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Abstract. DME is a multivariate scheme submitted to the call for ad-
ditional signatures recently launched by NIST. Its performance is one of
the best among all the candidates. The public key is constructed from
the alternation of very structured linear and non-linear components that
constitute the private key, the latter being defined over an extension
field. We exploit these structures by proposing an algebraic attack which
is practical on all DME parameters.
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1 Introduction

After selecting a first collection of post-quantum algorithms to standardize, see
[2], the National Institute of Standards and Technology (NIST) announced an
expansion to their post-quantum cryptography standardization project and re-
leased a call for additional signature schemes [9].

One of the candidates is DME. Originally specified in [12], the basic idea
is to use multiple rounds of the so-called “exponential maps” defined over a
finite extension of Fq composed with affine maps. These two types of functions
can be defined in terms of matrices whose structure is publicly known but whose
entries are secret, for all rounds. The construction can also be used for encryption
and it lead to a NIST submission in the KEM category already in 2017. This
initial version employed two layers of exponential maps, hence the name “Double
Matrix Exponentiation”. Unfortunately, it was quickly observed in [4] that one
can apply some generic attacks on the composition of functions [6,7]. Another
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attack of a different nature was given by the DME designers in [3]. In response to
these threats, the authors increased the number of rounds of exponentiation in
their new NIST submission [11] to r = 3 and they changed some specific design
choices in order to avoid [3].

DME can be seen as a multivariate scheme for which signing boils down to
inverting the public system over Fq in n variables obtained by composition of
the different rounds. The hope is that its polynomials are complicated enough
so that previous structural cryptanalysis does not apply. Interestingly enough,
the analysis of Gröbner basis techniques in the DME submission is limited to
lower bounding the solving degree of the public system by the degree of the
field equations, i.e., q (see [11, §8.2]). While having equations of large enough
degree might be necessary to counteract some attacks, a too high density for
these polynomials would also lead to an unmanageable public key size. Thus,
there are notable restrictions imposed on both the linear and the exponential
maps to obtain a more compact key.

The NIST submission adopts a unique field extension Fq2 as well as the value
n = 8 for all security levels. The observation on the Gröbner basis complexity
explains that the main difference lies in the choice of q, namely q = 232, q = 248

and q = 264 for security levels I, III and V respectively. DME appears to be the
fastest candidate for both signing and verification. The public key and signature
sizes are also very attractive. This is quite understandable for the signature as
it is a vector of length only 8 over Fq for all security levels. For the common
“signature size + public key size” metric, DME ties with MAYO [5] (1481 and
1489 bytes respectively for level I) and it outperforms the rest of the multivariate
candidates à la UOV. Due to this surprisingly competitive performance and its
rather unusual design, it seems crucial to analyze the DME scheme.

Contribution. This paper presents an efficient attack on the version of DME
submitted to the NIST competition [9]. At a very high level, we show that the
added constraints which lead to a compact public key also induce a weakness
for this construction.

More precisely, we are able to recover, at a very low cost, a candidate last
round that can be completed into an equivalent key. The core idea of our attack is
to view the scheme entirely over Fq2 , the very same extension field over which the
exponential maps are defined. This description allows us to exploit the specific
structure of the linear and exponential layers coming from the added constraints,
even though these maps remain private.

Our approach to invert one DME round is as follows. First, we observe that we
can easily determine the monomial content of the polynomials that form the state
before applying this round. The task of fully recovering them is then reduced
to the one of finding their coefficients. By exploiting the design of the scheme,
we achieve this by inverting multivariate equations whose variables are precisely
these coefficients. While polynomial system solving is usually the bottleneck
when attacking multivariate schemes, our situation is different. The shape of the
exponential maps makes that our hardest system is a bilinear system in a small
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number of variables that is solved in degree only 2. Once we have recovered
these polynomials, the full recovery of the “equivalent” last round is rather
straightforward.

From this point, we can iterate our attack on the previous rounds or even use
the known techniques applicable for r = 2 since all DME instantiations consider
r = 3. In fact, as we essentially exploit a specific structure preserved throughout
the rounds, our method suggests that DME might not be simply repaired by
increasing (again) the value of r. Nonetheless, as is common in multivariate
cryptography, there may still exist different ways to patch the scheme. In any
case, we believe that such modifications should be analyzed with care as well as
their effect on the performance of DME.

Outline. In Section 3, we briefly present the DME version submitted to NIST
and in particular the added constraints to obtain compact keys. In Section 4,
we introduce the description over the extension field Fq2 that we adopt and we
derive from it some non-trivial and crucial properties. This material is used in
Section 5 where we describe the steps to recover an equivalent last round.

2 Notation

Matrices will be written in bold. For a positive integer k, let n = 2k denote the
DME vector length. We have k = 4 for all security levels.

Finite fields. For a positive integer e, let q = 2e. Let Fq be a finite field with
q elements and let Fq2 be a degree 2 extension of Fq. One may construct this
extension as Fq2 = Fq[Y ]/(g(Y )), where g is a degree 2 irreducible polynomial
over Fq. From now on, we fix an element U ∈ Fq2 \Fq (a root of g, for example).
In the following, we will often write A ∈ Fq2 in the form A = a1 + a2U , where
a1, a2 ∈ Fq. Finally, we denote by ϕ : Fn

q → Fk
q2 the isomorphism

ϕ(x1, . . . , xn) = (x1 + x2U, . . . , xn−1 + xnU).

Polynomial rings. We will consider the following two quotients

R = Fq[x1, . . . , xn]/⟨xq1 − x1, . . . , x
q
n − xn⟩,

S = Fq2 [X1, . . . , Xk]/⟨Xq2

1 −X1, . . . , X
q2

k −Xk⟩.

Powers of two. Let a ∈ Z2e. In what follows, we will write x[a] (resp. P [a])
instead of x2

a

(resp. P 2a) when a scalar x ∈ Fq2 (resp. a polynomial P ∈ S) is
raised to the power 2a.
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3 Concise Description of DME

The main specificity of DME resides in the so-called “exponential” maps defined
over Fq2 . Any such map refers to a function EA : Fk

q2 → Fk
q2 defined from a

matrix A = (aij) ∈ GLk(Zq2−1) by

EA(X1, . . . , Xk) = (Xa11
1 · · ·Xa1k

k , . . . , Xak1
1 · · ·Xakk

k ).

It works similarly to left multiplication by the matrixA, except with the multipli-
cation of coordinates replaced by exponentiation and with addition replaced by
multiplication. We can naturally extend this definition to a map FA : Fn

q → Fn
q

such that

FA(x1, . . . , xn) = ϕ−1 ◦ EA ◦ ϕ(x1, . . . , xn).

The similarity to matrix multiplication triggers some nice algebraic properties.
For example, if AB = C, then FA ◦ FB = FC. In particular, we have that the
composition FA−1 ◦ FA is the identity of Fn

q . This means that the inverse of an

exponential map is another easy to compute exponential map, i.e. F−1
A = FA−1 .

A DME round corresponds the application of an exponential map followed
by a linear layer L : Fn

q → Fn
q and an addition of constants C : Fn

q → Fn
q . For

instance, a DME public key P : Fn
q → Fn

q utilizing r rounds of exponentiation
can be expressed as

P (x1, . . . , xn) = Cr ◦ Lr ◦ FAr ◦ Cr−1 ◦ Lr−1 ◦ · · · ◦ C1 ◦ L1 ◦ FA1 ◦ C0 ◦ L0,

where we apply a prior affine component C0◦L0 before the first exponential map.
This construction may look quite similar to the one of substitution-permutation
networks (SPNs) from symmetric cryptography but the situation is in fact re-
versed. Indeed, the exponential components FAi

apply to the whole state of size
n while we will see that the linear maps act locally.

