
The Impact of Reversibility on Parallel Pebbling

Abstract. The (parallel) classical black pebbling game is a helpful ab-
straction which allows us to analyze the resources (time, space, space-
time, cumulative space) necessary to evaluate a function f with a static
data-dependency graph G on a (parallel) computer. In particular, the
parallel black pebbling game has been used as a tool to quantify the
(in)security of Data-Independent Memory-Hard Functions (iMHFs). How-
ever, the classical black pebbling game is not suitable to analyze the cost
of quantum preimage attack. Thus, Blocki et al. [BHL22] introduced the
parallel reversible pebbling game as a tool to analyze resource require-
ments for a quantum computer. While there is an extensive line of work
analyzing pebbling complexity in the (parallel) black pebbling game,
comparatively little is known about the parallel reversible pebbling game.

Our first result is a lower bound of Ω

(
N

1+

√
2−o(1)
log N

)
on the reversible

cumulative pebbling cost for a line graph on N nodes. This yields a sepa-
ration between classical and reversible pebbling costs demonstrating that
the reversibility constraint can increase cumulative pebbling costs (and

space-time costs) by a multiplicative factor of N (
√

2+o(1))/
√
logN — the

classical pebbling cost (space-time or cumulative) for a line graph is just
O (N). On the positive side, we prove that any classical parallel pebbling
can be transformed into a reversible pebbling strategy whilst increasing
space-time (resp. cumulative memory) costs by a multiplicative factor

of at most O
(
N

√
8

log N

)
(resp. O

(
NO(1)/ 4√logN

)
). We also analyze the

impact of the reversibility constraint on the cumulative pebbling cost of
depth-robust and depth-reducible DAGs exploiting reversibility to im-
prove constant factors in a prior lower bound of Alwen et al. [ABP17].
For depth-reducible DAGs we show that the state-of-the-art recursive
pebbling techniques of Alwen et al. [ABP17] can be converted into a
recursive reversible pebbling attack without any asymptotic increases in
pebbling costs. Finally, we extend a result of Blocki et al. [BLZ20] to show
that it is Unique Games hard to approximate the reversible cumulative
pebbling cost of a DAG G to within any constant factor.

Keywords: Parallel Reversible Pebbling · Data-Independent Memory-
Hard Function · Quantum Preimage Attacks.

1 Introduction

The classical black pebbling game is a powerful computational abstraction that
is used to analyze the relationship between the space and time complexity needed
to evaluate a function fG with a static data-dependency graph G. Intuitively,



the nodes of the directed acyclic graph (DAG) G represent intermediate data-
values generated during the computation of fG and the edges in G encode static
data-dependencies between these intermediate values, e.g., if z = H(x, y) then
the DAG G would include edges (x, y) and (y, z) to indicate that we need to
have labels x and y in memory before we can compute label z. A pebbling of G
is a sequence P = (P0, . . . , Pt) ⊆ V (G) of subsets where Pi denotes the subset
of nodes that have pebbles on them during round i. Intuitively, Pi represents
the intermediate labels that are stored in memory at time i. In the field of
cryptography, the parallel pebbling game has been used to analyze the security
of Data-Independent Memory-Hard Functions (iMHFs), e.g., see [AS15, AB16,
ABP17, BZ17]. Due to their side-channel resistance, iMHFs are an attractive
tool to protect low-entropy secrets such as user passwords against brute-force
attacks.

There is a wide-body of literature analyzing the classical pebbling complex-
ity of graphs G under various cost metrics: space complexity [PTC76, HPV77],
space-time complexity [LT82, LT79], amortized space-time complexity (or equiv-
alently, cumulative pebbling complexity) [AS15, AB16, ABP17, BZ17, BHK+19,
ABH17, BZ18, BLZ20, AGK+18]. Space complexity (Πs (P )

.
= maxi |Pi|) focuses

on the memory resources that are necessary to perform a computation. By con-
trast, space-time complexity (Πst (P )

.
= t ·maxi |Pi|) focuses on the full cost of

computation, i.e., the amount of space that is locked up multiplied by the run-
ning time of the computation. While early work on graph pebbling focused on
the sequential black pebbling game [PTC76, HPV77, LT82, LT79], Alwen and
Serbinenko [AS15] observed that parallelism and amortization can have a dra-
matic impact on the space-time complexity of a graph1. Because a brute-force
attacker can be parallel and can amortize costs over multiple different inputs,
it is important to construct iMHFs with high amortized space-time complexity
in order to protect low-entropy secrets (e.g., user passwords) against brute-force
attacks. Thus, a recent line of crypto research has focused on analyzing the
cumulative pebbling complexity (Πcc(P ) =

∑
i |Pi|) of prominent iMHF can-

didates and constructing graphs with high cumulative pebbling cost, e.g., see
[AS15, AB16, ABP17, BZ17, BHK+19, ABH17, BZ18, BLZ20, AGK+18].

Unfortunately, the (classical) parallel pebbling game is insufficient for analyz-
ing the full cost of a quantum preimage attack on iMHFs. For example, suppose
that we want to recover a preimage of fG(x) when the input x ∈ {0, 1}m is a
random m-bit string. Classically, an attacker would need to make Ω(2m) queries
to the function fG to find a preimage, but a quantum adversary could exploit

1 For example, the sequential space-time complexity of the bit-reversal graph on N
nodes was proven to be Ω(N2)[LT79], but the parallel space-time complexity of

this graph is just O
(
N
√
N
)
. There is a another construction of a constant inde-

gree DAG with N nodes such that (1) any parallel pebbling of G has space-time

cost Ω
(
N
√
N
)
, and (2) one can pebble

√
N disjoint copies of G with amortized

space-time cost at most O (N), i.e., there is a parallel pebbling G⊗
√
N (

√
N dis-

joint copies of G) with total space-time cost O
(
N
√
N
)
.
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quantum superposition and and recover the preimage after just O
(
2m/2

)
quan-

tum queries to fG using Grover’s algorithm — a quadratic reduction. However,
in order to run Grover’s algorithm, we need to construct a quantum circuit that
coherently computes our iMHF fG. Because quantum computation utilizes re-
versible unitary operations, an efficient black pebbling of the DAG G does not
necessarily correspond to an efficient quantum circuit that evaluates fG coher-
ently. Thus, Blocki, Holman, and Lee [BHL22] introduced the parallel reversible
pebbling game as a tool to analyze the (amortized) cost of a quantum circuit
evaluating an iMHF coherently.

Intuitively, the parallel reversible pebbling game extends the classical parallel
black pebbling game by imposing restrictions on when pebbles can be removed.
By contrast, the classical black pebbling game imposes no restrictions on when
pebbles can be removed to free up space. One of the primary motivations of
the parallel reversible pebbling game is to provide a tool to analyze the full
cost of quantum preimage attacks against an iMHF. The full cost of a single
quantum preimage attack using Grover’s algorithm will be proportional to the
space-time cost of G in the parallel reversible pebbling game. If the attacker is
running multiple preimage attacks in parallel (e.g., cracking multiple breaches
passwords) then the attacker’s amortized costs will scale proportional to the
amortized space-time complexity of the underlying graph G in the parallel re-
versible pebbling game. Thus, to protect low-entropy secrets against quantum
preimage attacks in the future, it is useful to characterize the parallel reversible
space-time complexity of prominent iMHF candidates.

While there has been an extensive body of work analyzing the space-time and
cumulative pebbling costs of DAGs in the parallel black pebbling game (e.g., see
[AS15, ABP17, ABP18, BHK+19, BZ17]), comparatively little is known about
the reversible pebbling game. Blocki et al. [BHL22] gave parallel reversible peb-
bling strategies for iMHFs such as Argon2 [BDK16] and DRSample [ABH17]
which improve upon the näıve reversible pebbling strategy by modest factors
of 3
√
logN and logN

log logN , respectively. They also showed that the line graph can

be pebbled with space-time complexity O
(
N · 22

√
logN

)
, whereas in the clas-

sical pebbling game the space-time complexity is simply N . However, prior to
this work, there was no non-trivial lower bound on the cumulative pebbling cost
of the line graph which would help us to characterize the full cost of a quan-
tum preimage attack against popular password-based key-derivation functions
like BCRYPT [PM99] or PBKDF2 [Kal00]. Similarly, our characterization of
the cumulative pebbling cost for many prominent iMHF candidates (including
Password Hashing Competition [PHC15] winner Argon2i [BDK16]) was far from
tight.

If we dropped the reversibility constraint, it is natural to wonder whether
or not would we be able to find parallel pebbling attacks with lower costs for
graphs such as Argon2i [BDK16], DRSample [ABH17], or the line graph. This
leads us to ask the following natural question:

Can we characterize the impact of the reversibility constraint on pebbling
costs?
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More generally, what is the necessary overhead (in terms of space-time/amortized
space-time complexity) to build a quantum circuit for a classical algorithm? If
there is such an inherent penalty for reversibility, is there a systematic way to
map classical algorithms to quantum circuits that never exceed this penalty? In
this paper, we answer both questions in the affirmative in the parallel reversible
pebbling model.

1.1 Our Results

In this paper, we are concerned with characterizing the extent to which re-
versibility impacts pebbling costs. While we are primarily motivated by char-
acterizing the post-quantum security of Memory-Hard Functions, we note that
the reversible pebbling game is a general tool to analyze space-time trade-offs
of reversible computation. Thus, our results will likely be of interest outside the
field of cryptography, e.g., quantum circuit compilation. At a high level, our
main results show that

(1) any generic procedure (captured by the parallel reversible pebbling game) for
converting a classical algorithm running in time t into an equivalent quantum
circuit must increase amortized space-time complexity (cumulative pebbling

complexity) by a factor of at least 2(
√
2−o(1))

√
log t, and

(2) there exists a procedure for converting classical algorithms into quantum
circuits that increases amortized space-time complexity by a factor of at

most 2O(log
3/4 t).

There is a wealth of analysis of iMHF candidates in the classical parallel black
pebbling game, e.g., [AB16, AB17, BZ17, ABP17, ABH17]. The second result
immediately transforms all of these classical pebbling attacks into reversible
pebbling without significantly increasing the amortized space-time complexity.

1.1.1 A Separation between Reversible and Irreversible Pebbling.
Bennett [Ben89] presented the first sequential reversible pebbling of the line
graph, and it has remained open whether Bennett’s original pebbling is opti-
mal [FA17]. Blocki et al. [BHL22] provided slight modifications to Bennett’s
pebbling to show that the parallel reversible cumulative pebbling complexity of

the line graph LN on N nodes is at most Π
→← ,∥

cc (LN ) = O
(
N · 22

√
logN

)
—

the notation Π
→← ,∥

cc (LN ) denotes the minimum cumulative pebbling complex-
ity taken over all legal parallel (∥) and reversible ( →← ) pebblings of LN . Prior
work of Knill [Kni95] showed that for reversible sequential pebbling we have

Π →←
st (LN ) = Ω

(
N · 22

√
logN

)
. However, proving lower bounds is substantially

harder when we allow for parallel pebbling strategies and when we consider
cumulative pebbling costs instead of space-time costs. We show that any par-
allel reversible pebbling of the line graph has cumulative pebbling complexity

Π
→← ,∥

cc (LN ) = Ω
(
N · 2(

√
2−o(1))

√
logN

)
(see Theorem 1). This immediately im-

plies that the space-time complexity of any parallel reversible pebbling is at least
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Π
→← ,∥

st (LN ) = Ω
(
N · 2(

√
2−o(1))

√
logN

)
since the cumulative pebbling cost of a

pebbling always upper bounds the space-time cost, i.e., Πcc(P ) ≥ Πst(P ) for
any pebbling P .

This result immediately implies a multiplicative gap between the reversible
and irreversible pebbling costs. In particular, there is a classical sequential peb-
bling of the line graph LN which runs in time N and keeps at most O (1) peb-
bles on the graph during any round. Thus, for classical pebblings, the sequential

space-time cost (and cumulative pebbling cost) is at mostΠ
∥
cc(LN ) = Π

∥
st(LN ) =

O (N) for the line graph LN . It follows that

Π
→← ,∥

st (LN )

Π
∥
st(LN )

= Ω
(
2(
√
2−o(1))

√
logN

)
, and

Π
→← ,∥

cc (LN )

Π
∥
cc(LN )

= Ω
(
2(
√
2−o(1))

√
logN

)
.

Our results also show that the attack of Blocki et al. [BHL22] is optimal within

the subpolynomial factor of N
√

2√
log N = 2

√
2 logN . Our lower bounds also have

implications about the full cost of quantum password cracking attacks when the
BCRYPT [PM99] or PBKDF2 [Kal00] hash function was used. See Section 3.1
for details.

1.1.2 Pebbling Attacks: Making Computation Reversible. In light of
the previous result, it is natural to wonder if we can find a family of graphs
GN with a larger multiplicative gap between the reversible/classical pebbling
costs than the line graph LN , specifically with respect to the stronger met-
ric of cumulative pebbling complexity. In the sequential computation setting,
Bennett [Ben89] showed how to transform an irreversible pebbling into a re-
versible pebbling while preserving space-time complexity. We demonstrate that
this transformation can be extended to the parallel setting. More specifically,
we show that an irreversible parallel pebbling P = (P0, . . . , Pt) of G can made
reversible using a reversible line graph pebbling Q = (Q0, . . . , Qt′) of the line
graph Lt. In particular, we argue that the composed pebbling R = (R0, . . . , Rt′)
with Ri =

⋃
j∈Qi

Pj for each i ≤ t′ is a legal reversible pebbling of G. Trivially,
we have maxi |Ri| ≤ (maxi |Pi|) (maxj |Qj |), i.e., the maximum space usage for
our reversible pebbling is the product of the maximum space usage of P and Q.
We can use the reversible line graph pebbling from [BHL22] to instantiate our
pebbling Q = (Q0, . . . , Qt′) and show that the irreversible space-time can never
be too far from reversible space-time complexity.

Theorem 2 (Classical vs. Reversible Space-Time Complexity). Let G =
(V = [N ], E) be a DAG. Then

Π
→← ,∥

st (G) = O
(
N

2
√

2√
log N

)
·Π∥st (G) ,

and

Π
→←

st (G) = O
(
N

2
√

2√
log N

√
logN

)
·Πst (G) .
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Unfortunately, the above strategy (generalized from Bennett [Ben89]) com-
pletely fails to preserve cumulative memory costs. Suppose for example that the
pebbling P = (P1, . . . , Pt) of G has low Πcc(P ) =

∑
i |Pi|. It is possible that

there is some round i where the space usage |Pi| ≫ Πcc(P )/t greatly exceeds
the average space usage per round. Observe that for our composed pebbling,
we will have |Rj | ≥ |Pi| for every round j ≤ t′ such that i ∈ Qj . If we get
unlucky it could be that the reversible line graph pebbling Q = (Q1, . . . , Qt′) of
Lt keeps a pebble on node i in almost every round j so that Πcc(R)≫ Πcc(P ).
We address this problem by introducing a weighted version of the reversible peb-
bling game where the cost of placing a pebble on a node i is equal to its weight.
Intuitively, we will set the weight of node i in Lt to be |Pi|. We then design effi-
cient reversible pebbling strategies for the weighted line graph to compose with
such irreversible pebblings. If we take Q = (Q1, . . . , Qt′) to be our CC-efficient,
reversible weighted line graph pebbling then we can compose this reversible peb-
bling with P = (P1, . . . , Pt) to obtain a composed pebbling R = (R1, . . . , Rt′)

such that Πcc(R) ≤ Πcc(P ) · O
(
N

O(1)
4√log N

)
. We stress that this is the primary

technical challenge as adding weights to the nodes makes it substantially more
challenging to develop efficient reversible pebbling strategies.

Theorem 3 (Classical vs. Reversible Cumulative Pebbling Complex-
ity). Let G = (V = [N ], E) be a DAG. Then

Π
→← ,∥

cc (G) = O
(
N

O(1)
4√log N

)
·Π∥cc (G) ,

and

Π
→←

cc (G) = O
(
N

O(1)
4√log N

)
·Πcc (G) .

This means that to find an efficient reversible pebbling (up to these subpoly-
nomial factors), it suffices to find an efficient classical pebbling. See Section 3.2
for details.

