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Abstract

We put forward a new approach for achieving non-interactive zero-knowledge proofs (NIKZs) from the learning
with errors (LWE) assumption (with subexponential modulus to noise ratio). We provide a LWE-based construction
of a hidden bits generator that gives rise to a NIZK via the celebrated hidden bits paradigm. A notable feature of our
construction is its simplicity. Our construction employs lattice trapdoors, but beyond that uses only simple operations.
Unlike prior solutions, we do not rely on a correlation intractability argument nor do we utilize fully homomorphic
encryption techniques. Our solution provides a new methodology that adds to the diversity of techniques for solving
this fundamental problem.

1 Introduction
Zero-knowledge proofs [GMR85] enable a prover to convince a verifier of the validity of a statement without revealing
anything about why the statement holds. Of particular interest and power are non-interactive zero-knowledge
proofs [BFM88] (NIZKs). NIZKs allow a prover with the aid of a common reference string (CRS) to non-interactively
produce a convincing proof that can be shared with any number of verifiers. While it has long been known [GMW86]
how to achieve zero-knowledge proofs for NP from one way functions using interactive provers, achieving NIZKs
from standard cryptographic assumptions has been a notoriously challenging endeavor.

The first realization of non-interactive zero-knowledge forNP relations is due to Feige, Lapidot and Shamir [FLS90].
The authors show how to create a non-interactive zero-knowledge proof in an idealized model called the hidden bits
model. In this model the prover has access to a set of randomly chosen bits that are hidden to the rest of the world.
As part of its proof, the prover can selectively choose which bits to reveal, but is not allowed to modify them. FLS
described how to create NIZKs for NP in the hidden bits model and provided a concrete construction realizing the
model assuming the difficulty of factoring. (Their construction was built from certified trapdoor permutations which
are known to exist based on the difficulty of factoring.)

For more than a decade thereafter, the only number-theoretic realizations of general NIZKs were factoring based.
However starting with the seminal work of Boneh and Franklin [BF01], the community witnessed an explosion in a
number of new cryptographic applications driven by utilizing groups with efficiently computable bilinear maps. In
2003 Canetti, Halevi and Katz [CHK03] described a NIZK based on the search Diffie-Hellman problem in bilinear
groups. Their construction leveraged the aforementioned hidden bits paradigm. Subsequently, Groth, Ostrovsky and
Sahai [GOS06] introduced a direct gate by gate NIZK solution for circuit satisfiability in bilinear groups. Thus by the
early 2000s, researchers had a second number-theoretic tool for building NIZKs for NP firmly in hand.

By the early 2010s, the Learning with Errors (LWE) problem [Reg05] was emerging as the next number-theoretic
powerhouse for developing cryptographic functionality. Innovations from LWE around the time include Identity-
Based Encryption [GPV08, CHKP10, ABB10a], fully homomorphic encryption [Gen09, BV11] and attribute-based
encryption for circuits [GVW13]. Given that many of these new LWE-based cryptographic functionalities met or
exceeded what was achieved from bilinear maps a decade earlier, one might have predicted that non-interactive zero-
knowledge proofs would soon be added to the LWE achievement list. In particular researchers might have expected a
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learning with errors analog of either a NIZK based on the hidden bits paradigm or a more direct construction in the
Groth et al. [GOS06] style.

Despite such expectations, finding a hidden bits model construction from LWE remained elusive. Researchers
began to focus on a very different approach to building proof systems through the Fiat-Shamir heuristic [FS86].
The Fiat-Shamir heuristic is used to transform public coin interactive verification protocols by replacing verifier
messages with hashes of the transcript so far. While the Fiat-Shamir heuristic is traditionally analyzed in the
random oracle model, one can instead try to achieve a standard model analysis by identifying a concrete “correlation
intractable” [CGH04] property of the hash function. A hash function 𝐻 (·) is correlation intractable for a relation R if
it is computationally hard to find an 𝑥 such that R(𝑥, 𝐻 (𝑥)) holds. In the context of three round proof systems, one
can think of 𝑥 as the prover’s first message and 𝐻 (𝑥) as the verifier’s response, where the relation R captures the
verifier responses a prover could cheat on (e.g., it should be hard to find an 𝑥 such that cheating is possible).

Initial works [KRR17, HL18, CCRR18] in this vein made substantial progress, but depended on non-standard
assumptions. A breakthrough occurred when Canetti, Chen, Holmgren, Lombardi, Rothblum, Rothblum and
Wichs [CCH+19] showed how to realize correlation intractabilty for search relations from circular-secure fully
homomorphic encryption (FHE). Next, Peikert and Shiehian [PS19] showed how to realize the framework from the
learning with errors assumption by replacing circular security with a clever “inert commitment” step. This finally
resolved the question of building NIZKs from LWE. Remarkably, the concept of correlation intractability continued
to bear fruit. Brakerski, Koppula, and Mour [BKM20] introduced a form of approximate correlation intractability
and showed how to build NIZKs from the combination of the learning parity with Noise (LPN) and decisional
Diffie-Hellman (DDH) assumptions. Subsequently, Jain and Jin [JJ21] gave a solution from subexponentially-hard
DDH (over groups with certain complexity conditions on the group operation) also using correlation intractability.

While these achievements from correlation intractability are considerable, many researchers felt there remained
gaps in our understanding and lingering questions. In particular it was unresloved why no one had been able to
build NIZKs from the longer established (in the standard model) hidden bits methodology. Was there a fundamental
reason why or did the community simply miss a solution? Was the utilization of correlation intractability or fully
homomorphic encryption techniques somehow inherent in building NIZKs from LWE? Do all NIZK solutions from
LWE need to make some type of non-black box access to public key decryption along the lines of [CCH+19, PS19]?

Our Contribution
We propose a hidden bits construction of NIZKs from the LWE assumption (with subexponential modulus to noise
ratio) via the hidden bit generator abstraction [QRW19]. The construction does not utilize correlation intractable
hashes and does not leverage the fully homomorphic techniques of [GSW13] or similar works. It also does not require
non-black box access to other cryptographic primitives. A notable feature of our construction is its simplicity. It
employs lattice trapdoors [GPV08], but beyond that uses only simple operations. Thus, this work helps resolve some
of the lingering questions on NIZKs from LWE and contributes to the diversity of approaches to building NIZKs.

On the Importance of Diversity in Approaches to NIZKs
Before detailing our technical approach, we put forward arguments as to why it is critical to have a diversity of
solutions to a problem as fundamental as achieving NIZKs from LWE.

First, realizing multiple approaches to solving a problem is central to obtaining a comprehensive understanding.
Consider for comparison the problem of obtaining chosen ciphertext (CCA) security [RS91] from LWE. This was
an open problem first solved by Peikert and Waters [PW08] with the introduction of lossy trapdoor functions.
However, since then many ways of attacking this problem have emerged including: (1) direct applications of lattice
trapdoors [Pei09], (2) the BCHK [BCHK07] identity-based encryption (IBE) to CCA transformation applied to an
appropriate IBE system [CHKP10, ABB10a], (3) applying a chosen plaintext attack (CPA) to CCA [NY90] transformation
from LWE-based NIZKs [PS19] and (4) using an LWE-based hinting pseudorandom generator [KW19]. The ideas
behind each of these are quite diverse and put together they create a clearer picture of the connection between CCA
security and the LWE problem.

Second, we expect different approaches to NIZKs to result in advances in other areas and problems. For instance,
there is a tight connection between succinct batch arguments (BARGs) and NIZKs. In one direction batch arguments
(with certain caveats) imply NIZKs [CW23, BKP+24, BWW23]. In the other direction, many of the techniques behind
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building batch proof systems [CJJ21a, CJJ21b, WW22, HJKS22, CGJ+23] are rooted in those developed for NIZKs
including correlation resistance. Most of the above BARG results rely on probabilistically-checkable proof type
techniques for building batch arguments; one exception to this is is the work of Waters and Wu [WW22] who present
a bilinear map solution with a more direct route to circuit satisfiability. Arguably, this difference is a reflection of the
connection between Waters and Wu [WW22] and the Groth et al. [GOS06] NIZK system which itself is direct and
does not rely on correlation-resistant hashes. We believe pushing for a diversity in approaches to NIZKs will result in
a diversity in batch proof systems and a host of additional applications.

Finally, exploring a variety of methods to solve NIZKs from LWE (and other assumptions) can potentially lead
to more practically efficient systems. Our approach makes some progress in this direction by removing the need
to homomorphically evaluate a public key decryption operation. At the same time, we observe that the use of a
superpolynomial-sized modulus and the overhead from the hidden bits transformation is limiting from a practical
perspective. However, we believe opening the door to new constructions is important especially with an eye on
potential future direct constructions such as an analog in the style of Groth et al. [GOS06].

1.1 Our Approach
We present a construction of a hidden bits generator abstraction proposed by Quach, Rothblum and Wichs [QRW19].
This is known to imply a non-interactive zero knowledge proof [FLS90]. Our exposition will focus on the construction
and proof of the hidden bits generator.

A hidden bits generator consists of three algorithms: (Setup,GenBits,Verify). The first algorithm is a randomized
setup algorithm Setup(1𝜆, 1𝑘 ) → crs which takes as input the security parameter 𝜆 and a length parameter 𝑘 and
outputs a common reference string crs. The second is a randomized algorithm GenBits(crs) → (com, r, (𝜋1, . . . , 𝜋𝑘 ))
that takes as input the crs and outputs a short commitment com to a 𝑘 length bitstring r ∈ {0, 1}𝑘 along with 𝑘 proofs
(𝜋1, . . . , 𝜋𝑘 ) which can be used to prove the respective output bits relative to com. Finally, there is a deterministic
verification algorithm Verify(crs, com, 𝑖, 𝛽, 𝜋) → 𝑏 that verifies the proof 𝜋 of the opening of a bit 𝛽 for index 𝑖 relative
to the commitment com.

A hidden bits generator has two main properties. The first is a form of binding security. Each crs is associated
with a setVcrs. It must be the case that, except with negligible probability over the choice of crs, no attacker can
successfully open a subset of bits to a string that is not a substring of some r ∈ Vcrs. In addition, we wantVcrs to be
somewhat small and certainly much smaller than 2𝑘 — the number of possible 𝑘-length strings. More precisely, there
should be a fixed polynomial 𝑝 and constant 𝜈 < 1 where |Vcrs | ≤ 2𝑘𝜈 ·𝑝 (𝜆) . Second, the hidden bits generator should
exhibit a hiding property. Consider a computationally bounded attacker that is given the bits and corresponding
proofs {r𝑖 , 𝜋𝑖 }𝑖∈𝐼 for some set 𝐼 ⊆ [𝑘] of its choice. The remaining bits should remain hidden and indistinguishable
from random.

Our Hidden Bits Generator Construction
The best way to explain our construction is to jump into describing it. For security parameter 𝜆, we use a prime
modulus 𝑞 where 2𝜆 < 𝑞 < 2𝜆+1. We use the typical LWE parameters 𝑛,𝑚, 𝜎 which will be set to be some appropriate
polynomial in 𝜆. In addition, we set 𝐿 = 𝜆𝑚𝑘 + 5𝜆 + 1 where 𝑘 is given as input to the setup. We use 𝐷̃Z,𝜎
to denote the distribution of a truncated discrete Gaussian of width 𝜎 (see Section 3). We also employ lattice
trapdoors [Ajt96, GPV08, ABB10b, ABB10a, CHKP10, MP12] with algorithms (TrapGen, SamplePre) (see Theorem 3.4).
We first describe the setup algorithm.

Setup(1𝜆, 1𝑘 ) → crs:

1. Run (A𝑖 , td𝑖 ) ← TrapGen(1𝑛, 𝑞,𝑚) for all 𝑖 ∈ [𝑘].

2. Choose random U r← Z𝑛×𝐿𝑞 .

3. Sample

(a) s𝑖
r← Z𝑛𝑞 for all 𝑖 ∈ [𝑘]

(b) e𝑖
r← 𝐷̃𝑚

Z,𝜎 for all 𝑖 ∈ [𝑘]
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(c) 𝑑𝑖 r← Z𝑞 for all 𝑖 ∈ [𝑘]

4. Compute vT
𝑖 = sT𝑖A𝑖 + eT𝑖 for all 𝑖 ∈ [𝑘].

5. Sample W𝑖
r← SamplePre(A𝑖 , td𝑖 ,U, 𝜎) for all 𝑖 ∈ [𝑘].

6. Output crs = {U,A𝑖 ,W𝑖 , v𝑖 , 𝑑𝑖 }𝑖∈[𝑘 ] .

The setup algorithm creates 𝑘 different matrices A1, . . . ,A𝑘 with corresponding trapdoors using TrapGen. Then it
samples a random matrix U of dimension 𝑛 × 𝐿. and uses the SamplePre algorithm to create 𝑘 matrices W1, . . . ,W𝑘

such that A𝑖W𝑖 = U for all 𝑖 ∈ [𝑘]. Looking forward this structure will allow us to create a proof for each bit that
resolves to the same commitment. We observe that the public parameters grow as 𝑘2 · poly(𝜆) and will later see how
a quadratic growth in 𝑘 is intertwined with our hiding analysis. The next algorithm is GenBits which we give below.

GenBits(crs) → (com, r, (𝜋1, . . . , 𝜋𝑘 )):

1. Sample t r← [−2.5𝜆, 2.5𝜆]𝐿 .

2. Compute 𝜋𝑖 = W𝑖 t for all 𝑖 ∈ [𝑘].

3. Set 𝑟𝑖 =
⌊
vT
𝑖𝜋𝑖 + 𝑑𝑖

⌉
for all 𝑖 ∈ [𝑘].