A public key of the above form can be seen as a set of n multivariate polyno-
mials in the ring R. However, such polynomials may be dense and of high degree
even after a single round of exponentiation for a generic matrix in GLk(Zq2−1)
and a generic affine map, which would lead to an unmanageable key sizes. Thus,
restrictions are imposed on both the linear and the exponential maps to obtain
a more compact key. Roughly speaking, the idea is to guarantee some collisions
among monomials present and to keep having exponents with low Hamming
weight binary decomposition (see Definition 4 below). These modifications are
quite simple. First, as mentioned above, the linear maps have a local nature.
More precisely, each linear map is chosen as the direct sum of linear maps on
F2
q. In other words, such a map can be expressed as a block diagonal matrix

with blocks of dimension 2× 2. Second, the entries of the matrices defining the
exponential maps are restricted to powers of 2 with exponents less than 2e (we
may view them as belonging to Z2e) and the number of nonzero entries in each
row is limited to 1 or 2. Specifically, the submitted DME implementations utilize
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the following three exponential maps

A1 =


2a0 0 0 0
2a1 2a2 0 0
0 0 2a3 0
0 0 2a4 2a5

 ,

A2 =


2b0 0 0 2b1

0 2b2 0 0
0 2b3 2b4 0
0 0 0 2b5

 ,

A3 =


2c0 2c1 0 0
0 2c2 0 2c3

0 2c4 0 2c5

0 0 2c6 2c7

 ,

(1)

with

c1 = a0 + b0 + c0 − a1 − b2 (mod 2e)

c7 = a3 + b4 + c6 − a4 − b5 (mod 2e) (2)

c4 = c2 + c5 − c3 + d (mod 2e),

and where the constants e and d ∈ Z2e differ with the three security levels. For
example, for NIST security level I, we have that e = 32 and d = 57.

Signing is accomplished by inverting each of the affine shifts Ci, linear maps
Li and exponential maps FAi

in sequence. Since the inversion of the exponen-
tial maps requires the structure of the exponential maps defined over Fq2 (e.g.,
EAi

), we may naturally view DME as a multi-round big-field cryptosystem, see
Figure 1. Verification is performed by simply evaluating the public key at the
signature. We may note here that the component maps FAi are not surjective;
hence, it is not possible to use the public key without a construction to prevent
signature failure. Still, since these maps are bijections of the image of the unit
groups of Fk

q2 under ϕ−1 (see for instance [12, Theorem 1.2]), failure of inversion
is a reasonably low probability event. The simple use of a salt mitigates the
problem efficiently, allowing for isochronous signature generation. The specific
choice of an analogue of the PSS00 construction of [1] is specified in [11].

4 Structure of DME over Fq2

As described in the previous section, we may view DME as a multi-round big
field scheme. There are two important aspects of this identification. First, the
maps over the extension field are still multivariate; thus, the scheme is similar
in spirit to the so-called “intermediate field schemes” such as HMFEv-, see [14].
The second important aspect is the multi-round nature. This characteristic is
obviously recurrent in symmetric cryptography but it is also present in some
very old and rather well-known multivariate constructions such as the double
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Fig. 1: A 3-round DME signature scheme.

round quadratic cipher, see [13]. We should note that both of these styles of
multivariate cryptosytems were broken, see [10,15,17].

Let us expand the structure of DME over this extension field Fq2 . Recall that
each linear map Li is the direct sum of maps on F2

q. We can thus write it as

Li(x1, . . . , xn) = (Li1(x1, x2), . . . , Lik(xn−1, xn)),

where Lij is a linear map on F2
q for j ∈ {1..k}. Note further that any Fq-

linear map L on F2
q is isomorphic to an Fq-linear polynomial LF2 : Fq2 → Fq2

by L(x1, x2) = ϕ−1(LF2 (ϕ(x1, x2))). In this way, we can easily construct an

Fq-linear map L̂i : Fk
q2 → Fk

q2 equivalent to Li. Similarly, each affine shift Ci

consists of adding coordinate-wise constants di ∈ Fq. Let us denote by Ĉi the
equivalent affine shift over Fq2 by adding the vector of constants (Di1, . . . , Dik) =
ϕ(d1, . . . , dn). With these two observations, we may complete our commutative

diagram for the public key P to consider a calculation path P̂ entirely over the
extension field Fq2 , see Figure 2. Given a formal input (X1, . . . , Xk) ∈ Fk

q2 , we
may implicitly view all big field polynomials as elements of the quotient ring

S = Fq2 [X1, . . . , Xk]/⟨Xq2

1 −X1, . . . , X
q2

k −Xk⟩.
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Ĉ0 ◦ L̂0 Ĉ1 ◦ L̂1 Ĉ2 ◦ L̂2 Ĉ3 ◦ L̂3
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Fig. 2: The 3-round DME considering an equivalent “public” and private key
over Fq2 .
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The rest of this section is dedicated to some crucial observations illustrating
why the extension field is the correct arena in which to study the structure of
DME. These properties are related to certain invariants of the composition of the
exponential maps with the linear maps and affine shifts— the same invariants
that guarantee efficiency and small key sizes. To establish a consistent language
for discussing the structures, we define the DME round function over Fq2 .

Definition 1 (Round function over Fq2) Given an exponential map EAi
, an

Fq-linear map L̂i and an affine shift map Ĉi, the composition Ri = Ĉi ◦ L̂i ◦EAi

is called the i-th DME round function over Fq2 .

With this notation we have P̂ = R3 ◦R2 ◦R1 ◦ Ĉ0 ◦ L̂0.

4.1 Stability by q-powering

The first observation of importance is that the initial map Ĉ0 ◦ L̂0 establishes
a symmetry that is invariant under the application of DME round functions.
Let us recall that each coordinate of L̂0 is an Fq-linear polynomial in Fq2 . It is
a classical result that such a polynomial is of the form X 7→ A1X + A2X

q for
some A1, A2 ∈ Fq2 . We thus obtain

Ĉ0 ◦ L̂0(X1, . . . , Xk) = (A0,1X1+A0,2X
q
1 +D1, . . . , A0,2k−1Xk +A0,2kX

q
k +Dk).

In each of the k coordinates, we notice that the relevant variable, i.e., Xi for
the i-th one, occurs with the power 1 and q only. In order to generalize this
property to more rounds, we introduce the following definition. Recall that S =

Fq2 [X1, . . . , Xk]/⟨Xq2

1 −X1, . . . , X
q2

k −Xk⟩.

Definition 2 (q-symmetric orbit) For a monomial Xα
1 X

β
2 · · ·Xγ

k ∈ S, the
q-symmetric orbit is defined to be the set

{Xα
1 X

β
2 · · ·Xγ

k , X
qα
1 Xβ

2 · · ·Xγ
k , X

α
1 X

qβ
2 · · ·Xγ

k ,

Xqα
1 Xqβ

2 · · ·Xγ
k , . . . , X

qα
1 Xqβ

2 · · ·Xqγ
k }.

In other words, each of its elements is obtained by q-powering one or several
variables present in the monomial.

Remark 1 For the term “orbit” to make sense it might be more natural to
authorize an arbitrary number of q-powerings. The above definition would not

change as we have Xαq2

i = Xα
i ∈ S for any i ∈ {1..k} and any α ∈ N.

Definition 3 (q-symmetric polynomial) A polynomial p ∈ S is said to be
q-symmetric if its set of monomials is a disjoint union of q-symmetric orbits.

One may verify some simple properties of q-symmetric polynomials. We sum-
marize the ones we require in the following. Their proofs are easy and the only
subtlety lies in coefficient cancellations, see Appendix A.
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Lemma 1 The following statements on q-symmetric polynomials hold with high
probability (easily estimated assuming a bound on the number of monomials),

1. Let D ∈ Fq2 ⊆ S. Then D is q-symmetric (with probability 1).
2. Let p1, p2 ∈ S two q-symmetric polynomials. Then p1 + p2 is q-symmetric.
3. Let p1, p2 ∈ S two q-symmetric polynomials. Then p1p2 is q-symmetric.
4. Let p ∈ S be a q-symmetric polynomial and let r ∈ N. Then pr is q-

symmetric.
5. Let p ∈ S be q-symmetric and let L : Fq2 → Fq2 be an Fq-linear map. Then

the composition L(p) ∈ S is q-symmetric. Moreover, the monomial content
of L(p) is identical to that of p.