1.1.3 Reversibility and Depth-Robust Graphs. Classically, an impor-
tant property of pebbling a graph is depth robustness. A DAG G = (V,E) is
(e, d)-depth robust if for any subset S ⊆ V of e nodes, the graph G − S still
contains a directed path of length d (if G is not (e, d)-depth robust then we say
that G is (e, d)-reducible). Alwen et al. [ABP17] showed that if G is (e, d)-depth
robust then any classical parallel pebbling of G has cumulative pebbling cost at

least Π
∥
cc(G) ≥ ed. While the same lower bound holds for the parallel reversible

CC, it is natural to ask if one could achieve a better lower bound. We show that
if G is (e, d)-depth robust then any parallel reversible pebbling of G has cumula-

tive pebbling cost at least Π
→← ,∥

cc (G) ≥ e(2d−1), and furthermore if G−sinks(G)
(where sinks(G) denotes the set of sink nodes of G) is (e, d)-depth robust then

Π
→← ,∥

cc (G) ≥ 2ed (see Theorem 9). Intuitively, the lower bound of Alwen et al.
[ABP17] followed from the observation that given a pebbling P = (P0, . . . , Pt)
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of G such that for any 1 ≤ i ≤ d, the set Bi = Pi ∪ Pi+d ∪ Pi+2d . . . is a depth-
reducing set, i.e., G − Bi contains no path of length d. Intuitively, if G − Bi

had a path v1, . . . , vd of length d then we would never place a pebble on node
vd (It takes d steps to walk a pebble down the path, but every d rounds we are
guaranteed to have no pebbles on the path). Our key observation is that for a
reversible pebbling it would take at least 2d rounds to walk a pebble down to
node vd and then remove pebbles from every node in the path. Thus, we can
increase our gap to 2d, define Bi = Pi∪Pi+2d∪Pi+4d∪Pi+6d . . ., and argue that
G− sinks(G)−Bi contains no path of length d.2

We also consider a parallel relaxed reversible pebbling where it is not required
to remove pebbles from the intermediate nodes at the final round. In this setting,
we cannot apply our new lower bound directly since we cannot assume that all
pebbles on non-sink nodes are cleared by the end of the pebbling, e.g., it is
possible during the last d pebbling rounds we pebble all of the nodes in the path
v1, . . . , vd and leave them. To lower bound the cost of a parallel relaxed reversible
pebbling, it is helpful to define a graph GTrunc,d := G − [N − d + 1, N ] where
we truncate last d nodes and incident edges from the graph G. We show that

if GTrunc,d is (e, d)-depth robust then Π̃
→← ,∥

cc (G) ≥ e(2d − 1) (see Theorem 10),

where Π̃
→← ,∥

cc (G) denotes the parallel relaxed reversible CC of G (see Definition 2
for a formal definition). This yields improvement by a multiplicative factor of ≈
1.885 for the parallel relaxed reversible CC of DRSample [ABH17] with suitable
parameters. See Section 5 for details.

1.1.4 Reversible Recursive Pebbling Attack. Alwen and Blocki [AB16]
gave a generic parallel pebbling attack on any (e, d)-reducible graph G with

Π
∥
cc(G) ≤ O

(
eN +N

√
Nd

)
. While Blocki et al. [BHL22] gave a reversible ver-

sion of the attacks from Alwen et al. [AB16], the state-of-the-art upper bounds

on Π
∥
cc(G) for most depth-reducible graphs actually utilize the recursive depth-

reducing attack of [ABP17] — a recursive extension of [AB16] for graphs that
are (ei, di)-reducible for a set of points (e0, d0), (e1, d1), . . . with decreasing depth
parameters di+1 < di and increasing size parameters ei > ei−1. We provide a
reversible extension of the recursive depth-reducing attack of [ABP17]. As an

immediate corollary, we obtain upper bounds on Π
→← ,∥

cc (G) which (asymptot-

ically) match the best known classical pebbling upper bounds on Π
∥
cc(G) for

several iMHF candidates including Argon2iA (an older version of Argon2i) and
Argon2iB (the current version). See Section 4 for details.

1.1.5 Approximation Hardness of the Parallel Reversible Cumulative

Pebbling Cost. We establish the approximation hardness of Π
→← ,∥

cc (G) for a
constant-indegree DAG G within any constant factor in the worst-case analysis
under the Unique Games Conjecture. Our result extends the prior approxima-

2 We have to exclude sinks(G) because if the final node vd in our path was a sink
node then the pebbling may never remove a pebble from node d. In this case,
it may be possible to walk a pebble to node vd and then remove pebbles from
v1, . . . , vd−1 in just 2d− 1 steps.
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tion hardness result by Blocki et al. [BLZ20] which demonstrates that given a

constant-indegree DAG G, it is Unique Games hard to approximate Π
∥
cc(G)

within any constant factor. The reduction of [BLZ20] transformed a unique
games instance3 G into a new graph superconc(G) by overlaying G with a special
combinatorial graph called a superconcentrator. If the Unique Games instance
G was sufficiently depth-robust then it is possible to lower-bound the pebbling

cost Π
∥
cc(superconc(G)) — since Π

→← ,∥
cc (superconc(G)) ≥ Π

∥
cc(superconc(G)), the

lower bound immediately extends to the reversible setting. Similarly, if the
Unique Games instance G was sufficiently depth-reducible then one could find
a low-cost pebbling of superconc(G). Our primary contribution is showing how
to modify the pebbling strategy of Blocki et al. [BLZ20] to obtain a reversible
pebbling of superconc(G) without asymptotically increasing the pebbling cost.

The approximation hardness of Π
→← ,∥

cc (G) immediately follows. See Appendix B
for details.

1.2 Related Work

Reversible pebbling games [Ben89, Krá01, MSR+19, Kni95] were introduced to
analyze the space-time complexity of quantum algorithms in the context of the
limitations imposed by reversibility and the Quantum No-Deletion Theorem.
These pebbling games only model sequential computation, meaning only one
pebble can be placed or removed each round. In contrast, quantum adversaries
computing an MHF fG,H can make quantum queries to H in parallel, making
these sequential games insufficient for analyzing the security of MHFs. For this
reason, Blocki et al. [BHL22] introduced the parallel reversible pebbling game,
which extends the reversible pebbling game by allowing any number of legal
placing and removing of pebbles in each round. The authors used the parallel
reversible pebbling game to analyze the post-quantum security of iMHFs to

provide reversible space-time cost upper bounds of O
(
N · 22

√
logN

)
for line

graphs and the first reversible space-time cost upper bound of O
(

N2 log logN
logN

)
for

Argon2i. They also designed a reversible depth-reducing attack with cumulative
pebbling complexity asymptotically equivalent to its counterpart in [ABP17].

Kornerup et al. [KSS21] introduced the (sequential) spooky pebbling game
which models measurement-based deletion. The goal of the spooky pebbling
game is to save quantum memory by measuring, storing the result of the mea-
surement in classical memory, and then later using the result to restore the
original state. A disadvantage to the spooky pebbling game in the context of
a preimage attack is that it requires a linear number of measurements for each
query to fG,H , making it unsuitable for our applications [BHL22, KSS21].

3 The problem is to distinguish between the case that G is “highly depth-robust” or
“highly depth-reducible.”
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2 Preliminaries and Definitions

2.1 Notation

For a positive integer N , we denote [N ] := {1, . . . , N}. Similarly, for positive
integers a ≤ b, we define [a, b] := {a, . . . , b}. For simplicity, we let log(·) be a log

with base 2, i.e., log x := log2 x. The notation $← denotes a uniformly random

sampling, e.g., we say x $← [N ] when x is sampled uniformly at random from 1
to N .

Let G = (V,E) be a directed acyclic graph (DAG) with the set of nodes V
and the set of edges E. Without loss of generality, we often times simply let
V = [N ] where N is the number of nodes in G. Throughout the paper, we will
follow this notation convention (that V = [N ]) unless specified differently. For
v ∈ V , we define parents(v,G) to be the immediate parents of node v in G, i.e.,
parents(v,G) := {u ∈ V : (u, v) ∈ E}. Similarly, for a subset W ⊆ V , we say
parents(W,G) :=

⋃
w∈W {u : (u,w) ∈ E} to be the immediate parents of the

set W in G. We define ancestors(v,G) to be the set of all ancestors of v in G,
i.e., ancestors(v,G) :=

⋃
i≥1 parents

i(v,G), where parents1(v,G) = parents(v,G)

and parentsi(v,G) = parents(parentsi−1(v,G), G). Similarly, ancestors(W,G) :=⋃
i≥1 parents

i(W,G), where parents1(W,G) = parents(W,G) and recursively de-

fine parentsi(W,G) = parents(parentsi−1(W,G), G). We say sinks(G) := {v ∈ V :
∄(v, u) ∈ E} to be the set of all sink nodes of G. For v ∈ V , depth(v,G) de-
notes the number of nodes in the longest directed path in G ending at node v,
and depth(G) = maxv∈V depth(v,G) denotes the number of nodes in the longest
directed path in G. The indegree of a node v ∈ V is the number of incoming
edges into v, i.e., indeg(v,G) := |parents(v,G)|, and the maximum indegree in G
is defined by indeg(G) := maxv∈V indeg(v). For a subset S ⊆ V , we define G−S
to be the subgraph of G obtained by deleting all the nodes in S and all edges
that are incident to S. For k ∈ [N ], G≤k := G− [k + 1, N ], S≤k := S ∩ [k], and
S≥k := S \ [k − 1] for k ≥ 2 (if k = 1 then S≥k = S). For sets S and R, we let
S ⊕R = (S \R) ∪ (R \ S).
We say that a DAG G = (V,E) is (e, d)-depth robust if for any subset S ⊆ V
such that |S| ≤ e we have depth(G− S) ≥ d. Otherwise, we say that G is (e, d)-
reducible and call the subset S a depth-reducing set (which is of size at most e
and yields depth(G− S) < d).

2.2 Reversible Pebbling Game

Blocki et al. [BHL22] gave a definition of the parallel reversible pebbling game.
Their definition was somewhat complicated extending the rules for classical
pebbling with several new rules to capture constraints imposed by reversible
pebbling. We provide a simpler, more intuitive, definition that is equivalent to
[BHL22]. Recall that a classical pebbling sequence (Pj , . . . , Pk) is legal for a di-
rected graph G if we have parents(Pi+1 \ Pi, G) ⊆ Pi for all j ≤ i < k i.e., if
we place a new pebble on node v ∈ Pi+1 \ Pi during round i + 1 then all of v’s
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parents must have been pebbled during round i. Arguably, one should impose
an additional constraint that parents(Pi+1 \ Pi) ⊆ Pi+1 i.e., if we place a new
pebble on node v ∈ Pi+1 \ Pi during round i + 1 and u ∈ parents(v,G) is a
parent of node v then we cannot remove the pebble on node u until after round
i+1. While the literature on parallel black pebbling games does not include this
additional restriction it is still natural, and we will call a classical black pebbling
sequence (Pj , . . . , Pk) extra legal if it satisfies this additional constraint4. Now
we can simply say that (Pj , . . . , Pk) is a legal reversible pebbling sequence if and
only if the sequence (Pj , . . . , Pk) and its reverse (Pk, . . . , Pj) are both extra legal.
The formal definition of reversible graph pebbling is presented below.

Definition 1 ((Parellel) Reversible Graph Pebbling). Let G = (V,E)
be a DAG and let T ⊆ V be a target set of nodes to be pebbled. We say that
a pebbling sequence (Pj , . . . , Pk) is called extra legal if it satisfies the following
properties:

– A pebble can be added only if all of its parents were pebbled at the end of the
previous pebbling round, i.e., ∀i ∈ [j, k) : parents(Pi+1 \ Pi, G) ⊆ Pi.

– If a pebble was required to generate new pebbles, then we must keep the
corresponding pebble around, i.e., ∀i ∈ [j, k) : parents(Pi+1 \ Pi, G) ⊆ Pi+1.

We say that (Pj , . . . , Pk) is a reversible pebbling sequence if both (Pj , . . . , Pk) and
the reversed sequence (Pk, . . . , Pj) are extra legal. A legal parallel reversible peb-
bling of a graph G with a target set T is a reversible sequence P = (P0, . . . , Pt)
such that:

(1) (Start/Finish) P0 = ∅ and T ⊆ Pt, i.e., the pebbling should start with no
pebbles and end with pebbles on all of the target nodes.

(2) (Reversible) Both P and its reverse P ∗ := (Pt, . . . , P0) are extra legal.
(3) (Remove Excess Pebbles (Optional)) Pt = T .

If a reversible pebbling sequence (P0, . . . , Pt) satisfies conditions (1) and (2), but
does not satisfy condition (3), then we call our pebbling a relaxed reversible peb-
bling of G with target set T . The pebbling sequence is sequential if it additionally
satisfies (4) below, i.e., if at most one pebble is added or removed in each round.

(4) (Sequential pebbling only) At most one pebble is added or removed in each
round, i.e., ∀i ∈ [t] : |(Pi ∪ Pi−1) \ (Pi ∩ Pi−1)| ≤ 1.

We use P →← ,∥
G,T (resp. P →←G,T ) to denote the set of all legal (resp. all legal se-

quential) reversible pebblings of G with a target set T i.e., all pebbling sequences
that satisfy conditions (1), (2) and (3) (resp. conditions (1), (2), (3) and (4)).

We denote with P̃ →← ,∥
G,T (resp. P̃ →←G,T ) the set of all legal relaxed reversible peb-

blings of G with target set T satsifying conditions (1) and (2) (resp. conditions

4 It is worth noting that adding this constraint does not significantly impact peb-
bling complexity in the classical parallel black pebbling game. In particular, if
(Pj , . . . , Pk) is a legal pebbling sequence then we can define an extra legal se-
quence (Ej , . . . , Ek) as follows: Ej = Pj and Ei = Pi ∪ Pi−1 for all j < i ≤ k.
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(1), (2) and (4)). We will mostly be interested in the case where T = sinks(G)

in which case we simply write P →← ,∥
G or P̃ →← ,∥

G (or P →←G / P̃ →←G for the sequential
counterparts).

We will often write P = (P1, . . . , Pt) instead of P = (P0, P1, . . . , Pt) for a
legal parallel reversible pebbling of G since pebbling rules dictate that P0 = ∅.
In Appendix A, we provide the original definition of Blocki et al. [BHL22] and
prove that our simpler definition is equivalent.

We also recall basic notions of reversible pebbling complexity.

Definition 2 (Reversible Pebbling Complexity). Given a DAG G = (V,E),
we essentially use the same definitions for the reversible pebbling complexity as
defined in the previous literature [AS15, ABP17, ABP18, BHL22]. That is, the
standard notion of time, space, space-time and cumulative pebbling complexity

(CC) of a reversible pebbling P = {P0, . . . , Pt} ∈ P
→← ,∥

G are also defined to be:

– (time complexity) Πt(P ) = t,
– (space complexity) Πs(P ) = maxi∈[t] |Pi|,
– (space-time complexity) Πst(P ) = Πt(P ) ·Πs(P ), and
– (cumulative pebbling complexity) Πcc(P ) =

∑
i∈[t] |Pi|.

For α ∈ {s, t, st, cc} and a target set T ⊆ V , the (non-relaxed/relaxed) parallel
reversible pebbling complexities of G are defined as

Π
→← ,∥

α (G,T ) = min
P∈P →← ,∥

G,T

Πα(P ), and Π̃
→← ,∥

α (G,T ) = min
P∈P̃ →← ,∥

G,T

Πα(P ),

respectively. When T = sinks(G) we simplify notation and write Π
→← ,∥

α (G).
We define the time, space, space-time and cumulative pebbling complex-

ity of a sequential reversible pebbling P = {P0, . . . , Pt} ∈ P →←G in a similar
manner: Π →←

t (P ) = t, Π →←
s (P ) = maxi∈[t] |Pi|, Π →←

st (P ) = Π →←
t (P ) · Π →←

s (P ),
and Π →←

cc (P ) =
∑

i∈[t] |Pi|. Similarly, for α ∈ {s, t, st, cc} and a target set
T ⊆ V , the sequential reversible pebbling complexities of G are defined as
Π →←

α (G,T ) = minP∈P →←G,T
Π →←

α (P ). When T = sinks(G) we simplify notation

as well and write Π →←
α (G).

We also introduce a new complexity notion that will be useful in our efficient
pebbling compositions. The toggle number of a node v in a pebbling P is the
number of times it is pebbled or unpebbled. The toggle number of a pebbling is
its maximum toggle number over all nodes.

Definition 3 (Toggle Number). Let P be a pebbling for a DAG G = (V =
[N ], E) and v ∈ V . We let toggle(P, v) := |{i | v ∈ Pi ⊕ Pi+1}|, and toggle(P ) :=
maxv∈[N ] toggle(P, v).

As mentioned in the prior work [BHL22], when we compare the relaxed and
non-relaxed pebbling of a DAG G, the space-time cost and the cumulative peb-
bling complexity of a relaxed/non-relaxed reversible pebbling is not fundamen-
tally different. We note that compared to the relaxed reversible pebbling, the
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running time of a non-relaxed pebbling increases by a multiplicative factor of
2 and the space usage increases by an additive factor of |T | ≤ |Pt| where T is
the target set. Hence, the overall space-time costs increase by a multiplicative
factor of 4 at most [BHL22] and so is the cumulative pebbling complexity since
CC is always upper bounded by the space-time cost. In the remainder of the
paper, when we write “legal reversible pebbling” we assume that the pebbling
is parallel and non-relaxed by default.

3 The Cost of Reversibility on Pebbling

In this section, we discuss the extent to which the additional rules imposed
by reversibility impact the space-time and cumulative pebbling complexity of
pebbling graphs. We first show that any reversible pebbling for the line graph

LN on N nodes has CC Ω

(
N

1+
√

2−o(1)√
log N

)
. Since cumulative pebbling complexity

lower bounds space-time complexity, this also implies that the reversible space-

time complexity of the line graph is Ω

(
N

1+
√

2−o(1)√
log N

)
. Since the classical space-

time and cumulative pebbling complexity of the line graph is O (N), this result
shows that, in general, we cannot hope to provide reversible pebblings with cost
equivalent to the best classical pebblings. On the other hand, we also show that
any sequential pebbling for a graph G can be converted to into a reversible

pebbling for G with a space-time overhead of O
(
N

2√
log N

)
and a CC overhead

of N
O(1)
4√log N .

3.1 A Separation between General and Reversible Pebbling

In this section, we show that line graphs are witnesses to among the greatest
asymptotic separations between general and reversible pebblings. In particular,
Theorem 1 shows that, in terms of cumulative pebbling complexity, the pebbling
in Theorem 5 is tight and the composition in Theorem 2 is tight up to a factor

of N
√

2√
log N .

