3 round quantum interactive protocol. At first glace, one might think that this result
immediately gives a security amplification theorem for one-way puzzles.
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Upon observation, it turns out that the argument of [BQSY23] relies on the assumption
that the security game itself can be run efficiently. But the one-way puzzle security game
requires running the verification algorithm, which has no guarantees on efficiency. And so
the obvious approach to amplifying security falls short in this setting.

But what can we do? Our key observation is that strong one-way puzzles can be
built from EFID pairs (which we recall is the classical version of an EFI pair). In addi-
tion, [KT24] shows that one-way puzzles can be used to build EFI pairs, and along the
way they show that strong one-way puzzles can be used to build a variant of EFID pairs,
which we here call a non-uniform EFID pair. Unfortunately, their techniques do not work
for weak one-way puzzles, an issue we remedy in Section 2.1.

The outline of our argument is to use our improved construction of EFI pairs from
one-way puzzles from Section 2.1, which shows that we can build non-uniform EFID pairs
from weak one-way puzzles as well. We then show how to build strong one-way puzzles
from non-uniform EFID pairs.

Building strong one-way puzzles from non-uniform EFID Recall, a non-uniform
cryptographic primitive is a cryptographic primitive where the construction takes in a short
advice string of length O(log λ). Our construction of strong one-way puzzles from EFID
pairs then allows us to build a non-uniform strong one-way puzzle from a non-uniform
EFID pair. For each possible advice string s, we can instantiate the non-uniform strong
one-way puzzle with s to get a new strong one-way puzzle candidate. For each security
parameter, one of these candidates is a strong one-way puzzle. Thus, using a combiner on
all of these candidates simultaneously produces a strong one-way puzzle which does not
need any advice string.

We remark that in general, if we have a robust combiner for a primitive then we can
turn any non-uniform construction of that primitive into its full version.

Amplifying Correctness To amplify correctness, we observe that our correctness guar-
anteer will always increase correctness at some cost to security. By carefully tracking this
cost and interleaving with security amplification, it is possible to boost to full correctness
without hurting security.

2.4 Relationships with other QCCC primitives

It has been shown in [KT24] that one-way puzzles can be built from almost all QCCC
style primitives. In particular, they show how to build a one-way puzzle from a digital
signature, a symmetric encryption protocol, or a commitment scheme. Just as a one-way
function can be built from any useful classical primitive, a one-way puzzle can be built
from any useful QCCC primitive.

Note that minimality of a primitive is not very hard to achieve. As an example,
any primitive which can be built unconditionally is at least as minimal as a one-way
function. But, importantly, one-way functions are also useful. One-way functions can be
used to construct a large class of important cryptographic primitives, often referred to
as symmetric key or Minicrypt primitives. In particular, one-way functions can be used
to build (classical) digital signatures, symmetric encryption protocols, and commitment
schemes. Thus, if we want to treat one-way puzzles as a central primitive for QCCC
cryptography, it seems important that one-way puzzles imply at least one more directly
useful QCCC primitive.

Unfortunately, existing results in this direction are noticeably weaker. In particular, as
far as the authors are aware, the only QCCC primitive for which a construction is known
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from one-way puzzles is non-uniform EFID pairs [KT24]. Instead, there are quantum out-
put implications of one-way puzzles. In particular, it is known how to build commitments
with quantum output (and all equivalent primitives) from one-way puzzles [KT24].

2.5 Efficiently verifiable one-way puzzles

The key challenge to using one-way puzzles to build other primitives is that the con-
structions may not make use of the verification scheme in a black-box manner since the
verification scheme is not itself efficient. Thus, to make the problem easier, we consider a
variant of one-way puzzles with efficient verification.

A very similar primitive, termed “hard quantum planted problems for QCMA,” has
been studied before in the context of publicly verifiable deletion [KNY23]. A hard quan-
tum planted problem is essentially an efficiently verifiable one-way puzzle with perfect
correctness. Direct observation shows that perfect correctness is unnecessary for any of
the applications of hard quantum planted problems for QCMA, and so their results hold
for efficiently verifiable one-way puzzles as well. In particular, they show that

Theorem 6 (Theorem 6.2 from [KNY23]). If there exists an efficiently verifiable one-way
puzzle and quantum

Z ∈ {SKE,COM,PKE,ABE,QFHE, TRE,WE},

then there exists Z with publicly verifiable deletion.

Their construction requires building a stronger variant of a one-time signature scheme
from efficiently verifiable one-way puzzles. In particular

Theorem 7 (Theorem 3.2 from [KNY23]). If there exists an efficiently verifiable one-way
puzzle, then there exists a QCCC one-time signature scheme.

The construction is essentially just a Lamport signature [Lam79]. As this theorem is
not presented with full proof details in [KNY23], for completeness we restate this claim
as Theorem 15 and give a full proof.

Since efficiently verifiable one-way puzzles seem more useful than normal one-way
puzzles, we might wonder whether they are also minimal. Fortunately, most of the con-
structions of one-way puzzles from QCCC primitives have efficient verification algorithms.
The two notable exceptions are EFID pairs and commitment schemes.

Theorem 8 (Theorems A.4 and A.6 from [KT24] and Theorems 16 and 17 in this paper).
If there exists a QCCC signature scheme, secret key encryption scheme, non-interactive
commitment scheme, or pseudodeterministic PRG, then there exists an efficiently verifiable
one-way puzzle.

Applying this theorem to the results of [KNY23] then gives the following two interesting
corollaries.

Corollary 2. If there exists QCCC

Z ∈ {SKE,PKE,ABE,QFHE, TRE}

then there exists Z with publicly verifiable deletion.

Corollary 3. There exists an efficiently verifiable one-way puzzle if and only if there exists
a QCCC one-time signature scheme.
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Amplification and combiners for efficiently verifiable one-way puzzles. Since
efficiently verifiable one-way puzzles seem to be about as minimal for QCCC as one-way
puzzles, but have much more powerful applications, we may consider whether efficiently
verifiable one-way puzzles should instead be considered a “central” primitive for QCCC
cryptography. We then may hope that there exists an amplification theorem and a uni-
versal construction for efficiently verifiable one-way puzzles. We show that this is indeed
the case.

Theorem 9 (Restatement of Theorem 21). If there exists a (1− 1/poly(λ), negl(λ)) effi-
ciently verifiable one-way puzzle, then there exists a (negl(λ), negl(λ)) efficiently verifiable
one-way puzzle.

Theorem 10 (Restatement of Theorem 25). If there exists a (negl(λ), 1−1/poly(λ)) effi-
ciently verifiable one-way puzzle, then there exists a (negl(λ), negl(λ)) efficiently verifiable
one-way puzzle.

Theorem 11 (Informal version of Corollary 11). There exists a robust combiner for effi-
ciently verifiable one-way puzzles.

Corollary 4 (Informal version of Theorem 26). There exists a pair of algorithms (SampU ,
VerU ) such that as long as efficiently verifiable one-way puzzles exist, (SampU ,VerU ) is an
efficiently verifiable one-way puzzle.

Note that most of the barriers to these results go away when the verification algorithm
is required to be efficient. Thus, the “naive” constructions described earlier are provably
secure for efficiently verifiable one-way puzzles.

Are one-way puzzles equivalent to efficiently verifiable one-way puzzles? Al-
though the advantage of treating efficiently verifiable one-way puzzles as a “central” QCCC
primitive is that it has actual applications in the QCCC setting, this does come at a cost
to its “minimality”. It is not clear how to build efficiently verifiable one-way puzzles from
every primitive known to imply OWPuzz. In particular, constructions are lacking from
EFID pairs and commitments.

Thus, we may consider whether or not it even matters whether verification is effi-
cient. Ideally, we would be able to build an efficiently verifiable one-way puzzle from
any one-way puzzle. In fact, if we restrict the sampling algorithm to being a classical
randomized algorithm, such a claim holds true. Given a classical one-way puzzle, we can
build an efficiently verifiable one-way puzzle by replacing the key with the random coins
of the sampler. Then, the verifier can simply check whether running the sampler on the
randomness given produces the given puzzle.

However, as this approach directly uses the randomness of sampling, it is inherently
non-quantum. In fact, it turns out that in the quantum setting, there is a black-box
separation

Theorem 12 (Informal version of Theorem 20). There exists a quantum oracle O relative
to which one-way puzzles exist but efficiently verifiable one-way puzzles do not exist.

This theorem follows from a simple observation. A search-to-decision argument shows
that any efficiently verifiable one-way puzzle can be broken using a QCMA oracle. But
there exists an oracle relative to which pseudorandom states exist and BQP=QCMA [Kre21].
As pseudorandom states can be used to build one-way puzzles [KT24, MY22], Theorem 12
follows.
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A barrier against length shrinking for pseudorandom states An open question
in the literature is whether pseudorandom states with output length n(λ) can be built
from pseudorandom states with output length n′(λ) for any values of n, n′ such that
n ̸= n′ ≥ log n. However, pseudorandom states with output length O(log λ) can be
used to build QCCC pseudodeterministic PRGs, and thus efficiently verifiable one-way
puzzles. But our argument gives a black-box separation between efficiently verifiable one-
way puzzles and pseudorandom states with output length λ. Thus, we get the following
corollary

Corollary 5 (Informal version of Corollary 8). There exists a quantum oracle O relative
to which PRSs with output length λ exist but PRSs with output length c log λ (for c > 12)
do not.

Note that this observation at its core comes from the simple observation that pseu-
dodeterministic PRGs can be broken with a QCMA oracle, and so this observation is
little more than a corollary of the results of [ALY23b, Kre21], and is known in folklore.
However, we provide a full formal proof of this statement as a contribution towards the
systemization of knowledge in quantum cryptography.

