
Registered Functional Encryptions from Pairings★

Ziqi Zhu1, Jiangtao Li2, Kai Zhang3, Junqing Gong1,4,�, and Haifeng Qian1,�

1 East China Normal University
52275902001@stu.ecnu.edu.cn

jqgong@sei.ecnu.edu.cn

hfqian@cs.ecnu.edu.cn
2 Shanghai University

lijiangtao@shu.edu.cn
3 Shanghai University of Electric Power

kzhang@shiep.edu.cn
4 Shanghai Qi Zhi Institute

Abstract. This work initiates the study of concrete registered functional encryption (Reg-FE) beyond “all-or-
nothing” functionalities:

– We build the first Reg-FE for linear function or inner-product evaluation (Reg-IPFE) from pairings. The
scheme achieves adaptive IND-security under 𝑘-Lin assumption in the prime-order bilinear group. A minor
modification yields the first Registered Inner-Product Encryption (Reg-IPE) scheme from 𝑘-Lin assumption.
Prior work achieves the same security in the generic group model.

– We build the first Reg-FE for quadratic function (Reg-QFE) from pairings. The scheme achieves very selec-
tive simulation-based security (SIM-security) under bilateral 𝑘-Lin assumption in the prime-order bilinear
group. Here, “very selective” means that the adversary claims challenge messages, all quadratic functions
to be registered and all corrupted users at the beginning.

Besides focusing on the compactness of the master public key and helper keys, we also aim for compact cipher-
texts in Reg-FE. Let 𝐿 be the number of slots and 𝑛 be the input size. Our first Reg-IPFE has weakly compact
ciphertexts of size𝑂(𝑛 · log 𝐿) while our second Reg-QFE has compact ciphertexts of size𝑂(𝑛+ log 𝐿). Technically,
for our first Reg-IPFE, we employ nested dual-system method within the context of Reg-IPFE; for our second Reg-
QFE, we follow Wee’s “IPFE-to-QFE” transformation [TCC’ 20] but devise a set of new techniques that make our
pairing-based Reg-IPFE compatible. Along the way, we introduce a new notion named Pre-Constrained Registered
IPFE which generalizes slotted Reg-IPFE by constraining the form of functions that can be registered.

Contents

§1. Introduction, 1 §2. Preliminaries, 13 §3. Slotted Registered Inner-product Functional Encryption, 18 §4.
Simulation-based Security for Reg-FE, 28 §5. Compact Reg-FE from Multi-instance Slotted Reg-FE, 30 §6. Pre-
Constrained Slotted Reg-IPFE, 36 §7. Registered Quadratic Functional Encryption, 55 §A. Pre-constrained Reg-
FE, 63 §B. Registered Inner-product Encryption with Full Attribute Hiding, 65 §C. Slotted Reg-IPFE with Very
Selective SIM-Security, 76 §D. Sanity Check of the Simulators, 87

1 Introduction

In Registered Functional Encryption (Reg-FE) [FFM+23,DP23], a trusted party generates a common reference string
crs and then can go offline. The system is maintained by curator who holds crs but no secret values. When a user
★ This work is partially supported by National Natural Science Foundation of China (62372175, 62372285), Shanghai Rising-

Star Program (22QA1403800), Science and Technology on Communication Security Laboratory Foundation (6142103022208),
Innovation Program of Shanghai Municipal Education Commission (2021-01-07-00-08-E00101) and the “Digital Silk Road”
Shanghai International Joint Lab of Trustworthy Intelligent Software (22510750100).

registers public key pkwith a specific function 𝑓 , the curator updates the master public keympk and sends a helper
key hsk to the new user. This hsk allows the user’s secret key sk to decrypt a ciphertext ct of 𝑥 under this new mpk
to 𝑓 (𝑥). Additionally, the registration process might also update helper keys for existing users in the system. Two
crucial features of RFE are: (1) all actions performed by the curator are deterministic and auditable, and (2) mpk
and hsk should be compact and update procedure must be efficient; ideally, objective sizes and algorithm costs are
polylogarithmic in the number of registered users in the system.

Conceptually, Reg-FE covers the notion of registered attribute-based encryption (Reg-ABE) [HLWW23]. In par-
ticular, each user registers a predicate 𝑝 instead of a function 𝑓 , and a ciphertext encrypts message 𝑚 with respect
to an attribute 𝑎; decrypting the ciphertext using the secret key sk corresponding to predicate 𝑝 recovers 𝑚 if
𝑝(𝑎) = 1. The most fundamental instance of Reg-ABE is called registration-based encryption (RBE) [GHMR18] cor-
responding to IBE [BF01,BB04,Wat05].

Historically, several constructions for RBE were first proposed via non-black-box technique based on garbling
scheme [GHMR18,GHM+19,GV20,CES21]. Constructions via black-box technique were recently proposed based on
bilinear maps [GKMR22] and learning with error (LWE) [DKL+23]. Almost simultaneously, Reg-ABE that goes be-
yond RBE was realized using bilinear maps [HLWW23,FFM+23,ZZGQ23] and witness encryption [FWW23]. How-
ever, for more general Reg-FE, we only see two recent work that presented schemes based on iO [FFM+23,DP23].

In this work, we will focus on Reg-FE for concrete functionalities instead of general functions in [FFM+23,DP23]
and pursue pairing-based constructions from standard assumptions, notably 𝑘-Lin assumption and variants.

1.1 Results

Our main results are two-fold:

(1) We build the first Reg-FE for linear functions or inner-product evaluation (Reg-IPFE) from pairings: Each user is
allowed to register pkwith a linear function represented by a vector y; decrypting a ciphertext of vector x gives
xy⊤. The scheme achieves adaptive indistinguishability-based security (IND-security) under 𝑘-Lin assumption
in the prime-order bilinear group.

(2) We build the first Reg-FE for quadratic functions (Reg-QFE) from pairings: Each user is allowed to register pk
with a quadratic function represented by a vector f; decrypting a ciphertext of (x1, x2) gives (x1 ⊗ x2)f⊤. The
scheme achieves very selective simulation-based security (SIM-security) under bilateral 𝑘-Lin assumption in
the prime-order bilinear group. Here, “very selective” means that the adversary claims challenge messages,
all quadratic functions to be registered, and all corrupted users at the beginning.

This is the first time we have concrete Reg-FE from standard assumptions with functionalities beyond “all-or-
nothing” decryption. As prior pairing-based schemes [HLWW23,FFM+23,ZZGQ23], all our Reg-FE schemes support
bounded number of slots, have a structural crs and require a specific procedure checking the validity of public key
in the registration. Let 𝐿 be the number of slots and 𝑛 be the input size (which refers to |x| in Reg-IPFE and |x1 |, |x2 |
in Reg-QFE, respectively). Our schemes respectively have compact mpk of size 𝑂(𝑛 · log 𝐿) and 𝑂(𝑛 + log 𝐿), and
both schemes have compact hsk of size 𝑂(𝑛 · log 𝐿). By contrast with RBE and Reg-ABE, we also concern ciphertext
size in terms of 𝑛 and 𝐿: our first Reg-IPFE has weak compact ct of size 𝑂(𝑛 · log 𝐿) while our second Reg-QFE has
compact ct of size 𝑂(𝑛 + log 𝐿). We summarize our results in Figure 1.

More Results. Our first Reg-IPFE scheme implies the following results:

(i) A minor modification to our Reg-IPFE scheme yields the first Registered Inner-Product Encryption (Reg-IPE)
scheme that supports full attribute-hiding feature from 𝑘-Lin assumption. Prior work [FFM+23] achieves the

2

Scheme Function Security Assumptions |mpk| |hsk| |ct|

[DP23],[FFM+23] General Ad-IND iO + SSB 1 1 𝑛 log 𝐿

result (1) Linear Ad-IND 𝑘-Lin 𝑛 log 𝐿 𝑛 log 𝐿 𝑛 log 𝐿

result (ii) Linear Sel-IND 𝑘-Lin 𝑛 + log 𝐿 log 𝐿 𝑛 + log 𝐿
Linear Sel∗-SIM bi-𝑘-Lin 𝑛 + log 𝐿 log 𝐿 𝑛 + log 𝐿

result (2) Quadratic Sel∗-SIM bi-𝑘-Lin 𝑛 + log 𝐿 𝑛 log 𝐿 𝑛 + log 𝐿

Fig. 1: Summary of existing registered functional encryption beyond Reg-ABE. Here 𝑛 is the message size, and 𝐿 is
the maximum number of slots in the system. In the column Security, “Ad”, “Sel” and “Sel∗” stand for “adaptive”,
“selective” and “very selective”; “IND” and “SIM” indicate IND- and SIM-security. In column Assumptions, “SSB”
stands for “somewhere statistically binding hash functions” while “bi-𝑘-Lin” means “bilateral 𝑘-Lin assumption”.

same security in the generic group model; this resolved the open problem posed in [FFM+23]. The scheme
is similar to the Reg-ABE for zero inner-product predicate in [ZZGQ23] (and IPE in [OT12,CGKW18,CGW18]).
However their generic framework failed to give a proof for full attribute-hiding; our work show that, for the
concrete scheme, it is actually feasible to give a proof from 𝑘-Lin.