4. Set com = Ut.

5. Output (com, r, (𝜋1, . . . , 𝜋𝑘 )).

The GenBits algorithm is rather simple and straightforward. The process is to first choose a vector t with entries
randomly chosen in the interval [−2.5𝜆, 2.5𝜆]. Both the commitment and proofs are generated by simply multiplying
corresponding crs parameters by t. Finally, to get the 𝑖-th output bit, first multiply vT

𝑖𝜋𝑖 , then add a scalar 𝑑𝑖 and
finally round the result. We observe that no fully homomorphic encryption type techniques are utilized. The final
algorithm is verification.

Verify(crs, com, 𝑖, 𝛽, 𝜋) → 𝑏:

1. Check if ∥𝜋 ∥∞ ≤ TestBound; output 0 if this does not hold, where TestBound = 𝜎
√
𝜆 · 𝐿 · 2.5𝜆 .

2. Check if com ?
= A𝑖𝜋 ; output 0 if this does not hold.

3. Check if 𝛽 ?
=
⌊
vT
𝑖𝜋 + 𝑑𝑖

⌉
; output 0 if does not hold.

4. Finally, check if 𝛽 ?
=
⌊
vT
𝑖𝜋 + 𝑑𝑖 + RoundingBound

⌉
and 𝛽

?
=
⌊
vT
𝑖𝜋 + 𝑑𝑖 − RoundingBound

⌉
; output 1 if it holds

and 0 otherwise. Here we set RoundingBound = 𝜎
√
𝜆 ·𝑚 · TestBound.

Again, all operations are simple matrix multiplications along with rounding and bounds checks. To see that
correctness holds we first observe that any correctly generated 𝜋 from GenBits will satisfy the bounds check of Step
1 of verification by the setting of parameters. Second, consider 𝜋𝑖 = W𝑖 t generated by the GenBits algorithm. The
verification checks com ?

= A𝑖𝜋𝑖 . However, we have that A𝑖𝜋𝑖 = A𝑖W𝑖 t by the computation of 𝜋 . And that A𝑖W𝑖 t = Ut
by the programming of W. In addition, Ut = com from Step 4 of the GenBits algorithm, so the commitment test will
pass. Finally, we see that the final check of verification rejects if the value of vT

𝑖𝜋 + 𝑑𝑖 is within RoundingBound of
one of the the two rounding thresholds. Since RoundingBound is 2.5𝜆poly(𝜆) this causes a correctness error with at
most negligible probability. In Section 4.1, we show a generic method to remove the correctness error entirely.
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Binding Security
To see why the binding property holds for our hidden bits generator, it helps to first pretend that the noise vectors e𝑖
from setup were all set to 0. Imagine a proof 𝜋𝑖 that successfully verifies for a particular index 𝑖 and commitment
value com. Then the output bit is

⌊
vT
𝑖𝜋𝑖 + 𝑑𝑖

⌉
. We observe that

vT
𝑖𝜋𝑖 + 𝑑𝑖 = (sT𝑖A𝑖 + eT𝑖 )𝜋𝑖 + 𝑑𝑖 = sT𝑖A𝑖𝜋𝑖 + eT𝑖𝜋𝑖 + 𝑑𝑖 = sT𝑖 com + eT𝑖𝜋𝑖 + 𝑑𝑖

These equations follow from the fact that A𝑖𝜋𝑖 = com if the proof verifies. If we make the temporary presumption that
e𝑖 = 0, then we have sT𝑖 com + eT𝑖𝜋𝑖 + 𝑑𝑖 = sT𝑖 com + 𝑑𝑖 . In this case the commitment vector com completely determines
the output bit! Since the commitment is of roughly 𝜆 · 𝑛 bits, we also get our succinctness condition. While it is
tempting to just remove the e𝑖 vectors, this noise in setup will be necessary to argue hiding. Thus the term eT𝑖𝜋𝑖
threatens to hurt binding as different 𝜋𝑖 values could potentially flip which output bit r𝑖 is accepted.

On closer inspection the largest (absolute) value that eT𝑖𝜋𝑖 could take on is not much more than 2.5𝜆 and is in fact
less then the RoundingBound parameter used in the final verification step. This is due to the fact that e𝑖 is of low
norm and the verification size restrictions on accepting 𝜋𝑖 . Therefore this flipping attack is only possible if sT𝑖 com + 𝑑𝑖
is within (around) RoundingBound of one of the two rounding threshold values. However, if this is the case then the
final check of the verification will detect this and reject.

Hiding Security We nowmove to proving hiding security of our construction. We do so by considering a simplified
hiding game which we call single bit hiding. In this game the attacker specifies a single challenge index 𝑖∗ ∈ [𝑘]. The
challenger runs GenBits and gives the attacker com and (r𝑖 , 𝜋𝑖 ) for all 𝑖 ≠ 𝑖∗. The attacker must then guess r𝑖∗ . This
notion implies the normal hiding game via a straightforward hybrid argument. To prove security we first introduce
an alternative setup algorithm called SetupHiding in which an output bit 𝑟𝑖∗ will be statistically hidden even given all
the information above.

SetupHiding(1𝜆, 1𝑘 ) → crs:

1. Run (A′𝑖 , td𝑖 ) ← TrapGen(1𝑛+1, 𝑞,𝑚) and parse A′𝑖 =
[
A𝑖

vT
𝑖

]
where A𝑖 ∈ Z𝑛×𝑚𝑞 and v𝑖 is a vector for all 𝑖 ∈ [𝑘].

2. Choose random U r← Z𝑛×𝐿𝑞 .

3. Sample

(a) u𝑖
r← Z𝐿𝑞 for all 𝑖 ∈ [𝑘]

(b) 𝑑𝑖 r← Z𝑞 for all 𝑖 ∈ [𝑘]

4. Set U′𝑖 =
[
U
uT
𝑖

]
for all 𝑖 ∈ [𝑘].

5. Sample W𝑖
r← SamplePre(A′𝑖 , td𝑖 ,U′𝑖 , 𝜎) for all 𝑖 ∈ [𝑘].

6. Output crs = {U,A𝑖 ,W𝑖 , v𝑖 , 𝑑𝑖 }𝑖∈[𝑘 ] .

We can prove the output of this alternative setup is indistinguishable from the original by a sequence of hybrids
using the LWE assumption along with statistical properties of lattice trapdoors. This is detailed in Section 6.

We next prove hiding security in this mode by establishing (with high probability) the existence of a short vector
c whereW𝑖c = 0 for all 𝑖 ≠ 𝑖∗, but uT

𝑖∗c = ⌊𝑞/2⌋. To this end we first give a counting argument where we note that
the number of binary vectors of length 𝐿 is 2𝐿 which is significantly larger than the number of outputs that come
from multiplying a binary vector of length 𝐿 by all of the different matrices {W𝑖 }𝑖≠𝑖∗ . We can bound the latter by
2(𝜆+1)𝑚𝑘 . This means that there must exist two distinct binary vectors y1, y0 ∈ {0, 1}𝐿 such that W𝑖y0 = W𝑖y1 for
all 𝑖 ≠ 𝑖∗. This implies a nonzero vector h = y0 − y1 ∈ {−1, 0, 1} whereW𝑖h = 0 for all 𝑖 ≠ 𝑖∗. We can actually give
a variation of this argument that establishes the existence of several vectors h0, h1, . . . , h5𝜆 ∈ {−1, 0, 1}𝐿 that are
linearly independent and where W𝑖h𝑗 = 0 for 𝑖 ≠ 𝑖∗ and 𝑗 ∈ [5𝜆]. We defer the extension of this analysis to the
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main body. Since the vectors h0, h1, . . . , h5𝜆 are linearly independent and u𝑖∗ is chosen uniformly at random (and
independently of {W𝑖 }𝑖≠𝑖∗ ) we can also show (again deferred to main body) via the leftover hash lemma that with
high probability there exists a linear combination of these with binary coefficients that gives us a vector c where c
is short and uT

𝑖∗c = ⌊𝑞/2⌋. We emphasize that we only need to prove the existence of such a vector; an inefficient
algorithm to find it is sufficient as our proof will be statistical from here on out.

With this vector in hand, we can return to our proof of hiding security. We next consider a security game where
the challenger in the GenBits algorithm chooses a random 𝛿 ∈ {0, 1} and t ∈ [−2.5𝜆, 2.5𝜆] and uses t + 𝛿c as the
random vector for the algorithm instead of just t as before. This distribution is statistically close to the previous one
by the Smudging Lemma (see Lemma 3.2) due to the shortness of c.

Now an interesting property emerges. Whether 𝛿 is 0 or 1 has no bearing on the output on the commitment com,
proofs 𝜋𝑖 or output bits r𝑖 for all 𝑖 ≠ 𝑖∗. This is due to the fact that W𝑖c = 0 for all 𝑖 ≠ 𝑖∗. But the output value r𝑖∗ will
either be flipped or not depending on whether 𝛿 is 0 or 1.⌊

vT
𝑖∗𝜋𝑖∗ + 𝑑𝑖∗

⌉
=

⌊
vT
𝑖∗W𝑖∗ (t + 𝛿c) + 𝑑𝑖∗

⌉
By definition of the game.

=
⌊
uT
𝑖∗ (t + 𝛿c) + 𝑑𝑖∗

⌉
Since uT

𝑖∗ = vT
𝑖∗W𝑖∗ in the game.

=
⌊
uT
𝑖∗ t + 𝑑𝑖∗ + 𝛿 ⌊𝑞/2⌋

⌉
Since uT

𝑖∗c = ⌊𝑞/2⌋.
=

⌊
uT
𝑖∗ t + 𝑑𝑖∗

⌉
⊕ 𝛿 With all but 1/𝑞 probability.

Since 𝛿 does not appear anywhere else in the proof, the bit is hidden.
Stepping back we remark that we introduce an interesting vector emergence technique. By making the parameter

𝐿 long enough, we argue the existence of a vector c with certain properties even though we never explicitly targeted
such properties in our choice of the random matrix U′𝑖 . The lack of explicit targeting was helpful in switching between
modes. We combine this with the fact that c has small coefficients compared to t to make the bit flipping vector
emerge in our proof.

We conclude by remarking that our approach has a dual mode property where the default setup could be either
hiding or binding. This results in a system where we could make the compiled NIZK have statistical soundness or
statistical zero-knowledge.

2 Hidden Bits Generators
We will employ the hidden bits generator abstraction first introduced by Quach, Rothblum and Wichs [QRW19]
where different variations appeared in other works [KMY20, CW23]. A hidden bits generator ΠHBG consists of three
algorithms Setup,GenBits and Verify. The Setup algorithm takes as input the security parameter 𝜆 and a length
parameter 𝑘 and outputs a common reference string crs. Once the crs is established a prover can run the randomized
GenBits(crs) algorithm and obtain a commitment com, string of 𝑘 bits r and individual proofs (𝜋1, . . . , 𝜋𝑘 ) for each
bit. The Verify algorithm can verify the individual bits as Verify(crs, com, 𝑖, 𝛽, 𝜋) = 1.

The binding property of a ΠHBG system requires that each crs will be associated with a setVcrs ⊆ {0, 1}𝑘 . We
require that if a (computationally unbounded) adversary successfully opens a substring of bits for some commitment
com, then the substring must be consistent with at least one r ∈ Vcrs. Moreover,Vcrs will be relatively small. For
some constant 𝜈 < 1 and fixed polynomial 𝑝 we have |Vcrs | ≤ 2𝑚𝜈 ·𝑝 (𝜆) .

To prove hiding security we will define a notion of single point hiding. In this definition an attacker will first
selectively specify an index 𝑖∗ and the challenger will generate the crs, commitment com and give out bit values and
proofs r𝑖 , 𝜋𝑖 for all 𝑖 ≠ 𝑖∗. It should be computationally hard for an attacker to distinguish 𝑟𝑖∗ from a random bit. We
then show that this single point hiding property actually implies via a simple hybrid argument the adaptive notion of
hiding. In the standard hiding game the attacker requests revelations for a set 𝐼 in one go and needs to distinguish r𝐼
from a random string. While this strengthens prior works which considered a selective notion, the main utility is that
it allows us to simplify our hiding proof by focusing on one bit at a time.

Notation We write 𝜆 to denote the security parameter. For a positive integer 𝑛 ∈ N, we write [𝑛] to denote the set
{1, . . . , 𝑛}. We write poly(𝜆) to denote a fixed function that is 𝑂 (𝜆𝑐 ) for some 𝑐 ∈ N and negl(𝜆) to denote a function
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that is 𝑜 (𝜆−𝑐 ) for all 𝑐 ∈ N. We say an event occurs with overwhelming probability if its complement occurs with
negligible probability. We say an algorithm is efficient if it runs in probabilistic polynomial time in the length of
its inputs. Notationally, for a bitstring r ∈ {0, 1}𝑛 and a set of indices 𝐼 ⊆ [𝑛], we write r𝐼 ∈ {0, 1} |𝐼 | to denote the
substring corresponding to the bits of r indexed by 𝐼 .

Definition 2.1 (Hidden-Bits Generator). A hidden-bits generator a tuple of efficient algorithms ΠHBG = (Setup,
GenBits,Verify) with the following syntax:

• Setup(1𝜆, 1𝑘 ) → crs: On input the security parameter 𝜆, and the output length 𝑘 , the setup algorithm outputs a
common reference string crs.

• GenBits(crs) → (com, r, (𝜋1, . . . , 𝜋𝑘 )): On input of the common reference string crs, the generator algorithm
outputs a string r ∈ {0, 1}𝑘 and a tuple of proofs 𝜋1, . . . , 𝜋𝑘 .