From these results, we see that all of the linear and affine layers preserve q-
symmetry. This property is in fact critical in maintaining control on the growth
of the number of monomials in the key as the number of rounds increases. Fur-
thermore, since each coordinate of the exponential map EAi

simply raises q-
symmetric polynomials to powers and multiplies them together, Lemma 1 shows
that the exponential maps preserve q-symmetry as well. Thus, we obtain

Corollary 1 Given a k-tuple of q-symmetric polynomials as input, the DME
round function over Fq2 produces another k-tuple of q-symmetric polynomials
with high probability.

4.2 Multi-Hamming Weight

To analyze the specific structure of the polynomials produced by each round
function, we will also use the following definition. As we work over S, each
variable exponent can be seen as an element in Zq2−1. In the following, we may
implicitly consider the unique representative in {0..q2 − 2}.

Definition 4 (Multi-Hamming weight) A monomial Xα
1 X

β
2 · · ·Xγ

k ∈ S has
multi-Hamming weight (a, b, . . . , c) if the binary representations of α, β, . . . , γ
are of Hamming weight a, b, . . . , c, respectively.

Clearly, raising a polynomial to a power of the form 2s does not change the
multi-Hamming weights of its monomials. More generally, since q is a power of
two, we also observe that the multi-Hamming weight remains constant within
one q-symmetric orbit. Note however that an arbitrary q-symmetric polynomial
may contain distinct orbits having the same multi-Hamming weight.

We will restrict our notation to consider the parameters of DME provided
in the submission package [11]. For the case of NIST security level I defined in
[9], recall that we had e = 32 (thus, q = 232), k = 4 and 3 rounds. From the
definition of DME, we see that the coordinates in the multi-Hamming weight
can only grow by product between different components over Fq2 . Due to the
shape of the exponential maps Ai, we also see that such a product involves at
most 2 components. Finally, since there are only 3 rounds, we need to consider
at most 3 such products. For these reasons the coordinates will remain small (we
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compute them explicitly in the next section). Since they will never be as large
as 10, there will be no ambiguity in abbreviating (a, b, . . . , c) via concatenation:
ab . . . c. For example, we will denote the multi-Hamming weights of the input
vector (X1, X2, X3, X4) as (1000, 0100, 0010, 0001) instead of the much heavier

((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)) .

4.3 Monomial Content over Fq2

Using these notions, we can now describe more precisely the DME structure
after each round. In our presentation, we will assume that no cancellation be-
tween coefficients occurs. We note that such an event should hold with very low
probability under the choice of the linear and non-linear DME components.

Affine layer Ĉ0 ◦ L̂0. As observed above, the application of the first linear
layer L̂0 produces polynomials of the form AX+BXq. The relevant weight vec-
tor remains (1000, 0100, 0010, 0001) but this time we have created q-symmetric
polynomials. Each of these equations contains one orbit with two monomials.
Applying Ĉ0 would then add the orbit {1} but this first affine shift is in fact
omitted in [11].

In the subsequent rounds, we may focus on the exponential maps. This is
because each affine map can be seen as acting coordinate-wise over Fq2 and
because the monomial content of a q-symmetric polynomial does not change
after applying an Fq-linear map (statement 5 in Lemma 1). For j ∈ {1..3}, we
will denote the j-th round output by (G

(j)
1 , G

(j)
2 , G

(j)
3 , G

(j)
4 ).

Round function R1. The monomial content of the state (G
(1)
1 , G

(1)
2 , G

(1)
3 , G

(1)
4 )

obtained at the end of R1 is presented in Table 1. For each polynomial, we give
the variables involved, the q-symmetric orbits (in the form “associated multi-
Hamming weights:cardinality”) and the total number of monomials.

Table 1: Variables, q-symmetric orbits and monomial counts for the output co-
ordinates of R1.

Variables Orbits #Monomials

G
(1)
1 X1 1000:2, 0000:1 3

G
(1)
2 X1, X2 1100:4, 0000:1 5

G
(1)
3 X3 0010:2, 0000:1 3

G
(1)
4 X3, X4 0011:4, 0000:1 5

This table can be easily obtained from the structure of A1 in Equation (1).
Raising a polynomial to a power of two does not change the multi-Hamming
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weights of its monomials and it does not affect the number of orbits. Then, each
output is the product of at most two such 2-powered polynomials. In this first
step we multiply polynomials with no variables in common: in this case, the
multi-Hamming weight of a product is equal the sum of their multi-Hamming
weights. Finally, as we apply Ĉ1, we need to add the constant monomial.

Round function R2. We may continue in the same fashion to reveal the
structure over Fq2 of the output of the round function R2, see Table 2. The
numbers of (complete) orbits and monomials present are still derived assuming
no cancellation. We note that, once again, the polynomials being multiplied
share no variables in common; thus, the multi-Hamming weight of the product
of two monomials is equal to the sum of their multi-Hamming weights in all
cases. We also note that given the monomial count from Table 1, the numbers
of monomials in the output coordinates of the exponential layer correspond to
products of numbers of monomials in the factors due to the fact that all of
those monomials are distinct. In particular, the number of monomials in the
output coordinates of R2 will be these products unless there is cancellation of
the coefficients due to the application of the linear layer, L̂2, which is a low
probability event.

Table 2: Variables, q-symmetric orbits and monomial counts for the output co-
ordinates of R2.

Variables Orbits #Monomials

G
(2)
1 X1, X3, X4 1011:8, 0011:4, 1000:2, 0000:1 15

G
(2)
2 X1, X2 1100:4, 0000:1 5

G
(2)
3 X1, X2, X3 1110:8, 1100:4, 0010:2, 0000:1 15

G
(2)
4 X3, X4 0011:4, 0000:1 5

Round function R3. Deriving the q-symmetric orbits and the monomial sup-
port of the output coordinates of R3 is more intricate.

The third round is the first in which products of monomials containing the
same variables occur. Note that the product of a pair of orbits from R2 no
longer necessarily yields a unique q-symmetric orbit in R3. Indeed, consider two
orbits Ω and Ω′ where a variable X appears with Hamming weight 1 and let
us take representatives for these orbits with exponents 2u and 2v respectively.
In other words, there exist monomials µΩ and µΩ′ not involving X such that
X [u]µΩ ∈ Ω and X [v]µΩ′ ∈ Ω′. By doing the product we get monomials falling
into two distinct orbits, namely X [u]X [v]µΩµΩ′ , X [u+e]X [v+e]µΩµΩ′ on one side
and X [u+e]X [v]µΩµΩ′ , X [u]X [v+e]µΩµΩ′ on the other side.

Such a behaviour already occurs in the case when there are no imposed
relations on the exponents in the exponential maps, see Table 3. For example,

the product between the orbit of multi-Hamming weight 1011 in G
(2)
1 and the
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one of multi-Hamming weight 1000 in G
(2)
2 gives two orbits 2111(a) and 2111(b)

of the same multi-Hamming weight and same cardinality 16 in G
(3)
1 . The same

phenomenon happens for the monomials of multi-Hamming weight 2100. Overall,
a counting based on the multi-Hamming weights of all orbits would give 75

monomials for G
(3)
1 and G

(3)
4 .

Table 3: Variables, q-symmetric orbits and monomial counts for the output coor-
dinates when the matrices Ai ∈ GLk(Zq2−1) are chosen without the constraints
of Equation (2).

Orbits #Monomials

G
(3)
1

2111(a):16, 2111(b):16, 1111:16, 2100(a):4, 2100(b):4,
75

1011:8, 1100:4, 0011:4, 1000:2, 0000:1

G
(3)
2 1111:16, 1100:4, 0011:4, 0000:1 25

G
(3)
3 1111:16, 1100:4, 0011:4, 0000:1 25

G
(3)
4

1121(a):16, 1121(b):16, 1111:16, 0021(a):4, 0021(b):4,
75

1110:8, 1100:4, 0011:4, 0010:2, 0000:1

However, with the extra constraints of Equation (2) imposed in the spec-
ification of DME, these polynomials actually contain only 65 monomials, see
Lemma 2. More complete information on the monomial content is given in Ta-
ble 4 below.