2.6 Equivalence to variant definitions

Random input one way puzzles Another natural variant of one-way puzzles we might
consider is a one-way puzzle where the key must be sampled uniformly at random, and
then the puzzle is sampled from the key. We will call this a random input one-way
puzzle. This more closely aligns with the classical notion of one-way functions, and in fact
the construction of one-way puzzles from one-way state generators produces a random
input one-way puzzle (assuming the key generation for the one-way state generator is
uniform) [KT24].

[KT24] left as an open question whether random input one-way puzzles can be built
from arbitrary one-way puzzles. Note that this statement does hold classically, since both
are equivalent to one-way functions.

We show that these two notions are indeed equivalent

Theorem 13 (Restatement of Theorem 32). If there exists a one-way puzzle, then there
exists a random input one-way puzzle. If there exists an efficiently verifiable one-way
puzzle, then there exists a random input efficiently verifiable one-way puzzle.

The idea is fairly natural. We simply treat the random input as a one-time pad, and
apply it to the original key. We then include the one-time padded key with the original
puzzle in the final output.

Note that our amplification lemma for one-way puzzles also produces a random input
one-way puzzle, and so also gives an indirect proof of this theorem, although this approach
does not hold for efficiently verifiable one-way puzzles.

Distributional one way puzzles We can also consider an analogue of distributional
one way functions, which are known to be equivalent to one way functions. That is, we
say that a puzzle is distributionally one way if, given a puzzle, it is hard to sample the
conditional distribution over keys. Note that every one way puzzle is a distributional
one way puzzle. Interestingly, distributional one way puzzles do not need a verification
algorithm, since their security comes from the sampled distribution.

We show that distributional one way puzzles are equivalent to one way puzzles. This
follows directly from our techniques for amplification. In particular, a distributional one
way puzzle is KL-hard to sample, and so can thus be used to build strong one way puzzles.
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Theorem 14. If there exists a distributional one-way puzzle, then there exists a one way
puzzle.

We remark that as there is no verifier, there is not a natural definition of an ”efficiently
verifiable” distributional one-way puzzle.

3 Open Questions

Although we are aware of a few implications, the landscape of QCCC reductions, even those
relating to one-way puzzles/efficiently verifiable one-way puzzles, is still fairly unexplored.
We list a few interesting questions in this space related to our work

1. Is it possible to build efficiently verifiable one-way puzzles from a QCCC commit-
ment scheme? QCCC commitments and EFID pairs are the two QCCC primitives
for which the obvious construction of one-way puzzles does not have an efficient
verifier. If the answer to this question is no, then it may be possible to build QCCC
commitments from standard one-way puzzles.

2. Are there any useful cryptographic primitives we can construct from one-way puzzles
without efficient verification? Due to the black-box separation between one-way
puzzles and efficiently verifiable one-way puzzles, it seems like the answer may be
no. However, a few primitives (such as EFID pairs and QCCC commitments) fall
outside of this separation, and so there is still hope for a construction.

3. Is there a combiner for QCCC EFID pairs? If so, by using the construction of
non-uniform EFID from one-way puzzles, we would be able to construct standard
EFID from one-way puzzles. Interestingly, there does exist a combiner for both the
quantum version and the classical version of this primitive [HKNY23, Lev87, Gol90].

4. Can we build any QCCC primitives besides one-time signatures from efficiently ver-
ifiable one-way puzzles, for example secret key encryption or pseudodeterministic
PRGs? What about many-time signatures? Although we observe that the known
construction of many time signatures from one-way functions uses a pseudorandom
function in order to be stateless, so this may necessitate building a QCCC style
pseudorandom function [GMR87].

4 Preliminaries

4.1 Definitions of QCCC primitives

As discussed previously this definition of OWPuzz slightly generalizes the notion given in
[KT24].

Definition 1. An (α, β) one way puzzle (OWPuzz) is a pair of a sampling algorithm and
a verification function (Samp,Ver) with the following syntax:

1. Samp(1λ) → (k, s) is a uniform QPT algorithm which outputs a pair of classical
strings (k, s). We refer to s as the puzzle and k as the key. Without loss of generality,
we can assume k ∈ {0, 1}λ.

2. Ver(k, s) → b is some (possibly uncomputable) function which takes in a key and
puzzle and outputs a bit b ∈ {0, 1}.
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satisfying the following properties:

1. Correctness: For all sufficiently large λ, outputs of the sampler pass verification with
overwhelming probability

Pr
Samp(1λ)→(k,s)

[Ver(k, s) → 1] ≥ 1− α

2. Security: Given a puzzle s, it is computationally infeasible to find a key s which
verifies. That is, for all non-uniform QPT algorithms A, for all sufficiently large λ,

Pr
Samp(1λ)→(k,s)

[Ver(A(s), s) → 1] ≤ β

If for all c, (Samp,Ver) is a (λ−c, λ−c) one way puzzle, then we say that (Samp,Ver) is
a strong OWPuzz and omit the constants. When unambigious, we will simply say that
(Samp,Ver) is a OWPuzz.

Definition 2. A one-time signature scheme is a set of QPT algorithms (KeyGen, S, V )
with the following syntax

1. KeyGen(1λ) → (vk, sk) takes the security parameter as input and ouptuts a signing
key sk and a verification key vk

2. S(sk,m) → σ takes in the signing key and a message as input, and outputs a signa-
ture σ

3. V (vk,m, σ) → 0/1 takes in a verification key vk, a message m, and a signature σ,
and outputs a single bit

satisfying the following security properties

1. Correctness: For all m in the message space,

Pr
KeyGen(1λ)→(vk,sk)

[V (vk,m, S(sk,m)) → 1] ≥ 1− negl(λ)

2. One-time Security: An adversary with the ability to make one signature query can
not forge a signature for a different message. More formally, for all m0 ̸= m1 in the
message space and for all PPT A,

Pr
KeyGen(1λ)→(vk,sk)

[V (vk,m1,A(vk, S(sk,m0))) → 1] ≤ negl(λ)

Definition 3 (Pseudodeterministic Quantum Pseudorandom Generator [ALY23a]). A
pseudodeterministic quantum pseudorandom generator (QPRG) is a uniform QPT algo-
rithm G that on input a classical seed k ∈ {0, 1}n(λ) outputs a string of length ℓ(λ) with
the following guarantees:

1. Pseudodeterminism: there exists a constant c > 0 and a function µ(λ) = O(λ−c)
such that for every λ ∈ N, there exists a set of good seeds Kλ ⊆ {0, 1}λ satisfying

Pr
{0,1}λ→k

[k ∈ Kλ] ≥ 1− µ(λ)

∀ k ∈ Kλ, max
y∈{0,1}ℓ(λ)

Pr[y = Gλ(k)] ≥ 1− µ(λ)
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2. Stretch: ℓ(λ) > n(λ)

3. Security: For every non-uniform QPT algorithm A,∣∣∣∣ Pr
{0,1}λ→k

[A(G(k)) → 1]− Pr
{0,1}ℓ(λ)→y

[A(y) → 1]

∣∣∣∣ ≤ negl(λ)

Definition 4 (Commitment scheme from [KT24]). A commitment scheme is an efficient
two-party protocol between a committer Com and a receiver Rec consisting of a commit
stage and an opening stage operating on a private input m described as follows

1. Commit stage: both parties receive a unary security parameter 1λ. The committer
Com receives a private input m. It interacts with the receiver Rec using only classical
messages, and together they produce a transcript z. At the end of the stage, both
parties hold a private quantum state ρCom and ρRec respectively.

2. (Non-interactive) opening stage: both parties receive the transcript z as well as their
private quantum states ρCom and ρRec respectively. The committer Com sends a
single message d to the receiver Rec. At the end of the stage, the receiver either
outputs a message or the reject symbol ⊥.

satisfying the following two properties

1. Correctness: For all messages m, when Com and Rec interact honestly, the proba-
bility that Rec outputs m at the end of the opening stage is at least 1− negl(λ).

2. (Computational) hiding: For all m ̸= m′ and for all QPT adversarial receivers Rec′,
the transcript of the interaction between the adversarial receiver and the committer
with input m is indistinguishable from the transcript of the interaction between the
adversarial receiver and the committer with input m′. That is,

Com(m) ⇄ Rec′ ≈ Com(m′) ⇄ Rec′

3. (Computational weak honest) binding: For all m and for all QPT adversarial senders
Com′, the probability that Com′ wins the following game is ≤ negl(λ)

(a) In the first stage, an honest receiver Rec interacts with the honest committer
Com to produce a transcript z and receiver state ρRec

(b) In the second stage, the honest receiver Rec is given ρRec and z, while Com′ is
given z (but not ρCom). They then proceed to run the opening stage with the
committer replaced by Com′, and Rec produces a final output m′. Com′ wins
if m′ ̸= m and m′ ̸= ⊥.

If the receiver never sends any messages in either stage, then we say the commitment
scheme is non-interactive. In this case, we write Com(m) → (c, d) where c is the message
sent in the first round (the commitment) and d is the message sent in the second round
(the decommitment). We then describe the final output of Rec by Rec(c, d) → m′.

Definition 5. An EFID pair is a randomized algorithm Gen(1λ, b) taking a unary security
parameter λ and a classical bit b ∈ {0, 1} which outputs a classical string satisfying the
following two properties:

1. Statistically far:
∆(Gen(1λ, 0),Gen(1λ, 1)) ≥ 1− ϵ
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2. Computationally close: For all QPT A and for all sufficiently large λ, the distribu-
tions Gen(1λ, 0) and Gen(1λ, 1) are indistinguishable.

