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Abstract. This paper introduces signature validation, a primitive al-
lowing any third party T' (Théodore) to verify that a verifier V' (Vadim)
computationally verified a signature s on a message m issued by a signer
S (Sarah).

A naive solution consists in sending by Sarah z = {m, o} where o, is
Sarah’s signature on m and have Vadim confirm reception by a signature
oy Oon .

Unfortunately, this only attests proper reception by Vadim, i.e. that
Vadim could have checked x and not that Vadim actually verified z. By
“actually verifying” we mean providing a proof or a convincing argument
that a program running on Vadim’s machine checked the correctness of z.
This paper proposes several solutions for doing so, thereby providing a
useful building-block in numerous commercial and legal interactions for
proving informed consent.

1 Introduction

In many practical scenarios, it is very useful for all parties to dispose of primitive
allowing any recipient to ascertain that a given party actually verify the digital
signatures that they get. By “actually verified” we mean that that receiving party
checked computationally the signatures on its machine. A classical example is
that of a user sub-contracting verification to a distrusted third party or the
willingness to ascertain full informed consent of the received information.

This paper introduces signature validation, a primitive allowing any third
party T' (Théodore) to verify that a verifier V' (Vadim) computationally verified
a signature s on a message m issued by a signer S (Sarah).

In our scenario Sarah, sends a signed document m to Vadim. Théodore (T)
wishes to check that the Sarah’s signature og was computationally verified by
Vadim.

A classical solution consists in sending to Théodore = (m,og) as well as
Vadim’s signature on « (hereafter oy ). This however only attests the proper
reception of x by Vadim and not actual verification. In other words, oy attests that
Vadim could have verified x and not that Vadim actually verified it. Here “actually
checking” means “providing a mathematical proof or a convincing argument that
a program running on Vadim’s computer checked the correctness of x”.

Is it possible at all to provide such a proof?

As we will see in the subsequent sections, prior art provides several solutions
for doing so but all are involved and frequently interactive constructions that
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depart in terms of complexity and efficiency from the constructions provided in
this paper.

To avoid useless and tedious re-description of some building-blocks and prior
art, we reproduce in this article (sections 3 and 2.1) two sections of the second
author’s paper [CGSHT21].

2 Notations & Building-Blocks

We will use the following standard notations:

Table 1. Conventions used in this paper.

notation ‘ meaning
= mathematical identity
= definitional equality
— assignment
e & X sample an element z uniformly at random from a set X
HASH(z) any (unspecified) hash function
op <+ Sigp(m) a classical signature of message m by party P
b« Verp(op,m) the verification process corresponding to Sigp(m)
op < MRSigp(m) a message recovery signature of message m by party P
{m, b} + MRVerp(op) | the verification process corresponding to MRSigp(m)

2.1 Machine Model and State

As part of some of our protocols we assume that the Théodore and the Sarah agree
on a concrete computational model, that can be simulated using finitely many
resources by a deterministic Turing machine. We only need a way to describe
this model unambiguously (so that its parameters can be agreed upon) and that,
when running a program P on input z, we can obtain the sequence of states 7
that the machine M(P,z) goes through during computation.

Any such model could be used, but for the sake of compactness and applica-
bility, we may want to use higher-level semantics.

One well-studied model that can be used is TinyRAM, introduced by Ben-
Sasson et al. [BCGT13| for the very purpose of proving program execution.
TinyRAM is close enough to real programs that it can be translated and compiled
on most computer architectures, yet it enjoys a full specification together with a
small instruction set, making it easier to prove statements about. In particular,
for our needs, the TinyRAM assembly is very succinct, having only 29 opcodes,
but most importantly its state is straightforward to capture.



We recall here some elementary facts about TinyRAM, for the sake of com-
pleteness'. A TinyRAM machine is described by two integers (W, K) together
with a state (P,pc,{r1,...,rk}, f,mem, x) where:

l Notation “ Definition ‘

P the program to be executed
(considered as a read-only sequence of elementary operations)
pc is a W-bit integer
(indicating which instruction is currently being executed)
T1yeey TK are W-bit registers
f a one-bit flag
mem an array of 2% bytes
T a string of W-bit integers, representing the input

At every clock cycle, TinyRAM fetches the instruction in P indicated by pc,
and reads if necessary from the input tape x. A special instruction answer takes
a single argument and acts as the return value of program P it immediately
terminates execution. Before the execution of P all registers, all memory cells,
the flag and the program counter pc are set to zero. Any other computational
model could be used, but TinyRAM strikes a nice balance between usability and
compactness.