Table 4: DME case.
Orbits #Monomials

G
(3)
1

2111:8, 2100:2, 1111:16, 1111(fall):16, 1011:8,
65

1100:4, 1100(fall):4, 0011:4, 1000:2, 0000:1

G
(3)
2 1111:16, 1100:4, 0011:4, 0000:1 25

G
(3)
3 1111:16, 1100:4, 0011:4, 0000:1 25

G
(3)
4

1121:8, 0021:2, 1111:16, 1111(fall):16, 1110:8,
65

1100:4, 0011:4, 0011(fall):4, 0010:2, 0000:1

Lemma 2 Under the 3 constraints on the exponential maps given in Equa-

tion (2), the number of monomials in G
(3)
1 and G

(3)
4 is generically equal to 65.

Proof. Let us consider G
(3)
1 . The case of G

(3)
4 is similar by replacing the first

condition of Equation (2) by the second one. First, notice from the definition of
A3 given in Equation (1) that the first output coordinate of EA3 is(

G
(2)
1

)[c0] (
G

(2)
2

)[c1]

. (3)
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Thus, by Lemma 1, G
(3)
1 has the monomial structure of a product of polynomials

with q-symmetric orbits and multi-Hamming weights as given in the first two
rows of Table 2 since it is an affine function of this output. Moreover, without
the 3 constraints of Equation (2), its monomials would all be distinct and the

total number would merely be the product of the number of monomials in G
(2)
1

and G
(2)
2 which is 15 · 5 = 75.

We now show that the constraints of Equation (2) eliminate a total of

10 monomials. Most of the q-symmetric orbits of G
(2)
1 and G

(2)
2 involve dis-

joint variable sets and thus produce q-symmetric orbits of the expected multi-
Hamming weight and number of monomials. The exceptions are products of
the q-symmetric orbits of multi-Hamming weight 1011 with 1100 and 1000 with
1100, each of which giving a nontrivial interaction on the variable X1.

Considering the sequence of operations that gives monomials of multi-Hamming

weight 1011 and 1100 in G
(2)
1 , there exists a representative for both of these or-

bits that contains the factor X
[a0+b0]
1 . Similarly, we may trace the calculation

of the q-symmetric orbit 1100 in G
(2)
2 and find that a representative includes a

factor X
[a1+b2]
1 . By definition of A3, we observe that the product of Equation (3)

has monomials including factors of the form

X
[a0+b0+c0]
1 X

[a1+b2+c1]
1 ,

X
[a0+b0+c0+e]
1 X

[a1+b2+c1]
1 ,

X
[a0+b0+c0]
1 X

[a1+b2+c1+e]
1 ,

X
[a0+b0+c0+e]
1 X

[a1+b2+c1+e]
1 ,

exactly as was considered above in the discussion on the number of orbits. Con-
sidering the first restriction from Equation (2), we see that a0 + b0 + c0 =
a1 + b2 + c1 (mod 2e) and thus 2a0+b0+c0 and 2a1+b2+c1 are equal in Zq2−1.
Therefore, the above monomial set simplifies in the form

X
[a0+b0+c0+1]
1 , X

[a0+b0+c0+e+1]
1︸ ︷︷ ︸

Hamming weight 1

and X
[a0+b0+c0]
1 X

[a0+b0+c0+e]
1︸ ︷︷ ︸

Hamming weight 2

.

Thus, we see that for actual parameters, the product of orbits involving X1

does not split into two orbits of multi-Hamming weight 2111 (resp. 2100) as
in the general case, but bifurcates into an orbit of multi-Hamming weight 2111

(resp. 2100), including factors of X
[a0+b0+c0]
1 X

[a0+b0+c0+e]
1 , and another orbit of

multi-Hamming weight 1111 (resp. 1100), including factors of X
[a0+b0+c0+1]
1 or

X
[a0+b0+c0+e+1]
1 . These orbits are the ones which are underlined in Table 4.
To determine their sizes, we note that(

X
[a0+b0+c0]
1 X

[a0+b0+c0+e]
1

)q

= X
[a0+b0+c0+e]
1 X

[a0+b0+c0]
1 ,

and so they are determined by the powers of the remaining variables. For the
2111 orbit there are then 8 monomials (instead of 16) and for the 2100 orbit
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there are 2 monomials (instead of 4). Thus, there is a reduction of 10 monomials
from the general case.

Finally, for the q-symmetric orbits that experience a multi-Hamming weight
fall, the number of monomials is actually the same as in the generic case in

which there is no such fall. In particular,
(
X

[a0+b0+c0+1]
1

)q

= X
[a0+b0+c0+e+1]
1 ,

so there are two possible powers of X1 in such monomials. Thus, the atypical
second instance of a multi-Hamming weight 1111 (resp. 1100) orbit contains the
same 16 (resp. 4) monomials as the corresponding multi-Hamming weight 2111
(resp. 2100) orbit in the general case. ⊓⊔

5 Algebraic Attack on DME

In this section, we describe our attack by recovering an equivalent key (recall
that two secret keys are equivalent if they correspond to the same public key).
More precisely, we will explain how to recover an equivalent last round function,
i.e., whose knowledge allows to complete the attack in the same way as on a
2-round version of DME. Since all rounds have the same structure and since
there are only 3 rounds, we argue that this latter step is not more costly (also,
recall that 2-round DME has already been shown to be weak, see [4]).

More details on this completion will be given in Subsection 5.5. Prior to
that, Subsection 5.1 presents tools that are used throughout this section and
Subsections 5.2 to 5.4 are dedicated to the recovery of such an equivalent last
round function. For the sake of clarity, our description will be limited to the level
I parameter set with e = 32 (the values k = 4, n = 8 are common to all levels).

5.1 Using the Big Field Representation

In order to apply the results of Section 4, we start by deriving a public key P̂
whose 4 components lie in the ring

S = Fq2 [X1, . . . , X4]/⟨Xq2

1 −X1, . . . , X
q2

4 −X4⟩.

Recall that the initial public key P is an 8-tuple of polynomials in the quotient
ring R = Fq[x1, . . . , x8]/⟨xq1 − x1, . . . , x

q
8 − x8⟩. To make the transformation,

let ι be the inclusion ι : R → Fq2 [x1, . . . , x8]/⟨xq1 − x1, . . . , x
q
8 − x8⟩ and let

ψ : S → Fq2 [x1, . . . , x8]/⟨xq1 − x1, . . . , x
q
8 − x8⟩ be the unique ring morphism

satisfying ψ(Xi) = x2(i−1)+1 + Ux2i for i ∈ {1..4} and ψ(λ) = λ for λ ∈ Fq2 .
The latter has inverse

ψ−1 : Fq2 [x1, . . . , x8]/⟨xq1 − x1, . . . , x
q
8 − x8⟩ → S

f 7→ f(ξ1, .., ξ8),

where ∀i ∈ {1..8}, ξ2(i−1)+1 =
UXq

i −UqXi

U−Uq , and ξ2i =
Xq

i −Xi

Uq−U . Concretely, our

approach starts by building the set of polynomials P̂ = (P̂1, . . . , P̂4) defined by

∀i ∈ {1..4}, P̂i = ψ−1
(
ι(P2(i−1)+1) + Uι(P2i)

)
.
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Note that the above morphisms are used implicitly in the key generation of
DME. In particular, constructing P̂ from P is extremely efficient.

From there, we may consider a calculation path entirely over Fq2 . As observed
in Section 4, the linear maps from the big field representation act coordinate-
wise. This allows to exploit the following result, stating that such maps “nearly
commute” coordinate-wise with power maps of exponent a power of two (the
result is presented for general parameters).