If Gen is a quantum algorithm (with classical output), then we call Gen a quantum
EFID pair (or QEFID).

4.2 Complexity

Definition 6. We say a promise problem Π : {0, 1}∗ → {0, 1,⊥} is in Promise QCMA if
there exists a QPT algorithm V(x, y) and a polynomial p such that:

1. Completeness: If Π(x) = 1, then there exists a p(|x|)-bit string y such that

Pr[V(x, y) → 1] ≥ 2

3

2. Soundness: If Π(x) = 0, then for all p(|x|)-bit strings y,

Pr[V(x, y) → 1] ≤ 1

3

Definition 7. We say a promise problem Π : {0, 1}∗ → {0, 1,⊥} is in Promise QMA if
there exists a QPT algorithm V(x, |ϕ⟩) and a polynomial p such that:

1. Completeness: If Π(x) = 1, then there exists a p(|x|)-qubit state |ϕ⟩ such that

Pr[V(x, |ϕ⟩) → 1] ≥ 2

3

2. Soundness: If Π(x) = 0, then for all p(|x|)-qubit states |ϕ⟩,

Pr[V(x, |ϕ⟩) → 1] ≤ 1

3

4.3 Oracles

We define, in the spirit of Kretschmer [Kre21], a query to a single unitary U to be a single
quantum call of either U or controlled-U . We do not allow queries to U†. AU (x) refers to a
quantum algorithm on a classical input x which can make quantum queries to the unitary
(or collection of unitaries) U . In terms of computational cost, a single query to Un will
be charged n units of computation. This allows us to define quantum polynomial-time
(QPT) algorithms relative to an oracle U . In particular, a QPT algorithm relative to U
on an input of length ℓ can query Un for any n < poly(ℓ).

Also in the style of Kretschmer, we consider versions of PromiseBQP, Promise QCMA,
and PromiseQMA augmented with a collection of quantum oracles U = {Un}n∈N. We
denote these by PromiseBQPU , PromiseQCMAU , and PromiseQMAU respectively. For
PromiseBQPU , the deciding algorithm is allowed to be a QPT algorithm relative to U ,
and for PromiseQCMAU and PromiseQMAU , the verifying algorithm is allowed to be a
QPT algorithm relative to U .

It is easy to see that in this model, the traditional inequalities still hold. In particular,
for any oracle U , PromiseBQPU ⊆ PromiseQCMAU ⊆ PromiseQMAU .

We also consider cryptographic primitives in the oracle setting. In this case, we allow
the cryptographic algorithm to be a uniform QPT algorithm relative to U , and we consider
security against non-uniform QPT algorithms relative to U .
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5 Constructions of EV − OWPuzz from QCCC primitives

In this section we give the results that EV − OWPuzz are equivalent to QCCC one time
signatures, and can be constructed from QCCC non-interactive commitments and QPRGs.

Theorem 15. There exists a one-time signature scheme if and only if there exists a
EV − OWPuzz.

Proof of theorem 15. [KT24] show that you can construct OWPuzz from one-time signa-
ture schemes (in fact zero-time signature schemes). They do not define EV − OWPuzz, but
it is clear that their construction has efficient verification. We repeat their construction
here for completeness.

Let (KeyGen, S, V ) be a one-time signature scheme. Then (Samp,Ver) defined as
follows is a EV − OWPuzz

1. Samp(1λ): Sample KeyGen(1λ) → (vk, sk). Output (k = vk, s = sk)

2. Ver(k, s): Samplem uniformly at random from the message space. Output V (s,m, S(k,m)).

To show the other direction (that EV − OWPuzz → signitures), it is not hard to see
that the Lamport signature scheme [Lam79] building one-time signatures from one-way
functions can be generalized to work with EV − OWPuzz. In particular, let (Samp,Ver)
be a EV − OWPuzz, we define a signature scheme using it as follows. For simplicity, the
message space will be {0, 1}.

1. KeyGen(1λ): Run Samp twice to generate two key-puzzle pairs (k0, s0) and (k1, s1).
Output (vk = (s0, s1), sk = (k0, k1)).

2. S((k0, k1), b): Output kb.

3. V ((s0, s1), b, σ): Output Ver(σ, sb).

Correctness is immediate from correctness of the one-way-puzzle scheme. To show
security, we will assume towards contradiction that their exists some pair of messages
m0 ̸= m1 and an adversary A breaking security of the signature scheme. Without loss of
generality we will assume m0 = 0 and m1 = 1. Thus,

Pr[V (vk, 1,A(vk, S(sk, 0))) → 1] > λ−c

for some c. Rewriting this in the notation of the underlying one way puzzle we have

Pr
Samp(1λ)→(k0,s0),(k1,s1)

[Ver(A((s0, s1), k0), s1)] > λ−c

We will define a new adversary B breaking the one-way puzzle as follows. On input s, B
runs Samp(1λ) → (k′, s′) and outputs A((s, s′), k′). It is clear that

Pr
Samp(1λ)→(k,s)

[Ver(B(s), s) → 1]

= Pr
Samp(1λ)→(k0,s0),(k1,s1)

[Ver(A((s0, s1), k0), s1)] > λ−c

But as (Samp,Ver) is a EV − OWPuzz, this is a contradiction, and so the one-time signature
scheme is secure.
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[KT24] shows that EV − OWPuzz can be built from one-time signatures even if the
signing key or the signature are quantum. Thus, an interesting corollary of Theorem 15
is that QCCC one-time signatures with classical signature, signing and verification keys
can be built from one-time signatures where either the signing key or the signature is
quantum.

Theorem 16. If there exists a non-interactive commitment scheme (Com,Rec), then
there exists a EV − OWPuzz (Samp,Ver).

Proof of theorem 16. Our construction is as follows

1. Samp: Pickm uniformly at random. Run Com(m) → (c, d). Output (k = (m, d), s =
c).

2. Ver(k = (m, d), s = c): Run Rec(c, d) → m′. Output 1 if and only if m′ = m.

Correctness immediately implies that

Pr
Samp→(k,s)

[Ver(k, s)] = Pr
$→m,Com(m)→(c,d)

[Rec(c, d) = m] ≥ 1− negl(λ)

We now proceed to show security. Let A be any QPT adversary. We will show

Pr
Samp→(k,s)

[Ver(A(s), s) → 1] ≤ negl(λ)

Observe that

Pr
Samp→(k,s)

[Ver(A(s), s) → 1]

= Pr
Com(m)→(c,d)

[Rec(c, d′) = m′;A(c) → (d′,m′)]

= Pr
Com(m)→(c,d)

[Rec(c, d′) = m′ ∧m = m′;A(c) → (d′,m′)]

+ Pr
Com(m)→(c,d)

[Rec(c, d′) = m′ ∧m ̸= m′;A(c) → (d′,m′)]

But hiding implies that the probability that A computes m from c is negligible, so

Pr
Com(m)→(c,d)

[Rec(c, d′) = m′ ∧m = m′;A(c) → (d′,m′)] ≤ negl(λ)

And binding says that after an honest commitment, there is no way to open to a different
message, and so

Pr
Com(m)→(c,d)

[Rec(c, d′) = m′ ∧m ̸= m′;A(c) → (d′,m′)] ≤ negl(λ)

Together, we have
Pr

Samp→(k,s)
[Ver(A(s), s) → 1] ≤ negl(λ)

Theorem 17. If there exists a QPRG G with stretch ℓ(λ) ≥ 3n(λ), then there exists a
EV − OWPuzz (Samp,Ver).

Proof of theorem 17. We define our EV − OWPuzz as follows

1. Samp(1λ): Sample k1, . . . , kλ uniformly from {0, 1}n. Sample Gλ(ki) → si. Output
key k = k1, . . . , kλ, and puzzle s = s1, . . . , sλ.
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2. Ver(k, s): For each i sample G(ki) → s̃i. If for any i, si = s̃i, output 1. Otherwise,
output 0.

We first will show correctness. Pseudodeterminism of G gives us that for sufficiently
large λ, the probability over a random k that two runs of G(k) give the same result is ≥ 1

2 .
Thus,

Pr
Samp(1λ)→(k,s)

[Ver(k, s) → 0] =

λ∏
i=1

Pr
{0,1}n→ki,G(ki)→si,G(k1)→s̃i

[si = s̃i]

≤
λ∏

i=1

1

2
≤ 1

2λ
≤ negl(λ)

which gives us correctness.
We will now argue security via a reduction. Let A be any non-uniform QPT algorithm

such that
Pr

Samp(1λ)→(k,s)
[Ver(A(s), s) → 1] ≥ ϵ

By an averaging argument, there must exist some index i ∈ [λ] such that

Pr
Samp(1λ)→(k,s)

[G((A(s))i) = si] ≥
ϵ

λ

We define an adversary A′ against G as follows

1. On input y

2. Sample k1, . . . , ki−1, ki+1, . . . , kλ uniformly from {0, 1}n

3. Send G(k1), . . . , G(ki−1), y,G(ki+1), . . . , G(kλ) to A, getting response k̃

4. If G(k̃i) = y, then output 1, otherwise output 0,

First, we will lower bound Pr{0,1}n→x[A′(G(x)) → 1]. Note that on input y = G(x),
the view of A is exactly as it should be in its own game, and so

Pr
{0,1}n→x

[A′(G(x)) → 1] = Pr
Samp(1λ)→(k,s)

[G((A(s))i) = si] ≥
ϵ

λ

Now, we will upper bound Pr{0,1}ℓ→y[A′(G(y)) → 1]. Note that the optimal adversary
for this problem, on input y, returns argmaxx Pr[G(x) = y]. Thus, we have the following
trivial bound