Along the way to our second Reg-QFE scheme, we obtain the following results which can be of independent interest:

(ii) We obtain two Reg-IPFE schemes with compact ciphertext of size 𝑂(𝑛 + log 𝐿) and shorter hsk of size inde-
pendent of 𝑛 but weaker security guarantee; the selectively IND-secure scheme is based on 𝑘-Lin assumption
while the very selectively SIM-secure scheme is based on bi-𝑘-Lin assumption. See Figure 1. We believe they
will find more theoretical applications in the future.

(iii) We introduce a new notion Pre-Constrained Registered IPFE (PReg-IPFE) which generalizes slotted Reg-IPFE. It
generates crs with a set of matrices M1, . . . ,M𝐿 and decryption gives xM𝑖f⊤𝑖 for slot 𝑖 that is with f𝑖 . We concep-
tually consider y⊤

𝑖
= M𝑖f⊤𝑖 as the linear function related to slot 𝑖. Imagine M is a “tall” matrix, we are forcing

y⊤
𝑖
∈ span(M𝑖). We believe this will motivate the study of registration patterns orthogonal to functionalities.

Open Problems. We list some open problems:

– We consider pre-constrained Reg-IPFE as a theoretical tool for a specific task. We believe it is worthwhile to
investigate more general definitions, security, and constructions. They can be of independent interest even in
real-world applications. Here we mention a related notion called Pre-Constrained Encryption [AJJM22] which
has many theoretical implications. It is also nice to clarify the relation between these two notions.

– For Reg-IPFE, our work suggests that compact ciphertext and adaptive security can not be achieved simulta-
neously. One can disprove this conjecture by showing a Reg-IPFE scheme with both properties or providing an
impossibility result to confirm it.

– Our Reg-QFE has crs of size 𝑛2 · 𝐿2 · log 𝐿 where 𝑛 is the input size and 𝐿 is the number of slots. It is unclear
whether such a huge crs is inevitable and is nice to have a more efficient Reg-QFE scheme with |crs| = 𝑛·𝐿2·log 𝐿.

Related Work. We mention several recent work on RBE. [FKdP23] proposed a new black-box construction of RBE
from Cuckoo hashing, which supports unbounded identity spaces based on pairings. [MQR22] found the trade-off
between the size of public parameters and the number of decryption updates in RBE, they find out that the opti-
mal number of decryption updates is Ω(log 𝐿/log log 𝐿), when the size of public parameters is at most poly(log 𝐿).
They prove their result by constructing a polynomial-time adversary with the “good” identities tuples for attack,

3

when the RBE scheme is beyond the trade-off they claim. [MQ23] constructed an RBE that achieves the optimal
number of decryption updates with an online merger. In particular, they constructed an (approximately) optimal
online merger, and applied it to the iO-based construction of [GHMR18] to achieve the optimal decryption update
of RBE. In [HMQS23], Hajiabadi et al. showed the impossibility of black-box construction of RBE solely based on the
idealized models of random trapdoor permutations (TDP) or Shoup’s generic group model, without any other con-
crete assumption. With the black-box equivalence between RBE and public-key compression (PKCom), they proved
their impossibility by showing there exists an adversary with polynomial queries, who breaks any PKCom which
is solely based on either TDP model or Shoup’s GGM. Their impossibility holds even if the size of crs is growing
with the number of registered users.

Concurrent Work. As an independent work, Datta et al. [DPY23] (which is an updated version of [DP23]) provided
a pairing-based Reg-IPFE from (plain) IPFE proposed by Abdalla et al. [ABDP15], and extended their Reg-IPFE to
support fine-grained access control with linear secret sharing access structure (LSSS) policy. Their schemes are
secure in the generic bilinear group model.

1.2 Slotted Reg-IPFE from 𝒌-Lin

Thanks to “powers-of-two” transformation [GHMR18,HLWW23,FFM+23], we focus on slotted Reg-IPFE where we
do not worry about the complex update procedure. Let lower-case boldface denote row vectors and upper-case
boldface denote matrices. An 𝐿-slotted Reg-IPFE simplifies Reg-IPFE for 𝐿 users as follows: After collecting all
R = ((pk1, y1), . . . , (pk𝐿, y𝐿)), the aggregator generates a master public key mpk for encryption and a set of helper
keys hsk1, . . . , hsk𝐿 for all registered users. Conceptually5, the adaptive security requires that the adversary cannot
distinguish the ciphertext ct∗ of message x∗0 and x∗1 given mpk, hsk1, . . . , hsk𝐿 and secret keys sk𝑖 from adversari-
ally chosen slots with the restriction x∗0y

⊤
𝑖
= x∗1y

⊤
𝑖
. In this overview, we assume all pk1, . . . , pk𝐿 are generated by the

challenger and the case with malicious keys can be handled via quasi-adaptive NIZK [ZZGQ23].

Recap: ABDP IPFE [ABDP15]. Assume G is a finite cyclic group of prime order 𝑝 with generator 𝑔 . Write [𝑥] =
𝑔𝑥 ∈ G for 𝑥 ∈ Z𝑝. Our starting point is the IPFE scheme for 𝑛 dimensional space from [ABDP15]:

mpk = [w]; ct = [𝑠, 𝑠w + x]; sk = wy⊤ (1)

where w← Z𝑛𝑝 and 𝑠← Z𝑝. The correctness uses the equality

(
ct︷ ︸︸ ︷

𝑠w + x) · y⊤ −
ct︷︸︸︷
𝑠 ·

sk︷︸︸︷
wy⊤ = xy⊤ (2)

The selective security of the scheme is based on DDH assumption. We omit the proof here since it is not quite
related to our final proof for slotted Reg-IPFE.

Warm-up. We employ the strategy in [ZZGQ23] and [HLWW23] to build a one-slot Reg-IPFE and then extend it to
a 𝐿-slotted Reg-IPFE. Let us give a slightly detailed explanation. Based on the correctness of equation (2), we first
enables a user with an ElGamal-type key pair (pk, sk) to register (pk, y), as follows:

– crs = [w] is basically the mpk of ABDP IPFE (1) and the key pair of user is (pk, sk) = ([𝑢], 𝑢) with 𝑢← Z𝑝.

5 Formally, the adversary is given crs that allows it to derive mpk, hsk1, . . . , hsk𝐿 on its own; our conceptual definition gives a
simple mind model analogous to FE.

4

– To register R = (pk, y), the aggregator generates the corresponding master public key mpkR = [𝑢 +wy⊤,w].
– Under this mpkR, we encrypt x as ct = [𝑠, 𝑠𝑢 + 𝑠wy⊤, 𝑠w + x] where 𝑠← Z𝑝.

The main idea above is to embed the decryption shown in (2) into the ciphertext and use an ElGamal encryption
to hide the key wy⊤. The correctness uses

(
ct︷ ︸︸ ︷

𝑠w + x) · y⊤ − (

ct︷ ︸︸ ︷
𝑠𝑢 + 𝑠wy⊤) +

ct︷︸︸︷
𝑠 ·

sk︷︸︸︷
𝑢 = xy⊤. (3)

The security roughly follows from the case study below.

– When sk = 𝑢 is secret, DDH assumption implies that ct∗ ≈ [𝑠, 𝑢̃ + wy⊤,w + x∗
𝑏
] where 𝑢̃ are independent and

uniformly distributed, and the security follows from the fact that (𝑢̃ +wy⊤,w + x∗
𝑏
) ≡ (𝑢̃,w + x∗

𝑏
) ≡ (𝑢̃,w) hides

x∗
𝑏

in its entirety.
– When sk = 𝑢 is leaked, DDH assumption implies that ct ≈ [𝑠, 𝑠𝑢 + w̃y⊤, w̃ + x∗

𝑏
] where we cannot change 𝑠𝑢

to 𝑢̃ as before. In this case, we do not expect that ct hides x∗
𝑏
; instead, we can argue that that (w̃y⊤, w̃ + x∗0) ≈𝑠

(w̃y⊤, w̃ + x∗1) since x∗0y
⊤ = x∗1y

⊤.