Theorem 1 (Line Graphs Cumulative Pebbling Complexity Lower Bound).
The cumulative pebbling complexity of the line graph LN on N nodes is

Π
→← ,∥

cc (LN ) = Ω

(
N

1+
√

2−o(1)√
log N

)
.

The idea of the lower bound for reversibly pebbling line graphs is as follows.

Let C(N) = Π
→← ,∥

cc (LN ). Any pebbling for LN first pebbles the sub-line graph
Lk(N) for some increasing function k(N) ≤ N , incurring cost C(k(N)). Now, to
pebble the rest of LN (incurring cost at least C(N − k(N))), the pebbling must
at some point either unpebble [k(N)] (with cost C(k(N))) or must keep a pebble
on [k(N)] (with cost at least N−k(N), the time required to finish pebbling LN ).
This leads to Lemma 1.
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Lemma 1. Let C(N) = Π
→← ,∥

cc (LN ). Then for any 1 < k(N) < N we have

C(N) ≥ C (k(N)) + C (N − k(N)) + min {C (k(N)) , N − k(N)} .

We will choose k(N) such that C(k(N)) ≤ N − k(N), meaning we only need
to bound C(N) ≥ 2C (k(N))+C (N − k(N)). Using this relation, we show that

C(N) = Ω

(
N

1+
√

2−o(n)√
log N

)
. We choose k(N) = N ·2−c

√
logN = N

1− c√
log N for any

0 < c <
√
2 and let f(N) = N · 2c

√
logN = N

1+ c√
log N . By induction, we show

that C(N) ≥ c′f(N) for some constant c′ > 0. To prove this, we first show that
2f (k(N)) + f (N − k(N)) ≥ f(N) for all sufficiently large N . The proof is left
to Appendix C.

Lemma 2. Define functions h, f , and g such that for any 0 < c <
√
2, h(N) =

2c
√
logN , f(N) = N ·h(N), and g(N) = 2f

(
N

h(N)

)
+f

(
N − N

h(N)

)
. There exists

N0 ≥ 1 such that f(N) ≤ g(N) for all N ≥ N0.

Putting it all together, we lower bound the reversible cumulative pebbling
complexity of line graphs.

Proof of Theorem 1. Let C(N) = Π
→← ,∥

cc (LN ). Define h, f , and g as in Lemma 2
(for any constant 0 < c <

√
2, setting k(N) = N/h(N). Then by Lemma 1, we

have that C(N) ≥ C (k(N)) +C (N − k(N)) +min {C (k(N)) , N − k(N)} . We
will prove that C(N) = Ω (f(N)) via induction. Define f and g as in Lemma 2.
FixN0 large enough for (1) Lemma 2 to hold, and (2) f (N/h(N)) ≤ N−N/h(N)
for all N ≥ N0.

Now pick a sufficiently small constant c′ > 0 so that C(N0) ≥ cf(N0). And
suppose for all N0 ≤ N ′ < N , that C(N ′) ≥ cf(N ′). We have

C(N) ≥ C (k(N)) + C (N − k(N)) ◁ by Lemma 1

+min {C (k(N)) , N − k(N)}
= 2 · C (k(N)) + C (N − k(N))

≥ 2c′f(k(N)) + c′f(N − k(N)) ◁ inductive hypothesis

= c′g(N)

≥ c′f(N). ◁ by Lemma 2

Since this holds for every 0 < c <
√
2, it follows that C(N) = Ω

(
N

1+
√

2−o(1)√
log N

)
.

Discussion. The data-dependency graph for both the BCRYPT [PM99] and
PBKDF2 [Kal00] key-derivation functions is a line graph. Thus, understanding
the reversible pebbling complexity of the line graph helps us to characterize
the (amortized) cost of cracking passwords hashed with BCRYPT or PBKDF2.
Our results provide the first lower bound on the amortized space-time cost of
BCRYPT [PM99] and PBKDF2 [Kal00] or any other password hash function
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that uses hash iteration. While neither BCRYPT or PBKDF2 is memory-hard,
the PBKDF2 [Kal00] is still approved by NIST [GNP+17] for password hashing
and both password hash functions have been widely deployed — billions of leaked
password hashes utilized BCRYPT or PBKDF2.

3.2 Efficient Transformations from Classical to Reversible Pebblings

In this section, we discuss the extent to which it is possible to “convert” par-
allel irreversible pebblings into parallel reversible pebblings while minimizing
the overhead in terms of space-time and cumulative pebbling complexity. The
main idea is to consider an irreversible pebbling P = (P1, . . . , Pt) of some graph
G. Since P is irreversible, it is possible that in some transition Pi → Pi+1,
some node j was deleted without having its parents pebbled or placed while
deleting one of its parents. So, we can simulate Pi → Pi+1 by keeping around
any pebbles that make this step irreversible. Now suppose our pebbling state
contains Pi ∪ Pi+1 ∪ Pi+2. Then we can free up space by removing all peb-
bles in Pi+1 \ (Pi ∪ Pi+2). This is reversible because parents(Pi \ Pi+1, G) and
parents(Pi+1 \Pi, G) are contained in Pi by the (irreversible) legality of the peb-
bling P . More generally, we can instead focus on reversibly pebbling the line
graph Lt, where each node i ∈ [t] of Lt represents the pebbling configuration
Pi. By the reversibility of the pebbling of Lt, the resulting pebbling steps of the
graph G will be reversible. This is the intuition behind pebbling composition.

Definition 4 (Pebbling Composition). Let P = (P1, . . . , Pt) be a pebbling
for a graph G and and L = (L1, . . . , Lt′) be a pebbling of the line graph Lt. The
composition of L with P is the pebbling Q = L ◦ P , defined by Qi :=

⋃
j∈Li

Pj

for i ∈ [t′].

Using pebbling composition, we show that classical and reversible space-time
and cumulative pebbling complexity of graphs are within subpolynomial factors
in N of each other.

Theorem 2 (Classical vs. Reversible Space-Time Complexity). Let
G = (V = [N ], E) be a DAG. Then

Π
→← ,∥

st (G) = O
(
N

2
√

2√
log N

)
·Π∥st (G) ,

and

Π
→←

st (G) = O
(
N

2
√

2√
log N

√
logN

)
·Πst (G) .

As a brief application of this result, we obtain a new upper bound on the
parallel reversible space-time complexity of the bit-reversal graph, underlying
MHFs such as Catena [FLW13] — a finalist in the Password Hashing Competi-
tion [PHC15]. Alwen and Serbinenko [AS15] show that the parallel space-time
complexity of the bit-reversal graph is O

(
N1.5

)
. Applying Theorem 2, we see
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that the parallel reversible space-time complexity of the bit-reversal graph is

O
(
N

1.5+ 2
√

2√
log N

)
. See Section 3.2.1 for the proof of Theorem 2.

Theorem 3 (Classical vs. Reversible Cumulative Pebbling Complex-
ity). Let G = (V = [N ], E) be a DAG. Then

Π
→← ,∥

cc (G) = O
(
N

O(1)
4√log N

)
·Π∥cc (G) ,

and

Π
→←

cc (G) = O
(
N

O(1)
4√log N

)
·Πcc (G) .

Before these results, there were large gaps between the known upper and
lower bounds of the reversible cumulative pebbling complexity of graphs under-
lying prominent MHFs such as Argon2i [BDK16], Balloon Hash [BCS16], and
Catena[FLW13], whereas their classical cumulative pebbling complexity is well
understood. For example, for Argon2i (winner of the password hashing compe-
tition [PHC15]) the best classical pebbling attack on Argon2i has cumulative

pebbling cost Π
∥
cc(G) = O

(
n1.768

)
[BZ17] while the best reversible pebbling at-

tack had cumulative cost Π
→← ,∥

cc (G) = O
(
n1.8

)
[BHL22]. Applying Theorem 3,

we immediately obtain reversible pebblings which match the best classical peb-
blings up to this subpolynomial factor. In future sections, we will show how we
can match the classical upper bounds for these particular functions within a
constant factor. See Appendix C for the proof of Theorem 3.

3.2.1 Reversible Space-Time Complexity. Let P = (P1, . . . , Pt) be a (ir-
reversible) pebbling or a graph G = (V = [N ], E) and L = (L1, . . . , Lt′) be a
reversible pebbling for the line graph Lt. We first want to show that the pebbling
composition Q = L ◦ P = (Q1, . . . , Qt′), where Qi :=

⋃
j∈Li

Pj for i ∈ [t′], is
a legal reversible pebbling. Notice that since P starts as an empty pebbling, so
does Q. Likewise, Lt′ = {t}, which implies Qt′ =

⋃
j∈Lt′

Pj = Pt, meaning that
the end conditions are also satisfied.

It remains to show that Q satisfies Property (2) of Definition 1, i.e., both
Q and its reverse Q∗ are extra legal. To show that Q is extra legal, we need to
show that parents(Qi+1 \ Qi, G) ⊆ Qi and parents(Qi+1 \ Qi, G) ⊆ Qi+1 for all
i ∈ [t′ − 1]. Since Qi =

⋃
j∈Li

Pj , we observe that5

parents(Qi+1 \Qi, G) ⊆
⋃

j∈parents(Li+1\Li,Lt)

Pj , (1)

and from the extra legality of L, we have that parents(Li+1 \ Li,Lt) ⊆ Li and
parents(Li+1\Li,Lt) ⊆ Li+1. Hence, we have parents(Qi+1\Qi, G) ⊆

⋃
j∈Li

Pj =
Qi and parents(Qi+1 \ Qi, G) ⊆

⋃
j∈Li+1

Pj = Qi+1, which implies the extra

5 See Appendix C for the formal proof of Eq. (1).
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legality of Q. We can also prove that Q∗ is extra legal using a similar argument
(by switching Qi+1 ↔ Qi and Li+1 ↔ Li). See Appendix C for further details.

Now we analyze the space-time complexity of Q. At any step i, Qi contains
at most Πs(L) configurations of P . Thus, Πs(Q) ≤ Πs(L) · Πs(P ). Likewise,
Πt(Q) = Πt(L), leading to Theorem 4. See Appendix C for the formal proof of
Theorem 4.

Theorem 4 (Reversible Composition Pebbling). Let P = (P1, . . . , Pt)
be a (possibly irreversible) pebbling for a DAG G, and L = (L1, . . . , Lt′) be
a reversible pebbling for Lt. Then the composition L ◦ P is a legal reversible
pebbling of G satisfying Πst(Q) ≤ Πs(P ) ·Πst(L).

At a high level, Theorem 4 says that we can combine any pebbling for an
arbitrary DAG G with a reversible pebbling of a line graph to obtain a reversible
pebbling of G with comparable space-time complexity. We will use the reversible
pebbling from [BHL22].

Theorem 5 (Reversible Line Graph Pebbling [BHL22]). There exist a

family of sequential pebblings LN and a family of parallel reversible pebblings L
∥
N

for line graphs LN such that

(1) Πt (LN ) = O
(
N

1+ 1√
log N

)
, Πs (LN ) = O

(
N

1√
log N
√
logN

)
, Πst (LN ) , Πcc (LN ) =

O
(
N

1+ 2√
log N
√
logN

)
, and toggle(LN ) = O

(
N

1√
log N

)
, and

(2) Πt

(
L
∥
N

)
= O (N), Πs

(
L
∥
N

)
= O

(
N

2√
log N

)
, Πst

(
L
∥
N

)
, Πcc

(
L
∥
N

)
= O

(
N

1+ 2√
log N

)
,

and toggle(L
∥
N ) = O

(
N

1√
log N

)
.

For completeness we provide proof of Theorem 5 in Appendix C. The results are
implicit (but technically unproven) in the work of [BHL22].

Partial Proof of Theorem 2. If P = (P1, . . . , Pt) is a pebbling of G and L =
(L1, . . . , Lt′) of Lt and Q = L◦P is composed pebbling derived as in Theorem 4
then by Theorem 4 we have Πst(Q) = Πs(P ) ·Πst(L) = Πst(P ) ·Πst(L)/t.

If P = (P1, . . . , Pt) is the parallel pebbling of G with minimum space-

time cost (i.e., Πst(P ) = Π
∥
st(G)) then Πst(Q) = Π

∥
st(G) · Πst(L)/t. Taking

L = (L1, . . . , Lt′) to be the parallel pebbling of Lt from Theorem 5 we have

Πst(L)/t = O
(
t

2√
log t

)
. Using the fact that t ≤ N2 (otherwise we would have

Πst(P ) > N2 and P would not be optimal) we have Πst(L)/t = O
(
N

2
√

2√
log N

)
.

Hence, Π
→← ,∥

st (G) = O
(
N

2
√

2√
log N

)
·Π∥st(G). The proof for the sequential space-

time cost is similar; see Appendix C for the full proof.

Next, we see that composing a sequential reversible pebbling of a line graph
with a “special” sequential pebbling of a graph G (which is a sequential pebbling
with an extra constraint that only removes at most one pebble per round and
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never places and removes pebbles at the same time, i.e., for a pebbling P =
(P1, . . . , Pt), we have |(Pi ∪ Pi+1) \ (Pi ∩ Pi+1)| ≤ 1 for all i ∈ [t− 1]) results in
a reversible sequential pebbling for G. The proof is included in Appendix C.

Corollary 1. If P = (P1, . . . , Pt) is a special sequential pebbling of a DAG G
and L is a reversible sequential pebbling of Lt, then L◦P is a reversible sequential
pebbling of G.

Theorem 14 in Appendix C shows that we can transform any sequential
pebbling of G to a special sequential pebbling without significantly increasing
costs, e.g., space-time/cumulative pebbling costs increase by a small constant
multiplicative factor.

3.2.2 Reversible Cumulative Pebbling Complexity. In this section, we
will be giving a transformation that maps irreversible pebblings P = (P1, . . . , Pt)
of a graph G = (V = [N ], E) to reversible pebblings Q = (Q1, . . . , Qt′) at
the cost of just a subpolynomial factor in cumulative pebbling complexity. As
with space-time complexity, the mapping will involve reversibly pebbling the
line graph Lt associated with the given irreversible pebbling P of G. However,
the method is much different. To see why the pebbling from Theorem 4 fails to
preserve cumulative pebbling complexity, consider the reversible pebbling L of
Lt. The node i′k−1 in I ′k is kept for Ω(t) steps. It could be the case that the
pebbling configuration Pi′k−1

could be large (as large as Ω(N)) as well. If this

large space usage happens for a small amount of time in P , then Πst(P ) ≫
Πcc(P ) yet Πcc(Q) is of similar magnitude to Πst(Q)≫ Πcc(P ).

For this transformation, we will still be providing a reversible pebbling for
Lt, but we will have to avoid keeping pebbles on nodes i associated with large
configurations Pi. For this reason, it will be useful to instead consider pebblings
on weighted graphs. This way, we can describe pebbling strategies for Lt, where
the “weight” of node i is wti = |Pi|.

Definition 5 (Weighted Graph Pebbling). Let G = (V,E) be a graph with
weights wtv for v ∈ V . For a pebbling P = (P1, . . . , Pt) of G, the weighted
cumulative pebbling complexity (WCC) of P is

Πwcc(P ) =
∑
i∈[t]

∑
v∈Pi

wtv,

and the weighted cumulative pebbling complexity of G is

Πwcc(G) = min
P∈P(G)

Πwcc(P ).

Consider a weighted line graph onN nodes. Our high-level goal is to minimize
the number of pebbling rounds where we have pebbles on nodes with high weight.
So, we construct a series of weight buckets S0, . . . , Sℓ, where S0 are the lightest
nodes and Sℓ are the heaviest. In an ideal world, we would like to “ignore”
heavier buckets and only pebble the nodes in S0 pretending that these nodes
form a line graph of length |S0|. However, this strategy would yield an illegal
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pebbling of the entire graph as we are skipping over heavier nodes. We fix the
issue recursively. In particular, consider nodes u, v ∈ S0 and suppose that u is the
predecessor of v in S0 (i.e., any intermediate node w with u < w < v has higher
weight and is not in S0). Now suppose that our pebble of S0 illegally places
(or removes) a pebble from node v ∈ S0 skipping over all of the intermediate
nodes between u and v. We can patch the pebbling by recursively pebbling the
weighted subgraph induced by nodes [u+ 1, v − 1] and injecting these pebbling
steps in between our pebbling of S0 i.e., we recursively place a pebble on v − 1,
then place a pebble on v, then reverse the recursive pebbling to clear pebbles
from the interval [u+1, v− 1]. The number of times that we have to recursively
pebble/unpebble this interval [u+1, v−1] is upper bounded by the toggle number
of our original pebbling of the line graph on |S0| nodes, which is the maximum
number of times that a node is pebbled/unpebbled. In particular, this recursive
call is made at most twice the toggle number of the pebbling of the line graph
on |S0| nodes.

Now we describe in more detail the CC-efficient reversible, weighted line
graph pebbling WRevLinePeb∥. In particular, we consider a line graph LN with
weights wti on node i satisfying

∑
i wti ≤ N2. Note that without loss of gener-

ality, we can always take wt1 = wtN = 1, so assume this to be the case. recall
that to keep the cumulative cost low, we will aim to keep pebbles on “heavy”
nodes for as little time as possible, placing pebbles on the heaviest nodes only
when necessary. We first partition nodes according to their weight such that
S = (S0, . . . , Sℓ). Later, we will take care in assigning nodes to buckets to ensure
that (1) there are not too many nodes in heavier buckets, and (2) ℓ is small,
meaning there are not too many buckets overall.