Pr
{0,1}ℓ→y

[A′(G(y)) → 1] ≤ E
{0,1}ℓ→y

[max
x

Pr[G(x) = y]]

But there can be at most 22n values of y such that maxx Pr[G(x) = y] ≥ 1
2n . To see this,

observe∑
y

max
x

Pr[G(x) = y] ≤
∑
x,y

Pr[G(x) = y] =
∑
x

∑
y

Pr[G(x) = y] =
∑
x

1 = 2n

But since ℓ(λ) ≥ 3n(λ), we have that

Pr
{0,1}ℓ→y

[max
x

Pr[G(x) = y] ≥ 2−n] ≤ 22n

2ℓ
≤ 22n

23n
= 2−n
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Thus, we conclude with

E
{0,1}ℓ→y

[max
x

Pr[G(x) = y]] ≤ Pr
{0,1}ℓ→y

[max
x

Pr[G(x) = y] ≥ 2−n] · 1 + 2−n

≤ 2−n + 2−n

Putting this together, we get that

Pr
{0,1}n→x

[A′(G(x)) → 1]− Pr
{0,1}ℓ→y

[A′(y) → 1] ≥ ϵ

λ
+ 2−n+1

and so since
Pr

{0,1}n→x
[A′(G(x)) → 1]− Pr

{0,1}ℓ→y
[A′(y) → 1] ≤ negl(λ)

by QPRG security, we get that ϵ ≤ negl(λ) and so (Samp,Ver) satisfies security.

6 Efficiently verifiable one way puzzles can be broken with
a QCMA oracle

Proposition 1 (From [INN+22, ABOBS22]). There exists a search-to-decision reduction
for PromiseQCMA. Formally, there exists a promise problem Π∗ ∈ PromiseQCMA such
that for every Π ∈ PromiseQCMA with verifier V, there exists a QPT algorithm AΠ∗

such
that for all x such that Π(x) = 1,

Pr[Pr[V(AΠ(x), x) → 1] ≥ 2

3
] ≥ 1

2

Theorem 18. For every efficiently verifiable one way puzzle (Samp,Ver), there exists a
promise problem Π∗ ∈ PromiseQCMA and a QPT algorithm AΠ∗

with oracle access to Π∗

which breaks security. That is

Pr
Samp(1λ)→(k,s)

[Ver(AΠ∗
(s), s) → 1] ≥ 1

poly(λ)

Proof. Let (Samp,Ver) be a EV − OWPuzz. Define Π to be the following promise problem:

1. (yes): s is a yes instance if there exists k such that Pr[Ver(k, s) → 1] ≥ 2
3

2. (no): s is a no instance if for all k, Pr[Ver(k, s) → 1] < 1
3

It is trivial to see that Π ∈ PromiseQCMA.
Our promise problem Π∗ will be the problem from Proposition 1 and our algorithm

AΠ∗
will be the algorithm from Proposition 1 corresponding to Π. In particular, we have

that for all s such that there exists a k with Pr[Ver(k, s) → 1] ≥ 2
3 , then

Pr[Pr[Ver(AΠ∗
(s), s) → 1] ≥ 2

3
] ≥ 1

2

In particular, this means that

Pr[Ver(AΠ∗
(s), s) → 1] ≥ 1

3

Correctness states that

Pr
Samp(1λ)→(k,s)

[Ver(k, s) → 1] ≥ 1− negl(λ).
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And so an averaging argument gives us that

Pr
Samp(1λ)→(k,s)

[Pr[Ver(k, s) → 1] ≥ 2

3
] ≥ 1− negl(λ) ≥ 1

2

In particular, s is a yes instance of Π with all but negligible probability.
Putting things together, we get that

Pr
Samp(1λ)→(k,s)

[Ver(AΠ∗
(s), s) → 1] ≥ 1

6

and we are done.

7 A black-box separation between OWPuzz and EV − OWPuzz

We begin by recalling the very powerful quantum black-box separation theorem by Kretschmer.

Theorem 19 ([Kre21]). There exists a set of quantum oracles U such that with probability
1 over U ,

1. PromiseBQPU = PromiseQMAU .

2. Relative to U , there exists a PRS family mapping λ bits to λ qubit states.

First, we observe that all of our theorems are black-box and thus relativize. In partic-
ular, we get the following corollaries

Corollary 6. Let U be any collection of classical or quantum oracles. For every ef-
ficiently verifiable one way puzzle (SampU ,VerU ), there exists a promise problem Π ∈
PromiseQCMAU and a QPT algorithm AΠ with oracle access to Π which breaks security.
That is

Pr
SampU (1λ)→(k,s)

[VerU (AΠ(s), s) → 1] ≥ 1

poly(λ)

Corollary 7. Let U be any collection of classical or quantum oracles. If there exists a
QPRG GU with stretch ℓ(λ) ≥ 3n(λ) secure relative to U , then there exists a EV − OWPuzz
(SampU ,VerU ) secure relative to U .

Let us then consider the oracle U from Theorem 19. We know that relative to
PromiseBQPU ⊆ PromiseQCMAU ⊆ PromiseQMAU , and we also have PromiseBQPU =
PromiseQMAU . Thus, this gives us that PromiseBQPU = Promise QCMAU . So Corollary 6
immediately shows that relative to U , there does not exist any EV − OWPuzz.

But it is also known from [KT24] and [MY22] that OWPuzz can be built in a black-box
manner from PRSs. Thus, we get the following corollary:

Theorem 20. There exists a set of quantum oracles U such that with probability 1 over
U ,

1. There does not exist any EV − OWPuzz relative to U .

2. There exists a OWPuzz relative to U .

[ALY23b] shows that PRSs with output length c log λ for c > 12 can be used to
build QPRGs with triple stretch. Note that this reduction is itself black-box, and so holds
relative to any quantum oracle. Applying Corollary 7 then gives the following result
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Corollary 8. There exists a set of quantum oracles U such that with probability 1 over
U , relative to U

1. There does not exist any PRS family mapping λ-bits to c log λ-qubits for any constant
c > 12.

2. There does exist a PRS family mapping λ-bits to λ-qubits.

8 OWPuzz Amplification, Combiners, and Universal Con-
structions

In this section we present security and correctness amplifiers, combiners, and universal
constructions for both OWPuzz and EV − OWPuzz. We defer the proof of OWPuzz security
amplification to the next section. With these results we establish that both primitives are
well behaved and have many of the desirable properties of one-way functions.

8.1 Amplification

Theorem 21 (Correctness amplification for OWPuzz and EV − OWPuzz). Let (Samp,Ver)
be a (α, β) OWPuzz. Define (Samp′,Ver′) by

1. Samp′ = Samp⊗t

2. Ver′((k1, . . . , kt), (s1, . . . , st)): output 1 if Ver(ki, si) for some i ∈ [t].

Then (Samp′,Ver′) is a (αt, tβ)OWPuzz.

Proof of theorem 21. To see correctness, we observe that

Pr
Samp′(1λ)→((k1,...,kt),(s1,...,st))

[Ver′((k1, . . . , kt), (s1, . . . , st)) = 0]

= Pr
Samp′(1λ)→((k1,...,kt),(s1,...,st))

[ all of Ver(ki, si) = 0]

≤ Pr
Samp(1λ)→(k,s)

[Ver(k, s) = 0] ≤ αt

To show security, we will do a simple reduction. Let A be such that

Pr
Samp′(1λ)→((k1,...,kt),(s1,...,st))

[Ver(A(s1, . . . , st), (s1, . . . , st)) → 1] > tβ

We will construct an adversary B breaking (Samp,Ver).

1. On input s, pick i uniformly at random from [t]. Set si = s.

2. Run Samp(1λ) t− 1 times to generate sj for j ̸= i.

3. Output A(s1, . . . , st).

It is clear that

Pr
Samp(1λ)→(k,s)

[Ver(B(s), s) → 1]

= Pr
Samp′(1λ)→((k1,...,kt),(s1,...,st)),[t]→i

[Ver(A(s1, . . . , st)i, si)]

≥ 1

t
Pr

Samp′(1λ)→((k1,...,kt),(s1,...,st))
[∃i s.t. Ver(A(s1, . . . , st)i, si) → 1]

≥ 1

t
Pr

Samp′(1λ)→((k1,...,kt),(s1,...,st))
[Ver′(A(s1, . . . , st), (s1, . . . , st)) → 1] >

1

t
tβ > β

Thus, (Samp′,Ver′) satisfies β security and we are done.
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Remark 1. We note that if Ver is efficient, so is Ver′.

Theorem 22 (Weak correctness amplification for OWPuzz). Let (Samp, Ver) be a (α, β)
OWPuzz. Define (Samp′, Ver′) by

1. Samp′ = Samp

2. Ver′(k, s): If PrSamp(1λ)→(k′,s′)[Ver(k
′, s′) → 0|s′ = s] ≥ t, output 1. Otherwise,

output Ver(k, s). (The idea here is that if s was sampled in a way that it would not
verify honestly then we accept it anyway, otherwise we do normal verification)

Then (Samp′,Ver′) is a (t, α/t+ β) OWPuzz.

Proof of theorem 22. To show correctness, we observe that

Pr
Samp′(1λ)→(k,s)

[Ver′(k, s) → 0]

= Pr
Samp(1λ)→(k,s)

[
Ver(k, s) → 0 ∧ Pr

Samp(1λ)→(k′,s′)
[Ver(k′, s′) → 0|s′ = s] < t

]
≤ Pr

Samp(1λ)→(k,s)

[
Ver(k, s) → 0| Pr

Samp(1λ)→(k′,s′)
[Ver(k′, s′) → 0|s′ = s] < t

]
< t

Before showing security, let us define X to be the random variable defined by sampling
Samp(1λ) → (k, s) and outputting PrSamp(1λ)→(k′,s′)[Ver(k

′, s′) → 0|s′ = s]. We will begin
by investigating Pr[X < t].