This simple scheme is the so-called one-slot Reg-IPFE. The 𝐿-slot Reg-IPFE is the “sum” of 𝐿 parallel instances of the
above one-slot Reg-IPFE (namely, with fresh w for each slot) that ensures compact mpk (and ct as well):

– crs = [w1, . . . ,w𝐿] is the concatenation of crs’s from 𝐿 fresh one-slot Reg-IPFE instances, i.e., crs𝑖 = [w𝑖] for all
𝑖 ∈ [𝐿], and the 𝑖-th user has key pair (pk𝑖 , sk𝑖) = ([𝑢𝑖], 𝑢𝑖) with 𝑢𝑖 ← Z𝑛𝑝 for all 𝑖 ∈ [𝐿].

– To register R = ((pk1, y1), . . . , (pk𝐿, y𝐿)), the aggregator generates the corresponding master public keympkR =

[∑ 𝑗 (𝑢 𝑗 +w 𝑗y⊤𝑗),
∑
𝑗 w 𝑗] where index 𝑗 ranges from 1 to 𝐿; this sums up all mpkpk𝑖 ,y𝑖 in the one-slot Reg-IPFE with

crs𝑖 for all 𝑖 ∈ [𝐿].
– Under this mpkR, one encrypts x as ct = [𝑠, 𝑠∑ 𝑗 (𝑢 𝑗 + w 𝑗y⊤𝑗), 𝑠

∑
𝑗 w 𝑗 + x]; this is analogous to the encryption

procedure in the one-slot scheme.

However “addition” of 𝐿 one-slot Reg-IPFE breaks the correctness: a user even holding the correct secret key cannot
decrypt as in the one-slot setting. Analogous to [ZZGQ23], we turn to bilinear groups and use source group G2 to
accommodate the helper keys. Let G1 = ⟨𝑔1⟩,G2 = ⟨𝑔2⟩ be finite cyclic source groups of bilinear maps 𝑒 and G𝑇
be the target group; the order of all groups is prime 𝑝. We place the above parallel instances over G1, and define
helper keys:

hsk𝑖 = [𝑟𝑖 , 𝑟𝑖
∑
𝑗≠𝑖 (𝑢 𝑗 +w 𝑗y⊤𝑗), 𝑟𝑖

∑
𝑗≠𝑖 w 𝑗]2, 𝑖 ∈ [𝐿] .

Observe that, for each 𝑖 ∈ [𝐿], hsk𝑖 over G2 helps to recover a ciphertext of the same message x over G𝑇 in the
one-slot Reg-IPFE instance under mpkpk𝑖 ,y𝑖 (generated from crs𝑖 and pk𝑖 , y𝑖) with random coin 𝑠𝑟𝑖 instead of 𝑠:

hsk𝑖︷︸︸︷
𝑟𝑖 · (

ct︷ ︸︸ ︷
𝑠
∑
𝑗 w 𝑗 + x) −

ct︷︸︸︷
𝑠 · (

hsk𝑖︷ ︸︸ ︷
𝑟𝑖

∑
𝑗≠𝑖 w 𝑗) = 𝑠𝑟𝑖w𝑖 + x

𝑟𝑖 · (𝑠
∑
𝑗 (𝑢 𝑗 +w 𝑗y⊤𝑗)) − 𝑠 · (𝑟𝑖

∑
𝑗≠𝑖 (𝑢 𝑗 +w 𝑗y⊤𝑗)) = 𝑠𝑟𝑖 (𝑢𝑖 +w𝑖y⊤𝑖)

Given sk𝑖 = 𝑢𝑖 and y𝑖 , decryption then works as in the one-slot scheme over G𝑇 , cf. (3). Note that the helper keys
hsk1, . . . , hsk𝐿 are generated by the curator during the registration and crs will contain terms [𝑟𝑖 , 𝑟𝑖w 𝑗]2, where 𝑖, 𝑗
ranges from 1 to 𝐿 with the restriction that 𝑖 ≠ 𝑗; this ensures that all helper keys can be computed publicly and
deterministically.

5

Proof: Strategy. The dual-system method used in [HLWW23,ZZGQ23] is not sufficient for proving our warm-up
Reg-IPFE. In previous dual-system proofs for Reg-ABE, one conceptually changes hsk1, . . . , hsk𝐿 one-by-one and
then changes ct∗ in the last step. In our setting for Reg-IPFE, each time we “touch” an hsk𝑖 , we change ct∗ from an
encryption of x∗0 to an encryption of x∗1. Therefore we employ the so-called nested dual-system method [LW11]; this
has extensive applications in IPE with full attribute-hiding features [OT12,CGKW18,CGW18]. In this overview, we
will explain the idea using bilinear group (G1,G2,G𝑇 , 𝑒) of composite order 𝑁 = 𝑝1𝑝2𝑝3𝑝4 where 𝑝1, 𝑝2, 𝑝3, 𝑝4 are
prime. For each 𝛾 ∈ {1, 2, 𝑇 }, group G𝛾 can be decomposed as G𝛾,1 × G𝛾,2 × G𝛾,3 × G𝛾,4 where the four subgroups
have orders 𝑝1, 𝑝2, 𝑝3, 𝑝4, respectively. For 𝜎 ∈ [4], let G𝛾,𝜎 = ⟨𝑔𝛾,𝜎⟩. We will use implicit representation analogous
to the prime-order group: for each 𝛾 ∈ {1, 2, 𝑇 } and 𝑆 ⊆ {1, 2, 3, 4}, we will write [𝑥]𝑆𝛾 =

∏
𝜎∈𝑆 𝑔

𝑥
𝛾,𝜎 . As usual, this

applies to matrices and vectors. When |𝑆 | = 1, i.e., 𝑆 = {𝜎}, we may simplify the notation as [𝑥]𝜎𝛾 . We quickly review
properties of composite-order bilinear groups:

– orthogonality: for 𝜎, 𝛿 ∈ {1, 2, 3, 4}, we have 𝑒([1]𝜎1 , [1]𝛿2) = [0]𝑇 when 𝜎 ≠ 𝛿;
– non-degenerate: for 𝜎, 𝛿 ∈ {1, 2, 3, 4}, we have 𝑒([1]𝜎1 , [1]𝛿2) ≠ [0]𝑇 when 𝜎 = 𝛿.

The common computational assumption is subgroup decision assumption indicating indistinguishability between
random samples from two specific subgroups. We will give concrete assumptions when we use them in the proof.

Proof in Composite-order Groups. We embed our warm-up scheme into subgroups of order 𝑝1 and 𝑝4:

crs = [w 𝑗]11, ∀ 𝑗 ∈ [𝐿]
[𝑟𝑖 , 𝑟𝑖w 𝑗] {1,4}2 , ∀(𝑖, 𝑗) ∈ [𝐿] × [𝐿] s.t. 𝑖 ≠ 𝑗

mpkR = [∑ 𝑗 (𝑢 𝑗 +w 𝑗y⊤𝑗),
∑
𝑗 w 𝑗]11

hsk𝑖 = [𝑟𝑖 , 𝑟𝑖
∑
𝑗≠𝑖 (𝑢 𝑗 +w 𝑗y⊤𝑗), 𝑟𝑖

∑
𝑗≠𝑖 w 𝑗] {1,4}2

ct = [𝑠, 𝑠∑ 𝑗 (𝑢 𝑗 +w 𝑗y⊤𝑗), 𝑠
∑
𝑗 w 𝑗 + 𝑠x]11

where sk𝑖 = 𝑢𝑖 ← Z𝑁 and pk𝑖 = ([𝑢𝑖]11, {[𝑟 𝑗𝑢𝑖]
{1,4}
2 } 𝑗≠𝑖) for all 𝑖 ∈ [𝐿]. Here we replace x with 𝑠x, highlighted with

a dashed box; the reader will see the reason later. Also, we will assume that the message x is sufficiently small so
that x mod 𝑝1 = x mod 𝑝2 = x mod 𝑝3 = x mod 𝑝4 (e.g., x ∈ 𝐵𝑛 where 𝐵 = {1, . . . ,min{𝑝1, 𝑝2, 𝑝3, 𝑝4}}). This is a
restriction applied to our composite-order group but not to our prime-order scheme.