Fix some family of reversible line graph pebblings L(i) for Li for 1 ≤ i ≤ N
i.e., L(i) outputs a reversible pebbling of Li. A set S ⊆ [N ] induces a line graph
LS , where the ith node of LS is the ith smallest value in S. We similarly let
L(S) denote the pebbling of LS corresponding to L(|S|). As L is a family of
pebblings, recall that L(i)j is the jth pebbling configuration of the pebbling of
the line graph Li. For

– set of buckets S = (S1, . . . , Sℓ) based on the set of weights wt = (wt1, . . . ,wtN ),
and

– an interval I = [a, b] ⊆ [N ]6 and integer i ∈ [0, ℓ] such that I ⊆ S≥i :=⋃
j≥i Sj ,

the weighted line graph pebbling WRevLinePeb∥(I,S, i, L) of LI with weights
defined by wt is defined in Algorithm 1. See Figure 1 for an illustrative example
and see Appendix C.1 for further details including a concrete example.

In Figure 1, we are given a line graph L14 with 14 nodes, based on the weight
wt = (wt1, . . . ,wt14) that is shown above each node, we can construct subgraphs
LS0

, . . . ,LS2
. In each subgraph, a solid edge means it is legal to pebble the next

node, and a dashed edge means it is illegal to proceed with pebbling and we would
need to make a recursive call. For example, in LS0 , it is illegal to place a pebble on

6 Recall that if a > b then [a, b] = ∅ and [a, a] = {a}
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WRevLinePeb([14],wt,S, 0, L)

WRevLinePeb([4, 9],wt,S, 1, L)

WRevLinePeb([5, 8],wt,S, 2, L)

Fig. 1: An illustrative example of WRevLinePeb([14],S, 0, L).

node 10 from node 3, so we need to runWRevLinePeb([4, 9],S, 1, L) recursively to
place a pebble on node 9 and then proceed to node 10. One important observation
here is that even though the number of recursive calls grows exponentially with
the level of recursion, the size of the nodes in each level is decreasing even faster.
This makes our weighted reversible pebbling CC-efficient.

To analyze the weighted cumulative pebbling complexity of our pebbling, we
need to know the maximum number of times we place or remove pebbles on any
particular node. Recall that the toggle number for a node v in a pebbling P
is toggle(v, P ) = |{i | v ∈ Pi ⊕ Pi+1}|, and toggle(P ) = maxv toggle(v, P ). The
toggle number of our non-weighted reversible line graph pebbling will help us
upper bound the number of times we will end up pebbling nodes in Si.

Consider the pebblingWRevLinePeb∥([N ],S = (S0, . . . , Sℓ), 0, L) of the weighted
line graph on N nodes and weights wt. The analysis consists of two components
for each i ∈ [ℓ]: (1) T (i), the number of steps that at least one pebble is contained
in Si, and (2) M(i), the greatest number of pebbles contained in Si at any step.
This way,

Πwcc

(
WRevLinePeb∥([N ],S, 0, L)

)
≤

∑
0≤i≤ℓ

T (i)M(i)max
j∈Si

wtj .

First we bound T (i). For now, assume Πt(L(N)) ≤ cN for some constant c.
If we have sub-intervals I1, . . . , Ik ⊆ [N ], then the time it takes to pebble each
interval individually is at most c

∑
i |Ii|. Now consider the number of steps in

which there’s a pebble in Sℓ. Every time we pebble/unpebble a node in the S0

pebbling, we call a pebbling in S1. This happens at most τ := 2 · toggle(L(N))
times (to pebble then unpebble). Therefore, throughout the pebbling of S0, we
(re)pebble nodes in Sℓ at most 2ℓτ ℓ times, and the total number of steps with
a pebble in Sℓ is at most T (ℓ) ≤ c2ℓτ ℓ|Sℓ|. Now consider Sℓ−1. We similarly
see that we repebble Sℓ−1 at most 2ℓ−1τ ℓ−1 times, but now we may also have
pebbles in Sℓ−1 while we’re waiting for pebblings of subsets of Sℓ to complete.
Thus, T (ℓ− 1) ≤ c2ℓ−1τ ℓ−1|Sℓ−1|+ c2ℓτ ℓ|Sℓ|. More generally, we have

T (i) ≤ c
∑

i≤j≤ℓ

2jτ j |Sj | ≤ c(ℓ+ 1)2ℓτ ℓ|Si|,
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Algorithm 1: WRevLinePeb∥(I = [a, b],S = (S0, . . . , Sℓ), i, L)

Preconditions : have pebble on node a− 1 (or a = 1) and I ⊆ S≥i
Postconditions: have pebble on node b

1 if i = ℓ+ 1 or I = ∅ then
2 return
3 for j = 1, . . . , |L(I ∩ Si)| − 1 do
4 foreach v ∈ L(Si ∩ I)j ⊕ L(Si ∩ I)j+1; // in parallel for each v

to be pebbled or unpebbled (Note: If different parallel calls

to WRevLinePeb∥ take different number of steps then delay

execution for shorter recursive calls so that they all finish

on the same round)

5 do
6 Let u = max {a− 1} ∪ (I ∩ Si ∩ [v − 1]); // v’s predecessor

7 Let I ′ = [u+ 1, v − 1];

8 Pebble I ′ using WRevLinePeb∥(I ′,S, i+ 1, L);
9 if v ∈ L(Si ∩ I)j+1 then

10 Pebble v; // as v − 1 is pebbled

11 else
12 Unpebble v;

13 Unpebble I ′ by reversing WRevLinePeb∥(I ′,S, i+ 1, L);

14 Let bi = max{a− 1} ∪ (I ∩ Si) ; // lines 4-14 leave pebble on node bi

15 Run WRevLinePeb∥([bi + 1, b],S, i+ 1, L); // finish pebbling if bi < b

under the assumption that the sizes of the buckets Si are decreasing with respect
to i. While this bound may seem crude, we will assign the buckets S such that
2ℓ and τ ℓ are small, subpolynomial terms, meaning T (i) is not too much larger
than |Si| in general.

Now we bound M(i). By the construction of L, M(0) ≤ Πs(L(S0)). Notice
that the pebbling L cannot pebble/repebble more than Πs(L(S0)) nodes in a
single step. Then for S1, there are at most Πs(L(S0)) calls in a single step
to intervals containing nodes in S1. For each of these calls, there are at most
Πs(L(S1)) pebbles on the graph in S1. So, M(1) ≤ Πs(L(S1)) ·Πs(L(S0)). More
generally, we see that

M(i) ≤
∏

0≤j≤i

Πs(L(Sj)) ≤ Πs(N)i+1.

Here, we rely on the fact that both ℓ and Πs(i) are relatively small. We will see
shortly that Πs(i)

ℓ is still subpolynomial.
Putting it all together, we get

Πwcc

(
WRevLinePeb∥([N ],S, 0, L)

)
≤

∑
0≤i≤ℓ

T (i)M(i)max
j∈Si

wtj
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≤ c(ℓ+ 1)2ℓτ ℓ
∑
i

|Sj | ·Πs(L(N))i max
j∈Si

wti.

Now fix L = RevLinePeb∥. All that is left is to define the buckets. Let wtavg
be the average weight in wt and Si =

{
j | ταiwtavg ≤ wtj ≤ τα(i+1)wtavg

}
, where

τ = toggle(L(S0)) = Θ
(
N

1√
log N

)
and α = 4

√
logN . This implies that the

number of weight buckets is ℓ ≤ logN
α log τ = O

(
4
√
logN

)
. Now, we know that

|Si| ≤
∑

j wtj
ταiwtavg

= N
ταi . Thus, the sizes of the sets Si shrink fairly quickly with

respect to i. Consequently, the summand

T (0)M(0)max
j∈S0

wtj = N
O(1)
4√log N ·N1+ 1√

log N = N
1+

O(1)
4√log N

dominates the entire WCC sum above. This results in Theorem 6, which takes
a crucial part in proving Theorem 3 (see Appendix C for the full proof of The-
orem 3).

Theorem 6 (Reversible Cumulative Pebbling Complexity of Weighted
Line Graphs). Given a weighted line graph LN with weights wti ≤ N for nodes
i ∈ N . Then there exists a parallel reversible pebbling P and sequential pebbling
S for LN with

Πt(P ) = O (N) , Πwcc (P ) = N
O(1)
4√log N ·

∑
i

wti, and

Πt(S) = O
(
N

1+
O(1)
4√log N

)
, Πwcc (S) = N

O(1)
4√log N ·

∑
i

wti.

Proof. Consider the pebbling P = WRevLinePeb∥([N ],S, 0, L = RevLinePeb∥)

as defined in the discussion above. First, we have that |Si| ≤
∑

j wtj
ταiwtavg

≤ N
ταi .

Next Πs(N)i ≤ c′N
2
√

2i√
log N for some constant c′ > 0. Finally, maxj∈Si wtj ≤

τα(i+1)wtavg. So, the weighted cumulative pebbling complexity is at most

Πwcc(P ) ≤
∑
i

T (i)M(i)max
j∈Si

wtj

≤ c(ℓ+ 1)2ℓτ ℓ
∑

0≤i≤ℓ

|Si| ·Πs(L(N))i max
j∈Si

wti

≤ cc′(ℓ+ 1)2ℓτ ℓ+αNwtavg
∑

0≤i≤ℓ

N
2
√

2i√
log N

≤ cc′(ℓ+ 1)22ℓτ ℓ+αN
2
√

2ℓ√
log N ·Nwtavg

≤ cc′(ℓ+ 1)22ℓτ ℓ+αN
2
√

2ℓ√
log N ·

∑
j∈[N ]

wtj .
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Now we need to analyze the coefficient on
∑

j wtj . Since ℓ = O
(

4
√
logN

)
and α =

O
(

4
√
logN

)
, it follows that 2ℓ = N

O(1)

log3/4 N and τ ℓ+α = N
O( 4√log N)
√

log N = N
O(1)
4√log N .

Putting it all together, we get

Πwcc(P ) = N
O(1)
4√log N

∑
j∈[N ]

wtj .

Since we assume nodes 1, N ∈ S0, the time complexity of P at most

Πt(P ) ≤ T (0) ≤ c
∑

0≤j≤ℓ

2jτ j |Sj |

≤ c|S0|+ c
∑

1≤j≤ℓ

2j
N

τ j(α−1)

≤ cN + 2cℓ
N

τα−1
◁ sum is decreasing in j

≤ 3cN ◁ ℓ = o(τα−1).

To finish up, we need a sequential weighted pebbling Q. Note that we can
sequentially simulate P by executing the pebble placing/removing one at a time
per step. There are at most 2Πs(P ) pebbles placed or removed in a pebbling step
of P . Then Πt(Q) ≤ Πt(P ) · 2Πs(P ). Likewise, Πs(Q) ≤ 2Πs(P ). The number
of steps spent with a pebble in Si increases by at most a factor of Πs(P ). We

have that Πs(P ) ≤ ℓτ ℓN
2√

log N = N
O(1)
4√log N , so

Πwcc(Q) = N
O(1)
4√log N Πwcc(P )

= N
O(1)
4√log N ·N

O(1)
4√log N ·

∑
j∈[N ]

wtj

= N
O(1)
4√log N ·

∑
j∈[N ]

wtj .

4 Reversible Recursive Pebbling Attack

In Section 3, we showed that the reversible cumulative pebbling complexity of

a graph is always within a factor of N
O(1)
4√log N of the classical cumulative peb-

bling complexity. In this section, we show for classes of graphs that satisfy
certain depth-reducibility properties, there are reversible pebblings that match
the best-known classical pebblings in cumulative pebbling complexity. Blocki et
al. [BHL22] introduced a reversible pebbling attack for (e, d)-reducible graphs
G = (V = [N ], E), based on the classical depth-reducing attack of [ABP17].

Theorem 7 (Reversible Depth-Reducing Pebbling Strategy). For any
(e, d)-depth reducible graph G = (V = [N ], E), target set T , and parameter
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g ∈ [d,N ], there exists a reversible parallel pebbling P = (P1, . . . , P2N ) =
RGenPeb(G) with P2N = T such that

Πcc (P ) ≤ 2N

(
2Nd

g
+ e+ (δ + 1)g + |T |

)
+N +

2Nd

g
.

We construct a more general reversible pebbling attack based on the recursive
attack of [ABP17]. As a result, we obtain asymptotically stronger reversible CC
upper bounds for several iMHFs.

Review of Algorithm in Theorem 7: Let G = (V = [N ], E) be an (e, d)-
depth robust graph with depth reducing set S ⊆ [N ] of size at most e1. The
pebbling RGenPeb(G) is composed of a sequence of alternating phase: light phases
and balloon phases. Each light phase lasts 2g rounds. The goal of the cth light
phase is to pebble the nodes Ic = [(c − 1)g + 1, cg] one at a time with low
space usage. To achieve this, we will enforce the light phase precondition on the
pebbling configuration Pj , the step before the start of the cth light phase. In
particular, it must be the case that

LightReqc0 = S≤(c−1)g+1 ∪ parents(Ic) \ Ic.

If this condition is satisfied, then we can simply place a pebble on node (c−1)g+k
in Pj+k for all k ∈ [g]. The end condition for the cth light phase is then Pj+g =
S≤cg ∪ Ic ∪ parents(Ic). We then reverse the light phase, while keeping pebbles
only on S≤cg, so LightReqcg+j = LightReqcg−j ∪ S≤cg. However, this leaves us
unprepared for the (c+1)th light phase. To fix this, we can simply start a balloon
phase with the goal of pebbling LightReqc+1

0 . The pebbling attack of [BHL22]
accomplishes this by simply applying a greedy pebbling strategy. In particular,
if BalloonReqc2g−2d−1 is the step before the balloon phase begins, we must have
pebbles on S≤cg. Then BalloonReqc2g+j pebbles any node that can be legally
pebbled from BalloonReqc2g+j−1. In d rounds, nodes [cg] will be pebbled. Then
we can reverse both the light phase and the balloon phase, keeping pebbles only
on S≤cg ∪ parents(Ic+1) \ Ic+1.

Now we can describe the reversible recursive attack RRGenPeb. The main
difference is that we replace the greedy balloon phases with more efficient algo-
rithms when G is (ei, di)-depth reducible along multiple points i. The proof is
similar to that of [ABP17], but special consideration is needed to account for
reversibility.

4.1 Reversible Recursive Pebbling Strategy

Let G = (V = [N ], E) be an (e1, d1)-depth reducible graph of depth d1 ≤ d0,
satisfying 2d1N ≤ e1d0. Our goal is to pebble some target set T ⊆ V . The
light phases will be pebbling intervals of length g =

⌈
e1d0

N

⌉
≥ 2d1. These light

phases are slightly different than in RGenPeb. Since we know that the depth
of G is d0 ≤ N , we can instead pebble all nodes of the same depth each step,
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meaning the pebbling time will be at most 2d0. More formally, we define sets
D1, . . . D2d1

such that parents(D1) = ∅, parents(Di+1) ⊆
⋃

j≤i Dj , and each

|Di| ≤ N
d0
. Analogously to before, we let Ic =

⋃
1≤j≤cg Dj . Likewise, for any set

R, we let R⪯i := R∩
⋃

j≤i Dj . So, for 0 ≤ i ≤ g, the ith step of the cth light phase
will maintain

LightReqci = S⪯(c−1)g+i ∪ T⪯(c−1)g+i ∪
⋃

(c−1)g≤j≤min{(c−1)g+i,N}

Dj .

As before, we will let LightReqccg+i = LightReqccg−i ∪ S⪯cg ∪ T⪯cg for 0 ≤ i ≤
min {g,N − cg}. Now, for some G′ with depth at most d, let B(G′, T ′, t) be a
pebbling of G′ with the target set T ′ that terminates in at most t ≥ 2d steps.
Then we can let

BalloonReqc = B (G⪯cg − S⪯cg, parents (Ic+1) \ Ic+1, 2d1) .

There are technicalities we must account for with these new balloon phases:

– (Before Start) We let BalloonReqcj = ∅ for 1 ≤ j ≤ cg − 2d1.
– (Early Termination) If BalloonReq terminates in less than t ≤ 2d1 rounds,

then we will let BalloonReqccg−2d1+t+j = BalloonReqct for 1 ≤ j ≤ 2d1 − t.

The pebbling, excluding clean-up, is

P ′ := LightReq1∪BalloonReq1+· · ·+LightReq⌈2d0/g⌉−1∪BalloonReq⌈2d0/g⌉−1+LightReq⌈2d0/g⌉

The final pebbling P = RRGenPeb(G, {(e1, d1, S1)} , B) is obtained by then
reversing P ′ while keeping nodes on the target set T . More formally, for all
1 ≤ j ≤ |P ′|, we have P|P ′|+j = P ′|P ′|−j ∪T . Showing that P is a legal reversible
pebbling is straightforward, and the proof is left to the Appendix D.

Lemma 3. For any (e1, d1)-depth reducible DAG G = (V = [N ], E) of depth
d0, target set T

′ ⊆ [N ], and family of pebblings B(G′, T ′, t′) for all DAGs G′ =
(V ′, E′), target sets T ′ ⊆ V ′, and t′ ≥ 2 · depth(G′), the pebbling

P = RRGenPeb(G, d0, {(e1, d1, S1)} , B)

is a legal parallel reversible pebbling of G, where S1 is a depth-reducing set of
size e1.