Lemma 3 (“Nearly-commuting” trick) Let q = 2e, let L̂ : Fk
q2 → Fk

q2 be a

coordinate-wise Fq-linear map and let p = (p1, . . . , pk) : Fk
q2 → Fk

q2 be a map
such that pi raises the i-th input to a power of the form 2ui , ui ∈ Z2e. Then
there exists another coordinate-wise Fq-linear map M̂ : Fk

q2 → Fk
q2 such that

p ◦ L̂ = M̂ ◦ p.

Proof. We only need to examine one single index i. To avoid confusion with
the notation used for the linear layers, we may write the linear map at this
coordinate as Li(X) = AX +BXq (in place of L̂i). Then we observe that

pi(Li(X)) = A[ui]X [ui] +B[ui]X [ui+e] = Mi(pi(X)),

where Mi(X) = A[ui]X +B[ui]Xq. ⊓⊔

Lemma 3 is instrumental to better grasp the set of possible equivalent keys.
For example, assume that a secret key contains the composition of two round
functions R := Ĉ ◦ L̂ ◦ EA and R′ := Ĉ ′ ◦ L̂′ ◦ EA′ , where the matrices A and
A′ are of the same shape as in Equation (1). The exponential map EA may be
written in a non-unique way as the composition of a power-of-two map p as in
Lemma 3 followed by another exponential map EA′′ . We then have

R ◦R′ = Ĉ ◦ L̂ ◦ EA ◦ Ĉ ′ ◦ L̂′ ◦ EA′

= Ĉ ◦ L̂ ◦ EA′′ ◦ p ◦ Ĉ ′ ◦ L̂′ ◦ EA′ .

By linearity, we can write p ◦ Ĉ ′ as D̂′ ◦ p where D̂′ is still an affine shift and
eventually apply Lemma 3 to the composition p ◦ L̂′. Namely, there exists a
coordinate-wise Fq-linear map M̂ ′ such that p ◦ L̂′ = M̂ ′ ◦ p. This gives

R ◦R′ = Ĉ ◦ L̂ ◦ EA′′ ◦ D̂′ ◦ M̂ ′ ◦ p ◦ EA′︸ ︷︷ ︸
:=EA′′′

:= R′′ ◦R′′′,

which is another composition of two round functions. Our attack will not require
the full classification of equivalent keys but we already note that we can obtain
other compositions by starting from a different factorization of EA.

We will now see that Lemma 3 also plays a crucial role in the recovery of the
equivalent last round. We will focus our attention on the 4 secret polynomials
that constitute the input of the equivalent last round. These polynomials are
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entirely private but the analysis of Section 4.3 will allow to very efficiently iden-
tify the monomials present, see Subsection 5.2. The associated coefficients, still
unknown, will then be found in Subsection 5.3 by solving polynomial systems.
The recovery can be completed easily once these coefficients are known. Thus,
polynomial system solving should represent the most costly part of the attack.
We provide a complexity analysis of this step in Section 5.4.

5.2 Finding the Monomial Content of the Last Round Input

First, let us recall the relation with the public polynomials from P̂ . We have

P̂ = Ĉ3 ◦ L̂3 ◦ EA3
◦G,

where G is the input of the genuine last round R3 and where

A3 =


2c0 2c1 0 0
0 2c2 0 2c3

0 2c4 0 2c5

0 0 2c6 2c7

 .
If we were to invert the last linear layer, we would obtain

L̂−1
3 ◦ Ĉ−1

3 ◦
(
P̂1, P̂2, P̂3, P̂4

)
=

(
G

[c0]
1 G

[c1]
2 , G

[c2]
2 G

[c3]
4 , G

[c4]
2 G

[c5]
4 , G

[c6]
3 G

[c7]
4

)

= EB ◦
(
Gα

1G
β
2 , G

β
2G

[c5]
4 , G

[c4]
2 G

[c5]
4 , Gγ

3G
[c5]
4

)
, (4)

where α = [c0 − (c1 + c3 − c2 − c5)], β = [c2 − c3 + c5], γ = [c5 + c6 − c7] and

B =


2c1+c3−c2−c5 0 0 0

0 2c3−c5 0 0
0 0 20 0
0 0 0 2c7−c5

 . (5)

The goal here is to have a right-hand-side
(
Gα

1G
β
2 , G

β
2G

[c5]
4 , G

[c4]
2 G

[c5]
4 , Gγ

3G
[c5]
4

)
such that each of the 4 coordinates shares a factor in common with another. We
will use this property later on in this subsection.

To recover the map EB, we will use two facts. First, the maps L̂3 and Ĉ3

do not alter the monomial content of q-symmetric polynomials; thus, the mono-

mial content of
(
G

[c0]
1 G

[c1]
2 , G

[c2]
2 G

[c3]
4 , G

[c4]
2 G

[c5]
4 , G

[c6]
3 G

[c7]
4

)
is public. Second, the

discussion of Section 4.3 shows that the q-symmetric orbits in G are known.
For instance, the following Table 5 is just Table 2 with the shorthand notation

(G1, G2, G3, G4) = (G
(2)
1 , G

(2)
2 , G

(2)
3 , G

(2)
4 ).
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Table 5: Known q-symmetric orbits in G.
Variables Orbits #Monomials

G1 X1, X3, X4 1011:8, 0011:4, 1000:2, 0000:1 15
G2 X1, X2 1100:4, 0000:1 5
G3 X1, X2, X3 1110:8, 1100:4, 0010:2, 0000:1 15
G4 X3, X4 0011:4, 0000:1 5

In the following, let QSymOrbit be a trivial procedure that computes the q-
symmetric orbit of a monomial. For a given monomial µ and a set of indices
S ⊂ {1..4}, we will also call truncation of µ on S the highest degree monomial
ν in the variables Xs, s ∈ S such that ν|µ. Applied to a polynomial p and such
a set S, the procedure MonomialContent will return the set of truncations
of the monomials of p on S. For example,

MonomialContent(X1X2X3X4 +X1X4, {3, 4}) = {X3X4, X4}.

We now explain how to recover the difference c3−c5 from the public components
P̂2 and P̂3, by using the peculiar property that G2 and G4 have disjoint variable
supports; namely, their supports are {X1, X2} and {X3, X4}, respectively. This
difference is the power of two at which we have to raise P̂2 so that the monomials
in the result truncated on the variables {X3, X4} match the truncation of those

of P̂3 on the same variables (they will correspond to the common factor G
[c5]
4 ).

More precisely, we apply the following Algorithm 1, on input P̂3, P̂2 and {3, 4}.

Algorithm 1 RetrieveDifference(H1, H2, S)

Input: H1 and H2 are polynomials and S ⊂ {1..4} is a subset of indices.
Output: Difference ∆

1: ∆← 0
2: for µ ∈MonomialContent(H1, S) do
3: for r in {0..e− 1} do
4: if QSymOrbit(µ[r]) ⊆MonomialContent(H2, S) then
5: ∆← r
6: end if
7: end for
8: end for
9: return ∆

The difference we are looking for belongs to Z2e and the algorithm will output
this difference modulo e. The two possibilities for this difference will both yield
equivalent keys (this can be seen from the discussion after Lemma 5). With the
same ambiguity, we may recover the other exponents modulo e in an analogous
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way by

c1 + c3 − c2 − c5 = RetrieveDifference(P̂
[c5−c3]
2 , P̂1, {2}),

c7 − c5 = RetrieveDifference(P̂3, P̂4, {4}).

Once the matrix B is recovered, we use Lemma 3 on Equation (4) to verify

the existence of a coordinate-wise Fq-linear map M̂ and affine shift D̂ such that

EB−1 ◦ P̂ = D̂ ◦ M̂ ◦
(
Gα

1G
β
2 , G

β
2G

[c5]
4 , G

[c4]
2 G

[c5]
4 , Gγ

3G
[c5]
4

)
,

where the left-hand side is now entirely known and where the monomial content

ofGα
1 ,G

β
2 ,G

γ
3 andG

[c5]
4 is also known. This follows from the fact that the variable

supports of G2 and G4 are disjoint and that each of the four coordinates shares a
factor in common with another. The remainder of the recovery of an equivalent
round 3 will consist in recovering the associated coefficients in Gα

1 , G
β
2 , G

γ
3 and

G
[c5]
4 and then the ones of the maps D̂ and M̂ , sequentially.