• Verify(crs, com, 𝑖, 𝛽, 𝜋) → 𝑏: On input a common reference string crs, an index 𝑖 , a bit 𝛽 ∈ {0, 1}, and a proof 𝜋 ,
the verification algorithm outputs a bit 𝑏 ∈ {0, 1}.

We require ΠHBG to satisfy the following properties:

• Correctness: For all 𝜆, 𝑘 ∈ N and all indices 𝑖 ∈ [𝑘], we have

Pr
[
Verify(crs, com, 𝑖, r𝑖 , 𝜋𝑖 ) = 1 : crs← Setup(1𝜆, 1𝑘 );

(com, r, (𝜋1, . . . , 𝜋𝑘 )) ← GenBits(crs);

]
= 1.

• Statistical binding: For every crs in the support of the algorithm Setup(1𝜆, 1𝑘 ), there exists a setVcrs with
the following properties:

(i) Output sparsity. There exists a universal constant 𝜈 < 1 and a fixed polynomial 𝑝 (·) such that for
every polynomial 𝑘 = 𝑘 (𝜆) there exists a 𝜆0 such that for all 𝜆 > 𝜆0 and for every crs in the support of
Setup(1𝜆, 1𝑘 ), |Vcrs | ≤ 2𝑘𝜈 ·𝑝 (𝜆) .

(ii) Statistical binding. For a security parameter 𝜆, we define the statistical binding game between an
computationally unbounded adversary A that and a challenger as follows:
(a) On input the security parameter 1𝜆 , algorithm A starts by outputting the length parameter 1𝑘 .
(b) The challenger samples crs← Setup(1𝜆, 1𝑘 ) and gives crs to A.
(c) Algorithm A outputs a tuple (com, 𝐼 ⊆ [𝑘], r𝐼 , {𝜋𝑖 }𝑖∈𝐼 ).
(d) The output of the experiment is 𝑏 = 1 if r𝐼 ∉ Vcrs

𝐼
and Verify(crs, com, 𝑖, r𝑖 , 𝜋𝑖 ) = 1 for all 𝑖 ∈ 𝐼 , where

Vcrs
𝐼

:= {r𝐼 : r ∈ Vcrs}. Otherwise, the output is 𝑏 = 0.
We say the ΠHBG is statistically binding if for all (not necessarily) efficient adversaries A, Pr[𝑏 = 1] =
negl(𝜆) in the statistical binding security game.

• Adaptive Computational hiding: For a security parameter 𝜆 and bit 𝑏 ∈ {0, 1}, we define the adaptive
computational hiding game between an adversary A and a challenger as follows:

1. On input the security parameter 1𝜆 , algorithm A starts by outputting the length parameter 1𝑘 .
2. The challenger samples crs← Setup(1𝜆, 1𝑘 ), (com, r, (𝜋1, . . . , 𝜋𝑘 )) ← GenBits(crs). It initializes a set 𝐼

to the empty set.
3. The challenger gives the attacker crs, com.
4. The attacker can make an arbitrary number of queries of the form 𝑖 ∈ [𝑘]. When the attacker queries for

a particular index 𝑖 , the challenger responds with 𝜋𝑖 , r𝑖 . The set 𝐼 is updated to include the index 𝑖 .

5. If 𝑏 = 0, the challenger gives r𝐼 . If 𝑏 = 1, the challenger chooses a random string 𝑢 ∈ {0, 1}|𝐼 | and outputs
𝑢.
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6. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}.

We say the ΠHBG is computationally hiding if for all efficient adversaries A,

|Pr[𝑏′ = 1|𝑏 = 1] − Pr[𝑏′ = 1|𝑏 = 0] | = negl(𝜆).

Theorem 2.2 (NIZK from Hidden-Bits Generator [KMY20, Theorem 5] (see also [FLS90, QRW19])). If there exists a
hidden-bits generator according to Definition 2.1, then there exists a computational NIZK argument for NP.

2.1 Single Bit Hiding
We now define the single bit hiding game for a hidden bits generator and show that it implies the adaptive computa-
tional hiding property from Definition 2.1.

Definition 2.3 (Single Bit Hiding). For a security parameter 𝜆 and bit𝑏 ∈ {0, 1}, we define the single bit computational
hiding game between an adversary A and a challenger as follows:

1. On input the security parameter 1𝜆 , algorithm A starts by outputting the length parameter 1𝑘 and an index
𝑖∗ ∈ [𝑘].

2. The challenger samples crs← Setup(1𝜆, 1𝑘 ), (com, r, (𝜋1, . . . , 𝜋𝑘 )) ← GenBits(crs).

3. The challenger gives the attacker crs, com as well as 𝑟𝑖 , 𝜋𝑖 for all 𝑖 ≠ 𝑖∗.

4. If 𝑏 = 0, the challenger gives r𝑖∗ . If 𝑏 = 1, the challenger chooses a random bit 𝑢 ∈ {0, 1} and outputs 𝑢.

5. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}.

We say the ΠHBG is computationally single bit hiding if for all efficient adversaries A,

|Pr[𝑏′ = 1|𝑏 = 1] − Pr[𝑏′ = 1|𝑏 = 0] | = negl(𝜆).

Theorem 2.4 (Single bit hiding to adaptive hiding). If there exists a hidden-bits generator ΠHBG that satisfies single bit
security of Definition 2.3, then ΠHBG satisfies the adaptive computational hiding of Definition 2.1.

Proof. If there exists an attacker on the adaptive computational hiding game that wins with non-negligible probability,
then for every security parameter 𝜆, there exists an value 𝑘∗ (𝜆) such that the attacker wins with non-negligible
probability while setting 𝑘 = 𝑘∗ (𝜆). For simplicity we will assume an attacker that always makes this selection.

We define a set of hybrid experiments Hyb𝑗 for 𝑗 ∈ [0, 𝑘] for each security parameter. The experiment runs
the computational hiding experiment with the following exception. After Step 2 the challenger creates a string
𝑟 ∈ {0, 1}𝑘 where such that 𝑟 𝑗 ′ is chosen randomly for 𝑗 ′ ≤ 𝑗 . For 𝑗 ′ > 𝑗 the experiment sets 𝑟 𝑗 ′ = 𝑟 𝑗 ′ . At the end of
the experiment the attacker receives 𝑟𝐼 . We observe that Hyb0 is equivalent to the computational hiding game when
the bit 𝑏 = 0 and that Hyb𝑘 is equivalent to the computational hiding game when 𝑏 = 1.

Claim2.5. SupposeΠHBG is single bit hiding according to Definition 2.3, then for all 𝑗 ∈ [0, 𝑘−1] we have | Pr[Hyb𝑗 (A) =
1] − Pr[Hyb𝑗+1 (A) = 1] | = negl(𝜆).

Proof. Suppose there exists an attacker A that has a non-negligible advantage is distinguishing between Hyb𝑗 from
Hyb𝑗+1 (where 𝑗 is some function of 𝜆). Then we build an algorithm B that breaks the single bit hiding game.

• The algorithm B first submits to the challenger 𝑘∗ and 𝑖∗ = 𝑗 + 1.

• It receives back crs, com and r𝑖 , 𝜋𝑖 for all 𝑖 ≠ 𝑗 + 1. B then runs the attacker A giving the attacker crs, com.

• The attacker then makes queries for an index 𝑖 . If 𝑖 ≠ 𝑗 + 1, the algorithm B gives r𝑖 , 𝜋𝑖 to A. Otherwise if
𝑖 = 𝑗 + 1 it aborts and makes a random guess 𝑏′.

• The algorithm B submits a guess 𝛿 , B outputs 𝑏′ = 𝛿 .
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Suppose that | Pr[Hyb𝑗 (A) = 1] − Pr[Hyb𝑗+1 (A) = 1] | = 𝜖 (𝜆), then the advantage of B = 𝜖 . We first note that when
the attacker queries on the index 𝑗 + 1 the distribution of the view of theA is the same in Hyb𝑗 and Hyb𝑗+1. Therefore
the difference between the probability that A outputs 1 in Hyb𝑗 and does not query index 𝑗 + 1 and the probability
that A outputs 1 in Hyb𝑗+1 and does not query index 𝑗 + 1 is 𝜖 .

When 𝑏 = 0 and no query on index 𝑗 + 1 is made the algorithm A sees experiment Hyb𝑗 . When 𝑏 = 1 and no
query on index 𝑗 + 1 is made it has the view of experiment Hyb𝑗+1. The claim follows.

□

The theorem follows from (1) the above claim, (2) the fact that there are a polynomial 𝑘 + 1 number of hybrids
and (3) the observation that Hyb0 is equivalent to the computational hiding game with the bit 𝑏 = 0 and that Hyb𝑘 is
equivalent to the computational hiding game with the bit 𝑏 = 1.

□

Remark 2.6. We remark that our single point binding game is actually just a special case of the selective binding
game considered in prior works. Thus our theorem actually shows that the selective hiding game from prior works
implies the adaptive hiding game.

3 Learning with Errors and Trapdoors
Throughout this work, we use the ℓ∞ norm for vectors and matrices. Specifically, for a vector u, we write ∥u∥ :=
max𝑖 |𝑥𝑖 |, and for a matrix A, we write ∥A∥ = max𝑖, 𝑗

��𝐴𝑖, 𝑗

��.
Discrete Gaussians. We write 𝐷Z,𝜎 to denote the (centered) discrete Gaussian distribution over Z with parameter
𝜎 ∈ R+. For a matrix A ∈ Z𝑛×𝑚𝑞 , and a vector v ∈ Z𝑛𝑞 , we write A−1

𝜎 (v) to denote a random variable x ← 𝐷𝑚
Z,𝜒

conditioned on Ax = v mod 𝑞. We extend A−1
𝑠 to matrices by applying A−1

𝑠 to each column of the input. Throughout
this work, we will use the following standard tail bound on Gaussian distributions:

Fact 3.1 (Gaussian Tail Bound). Let 𝜆 be a security parameter and 𝜎 = 𝜎 (𝜆) be a Gaussian width parameter. Then,
for all polynomials 𝑛 = 𝑛(𝜆), there exists a negligible function negl(𝜆) such that for all 𝜆 ∈ N,

Pr
[
∥v∥∞ >

√
𝜆𝜎 : v← 𝐷𝑚

Z,𝜎

]
= negl(𝜆).

Truncated Discrete Gaussians We write 𝐷̃Z,𝜎 to denote a truncated Discrete Gaussian distribution. This distribu-
tion will be the same as 𝐷Z,𝜎 except that it outputs the zero vector 0 if the infinity norm of the output ever exceeds√
𝜆𝜎 . By definition the infinity norm of this distribution is bounded by

√
𝜆𝜎 and by Fact 3.1 the distributions 𝐷̃Z,𝜎 and

𝐷Z,𝜎 are statistically close.

Lemma 3.2 (Smudging Lemma [AJL+12, Lemma 2.1, paraphrased]). Let 𝐵1, 𝐵2 be two polynomials over the integers
and let 𝐷 = {𝐷 (𝜆)}𝜆 be any 𝐵1-bounded distribution family. Let𝑈 = {𝑈 (𝜆)}𝜆 and𝑈 (𝜆) denote the uniform distribution
over integers [−𝐵2 (𝜆), 𝐵2 (𝜆)]. The family of distributions 𝐷 and𝑈 is statistically indistinguishable, 𝐷 +𝑈 ≈𝑠 𝑈 , if there
exists a negligible function negl(·) such that for all 𝜆 ∈ N, 𝐵1 (𝜆)/𝐵2 (𝜆) ≤ negl(𝜆).

Assumption 3.3 (Learning with Errors [Reg05]). Let 𝜆 be a security parameter and let 𝑛 = 𝑛(𝜆),𝑚 =𝑚(𝜆), 𝑞 = 𝑞(𝜆)
be integers and 𝜎 = 𝜎 (𝜆) be a Gaussian width parameter. Then, the decisional learning with errors assumption
LWE𝑛,𝑚,𝑞,𝜎 states that for A r← Z𝑛×𝑚𝑞 , s r← Z𝑛𝑞 , e← 𝐷𝑚

Z,𝜎 , and u r← Z𝑚𝑞 ,

(A, sTA + eT) 𝑐≈ (A, u).

Theorem 3.4 (Lattice Trapdoors [Ajt96, GPV08, ABB10b, ABB10a, CHKP10, MP12]). Let 𝑛,𝑚,𝑞 be lattice parameters.
Then there exist efficient algorithms (TrapGen, SamplePre) with the following syntax:

• TrapGen(1𝑛, 𝑞,𝑚) → (A, tdA): On input the lattice dimension 𝑛, the modulus 𝑞, the number of samples𝑚, the
trapdoor-generation algorithm outputs a matrix A ∈ Z𝑛×𝑚𝑞 together with a trapdoor tdA.
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• SamplePre(A, tdA, v, 𝑠) → u: On input a matrix A, a trapdoor tdA, a target vector v, and a Gaussian width
parameter 𝑠 , the preimage-sampling algorithm outputs a vector u.

Moreover, there exists a polynomial𝑚0 =𝑚0 (𝑛, 𝑞) = 𝑂 (𝑛 log𝑞) such that for all𝑚 ≥ 𝑚0, the above algorithms satisfy
the following properties:

• Trapdoor distribution: The matrix A output by TrapGen(1𝑛, 𝑞,𝑚) is statistically close to uniform. Specifically,
if (A, tdA) ← TrapGen(1𝑛, 𝑞,𝑚) and A′ r← Z𝑛×𝑚𝑞 , then Δ(A,A′) ≤ 2−𝑛 .