Observe that E[X] = PrSamp(1λ)→(k,s)[Ver(k, s) → 0] ≤ α. Markov’s inequality then
gives that

Pr[X ≥ t] ≤ α

t
.

Let A be any PPT algorithm

Pr
Samp′(1λ)→(k,s)

[Ver′(A(s), s) → 1]

= Pr
Samp′(1λ)→(k,s)

[Ver(A(s), s) → 1 ∨X ≥ t]

≤ Pr
Samp′(1λ)→(k,s)

[Ver(A(s), s) → 1] + Pr[X ≥ t]

≤ β +
α

t

Remark 2. Note that this construction only holds for standard inefficiently verifiable
one-way puzzles, as Ver′ is not efficient.

Theorem 23 (Security amplification for OWP). If, for some c > 0, there exists a
(negl(λ), 1− λ−c) one-way puzzle (Samp,Ver), then there exists a strong one-way puzzle.

We defer the proof of the above theorem to the next section.

Theorem 24 (Weak correctness amplification for EV − OWPuzz). Let (Samp,Ver) be a
(α, β) EV − OWPuzz. Define (Samp′,Ver′) by

1. Samp′(1λ): Run Samp(1λ) → (k, s). If Ver(k, s) → 1, output (k, s). Otherwise,
output (⊥,⊥).
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2. Ver′(k, s): If s = ⊥, output 1. Otherwise, output Ver(k, s).

Then (Samp′,Ver′) is a (1/4, α+ β) OWPuzz.

Theorem 25 (Security amplification for EV − OWPuzz). Let (Samp,Ver) be a (α, β)
EV − OWPuzz. Then (Samp⊗t,Ver⊗t) is a (tα, βt) EV − OWPuzz.

Proof of theorem 25. Correctness follows from the union bound applied to correctness of
(Samp,Ver):

Pr
Samp⊗t(1λ)→((k1,...,kt),(s1,...,st))

[Ver⊗t((k1, . . . , kt), (s1, . . . , st)) → 0]

= Pr
Samp⊗t(1λ)→((k1,...,kt),(s1,...,st))

[ there exists an i such that Ver(ki, si) → 0]

≤
∑
i

Pr
Samp(1λ)→(ki,si)

[Ver(ki, si) → 0]

≤ tα

Security follows from Theorem 4.1 from [BQSY23].

Remark 3. The proof of Theorem 4.1 from [BQSY23] requires that the soundness game
be efficiently falsifiable. Thus, this same amplification theorem does not hold for OWPuzz
with inefficient verification. Amplification of such puzzles is an open question.

8.2 Combiners

Corollary 9. Let (Samp,Ver) be a OWPuzz candidate and define (Samp′,Ver′) to be the
constructions from Theorem 22 and Theorem 21 applied in sequence with t = 1/2 and
t = λ respectively. Then if (Samp,Ver) is a OWPuzz, so is (Samp′,Ver′). Furthermore,
regardless of whether (Samp,Ver) is a OWPuzz, (Samp′,Ver′) satisfies n−c correctness for
all c.

Proof. Let us say that (Samp,Ver) satisfies (α, β) correctness and security. Then (Samp′,Ver′)
satisfies (2−λ, λ(α/2 + β)) correctness and security.

Observe that if α, β = negl(λ), then λ(α/2 + β) = negl(λ). Furthermore, no matter
what, 2−λ = negl(λ).

Corollary 10. Let (Samp,Ver) be a EV − OWPuzz candidate and define (Samp′, Ver′) to
be the constructions from Theorem 24 and Theorem 21 applied in sequence with t = λ.
Then if (Samp,Ver) is a EV − OWPuzz, so is (Samp′,Ver′). Furthermore, regardless of
whether (Samp,Ver) is a EV − OWPuzz, (Samp′,Ver′) satisfies n−c correctness for all c.

Proof of theorem 24. By correctness, Pr[Samp′(1λ) → (⊥,⊥)] ≤ α. Thus,

Pr
Samp′(1λ)→(k,s)

[Ver′(k, s) → 0]

= Pr
Samp′(1λ)→(k,s)

[Ver′(k, s) → 0 ∧ s = ⊥]

+ Pr
Samp′(1λ)→(k,s)

[Ver′(k, s) → 0 ∧ s ̸= ⊥]

= Pr
Samp(1λ)→(k,s)

[Ver(k, s) → 0 ∧ Ver(k, s) → 1]

where these are two separate calls to Ver
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Take any k, s. Say p := Pr[Ver(k, s) → 1]. Then Pr[Ver(k, s) → 0 ∧ Ver(k, s) → 1] =
p(1− p) ≤ 1

4 . Thus,
Pr

Samp′(1λ)→(k,s)
[Ver′(k, s) → 0] ≤ 1/4

Let A be any PPT algorithm. We will prove security by showing that

Pr
Samp′(1λ)→(k,s)

[Ver′(A(s), s) → 1] ≤ β + α

Pr
Samp′(1λ)→(k,s)

[Ver′(A(s), s) → 1]

= Pr
Samp′(1λ)→(k,s)

[Ver(A(s), s) → 1 ∨ s = ⊥]

≤ Pr
Samp′(1λ)→(k,s)

[Ver(A(s), s) → 1] + Pr
Samp′(1λ)→(k,s)

[s = ⊥]

= α+ β

by the union bound.

Proof. Same argument as before

Corollary 11. Let (Samp0,Ver0) and (Samp1,Ver1) be two OWPuzz candidates. Let
(Samp′0,Ver

′
0) and (Samp′1,Ver

′
1) be the construction from Corollary 9 applied to (Samp0,Ver0)

and (Samp1,Ver1) respectively. Define (S̃amp, Ṽer) by

1. S̃amp(1λ): Run Samp′0 → (k0, s0) and Samp′1 → (k1, s1). Output (k = (k0, k1), s =
(s0, s1)).

2. Ṽer((k0, k1), (s0, s1)): Output 1 if and only if Ver′0(k0, s0) = 1 and Ver′1(k1, s1) = 1.

Then (S̃amp, Ṽer) is a OWPuzz as long as one of (Samp0,Ver0) or (Samp1,Ver1) is a
OWPuzz.

The same corollary holds for EV − OWPuzz when replacing Corollary 9 with Corol-
lary 10.

Remark 4. Given any polynomial p different OWPuzz candidates {(Sampi,Veri)}i∈[p],
we can use the same idea to build a OWPuzz (S̃amp, Ṽer) which is secure as long as

one of the candidates is secure. This follows the same logic as above with S̃amp(1λ) →
((k0, ..., kp), (s0, ..., sp)) and Ver only outputting 1 if all p Ver′i’s output 1.

8.3 Universal Construction

The universal construction of EV follows standard techniques.

Definition 8 (Universal EV − OWPuzz). A set of uniform algorithms (Samp, Ver) is
a universal construction of a EV − OWPuzz if it is a EV − OWPuzz so long as some
EV − OWPuzz exists.

Theorem 26 (Universal EV − OWPuzz). Define Sampi as the ith Quantum Turing ma-
chine and Verj as the jth Quantum Turing machine each of which with an attached alarm
clock which will halt the machine after λ3 steps.

Define (SampU ,VerU ) using the construction from Remark 4 for the λ2 candidates
(Sampi,Verj) for all (i, j) ∈ [λ]2. If any EV − OWPuzz (Samp,Ver) exists, then (SampU ,VerU )
is a OWPuzz.
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Proof. Using standard padding arguments (see [Lev87, HKNY23]) we can show that if
there exists a (α, β) EV − OWPuzz with both Ver and Samp running in time less than
λc, then there exists a (α(1/c), β(1/c)) EV − OWPuzz with Ver′ and Samp′ running in time
less than λ3. If EV − OWPuzz’s exist then there exists a (negl, negl)EV − OWPuzz and
therefore a (negl, negl)EV − OWPuzz running in time less than λ3.

If any one-way puzzle exists then for some i, j, (Sampi,Verj) will be a one way puzzle
with both algorithms running in time less than n3. Once λ ≥ max(i, j) a one way puzzle
will be one of the candidates. By Remark 4 we know that (SampU ,VerU ) will be a OWPuzz.

Theorem 27 (Universal OWPuzz). Define Sampi as the ith Quantum Turing machine
with an attached alarm clock which will halt the machine after λ3 steps. Define Veri to
be the function such that the sum of the correctness and security error of (Sampi,Veri) is
minimized.

Define (SampU )(1
λ) using the construction from Remark 4 for the λ2 candidates (Sampi,Veri)

for all (i, j) ∈ [λ]2. If any OWPuzz (Samp,Ver) exists, then (SampU ,VerU ) is a OWPuzz.

Proof. Observe that if there exists a OWPuzz (Samp,Ver) then when i is such that Sampi =
Samp, (Sampi,Veri) is also a OWPuzz. The rest of the proof follows by the same argument
as Theorem 26.

9 OWPuzz security amplification

In this section we prove the following theorem:

Theorem 28 (Restatement of Theorem 23). If, for some c > 0, there exists a (negl(λ), 1−
λ−c) one-way puzzle (Samp,Ver), then there exists a strong one-way puzzle.

We do this be showing that weak OWPuzz imply non-uniform EFID pairs, and then
show that non-uniform EFID pairs imply strong OWPuzz. The first of these steps serves
as a simpler and more general version of the argument presented in [KT24].