Now we bound the CC of P . The argument is a straightforward accounting
of (1) the CC contributions of the light phases and (2) the CC of the B called
2e1
N times. The proof is left to Appendix D.

Lemma 4. For any (e1, d1)-depth reducible DAG G = (V = [N ], E) of depth
d0, target set T

′ ⊆ [N ], and family of pebblings B(G′, T ′, t′) for all DAGs G′ =
(V ′, E′), target sets T ′ ⊆ V ′, and t′ ≥ 2 · depth(G′),

Πcc (RRGenPeb(G, d0, {(e1, d1, S1)} , B))

≤ 4d0(δ + 2)e1 + 4d0|T |+
2e1
N
· max
|T ′|≤δe1

Πcc (B (G− S, T ′, 2d1)) ,

where S1 is a depth-reducing set of size e1.
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By replacing B with a CC-optimal pebblings, we obtain Theorem 8.

Theorem 8. Let G = (V = [N ], E) be an (e1, d1)-depth robust graph with depth
d0, then

Π
→← ,∥

cc (G,T, 4d0) ≤ 4d0(δ + 2)e1 + 4d0|T |+
2e1
N
· max
|T ′|≤δe1

Πcc (G− S, T ′, 2d1) .

Now we will apply our theorem on graphs that are (ei, di)-depth reducible
for more than two values of i. It will be useful to employ a more general notion
of depth-reducibility.

Definition 6 (f-reducibility, [ABP17]). Let G = (V,E) be a DAG with N
nodes and let f : N→ N be a function. We say that G is f -reducible if for every
positive integer 0 < d ≤ N , G is (f(d), d)-depth reducible.

Next, we show that if g is f -reducible and decreasing slowly enough in d,
then we can apply Theorem 8 recursively to obtain better Reversible CC upper
bounds. The proof of this lemma follows almost exactly as the analogous theorem
in [ABP17], so the proof is left in Appendix C.

Lemma 5. Let G be an f -reducible DAG of depth on N nodes then if f(d) =

Õ
(
N
db

)
for some constant 0 < b ≤ 2/3 and let a = 1−2b+

√
1+4b2

2 . Then for any

constant ε > 0, Π
→← ,∥

cc (G) ≤ O
(
δN1+a+ϵ

)
.

It turns out that many graphs of interest are f -reducible as required in the
above lemma. In particular, we examine:

(1) Argon2i won the 2015 Password Hashing Competition. We use Argon2iB to
refer to the current version and we use Argon2iA is Argon2’s original edge
distribution (uniform) and Argon2iB to refer to the current (non-uniform)
edge distribution [BDK16].

(2) Balloon Hash is a prominent memory-hard function introduced by [BCS16].
We examine the single buffer (SB) graph SBN and the double buffer and
linear graphs Linστ on N = σ · τ nodes as defined in [ABP17].

(3) Catena was a finalist in the 2015 Password Hashing Competition [FLW13].
We examine Catena graphs DFGN

λ and BFGN
λ as defined in [ABP17].

Lemma 6 ([ABP17], [BZ17]). Let fb(d) = Õ
(
N
db

)
, then

(1) With high probability, Argon2i-AN is f0.5-reducible.
(2) With high probability, Argon2i-BN is f1/3-reducible.
(3) With high probability, SBN is f0.5-reducible.
(4) The Balloon Hashing (Linear and Double Buffer (DB)) graph Linστ is f1-

reducible for τ = O (polylog(N)).
(5) The Catena Double Butter are both f1-reducible for λ = O (polylog(N)).

Now we can put these results together to upper bound the reversible CC of
graph underlying MHFs.
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Corollary 2. We have the following:

(1) Π
→← ,∥

cc (Argon2i-AN ) = O
(
N1.708

)
,

(2) Π
→← ,∥

cc (Argon2i-BN ) = O
(
N1.768

)
,

(3) Π
→← ,∥

cc (SBN ) = O
(
N1.708

)
,

(4) Π
→← ,∥

cc (Linστ ) = Õ
(
N

13
8

)
= Õ

(
N1.625

)
, where the number of vertices is

N = στ , and

(5) Π
→← ,∥

cc (DFGN
λ ), Π

→← ,∥
cc

(
BFGN

λ

)
= Õ

(
N

13
8

)
= Õ

(
N1.625

)
.

5 Depth Robustness and Reversible CC

In this section, we improve the lower bound of reversible CC for a depth-robust
DAGs. Alwen et al. [ABP17] proved the lower bound of classical CC of a DAG
G given its depth-robustness. In particular, they showed that if G is (e, d)-depth

robust then Π
∥
cc(G) ≥ ed. This immediately implies the same lower bound for

reversible CC as well since for any DAG G we have Π
→← ,∥

cc (G) ≥ Π
∥
cc(G). How-

ever, it was not known if there is a tighter lower bound for reversible CC in terms
of depth-robustness. We provide a constant-factor (factor of ≈ 2) improvement
on the lower bound of reversible CC when a DAG is depth-robust. Our main
results are stated in Theorem 9 and Theorem 10.

We first consider a non-relaxed reversible pebbling, where we would require
the condition that in the final round we have pebbles only on the sink nodes and
pebbles from all of the intermediate nodes have been removed. Since removing
pebbles is not free in a reversible pebbling and needs reversible pebbling steps,
we can get a better lower bound for a reversible CC than a classical CC.

Theorem 9. If G is (e, d)-depth-robust DAG then Π
→← ,∥

cc (G) ≥ e(2d− 1). Fur-

thermore, if G− sinks(G) is (e, d)-depth-robust then Π
→← ,∥

cc (G) ≥ 2ed.

Proof. Let P = (P1, . . . , Pt) be a parallel reversible pebbling for G such that

Πcc(P ) = Π
→← ,∥

cc (G). We first consider the case that G is (e, d)-depth-robust.

We will show that there exists a set B ≤ Π
→← ,∥

cc (G)
2d−1 such that there is no

path of length d in G − B, meaning G is not
(

Π
→← ,∥

cc (G)
2d−1 , d

)
-depth robust. If G

is (e, d)-depth robust for some e, then it must be the case that e ≤ Π
→← ,∥

cc (G)
2d−1 ,

implying e(2d− 1) ≤ Π
→← ,∥

cc (G).
Let Bi = Pi ∪ Pi+2d−1 ∪ Pi+2(2d−1) ∪ . . . for i ∈ [2d− 1] (defining Pj = ∅ for

j > t). Since
∑

i |Bi| ≤
∑

j |Pj | = Π
→← ,∥

cc (G), there exists some B := Bi in which

|Bi| ≤ Π
→← ,∥

cc (G)
2d−1 .

Now we will show there is no path of length d in G−B. Let v1, . . . , vd be a
path inG and let p(vd) be the first step in which node vd is pebbled. Let k < p(vd)
denote the last round before p(vd) when we had no pebble on the entire path
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{v1, . . . , vd}. Let p(vi) denote the first step after round k where we place a pebble
on node vi (because v1 is the first node in our path we have p(v1) = k+1). Then
p(v1) < p(v2) < · · · < p(vd) by Item 2 of Definition 7. Now let u(vi) denote the
first round after round p(vd) where we remove a pebble from node vi. Observe
we always have at least one pebble on our path v1, . . . , vd in between rounds
p(v1) and u(v1) inclusive. If vd is a sink node that it is possible that u(vd) =∞.
However, we are guaranteed that u(v1) > u(v2) > · · · > u(vd−1) by Item 4 of
Definition 7 and we also know that u(vd−1) > p(vd) since we needed to have a
pebble on node vd−1 in round p(vd)−1 and we are not allowed to simultaneously
remove the pebble from node vd−1 while we are placing a pebble on node vd.

This means that |{i : p(v1) ≤ i ≤ u(v1)}| ≥ 2d − 1. It follows that there is
some j such that p(v1) ≤ i + j(2d − 1) ≤ u(v1). Since, |Pj ∩ {v1, . . . , vd}| ≥ 1
it follows that Bi contains at least one node on our path. Since every path of

length d intersects with B, G is not
(

Π
→← ,∥

cc (G)
2d−1 , d

)
-depth robust.

The argument is similar when we assume G− sinks(G) is (e, d)-depth robust.
We now define Bi = Pi ∪ Pi+2d ∪ Pi+2(2d) ∪ Pi+3(2d) . . . for i ∈ [2d] (defining
Pj = ∅ for j > t). Similar to our above argument there exists some B = Bi such

that |Bi| ≤ Π
→← ,∥

cc (G)
2d . Now if v1, . . . , vd is a path of length d in G− sinks(G) then

vd cannot be a sink node (by definition). We therefore have p(vd) < u(vd) <
u(vd−1) and it follows that |{i : p(v1) ≤ i ≤ u(v1)}| ≥ 2d since p(v1) < p(v2) <
. . . p(vd) < u(vd) < . . . < u(v1). Therefore, Bi contains at least one node on our
path since there exists some j such that p(v1) ≤ i + 2jd ≤ u(v1). Since every
path of length d in G − sinks(G) intersects with B it follows that G − sinks(G)

is not
(

Π
→← ,∥

cc (G)
2d , d

)
-depth robust. Since G − sinks(G) is (e, d)-depth robust it

follows that Π
→← ,∥

cc (G) ≥ 2ed.

On the other hand, Theorem 9 is not directly applicable to the relaxed re-
versible pebbling since it is not necessary to unpebble intermediate nodes. Con-
sidering that unpebbling is the reverse of pebbling, it is tempting to suggest
that the reversible CC of relaxed pebbling might be approximately half that of
non-relaxed pebbling. However, we can indeed derive a similar lower bound to
the non-relaxed setting for depth-robust graphs. Oversimplifying a bit, a main
bottleneck why the proof of Theorem 9 does not apply to the relaxed reversible
pebbling is that there might be a possibility of having a path of length longer
than d in G− B if N ≡ s mod 2d with s > d where N is the number of nodes
in G. We can resolve this issue by truncating last d nodes from the graph. Given
a DAG G = (V = [N ], E), we define GTrunc,d := G− [N − d+1, N ] to be a DAG
which truncates last d nodes and incident edges from G. Then we have the fol-
lowing theorem. The proof of Theorem 10 and analysis of the relaxed reversible
CC of DRSample [ABH17] can be found in Appendix E.

Theorem 10. Let G = (V = [N ], E) be a DAG such that (i, i + 1) ∈ E for all

i < N and the graph GTrunc,d is (e, d)-depth robust. Then Π̃
→← ,∥

cc (G) ≥ e(2d− 1).
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A Equivalence of Definitions of Reversible Pebbling

Recall the original reversible pebbling definition by Blocki et al. [BHL22] and
our new definition.

Definition 7 (Reversible Graph Pebbling, [BHL22]). Let G = (V,E)
be a DAG and let T ⊆ V be a target set of nodes to be pebbled. A pebbling
configuration (of G) at round i is a subset Pi ⊆ V . Let P = (P0, . . . , Pt) be
a sequence of pebbling configurations. Below are the following properties which
define various aspects of reversible pebblings.

(1) The pebbling should start with no pebbles (P0 = ∅) and end with pebbles on
all of the target nodes i.e., T ⊆ Pt.

(2) A pebble can be added only if all of its parents were pebbled at the end of the
previous pebbling round, i.e., ∀i ∈ [t] : x ∈ (Pi \ Pi−1) ⇒ parents(x,G) ⊆
Pi−1.

(3) (Quantum No-Deletion Property) A pebble can be deleted only if all of its
parents were pebbled at the end of the previous pebbling round, i.e., ∀i ∈ [t] :
x ∈ (Pi−1 \ Pi)⇒ parents(x,G) ⊆ Pi−1.

(4) (Quantum Reversibility) If a pebble was required to generate new pebbles (or
remove pebbles), then we must keep the corresponding pebble around, i.e.,
∀i ∈ [t] : x ∈ parents(Pi \ Pi−1, G) ∪ parents(Pi−1 \ Pi, G)⇒ x ∈ Pi.

(5) (Remove Excess Pebbles) We also consider an optional constraint that Pt =
T . If a pebbling does not satisfy this optional constraint we call it a relaxed
pebbling.

(6) (Sequential pebbling only) At most one pebble is added or removed in each
round, i.e., ∀i ∈ [t] : |(Pi ∪ Pi−1) \ (Pi ∩ Pi−1)| ≤ 1.

Now we give pebbling definitions with respect to the above properties.

– A legal parallel reversible pebbling of T is a sequence P = (P0, . . . , Pt) of
pebbling configurations of G where P0 = ∅ and which satisfies conditions (1),
(2), (3), (4) and (5) above. If our pebbling additionally satisfies condition
(6) then we say that it is a sequential pebbling. Similarly, if our pebbling
does not satisfy condition (5) then we call our pebbling strategy a relaxed
pebbling.

– A legal reversible pebbling sequence is a sequence of pebbling configurations
(P0, . . . , Pt) which satisfies properties (2), (3), and (4) without requiring
P0 = {}.

We denote P →← ,∥
G,T the set of all legal parallel reversible pebblings of G with

a target set T , respectively. We denote with P̃ →← ,∥
G,T the set of all legal relaxed

parallel reversible pebblings of G with target set T . We will mostly be interested

in the case where T = sinks(G) in which case we simply write P →← ,∥
G or P̃ →← ,∥

G .

We argue that Definition 7 and Definition 1 are indeed equivalent.

Lemma 7. Definition 7 and Definition 1 are equivalent.
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Proof. Let P = (P0, . . . , Pt) is a pebbling sequence of G and P ∗ = (Pt, . . . , P0)
is its reverse. Since condition (1) of Definition 7 and condition (1) of Definition 1
are identical, it is sufficient to prove that P satisfies conditions (2), (3), and (4)
of Definition 7 if and only if condition (2) of Definition 1 holds.

(⇒) Suppose that P satisfies conditions (2), (3), and (4) of Definition 7. We
observe the following:

– Condition (2) of Definition 7 implies parents(Pi \ Pi−1, G) ⊆ Pi−1 for all i ∈
[t]. Furthermore, condition (4) of Definition 7 implies parents(Pi \Pi−1, G) ⊆
Pi for all i ∈ [t]. Taken together, we see that P is extra legal.

– Condition (3) of Definition 7 implies parents(Pi−1 \ Pi, G) ⊆ Pi−1 for all
i ∈ [t]. Furthermore, condition (4) of Definition 7 also implies parents(Pi−1 \
Pi, G) ⊆ Pi for all i ∈ [t]. Taken together, we see that P ∗ is extra legal.

Hence, we can conclude that condition (2) of Definition 1 holds.

(⇐) Suppose that condition (2) of Definition 1 holds, i.e., P and P ∗ are both
extra legal. Since P is extra legal, for all i ∈ [t], we have

parents(Pi \ Pi−1, G) ⊆ Pi−1, (2)

and

parents(Pi \ Pi−1, G) ⊆ Pi. (3)

Similarly, since P ∗ is extra legal, for all i ∈ [t], we have

parents(Pi−1 \ Pi, G) ⊆ Pi, (4)

and

parents(Pi−1 \ Pi, G) ⊆ Pi−1. (5)

Now, we can easily see that Equation (2) implies condition (2) of Definition 7
and Equation (5) implies condition (3) of Definition 7. Furthermore, combining
Equation (3) and (4), we have that parents(Pi \Pi−1, G)∪parents(Pi−1 \Pi, G) ⊆
Pi for all i ∈ [t], which implies condition (4) of Definition 7. Hence, we can
conclude that if condition (2) of Definition 1 holds, then conditions (2), (3), and
(4) of Definition 7 hold. This completes the proof.

B Approximation Hardness of Reversible CC

We begin by reviewing the approximation hardness of classical CC and subse-
quently delve into the challenges of extending this result to reversible CC in a
black-box manner. We then provide a technique to overcome the challenge by
extending the reversible pebbling strategy from previous work [BHL22].
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B.1 Review: Approximation Hardness of Classical CC

Blocki et al. [BLZ20] showed that given a DAG G with constant indegree, it is

Unique Games hard to approximate Π
∥
cc(G) within any constant factor. Basi-

cally, the intuition is that the depth-robustness ofG is both necessary [AB16] and

sufficient [ABP17] condition for computingΠ
∥
cc(G) as the upper and lower bound

of Π
∥
cc(G) are given as follows: for any (e, d)-reducible DAG G with N nodes and

indegree indeg(G), Π
∥
cc(G) ≤ ming≥d(eN + gN · indeg(G) +N2d/g) [AB16], and

for any (e, d)-depth robust DAG G, Π
∥
cc(G) ≥ ed [ABP17]. Then they showed

that assuming that the Unique Games Conjecture is true, it is hard to distinguish
between the cases where (1) G is (e1, d1)-reducible with e1 = N1/(1+2ε)/k and
d1 = kN2ε/(1+2ε) (i.e., depth-reducible with relatively small e1 and d1), and (2)
G is (d2, e2)-depth robust with e2 = (1− ε)N1/(1+2ε) and d2 = 0.9N (1+ε)/(1+2ε),
for any constant ε > 0 (i.e., depth-robust with even large e2 and d2 when ε is

small). The approximation hardness of Π
∥
cc(G) can be proved by showing that

there is a gap between the upper and lower bound of the classical pebbling
complexity between the cases above.