• Trapdoor quality: The trapdoor tdA output by TrapGen(1𝑛, 𝑞,𝑚) is a 𝜏-trapdoor where 𝜏 = 𝑂
(√︁

𝑛 log𝑞 log𝑛
)
.

We refer to the parameter 𝜏 as the quality of the trapdoor.

• Preimage sampling: Suppose tdA is a 𝜏-trapdoor for A. Then, for all 𝑠 ≥ 𝜏 · 𝜔 (
√︁

log𝑛) and all target vectors
v ∈ Z𝑛𝑞 , the statistical distance between the following distributions is at most 2−𝑛 :

{u← SamplePre(A, tdA, v, 𝑠)} 𝑎𝑛𝑑
{
u← A−1

𝑠 (v)
}
.

Preimage sampling for random targets. Wewill also use the following property of discrete Gaussian distributions
which follows from [GPV08]:

Lemma 3.5 (Preimage Sampling of random targets [GPV08, adapted]). Let 𝑛,𝑚,𝑞 be lattice parameters. There exists
polynomials𝑚0 (𝑛, 𝑞) = 𝑂 (𝑛 log𝑞) and 𝜎0 (𝑛, 𝑞) =

√︁
𝑛 log𝑞 · 𝜔 (

√︁
log𝑛) such that for all𝑚 ≥ 𝑚0 (𝑛, 𝑞) and 𝜎 ≥ 𝜎0 (𝑛, 𝑞),

the statistical distance between the following distributions is negl(𝑛):{
(A, x,Ax) : A r← Z𝑛×𝑚𝑞 , x← 𝐷𝑚

Z,𝜎

}
and

{
(A, x, y) : A r← Z𝑛×𝑚𝑞 , y r← Z𝑛𝑞 , x← A−1

𝜎 (y)
}
.

In our proofs of security we will sometimes use a game-based description of the preimage sampling and trapdoor
distribution properties where the attacker receives a sample and is required to distinguish which distribution it came
from.

4 Our Hidden Bits Generator Construction
Parameterization Prior to describing our construction we describe how we will set the parameters used in it. This
is particularly important in our construction since the proof of security will be strongly connected with the choice of
parameters. We prioritize on the ease of exposition and verification of our results by providing a specific setting of
the parameters. We note that there will exist other interesting choices of parameters beyond what is given below.

All parameters below will depend on at least one of (1) the security parameter 𝜆, (2) the length parameter 𝑘 given
by the attacker and (3) a constant 𝛾 ∈ (0, 1

2 ). We set the parameters as follows:

• Modulus 𝑞: Chosen to be a prime where 2𝜆 < 𝑞 < 2𝜆+1

• 𝑛: 𝜆1/𝛾

• 𝜎 : 𝑛1.1

• 𝑚: 2(𝑛 + 1) lg(𝑞)

• 𝐿: 𝜆 ·𝑚 · 𝑘 + 5𝜆 + 1

• 𝐵: 2.5𝜆

• TestBound: 𝜎
√
𝜆 · 𝐿 · 𝐵

• RoundingBound: 𝜎
√
𝜆 ·𝑚 · TestBound

Construction 4.1. We now describe the algorithms of our hidden bits generator ΠHBG.
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• Setup(1𝜆, 1𝑘 ) → crs:

1. Run (A𝑖 , td𝑖 ) ← TrapGen(1𝑛, 𝑞,𝑚) for all 𝑖 ∈ [𝑘].
2. Choose random U r← Z𝑛×𝐿𝑞 .
3. Sample

(a) s𝑖
r← Z𝑛𝑞 for all 𝑖 ∈ [𝑘]

(b) e𝑖
r← 𝐷̃𝑚

Z,𝜎 for all 𝑖 ∈ [𝑘]
(c) 𝑑𝑖 r← Z𝑞 for all 𝑖 ∈ [𝑘]

4. Compute vT
𝑖 = sT𝑖A𝑖 + eT𝑖 for all 𝑖 ∈ [𝑘].

5. SampleW𝑖
r← SamplePre(A𝑖 , td𝑖 ,U, 𝜎) for all 𝑖 ∈ [𝑘].

6. Output crs = {U,A𝑖 ,W𝑖 , v𝑖 , 𝑑𝑖 }𝑖∈[𝑘 ] .

• GenBits(crs) → (com, r, (𝜋1, . . . , 𝜋𝑘 )):

1. Sample t r← [−𝐵, 𝐵]𝐿 .
2. Compute 𝜋𝑖 = W𝑖 t for all 𝑖 ∈ [𝑘].
3. Set 𝑟𝑖 =

⌊
vT
𝑖𝜋𝑖 + 𝑑𝑖

⌉
for all 𝑖 ∈ [𝑘].

4. Set com = Ut.
5. Output (com, r, (𝜋1, . . . , 𝜋𝑘 )).

• Verify(crs, com, 𝑖, 𝛽, 𝜋) → 𝑏:

1. Check if ∥𝜋 ∥∞ ≤ TestBound.

2. Check if com ?
= A𝑖𝜋 .

3. Check if 𝛽 ?
=
⌊
vT
𝑖𝜋 + 𝑑𝑖

⌉
.

4. Check if 𝛽 ?
=
⌊
vT
𝑖𝜋 + 𝑑𝑖 + RoundingBound

⌉
and 𝛽

?
=
⌊
vT
𝑖𝜋 + 𝑑𝑖 − RoundingBound

⌉
.

5. Output 1 if all tests hold and 0 otherwise.

Remark 4.2. While our construction passes crs to both the GenBits and Verify algorithms, we note that we could
separate out a significantly shorter verification crs by including just {A𝑖 , v𝑖 , 𝑑𝑖 }𝑖𝑛∈[𝑘 ] since only these values are used
in verification. The crs of the prover needs to grow with 𝑘2, but the a separated out verifier key could grow linearly
in 𝑘 . Finally, we could use signatures to push most of that shorter verification key into the proof.

Correctness

Theorem 4.3. Construction 4.1 satisfies correctness of Definition 2.1 with all but negligible probability over the choice of
the coins of Setup and GenBits.

Proof. Suppose that crs← Setup(1𝜆, 1𝑘 ) and (com, r, (𝜋1, . . . , 𝜋𝑘 )) ← GenBits(crs).
The trapdoor produced from setting (A𝑖 , td𝑖 ) ← TrapGen(1𝑛, 𝑞,𝑚) are of quality 𝜏 = 𝑂

(√︁
𝑛 log𝑞 log𝑛

)
=

𝑂
(√︁

𝑛𝜆 log𝑛
)
. Since 𝜎 ≥ 𝜏 · 𝜔 (

√︁
log𝑛) the entries of W𝑖 for all 𝑖 are at most 𝜎

√
𝜆.

In computing 𝜋𝑖 we do matrix multiplication of W𝑖 with t which is an 𝐿-length vector with entries in [−𝐵, 𝐵].
Thus the result will be a vector with entries whose absolute value is at most 𝜎

√
𝜆𝐿𝐵 which matches TestBound.

For the second check we observe:

A𝑖𝜋𝑖 = A𝑖W𝑖 t By computation of 𝜋𝑖
= Ut Since W𝑖

r← SamplePre(A𝑖 , td𝑖 ,U, 𝜎)
= com
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Next, we observe that the verification equation tests if 𝛽 ?
= ⌊vT𝜋 + 𝑑𝑖⌉. However, the GenBits algorithm computed

𝑟𝑖 from 𝜋𝑖 in exactly the same way. Thus if they were set correctly this check will also pass.
Finally, the verification algorithm checks to see if the output answer would flip if either the value RoundingBound

were added to or subtracted from vT
𝑖𝜋 + 𝑑𝑖 . If so, then the algorithm rejects. This final check will cause correctness

error with at most negligible probability. For the round function there exists a single value 𝑎0 ∈ Z𝑞 such that ⌊𝑎0⌉ = 0,
but ⌊𝑎0 + 1⌉ = 1. And a different value 𝑎1 such that ⌊𝑎1⌉ = 1, but ⌊𝑎1 + 1⌉ = 0. The tests will fail if either 𝑎0 or 𝑎1 is in
the range [vT𝜋 +𝑑𝑖 − RoundingBound, vT𝜋 +𝑑𝑖 + RoundingBound− 1]. The probability of either of these occurring is
4 · RoundingBound/𝑞 due to the fact that 𝑑𝑖 is chosen uniformly in Z𝑞 and independent of all other values from Setup
and GenBits. Since RoundingBound is 2.5𝜆 · poly(𝜆) we have that 4 · RoundingBound/𝑞 is negligible in 𝜆 as needed.

□

4.1 Moving to Perfect Correctness Generically
We briefly sketch a generic method to transform a hidden bits generator with negligible correctness error to one with
perfect correctness.

In the new system the Setup algorithm will remain the same. The GenBits algorithm will be modified as follows.
(1) First, run the old GenBits algorithm to get (com, r, (𝜋1, . . . , 𝜋𝑘 )). (2) For all 𝑖 ∈ [𝑘] run Verify(crs, com, 𝑖, r𝑖 , 𝜋𝑖 ). If
all checks pass, use (com, r, (𝜋1, . . . , 𝜋𝑘 )) from above. (3) Otherwise, set com to be a special ⊥ symbol, set r = 0𝑘 (the
all 0s string) and let 𝜋𝑖 be empty for all 𝑖 ∈ [𝑘]. Essentially, any correctness errors in the first commitment trigger a
special commitment to the all 0s string. The new Verify(crs, com, 𝑖, 𝛽, 𝜋) will behave exactly as before if com ≠ ⊥.
Otherwise, it accepts if and only 𝛽 = 0.

The new system is perfectly correct. The GenBits algorithm tests if there could be any correctness errors in its
originally sampled (com, r, (𝜋1, . . . , 𝜋𝑘 )) values. If not, we are fine. If there are any, it moves to the special com = ⊥,
r = 0𝑘 values which are guaranteed to verify. The transformation will not impact binding security for the original
algorithm and the com = ⊥ case can only be opened to 0 values. This adds at most one string to Vcrs. Finally,
hiding security can only be impacted if the special com = ⊥ condition is triggered. However, there was a negligible
correctness error to begin with and this will only happen with negligible probability for an honest execution of the
Setup and GenBits algorithms.

5 Proof of Binding Security
Theorem 5.1. Our construction achieves statistical binding per Definition 2.1 with the output sparsity parameter
|Vcrs | ≤ 2(𝜆+1)𝑛 .

Proof. Each commitment is a tuple in Z𝑛𝑞 where 𝑞 is a prime at most 2𝜆+1. The number of possible commitments
is therefore at most 2(𝜆+1)𝑛 . We now just need to show that for a particular crs, commitment com and index value
𝑖 ∈ [𝑘] can be opened to at most a single bit value.

We show that either
⌊
vT
𝑖𝜋 + 𝑑𝑖

⌉
must take on the single “canoncial” value

⌊
sT𝑖 com + 𝑑𝑖

⌉
or it will be rejected by the

final check in the verify algorithm of Construction 4.1.
Consider a proof 𝜋 such that Verify(crs, com, 𝑖, 𝛽, 𝜋) → 1 for some 𝛽 . Since the proof verifies we have that

com = A𝑖𝜋 . It follows that ⌊
vT
𝑖𝜋 + 𝑑𝑖

⌉
=
⌊
(sT𝑖A𝑖 + eT𝑖 )𝜋 + 𝑑𝑖

⌉
=
⌊
sT𝑖 com + eT𝑖𝜋 + 𝑑𝑖

⌉
.

Next we bound the value that eT𝑖𝜋 can take. Each entry of e𝑖 produced from setup is at most
√
𝜆𝜎 and since

verification passed each entry of 𝜋 is at most TestBound. Since the vectors are of length𝑚 the most eT𝑖𝜋 can be is
TestBound ·

√
𝜆𝜎𝑚 = RoundingBound. Likewise, the least value of eT𝑖𝜋 is −TestBound ·

√
𝜆𝜎𝑚 = −RoundingBound.

This means that sT𝑖 com + eT𝑖𝜋 + 𝑑𝑖 must be within RoundingBound of sT𝑖 com + 𝑑𝑖 . Therefore if
⌊
sT𝑖 com + 𝑑𝑖

⌉
≠⌊

sT𝑖 com + eT𝑖𝜋 + 𝑑𝑖
⌉
, one of the checks of the final verification step will also not be equal and the algorithm will reject.

□
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6 Mode Indistinguishability
We now prove that our construction is single bit hiding per Definition 2.3. The first step to our proof is to introduce a
lossy setup algorithm SetupHiding. In this mode the output of any bit from GenBits will be statistically hidden even
given all other proofs.

Our system therefore has a dual mode type property where it can be setup to be either statistically binding
or statistically hiding. We describe the hiding setup algorithm below and show that its output is computationally
indistinguishable under the LWE assumption from that of the normal setup.

SetupHiding(1𝜆, 1𝑘 ) → crs:

1. Run (A′𝑖 , td𝑖 ) ← TrapGen(1𝑛+1, 𝑞,𝑚) and parse A′𝑖 =
[
A𝑖

vT
𝑖

]
where A𝑖 ∈ Z𝑛×𝑚𝑞 and v𝑖 is a vector for all 𝑖 ∈ [𝑘].

2. Choose random U r← Z𝑛×𝐿𝑞 .

3. Sample

(a) u𝑖
r← Z𝐿𝑞 for all 𝑖 ∈ [𝑘]

(b) 𝑑𝑖 r← Z𝑞 for all 𝑖 ∈ [𝑘]

4. Set U′𝑖 =
[
U
uT
𝑖

]
for all 𝑖 ∈ [𝑘].