9.1 OWPuzzs imply non-uniform EFID

Definition 9 (From [KT24]). A ν∗-non-uniform EFID pair is a QPT algorithm Gν(1
λ, b)

with classical parameter-dependent advice ν. On input a unary security parameter λ and
b ∈ {0, 1} outputs a classical string such that

1. For all QPT A and for all sufficiently large λ, the distributions Gν∗(1
λ, 0) and

Gν∗(1
λ, 1) are indistinguishable.

2.
∆(Gν∗(1

λ, 0), Gν∗(1
λ, 1)) ≥ 1− ϵ

Theorem 29 (Restatement of Corollary 13). If there exists a OWPuzz, then there exists
a non-uniform EFID pair.

Corollary 12 (Restatement of Corollary 15). If there exists a OWPuzz, then there exists
an EFI pair.

This argument will follow from adapting the techniques of [VZ12] and [HRV10]. We
recall a number of technical lemmas from these papers, and observe that since these lemmas
rely only on quantum friendly black-box techniques, they also hold in the QCCC setting.
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While we will focus on the non-uniform setting, the results should also hold against uniform
adversaries by adapting the arguments of [VZ12] and [HRV10] in the uniform setting.

We first recall the following definitions used in [VZ12, HRV10] (all of which operate in
the non-uniform setting)

Definition 10. Let X,B be two jointly sampled random variables. We say that B has
(t, ϵ) (quantum) pseudoentropy at least k given X if there exists a random variable C
jointly sampled with X such that

1. H(C|X) ≥ k

2. (X,B) and (X,C) are (t, ϵ)-indistinguishable (by quantum circuits)

When t = 1/negl and ϵ = negl we can omit the t, ϵ and simply say that B has (quantum)
pseudoentropy k.

Definition 11. Let B(i) be a random variable over [q] for each i ∈ [m]. We say that B =
(B(1), . . . , B(m)) has next-block (quantum) pseudoentropy at least k if the random variable
B(I) has (quantum) pseudoentropy at least k/m given B(1), . . . , B(I−1), for I ∼ [m]. If
q = 2, then we will use the term next-bit pseudoentropy.

Definition 12. Let B(i) be a random variable for each i ∈ [m]. We say that every block
of B = (B(1), . . . , B(m)) has next-block (quantum) pseudoentropy at least k if for all i, the
random variable B(i) has (quantum) pseudoentropy at least k given B(1), . . . , B(i−1).

Definition 13. For random variables A,B the KL divergence from A to B is defined as

KL(A||B) = E
a∼A

[
log

Pr[A → a]

Pr[B → a]

]
Definition 14. Let X, B be jointly sampled random variables. We say that B is (t, δ)
(quantum) KL-hard for sampling given X if for all size-t randomized (quantum) circuits
S,

KL(X,B||X,S(X)) > δ

Remark 5. We will also define pseudo-min-entropy to have the same definition as pseu-
doentropy, but with Shannon entropy replaced with min-entropy. We analogously define
next-block pseudo-min-entropy.

9.1.1 OWPuzz imply next-bit pseudoentropy

We state quantum versions of the corresponding lemmas from [VZ12]

Lemma 1 (Quantum version of Theorem 3.15 and Lemma 3.6 from [VZ12]). Let (X,B)
be jointly sampled random variables over {0, 1}n × [q]. If B is quantum (t, δ) KL-hard
for sampling given X, then for every ϵ > 0, B has quantum (t′, ϵ) psuedoentropy at least
H(B|X) + δ − ϵ given X, for t′ = tΩ(1)/poly(n, q, 1/ϵ).

Proof. The proof is exactly the same as the proofs of Lemma 3.6 and Theorem 3.15 from
[VZ12], but with the use of the Min-Max theorem replaced by its quantum equivalent
(Theorem 4.1 from [CCL+17]).

Lemma 2 (Quantum chain rule for KL-hardness (variant of Lemma 4.3 from [VZ12]).
Let Y be a distribution over {0, 1}n, jointly distributed with Z. If Y is quantum (t, δ)
KL-hard for sampling given Z, then YI is quantum (t′, δ/n) KL-hard for sampling given
(Z, Y1, . . . , YI−1), for I ∼ [n], t′ = t/O(n).
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Proof. Same as Lemma 4.3 from [VZ12].

Theorem 30. Let (Samp,Ver) be a (ω, γ)-OWPuzz with puzzle length m(λ) secure against
all time t adversaries. Then for all ϵ > 0, Samp → (k, s) has quantum (t′, ϵ/m) next-bit
pseudoentropy at least

H(k, s) + δ − ϵ

for t′ = tΩ(1)/poly(λ, 1/ϵ) and

δ = (1− ω) log
1− ω

γ
+ ω log

ω

1− γ

Proof. We first observe that k is (t, δ) KL-hard to sample given s. Let S be any time t
quantum circuit. We will show that KL(s, k||s, S(s)) ≥ δ.

By monotonicity of quantum relative entropy,

KL(Ver(s, k)||Ver(s, S(s))) ≤ KL(s, k||s, S(s))

But observe that Ver(s, k) is a Bernoulli random variable Bern(p) for some p > 1− ω by
correctness. But Ver(s, S(s)) is a Bernoulli random variable Bern(p′) for p′ the advantage
of S in the OWPuzz game. By security of the OWPuzz, p′ ≤ γ.

KL(Ver(s, k)||Ver(s, S(s))) ≥ KL(Bern(1− ω), Bern(γ))

= (1− ω) log
1− ω

γ
+ ω log

ω

1− γ
= δ.

Let m = poly(λ) be the length of k. By Lemma 2, for I ∼ [m], kI is quantum(
t

O(m) ,
δ
m

)
KL-hard for sampling given (s, k1, . . . , kI−1).

And so by Lemma 1, for every ϵ > 0, kI has quantum (t′, ϵ/m) pseudoentropy
at least H(kI |s, k1, . . . , kI−1) +

δ
m − ϵ/m given s. But by definition, this means that

k has (t′, ϵ/m) next-bit pseudoentropy m · H(kI |s, k1, . . . , kI−1) + δ − ϵ given s. But
m ·H(kI |s, k1, . . . , kI−1) ≥ H(k|s), so (k, s) has (t′, ϵ/m) next-bit pseudoentropy H(s) +
H(k|s) + δ − ϵ = H(k, s) + δ − ϵ for t′ = tΩ(1)/poly(λ, 1/ϵ).

9.1.2 Next-bit pseudoentropy implies non-uniform EFID

This argument follows the framework of [HRV10]. The argument is nearly identical to
the classical case. The primary difference is that instead of lower bounding the length of
the resultant string by the length of the input, we instead lower bound the length of the
resultant string by the entropy of the input.

Lemma 3 (Lemma 5.2 from [HRV10]). For i ∈ [m], x(1), . . . , x(ℓ) ∈ Mm, we define

Equalizer(i, x(1), . . . , x(ℓ)) := x
(1)
i , . . . , x(1)m , x(2), . . . , x(ℓ−1), x

(ℓ)
1 , . . . , x

(ℓ)
i−1

That is, Equalizer(i, x(1), . . . , x(ℓ)) truncates the first i− 1 blocks from the first input and
the last m− (i− 1) blocks from the last input.

Let X be a random variable over Mm with (t, ϵ) next block quantum pseudoentropy at
least k. Let X(1), . . . , X(ℓ) be ℓ independent and identically distributed copies of X, and
let I be uniformly distributed over [m]. Define X̃ = Equalizer(I,X(1), . . . , X(ℓ)). Then
every block of X̃ has (t−O(ℓ ·m · log |M|), ℓ · ϵ) next-block quantum pseudoentropy at least
k/m.
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Lemma 4 (Lemma 5.3 from [HRV10]). Let X be a random variable over Mm where every
block of X has (t, ϵ) next-block quantum pseudo-min-entropy at least k. Let Xa refer to a
i.i.d. copies of X. For every κ > 0, Xa has (t′, ϵ′) next-block quantum pseudo-min-entropy
k′ where

1. t′ = t−O(ma log |M|)

2. ϵ′ = a2(ϵ+ 2−κ + 2−ca) for a universal constant c > 0

3. k′ = ak −O(log(a |M|)
√
aκ)

Lemma 5 (Lemma 5.4 from [HRV10]). There exists an efficient procedure Ext ∈ NC1 on
input x ∈ ({0, 1}a)m and s ∈ {0, 1}a which outputs a string of length y ∈ {0, 1}a+m(k−k′)

such that the following holds: Let X be a random variable over ({0, 1}a)m such that every
block of X has (t, ϵ) next-bit quantum pseudo-min-entropy k, then for all QPT A running
in time t−m · aO(1)∣∣Pr[A(Ext(X,Ua)) → 1]− Pr[A(Ua+m(k−k′)) → 1]

∣∣ ≤ m(ϵ+ 2−k′/2)

Proof. The reductions for all three of these lemmas from [HRV10] are fully black-box (in
a quantum friendly way), and also hold in the quantum setting.

Lemma 6. Let X be a random variable with |X| = m. If H(X) ≤ m− δ for some δ > 0,
then

SD(X,Um) ≥ δ

2m− δ
− 2−δ/2

In particular, if m = O(p(λ)) and δ = Ω(p′(λ)) for some polynomials p and p′, then
there exists a polynomial q such that

SD(X,Um) = Ω

(
1

q(λ)

)
Proof of lemma 6.