5.3 Finding the Unknown Coefficients

We start from the equation

M̂−1 ◦ D̂−1 ◦ EB−1 ◦ P̂ =
(
Gα

1G
β
2 , G

β
2G

[c5]
4 , G

[c4]
2 G

[c5]
4 , Gγ

3G
[c5]
4

)
, (6)

that corresponds to 4 polynomial equalities. Our approach consists in viewing

the unknown coefficients of all polynomials Gα
1 , G

β
2 , G

γ
3 , G

[c5]
4 and those of the

4 polynomials in M̂−1 as formal variables in a multivariate polynomial ring and
then in deriving equations in these coefficients. The equations will be solved
using standard algebraic techniques.

Bilinear modeling. Our first modeling is obtained from the second and third
coordinates of EB−1 ◦ P̂ . Specifically, we know that

M̂−1
2

(
P̂

[c5−c3]
2 −D2

)
= Gβ

2G
[c5]
4

M̂−1
3

(
P̂3 −D3

)
= G

[c4]
2 G

[c5]
4 .

(7)

Using Table 5, the number of formal variables we need to introduce is 5 for each

of the polynomials G
[c5]
4 , G

[c4]
2 and Gβ

2 (we arrange these variables as vectors
x, y and z respectively, all of length 5). Since these maps are linear, we also

introduce 2 variables s1, s2 for M̂−1
2 and 2 variables t1, t2 for M̂−1

3 , namely

M̂−1
2 (X) = s1X + s2X

q,

M̂−1
3 (X) = t1X + t2X

q.
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We consider the equations obtained by matching coefficients in front of the
same monomial in the two polynomial equalities from (7). In both of them, the
number of monomials present is 25 by using Table 4. Thus, we can obtain a total
of 25+25 = 50 equations. However, we cannot use the 2 equations corresponding
to the constant terms since we do not include the secret coefficients D2 and D3

in our variables. Finally, we can divide the two equations in (7) by s1 and t1,
respectively, to further reduce the number of variables.

Modeling 1 We obtain in this way an affine bilinear system in Fq2 [x,y, z, s, t]
with s = s2/s1 and t = t2/t1 that contains 48 polynomials.

– the first equation in (7) gives a bilinear system in Fq2 [x, z, s] containing
polynomials of the form

xizj + ℓi,j(s),

where ℓi,j(s) linear affine in s, for any (i, j) ∈ {1..5}2 \ {(5, 5)};
– the second equation in (7) gives a bilinear system in Fq2 [x,y, t] containing

polynomials of the form
xiyj +mi,j(t),

where mi,j(t) linear affine in t, for any (i, j) ∈ {1..5}2 \ {(5, 5)}.

Remark 2 Anecdotally, Modeling 1 can be seen as a subset of 48 out of 50
equations which model two rank one MinRank problems in F5×5

q2 with matri-

ces (M1,M2) and (N1,N2) respectively correlated in that we look for solutions
xTy = M1 + sM2 and xTz = N1 + tN2 for the same x. We simply do not
consider the two equations coming from entry (5, 5).

In Lemma 4, we study the variety of Modeling 1 intersected with the coor-
dinate ring of F17

q2 . This is also the variety (over the algebraic closure) of the
ideal J generated by Modeling 1 together with the field equations from Fq2 . For
practical purposes, we do not, in practice, add equations of such a high degree
into the system, since a Gröbner basis over an algebraic closure of Fq2 can be
computed so easily on Modeling 1 alone.

Lemma 4 Let J be the ideal generated by Modeling 1 along with the field equa-
tions from Fq2 . The variety V (J) has 1 degree of freedom over Fq2 . Moreover,
by fixing one variable different from s and t, we get a variety of size at least 2.

Proof. If (x, z,y, s, t) is a solution in V (J) then (λx, λ−1z, λ−1y, s, t) is another
solution for any non-zero λ ∈ F∗

q2 . There is an additional symmetry coming from

q-powering. Indeed, let us consider a solution (x, z,y, s, t) with a prescribed
coordinate in x, y or z (so that it is a solution to Modeling 1 specialized with this
constraint). To simplify the notation, let us write Si for the known polynomial

(EB1
◦ P̂ )i, i ∈ {2, 3}. Let also (G4, G2,1, G2,2) be the triple of polynomials

corresponding to (x, z,y). By q-powering the equalities

Sq
2 + sqS2 = G2,1G4,

Sq
3 + tqS3 = G2,2G4
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we get

S2 + sSq
2 = (G2,1)

q(G4)
q,

S3 + tSq
3 = (G2,2)

q(G4)
q.

By dividing the first equality by s and the second one by t to adhere to the
restriction in our modeling that the linear maps have a coefficient of 1 in front
of X, we finally obtain

(1/s)S2 + Sq
2 = (G

q

2,1/s)(G4)
q,

(1/t)S3 + Sq
3 = (G

q

2,2/t)(G4)
q.

This yields the new solution (xq, (zq/s), (yq/t), 1/s, 1/t) to Modeling 1. Note
that, in general, the coordinate prescrived in the former solution (x, z,y, s, t)
will here have a different value. However, by Fq2-linearity, exactly one of the
other solutions (λxq, λ−1(zq/s), λ−1(yq/t), 1/s, 1/t) will have the right value at
this coordinate. ⊓⊔

Due to Lemma 4, we have the freedom to specialize one of the variables other
than s and t in Modeling 1 and retain a consistent system. Any choice of such
a variable produces linear equations. However, choosing to fix a variable xi for
some i ̸= 5 generates the greatest number of linear equations. In the following,
we suppose that we fix the value of variable x1.

The solution to the specialized system will provide candidates for the maps

M̂−1
2 , M̂−1

3 , Gβ
2 , G

[c4]
2 and G

[c5]
4 . There are, however, two complications. First, it

is necessary to enforce the restriction that β = [c4 − d], i.e., Gβ
2/G

[c4−d]
2 = 1, by

computing this quotient τ ∈ Fq2 and replacing Gβ
2 with τGβ

2 . Second, the proof

of Lemma 4 shows that, in particular, the candidate for G
[c5]
4 might instead

correspond to λG
[c5]
4 or λG

[c5+e]
4 for some λ ∈ Fq2 . Since both multiplication

by λ or τ and exponentiation by q are Fq-linear, this is a not an issue as these
operations can both be absorbed into the linear layer of the previous round
(using the reasoning sketched right after Lemma 3). Thus, we may assume that
we have the correct candidates. From these candidates, we can also recover the
affine shift constants D2 and D3. Indeed, these solutions reveal all the quantities
in Equation (7) other than D2 and D3. In particular, these equations are readily
solved for the correct values of the affine shift. In the following, we denote by

(G4, G2,1, G2,2) the solutions found for (G
[c5]
4 , Gβ

2 , G
[c4]
2 ).

Remaining coefficients by solving linear systems. The coefficients that
we still have to recover of those of M̂−1

i , D̂i for i ∈ {1, 4} and those of the
polynomials Gα

1 , G
γ
3 . To do so, we come back to Equation (6) and we plug the

solutions previously found into coordinates 1 and 4:

M̂−1
1

(
P̂

[c2+c5−c1−c3]
1 −D1

)
= Gα

1G2,1

M̂−1
4

(
P̂

[c5−c7]
1 −D4

)
= Gγ

3G4.
(8)
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By introducing formal variables for M̂−1
1 and Gα

1 in the first equation and for

M̂−1
4 and Gγ

3 in the second equation, the reasoning used to obtain Modeling 1
yields two linear systems. These two systems contain 64 = 65− 1 equations (by
using Table4 and dropping the constant term) in 17 = 2+15 variables (by using
Table 2 or Table 5). These systems are much easier to solve than Modeling 1.