5. Sample W𝑖
r← SamplePre(A′𝑖 , td𝑖 ,U′𝑖 , 𝜎) for all 𝑖 ∈ [𝑘].

6. Output crs = {U,A𝑖 ,W𝑖 , v𝑖 , 𝑑𝑖 }𝑖∈[𝑘 ] .

6.1 Proof of Indistinguishability
We define a sequence of games where the first is Definition 2.3 applied to our construction. We will use these to
gradually change the distribution of the setup algorithm in the sequence until the game is using the alternative setup.
Our game definitions will be double scripted of the form (𝑖∗, 𝑗) where 𝑖∗ ∈ [𝑘] and 𝑗 ∈ [1, 7]. For clarity of exposition
we choose to write out the modified setup algorithm in full for each game definition where we highlight the changes
in color. While this presentation will use more page space, it makes it easier for the reader to keep track of the status
when we are multiple games into the proof.

• Game𝑖∗,1: Initial form where parameters are set in one fashion for all 𝑖 < 𝑖∗ and another for 𝑖 ≥ 𝑖∗.

1. Run (A𝑖 , td𝑖 ) ← TrapGen(1𝑛, 𝑞,𝑚) for all 𝑖 ∈ [𝑖∗, 𝑘].

2. Run (A′𝑖 , td𝑖 ) ← TrapGen(1𝑛+1, 𝑞,𝑚) and parse A′𝑖 =
[
A𝑖

vT
𝑖

]
where A𝑖 ∈ Z𝑛×𝑚𝑞 and v𝑖 is a vector for all

𝑖 ∈ [1, 𝑖∗ − 1].
3. Choose random U r← Z𝑛×𝐿𝑞 .
4. Sample

(a) s𝑖
r← Z𝑛𝑞 for all 𝑖 ∈ [𝑖∗, 𝑘]

(b) e𝑖
r← 𝐷̃𝑚

Z,𝜎 for all 𝑖 ∈ [𝑖∗, 𝑘]
(c) u𝑖

r← Z𝐿𝑞 for all 𝑖 ∈ [1, 𝑖∗ − 1]
(d) 𝑑𝑖 r← Z𝑞 for all 𝑖 ∈ [𝑘]

5. Compute vT
𝑖 = sT𝑖A𝑖 + eT𝑖 for all 𝑖 ∈ [𝑖∗, 𝑘].

6. Set U′𝑖 =
[
U
uT
𝑖

]
for all 𝑖 ∈ [1, 𝑖∗ − 1].
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7. SampleW𝑖
r← SamplePre(A𝑖 , td𝑖 ,U, 𝜎) for all 𝑖 ∈ [𝑖∗, 𝑘].

8. SampleW𝑖
r← SamplePre(A′𝑖 , td𝑖 ,U′𝑖 , 𝜎) for all 𝑖 ∈ [1, 𝑖∗ − 1].

9. Output crs = {U,A𝑖 ,W𝑖 , v𝑖 , 𝑑𝑖 }𝑖∈[𝑘 ] .

• Game𝑖∗,2: Same as Game𝑖∗,1 except the setup algorithm is run as:

1. Run (A𝑖 , td𝑖 ) ← TrapGen(1𝑛, 𝑞,𝑚) for all 𝑖 ∈ [𝑖∗, 𝑘].

2. Run (A′𝑖 , td𝑖 ) ← TrapGen(1𝑛+1, 𝑞,𝑚) and parse A′𝑖 =
[
A𝑖

vT
𝑖

]
where A𝑖 ∈ Z𝑛×𝑚𝑞 and v𝑖 is a vector for all

𝑖 ∈ [1, 𝑖∗ − 1].
3. W𝑖∗

r← 𝐷𝑚×𝐿
Z,𝜎 .

4. U = A𝑖∗W𝑖∗ .
5. Sample

(a) s𝑖
r← Z𝑛𝑞 for all 𝑖 ∈ [𝑖∗, 𝑘]

(b) e𝑖
r← 𝐷̃𝑚

Z,𝜎 for all 𝑖 ∈ [𝑖∗, 𝑘]
(c) u𝑖

r← Z𝐿𝑞 for all 𝑖 ∈ [1, 𝑖∗ − 1]
(d) 𝑑𝑖 r← Z𝑞 for all 𝑖 ∈ [𝑘]

6. Compute vT
𝑖 = sT𝑖A𝑖 + eT𝑖 for all 𝑖 ∈ [𝑖∗, 𝑘].

7. Set U′𝑖 =
[
U
uT
𝑖

]
for all 𝑖 ∈ [1, 𝑖∗ − 1].

8. Sample W𝑖
r← SamplePre(A𝑖 , td𝑖 ,U, 𝜎) for all 𝑖 ∈ [𝑖∗ + 1, 𝑘].

9. Sample W𝑖
r← SamplePre(A′𝑖 , td𝑖 ,U′𝑖 , 𝜎) for all 𝑖 ∈ [1, 𝑖∗ − 1].

10. Output crs = {U,A𝑖 ,W𝑖 , v𝑖 , 𝑑𝑖 }𝑖∈[𝑘 ] .

• Game𝑖∗,3: Same as Game𝑖∗,2 except the setup algorithm is run as:

1. Run (A𝑖 , td𝑖 ) ← TrapGen(1𝑛, 𝑞,𝑚) for all 𝑖 ∈ [𝑖∗ + 1, 𝑘].

2. Run (A′𝑖 , td𝑖 ) ← TrapGen(1𝑛+1, 𝑞,𝑚) and parse A′𝑖 =
[
A𝑖

vT
𝑖

]
where A𝑖 ∈ Z𝑛×𝑚𝑞 and v𝑖 is a vector for all

𝑖 ∈ [1, 𝑖∗ − 1].
3. A𝑖∗

r← Z𝑛×𝑚𝑞 .

4. W𝑖∗
r← 𝐷𝑚×𝐿

Z,𝜎 .
5. U = A𝑖∗W𝑖∗ .
6. Sample

(a) s𝑖
r← Z𝑛𝑞 for all 𝑖 ∈ [𝑖∗, 𝑘]

(b) e𝑖
r← 𝐷̃𝑚

Z,𝜎 for all 𝑖 ∈ [𝑖∗, 𝑘]
(c) u𝑖

r← Z𝐿𝑞 for all 𝑖 ∈ [1, 𝑖∗ − 1]
(d) 𝑑𝑖 r← Z𝑞 for all 𝑖 ∈ [𝑘]

7. Compute vT
𝑖 = sT𝑖A𝑖 + eT𝑖 for all 𝑖 ∈ [𝑖∗, 𝑘].

8. Set U′𝑖 =
[
U
uT
𝑖

]
for all 𝑖 ∈ [1, 𝑖∗ − 1].

9. Sample W𝑖
r← SamplePre(A𝑖 , td𝑖 ,U, 𝜎) for all 𝑖 ∈ [𝑖∗ + 1, 𝑘].

10. Sample W𝑖
r← SamplePre(A′𝑖 , td𝑖 ,U′𝑖 , 𝜎) for all 𝑖 ∈ [1, 𝑖∗ − 1].
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11. Output crs = {U,A𝑖 ,W𝑖 , v𝑖 , 𝑑𝑖 }𝑖∈[𝑘 ] .

• Game𝑖∗,4: Same as Game𝑖∗,3 except the setup algorithm is run as:

1. Run (A𝑖 , td𝑖 ) ← TrapGen(1𝑛, 𝑞,𝑚) for all 𝑖 ∈ [𝑖∗ + 1, 𝑘].

2. Run (A′𝑖 , td𝑖 ) ← TrapGen(1𝑛+1, 𝑞,𝑚) and parse A′𝑖 =
[
A𝑖

vT
𝑖

]
where A𝑖 ∈ Z𝑛×𝑚𝑞 and v𝑖 is a vector for all

𝑖 ∈ [1, 𝑖∗ − 1].

3. A𝑖∗
r← Z𝑛×𝑚𝑞 and v𝑖∗

r← Z𝑚𝑞 . Let A′𝑖∗ =
[
A𝑖∗

vT
𝑖∗

]
.

4. W𝑖∗
r← 𝐷𝑚×𝐿

Z,𝜎 .

5.
[

U
uT
𝑖∗

]
= A′

𝑖∗W𝑖∗ .

6. Sample
(a) s𝑖

r← Z𝑛𝑞 for all 𝑖 ∈ [𝑖∗ + 1, 𝑘]
(b) e𝑖

r← 𝐷̃𝑚
Z,𝜎 for all 𝑖 ∈ [𝑖∗ + 1, 𝑘]

(c) u𝑖
r← Z𝐿𝑞 for all 𝑖 ∈ [1, 𝑖∗ − 1]

(d) 𝑑𝑖 r← Z𝑞 for all 𝑖 ∈ [𝑘]
7. Compute vT

𝑖 = sT𝑖A𝑖 + eT𝑖 for all 𝑖 ∈ [𝑖∗ + 1, 𝑘].

8. Set U′𝑖 =
[
U
uT
𝑖

]
for all 𝑖 ∈ [1, 𝑖∗ − 1].

9. Sample W𝑖
r← SamplePre(A𝑖 , td𝑖 ,U, 𝜎) for all 𝑖 ∈ [𝑖∗ + 1, 𝑘].

10. Sample W𝑖
r← SamplePre(A′𝑖 , td𝑖 ,U′𝑖 , 𝜎) for all 𝑖 ∈ [1, 𝑖∗ − 1].

11. Output crs = {U,A𝑖 ,W𝑖 , v𝑖 , 𝑑𝑖 }𝑖∈[𝑘 ] .

• Game𝑖∗,5: Same as Game𝑖∗,4 except the setup algorithm is run as:

1. Run (A𝑖 , td𝑖 ) ← TrapGen(1𝑛, 𝑞,𝑚) for all 𝑖 ∈ [𝑖∗ + 1, 𝑘].

2. Run (A′𝑖 , td𝑖 ) ← TrapGen(1𝑛+1, 𝑞,𝑚) and parse A′𝑖 =
[
A𝑖

vT
𝑖

]
where A𝑖 ∈ Z𝑛×𝑚𝑞 and v𝑖 is a vector for all

𝑖 ∈ [1, 𝑖∗].
3. W𝑖∗

r← 𝐷𝑚×𝐿
Z,𝜎 .

4.
[

U
uT
𝑖∗

]
= A′

𝑖∗W𝑖∗ .

5. Sample
(a) s𝑖

r← Z𝑛𝑞 for all 𝑖 ∈ [𝑖∗ + 1, 𝑘]
(b) e𝑖

r← 𝐷̃𝑚
Z,𝜎 for all 𝑖 ∈ [𝑖∗ + 1, 𝑘]

(c) u𝑖
r← Z𝐿𝑞 for all 𝑖 ∈ [1, 𝑖∗ − 1]

(d) 𝑑𝑖 r← Z𝑞 for all 𝑖 ∈ [𝑘]
6. Compute vT

𝑖 = sT𝑖A𝑖 + eT𝑖 for all 𝑖 ∈ [𝑖∗ + 1, 𝑘].

7. Set U′𝑖 =
[
U
uT
𝑖

]
for all 𝑖 ∈ [1, 𝑖∗ − 1].

8. SampleW𝑖
r← SamplePre(A𝑖 , td𝑖 ,U, 𝜎) for all 𝑖 ∈ [𝑖∗ + 1, 𝑘].

9. SampleW𝑖
r← SamplePre(A′𝑖 , td𝑖 ,U′𝑖 , 𝜎) for all 𝑖 ∈ [1, 𝑖∗ − 1].
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10. Output crs = {U,A𝑖 ,W𝑖 , v𝑖 , 𝑑𝑖 }𝑖∈[𝑘 ] .

• Game𝑖∗,6: Same as Game𝑖∗,5 except the setup algorithm is run as:

1. Run (A𝑖 , td𝑖 ) ← TrapGen(1𝑛, 𝑞,𝑚) for all 𝑖 ∈ [𝑖∗ + 1, 𝑘].

2. Run (A′𝑖 , td𝑖 ) ← TrapGen(1𝑛+1, 𝑞,𝑚) and parse A′𝑖 =
[
A𝑖

vT
𝑖

]
where A𝑖 ∈ Z𝑛×𝑚𝑞 and v𝑖 is a vector for all

𝑖 ∈ [1, 𝑖∗].

3. Choose random
[

U
uT
𝑖∗

]
r← Z𝑛+1×𝐿𝑞 .

4. SampleW𝑖∗
r← SamplePre(A′

𝑖∗ , td𝑖∗ ,U
′
𝑖∗ , 𝜎).

5. Sample
(a) s𝑖

r← Z𝑛𝑞 for all 𝑖 ∈ [𝑖∗ + 1, 𝑘]
(b) e𝑖

r← 𝐷̃𝑚
Z,𝜎 for all 𝑖 ∈ [𝑖∗ + 1, 𝑘]

(c) u𝑖
r← Z𝐿𝑞 for all 𝑖 ∈ [1, 𝑖∗ − 1]

(d) 𝑑𝑖 r← Z𝑞 for all 𝑖 ∈ [𝑘]
6. Compute vT

𝑖 = sT𝑖A𝑖 + eT𝑖 for all 𝑖 ∈ [𝑖∗ + 1, 𝑘].

7. Set U′𝑖 =
[
U
uT
𝑖

]
for all 𝑖 ∈ [1, 𝑖∗ − 1].