Dual-system Method. Recall that x∗0, x
∗
1 are challenge messages. Let ([𝑢𝑖]1, y𝑖) be with slot 𝑖 ∈ [𝐿] and assume

𝑢1, . . . , 𝑢𝐿 are all honestly chosen (but can be leaked to the adversary later). From a very high level, we will follow
the dual-system method, see Fig 2a. We begin with a challenge ciphertext of x∗

𝑏
where 𝑏 is the secret bit, see G0.

– First, we change the challenge ciphertext as below, which corresponds to G2:

[𝑠, 𝑠∑ 𝑗 (𝑢 𝑗 +w 𝑗y⊤𝑗), 𝑠
∑
𝑗 w 𝑗 + 𝑠x∗0]21 · [𝑠, 𝑠

∑
𝑗 (𝑢 𝑗 +w 𝑗y⊤𝑗), 𝑠

∑
𝑗 w 𝑗 + 𝑠x∗𝑏]

{3,4}
1 .

– Second, we change all hsk𝑖 ’s to the following form, which corresponds to G3:

[𝑟𝑖 , 𝑟𝑖
∑
𝑗≠𝑖 (𝑢 𝑗 +w 𝑗y⊤𝑗), 𝑟𝑖

∑
𝑗≠𝑖 w 𝑗]22 · [𝑟𝑖 , 𝑟𝑖

∑
𝑗≠𝑖 (𝑢 𝑗 +w 𝑗y⊤𝑗), 𝑟𝑖

∑
𝑗≠𝑖 w 𝑗]12.

By this, we let ct and all hsk𝑖 interplay only through 𝑝2-subgroup where x∗0 is in the place of x∗
𝑏
. This allows us

to reach a challenge ciphertext of x∗0, i.e., G4, via a simple argument that makes use of the absence of 𝑝3- and
𝑝4-components in hsk1, . . . , hsk𝐿. To complete the proof, we need to justify the above two bullets. The first bullet
follows from (a) subgroup decision assumption [𝑠] {1}1 ≈𝑐 [𝑠] {2,3,4}1 given [1]11, [1]

{1,4}
2 that “moves” 𝑝1-component

of ct∗ to 𝑝2𝑝3𝑝4-subgroup, i.e., G0 ↦→ G1, and (b) the same argument above but over 𝑝2-subgroup instead of 𝑝3-
and 𝑝4-subgroup, see G1 ↦→ G2. The second bullet is intended to work in a one-by-one fashion and uses nested
dual-system method sketched below.

6

Gm Grp ct∗ hsk𝑖 Remark

G0 𝑝1 x∗
𝑏

✓

Real Game𝑝2 — —
𝑝3 — —
𝑝4 — ✓

G1 𝑝1 — ✓

SD: 𝑝1 → 𝑝2𝑝3𝑝4
𝑝2 x∗

𝑏
—

𝑝3 x∗
𝑏

—
𝑝4 x∗

𝑏
✓

G2 𝑝1 — ✓

Statistical
𝑝2 x∗0 —
𝑝3 x∗

𝑏
—

𝑝4 x∗
𝑏

✓

G3 𝑝1 — ✓

Fig. 2b
𝑝2 x∗0 ✓
𝑝3 x∗

𝑏
—

𝑝4 x∗
𝑏

—
G4 𝑝1 — ✓

Statistical
𝑝2 x∗0 ✓
𝑝3 x∗0 —
𝑝4 x∗0 —

(a) Games for dual-system method with 𝑖 ∈ [𝐿].

Gm Grp ct∗ hsk𝑖<ℓ hskℓ hsk𝑖>ℓ Remark

G3.ℓ.0 𝑝1 — ✓ ✓ ✓
G3.1.0 = G2𝑝2 x∗0 ✓ — —

𝑝3 x∗
𝑏

— — —
G3.𝐿+1.0 = G3𝑝4 x∗

𝑏
— ✓ ✓

G3.ℓ.1 𝑝1 — ✓ ✓ ✓

SD: 𝑝4 → 𝑝3
𝑝2 x∗0 ✓ — —
𝑝3 x∗

𝑏
— ✓ —

𝑝4 x∗
𝑏

— — ✓

G3.ℓ.2 𝑝1 — ✓ ✓ ✓

Statistical
𝑝2 x∗0 ✓ — —
𝑝3 x∗0 — ✓ —
𝑝4 x∗

𝑏
— — ✓

G3.ℓ.3 𝑝1 — ✓ ✓ ✓

SD: 𝑝3 → 𝑝2
𝑝2 x∗0 ✓ ✓ —
𝑝3 x∗0 — — —
𝑝4 x∗

𝑏
— — ✓

G3.ℓ.4 𝑝1 — ✓ ✓ ✓
Statistical

𝑝2 x∗0 ✓ ✓ —
𝑝3 x∗

𝑏
— — —

G3.ℓ.4 = G3.ℓ+1.0𝑝4 x∗
𝑏

— — ✓

(b) Games for nested dual-system method where ℓ ∈ [𝐿].

Fig. 2: Game sequence in the composite-order group. For each game, we show the challenge ciphertext ct∗ and
helper keys hskℓ in the template:

∏
𝜎∈𝑆 [𝑠, 𝑠

∑
𝑗 (𝑢 𝑗 + w 𝑗y⊤𝑗), 𝑠

∑
𝑗 w 𝑗 + 𝑠x𝜎]𝜎1 and [𝑟𝑖 , 𝑟𝑖

∑
𝑗≠𝑖 (𝑢 𝑗 + w 𝑗y⊤𝑗), 𝑟𝑖

∑
𝑗≠𝑖 w 𝑗]𝑆𝑖2

where 𝑆, 𝑆1, . . . , 𝑆𝐿 ∈ 2[4] . In column ct∗, we show x𝜎 in row 𝑝𝜎 for all 𝜎 ∈ 𝑆 and put a symbol “—” in row 𝑝𝜎 when
𝜎 ∉ 𝑆. In column hsk𝑖 , we put a symbol “✓” in row 𝑝𝜎 when 𝜎 ∈ 𝑆𝑖 , otherwise leave “—”.

Nested Dual-System Method. For each ℓ ∈ [𝐿], we change hskℓ in the form

[𝑟ℓ, 𝑟ℓ
∑
𝑗≠ℓ (𝑢 𝑗 +w 𝑗y⊤𝑗), 𝑟ℓ

∑
𝑗≠ℓ w 𝑗]𝑆ℓ2

one-by-one via the following transitions:

𝑆ℓ : {1, 4} ↦−→ {1, 3} ↦−→ {1, 2}

where they corresponds toG3.ℓ.0,G3.ℓ.1 (also,G3.ℓ.3), andG3.ℓ.4, respectively, in Figure 2b. We cannot achieve {1, 4} ↦−→
{1, 2} directly (as in standard dual-system proof) since we have x∗0 in the 𝑝2-component of ct (see the boxed term
in ct) but x∗

𝑏
in the 𝑝4-component of ct∗, subgroup decision assumption [𝑟] {4}2 ≈𝑐 [𝑟] {2}2 cannot apply. Here we use

𝑝3-subgroup as a step-stone: We first apply the subgroup decision assumption [𝑟ℓ] {4}2 ≈𝑐 [𝑟ℓ] {3}2 given [1] {3,4}1 that
“moves” 𝑝4-component of hskℓ to 𝑝3-subgroup. Observe that only hskℓ interplays with ct∗ through 𝑝3-subgroup,
the following case study switches x∗

𝑏
in the 𝑝3-component of ct∗ to x∗0:

– If slot ℓ is honest, then 𝑢ℓ mod 𝑝3 is hidden and thus wℓ mod 𝑝3 hides x∗
𝑏
.

– If slot ℓ is corrupted, then we have wℓy⊤ℓ,wℓ + x∗𝑏 ≡ wℓy⊤ℓ,wℓ + x∗0 mod 𝑝3 with the restriction x∗0y
⊤
ℓ = x∗1yℓ.