In addition to the above, we enrich M by an additional feature. At every
clock cycle t the machine concatenates its state, i.e. the data:

state; = (P,pcy, {11, ..., Tk }t, Tt, mems, x)

to a global string:

state = {stateo, ...,state,_1}

When M halts it outputs h = HASH(state).

Remark 1. The above assumes that P,z remain invariant during execution, if
such is not the case replace in the above definition P, x by P;, ;.

2.2 Pollard’s Kangaroo Algorithm

One of our solutions will use Pollard’s kangaroo algorithm (also called the A
algorithm) [Pol78,Pol00] as a black-box. Given A = r* mod p and r, the algorithm
will find @ in a complexity of O(y/a). The advantage of this algorithm is its generic
nature, i.e., it will work in any finite cyclic group.

! The current specifications can be found here: http://www.scipr-1lab.org/doc/
TinyRAM-spec-2.000.pdf.
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3 Related Work

The topic of verifiable computing was kickstarted by Babai et al. [BFLS91] in the
context of monitoring large computations performed by a powerful, but fallible,
supercomputer. This contrasts with the more traditional approach of majority
or quorum computation, where a single task is repeated several times with the
hope that not all computers conspire to lure the verifier [CRR11, CL02]. The new
paradigm relies on providing a proof of validity together with a computational
result: the celebrated PCP theorem [ALM™T98, AS98,AS92 Has01| states that with
a suitably encoded proof, it is sufficient for the verifier to check three randomly
chosen bits! Unfortunately, this theorem does not provide a practical, usable
protocol that can be implemented. Furthermore, the PCP proof might be very
long (potentially too long for the verifier to process).

An interactive protocol for verifiable computation was proposed by Ishai et
al. [IKOO7] and the first non-interactive primitives were very limited [Mic94|. A
history of these developments can be found in Goldwasser et al. [GKR15]; several
implementations are also available [SMBW12, VSBW13, PHGR16].

Most of the protocols above start by translating a program into a circuit,
then translating this circuit into a polynomial (arithmetization). The verifier
supplies the input and the prover executes the circuit, producing a transcript
from intermediate values. Rather than sending the transcript to the verifier (who
could then run the circuit themselves, and thus check the transcript’s validity)
the key idea is to convince the verifier that a valid transcript exists by encoding
the transcript in some way, then having the verifier probe some parts of that
encoded transcript. This makes it possible for a computationally weaker verifier
to nevertheless check the work of a computationally stronger prover.

In the non-interactive setting literature this is achieved by either extracting a
commitment [IKO07,Blull,SBV*13,SMBW12,SVP12, VSBW13| or by using
encrypted queries [GGPR13,BCIT13,BCG'13,BCTV14], in both cases using
PCP under the hood. The above thread of research shows that it is possible for
the verifier to check the prover’s claim — for a given program and a given input
— without running the full program itself.

We may also consider that prior art consists of building blocks that, whilst
not resorting to verifiable computation, has as a side effect similar verifiability
properties. A natural primitive that comes to mind while doing so is signcryption
[Zhe97]. A careful look into [Zhe97| reveals that while this primitive is close to
what we wish to achieve, the step performing the verification of the signature,
namely the comparison KHy, (m) = r comes only after the decryption step. It is
hence possible to decrypt m without actually verifying the signature on it.

Our contribution. Our approach achieves a similar goal, albeit much more
efficiently, in the sole context of digital signatures, and by different means. One
advantage of our protocol over traditional verifiable computing approaches is
that it is straightforward to implement, that it is representation-agnostic (in the
sense that any machine model can be used, not only circuits), and that it does
not rest on new mathematical assumptions.



4 Generic Solutions

We start by presenting three generic ways allowing to achieve the desired function.
Here the term generic refers to protocols that can be instantiated using any
underlying digital signature scheme.

4.1 Virtualization

We start by a first construction achieving the stated goals.

Setup. We assume that both parties agree on a program P performing the
verification Verg and a serialization of it written [P]. At start [P] includes the
public-keys of S in its code (hard-coded) or is given the public-keys within the
input parameter.