8. SampleW𝑖
r← SamplePre(A𝑖 , td𝑖 ,U, 𝜎) for all 𝑖 ∈ [𝑖∗ + 1, 𝑘].

9. SampleW𝑖
r← SamplePre(A′𝑖 , td𝑖 ,U′𝑖 , 𝜎) for all 𝑖 ∈ [1, 𝑖∗ − 1].

10. Output crs = {U,A𝑖 ,W𝑖 , v𝑖 , 𝑑𝑖 }𝑖∈[𝑘 ] .

• Game𝑖∗,7: Same as Game𝑖∗,6 except the setup algorithm is run as:

1. Run (A𝑖 , td𝑖 ) ← TrapGen(1𝑛, 𝑞,𝑚) for all 𝑖 ∈ [𝑖∗ + 1, 𝑘].

2. Run (A′𝑖 , td𝑖 ) ← TrapGen(1𝑛+1, 𝑞,𝑚) and parse A′𝑖 =
[
A𝑖

vT
𝑖

]
where A𝑖 ∈ Z𝑛×𝑚𝑞 and v𝑖 is a vector for all

𝑖 ∈ [1, 𝑖∗].
3. Choose random U r← Z𝑛×𝐿𝑞 .
4. Sample

(a) s𝑖
r← Z𝑛𝑞 for all 𝑖 ∈ [𝑖∗ + 1, 𝑘]

(b) e𝑖
r← 𝐷̃𝑚

Z,𝜎 for all 𝑖 ∈ [𝑖∗ + 1, 𝑘]
(c) u𝑖

r← Z𝐿𝑞 for all 𝑖 ∈ [1, 𝑖∗]
(d) 𝑑𝑖 r← Z𝑞 for all 𝑖 ∈ [𝑘]

5. Compute vT
𝑖 = sT𝑖A𝑖 + eT𝑖 for all 𝑖 ∈ [𝑖∗ + 1, 𝑘].

6. Set U′𝑖 =
[
U
uT
𝑖

]
for all 𝑖 ∈ [1, 𝑖∗].

7. SampleW𝑖
r← SamplePre(A𝑖 , td𝑖 ,U, 𝜎) for all 𝑖 ∈ [𝑖∗ + 1, 𝑘].

8. SampleW𝑖
r← SamplePre(A′𝑖 , td𝑖 ,U′𝑖 , 𝜎) for all 𝑖 ∈ [1, 𝑖∗].

9. Output crs = {U,A𝑖 ,W𝑖 , v𝑖 , 𝑑𝑖 }𝑖∈[𝑘 ] .

We now state a sequence of claims which state that the advantage of any polytime attacker in one game will
be negligibly close to the adjacent game. All but one of our claims are statistical and derive from an immediate
application of our lattice preliminaries of 3.4. The remaining claim follows from a straightforward reduction to the
learning with errors assumption. We provide the proofs for these in Appendix A.
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Claim 6.1. By the preimage sampling property of Lemma 3.5 the advantage of any algorithmA inGame𝑖∗,2 is negligibly
close to its advantage in Game𝑖∗,1 for 𝑖∗ ∈ [𝑘].

Claim 6.2. By the trapdoor distribution property of Theorem 3.4 the advantage of any algorithm A in Game𝑖∗,3 is
negligibly close to its advantage in Game𝑖∗,2 for 𝑖∗ ∈ [𝑘].

Claim 6.3. Assuming the LWE𝑛,𝑚,𝑞,𝜎 assumption (for 𝑛,𝑚,𝑞, 𝜎 specified as in the construction) the advantage of any
polynomial time algorithm A in Game𝑖∗,4 is negligibly close to its advantage in Game𝑖∗,3 for 𝑖∗ ∈ [𝑘].

Claim 6.4. By the trapdoor distribution property of Theorem 3.4 the advantage of any algorithm A in Game𝑖∗,5 is
negligibly close to its advantage in Game𝑖∗,4 for 𝑖∗ ∈ [𝑘] for 𝑖∗ ∈ [𝑘].

Claim 6.5. By the preimage sampling property of Lemma 3.5 the advantage of any algorithmA inGame𝑖∗,6 is negligibly
close to its advantage in Game𝑖∗,5 for 𝑖∗ ∈ [𝑘].

Claim 6.6. The advantage of any algorithm A in Game𝑖∗,7 is identical to its advantage in Game𝑖∗,6 for 𝑖∗ ∈ [𝑘].

Claim 6.7. The advantage of any algorithmA in Game𝑖∗+1,1 is identical to its advantage in Game𝑖∗,7 for 𝑖∗ ∈ [1, 𝑘 − 1].

Claim 6.8. The algorithm Setup from our construction has the same distribution as the setup described in Game𝑖∗=1,1.

Claim 6.9. The algorithm SetupHiding from our construction has the same distribution as the setup described in
Game𝑖∗=𝑘,7.

Lemma 6.10. Assuming the Assuming the LWE𝑛,𝑚,𝑞,𝜎 assumption the advantage of any polynomial time attacker A
against our construction in the single bit hiding game of Definition 2.3 is negligibly close to its advantage when playing
the single bit hiding game using SetupHiding used in place of Setup.

Proof. The proof follows from the Claims 6.1 to 6.9. Since 𝑘 is polynomial in the security parameter and Claims 6.1
to 6.7 show the advantage in successive games is negligibly close, then the advantage of any polynomial time attacker
in Game𝑖∗=1,1 is negligibly close to its advantage in Game𝑖∗=𝑘,7. Claim 6.8 shows that the output of Game𝑖∗=1,1 is
distributed as the Setup algorithm from the construction. Claim 6.9 shows that the output of Game𝑖∗=𝑘,7 is distributed
the same as the SetupHiding algorithm.

Therefore the outputs of Setup and SetupHiding are computationally indistinguishable. It immediately follows
that the advantage of any polynomial time attacker in playing the single bit hiding game with a crs derived from the
output of Setup is negligibly close to its advantage when playing the single bit hiding game when the crs is derived
from SetupHiding.

□

7 Single Bit Hiding
In Section 6 we proved indistinguishability of two setup modes. We move to showing that for any 𝑖∗ ∈ [𝑘] the bit
𝑟𝑖∗ will be statistically hidden. We accomplish this by arguing when crs is sampled from SetupHiding with high
probability there will exist a short vector c with the following properties. The first is thatW𝑖c = 0 for all 𝑖 ≠ 𝑖∗ and
Uc = 0. Second, vT

𝑖∗W𝑖∗c = ⌊𝑞/2⌋.
Now consider a challenger that flips a random bit 𝛿 ∈ {0, 1} and chooses its randomness as t + 𝛿c. Since c is

small and t is chosen from [−𝐵, 𝐵] the distribution is the statistically close to just choosing from t so the attacker’s
advantage must be close to the earlier game. The commitment com and proofs 𝜋𝑖 for 𝑖 ≠ 𝑖∗ are all independent of the
bit 𝛿 as com = U(t + 𝛿c) = Ut + 𝛿Uc = Ut and 𝜋𝑖 = W𝑖 (t + 𝛿c) = W𝑖 t + 𝛿W𝑖c = W𝑖 t. At the same time

𝑟𝑖∗ =
⌊
vT
𝑖∗𝜋𝑖∗ + 𝑑𝑖

⌉
=
⌊
vT
𝑖∗W𝑖∗ (t + 𝛿c) + 𝑑𝑖

⌉
=
⌊
vT
𝑖∗W𝑖∗ t + 𝑑𝑖 + 𝛿 ⌊𝑞/2⌋

⌉
=
⌊
vT
𝑖∗W𝑖∗ t + 𝑑𝑖

⌉
⊕ 𝛿.

That is the bit is distributed uniformly at random. We proceed by formally describing both parts of our proof by a
new sequence of games. Please note that the game labeling here is independent from that of Section 6. Also note that
in the previous section the variable 𝑖∗ was used to denote an index in a game. In the game sequence below 𝑖∗ will be
the index for bit the attacker is trying to guess in the single bit hiding game.
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• Game1: The single bit hiding game of Definition 2.3 on our construction with the exception that the crs is
derived from the SetupHiding algorithm.

• Game2: Same as Game1 except after SetupHiding(1𝜆, 1𝑘 ) → crs = (A𝑖 ,W𝑖 , v𝑖 , 𝑑𝑖 }𝑖∈[𝑘 ]) is run the challenger
finds a length 𝐿 vector c. The vector c will have the following properties: (1) it is short in that ∥c∥∞ ≤ 5𝜆 + 1,
(2) W𝑖c = 0 for all 𝑖 ≠ 𝑖∗ and (3) uT

𝑖∗c = ⌊𝑞/2⌋ where u𝑖∗ is a vector sampled in SetupHiding. If no such vector c
exists, the game aborts after assigning the attacker a random guess 𝑏′. Otherwise it continues on as in Game1.

• Game3: Same as Game2 except we modify the GenBits algorithm used by challenger in the game as follows.

1. Sample t r← [−𝐵, 𝐵]𝐿 .
2. Sample a random bit 𝛿 ∈ {0, 1}.
3. Compute 𝜋𝑖 = W𝑖 (t + 𝛿c) for all 𝑖 ∈ [𝑘].
4. Set 𝑟𝑖 = ⌊vT𝜋𝑖 + 𝑑𝑖⌉ for all 𝑖 ∈ [𝑘].
5. Set com = A1W1 (t + 𝛿c).
6. Output (com, r, (𝜋1, . . . , 𝜋𝑘 )).

Lemma 7.1. The advantage of any algorithm A in Game2 is negligibly close to its advantage in Game1.

Proof. We note that Game2 proceeds the same as Game1 except for the fact that it searchers for the vector c and
aborts if no vector meeting these conditions exists. To prove the advantages are negligibly close we must prove that
the vector will exist with all but negligible probability. We begin the proof with a supporting claim.

Claim7.2. InGame1 there exists a sequence of vectors h0, h1, . . . , h5𝜆 ∈ {−1, 0, 1}𝐿 and unique indices ind0, ind1, . . . , ind5𝜆 ∈
[𝑘] with the following properties:

• W𝑖h𝑗 = 0 for all 𝑖 ≠ 𝑖∗

• For all 𝑗 ∈ [0, 5𝜆] we have h𝑗 [ind𝑗 ] = 1

• For all 𝑗, 𝑗 ′ ∈ [0, 5𝜆] where 𝑗 ′ > 𝑗 we have h𝑗 ′ [ind𝑗 ] = 0.

• The vectors h0, h1, . . . , h5𝜆 are linearly independent.

The properties are defined over the matrices W𝑖 output from setup.

Proof. We prove the claim by defining an algorithm that will produce such vectors and then analyzing it.

FindVectors({W𝑖 }𝑖≠𝑖∗ )
1. Initialize set 𝑆 = ∅.

2. For 𝑗 = 0 to 5𝜆

(a) Let h𝑗 be the lexiographically first vector in {−1, 0, 1}𝐿 such that: (1)W𝑖h𝑗 = 0 for all 𝑖 ≠ 𝑖∗, (2) at least
one entry of h𝑗 is 1 and (3) for all 𝑧 ∈ 𝑆 we have h𝑗 [𝑧] = 0.

(b) Set ind𝑗 to be the smallest 𝑧 ∈ [𝐿] such that h𝑗 = 1.
(c) Add the index ind𝑗 to the set 𝑆 .

3. Output the sequence h0, . . . , h5𝜆 and ind0, . . . , ind5𝜆
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Consider iteration 𝑗 of the algorithm where the algorithm so far has produced vectors h1, . . . , h𝑗−1 and unique
indices ind1, . . . , ind𝑗−1 that so far satisfy the conditions above. In addition, assume that 𝑆 = ind1 ∪ ind2 · · · ∪ ind𝑗−1.

We first show that there are at least two vectors y0, y1 ∈ {0, 1} such that (1) y0 ≠ y1, (2)W𝑖y0 = W𝑖y1 for all 𝑖 ≠ 𝑖∗

and (3) y0 [𝑧] = y1 [𝑧] = 0 for all 𝑧 ∈ 𝑆 .
We first count the number of possible outputs formed by mutliplying a vector y by all W𝑖 for 𝑖 ≠ 𝑖∗. Consider the

process of multiplying a particular matrix W𝑖 (for 𝑖 ≠ 𝑖∗) by a vector 𝑦 ∈ {0, 1}𝐿 . The absolute value of each entry in
the matrix W𝑖 is at most 𝜎

√
𝜆. After multiplication by a bit vector of length 𝐿 this results in a row vector of𝑚 entries

where each entry must fall within [−𝐿𝜎
√
𝜆, 𝐿𝜎
√
𝜆]. Since 𝐿, 𝜎, 𝜆 are polynomial there are at most 2𝜆 possible values

for each entry. 1 If we now consider a vector y being multiplied by everyW𝑖 for 𝑖 ≠ 𝑖∗, we can see that there are at
most 2𝜆 (𝑘−1)𝑚 < 2𝜆𝑘𝑚 possibly outputs.

Now we count the number of possible bit vectors that are allowed by our constraints. There are 2𝐿 possible bit
vectors of length 𝐿. If we restrict ourselves to bit vectors y where y where y[𝑧] = 0 for all 𝑧 ∈ 𝑆 , then there are
2𝐿− 𝑗+1 = 2𝜆𝑘𝑚+5𝜆− 𝑗+1 of these since 𝐿 = 𝜆𝑘𝑚 + 5𝜆 + 1.

We can now see that the number of possible inputs 2𝜆𝑘𝑚+5𝜆− 𝑗+1 is greater than the bound on the number of
possible outputs 2𝜆𝑘𝑚 since the set 𝑆 at the beginning of iteration 𝑗 is of size 𝑗 < 5𝜆 + 1 for all possible 𝑗 ∈ [0, 5𝜆]. By
the pigeon hole principle there exists two vectors y0 and y1 meeting the above criteria.