This corresponds to G3.ℓ.1 ↦→ G3.ℓ.3 in Figure 2b. By this, we have x∗0 over both 𝑝2- and 𝑝3-subgroup, and the sub-
group decision assumption [𝑟ℓ] {3}2 ≈𝑐 [𝑟ℓ] {2}2 given [1] {2,3}1 gives desired form of hskℓ. Finally, we roll back the
𝑝3-component of ct to encrypt x∗

𝑏
for future use, i.e., for handling hskℓ+1 in the next loop.

7

Our Scheme in the Prime-order Group. Neglecting subscripts 𝑖, 𝑗, we do the following substitution with basis
A ∈ Z𝑘×(𝑘+1)𝑝 and B ∈ Z(2𝑘+1)×𝑘𝑝 as in [CGW18]:

w ∈ Z𝑛𝑁 ↦→W ∈ Z(𝑘+1)×(2𝑘+1)𝑛𝑝

[𝑠]11 ∈ G1,1, [𝑟]
{1,4}
2 ∈ G2,1 × G2,4 ↦→ [sA]1 ∈ G1×(𝑘+1)1 , [Br⊤]2 ∈ G2𝑘+12

[w]1 ∈ G𝑛1,1, [𝑠w]11 ∈ G𝑛1,1 ↦→ [AW]1 ∈ G
𝑘×(2𝑘+1)𝑛
1 , [sAW]1 ∈ G1×(2𝑘+1)𝑛1

[𝑟w] {1,4}2 ∈ (G2,1 × G2,4)𝑛 ↦→ [W(I𝑛 ⊗ Br⊤)]2 ∈ G(𝑘+1)×𝑛2

This yields our 𝐿-slotted Reg-IPFE scheme in the prime-order group:

crs = [AV]1, [AW 𝑗]1, ∀ 𝑗 ∈ [𝐿]
[Br⊤

𝑖
,W 𝑗 (I𝑛 ⊗ Br⊤𝑖)]2, ∀(𝑖, 𝑗) ∈ [𝐿] × [𝐿] s.t. 𝑖 ≠ 𝑗

mpkR = [∑ 𝑗 (AU 𝑗 + AW 𝑗 (y⊤𝑗 ⊗ I2𝑘+1)),
∑
𝑗 AW 𝑗 ,AV]1

hsk𝑖 = [Br⊤𝑖 ,
∑
𝑗≠𝑖 (U 𝑗Br⊤𝑖 +W 𝑗 (y⊤𝑗 ⊗ Br

⊤
𝑖
)),∑ 𝑗≠𝑖 W 𝑗 (I𝑛 ⊗ Br⊤𝑖)]2

ct = [sA, s∑ 𝑗 (AU 𝑗 + AW 𝑗 (y⊤𝑗 ⊗ I2𝑘+1)), s
∑
𝑗 AW 𝑗 + x ⊗ sAV, sAV]1

(4)

where sk𝑖 = U𝑖 ← Z(𝑘+1)×(2𝑘+1)𝑝 and pk𝑖 = ([AU𝑖]1, {[U𝑖Br⊤𝑗]2} 𝑗≠𝑖) for all 𝑖 ∈ [𝐿]. This is almost the final scheme
except for some extra elements for handling malicious public keys. All subgroup decision assumptions we used
can be replaced by MDDH assumption. Roughly, basis B corresponds to a (2𝑘 + 1)-dimensional space; we use two
𝑘-dimensional subspaces to simulate 𝑝3, 𝑝4-subgroup, respectively, and the remaining 1-dimensional subspace to
simulate 𝑝2-subgroup. We leave more details to Section 3. For simplicity, we will continue our technical overview
based on this slightly weaker scheme.

Extension to Reg-IPE. Recall that the proof of our slotted Reg-IPFE is motivated by that for IPE with full attribute
hiding [OT12,CGKW18,CGW18]. This similarity inspires the following 𝐿-slotted Reg-IPE:

crs = [Ak⊤]𝑇 , [AV]1, [AW0]1 , [AW 𝑗]1, ∀ 𝑗 ∈ [𝐿]
[Br⊤

𝑖
, W0Br⊤𝑖 + k

⊤ ,W 𝑗 (I𝑛 ⊗ Br⊤𝑖)]2, ∀(𝑖, 𝑗) ∈ [𝐿] × [𝐿] s.t. 𝑖 ≠ 𝑗

mpkR = [AW0 +
∑
𝑗 (AU 𝑗 + AW 𝑗 (y⊤𝑗 ⊗ I2𝑘+1)),

∑
𝑗 AW 𝑗 ,AV]1

hsk𝑖 = [Br⊤𝑖 ,
∑
𝑗≠𝑖 (U 𝑗Br⊤𝑖 +W 𝑗 (y⊤𝑗 ⊗ Br

⊤
𝑖
)),∑ 𝑗≠𝑖 W 𝑗 (I𝑛 ⊗ Br⊤𝑖), W0Br⊤𝑖 + k

⊤]2
ct = [sA, sAW0 + s

∑
𝑗 (AU 𝑗 + AW 𝑗 (y⊤𝑗 ⊗ I2𝑘+1)), s

∑
𝑗 AW 𝑗 + x ⊗ sAV]1, [sAk⊤]𝑇 · 𝑚

where sk𝑖 and pk𝑖 are as in (4). We highlight the difference between our slotted Reg-IPFE and the slotted Reg-IPE
above. The “powers-of-two” technique finally gives us a Reg-IPFE scheme. We leave all details to Appendix B.

1.3 Reg-QFE from Bilateral 𝒌-Lin

This section explains our Reg-QFE where each user registers a quadratic function f ∈ Z𝑛1×𝑛2𝑝 so that decrypting a
ciphertext of (x1, x2) ∈ Z𝑛1𝑝 ×Z𝑛2𝑝 recovers (x1⊗x2)f⊤. Given (a) our slotted Reg-IPFE in Section 1.2 and Section 3, (b)
Wee’s “IPFE-to-QFE” transformation [Wee20] and (c) “powers-of-two” transformation [GHMR18,HLWW23,FFM+23,DP23],
we want to follow the technical line:

(𝑎)
slotted Reg-IPFE

(𝑏)
=⇒ slotted Reg-QFE

(𝑐)
=⇒ Reg-QFE. (5)

This defers complicated update procedure to the very last stage and keeps most steps simple. Only the first “ =⇒ ”
in technical line (5) can be problematic since the transformation is not for Reg-FE but FE. Let us begin with a sketch
of Wee’s transformation.

8

Recap. Given an IPFE (iKey, iEnc)6, the QFE scheme from [Wee20] works as follows:

mpk = [A1]1, [A2]2, ct = [y1]1, [y2]2, iEnc(x), skf = iKey([Mf⊤]2)

where we sample random coins s1, s2 and set y1 = x1 + s1A1, y2 = x2 + s2A2, x = (s1 ⊗ x2∥x1 ⊗ s2∥s1 ⊗ s2) and

M =

©­­­«
A1 ⊗ I𝑛2
I𝑛1 ⊗ A2

A1 ⊗ A2

ª®®®¬ .
Note that this is slightly different from the original scheme in [Wee20] but they are essentially the same. The cor-
rectness follows from

(y1 ⊗ y2)f⊤ = (x1 ⊗ x2)f⊤ + xMf⊤ (6)

The selective SIM-security requires a simulator (ĩEnc, ˜iKey) so that we can carry out the following argument:

[y1]1, [y2]2, iEnc(x), iKey([Mf⊤]2)
≈𝑐 [y1]1, [y2]2, ĩEnc(), ˜iKey([Mf⊤]2, [xMf⊤]2) // IPFE

≡ [y1]1, [y2]2, ĩEnc(), ˜iKey([Mf⊤]2, [(y1 ⊗ y2)f⊤ − (x1 ⊗ x2)f⊤]2) // (6)

≈𝑐 [ỹ1]1, [ỹ2]2, ĩEnc(), ˜iKey([Mf⊤]2, [(ỹ1 ⊗ ỹ2)f⊤ − (x1 ⊗ x2)f⊤]2) // bi-MDDH

where ỹ1 ← Z𝑛1𝑝 and ỹ2 ← Z𝑛2𝑝 are independently and uniformly distributed. Here, the first ≈𝑐 uses the simulator
over groups to embed the result 𝑧′ = xMf⊤ into the simulated key; the second ≡ follows from the equation for
correctness; the third ≈𝑐 is ensured by bilateral MDDH assumption w.r.t. A1 and A2.