From their solutions we can readily recover Gα
1 , G

γ
3 and M̂−1

i for i ∈ {1, 4}.
Finally, we can retrieve D1 and D4 by coming back to Equation (8) since all the
other values are now known.

To unify notation, in the following let L̃3 be the recovered value for M̂ and
let C̃3 be the recovered value for D̂. These values will be used in Subsection 5.5
to derive an equivalent last round function (it remains to precise the exponential
component). Prior to that, Subsection 5.4 examines the complexity of recovering

L̃3 and C̃3. Our discussion so far shows that we can restrict ourselves to the
solving of Modeling 1.

5.4 Complexity of Solving Specialized Modeling 1

Recall that the equations in Modeling 1 are of the form xizj + ℓi,j(s) = 0 or
xiyj +mi,j(t) = 0 for (i, j) ̸= (5, 5), were ℓi,j , mi,j are univariate polynomials
of degree 1. Recall also that we decided to set a constraint x1 = a in order to
obtain a variety of expected size 2.

The Gröbner basis computation of the specialized system proceeds very sim-
ply. Setting x1 = a yields linear relations of the form zj + a−1ℓ1,j(s) = 0 and
yj + a−1m1,j(t) = 0. Thus, by substitution into the other equations that remain
of degree 2, the entire system implicitly reduces to an overdetermined bilinear
system of 38 = 48 − 10 equations in the 6 variables s, t and xi for i ̸= 1 in
which each relation contains a single quadratic monomial of the form xis or
xit. As outlined in detail in Appendix B, such a system is solved in degree 2. As
suggested in Lemma 4, we find that the Gröbner basis consists of a single univari-
ate quadratic equation and an otherwise linear system of equations producing
precisely two solutions.

In fact, even a generic system consisting of 38 quadratic (not necessarily
bilinear) equations and 10 linear equations in 16 variables6 is solved at degree
2 (using standard arguments, e.g., Hilbert series). We may therefore provide a
rather gross overestimate of the complexity of solving the system of Modeling 1
over Fq2 with the formula

ComplexityModeling 1 = O
((

16 + 2

2

)ω)
,

6 For simplicity, our implementation does not use 17 − 1 = 16 variables. Instead, it
adds an equation of the form x1 − a, resulting in a system of 49 equations in 17
variables.
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in which ω is the linear algebra constant, typically assumed to be ω = 2.81 for
Strassen’s Algorithm [16]. Finally, by using the standard formula

# gates per Fq-multiplication = 2 (log2 q)
2
+ log2 q,

we obtain the following results on the NIST parameter sets:

Table 6: Conservative estimate for the cost of solving specialized Modeling 1.
Level Value of q Gate Count

I 232 231

III 248 232

V 264 233

5.5 Completing an Equivalent Round Function

We finally explain that we can efficiently recover an equivalent key from the
maps L̃3 and C̃3 that have just been retrieved. Lemma 5 below shows that we
can actually construct one which is identical to the genuine key in its first round.

Lemma 5 Let L̃3 (resp. C̃3) denote the retrieved linear map (resp. affine shift),
let B be the diagonal matrix of Equation (5) and let

C =


1 1 0 0
0 1 0 1
0 257 0 1
0 0 1 1

 .
Then the round function R̃3 given by the composition of C̃3, L̃3 and EB−1C is
an equivalent round function, in the sense that there exists a round function R′

2

satisfying
P̂ = R̃3 ◦R′

2 ◦R1 ◦ Ĉ0 ◦ L̂0.

Proof. Let (G̃1, G̃2, G̃3, G̃4) be the components recovered in Subsection 5.4. By

the last equation in this subsection, they satisfy P̂ = C̃3◦L̃3◦EB−1C(G̃1, G̃2, G̃3, G̃4).
We then obtain

P̂ = C̃3 ◦ L̃3 ◦ EB−1C(Gα
1 , G

β
2 , G

γ
3 , G

[c5]
4 ) = R̃3(G

α
1 , G

β
2 , G

γ
3 , G

[c5]
4 )

= EA3
(G1, G2, G3, G4),

where the top equality is by definition of the G̃i’s and where the bottom one
follows from the definition of B in Equation (5) and from the condition on the
exponents given by Equation (2). By definition of (G1, G2, G3, G4) we also have

(G1, G2, G3, G4) = R2 ◦R1 ◦ Ĉ0 ◦ L̂0(X1, . . . , X4).
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Thus, it remains to find a round function R′
2 such that

R′
2 ◦R1 ◦ Ĉ0 ◦ L̂0 = ET ◦R2 ◦R1 ◦ Ĉ0 ◦ L̂0,

where T is the diagonal matrix with diagonal entries α, β, γ, and [c5]. By

Lemma 3, there exists a linear map L′
2 : F4

q2 → F4
q2 such that ET ◦ L̂2 = L′

2 ◦ET .

If we denote by C ′
2 the affine shift derived from Ĉ2 by raising the constants to

the powers α, β, γ and [c5], then the round function

R′
2 = C ′

2 ◦ L′
2 ◦ ETA2

satisfies the criterion. ⊓⊔

Lemma 5 guarantees that we can view (G̃1, G̃2, G̃3, G̃4) as the public key of
a 2-round DME scheme. From there, we can apply the attack of Beullens [4]
or iterate our procedure. In the latter case, the modelings derived to recover
equivalent functions R̃2 and R̃1 will involve different components than the ones
we described for R̃3. However, the shape of the exponent matrices TA2 and A1

ensure that these systems will not be harder to solve than the bilinear system
of above.

6 Experimental Results

A Magma implementation of the attack on the Level I parameters is available at
https://github.com/ppbriaud/DMEattack. For this parameter set, the attack
takes between roughly 500ms and 1s. Perhaps surprisingly, the main cost in
practice corresponds to the application of Algorithm 1 and not to polynomial
system solving. The reason is probably a poor implementation of this part.

The code can be easily adapted to the other security levels by changing the
values of d and e, with no computational overhead other than the increased cost
of the field arithmetic.

A Proof of Lemma 1

Any scalar D ∈ Fq2 can clearly be viewed as a q-symmetric polynomial with
monomial support reduced to the unique orbit {1} if D ̸= 0 and empty monomial
support if D = 0. This proves Statement 1.

Statement 2 is similarly trivial. The monomial support of the sum p1 + p2 is
perfectly controlled except if there is a cancellation when adding two coefficients
for the same monomial. Assuming that the monomial support of both p1 and p2
are fixed and that their coefficients are randomly sampled, such a cancellation
occurs with a probability bounded by the minimum of the numbers of monomials
in the polynomials divided by q2 − 1, which is assumed to be small.

The monomial support of a polynomial product is also perfectly understood
with very high probability (which has nothing to do with q-symmetry). If we let

https://github.com/ppbriaud/DMEattack
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Mi be monomial support of pi for {1, 2}, the monomial support M of p1p2 is
included in the set Mmax containing the distinct elements of the list

[µ1µ2 : µ1 ∈M1, µ2 ∈M2] .

This inclusion is strict precisely when there exists µ ∈Mmax with cancellation∑
µ1∈M1
µ2∈M2
µ1µ2=µ

coef(µ1, p1)coef(µ2, p2) = 0.

Just as in the previous case, this event is of very low probability. If now p1
and p2 are q-symmetric with M = Mmax, let us consider an arbitrary element
µ = µ1µ2 ∈ Mmax which is thus a monomial appearing in p1p2. Any monomial
µ̃ obtained by q-powering variables in µ can clearly be written as µ̃1µ̃2, where
µ̃i belongs

7 to the q-symmetric orbit of µi for {1, 2}. By q-symmetry of p1 (resp.
p2) we have µ̃1 ∈ M1 (resp. µ̃2 ∈ M2), hence µ̃ ∈ Mmax and this monomial
necessarily appears in p1p2. This shows Statement 3.