We now consider the vector y1 − y0 ∈ {−1, 0, 1} for such a pair y0 and y1. Since y0 ≠ y1 the vector y1 − y0 must
have at least one non-zero entry. in {−1, 1}. Second we have that (y1 − y0) [𝑧] = 0 for all 𝑧 ∈ 𝑆 by construction.
Finally, sinceW𝑖y0 = W𝑖y1 for all 𝑖 ≠ 𝑖∗ we haveW𝑖 (y1 − y0) = 0. Thus either (y1 − y0) or −(y1 − y0) will satisfy
the criteria for step 2(a) of the algorithm. 2

Given that at least one vector exists meeting the criteria exists the Steps 2(a,b) of the (brute force) FindVectors
algorithm will successfully find one of them. Since our proof works for all steps 𝑗 ∈ [0, 5𝜆] the algorithm will output
5𝜆 + 1 vectors and indices meeting the criteria. The linear independence criteria follows from the second and third
properties of the h vectors.

□

Now that we established vectors h𝑗 such that W𝑖h𝑗 = 0 we want to combine these to construct a vector c where
uTc = ⌊𝑞/2⌋.

Claim 7.3. Let h0, h1, . . . , h5𝜆 ∈ {−1, 0, 1}𝐿 be the vectors output from the FindVectors above run onGame1. With all but
negligible probability there exists 𝑥1, . . . , 𝑥5𝜆 ∈ {0, 1} such that when we let c = h0 + Σ 𝑗∈[5𝜆]𝑥 𝑗h𝑗 we have uT

𝑖∗c = ⌊𝑞/2⌋.

Proof. We can view u𝑖∗ and h0, h1, . . . , h5𝜆 as defining a hash function 𝐹 = 𝐹
u𝑖∗
h𝑗 :𝑗∈[0,5𝜆] . We evaluate the function as

𝐹 (𝑥1, . . . , 𝑥5𝜆) = uT
𝑖∗ (h0 + Σ 𝑗∈[5𝜆]𝑥 𝑗h𝑗 ).

Since u𝑖∗ is chosen uniformly at random and h0, h1, . . . , h5𝜆 are linearly independent and derived independently
of u𝑖∗ this forms a pairwise independent hash function family over Z𝑞 . Observe that h0, h1, . . . , h5𝜆 are determined
by the FindVectors function run of {W𝑖∗ }𝑖≠𝑖∗ . However, these matrices are constructed independently of u𝑖∗ as the
SamplePre operation that constructs them takes in the target U, but that is chosen independently of u𝑖∗ .

By the leftover hash lemma [HILL99] a pairwise independent hash function is a strong extractor. The distribution
of sampling and outputting a hash function description u𝑖∗ , h0, . . . , h5𝜆 followed by evaluating 𝐹

u𝑖∗
h𝑗 :𝑗∈[0,5𝜆] (x) should

be statistically close to the distribution of sampling and outputting a hash function description followed by outputting
a random element of Z𝑞 . Since |Z𝑞 | < 2𝜆+1 and x = 𝑥1, . . . , 𝑥5𝜆 the statistical difference is 2−2𝜆+1.

Suppose to the contrary that with non-negligible probability 𝜖 the hash function 𝐹
u𝑖∗
h𝑗 :𝑗∈[0,5𝜆] (·) sampled had the

probability that no x exists where 𝐹u𝑖∗h𝑗 :𝑗∈[0,5𝜆] (x) = ⌊𝑞/2⌋. Call such a hash function a “bad hash”. Consider the event
where a description of a bad hash function is sampled followed by ⌊𝑞/2⌋. When the output is sampled by samplding
then evaluating the hash this happens with probability 0. When the output is sampled by sampling the hash followed
by outputting a random element of Z𝑞 this happens with probability 𝜖 1

𝑞
> 𝜖 · 2−𝜆+1.

1We can also achieve a similar bound by noting that operations will be done in Z𝑞 . So even without the bound argument each entry could take on
at most 𝑞 < 2𝜆+1 values.

2If (y1 − y0 ) only has entries in {-1,0}, then −(y1 − y0 ) will have at least one 1 entry and meet the other properties.
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The statistical difference between the two distributions is then at least 𝜖 · 2−𝜆+1 which contradicts the leftover
hash lemma.

□

The vector c from the last claim meets the properties of our lemma given out by the last claim along with the fact
that ∥c∥∞ can be at most 5𝜆 + 1 since it is a subset sum of 5𝜆 + 1 vectors in {−1, 0, 1}.

□

Claim 7.4. By the smudging lemma 3.2 the advantage of anyA in Game3 is negligibly close to its advantage in Game2.

Proof. The only difference in the games is in how we sample the randomness in the GenBits algorithm. In Game2
the vector t is chosen from uniformly at random from [−𝐵, 𝐵]. In Game3 we replace this by sampling t from [−𝐵, 𝐵]
and then adding 𝛿c for a randomly chosen 𝛿 ∈ {0, 1}. Since 𝛿c is a vector with entries in [−(5𝜆 + 1), 5𝜆 + 1] and 𝐵 is
exponential in 𝜆, the smudging lemma immediately applies. □

Claim 7.5. The advantage of any A in Game3 is negligible.

Proof. The attacker in this game needs to guess the bit 𝑟𝑖∗ =
⌊
vT
𝑖𝜋𝑖∗ + 𝑑𝑖∗

⌉
. We can see.

⌊
vT
𝑖∗𝜋𝑖∗ + 𝑑𝑖∗

⌉
=

⌊
vT
𝑖∗W𝑖∗ (t + 𝛿c) + 𝑑𝑖∗

⌉
By definition of the game.

=
⌊
uT
𝑖∗ (t + 𝛿c) + 𝑑𝑖∗

⌉
Since uT

𝑖∗ = vT
𝑖∗W𝑖∗ in the game.

=
⌊
uT
𝑖∗ t + 𝑑𝑖∗ + 𝛿 ⌊𝑞/2⌋

⌉
Since uT

𝑖∗c = ⌊𝑞/2⌋.

For all but one possible value of uT
𝑖∗ t +𝑑𝑖∗ in Z𝑞 we always have that

⌊
uT
𝑖∗ t + 𝑑𝑖∗ + 𝛿 ⌊𝑞/2⌋

⌉
= 𝛿 ⊕

⌊
uT
𝑖∗ t + 𝑑𝑖∗

⌉
. Therefore

except with a negligible probability of 1/𝑞 the output bit is completely hidden from the adversary assuming all other
information given out to the attacker is independent of 𝛿 .

To establish that no other information on 𝛿 is given to the attacker we first see that com = U(t + 𝛿c). For any
𝑖 ≠ 𝑖∗ we have that com = A𝑖W𝑖 (t + 𝛿c). But by the setting of c we have that W𝑖c = 0. Thus com = A𝑖W𝑖 t and is
independent of 𝛿 .

Next we check that 𝜋𝑖 = W𝑖 (t + 𝛿c) for all 𝑖 ≠ 𝑖∗. Again, W𝑖c = 0 and we have that 𝜋𝑖 = W𝑖 t and is also
independent of the bit 𝛿 . All 𝑟𝑖 for 𝑖 ≠ 𝑖∗ can be determined from the public parameters and 𝜋𝑖 so these can give no
more information either. Thus everything given to the attacker is independent of 𝛿 and the attacker’s advantage is
negligible. □

Theorem 7.6. Assuming the Assuming the LWE𝑛,𝑚,𝑞,𝜎 assumption our construction is secure in the single-bit hiding
game of Definition 2.3.

Proof. The proof follows immediately from Lemma 6.10, Lemma 7.1, Claim 7.4 and Claim 7.5. □
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A Proofs of Section 6
We now provide the proofs that were omitted earlier from Section 6.

Claim 6.1

Proof. We describe an algorithm B that plays the pre-image sampling game. Algorithm B receives from the challenger
A∗,W∗,U∗. It then proceeds to run Game𝑖∗,1 for attacker A, but with the following exceptions: (1) it sets U = U∗, (2)
it sets A𝑖∗ = A∗ and (3) it sets W𝑖∗ = W∗ instead of computing it with SamplePre.

If the challenger’s coin 𝛽 = 0, then (A∗, td∗) ← TrapGen(1𝑛, 𝑞,𝑚),U∗ r← Z𝑛×𝐿𝑞 andW∗ r← SamplePre(A∗, td∗,U∗, 𝜎).
By inspection of our assignments we can see that this exactly emulates Game𝑖∗,1.

If the challenger’s coin 𝛽 = 1, then (A∗, td∗) ← TrapGen(1𝑛, 𝑞,𝑚),W∗ r← 𝐷𝑚×𝐿
Z,𝜎 and U∗ = A∗W∗ By inspection of

our assignments we can see that this exactly emulates Game𝑖∗,2. If an attacker A has a non-negligible difference in
advantage between Game𝑖∗,1 and Game𝑖∗,2, then B has a non-negligible advantage in the pre-image sampling game.

□

Claim 6.2

Proof. We describe an algorithm B that plays the trapdoor distribution game. Algorithm B receives from the
challenger A∗. It then proceeds to run Game𝑖∗,2 for attackerA, but with the following exception: it sets A𝑖∗ = A∗. We
remark that the trapdoor for A𝑖∗ is not used in this game, so B can proceed without it.

If the challenger’s coin 𝛽 = 0, then (A∗, td∗) ← TrapGen(1𝑛, 𝑞,𝑚). By inspection of our assignments we can see
that this exactly emulates Game𝑖∗,2.

If the challenger’s coin 𝛽 = 1, then A∗ ← Z𝑛×𝑚𝑞 . By inspection of our assignments we can see that this exactly
emulates Game𝑖∗,3. If an attacker A has a non-negligible difference in advantage between Game𝑖∗,2 and Game𝑖∗,3,
then B has a non-negligible advantage in the trapdoor distribution game.

□

Claim 6.3

Proof. We describe an algorithm B that plays the decisional LWE𝑛,𝑚,𝑞,𝜎 game. Algorithm B receives from the
challenger A∗, v∗. It then proceeds to run Game𝑖∗,3 for attacker A, but with the following exceptions: (1) it sets
A𝑖∗ = A∗ and (2) it sets v𝑖∗ = v∗.

If the challenger’s coin 𝛽 = 0, then A∗ ← Z𝑛×𝑚𝑞 , s∗ r← Z𝑛𝑞 , e∗
r← 𝐷̃𝑚

Z,𝜎 and v∗ = (s∗)TA∗ + (e∗)T By inspection of
our assignments we can see that this exactly emulates Game𝑖∗,3.

If the challenger’s coin 𝛽 = 1, then A∗ ← Z𝑛×𝑚𝑞 and v∗ r← Z𝑚𝑞 . By inspection of our assignments we can see that
this exactly emulates Game𝑖∗,4. Note that the additional notation of defining u𝑖∗ does not impact the game since u𝑖∗ is
not used anywhere else in the algorithm.
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If an attacker A has a non-negligible difference in advantage between Game𝑖∗,3 and Game𝑖∗,4, then B has a
non-negligible advantage in the trapdoor distribution game.

□

Claim 6.4

Proof. We describe an algorithm B that plays the trapdoor distribution game. Algorithm B receives from the
challenger A′∗ ∈ Z𝑛+1×𝑚𝑞 . It then proceeds to run Game𝑖∗,4 for attacker A, but with the following exception: parse

and assign A′∗ =
[
A𝑖∗

vT
𝑖∗

]
. We again remark that the trapdoor for A𝑖∗ is not used in this game, so B can proceed

without it.
If the challenger’s coin 𝛽 = 1, then A′∗ ← Z𝑛+1×𝑚𝑞 and both A𝑖∗ and v𝑖∗ are chosen uniformly at random matching

the distribution of Game𝑖∗,4.
If the challenger’s coin 𝛽 = 0, then (A′∗, td∗) ← TrapGen(1𝑛+1, 𝑞,𝑚). By inspection of our assignments we can

see that this exactly emulates Game𝑖∗,5.
If an attacker A has a non-negligible difference in advantage between Game𝑖∗,4 and Game𝑖∗,5, then B has a

non-negligible advantage in the trapdoor distribution game.
□

Claim 6.5

Proof. We describe an algorithm B that plays the pre-image sampling game. Algorithm B receives from the challenger
A′∗ ∈ Z𝑛+1×𝑚𝑞 ,W∗,U′∗ ∈ Z𝑛+1×𝑚𝑞 . It then proceeds to run Game𝑖∗,5 for attacker A, but with the following exceptions:

(1) it sets
[

U
uT
𝑖∗

]
= U′

𝑖∗ = U′∗, (2) it sets A′
𝑖∗ = A′∗ and (3) it sets W𝑖∗ = W∗.

If the challenger’s coin 𝛽 = 1, then (A′∗, td∗) ← TrapGen(1𝑛+1, 𝑞,𝑚), W∗ r← 𝐷𝑚×𝐿
Z,𝜎 and U′∗ = A′∗W∗. By

inspection of our assignments we can see that this exactly emulates Game𝑖∗,5.
If the challenger’s coin 𝛽 = 0, then (A′∗, td∗) ← TrapGen(1𝑛+1, 𝑞,𝑚),U′∗ r← Z𝑛+1×𝐿𝑞 andW∗ r← SamplePre(A′∗, td∗,U′∗, 𝜎).