To prove the argument, they presented the following technical ingredients:

(1) The first technical ingredient is Svensson’s result [Sve12]. Svensson showed
that it is Unique Games hard to distinguish between the cases where a
(layered) DAG G with N nodes is (e1, d1)-reducible with e1 = N/k and
d1 = k and G is (e2, d2)-depth robust with e2 = N(1 − 1/k) and d2 =
Ω(N1−ε). But scrutinizing further, Svensson’s graph has high indegree, i.e.,
indeg(G) = O(N), whereas we want to have constant indegree. Furthermore,
we cannot directly apply Svensson’s result to get the approximation hardness

of Π
∥
cc(G) as there is no gap between the upper and lower bound of Π

∥
cc(G)

when G is a Svensson’s graph.
(2) Therefore, we need to reduce the indegree of the graph, but we also want to

not lose the connectivity of Svensson’s graph between each layer too much
as we still want to have the Unique Games hardness result to distinguish
between depth-reducible and depth-robust cases. This is where a γ-extreme
depth-robust graph comes into play. A DAG G is said to be γ-extreme depth-
robust if it is (e, d)-depth robust for any e, d > 0 such that e+d ≤ (1−γ)N .
By overlaying Svensson’s graph on a γ-extreme depth-robust graph, i.e., only
keeping edges from layer i to layer j in Svensson’s graph if there is an edge
from node i to j in the γ-extreme depth-robust graph, we can reduce the
indegree from O(N) to O(Nε log2 N). Furthermore, by applying indegree
reduction gadget from Blocki et al. [ABP17], they proved that it is Unique
Games hard to distinguish between the cases where a constant-indegree DAG
G is (e1, d1)-reducible with e1 = N1/(1+2ε)/k and d1 = kN2ε/(1+2ε) and
(e2, d2)-depth robust with e2 = (1− ε)N1/(1+2ε) and d2 = 0.9N (1+ε)/(1+2ε).
However, there is still no gap between the classical pebbling complexity of
the two cases.

(3) To remedy the no-gap situation above, they used the superconcentrator over-
lay that was introduced by Blocki et al. [BHK+19], which is a graph denoted
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by superconc(G) that can be constructed by overlaying a DAG G with N
nodes with a superconcentrator [Pip77] with N input/output nodes. It gives

a stronger lower bound Π
∥
cc(superconc(G)) ≥ max{eN, dN}/8 for CC and an

improved pebbling strategy gives an improved upper bound, through which
we can finally yield a gap between the upper and lower bound of the classical
pebbling complexity of the superconcentrator overlay graph.

To summarize, Blocki et al. [BLZ20] made the worst-case analysis for the
approximation hardness of the classical pebbling complexity by constructing a
graph — the superconcentrator overlay of an indegree-reduced version (with γ-
extreme depth-robust overlay) of Svensson’s graph — that has a gap between
the upper and lower bound of the classical pebbling complexity. The main result
of the work can be presented as the following theorem.

Theorem 11 ([BLZ20]). Given a DAG G with constant indegree, it is Unique

Games hard to c-approximate Π
∥
cc(G) for any constant c > 1.

B.2 Computing Reversible CC is Also Unique Games Hard

A natural follow-up question is whether we can have the same approximation
hardness result for reversible cumulative pebbling complexity. It is not a triv-
ial black-box application of the prior work [BLZ20] since some of the pebbling
strategies that were used in the prior analysis are inherently irreversible. For
example, the improved strategy in Blocki et al. [BLZ20] when analyzing the up-
per bound of CC of the superconcentrator overlay graph, it runs multiple light
and balloon phases [AB16]. At the end of each balloon phase, we discard all the
unnecessary pebbles at once before running the next light phase, which is an
irreversible pebbling transition.

Blocki et al. [BHL22] gave a reversible pebbling strategy which takes a light
phase-balloon phase pebbling attack by Alwen and Blocki [AB16] and made it

reversible. In particular, they showed the upper bound of Π
→← ,∥

cc (G) when G is
(e, d)-reducible.

Theorem 12 ([BHL22, Theorem 4]). For any (e, d)-reducible DAG G with
N nodes,

Π
→← ,∥

cc (G) ≤ min
g≥d

{
2N

(
2Nd

g
+ e+ 3g

)
+N +

2Nd

g

}
.

One might be tempted to adopt this strategy in a black-box manner and apply
this upper bound with superconc(G) to create a gap between the upper and lower

bound of Π
→← ,∥

cc (superconc(G)). However, we cannot directly apply Theorem 12

to yield a gap between the upper and lower bound of Π
→← ,∥

cc (superconc(G)).
First, we observe that superconc(G) is (e + N/d, 2d + 4 logN)-reducible when-

ever G is (e, d)-reducible. This implies that Π
→← ,∥

cc (superconc(G)) = O
(
N

2+3ε
1+2ε

)
when we apply Theorem 12 with an (e′, d′)-reducible DAG superconc(G) where
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e′ = e + N/d, d′ = 2d + 4 logN and e = 1
kN

1
1+2ε , d = kN

2ε
1+2ε . If we apply

the lower bound Π
→← ,∥

cc (superconc(G)) ≥ min
{

e′N
8 , d′N

8

}
[BHK+19, Theorem

9] as the same lower bound carries over to the reversible CC, we have that

Π
→← ,∥

cc (superconc(G)) ≥ Ω(N
2+2ε
1+2ε ), which implies that there is no gap between

the upper and lower bound of Π
→← ,∥

cc (superconc(G)).
Therefore, we should open the black box and update the improved pebbling

strategy from the prior work [BLZ20]. This can be done by substituting the clas-
sical pebbling strategy [AB16] to pebble all the input nodes with the reversible
one [BLZ20]. We remark that this replacement would additionally require up-
dating the light and balloon phases accordingly.

Lemma 8 ([Pip77]). There exists a superconcentrator G with at most 7N ver-
tices, containing N input vertices and N output vertices, such that indeg(G) ≤ 9
and depth(G) ≤ 4 logN .

Lemma 9. Let G be an (e, d)-reducible DAG with N nodes with indeg(G) = 2.
Then

Π
→← ,∥

cc (superconc(G)) ≤ min
g≥d

{
3eN + 13gN +

(25d+ 1)N2

g
+

2Nd

g
+ 28N logN

+
84N2 logN

g
+ 2N

}
.

Proof. We give a reversible pebbling strategy for the superconcentrator overlay
graph G′ = superconc(G):

Reversible Pebbling Strategy for G′ = superconc(G):

1. Pebble all the input nodes input(G′) = G using the reversible pebbling
strategy from Blocki et al. [BHL22].

2. Efficiently pebble interior(G′) using the property of superconcentrator,
i.e., superconc(G) with N input/output nodes has depth at most 4 logN .
At the end of Step 2, remove pebbles by running a reversible monotonic
pebbling sequence to the precondition for each light phase.

3. Pebble all nodes in output(G′) by alternating between light and balloon
phases.
• Light Phase: Walk pebble across the interval Ii = [o(i−1)g+1, oig] in
O(g) steps.
◦ Precondition: pebbles on parents(o(i−1)g+1)∪(parents(Ii)\Ii)∪S≤o(i−1)g

◦ Postcondition: pebbles on {oig} ∪ S
• Balloon Phase: Recover all the missing pebbles in input(G′)∪interior(G′)

for the upcoming light phase.
◦ Precondition: pebbles on {oig+1} ∪ S
◦ Midcondition: pebbles on {oig+1} ∪ input(G′) ∪ interior(G′)
◦ Postcondition: pebbles on parents(oig+1) ∪ (parents(Ii+1) \ Ii+1) ∪ S
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Analysis.We will examine the cumulative pebbling complexity ofG′ = superconc(G)
for each step above.

1. We need to pebble all the input nodes input(G′) = G using the reversible
pebbling strategy from Blocki et al. [BHL22], which will be upper bounded
by

Π
→← ,∥

cc (G) ≤ min
g≥d

{
2N

(
2Nd

g
+ e+ 3g

)
+N +

2Nd

g

}
,

followed by [BHL22, Theorem 4]. We remark that the difference here is that
while [BHL22, Theorem 4] denotes the reversible pebbling cost to pebble the
last node of G only, we need to pebble all nodes in G. However, we observe
that we can recover pebbles on all nodes by running one extra balloon phase
concurrently and such cost is already contained in 4N2d/g + N + 2Nd/g.

Hence, we have the same upper bound with Π
→← ,∥

cc (G).
2. When we start with having pebbles on all nodes in input(G′) = G, since

superconc(G) has depth at most 4 logN , we can pebble all nodes in interior(G′)
with CC at most 7N · 4 logN = 28N logN . Next, we would need to remove
pebbles by running a reversible monotonic pebbling sequence to the pre-
condition for each light phase. However, we can observe that the CC of this
procedure is exactly the same as the CC of pebbling rounds starting from the
precondition of each light phase to input(G′)∪ interior(G′). This is contained
in running one extra balloon phase (from midcondition to postcondition),
which is going to be at most (d + 4 logN)7N ·N/g by the analysis of Step
3 below.

3. In this step, we would like to walk a pebble across the output nodes from
o1 to oN . To save cost during this step, we should alternate light phases and
balloon phases repeatedlyN/g times in total as we split the output nodes into
intervals Ii =

[
o(i−1)g+1, oig

]
of size g each. Let S be a (e, d)-depth-reducing

set for G. In each light phase, to walk a pebble across the interval Ii, we
would need to keep pebbles on S and parents(Ii) \ Ii. Since each node in Ii
has at most 7 parents and we keep one pebble in Ii (the current node) for each
step, the maximum number of pebbles to keep would be |S|+7g+1+N/g =
e+ 7g + 1+N/g for each step. So far, the maximum pebbling cost to reach
the last node in Ii is (e + 7g + 1)g + N . After placing a pebble on the last
node oig in Ii, we would need to discard unnecessary pebbles and prepare for
the next light phase as well by running a balloon phase. Since S is a (e, d)-
depth-reducing set, we have that depth(G′ \ (S ∪ output(G′))) ≤ d+ 4 logN
(see Figure 2). Hence, for each balloon phase, we have reversible pebbling
cost at most (d + 4 logN)7N . Since we need to run balloon phase twice
in each block, the total reversible pebbling cost for Step 3 will be at most
[(e+ 7g + 1)g +N + 2(d+ 4 logN)7N ] N

g .

Taken together, we have

Π
→← ,∥

cc (G′) ≤ min
g≥d

{
2N

(
2Nd

g
+ e+ 3g

)
+N +

2Nd

g
+ 28N logN
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+ [(e+ 7g + 1)g +N + 3(d+ 4 logN)7N ]
N

g

}
≤ min

g≥d

{
3eN + 13gN +

(25d+ 1)N2

g
+

2Nd

g
+ 28N logN

+
84N2 logN

g
+ 2N

}
,

as desired.

o1 o2 · · · og og+1 og+2 · · · o2g · · · · · · oN

Block 1 Block 2 Block ⌈N/g⌉

superconcentrator

(interior)

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

i1 i2 · · · iNij · · · · · · · · · · · ·
· · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · ·•• ••

•••

Fig. 2: A reversible pebbling strategy for a superconcentrator overlay G′ =
superconc(G). By definition, we have input(G′) = G, and all the output nodes
o1, . . . , oN are overlayed by a line graph. We note that each input node has outdegree
6 that is connected to the interior of the superconcentrator, and each output node
has indegree at most 7 (six from the interior and one from the prior output node)
due to the superconcentrator construction by Pippenger [Pip77]. Here, orange nodes
in the input nodes denote the depth-reducing set S of G = input(G′). Then since we
have that the depth of the superconcentrator is at most 4 logN and the graph G is
(e, d)-depth reducible, we observe that depth(G′ \ (S ∪ output(G′))) ≤ d + 4 logN ,
which is illustrated by a green path above.

Theorem 13. Given a DAG G with constant indegree, it is Unique Games hard

to approximate Π
→← ,∥

cc (G) within any constant factor.

Proof. Let k ≥ 2 be an integer that we shall later fix and ε > 0 be a constant
that we will later fix as well. Given a DAG G with N nodes, we know that it
is Unique Games hard to distinguish between two cases where (1) G is (e1, d1)-

reducible for e1 = 1
kN

1
1+2ε and d1 = kN

2ε
1+2ε , and (2) G is (e2, d2)-depth robust

for e2 = (1 − ε)N
1

1+2ε and d2 = 0.9N
1+ε
1+2ε [BLZ20]. If G is (e1, d1)-reducible,

then by Lemma 9, for e1 = 1
kN

1
1+2ε , d1 = kN

2ε
1+2ε , and g = e1, we have

Π
→← ,∥

cc (superconc(G)) ≤ min
g≥d

{
3e1N + 13gN +

(25d1 + 1)N2

g
+

2Nd1
g

+ 28N logN
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+
84N2 logN

g
+ 2N

}
≤ 16e1N +

(25d1 + 1)N2

e1
+

2Nd1
e1

+ 28N logN +
84N2 logN

e1
+ 2N︸ ︷︷ ︸

≪e1N

≤ 17e1N =
17

k
N

2+2ε
1+2ε .

On the other hand, if G is (e2, d2)-depth robust, then we have

Π
→← ,∥

cc (superconc(G)) ≥ min

{
e2N

8
,
d2N

8

}
,

by [BHK+19, Theorem 9]. We remark that since Π
→← ,∥

cc (G) ≥ Π
∥
cc(G) for any

DAG G, the same lower bound for the superconcentrator overlay carries over to
the reversible setting. In particular, since e2 ≪ d2, we have

Π
→← ,∥

cc (superconc(G)) ≥ e2N

8
=

1− ε

8
N

2+2ε
1+2ε .

Let c > 1 be any constant. Setting ε = 0.1 and k = ⌈ 13609 c2⌉, we get that if G

is (e1, d1)-reducible, then Π
→← ,∥

cc (superconc(G)) ≤ 9
80c2N

2+2ε
1+2ε but if G is (e2, d2)-

depth robust, then Π
→← ,∥

cc (superconc(G)) ≥ 9
80N

2+2ε
1+2ε . Hence, it is Unique Games

hard to approximate Π
→← ,∥

cc (G) with a factor of c.

C Pebbling Composition

Bennett [Ben89] gave the following reversible pebbling strategy, whose analysis
was improved by Li and Vitányi [LV96]. For a line graph on nodes

[
2k − 1

]
,

Bennett define the intervals Ij and nodes ij such that I0 = ⟨⟩ and

Ik = ⟨Ik−1, ik−1, . . . , I0, i0⟩ .

Intuitively, the nodes in the recursive list Ik partitions
[
2k − 1

]
, and the nodes

appear from least to greatest. The interval I1 contains 1 node and the inter-
val Ik contains twice the nodes of Ik−1, with one additional node ik−1. That
is, N(k) = 2N(k − 1) + 1. Blocki, Holman, and Lee [BHL22] improved this
pebbling by lowering the time cost at the expense of space. For a tunable pa-
rameter c, they pebble the line graph with N(c, k) = Θ

(
(c+ 1)k

)
, by letting

Icj =
〈
I
(1)
j , i

(1)
j . . . , I

(c)
j , i

(c)
j

〉
, where each I

(ℓ)
j is a copy of Ij . Finally,

I ′k =
〈
I ′k−1, i

′
k−1, . . . , I

′
0, i
′
0

〉
,

where each i′j is a single node, and the elements of [N(c, k)] occur in increasing
order.

The pebbling P k
c on the line graph LN(c,k) is defined as follows:
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(1) For j = k − 1, . . . , 1:

(a) Pebble I
(1)
j via P j

1 .

(b) Place a pebble on i
(1)
k−1.

(c) For ℓ = 2, . . . , c:
i. Unpebble Iℓ−1k−1 by reversing P j

1 .

ii. Pebble Iℓ via P j
1 .

iii. Place a pebble on iℓj .

The end state of this pebbling has a pebble on node N(c, k), and we can run
it in reverse to remove all pebbles. Choosing k =

√
logN and c = 2k leads to

Theorem 5.

Theorem 5 (Reversible Line Graph Pebbling [BHL22]). There exist a
family of sequential pebblings LN and a family of parallel reversible pebblings

L
∥
N for line graphs LN such that

(1) Πt (LN ) = O
(
N

1+ 1√
log N

)
, Πs (LN ) = O

(
N

1√
log N
√
logN

)
, Πst (LN ) , Πcc (LN ) =

O
(
N

1+ 2√
log N
√
logN

)
, and toggle(LN ) = O

(
N

1√
log N

)
, and

(2) Πt

(
L
∥
N

)
= O (N), Πs

(
L
∥
N

)
= O

(
N

2√
log N

)
, Πst

(
L
∥
N

)
, Πcc

(
L
∥
N

)
= O

(
N

1+ 2√
log N

)
,

and toggle(L
∥
N ) = O

(
N

1√
log N

)
.

Proof. Let k =
√
logN and c = 2k. We’ll prove the claims unproven in [BHL22]:

– (Time Complexity) Πt

(
L
∥
N

)
= O (N): [BHL22] show that Πt

(
L
∥
N

)
=

O
(
(c+ 2)k

)
= O

(
(c+ 2)k

)
= O(N).

– (Toggle Number) Notice that if we pebble or unpebble any node at most
t times in I ′j , then we pebble or unpebble any node in I ′j+1 at most 2t times.

The nodes in I ′0 are pebbled once and unpebbled once, so toggle(LN ) ≤ 2k+1.