Challenges. The first “ =⇒ ” in technical line (5) is expected to apply a similar transformation to our slotted
Reg-IPFE in Section 1.2 and Section 3. However, there are three main challenges pertinent to both correctness and
security:

– Challenge 1: Decryption with Fixed Base. Our slotted Reg-IPFE gives decryption result in the form of [𝑏, 𝑧𝑏]𝑇
where 𝑧 is the result and base 𝑏 = sAVBr⊤

𝑖
; here 𝑏 varies with the user who are decrypting. This is fine in the

case of small 𝑧 since brute-force search recovers 𝑧. For the use in Wee’s QFE, 𝑧 involves random coins s1, s2 and
can be quite large, more precisely, 𝑧 ∈ Z𝑝; clearly, we cannot extract [𝑧]𝑇 from [𝑏, 𝑧𝑏]𝑇 in this case. Therefore,
we need a slotted Reg-IPFE that recovers [𝑧]𝑇 for all slots, i.e., with fixed base [1]𝑇 .

– Challenge 2: Group-friendly Registration. A subtly point in Wee’s scheme is that we need to encode Mf⊤ (and
also y1, y2) over proper groups in order to apply bi-MDDH assumption later. In the context of slotted Reg-IPFE,
this means that a user can register a function of the form [Mf⊤]2 overG2. However our slotted Reg-IPFE already
has crs and mpk, hsk1, . . . , hsk𝐿 over G1,G2, there is no space to use pairing which seems to be inevitable if
we want to “multiply” Mf⊤ with terms from crs. Therefore, we need a slotted Reg-IPFE with group-friendly
registration.

– Challenge 3: Simulation-based Security. In the first step of Wee’s proof, we make use of the simulator to
assemble x and Mf⊤ in skf . In fact, when serving as a building block, we prefer an IPFE with SIM-security.
However, our slotted Reg-IPFE scheme only achieves strictly weaker IND-security. Furthermore, Wee’s QFE
requires that the simulator takes [Mf⊤]2 and [xMf⊤]2 as well; this is a requirement related to Challenge 2.
Therefore, we need a slotted Reg-IPFE achieving SIM-security with group-based simulator.

We will explain our solutions to all three challenges. Note that, in [Wee20], all above are easy to satisfy since the
underlying IPFE [ALS16] is pairing-free and embedding it into a bilinear group simply works; however, our slotted
Reg-IPFE already uses bilinear groups and those embedding tricks fail.

6 Here we hardcode the master public key and master secret key inside iEnc and iKey, respectively, for notation simplicity.

9

Solution 1: Decryption with Fixed Base. Let us review the structure of ciphertext in our slotted Reg-IPFE (4):

[sA, s∑ 𝑗 (AU 𝑗 + AW 𝑗 (y⊤𝑗 ⊗ I)), s
∑
𝑗 AW 𝑗 + x ⊗ sAV , sAV]1

The reason of decryption with variable base is that we put xwith term
∑
𝑗 sAW 𝑗 , highlighted in the gray box, which

involves terms from all slots; during the decryption, it interplays with Br⊤
𝑖

depending on the user/slot. Our revision
starts from the following substitution:

s
∑
𝑗 AW 𝑗 + x ⊗ sAV ↦−→ sAW + x

namely, we simply hide x using sAW where W is conceptually shared by all users/slots. In fact, this is exactly the
ciphertext by Agrawal et al.’s IPFE [ALS16] that is compatible with Wee’s QFE. This breaks the correctness, but a
minor modification saves us: we remove terms involving V and we put [AW]1 into crs and mpk for encryption;
the most crucial change is the substitution

W 𝑗 (I𝑛 ⊗ Br⊤𝑖) ↦−→W 𝑗 (I𝑛 ⊗ Br⊤𝑖) + W

which connects the two terms in the ciphertext. This yields the following scheme with new terms highlighted in
the boxes:

crs = [AW]1 , [AW 𝑗]1, ∀ 𝑗 ∈ [𝐿]
[Br⊤

𝑖
,W 𝑗 (I𝑛 ⊗ Br⊤𝑖),W𝑖 (I𝑛 ⊗ Br⊤𝑖) + W]2, ∀(𝑖, 𝑗) ∈ [𝐿] × [𝐿] s.t. 𝑖 ≠ 𝑗

mpkR = [∑ 𝑗 (AU 𝑗 + AW 𝑗 (y⊤𝑗 ⊗ I)), AW]1
hsk𝑖 = [Br⊤𝑖 ,

∑
𝑗≠𝑖 (U 𝑗Br⊤𝑖 +W 𝑗 (y⊤𝑗 ⊗ Br

⊤
𝑖
)),W𝑖 (y⊤𝑖 ⊗ Br

⊤
𝑖
) + Wy⊤𝑖]2

ct = [sA, s∑ 𝑗 (AU 𝑗 + AW 𝑗 (y⊤𝑗 ⊗ I)), sAW + x]1

(7)

where (pk𝑖 , sk𝑖) is in the same form as in (4). Here we leave some I’s with dimension undefined for now. For cor-
rectness, revised terms (with boxes) in hsk𝑖 and ct now interplay as below during decryption:

−sA · (W𝑖 (y⊤𝑖 ⊗ Br
⊤
𝑖) + Wy⊤𝑖) + (sAW + x) · y

⊤
𝑖 = −sAW𝑖 (y⊤𝑖 ⊗ Br

⊤
𝑖) + xy

⊤
𝑖

while the remaining unchanged terms give sAU𝑖Br⊤𝑖 + sAW𝑖 (y⊤𝑖 ⊗ Br⊤
𝑖
) as before; they are sufficient to recover

xy⊤
𝑖

for the legitimate user holding sk𝑖 = U𝑖 . For security, our revised scheme only achieves a selective variant
where the adversary claims the challenge message before seeing crs. The good news is we will not need the com-
plex “nested dual-system” technique — the standard dual-system method is already sufficient as in prior Reg-
ABE [HLWW23,ZZGQ23]. In a bit more detail, after changing the challenge ciphertext to the form:

ct∗ = [c ,∑ 𝑗 (c U 𝑗 + c W 𝑗 (y⊤𝑗 ⊗ I)), c W + x
∗
𝑏
]1

via MDDH assumption w.r.t. A, we can “embded” x∗
𝑏

to crs via the substitution: W ↦→ W − c⊥x∗
𝑏

where cc⊥ = 1 but
cA = 0. Then, we can prove the security via the dual-system method: x∗

𝑏
now conceptually locates in hsk1, . . . , hsk𝐿

and we can handle them one-by-one. Therefore, we only needB to be a vector of dimension 𝑘+1 following [CGW15]
and this requires the size of I to be (𝑘 + 1) × (𝑘 + 1). (Sizes of related matrices should be changed accordingly.) One
can see that embedding x∗

𝑏
into crs is what renders the scheme selectively secure. This addresses Challenge 1 at

the cost of weaker security. Even though, this is sufficient for our purpose; in fact, we do not know how to achieve
adaptive security even for plain QFE (from standard assumptions).

Solution 2: Pre-Constrained Registered IPFE. Recall that Challenge 2 requires group-friendly registration. We
believe this problem is quite hard in general and focus on functions in the specific form [Mf⊤]2. Observe that

10

– M is fully determined by A1 and A2; this is the part that must be encoded over groups, but they are shared by
all users/slots and determined at the very beginning under no control of any users;

– f is fully controlled by the users but not necessary to be encoded over the group at all; in fact, it should be
public according to the functionality.

This does not help to give a group-friendly registration, but suggests a way to circumvent this technical issue:

We do not need to wait and ask the curator to register [Mf⊤]2; instead, we can embed the “troublemaker”
[M]2 over group into crs beforehand in the setup phase and ask the curator to register only y over integers.

We capture this idea by introducing a new notion called Pre-Constrained Registered IPFE (PReg-IPFE):

– crs is generated with M where M is sampled from a pre-defined distribution.
– For each 𝑖 ∈ [𝐿], the user holding (pk𝑖 , sk𝑖) can register (pk𝑖 , f𝑖) to slot 𝑖.
– Given a ciphertext of x, decrypting it using sk𝑖 (and hsk𝑖) gives [xMf⊤

𝑖
]𝑇 .