S := {x : Pr[X → x] > 2−m+δ/2}

Observe that 1 ≥
∑

x∈S Pr[X → x] ≥ |S|2−m+δ/2 and so |S| ≤ 2m−δ/2. Thus,

Pr[U ∈ S] ≤ 2m−δ/2−m = 2−δ/2

We have
H(X) = E

X→x
[− log Pr[X → x]] ≤ m− δ

By Markov bound, we get

Pr
X→x

[− log Pr[X → x] ≥ m− δ/2] ≤ m− δ

m− δ/2

and so

Pr[X ∈ S] = Pr
X→x

[Pr[X → x] > 2−m+δ/2] ≥ 1− m− δ

m− δ/2
=

δ

2m− δ

Putting these two statements together, we have

SD(X,U) ≥ Pr[X ∈ S]− Pr[U ∈ S] ≥ δ

2m− δ
− 2−δ/2
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Theorem 31 (Adapted from Theorem 5.5 from [HRV10]). Let m(λ),∆(λ) be two com-
putable functions such that ∆ = ∆(λ) ∈ [1/poly(λ), λ]. Let {X}λ∈N be a family of ef-
ficiently samplable random variables of length m(λ) with next-bit pseudoentropy at least
H(X) + ∆. Then there exists a function ν∗(λ) ≤ |X| such that there exists a QPT algo-
rithm Dν(1

λ) outputting a classical string such that

1. Dν∗(1
λ) ≈ U

2. SD(Dν∗(1
λ),U) ≥ 1

p(λ)

for some efficiently computable polynomial p.

The proof of this theorem follows essentially the same lines as the proof from [HRV10],
but with all references to the input length replaced by the entropy of X. This gives a
distribution indistinguishable from uniform but with less than full entropy. Lemma 6 then
gives a bound on the statistical distance. However, this bound is not 1−negl. Fortunately,
taking the product distribution amplifies statistical distance, so we simply take the direct
product of the construction from [HRV10].

Proof. Without loss of generality, we will assume that the block-length of X is a power
of 2 (otherwise, we can just append 0s). We have that for all c > 0 and sufficiently
large λ, X has (t = λc, ϵ = λ−c) next-bit pseudoentropy H(X) + ∆. We set ℓ :=
⌈2(ν∗ + ∆ + logm)/∆⌉ = Ω(ν∗/∆) in Lemma 3 and get a new random variable X̃ =
Equalizer(I,X(1), . . . , X(ℓ)). We will define

Dν(1
λ, 1) := Ext((X̃)a,Ua)

using the Ext from Lemma 5 for some value of a = poly(λ) and with output length
dν := a+m(ℓ− 1)(k′ν − κ) for k′ν := akν −O(log(a|M|)

√
aκ) and kν := (ν +∆)/m.

Observe that when ν = ν∗ = H(X), Lemma 3 shows that every bit of X̃ has (t −
O(ℓm), ℓϵ) next-bit quantum pseudoentropy at least kν∗ = (ν∗ +∆)/m.

Next, Lemma 4 shows that every block of (X̃)a has (t−O(mℓa), a2(ϵ+2−κ +2−Ω(a)))
next-bit quantum pseudo-min-entropy at least k′ν∗ = akν∗ −O(

√
aκ log a).

Finally, Lemma 5 shows that for all QPT A running in time t − O(mℓaO(1)) = t −
poly(λ),∣∣∣Pr[A(Dν∗(1

λ) → 1]− Pr[A(U) → 1]
∣∣∣ ≤ mℓ(a2(ϵ+ 2−κ + 2−Ω(a)) + 2−κ/2)

≤ poly(λ)(ϵ+ 2−κ/2 + 2−Ω(a))

Setting κ = λ/2 and using the fact that this holds for all t = nc, ϵ = n−c, we get that
Dν∗(1

λ) and Udν are indistinguishable.
It just remains to be shown that

∆(Dν∗(1
λ),Udν∗ ) ≥

1

poly(λ)

We will do this by showing that H(Dν∗) ≤ H(Udν∗ )− Ω(poly(λ)) = dν∗ − Ω(poly(λ)) and
then applying Lemma 6.

Observe that when ν∗ = H(X), H(X̃) ≤ ℓH(X)+logm. And so H(X̃a) ≤ a(ℓH(X)+
logm). It is clear to see that H(Dν∗) ≤ a(ℓH(X) + logm) + a. Let us denote this value
by d′ := H(Dν∗).
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dν∗ = a+m(ℓ− 1)(k′ν∗ − κ)

= a+m(ℓ− 1)(akν∗ −O(
√
aκ log a)− κ)

= a+ a(ℓH(X) + logm) + aℓ∆− a(ν∗ +∆+ logm)−m(ℓ− 1)(O(
√
aκ log a) + κ)

≥ a+ a(ℓH(X) + logm) + aℓ∆/2−m(ℓ− 1)(O(
√
aκ log a) + κ)

≥ d′ + aℓ∆/2−m(ℓ− 1)(O(
√
aκ log a) + κ)

≥ d′ + aℓ∆/4

= d′ +Ω(aν∗)

= d′ +Ω(poly(λ))

when

a = Θ

(((
m(ℓ− 1)

∆ℓ

)2

κ log2
(
m(ℓ− 1)κ

∆ℓ

)))
= Θ

(
m2κ log2 λ

∆2

)

Lemma 7 (Amplification of statistical distance.). Let SD(X,Y ) ≥ δ. Then if q ≥ 12t
δ2

SD(Xq, Y q) ≥ 1− 2e−t.

Proof of lemma 7. Since SD(X,Y ) ≥ δ, we know there exists a set S such that

Pr[X ∈ S]− Pr[Y ∈ S] ≥ δ

Define α := Pr[X ∈ S] and β := Pr[Y ∈ S]. We will define a new set

S′ := {(x1, . . . , xq) : at least an
α+ β

2
fraction of xi ∈ S}.

By the Chernoff bound,

Pr[Xq /∈ S′] ≤ e−(1−
α+β
2α )

2
αq/2

≤ e−q
(α−β)2

8α

≤ e−q δ2

8

Similarly,

Pr[Y q ∈ S] ≤ e
−
(

α−β
2β

)2
βq/3

= e
−q

(α−β)2

12β

≤ e−q δ2

12

So if q ≥ 12t
δ2

,

SD(Xq, Y q) ≥ 1− 2e−q δ2

12 = 1− 2e−t

Corollary 13. Let ∆ = ∆(n) ∈ [1/poly(n), n] and let {X}n∈N be a family of efficiently
samplable random variables of length m with next-bit pseudoentropy at least H(X) + ∆.
Then there exists a function ν∗(λ) ≤ |X| such that there exists a non-uniform ν∗-EFID.
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Proof. Define Gν(1
λ, 0) to be uniform over q(λ) · ds bits for some q = poly(λ) to be set

later. Define Gν(1
λ, 1) = Dν∗(1

λ)q(λ).
Since Dν∗(1

λ) ≈ Udν , Dν∗(1
λ)q(λ) ≈ Uq(λ)·dν .

Since SD(Dν∗(1
λ),Udν ) ≥ 1

p(λ) , if we define q(λ) = 12λp(λ), then by Lemma 7

SD(Gν(1
λ, 0), Gν(1

λ, 1)) ≥ 1− 2e−λ = 1− negl(λ)

Corollary 14. If, for some c > 0, there exists a (negl(λ), 1 − λ−c) one-way puzzle
(Samp,Ver), then there exists a ν∗-non-uniform EFID pair with ν∗ ≤ m+ n.

Proof. Let ω = negl(λ) and γ = 1 − λ−c be the correctness and security parameters of
(Samp,Ver), and let n(λ) be the length of the key and let m(λ) be the length of the puzzle.
For all t = poly(λ), ϵ > 0, by Theorem 30, Samp → (k, s) has (tΩ(1)/poly(λ, 1/ϵ), ϵ/m)
quantum next-bit pseudoentropy at least H(k, s) + δ − ϵ for

δ = (1− ω) log
1− ω

γ
+ ω log

ω

1− γ
.

But observe,

(1− ω) log
1− ω

γ
+ ω log

ω

1− γ

≥ 1

2
log

1

1− λ−c
+ (1− ω) log(1− ω) + ω logω + ω log λc

≥ 1

2
log

1

1− λ−c
− negl(λ) ≥ λ−(c+1)

for all sufficiently large λ.
Thus, for all sufficiently large d such that n−d · m ≤ λ−(c+1)/2, for all t = poly(λ),

Samp → (k, s) has (tΩ(1)/poly(λ, λd), n−d) quantum next-bit pseudoentropy at leastH(k, s)+
1
2λ

−(c+1). Adjusting the value of t shows us that Samp → (k, s) has quantum next-bit

pseudoentropy at least H(k, s) + 1
2λ

−(c+1).
By Corollary 13 there exists a ν∗-EFID for ν∗ ≤ m+ n.

Corollary 15. If, for some c > 0, there exists a (negl(λ), 1 − λ−c) one-way puzzle
(Samp,Ver), then there exists an EFI pair.

Proof. Prior work shows that there exists a quantum combiner for quantum bit com-
mitments [HKNY23], which are equivalent to EFI pairs [BCQ22]. We observe that this
combiner (when composed with the construction of EFI pairs from commitments) operates
separately on each security parameter. Thus, given a non-uniform EFID pair, we can ap-
ply the combiner from [HKNY23] to the non-uniform construction instantiated with each
possible value of the advice. This process maintains security, but produces a quantum
output. Thus, this process takes a non-uniform EFID pair and produces an EFI pair.