Theorem 2 (Classical vs. Reversible Space-Time Complexity). Let G =
(V = [N ], E) be a DAG. Then

Π
→← ,∥

st (G) = O
(
N

2
√

2√
log N

)
·Π∥st (G) ,

and

Π
→←

st (G) = O
(
N

2
√

2√
log N

√
logN

)
·Πst (G) .

Proof of Theorem 2. If P = (P1, . . . , Pt) is a pebbling of G and L = (L1, . . . , Lt′)
of Lt and Q = L ◦ P is composed pebbling derived as in Theorem 4 then by
Theorem 4 we have Πst(Q) = Πs(P ) ·Πst(L) = Πst(P ) ·Πst(L)/t.

If P = (P1, . . . , Pt) is the parallel pebbling of G with minimum space-

time cost (i.e., Πst(P ) = Π
∥
st(G)) then Πst(Q) = Π

∥
st(G) · Πst(L)/t. Taking
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L = (L1, . . . , Lt′) to be the parallel pebbling of Lt from Theorem 5 we have

Πst(L)/t = O
(
t

2√
log t

)
. Using the fact that t ≤ N2 (otherwise we would have

Πst(P ) > N2 and P would not be optimal) we have Πst(L)/t = O
(
N

2
√

2√
log N

)
.

Hence, Π
→← ,∥

st (G) = O
(
N

2
√

2√
log N

)
·Π∥st(G).

Similarly, let P = (P1, . . . , Pt) be the special sequential pebbling of G with
minimum space-time cost — recall that a special sequential pebbling only re-
moves at most one pebble per round (and never removes pebbles during a round
when pebbles are added). By Theorem 14 we have Πst(P ) ≤ 6Πst(G) since we
can transform any sequential pebbling of G into a special sequential one whilst
increasing space-time costs by a multiplicative factor of 6 at most. Optimality
of P implies that t ≤ N2 since there the naive pebbling strategy for G is special
sequential and has space-time cost at most N2. Because P is special sequential
we can apply Corollary 1 to argue that the composed pebbling Q = L ◦ P de-
rived as in Theorem 4 is sequential as long the reversible pebbling L of Lt is
sequential. We use the sequential pebbling L = (L1, . . . , Lt′) of Lt as defined in
Theorem 5. Now the composed pebbling Q = L ◦ P is sequential and we have

Πst(Q) = Πst(G) · Πst(L)/t with Πst(L)/t = O
(
t

2√
log t
√
log t

)
. Using the fact

that t ≤ N2 we have Πst(L)/t = O
(
N

2
√

2√
log N
√
logN

)
and Πst(Q) = Πst(P ) ×

O
(
N

2
√

2√
log N
√
logN

)
. Hence, Π →←

st (G) = O
(
N

2
√

2√
log N
√
logN

)
·Πst(G).

Theorem 4 (Reversible Composition Pebbling). Let P = (P1, . . . , Pt) be a
(possibly irreversible) pebbling for a DAG G, and L = (L1, . . . , Lt′) be a reversible
pebbling for Lt. Then the composition L ◦ P is a legal reversible pebbling of G
satisfying Πst(Q) ≤ Πs(P ) ·Πst(L).

Proof. Consider the transition between two configurations Qi and Qi+1:

– (Property 1, Empty Start) This follows from the fact that L and P start
with out any pebbles on the graph.

– (Property 2, Reversible) We want to show that both Q and its reverse
Q∗ are extra legal. First, to show that Q is extra legal, we need to show
that parents(Qi+1 \Qi, G) ⊆ Qi and parents(Qi+1 \Qi, G) ⊆ Qi+1. We first
observe that

parents(Qi+1 \Qi, G) = parents

 ⋃
j∈Li+1

Pj \
⋃

k∈Li

Pk, G

 (6)

⊆ parents

 ⋃
j∈Li+1\Li

Pj \ Pj−1, G

 (7)

⊆
⋃

j∈Li+1\Li

parents (Pj \ Pj−1, G) (8)

40



⊆
⋃

j∈Li+1\Li

Pj−1 (9)

=
⋃

k∈parents(Li+1\Li,Lt)

Pk. (10)

Here, Eq. (10) follows since if j ∈ Li+1 \ Li then we observe that j − 1 ∈
parents(Li+1 \Li,Lt) since Lt is a line graph. Now, from Eq. (10), we obtain

parents(Qi+1 \Qi, G) ⊆
⋃

k∈parents(Li+1\Li,Lt)

Pk

⊆
⋃

k∈Li

Pk (11)

= Qi, (12)

and

parents(Qi+1 \Qi, G) ⊆
⋃

k∈parents(Li+1\Li,Lt)

Pk

⊆
⋃

k∈Li+1

Pk (13)

= Qi+1, (14)

which shows that Q is extra legal. Here, Eq. (11) and Eq. (13) follows by the
fact that L is extra legal. Similarly, to show that Q∗ is extra legal, we need
to show that parents (Qi \Qi+1, G) ⊆ Qi and parents (Qi \Qi+1, G) ⊆ Qi+1.
We observe that

parents (Qi \Qi+1, G) = parents

 ⋃
j∈Li

Pj \
⋃

k∈Li+1

Pk, G

 (15)

= parents

 ⋃
j∈Li\Li+1

Pj \
⋃

k∈Li+1

Pk, G

 (16)

⊆ parents

 ⋃
j∈Li\Li+1

Pj \ Pj−1, G

 (17)

=
⋃

j∈Li\Li+1

parents (Pj \ Pj−1, G) (18)

⊆
⋃

j∈Li\Li+1

Pj−1 (19)

=
⋃

k∈parents(Li\Li+1,Lt)

Pk. (20)
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In Eq. (16) we see that for any i ∈ Li, if i is also in Li+1, then Pj \⋃
k∈Li+1

Pk = ∅. Eq. (17) follows from the fact that L is reversible, so if

j was deleted on step i+ 1, then the parents of j (which is just j − 1) must
be kept around on step i + 1. Eq. (19) follows since P is a legal pebbling.
Since Lt is a line graph, parents({j},Lt) = {j − 1}. Now, from Eq. (20), we
obtain

parents (Qi \Qi+1, G) ⊆
⋃

k∈parents(Li\Li+1,Lt)

Pk

⊆
⋃

k∈Li

Pk (21)

= Qi, (22)

and

parents (Qi \Qi+1, G) ⊆
⋃

k∈parents(Li\Li+1,Lt)

Pk

⊆
⋃

k∈Li+1

Pk (23)

= Qi+1, (24)

which shows that Q∗ is extra legal. Here, Eq. (21) and Eq. (23) follows by
the fact that L∗ is extra legal.

– (Property 3, Remove Excess Pebbles) Since Lt′ = {t}, Qt′ = Pt =
sinks(G).

Now we examine the space-time cost of Q. We have

Πs(Q) ≤ Πs(P ) ·Πs(L)

since Q has pebbles on at most Πs(L) pebbling configurations of P , each of
which have space at most Πs(P ). Since Πt(Q) = Πt(L), we have

Πst(Q) = Πs(P ) ·Πs(L) ·Πt(L).

Lemma 5. Let G be an f -reducible DAG of depth on N nodes then if f(d) =

Õ
(
N
db

)
for some constant 0 < b ≤ 2/3 and let a = 1−2b+

√
1+4b2

2 . Then for any

constant ε > 0, Π
→← ,∥

cc (G) ≤ O
(
δN1+a+ϵ

)
.

Proof. Let d0 = depth(G). Alwen et al. [ABP17] show that such a graph is (ei, di)

reducible for ei = Nai+ε/3 with depth-reducing sets Si of size ei and di ≤ N
1−ai

b

for each i > 0. They also observe that di+1N ≤ ei+1di/2 for all i > 1, and for
any ε, there exists a constant k such that dk ≤ Nε/3. Let

Ci = max
|T ′|≤δe1

Π
→← ,∥

cc (G− Si, T
′, 2d1) .
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We can now apply Theorem 8 recursively. Then we have

Π
→← ,∥

cc (G, {N} , 4d0) ≤ 4k(δ + 2)N1+a+ε/2 + 4d0 +Na+ε/3Ci

≤ 4k(δ + 2)N1+a+ε/2 + 4d0 +Na+ε/3 (2Ndk)

≤ 4k(δ + 2)N1+a+ε/2 + 4d0 +Na+ε/3
(
N1+ε/3

)
= O

(
δN1+a+ε

)
.

Theorem 14. Suppose that P is a sequential pebbling of a DAG G then there
is another sequential pebbling P ′ of G such that

(1) (Special Sequential)
∣∣P ′i ∪ P ′i−1 \ (P ′i ∩ P ′i−1)

∣∣ ≤ 1 for all round i,
(2) (Similar ST Cost) Πst(P

′) ≤ 6Πst(P ),
(3) (Similar Time) Πt(P

′) ≤ 4Πt(P ), and
(4) (Similar CC) Πcc(P

′) ≤ 6Πcc(P ).

Proof. Let P = (P1, . . . , Pt) be a sequential pebbling of G. We first define an
intermediate pebbling A = (A1, . . . , A2t) with A2i−1 = Pi for each i and A2i =
Pi ∪ (Pi+1 \ Pi−1) for each i ≤ t. Legality of the transition from A2i−1 to A2i

immediately follows from the legality of the transition Pi to Pi+1. Observe that
A2i ⊇ A2i−1 = Pi and A2i+1 = Pi+1 ⊆ A2i. Thus each transition in A can either
add one pebble or remove pebbles but not both (it is possible that we neither
add nor remove a pebble so that A2i−1 = A2i). We have Πs(A) ≤ Πs(P )+1 and
Πt(A) ≤ 2Πt(P ) so trivially Πst(A) ≤ 3Πst(P ). We also have |A2i| ≤ |Pi+1|+1
so Πcc(A) =

∑
j |Aj | =

∑
i≤t (|A2i−1|+ |A2i|) ≤

∑
i≤t (|Pi|+ |Pi+1|+ 1) ≤

3Πcc(P ).
Now let a1 < . . . < ak denote all of the rounds where pebbles are removed

and let ri = |Aai−1| − |Aai | > 0 denote the number of pebbles that are removed
during round ai. We can transform A into a new pebbling P ′ by replacing each
transition Aai−1 → Aai

with ri transitions so that we delete at most one pebble
at a time. For example, if Aai−1\Aai

= {v1, . . . , vri} then we can define Aj
ai−1 =

Aai−1 \ {v1, . . . , vj} for each j ≤ rj so that A0
ai−1 = Aai−1 and A

rj
ai−1 = Aai .

This transformation adds
∑k

j=1 rj pebbling rounds in total. However, we must

have Πt(A) ≥
∑k

j=1 rj because the total number of rounds where we add a
pebble must be greater than the total number of pebbles that are removed since
the pebbling A is sequential. Thus, Πt(P

′) ≤ Πt(A) +
∑k

j=1 rj ≤ 2Πt(A) and
Πs(P

′) ≤ Πs(A). It follows that Πst(P
′) ≤ 2Πst(A) ≤ 6Πst(P ).

Similarly, we have Πcc(P
′)−Πcc(A) =

∑k
i=1

∑|Aai
|+ri

j=|Aai
| j where we can argue

that
∑k

i=1

∑|Aai
|+ri

j=|Aai
| j ≤ Πcc(A) — intuitively if we pay cost

∑|Aai
|+ri

j=|Aai
| j to

reduce space usage from |Aai
|+ ri down to |Aai

| then we must have previously
payed the equivalent cost to increase space from |Aai

| up to |Aai
|+ ri. It follows

that Πcc(P
′) ≤ 2Πcc(A) ≤ 6Πcc(P ).

Corollary 1. If P = (P1, . . . , Pt) is a special sequential pebbling of a DAG G
and L is a reversible sequential pebbling of Lt, then L◦P is a reversible sequential
pebbling of G.
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Proof. Let Q = L ◦ P . We have already proved that Q is a legal reversible
pebbling. It remains to prove that Q is sequential. We have

|Qi+1 \Qi| =

∣∣∣∣∣∣
⋃

j∈Li+1

Pj \
⋃

k∈Li

Pk

∣∣∣∣∣∣
=

∣∣∣∣∣∣
⋃

j∈Li+1\Li

Pj \
⋃

k∈Li

Pk

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
⋃

j∈Li+1\Li

Pj \ Pj−1

∣∣∣∣∣∣
≤ 1,

since |Li+1 \ Li| ≤ 1. Furthermore, since P is a special sequential pebbling, we
have |Pj \ Pj+1| ≤ 1 for all j. Hence,

|Qi \Qi+1| =

∣∣∣∣∣∣
⋃
j∈Li

Pj \
⋃

k∈Li+1

Pk

∣∣∣∣∣∣
=

∣∣∣∣∣∣
⋃

j∈Li\Li+1

Pj \
⋃

k∈Li+1

Pk

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
⋃

j∈Li\Li+1

Pj \ Pj+1

∣∣∣∣∣∣
≤ 1,

since |Li \ Li+1| ≤ 1. Since L is a reversible sequential pebbling, we observe that
it must be the case either |Li+1 \ Li| = 0 or |Li \ Li+1| = 0. If |Li+1 \ Li| = 0
then we have |Qi+1 \Qi| = 0, and if |Li \ Li+1| = 0 then we have |Qi \Qi+1| = 0.
This completes the proof.

Lemma 2. Define functions h, f , and g such that for any 0 < c <
√
2, h(N) =

2c
√
logN , f(N) = N ·h(N), and g(N) = 2f

(
N

h(N)

)
+f

(
N − N

h(N)

)
. There exists

N0 ≥ 1 such that f(N) ≤ g(N) for all N ≥ N0.

Proof of Lemma 2. Let h(N) = 2c
√
logN , so f(N) = N · h(N) and g(N) =

2f(N/h(N)) + f(N/h(N)). It suffices to show

lim
N→∞

g(N)− f(N)

= lim
N→∞

N

(
h

(
N − N

h(N)

)
− h(N)

)
+

N

h(N)

(
2h

(
N

h(N)

)
− h

(
N − N

h(N)

))
=∞.
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In particular, we show that h(N)− h(N −N/h(N)) = o(1) and 2h(N/h(N))−
h(N −N/h(N)) = Ω(1) for all 0 < c <

√
2. First, we have

lim
N→∞

√
logN −

√
logN/h(N) = lim

N→∞

√
logN −

√
logN − c

√
logN

= lim
x→∞

√
x−

√
x− c

√
x

= lim
x→∞

c
√
x

√
x+

√
x− c

√
x

=
c

2
. ◁ since c = O(1)

Thus, h(N/h(N))/h(N) ≥ 2−
c2

2 −o(1) for N sufficiently large. This means that
N

h(N) (2h(N/h(N))−h(N)) ≥ N(21−c
2/2−o(1)−1), which is positive when c <

√
2.

Next, We have

lim
N→∞

√
logN −

√
log(N −N/h(N)) = lim

N→∞

√
logN −

√
logN − log

(
1

1− 1/h(N)

)
= lim

N→∞

√
logN −

√
logN − 0

= 0,

meaning h(N −N/h(N))/h(N) ≤ 2−o(1). Thus,

lim
N→∞

g(N)− f(N) = lim
N→∞

N(21−c
2/2−o(1) − o(1))

=∞ if 0 < c <
√
2.

Theorem 3 (Classical vs. Reversible Cumulative Pebbling Complex-
ity). Let G = (V = [N ], E) be a DAG. Then

Π
→← ,∥

cc (G) = O
(
N

O(1)
4√log N

)
·Π∥cc (G) ,

and

Π
→←

cc (G) = O
(
N

O(1)
4√log N

)
·Πcc (G) .

Proof. Let P = (P1, . . . , Pt) be a parallel pebbling of G with Πcc(P ) = Π
∥
cc(G)

and note that optimality ensures that t ≤ N2. We define a weighted line graph
with t nodes and weight wti = |Pi| for each node i ≤ t. We can apply Theorem 6
to obtain a reversible pebbling L = (L1, . . . , Lt′) of the weighted line graph with

weighted cumulative costΠwcc(L) = O
(
N

O(1)
4√log N

)∑
i wti = O

(
N

O(1)
4√log N

)
Π
∥
cc(G).

Let Q = L ◦ P be the composed reversible pebbling as in Theorem 4. We have

Πcc(Q) =
∑

i≤t′
∑

v∈Li
|Pi| =

∑
i≤t′

∑
v∈Li

wti = Πwcc(L) = O
(
N

O(1)
4√log N

)
Π
∥
cc(G).
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The proof for sequential pebbling is similar. Let P = (P1, . . . , Pt) be a mini-
mum cost special sequential pebbling (we can remove at most one node in each
round and we cannot remove a pebble during the same round where we add a
new pebble) of G. By Theorem 14 we are guaranteed that Πcc(P ) ≤ 6Πcc(G).
By optimality we also know that t ≤ N2 since the naive pebbling is spe-
cial sequential and has cumulative cost less than N2. We can apply Corol-
lary 1 to argue that the composed pebbling Q = L ◦ P derived as in The-
orem 4 is sequential as long the reversible pebbling L is sequential. We de-
fine a weighted line graph with t nodes and weight wti = |Pi| for each node
i ≤ t. We can apply Theorem 6 to obtain a reversible sequential pebbling
L = (L1, . . . , Lt′) of the weighted line graph with weighted cumulative cost

Πwcc(L) = O
(
N

O(1)
4√log N

)∑
i wti = O

(
N

O(1)
4√log N

)
Πcc(G). Let Q = L ◦ P be

the composed reversible pebbling as in Theorem 4. Q is a sequential pebbling
(by Corollary 1) and we have Πcc(Q) =

∑
i≤t′

∑
v∈Li

|Pi| =
∑

i≤t′
∑

v∈Li
wti =

Πwcc(L) = O
(
N

O(1)
4√log N

)
·Πcc(G). This completes the proof.