Statement 4 is obviously a particular case of Statement 3.
Finally, Statement 5 is a consequence of the previous results along with the

fact that every Fq-linear map on Fq2 has a linearized polynomial form. Specif-
ically, the reason that L(p) has the same monomial content as p is because
q-powering simply permutes the monomials of a q-symmetric polynomial and
cannot create coefficient cancellations.

B Gröbner Bases for Specialized Modeling 1

We detail the behaviour of the Gröbner basis algorithm on Modeling 1 when we
fix one variable xi for some i ̸= 5 to a nonzero value a ∈ F∗

q2 . This specialization
may represent the most favorable case as we maximize the number of linear
equations produced at the first step. Our description is made for a graded order
< such that s < t < x,y, z and our goal is mainly to describe the experimental
steps reported in Figure 3 below8.

STEP 1. Former equations with leading terms divisible by xi now become
equations with leading terms zj and yk for j, k ∈ {1..5}. More precisely, we get
zj − a−1ℓi,j(s) = 0 for j ∈ {1..5} and yk − a−1mi,k(t) = 0 for k ∈ {1..5}. This
should explain the 10 linear degree fall polynomials that are observed.

STEP 2. The second step is in degree 2. There, we use the degree fall polyno-
mials found in STEP 1 to “remove” the y and z blocks in the initial modeling.

7 Possibly µ̃i = µi.
8 This figure was generated using the level I parameters but the behaviour would be
analogous for the other levels since the only difference is the value of q.
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1. From the former equations with leading terms x5zj for j ̸= 5, we now get
4 affine equations in Fq2 [x5, s, 1] whose unique quadratic monomial is x5s.
Similarly, we obtain 4 affine equations in Fq2 [x5, t, 1] whose unique quadratic
monomial is x5t from the previous equations with leading terms x5yk for
k ̸= 5. In addition to this new leading term x5s (resp. x5t) we thus expect
3 linear equations in Fq2 [x5, s, 1] (resp. 3 linear equations in Fq2 [t, x5, 1]).
By doing linear combinations between these degree 1 polynomials we may
generate one degree 1 polynomial with leading term x5 and one in Fq2 [s, t, 1]
with leading term t. We cannot create a degree 1 equation with leading term
s because we have > 1 solution (see Lemma 4).

2. From the former equations with leading terms xuzj for u ̸= {i, 5}, we now
get 5 affine equations with leading monomial xus and degree ≤ 1 part in
xu and s. Similarly, we obtain 5 affine equations with leading monomial xut
and degree ≤ 1 part in xu and t from the previous equations with leading
terms xuyk. This time we produce the leading terms {xus, xut} as well as
xu for u ̸= {i, 5}.

Overall, we create 2+ 3 · 2 = 8 new quadratic leading monomials and 2+ 3 · 1 =
5 new degree 1 leading monomials. This is in accordance with the behaviour
observed in Magma.

STEP 3. We are left with the unique variable s if we simplify the system
using the linear equations generated at STEP 2. The only degree 2 polynomial
occurring at this step is univariate and it has leading monomial s2.
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Fig. 3: Trace of Magma’s F4 algorithm [8] on Modeling 1 with one variable xi,
i ̸= 5, fixed to a nonzero value (for security level I).

*******

STEP 1

Basis length: 49, queue length: 310, step degree: 2, num pairs: 10

Basis total mons: 146, average length: 2.980

Number of S-polynomials: 10, different lcms: 10

Number of pair polynomials: 10, at 23 column(s), 0.000

Average length for reductees: 2.00 [10], reductors: 3.00 [10]

Symbolic reduction time: 0.000, column sort time: 0.000

10 + 10 = 20 rows / 23 columns out of 171 (13.450%)

Density: 10.87% / 13.854% (2.5/r), total: 50 (0.0MB)

Matrix construction time: 0.000

Matrix size: 20 by 23

Current max memory usage: 32.1MB (=max)

Before ech memory: 32.1MB (=max)

Row sort time: 0.000

0.000 + 0.000 + 0.000 = 0.000 [10]

Echelonization time: 0.000

After ech memory: 32.1MB (=max)

New rules time: 0.000

Num new polynomials: 10 (100.0%), min deg: 1 [10], av deg: 1.0

Degree counts: 1:10

Queue insertion time: 0.000

Number of linears: 10

New max step: 1, time: 0.000

Step 1 time: 0.000, [0.001], mat/total: 0.000/0.000, mem: 32.1MB (=max)

*******

STEP 2

Basis length: 59, queue length: 338, step degree: 2, num pairs: 38

Basis total mons: 176, average length: 2.983

Number of S-polynomials: 38, different lcms: 38

Number of pair polynomials: 38, at 53 column(s), 0.000

Average length for reductees: 3.00 [38], reductors: 3.00 [38]

Symbolic reduction time: 0.000, column sort time: 0.000

38 + 38 = 76 rows / 53 columns out of 171 (30.994%)

Density: 5.6604% / 9.7791% (3/r), total: 228 (0.0MB)

Matrix construction time: 0.000

Matrix size: 76 by 53

Current max memory usage: 32.1MB (=max)

Before ech memory: 32.1MB (=max)

Row sort time: 0.000

0.000 + 0.000 + 0.000 = 0.000 [13]

Echelonization time: 0.000

After ech memory: 32.1MB (=max)

New rules time: 0.000

Num new polynomials: 13 (34.2%), min deg: 1 [5], av deg: 1.6

Degree counts: 1:5 2:8

Queue insertion time: 0.000

Number of linears: 15

Step 2 time: 0.000, [0.001], mat/total: 0.000/0.000, mem: 32.1MB (=max)
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*******

STEP 3

Basis length: 72, queue length: 308, step degree: 2, num pairs: 8

Basis total mons: 215, average length: 2.986

Number of S-polynomials: 8, different lcms: 8

Number of pair polynomials: 8, at 15 column(s), 0.000

Average length for reductees: 3.00 [8], reductors: 3.00 [12]

Symbolic reduction time: 0.000, column sort time: 0.000

8 + 12 = 20 rows / 15 columns out of 171 (8.772%)

Density: 20% / 36.011% (3/r), total: 60 (0.0MB)

Matrix construction time: 0.000

Matrix size: 20 by 15

Current max memory usage: 32.1MB (=max)

Before ech memory: 32.1MB (=max)

Row sort time: 0.000

0.000 + 0.000 + 0.000 = 0.000 [1]

Echelonization time: 0.000

After ech memory: 32.1MB (=max)

New rules time: 0.000

Num new polynomials: 1 (12.5%), min deg: 2 [1], av deg: 2.0

Degree counts: 2:1

Queue insertion time: 0.000

Number of linears: 15

Step 3 time: 0.000, [0.001], mat/total: 0.000/0.000, mem: 32.1MB (=max)

*******

STEP 4

Basis length: 73, queue length: 300, step degree: 3, num pairs: 300

Basis total mons: 218, average length: 2.986

300 pairs eliminated

No pairs to reduce

Pair elimination time: 0.000

Do extern interreduction (length 25)

INTERREDUCE 17 polynomial(s)

Symbolic reduction time: 0.000

Column sort time: 0.000

17 + 0 = 17 rows / 19 columns

Density: 15.48% / 35.791% (2.9412/r), total: 50 (0.0MB)

Row sort time: 0.000

0.000 + 0.000 = 0.000 [17]

Echelonization time: 0.000

Total reduction time: 0.000

Reduction time: 0.000

Final extern interreduction time: 0.000

Final basis length: 17

Number of pairs: 56

Total pair setup time: 0.000

Max step: 2, time: 0.010

Max num entries matrix: 76 by 53

Max num rows matrix: 76 by 53

Approx mat cost: 8321.32, sym red cost: 338

Approx mat time: 0.000, sym red time: 0.000, total 0.000

Total symbolic reduction time: 0.000

Total column sort time: 0.000

Total row sort time: 0.000

Total matrix time: 0.010

Total new polys time: 0.000

Total queue update time: 0.000

Total Faugere F4 time: 0.010, real time: 0.004


	Practical Attack on All Parameters of the DME Signature Scheme