— Sarah signs the message m and sends to Vadim:

x:={m,os} < {m,Sigg(m)}

— Vadim runs h < M(P, z).
— Vadim signs:
ov = Sigy ({[P], 2, h})

and sends oy to Théodore.
— Théodore computes h independently using his own instance of M and then
checks that:

Very (ov,{[P],z,h}) = True

Remark 2. In many cases, e.g. DSA, the protocol can be considerably simplified
by performing on M only a final crucial verification step. For instance, if we
are given a standard DSA signature r, s it appears unnecessary to implement
the entire Verg on M. Vadim and Théodore may pick a moderate-size (e.g. 80
bit) prime v and compute by any desirable means (not necessarily using M) the
quantity:

p=g™*y"’* mod p mod ¢y

and then run on M only the final operation p mod ¢ and the comparison of
the obtained result to r.

In the case of RSA, this applies as well by computing by any means the
quantity p = 0% mod yn and using M only for the operation p mod n and the
comparison of final result to m.

Note that in both cases M can use a reduced instruction-set, i.e. only the
few opcodes required to run the above operations.

Interestingly, those techniques are remind Shamir’s countermeasure against
fault attacks [Sha99].



Remark 3. It is important to note that the devil is in M’s implementation’s
details. Assume that M is an 8-bit architecture, then, in theory, Vadim may
run the operation M (P, z) for all cycles except one (say j), guess the correct
value of the result register at step j and continue the calculation. Hence, such a
strategy will comply with attack requirement that og was not completely verified
by Vadim using the program P and have a success probability larger than 2~
where H is the digest size of HASH. We consider this as a theoretical risk that can
be mitigated in a several ways, for instance, the same signature can be checked
 times using different programs Py, ..., P,—1 whose results are concatenated
to form the final output. This forces the attacker to successfully guess all the
missing js in all executions. Another mitigation (that does not solve the problem
but makes cheating harder) consists in using an M whose word size is large and
ascertain that all opcodes return a result having a high enough entropy.

This solution requires the implementation of virtual machine M on both
ends and performing trace collections that might be more or less tedious
depending on the complexity of Verg.

4.2 Perturbing

A second solution consists in forcing Vadim to solve an easy challenge derived
from the signature. Here we assume that underlying signature scheme has a
(plausible) conjectured property which is that the signature cannot be derived
from the challenge in a way not that avoids verifying the signature.

Let ¢ € N be a security parameter (typically ¢ = 20).

The protocol is the following:

— Sarah signs the message m and sends to Vadim:
x:={m,o5} + {m,Sigg(m)}
— Vadim generates a random /¢-bit integer u and sends to Théodore:
(m,05) = (m,Sigg(m) + u)
— Vadim determines (using exhaustive search) the value ¢ such that:

Verg(os —i,m) = True

— Vadim signs:
oy = Sigv(m, 0'5)

and sends oy to Théodore who checks that og was properly determined.
Note that Théodore must also check that og verifies correctly with respect
to Sarah’s public key (otherwise Sarah and Vadim may collude to mislead
Théodore).



The crux of this solution lays in the fact that Vadim identified the correct
signature by removing the noise v and that this identification is assumed to be
doable using Verg. A cheating Vadim may avoid verifying the signature and bet
on a given i value but his odds in succeeding to do so are 27¢.

Remark 4. Note that if the protocol is repeated t times using t different signatures
on the same message using smaller ¢ values, security is still 27*. This speeds-up
verification but costs of additional transmission.

Remark 5. Note that if the signature og is publicly available (e.g. the certificate
of a known administration) then this protocol is insecure because Vadim can just
retrieve g and forge a correct answer without doing any exhaustive search work.
Hence, this protocol is usable only in the settings where og is unknown to Vadim.
If such is not the case, the protocol can be slightly modified using randomized
signatures (e.g. [PS16]) to have Théodore challenge Vadim with an equivalent
yet different signature o’y of the same message m. This requires from Théodore
some work (randomizing is in essence equivalent to the verification of a signature)
but can be sub-contracted to some trusted randomizing entity. Note that if the
messages need to be hidden, validation applies to SORCs as well [BF20].

Remark 6. In many settings a complete re-verification is not necessary. e.g. if
Sarah signs m using RSA, she can provide as noisy signature the quantity:
md
(27) mod n

We see that this allows Vadim to avoid repeated exponentiations given that
to spot the correct u all he needs to do is exponentiate once, divide by m and
perform successive modular multiplications by 2 until he gets 1 (or spots a valid
redundancy if m is padding using a probabilistic padding scheme), which is a
very simple operation.

Remark 7. In some ad hoc cases, u can silently exploit internal redundancy
already existing in the protocol. For instance if PSS is used, the signature og

can be replaced by the quantity:
Ugu mod () od n

Vadim can then detect u by repeated elevations to the power e until a correct
signature is found.