C.1 Pebbling Composition using Weighted Reversible Line Graph
Pebbling

This section gives a concrete example of an efficient transformation from a
classical to a reversible pebbling via pebbling composition introduced in Sec-
tion 3.2. Recall that the transformation works as we take a classical (irre-
versible) pebbling P = (P1, . . . , Pt) and make a composition with a reversible
pebbling R = (R1, . . . , Rt′) of the line graph Lt which yields the pebbling
Q = R ◦ P = (Q1, . . . , Qt′) defined by Qi =

⋃
j∈Ri

Pj for i ∈ [t′]. Theorem 4
showed that the pebbling composition of a classical pebbling with Blocki et al’s
reversible line graph pebbling [BHL22], we obtain a legal reversible pebbling
that preserves the space-time cost within a subpolynomial factor. However, as
discussed in Section 3.2.2, the same strategy completely fails to (approximately)
preserve the cumulative pebbling complexity. Here, we give a concrete example
to illustrate why a pebbling composition of a classical pebbling with a reversible
line graph pebbling of Blocki et al. [BHL22] could go wrong and fail to preserve
the cumulative pebbling complexity. Then we also give an example of a pebbling
composition with the weighted reversible line graph pebbling WRevLinePeb∥ and
provide an intuitive explanation of why it is more CC-efficient than the previous
strategy and therefore preserves the cumulative pebbling complexity.

Consider a DAG G = (V = [8], E) where the edge set E is given as follows:
E = {(i, i + 1) : i ∈ [7]} ∪ {(1, 8), (2, 4), (3, 6), (5, 8)}. In Figure 3, we give a
classical (irreversible) pebbling P = (P1, . . . , P9), and one can easily verify that
this is a legal classical pebbling. We remark that the pebbling P is mostly space-
efficient except for the fourth round P4 (which takes up half of the entire space),
highlighted in blue. Since P consists of 9 rounds, we construct a line graph L9

with 9 nodes with weight wti = |Pi| for i ∈ [9]. As it is color-coded below, we can
see that node 4 in L9 has the highest weight since P4 contains the most number of
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pebbles in G. Now consider the reversible line graph pebbling R = (R1, . . . , R9)
of Blocki et al. [BHL22] which modified Bennett’s sequential reversible pebbling
strategy [Ben89]. Since it did not consider the weight of nodes in L9, it could
maintain pebbles on the high-weight nodes for a long time, just as illustrated
in our example (it maintains a pebble on node 4 for 6 rounds). As a result, the
pebbling composition Q contains P4 for a large number of rounds, leading to a

non-efficient CC reversible pebbling as shown in Figure 3, i.e.,Π
∥
cc(Q)≫ Π

∥
cc(P ).

G 1 2 3 4 5 6 7 8

P1

P2

P3

P4

P5

P6

P7

P8

P9

L9 1 2 93 5 6 7 84

wt(v) 1 1 12 2 2 2 34

R1

R2

R3

R4

R5

R6

R7

R8

R9

Q1 Q1 =
⋃

j∈R1
Pj = P1

Q2 Q2 =
⋃

j∈R2
Pj = P1 ∪ P2

Q3 Q3 =
⋃

j∈R3
Pj = P1 ∪ P2 ∪ P3

Q4 Q4 =
⋃

j∈R4
Pj = P1 ∪ P2 ∪ P3 ∪ P4

Q5 Q5 =
⋃

j∈R5
Pj = P1 ∪ P2 ∪ P4 ∪ P5

Q6 Q6 =
⋃

j∈R6
Pj = P1 ∪ P4 ∪ P5 ∪ P6

Q7 Q7 =
⋃

j∈R7
Pj = P4 ∪ P5 ∪ P6 ∪ P7

Q8 Q8 =
⋃

j∈R8
Pj = P4 ∪ P5 ∪ P7 ∪ P8

Q9 Q9 =
⋃

j∈R9
Pj = P4 ∪ P7 ∪ P8 ∪ P9

Fig. 3: Pebbling composition using reversible line graph pebbling [BHL22] for L9

On the other hand, Figure 4 depicts the pebbling configuration when we
replace Blocki et al’s reversible line graph pebbling [BHL22] to our weighted re-

versible line graph pebbling WRevLinePeb∥([9],S, 0, L). As you see the weighted
reversible line graph pebbling R = (R1, . . . , R9) in Figure 4, it focuses on mini-
mizing the number of rounds that keeps pebbles on the high-weight nodes.

As described in Section 3.2.2, WRevLinePeb∥([9],S, 0, L), where we split S =
(S0, S1, S2) into S0 = {v : 20 ≤ wtv < 21} = {1, 2, 9}, S1 = {v : 21 ≤ wtv <
22} = {3, 5, 6, 7, 8}, and S2 = {v : 22 ≤ wtv < 23} = {4}, works as follows.
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G 1 2 3 4 5 6 7 8

P1

P2

P3

P4

P5

P6

P7

P8

P9

L9 1 2 93 5 6 7 84

wt(v) 1 1 12 2 2 2 34

R1

R2

R3

R4

R5

R6

R7

R8

R9

Q1 Q1 =
⋃

j∈R1
Pj = P1

Q2 Q2 =
⋃

j∈R2
Pj = P1 ∪ P2

Q3 Q3 =
⋃

j∈R3
Pj = P2 ∪ P3

Q4 Q4 =
⋃

j∈R4
Pj = P2 ∪ P3 ∪ P4

Q5 Q5 =
⋃

j∈R5
Pj = P2 ∪ P3 ∪ P4 ∪ P5

Q6 Q6 =
⋃

j∈R6
Pj = P2 ∪ P5 ∪ P6

Q7 Q7 =
⋃

j∈R7
Pj = P2 ∪ P5 ∪ P6 ∪ P7

Q8 Q8 =
⋃

j∈R8
Pj = P2 ∪ P5 ∪ P7 ∪ P8

Q9 Q9 =
⋃

j∈R9
Pj = P2 ∪ P5 ∪ P7 ∪ P8 ∪ P9

Fig. 4: Pebbling composition using WRevLinePeb∥([9],wt,S, 0, L) for L9

– First, WRevLinePeb∥([9],S, 0, L) tries to pebble a subgraph LS0 = (S0, ES0)
where ES0 = {(1, 2), (2, 9)}. Since a pebbling move from node 2 to 9 is

indeed illegal in L9, we make a recursive call WRevLinePeb∥([3, 8],S, 1, L).
(Note: in Figure 4, let R̃ be the pebbling where we ignore the pebbling rounds

R3, . . . , R8 (which are the rounds for the recursive callWRevLinePeb∥([3, 8],S, 1, L))
and nodes 3, . . . , 8, then R̃ = (R̃1 = {1}, R̃2 = {1, 2}, R̃9 = {2, 9}) is a legal
reversible pebbling for LS0 .)

– Next,WRevLinePeb∥([3, 8],S, 1, L) tries to pebble a subgraph LS1
= (S1, ES1

)
where ES1 = {(3, 5), (5, 6), (6, 7), (7, 8)}. When pebbling LS1 , every peb-
bling move is legal except for (3, 5), hence we need to make a recursive call

WRevLinePeb∥([4, 4],S, 2, L) to bridge the gap. Taken together, we obtain
the entire pebbling sequence as illustrated in Figure 4. Note that we only
described the relaxed parallel reversible pebbling of L9 in our figure, but
it is straightforward to obtain a non-relaxed version by going reverse while
keeping a pebble on the sink node, e.g., Ri = R17−i ∪ {9} for i ∈ [10, 16].

Now consider the pebbling composition Q = (Q1, . . . , Q9) as illustrated in

Figure 4. Since our algorithm,WRevLinePeb∥([9],S, 0, L) maintains the minimum
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number of rounds that keep pebbles on the highest-weight nodes, we can observe
that P4 only appears twice in Q (Q4 and Q5, highlighted in blue), which allows us
to achieve a CC-efficient reversible pebbling Q. As we discussed in Section 3.2, we
can find a reversible pebbling that preserves reversible CC up to subpolynomial
factors (see Theorem 3).

D Reversible Recursive Pebbling Attack

Lemma 3. For any (e1, d1)-depth reducible DAG G = (V = [N ], E) of depth
d0, target set T

′ ⊆ [N ], and family of pebblings B(G′, T ′, t′) for all DAGs G′ =
(V ′, E′), target sets T ′ ⊆ V ′, and t′ ≥ 2 · depth(G′), the pebbling

P = RRGenPeb(G, d0, {(e1, d1, S1)} , B)

is a legal parallel reversible pebbling of G, where S1 is a depth-reducing set of
size e1.

Proof. Since g ≥ 2d1, each balloon phase is contained in the corresponding light
phase. Next, since LightReqc is a reversible pebbling sequence and BalloonReqc

is a reversible pebbling sequence, their union is as well. Now we will consider the
transitions between phases. We have that BalloonReqc2g = parents(Ic+1)\Ic+1 and
LightReqc2g = S⪯cg. Then there is a legal move from LightReqc2g∪BalloonReq

c
2g to

LightReqc1∪BalloonReq
c
1 = S⪯cg+1∪{cg+1}. Thus, every step in P is reversible.

Since the first half of each light phase pebbles exactly one set Dj per step and
the second half takes exactly as many steps as the first half, it follows that
Πt(P ) ≤ 4d0. By the definition of LightReq, it follows that P|P | = T . So, P is a
legal reversible pebbling.

Lemma 4. For any (e1, d1)-depth reducible DAG G = (V = [N ], E) of depth
d0, target set T

′ ⊆ [N ], and family of pebblings B(G′, T ′, t′) for all DAGs G′ =
(V ′, E′), target sets T ′ ⊆ V ′, and t′ ≥ 2 · depth(G′),

Πcc (RRGenPeb(G, d0, {(e1, d1, S1)} , B))

≤ 4d0(δ + 2)e1 + 4d0|T |+
2e1
N
· max
|T ′|≤δe1

Πcc (B (G− S, T ′, 2d1)) ,

where S1 is a depth-reducing set of size e1.

Proof. During the cth light phase, we have pebbles on at most S, T , parents(Ic),
and Ic, so

Πs(LightReq) ≤ e1 + (δ + 1)g
N

d0
+ |T | ≤ (δ + 2)e1 + |T |.

Thus, the contribution of all of the light phases to the CC of P is at most
4d0(δ + 2)e1 + 4d0|T |. Next, the contribution to the CC of P of the balloon
phases is at most

2d0
g
· max
|T ′|≤δe1

Πcc (B(G− S, T, 2d1)) ≤
2e1
N
· max
|T ′|≤δe1

Πcc (B (G− S, T ′, 2d1)) .
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Putting it all together we get

Πcc(P ) ≤ 4d0(δ + 2)e1 + 4d0|T |+
2e1
N
· max
|T ′|≤δe1

Πcc (B (G− S, T ′, 2d1))

for 1 ≤ i ≤ d0.

E Depth Robustness and Reversible CC

Reminder of Theorem 10. Let G = (V = [N ], E) be a DAG such that
(i, i + 1) ∈ E for all i < N and the graph GTrunc,d is (e, d)-depth robust. Then

Π̃
→← ,∥

cc (G) ≥ e(2d− 1).

Proof of Theorem 10. Let P1, . . . , Pt be a relaxed reversible pebbling of G. As
before for each i ∈ [2d−1] we let Bi = Pi∪Pi+2d−1∪Pi+2(2d−1)∪. . .∪Pi+m(2d−1)
where m = m(i) is the largest integer such that i + m(2d − 1) ≤ t. As before

we note that
∑

i |Bi| ≤
∑

j |Pj | = Π̃
→← ,∥

cc (G). It follows that there exists some

B := Bi with |B| ≤ Π̃
→← ,∥

cc (G)
2d−1 .

Now we will show there is no path of length d in GTrunc,d − B. Suppose, for
contradiction, that there exists a node v ∈ [N−d]\B such that depth(v,GTrunc,d−
B) ≥ d. Let p(v) be the first step in which node v is pebbled. Then we observe
the following claims:

Claim 1. p(v) ≤ t− d.

Proof of Claim 1. Since node N ∈ Pt which implies N − d ∈ Pt−d (otherwise it
would not have been able to place a pebble on node N on round t), which is the
last node in GTrunc,d. Hence, v must have been pebbled some round on/before
Pt−d.

Claim 2. p(v) > i+m(2d− 1).

Proof of Claim 2. Suppose not. Then there exists some j with j + 1 ≤ m
such that i+ j(2d− 1) < p(v) < i+ (j + 1)(2d− 1) (here, p(v) ̸= i+ j(2d− 1)
and p(v) ̸= i + (j + 1)(2d − 1) since v ̸∈ Pi+j(2d−1) ∪ Pi+(j+1)(2d−1)). Since
depth(v,GTrunc,d − B) ≥ d, it would take at least d steps to place a pebble on
node v starting from Pi+j(2d−1) and then take at least d steps to remove this
pebble before Pi+(j+1)(2d−1). This is a contradiction since there are fewer than
2d intermediate rounds between Pi+j(2d−1) and Pi+(j+1)(2d−1). Hence, we can
conclude that p(v) > i+m(2d− 1).

Hence, we have i + m(2d − 1) < p(v) ≤ t − d. Now by definition of m, we
observe that

p(v)− (i+m(2d− 1)) ≤ t− d− (i+m(2d− 1))
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= [t− (i+m(2d− 1))]− d

< (2d− 1)− d = d− 1,

since m was the largest integer such that i + m(2d − 1) ≤ t which implies
t < i+(m+1)(2d−1). This implies that there are less than d−1 rounds between
Pi+m(2d−1) and Pp(v). However, at time Pi+m(2d−1), there is an unpebbled path
of length ≥ d ending at v, which means that it is impossible to place a pebble
on v at time Pp(v). Contradiction! (as we defined p(v) to be the first step in
which node v is pebbled.) This contradiction was caused due to the assumption
depth(v,GTrunc,d−B) ≥ d. Hence, we can conclude that there is no path of length
d in GTrunc,d −B, which implies that GTrunc,d is (|B|, d)-reducible. Since GTrunc,d

is (e, d)-depth robust, we have |B| ≥ e. Combining with |B| ≤ Π̃
→← ,∥

cc (G)
2d−1 , we can

conclude that Π̃
→← ,∥

cc (G) ≥ e(2d− 1).

Remark 1. We can make an improvement on the lower bound of the relaxed
parallel reversible cumulative pebbling cost of DRSample by applying Theo-
rem 10. Recall that DRSample [ABH17] is the first practical construction of a
data-independent MHF, which is a graph G = (V = [N ], E) that has the fol-
lowing edge distribution: E = {(i, i + 1) : i ∈ [N − 1]} ∪ {(r(v), v) : i ∈ [3, N ]},
where r(v) is picked according to the following random process: (1) randomly
select a bucket index i ≤ log v, and (2) randomly sample r(v) from the bucket
Bi(v) = {u : 2i−1 < v − u ≤ 2i}.

Let GDRS = (V DRS = [N ], EDRS) be a randomly sampled graph accord-
ing to the DRSample edge distribution. Then we know that (whp) GDRS is
(c1N/ logN, c2N)-depth robust for some constant c1, c2 > 0, which implies that

Π̃
→← ,∥

cc (GDRS) ≥ Π∥cc(G
DRS) ≥ c1c2N

2

logN
,

by the previous lower bound [ABP17].

Now we observe that, due to the way that DRSample’s edge distribution is
defined, GDRS

Trunc,d can simply be viewed as a randomly sampled DRSample graph

with N − d nodes. Thus, (whp) GDRS
Trunc,d is (c1(N − d)/ log(N − d), c2(N − d))-

depth robust. To apply Theorem 10, we would need the condition d = c2(N−d),
which can be solved by setting d = c2N/(1+ c2). Then we have that GDRS

Trunc,
c2N
1+c2

is
(

c1N
(1+c2) log(N/(1+c2))

, c2N
1+c2

)
-depth robust. Then by Theorem 10, we have

Π̃
→← ,∥

cc (GDRS) ≥ c1N

(1 + c2) log(N/(1 + c2))

(
2c2N

1 + c2
− 1

)
≥ c1N

(1 + c2) logN

(
2c2N

1 + c2
− 1

)
=

α

(1 + c2)2
· c1c2N

2

logN
,

51



where α = 2− 1+c2
c2N

. We can observe that as long as we have α
(1+c2)2

> 1, this is

an improvement from the classical lower bound which immediately carries over
to the reversible case. Since we have c2 = 0.03 [ABP17], we can see that as
long as N > 1.03/(0.03 × (2 − 1.032)) ≃ 35.8 we achieve an improvement. In
particular, if N ≥ 1.03/(0.03×(2−t·1.032)) then we can achieve an improvement
by multiplicative factor of t, e.g., if N = 107 then we can expect an improvement
by multiplicative factor of t up to t ≤

(
2− 1.03

0.03N

)
· 1.03−2 ≈ 1.885. As N →∞,

we have t→ 2/1.032 ≈ 1.88519.

52


	The Impact of Reversibility on Parallel Pebbling