Since Corollary 14 shows that weak one-way puzzles can be used to build a non-uniform
EFID pair, composing that construction with this approach produces an EFI pair from
any weak one-way puzzle.
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9.2 QEFID imply OWPuzz

Definition 15 (ν∗-non-uniform OWPuzz). Let ν∗(λ) be some function. A ν∗-non-uniform
one way puzzle (OWPuzz) is a pair of a sampling algorithm and a verification function
(Sampν ,Verν) taking in advice ν with the following syntax:

1. Sampν(1
λ) → (k, s) is a uniform QPT algorithm which outputs a pair of classical

strings (k, s). We refer to s as the puzzle and k as the key. Without loss of generality,
we can assume k ∈ {0, 1}λ.

2. Verν(k, s) → b is a function which takes in a key and puzzle and outputs a bit
b ∈ {0, 1}.

satisfying the following properties:

1. Correctness: Outputs of the sampler pass verification with overwhelming probability

Pr
Sampν∗ (1

λ)→(k,s)
[Verν∗(k, s) → 1] ≥ 1− α

2. Security: Given a puzzle s, it is computationally infeasible to find a key s which
verifies. That is, for all non-uniform QPT algorithms A,

Pr
Sampν∗ (1

λ)→(k,s)
[Verν∗(A(s), s) → 1] ≤ β

That is, a non-uniform one-way puzzle is a one-way puzzle for which correctness and
security are only guaranteed to hold when given the correct advice.

Lemma 8 (From QEFID to OWPuzz). If there exists QEFID pair G, then there exists a
OWPuzz (Samp,Ver).

Proof of lemma 8. We will define the OWPuzz as follows

1. Samp(1λ): Sample k uniformly at random from {0, 1}λ. For each i ∈ [λ] sample si
from G(1λ, ki). Output (k, (s1, . . . , sλ)).

2. Ver(1λ, k, s): Set

T ∗ = argmaxT :{0,1}m→{0,1}

(
Pr[T (G(1λ, 1)) → 1]− Pr[T (G(1λ, 0)) → 1

)
For each i ∈ [λ], check if T ∗(si) = ki. If all tests pass, output 1. Otherwise, output
0.

To prove correctness, let us observe that since SD(G(1λ, 0), G(1λ, 1)) ≥ 1 − negl(λ),
there exists a T ∗ such that(

Pr[T ∗(G(1λ, 1)) → 1]− Pr[T ∗(G(1λ, 0)) → 1
)
≥ 1− negl(λ).

In particular, for any such T ∗, we have Pr[T ∗(G(1λ, 1) → 1] ≥ 1 − negl(λ). Thus,
Pr[Ver(1λ, Samp(1λ)) → 1] ≥ (1− negl(λ))λ ≥ 1− negl(λ).
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To prove security, we observe that the QEFID game is a three-round quantum interac-
tive protocol. Thus, we can apply quantum amplification (Theorem 4.1 from [BQSY23])
to see that for all non-uniform QPT A,

Pr
Samp(1λ)→(k,(s1,...,sλ))

[A(s1, . . . , sλ) = k]

≤
(

Pr
{0,1}→b,G(1λ,b)→s

[A(s) → b]

)λ

≤
(
1

2
+ negl(λ)

)λ

≤ negl(λ).

To conclude, we observe that verification simply checks whether k is equal to the output
of T ∗ on all of (s1, . . . , sλ). Thus, the only way to invert the one-way puzzle is to output
the key used for generation. Formally,

Pr
Samp(1λ)→(k,(s1,...,sλ))

[Ver(A(s1, . . . , sλ), (s1, . . . , sλ))]

≤ Pr
Samp(1λ)→(k,(s1,...,sλ))

[A(s1, . . . , sλ) = k]

+ Pr
Samp→(k,(s1,...,sλ))

[Ver(k′, s) → 1|A(s1, . . . , sλ) → k′ ̸= k]

≤ negl(λ) + Pr
Samp→(k,(s1,...,sλ))

[ there exists an index i such that T ∗(si) ̸= ki]

≤ negl(λ) + λ Pr
{0,1}→b,G(b)→s

[T ∗(s) ̸= b]

≤ negl(λ) + λnegl(λ) = negl(λ)

We observe that the same argument also works relative to an advice string, and so we
have

Lemma 9 (From non-uniform QEFID to non-uniform OWPuzz). Let ν∗(λ) be some func-
tion. If there exists a ν∗-non-uniform QEFID pair Gν , then there exists a ν∗-non-uniform
OWPuzz (Sampν ,Verν).

Lemma 10 (From non-uniform OWPuzz to OWPuzz). Let p(λ) be some computable poly-
nomial. Let ν∗(λ) be some function satisfying ν∗(λ) ≤ p(λ). If there exists a ν∗-non-

uniform OWPuzz (Sampν ,Verν), then there exists a OWPuzz (S̃amp, Ṽer).

Proof. We simply apply the construction from Remark 4 to (Samp1,Ver1), . . . , (Sampp,Verp).
An analogous argument to the proof that this construction is a combiner will give that

the resulting (S̃amp, Ṽer) is a OWPuzz.

We now have all the pieces to show theorem 23 that security for OWPuzz can be
amplified. First Corollary 14 gives us that weak OWPuzz imply non-uniform QEFID,
Then the two lemmas above give us that non-uniform QEFID imply non-uniform OWPuzz
which in turn imply strong OWPuzz.
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10 Equivalence of OWPuzz to variants

10.1 Random Input OWPuzz ↔ OWPuzz

In this section we answer an open question left by [KT24] of whether one-way puzzles
imply random input one-way puzzles.

Definition 16. A random input one-way puzzle is a pair of a sampling algorithm and a
verification function (PuzzSamp,Ver) with the following syntax:

1. PuzzSamp(1λ, k) → s is a uniform QPT algorithm which takes in a key k and outputs
a puzzle s.

2. Ver(1λ, k, s) → b is a function which takes in a key and a puzzle and outputs a bit
b ∈ {0, 1}

satisfying the following properties:

1. Correctness: Outputs of the sampler pass verification with overwhelming probability

Pr
{0,1}λ→k,PuzzSamp(1λ,k)→s

[Ver(k, s) → 1] ≥ 1− negl(λ)

2. Security: Given a puzzle s, it is computationally infeasible to find a key s which
verifies. That is, for all non-uniform QPT algorithms A,

Pr
{0,1}λ→k,PuzzSamp(1λ,k)→s

[Ver(A(s), s) → 1] ≤ negl(λ)

Theorem 32. There exists a one-way puzzle (Samp,Ver) if and only if there exists a
random input one-way puzzle (PuzzSamp′,Ver′). If Ver is efficient, then so is Ver′.

Proof. Any random input one-way puzzle gives a one-way puzzle by having the sampler
just sample the random key itself. Thus, we focus on building a random input one-way
puzzle from any one-way puzzle.

We will define the random input one-way puzzle as follows

1. PuzzSamp′(1λ, k′): Run Samp → (k, s). Output s′ = (k ⊕ k′, s).

2. Ver′(k′, s′): Parse s′ as (a, b). Output Ver(a⊕ k′, b).

Observe that Ver(k′, s′) = Ver(k′ ⊕ (k ⊕ k′), s) = Ver(k, s) and so correctness follows
from correctness of (Samp,Ver).

We will show security using a reduction. Let A be any adversary such that

Pr
{0,1}λ→k′,PuzzSamp(k′)→s′

[Ver′(A(s′), s′) → 1] ≥ ϵ

We will define A′ as follows. On input s, sample r uniformly at random. Output
A(r, s)⊕ r.

Note that (r, s) is identically distributed to the output distribution of PuzzSamp on
random inputs. Thus,

Pr
Samp→(k,s)

[Ver(A′(s), s) → 1]

= Pr
{0,1}λ→k′,PuzzSamp(k′)→(r,s)

[Ver(A(r, s)⊕ r, s)]

= Pr
{0,1}λ→k′,PuzzSamp(k′)→s′

[Ver′(A(s′), s′) → 1] ≥ ϵ
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and so ϵ ≤ negl(λ).
Note that if Ver was originally efficient, so is Ver′, and so this same construction works

for efficiently verifiable one-way puzzles, producing a random input efficiently verifiable
one-way puzzle.

The philosophical message behind this theorem is that it doesn’t matter whether or
not the key and puzzle are sampled together, the fundamental difference between one-way
puzzles and one-way functions is that the puzzle is sampled using a quantum algorithm
instead of classical randomness.

10.2 Distributional OWPuzz ↔ OWPuzz

Here we show how to build OWPuzz from distributional OWPuzz.

Definition 17. A β distributional one-way puzzle is a uniform QPT algorithm Samp(1λ) →
(k, s) which takes in a security parameter λ and produces a key k and a puzzle s such that
given a puzzle s, it is computationally infeasible to sample from the conditional distribution
over keys. More formally, we require that for all non-uniform QPT algorithms A, for all
sufficiently large λ,

Samp(1λ) → (k, s)

∆((k, s), (A, s)) ≥ β(λ)

Theorem 33. If, for some c > 0, there exists a λ−c distributional one-way puzzle Samp,
then there exists a strong one-way puzzle.

This theorem follows directly from Pinsker’s inequality, which states

Theorem 34 (Pinsker’s inequality). Let P and Q be any two probability distributions.
Then

∆(P,Q) ≤
√

ln 2

2
KL(P ||Q).

Thus, if a puzzle is λ−c distributionally one-way, then we have that for all QPT S,

KL(s, k||s, S(s)) ≥ 12

ln 2
∆(s, k||s, S(k))2 ≥ λ−2c

Reading the proof of Theorem 23, it is clear that the only property required of the one-way
puzzle is that

KL(s, k||s, S(s)) ≥ 1

poly(λ)
,

and so applying the construction of Theorem 23 to Samp gives a strong one-way puzzle.
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