By inspection of our assignments we can see that this exactly emulates Game𝑖∗,6.
If an attacker A has a non-negligible difference in advantage between Game𝑖∗,5 and Game𝑖∗,6, then B has a

non-negligible advantage in the pre-image sampling game.
□

Claim 6.6

Proof. The distribution of these games is identical. The first difference is thatW𝑖∗
r← SamplePre(A′

𝑖∗ , td𝑖∗ ,U
′
𝑖∗ , 𝜎) is

moved to further on down in the setup when it is incorporated into a line that captures sampling all 𝑖 ∈ [1, 𝑖∗] in
this way. However, deferring the sampling does not impact the distribution asW𝑖∗ is not used for sampling other

parameters. The second difference is that instead of sampling
[

U
uT
𝑖∗

]
in one go as a matrix from Z𝑛+1×𝐿𝑞 it samples

the matrix U first and the vector u𝑖∗ later on. However, these result in the same distribution. And u𝑖∗ is defined by the
time it is needed in SamplePre.

□

Claim 6.8

Proof. Since 𝑖∗ = 1 any conditions of the form “ for all 𝑖 ∈ [𝑖∗, 𝑘]” are equivalent to “for all 𝑖 ∈ [𝑘]”. Moreover, any
conditions of the form “for all 𝑖 ∈ [1, 𝑖∗ − 1]” refer to an empty set and are never activated. We can observe once
these substitutions are made to Game𝑖∗=1,1 it results in the Setup algorithm from our construction. In particular, from
Game𝑖∗=1,1 we delete Steps 2, 4(c), 6 and 8 . And from Game𝑖∗=1,1 Steps 1, 4(a,b), 5,7 are changed to “for all 𝑖 ∈ 𝑘”. □
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Claim 6.9

Proof. Since 𝑖∗ = 𝑘 any conditions of the form “ for all 𝑖 ∈ [1, 𝑖∗]” are equivalent to “for all 𝑖 ∈ [𝑘]”. Moreover, any
conditions of the form “for all 𝑖 ∈ [𝑖∗ + 1, 𝑘]” refer to an empty set and are never activated. We can observe once these
substitutions are made to Game𝑖∗=𝑘,7 it results in the SetupHiding algorithm from this section. In particular, from
Game𝑖∗=𝑘,7 we delete Steps 1, 4(a,b), 5,7. And from Game𝑖∗=𝑘,7 Steps 2, 4(c), 6,8 are changed to “for all 𝑖 ∈ 𝑘”. □

B An Alternative Proof of Flexible Binding
In Section 5 we saw a simple proof that the size of the possible revealed stringsVcrs is bounded by the number of
possible commitments. This is due to the fact that every CRS and commitment string com perfectly binds to (at most)
a single string in {0, 1}𝑘 . In turn this is due to the fact that our Verify algorithm in Section Section 4 rejects any proof
that lands too close to a rounding boundary. (See Step 4.)

In this section we show an alternative proof of binding, which will work on our construction even if the boundary
closeness test of Step 4 is omitted. Intuitively, without such a boundary check there can exist a commitment com
for which there are multiple indices 𝑖 ∈ 𝑘 for which an attacker could open to either a zero or one. However, we
can show that with all but negligible probability over the choice of crs, there will not exist a commitment com for
which an attacker can equivocate on “too many” of the bits. In particular, we will bound the number of flippable
locations for a given com by 𝑁 = 𝑛(𝜆 + 1) + 𝜆. Taking into account that there are at most 𝑛(𝜆 + 1) com values this
limitsVcrs ≤ 2(𝑛 (𝜆+1) )2+𝜆 as needed.

As a historical note when writing this work we first devised the argument below and later realized that if we
added a boundary check we could use the simpler argument presented in Section 5. We mostly include this proof
in the appendix for intellectual curiosity. However, we remark that variations of this analysis might be useful for
removing the need of a subexponential modulus to noise ratio for soundness. Although it is less clear how to remove
it from the analysis of hiding security.

Definition B.1. Consider the experiment of running the Setup(1𝜆, 1𝑘 ) algorithm of our ΠHBG construction that
produces crs = {U,A𝑖 ,W𝑖 , v𝑖 , 𝑑𝑖 }𝑖∈[𝑘 ] . Fix a given 𝜆, 𝑘 and commitment value com. We define the event FlipRangecom,𝑖

to bewhen the crs produced has the property that there exists a values 𝑓0, 𝑓1 ∈ [−TestBound
√
𝜆𝜎𝑚, TestBound

√
𝜆𝜎𝑚]

such that
⌊
sT𝑖 com + 𝑓0 + 𝑑𝑖

⌉
= 0 and

⌊
sT𝑖 com + 𝑓1 + 𝑑𝑖

⌉
= 1.

We define the event ExceedRange𝑁com to be the event where FlipRangecom,𝑖 occurs for at more than 𝑁 distinct
values of 𝑖 ∈ [𝑘].

Claim B.2. The probability of event FlipRangecom,𝑖 is (4 · TestBound ·
√
𝜆𝜎𝑚)/2𝜆 for all 𝑖 ∈ [𝑘]. Moreover for any

𝑖 ≠ 𝑖′ the events FlipRangecom,𝑖 and FlipRangecom,𝑖′ are independent.

Proof. For the round function there exists a single value 𝑎0 ∈ Z𝑞 such that ⌊𝑎0⌉ = 0, but ⌊𝑎0 + 1⌉ = 1. And a different
value 𝑎1 such that ⌊𝑎1⌉ = 1, but ⌊𝑎1 + 1⌉ = 0. For the event FlipRangecom,𝑖 to occur it must be the case that either
𝑎0 ∈ [𝑑𝑖+sT𝑖 ·com−TestBound

√
𝜆𝜎𝑚, 𝑑𝑖+sT𝑖 ·com+TestBound

√
𝜆𝜎𝑚−1] or 𝑎1 ∈ [𝑑𝑖+sT𝑖 ·com−TestBound

√
𝜆𝜎𝑚, 𝑑𝑖+

sT𝑖 · com + TestBound
√
𝜆𝜎𝑚 − 1]. Since 𝑑𝑖 is chosen uniformly at random in Z𝑞 the probability of the first condition

is (2 · TestBound ·
√
𝜆𝜎𝑚)/𝑞 as is the second. Moreover by the distance between 𝑎0, 𝑎1 these two conditions are

mutually exclusive and the probability that either the first or second occurs is therefore (4 · TestBound ·
√
𝜆𝜎𝑚)/𝑞 if

we assume 2 · TestBound ·
√
𝜆𝜎𝑚 < 𝑞/2. Since 𝑞 > 2𝜆 the probability condition holds.

Finally, the events FlipRangecom,𝑖 and FlipRangecom,𝑖′ are independent for 𝑖 ≠ 𝑖′. Suppose we fix all outputs of
setup except 𝑑𝑖′ to some specified values. Note this fixes whether the event FlipRangecom,𝑖 occurred or not. The
probability that either 𝑎0 or 𝑎1 is in [𝑑𝑖 + sT𝑖 · com − TestBound

√
𝜆𝜎𝑚, 𝑑𝑖 + sT𝑖 · com + TestBound

√
𝜆𝜎𝑚 − 1] is still

(4TestBound
√
𝜆𝜎𝑚)/𝑞 since there are 4TestBound

√
𝜆 values of 𝑑𝑖′ that satisfy the condition.

□

Claim B.3. Consider a binding security game against an attacker A which provides the parameter 𝑘 which is bounded
by some polynomial in 𝜆. Then for all com (in legal range) the event ExceedRange𝑁=𝑛 (𝜆+1)+𝜆

com happens with probability
at most 2−𝑁 = 2−(𝑛 (𝜆+1)+𝜆) for all 𝜆 > 𝜆0 for some 𝜆0.
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Proof. Since the events FlipRangecom,𝑖 are independent for all 𝑖 we can assign 𝑋𝑖 as the random variable that is 1
when FlipRangecom,𝑖 happens and 0 otherise. Then 𝑋 = Σ𝑘𝑖=1𝑋𝑖 is a random variable representing their sum and is
distributed according to a binomial distribution with 𝑘 trials and probability 𝑝 = (4 · TestBound ·

√
𝜆𝜎𝑚)/𝑞. The

mean of the distribution is 𝜇 = (4𝑘 · TestBound ·
√
𝜆𝜎𝑚)/𝑞.

From Chernoff bounds we have that for 𝛿 > 2𝑒 − 1

Pr[𝑋 > (1 + 𝛿)𝜇] < 2−(1+𝛿 )𝜇 .

To bound the probability we let (1 + 𝛿)𝜇 = 𝑁 = 𝑛(𝜆 + 1) + 𝜆 which means there will be at most 2−𝑁 probability that
𝑋 > 𝑁 . To finish the proof we need to verify that 𝛿 > 2𝑒 − 1. Recall that 𝜇 = (4𝑘 · TestBound ·

√
𝜆𝜎𝑚)/𝑞. For 𝑘 which

is polynomial in 𝜆 the expression 4𝑘 · TestBound ·
√
𝜆𝜎𝑚 consists of 2.5𝜆 multiplied by terms which are polynomial

in 𝜆. Thus when we divide it by 𝑞 > 2𝜆 we get that 𝜇 < 1 for all 𝜆 greater than some 𝜆0. And it is easy to see the
condition 𝛿 > 2𝑒 − 1 holds.

□

We now move to connecting the range events defined above to events where the attacker can decommit to either
bit. At a high level we will show that if the FlipRangecom,𝑖 event does not occur the attacker will be able to open up 𝑟𝑖
to at most one value.

Definition B.4. Consider running the Setup(1𝜆, 1𝑘 ) algorithm of our ΠHBG construction that produces crs =

{U,A𝑖 ,W𝑖 , v𝑖 , 𝑑𝑖 }𝑖∈[𝑘 ] . We define the event Flippablecom,𝑖 to occur if there exists𝜋0, 𝜋1 such thatVerify(crs, com, 𝑖, 0, 𝜋0) →
1 and Verify(crs, com, 𝑖, 1, 𝜋1) → 1. And the two proofs produce different results for 𝑟𝑖 . That is

⌊
vT
𝑖𝜋

0 + 𝑑𝑖
⌉
≠⌊

vT
𝑖𝜋

1 + 𝑑𝑖
⌉
.

The event Flippable𝑁com is the event where Flippablecom,𝑖 occurs for at more than 𝑁 distinct values of 𝑖 .

Claim B.5. If the event FlipRangecom,𝑖 does not occur in an experiment, then the event Flippablecom,𝑖 does not occur
either.

Proof. Consider a proof 𝜋 such that Verify(crs, com, 𝑖, 𝛽, 𝜋) → 1 for some 𝛽 . Since the proof verifies we have that
com = A𝑖𝜋 . It follows that ⌊

vT
𝑖𝜋 + 𝑑𝑖

⌉
=
⌊
(sT𝑖A𝑖 + eT𝑖 )𝜋 + 𝑑𝑖

⌉
=
⌊
sT𝑖 com + eT𝑖𝜋 + 𝑑𝑖

⌉
.

Next we bound the value that eT𝑖𝜋 can take. Each entry of e𝑖 produced from setup is at most
√
𝜆𝜎 and since

verification passed each entry of 𝜋 is at most TestBound. Since the vectors are of length𝑚 the most it can be is
TestBound ·

√
𝜆𝜎𝑚. Likewise the least value of eT𝑖𝜋 is −TestBound ·

√
𝜆𝜎𝑚.

It follows that vT
𝑖𝜋 + 𝑑𝑖 = sT𝑖 com + 𝑓 + 𝑑𝑖 for some 𝑓 ∈ [−TestBound

√
𝜆𝜎𝑚, TestBound

√
𝜆𝜎𝑚]. If the event

FlipRangecom,𝑖 does not occur, then
⌊
vT
𝑖𝜋 + 𝑑𝑖 = sT𝑖 com + 𝑓 + 𝑑𝑖

⌉
takes on the same value for all 𝑓 ∈ [−TestBound

√
𝜆𝜎𝑚

, TestBound
√
𝜆𝜎𝑚]. And the event Flippablecom,𝑖 does not occur. □

Claim B.6. For all 𝑁 if the event ExceedRange𝑁com does not occur in an experiment, then the event Flippable𝑁com does
not occur either.

Proof. By Claim B.5 for all 𝑖 the event Flippablecom,𝑖 occurs only if FlipRangecom,𝑖 does. If event ExceedRange𝑁com
does not occur, then FlipRangecom,𝑖 occurred for 𝑁 or less distinct 𝑖 ∈ [𝑘] values. It must also be the case then that
Flippablecom,𝑖 occurred for 𝑁 or less 𝑖 ∈ [𝑘] values and Flippable𝑁com did not occur either. □

Corollary B.7. Consider a binding security game against an attackerA which provides a 𝑘 parameter which is bounded
by some polynomial in 𝜆. For all com the event Flippable𝑁=𝑛 (𝜆+1)+𝜆

com happens with probability at most 2−𝑁 = 2−𝑛 (𝜆+1)−𝜆
for all 𝜆 > 𝜆0 for some 𝜆0.

Proof. Follows immediately from the combination of Claims B.3 and B.6. □

Theorem B.8. With all but negligible probability over the choice of crs there will not exist a commitment com where
the event Flippable𝑁=𝑛 (𝜆+1)+𝜆

com occurs.
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Proof. By Claim B.7 Flippable𝑁=𝑛 (𝜆+1)+𝜆
com happens for a particular commitment string com with probability at most

2−𝑁 = 2−𝑛 (𝜆+1)−𝜆 for all 𝜆 > 𝜆0. Any commitment string com is an 𝑛-length vector of Z𝑞 where 𝑞 < 2𝜆+1. Thus there
are at most 2𝑛 (𝜆+1) possible com values in the experiment.

It follows from the union bound that the probability there is any com where ExceedRange𝑁=𝑛 (𝜆+1)+𝜆
com occurs is

bounded by 2−𝜆 for all 𝜆 > 𝜆0. □
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