This generalizes the notion of slotted Reg-IPFE. Conceptually, y𝑖 = Mf𝑖 is the function for slot 𝑖. Imagine that M is
a “tall” matrix defining a subspace. Our PReg-IPFE forces that all user’s functions y1, . . . , y𝐿 should be in span(M).
Our slotted Reg-IPFE with fixed base, i.e, (7), can be easily modified to give an instance of PReg-IPFE:

crsM = [AW]1, [AW 𝑗 (M ⊗ I𝑘+1)]1 ∀ 𝑗 ∈ [𝐿]
[Br⊤

𝑖
,W 𝑗 (M ⊗ Br⊤𝑖),W𝑖 (M ⊗ Br⊤𝑖) +WM]2, ∀(𝑖, 𝑗) ∈ [𝐿] × [𝐿] s.t. 𝑖 ≠ 𝑗

mpkR = [∑ 𝑗 (AU 𝑗 + AW 𝑗 (M f⊤
𝑗
⊗ I𝑘+1)),AW]1

hsk𝑖 = [Br⊤𝑖 ,
∑
𝑗≠𝑖 (U 𝑗Br⊤𝑖 +W 𝑗 (M f⊤

𝑗
⊗ Br⊤

𝑖
)),W𝑖 (M f⊤

𝑖
⊗ Br⊤

𝑖
) +WM f⊤

𝑖
]2

ct = [sA, s∑ 𝑗 (AU 𝑗 + AW 𝑗 (M f⊤
𝑗
⊗ I𝑘+1)), sAW + x]1

(8)

where (pk𝑖 , sk𝑖) is as in (7) and we highlight the difference with (7) using boxes. To reach this scheme from (7), we
simply set y⊤

𝑖
= Mf⊤

𝑖
for all 𝑖 ∈ [𝐿] in hsk𝑖 and ct from (7) and rebuild crsM and mpkR with M embedded. In fact, one

can see that setting M = I𝑛 degrades it to the original scheme (7). Clearly, correctness and selective security can be
proved analogously, but the registration now only involves crs and R = ((pk1, f1), . . . , (pk𝐿, f𝐿)) and has nothing to
do with M. Furthermore, we can check that if we publish [M]2 in crs and [Mf⊤

𝑖
]2 in hsk𝑖 (which is used to compute

[(sAW + x) ·Mf⊤
𝑖
]𝑇 during decryption), then all occurrences of M have been encoded over groups. This addresses

Challenge 2.

Solution 3.1: Defining Simulation-based Security. We begin to work on Challenge 3. This is the first time to
consider simulation-based security (SIM-security) in the context of Reg-FE. Since we will work on scheme (8), our
discussion will be restricted to PReg-IPFE and we will not pursue security stronger than selective security. Another
technical reason is that there is no IPFE scheme supporting group-based functions with adaptive SIM-security. As-
sume x∗ is the challenge message and registration R = ((pk1, f1), . . . , (pk𝐿, f𝐿)), the SIM-secure PReg-IPFE requires a
simulator that can simulate the view of adversary using 𝑍 = {x∗Mf⊤

𝑖
}𝑖∈𝐶 where 𝐶 ∈ [𝐿] is the set of corrupted slots.

Inspired by the selective SIM-security of plain IPFE, we expect the simulator to embed 𝑍 into hsk1, . . . , hsk𝐿. How-
ever, in the PReg-IPFE system, hsk1, . . . , hsk𝐿 is generated by aggregator under the supervision of adversary, hence
the simulator has no chance to embed anything inside hsk1, . . . , hsk𝐿. In this work, we embed 𝑍 into crs which
is fully controlled by the simulator and is used to generate hsk1, . . . , hsk𝐿; we note that this will also require the
adversary to claim the challenge x∗, the set 𝐶 along with corresponding f𝑖 , 𝑖 ∈ 𝐶 at the beginning so that 𝑍 is well-
defined during the setup phase. This is analogous to the very selective security in the setting of ABE [AMY19] where
the adversary claims the challenge and all key queries at the beginning. We finally mention that the adversary is
still free to choose pk1, . . . , pk𝐿 after seeing crs.

11

Solution 3.2: Simulation-based Security via PReg-IPFE. Roughly, we will make use of pre-constrained registra-
tion in (8) to implement the idea of function-hiding IPFE [LV16] and slotted IPFE [LL20]: instead of embedding a
private “slot” into a key, we will embed this private “slot” into M in crs. (Note that the “slot” here has different
means with the slots in the context of Reg-IPFE.) For this, we first extend the notion of pre-constrained registration:

– crs is generated along with M1, . . . ,M𝐿 for the 𝐿 slots, respectively.
– Decrypting a ciphertext of x using sk𝑖 for slot 𝑖 gives [x M𝑖 f⊤𝑖]𝑇 for all 𝑖 ∈ [𝐿].

A minor revision of (8) below already works with analogous correctness and selective IND-security.

crs = [AW]1, [AW 𝑗 (M 𝑗 ⊗ I𝑘+1)]1, [M 𝑗]2 , ∀ 𝑗 ∈ [𝐿]
[Br⊤

𝑖
,W 𝑗 (M 𝑗 ⊗ Br⊤𝑖),W𝑖 (M𝑖 ⊗ Br⊤𝑖) +WM𝑖]2, ∀(𝑖, 𝑗) ∈ [𝐿] × [𝐿] s.t. 𝑖 ≠ 𝑗

mpkR = [∑ 𝑗 (AU 𝑗 + AW 𝑗 (M 𝑗 f⊤𝑗 ⊗ I𝑘+1)),AW]1
hsk𝑖 = [Br⊤𝑖 ,

∑
𝑗≠𝑖 (U 𝑗Br⊤𝑖 +W 𝑗 (M 𝑗 f⊤𝑗 ⊗ Br

⊤
𝑖
)),W𝑖 (M𝑖 f⊤𝑖 ⊗ Br

⊤
𝑖
) +WM𝑖 f⊤𝑖 , M𝑖f⊤𝑖]2

ct = [sA, s∑ 𝑗 (AU 𝑗 + AW 𝑗 (M 𝑗 f⊤𝑗 ⊗ I𝑘+1)), sAW + x]1

(9)

where (pk𝑖 , sk𝑖) is as in (8).

Scheme. We achieve SIM-security from IND-security as follows: we use the scheme (9) with the following special
[M1, . . . ,M𝐿]2 in crs:

[M𝑖]2 =
(
[M]2 [0]2
[0]2 Enc(pk, 0)

)
where (pk, sk) ← Gen(1𝜆)

where (Gen, Enc,Dec) is a PKE with linear decryption whose message space serves as the private “slot”. For con-
creteness, we leave formal definition in Section 2.5 and mention that ElGamal PKE with ciphertexts overG2 suffices:

pk = [A,wA]2, sk = (−w, 1) ∈ Z1×(𝑘+2)𝑝 , Enc(pk, 𝑥) =
(
[As⊤]2

[𝑥 +wAs⊤]2

)
∈ G𝑘+22

where A← Z(𝑘+1)×𝑘𝑝 , w← Z1×(𝑘+1)𝑝 , s← Z𝑘𝑝 and it is easy to verify the linear decryption. Accordingly,

– in the registration phase, given R = ((pk1, f1), . . . , (pk𝐿, f𝐿)), we register extended R = ((pk1, f1), . . . , (pk𝐿, f𝐿))
where f 𝑖 = (f𝑖 ∥1) for all 𝑖 ∈ [𝐿];

– to encrypt x, we encrypt extended message x = (x∥0).

The correctness follows from the fact that xM𝑖f
⊤
𝑖 = xMf⊤

𝑖
for all 𝑖 ∈ [𝐿].

Simulator & Proof. Let us sketch the idea to simulator. Given f𝑖 and xMf⊤
𝑖

for all 𝑖 ∈ 𝐶, we first change M𝑖 to M̃𝑖 for
all 𝑖 ∈ 𝐶 and then switch x to x̃ where

M̃𝑖 =
©­«
M 0

0 Enc(pk, xMf⊤𝑖)
ª®¬ and x̃ = (0∥sk)

Here, the first M𝑖 ↦→ M̃𝑖 step follows from the security of (Gen, Enc,Dec), the second x ↦→ x̃ step follows from the
selective IND-security of (9) by the fact that, for all 𝑖 ∈ 𝐶, we have

x̃M̃𝑖f
⊤
𝑖 = sk · Enc(pk, xMf⊤𝑖) = Dec(sk, Enc(pk, xMf⊤𝑖)) = xMf⊤𝑖 = xM̃𝑖f

⊤
𝑖

Here we do not need to maintain a similar relation for the case 𝑖 ∈ 𝐻 . At this point, we can simulate everything
without knowing x but xMf⊤

𝑖
for all 𝑖 ∈ 𝐶. This yields a very selective simulator. Furthermore, we embed the results

𝑍 into M1, . . . ,M𝐿 which are over groups as in (8). This addresses Challenge 3.