Remark 8. If we relax genericity, ad hoc protocols can be more efficient as they
reduce the search space quadratically. We give one example here. Consider a
DSA-like signature scheme where:

m + xr

r=g¢g"modp and s= mod ¢

We note two differences with standard DSA: the first is that r is not reduced
modulo ¢ and the second is the appearance of a new parameter a¢ in the equation
describing s.



To verify such a signature Vadim must check that:

A= g™5y"/* =% mod p

We hence see that verifying the signature requires solving for a the discrete
logarithm problem:
A =7r%mod p

However, as we saw previously the Kangaroo algorithm allows to solve this
equation in O(y/a). In other words, if a is a ¢-bit number, Vadim only needs to
perform O(2¢/?) operations to implement the protocol for a security level of 2¢.

The second solution is conceptually simpler and does not require any virtu-
alization of Verg. It does, however, require on the Vadim’s side, 2¢ native
code re-runs of Verg where £ is a security parameter (typically £ = 20).

4.3 Message Recovery Signatures

The third generic solution is based on message recovery signatures. Interestingly,
it differs from the previous (and the next) solutions in the fact that Vadim learns
m only ipso facto, by performing the verification. In other words, this protocol
is very close to the delivery of a physical registered letter where the receiver
is required to sign the postal receipt before receiving the letter and actually
knowing what information the letter contains. This quasi-perfect simulation of
the physical world makes the proposed protocol promising in digital postage
applications.

— Sarah signs m using a message recovery signature scheme:

os = MRSigg(m)

— Sarah sends og to Vadim.
— Vadim verifies 0g and hence retrieves m.
— Vadim signs:
oy = Sigy (m,og)

and sends oy to Théodore.
— Théodore has all the information required to check that:

Very (ov, (m,o0g)) = True and {True,m} = MRVerg(og)

This solution requires no virtualization or exhaustive search. It assumes
however that the message recovery signature scheme has the property that
it is impossible to extract m otherwise than by verifying the signature. We
regard this conjecture as plausible but it should be carefully checked for



each instance of message recovery signature algorithm used in this generic
construction.

5 Conclusion

The techniques described in this paper can find applications in a variety of
practical situations where a sender needs the proof that a signature was not only
received but also effectively verified by a remote machine. All presented solutions
are simple to model and implement.

The observation of and the techniques in this paper can be extended in various
directions. Here are a three:

{-order validation: Because Vadim signs his validation, nothing prevents from
validating the validation or validating the validation of the validation etc. Such
as recursion gives a more refined, yet somewhat philosophical, notion of trust
and informed consent in electronic exchanges.

Batch validation: We note that batch verification and screening (e.g. [KP17],
[BGR98]) also lends themselves to validation. In this case Théodore can aggregate
the signatures to be checked and get from Vadim a proof of validation for the
entire batch.

Zero-resource zero-knowledge /signature verification: Consider a scenario
where Vadim is nearly resourceless. His goal is to identify Sarah using a ZKP. To
that end, Vadim resorts to the help of Xavier, in whom Vadim has limited trust.
By “limited trust” we encompass the following assumptions:

— Sarah and Xavier do not collude to mislead Vadim.

— We tolerate a scenario where Xavier does not answer (DoS on Vadim).

— We tolerate a scenario where Xavier induces Vadim into falsely rejecting a
honest Sarah.

— We do not tolerate a scenario where Xavier induces Vadim into falsely
accepting a dishonest Sarah.

— We wish the protocol to be resilient to an attacker mispresenting himself as
Xavier to Vadim.

Vadim conducts the full ZKP and gets a trace {z,c,y}?. Vadim sends to
Xavier {z,y} and asks Xavier to exhaustive search c. If Xavier replies with the
correct ¢, Vadim accepts Sarah. Xavier may perform a DoS attack and reply with
a fake ¢ (or not answer at all), but Xavier cannot mislead Vadim into accepting
a fake Sarah unless Sarah and Xavier collude?.

2 Here x denotes the commitment, ¢ the challenge and y the response in the ZKP.
3 or if Xavier poses as being Sarah



4. To minimize this DoS and/or collusion risk Vadim may resort to several
independent Xaviers and implement a majority choice thereby reducing the risk
at wish. The same works with digital signatures and provides Vadim with both
verification and validation for free (here it suffices to perturb og as explained
before). Hence, this idea can prove very useful in scenarios where Vadim has
nearly no computational resources but where communication is cheap.
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