12

Final Scheme with Compact Ciphertexts. Putting all these together, the technical line depicted in (5) works but
leads to a Reg-QFE with ciphertexts of size𝑂(𝑛·log 𝐿). The reason is: to move from 𝐿-slotted Reg-QFE to Reg-QFE with
𝐿 slots, “powers-of-two” transformation runs log 𝐿 parallel instances of slotted Reg-QFE. This means we encrypt
the same message (x1, x2) of size 2𝑛 for log 𝐿 times (in the worst case). To avoid this, we let all log 𝐿 instances have
shared A1 and A2 in crs and encrypt the message once for all. However this is not enough: the log 𝐿 underlying
slotted PReg-IPFE instances encrypt the same x = (s1 ⊗ x2∥x1 ⊗ s2∥s1 ⊗ s2) for log 𝐿 times. To fix this, we let all
instances share W in crs and encrypt x once for all with shared random coin s; by this, all instances share the term
sAW + x in ciphertexts, cf. (9). Formally, we introduce the multi-instance variants of scheme (9) and update the
technical line (5) as follows:

multi-instance slotted PReg-IPFE

=⇒ multi-instance slotted Reg-QFE

=⇒ compact Reg-QFE

(10)

This line gives Reg-QFE with ciphertexts of size 𝑂(𝑛 + log 𝐿) and we consider this as our main result (2).

More Results & Roadmap. In Section 5, we treat the second “ =⇒ ” in the new technical line (10) as a general
transformation. For more details, we give the definitions of multi-instance slotted Reg-FE for general functions
in Section 5.1; and present the transformation from multi-instance slotted Reg-FE to compact Reg-FE for general
functions in Section 5.2. This leads to result (ii):

– Setting M𝑖 = I for all 𝑖 ∈ [𝐿] (i.e., scheme (7)) gives IND-secure multi-instance slotted Reg-IPFE scheme, with
fixed decryption base, c.f. Section 6.5. With the generic transformation in Section 5.2, it leads to the IND-secure
compact Reg-IPFE.

– Setting M = I gives us the SIM-secure multi-instance slotted Reg-IPFE scheme, c.f. Section 6.4. With the generic
transformation in Section 5.2, it leads to the SIM-secure compact Reg-IPFE.

We summarize the roadmap of this part in Fig. 3, where “mi” means “multi-instance” for short.

§6.1
mi slotted PReg-IPFE

��

//

'/

§6.5
mi slotted Reg-IPFE (IND)

§5.2 //
result (ii)

compact Reg-IPFE (IND)

§6.4
mi slotted Reg-IPFE (SIM)

§5.2 //
result (ii)

compact Reg-IPFE (SIM)

§7.1
mi slotted Reg-QFE

§5.2 //
result (2)

compact Reg-QFE

Fig. 3: Roadmap of the technical part. Here “mi” stands for “multi-instance”. Those solid arrows show transfor-
mations proposed in this work; the dashed arrow means a mild adaptation; the double-line arrow indicates an
implication.

2 Preliminaries

Notations. For a finite set 𝑆, we use 𝑠← 𝑆 to denote the procedure of sampling 𝑠 from 𝑆 uniformly. For an ordered
list or array L, we use |L| to denote its size (i.e., the number of entries in the list) and use L[𝑖] to refer to its 𝑖-th

13

entry. When 𝑖 > |L| or 𝑖 < 1, we define L[𝑖] = ⊥; when we append 𝑥 to L, we set L[|L| + 1] = 𝑥. We use ★ as a
wildcard. Let ≈𝑠 (resp. ≈𝑐) stand for two distributions being statistically (resp. computationally) indistinguishable.
We use lower-case boldface to denote row vectors (e.g., a) and upper-case boldface to denote matrices (e.g. M). We
use span(M) to denote the row span of M, and use basis(M) to denote a basis of the column space of M. Let F be
a field. We use A ⊗ B to denote Kronecker Product for matrices A ∈ Fℓ×𝑚 and B ∈ F𝑛×𝑝. For matrices A,B,C,D of
proper sizes, we have: (A ⊗ B) (C ⊗ D) = AC ⊗ BD. We use 𝑛 ⊕ 𝑚 to denote XOR for numbers 𝑛, 𝑚 ∈ N.

2.1 Prime-Order Bilinear Groups

Assume an efficient G that takes as input a security parameter 1𝜆 and outputs G := (𝑝,G1,G2,G𝑇 , 𝑒). Here G1, G2
andG𝑇 are cyclic groups of prime order 𝑝, 𝑒 : G1 ×G2 → G𝑇 is a non-degenerate bilinear map, and all group oper-
ations and bilinear map are efficient. LetG1 = ⟨𝑔1⟩,G2 = ⟨𝑔2⟩ and 𝑔𝑇 = 𝑒(𝑔1, 𝑔2), we employ implicit representation
of group elements: for a matrix M = (𝑚𝑖 𝑗) over Z𝑝, define [M]𝑠 = 𝑔M𝑠 = (𝑔𝑚𝑖 𝑗

𝑠) for all 𝑠 ∈ {1, 2, 𝑇 }; given [A]1, [B]2,
we write 𝑒([A]1, [B]2) = [AB]𝑇 .

Assumption 1 ((𝑘, ℓ, 𝑑)-MDDH [EHK+13] over G𝑠, 𝑠 ∈ {1, 2}) Let 𝑘, ℓ, 𝑑 ∈ N. We say that the (𝑘, ℓ, 𝑑)-MDDH as-
sumption holds7 in G𝑠 if for all PPT adversariesA, the following advantage function is negligible in 𝜆.

AdvMDDH
A,𝑠,𝑘,ℓ,𝑑 (𝜆) =

�� Pr[A(G, [M]𝑠, [SM]𝑠) = 1] − Pr[A(G, [M]𝑠, [U]𝑠) = 1]
��

where G := (𝑝,G1,G2,G𝑇 , 𝑒) ← G(1𝜆), M← Z𝑘×ℓ𝑝 , S← Z𝑑×𝑘𝑝 and U← Z𝑑×ℓ𝑝 .

It is shown that the assumption is implied by 𝑘-Lin [EHK+13]. The bilateral MDDH assumption is defined analo-
gously with the advantage function:

Advbi-MDDH
A,𝑠,𝑘,ℓ,𝑑 (𝜆) =

�� Pr[A(G, {[M]𝑠, [SM]𝑠}𝑠∈{1,2}) = 1] − Pr[A(G, {[M]𝑠, [U]𝑠}𝑠∈{1,2}) = 1]
��

2.2 Registered Functional Encryption (Reg-FE)

Algorithms. A registered functional encryption [FFM+23,DP23] (Reg-FE for short) for functionality 𝐹 = { 𝑓 : 𝑋 → 𝑍}
consists of six algorithms:

– Setup(1𝜆 , 1𝐿, 𝐹) → crs: It takes as input security parameter 1𝜆 , maximum number of users 1𝐿, functionality 𝐹,
outputs a common reference string crs.

– Gen(crs, aux) → (pk, sk): It takes as input crs and state aux, outputs key pair (pk, sk).
– Reg(crs, aux, pk, 𝑓) → (mpk, aux′): It takes as input crs, aux, and pk along with function 𝑓 ∈ 𝐹, outputs master

public key mpk and updated state aux′.
– Enc(mpk, 𝑥) → ct: It takes as input mpk, 𝑥 ∈ 𝑋 , outputs a ciphertext ct.
– Upd(crs, aux, pk) → hsk: It take as input crs, aux, pk, outputs a helper key hsk.
– Dec(sk, hsk, ct) → 𝑧/⊥/getupd: It take as input sk, hsk, ct and outputs 𝑧 ∈ 𝑍 or a special symbol ⊥ to indicate

a decryption failure, or a special flag getupd to indicate the need of an updated helper key.

Correctness, Compactness and Update Efficiency. Correctness means, for all stateful (unbounded) adversary
A making a polynomial number of oracle queries (defined below) and all 𝐿, the following advantage function is
negligible in 𝜆:

Pr[𝑏 = 1|crs← Setup(1𝜆 , 1𝐿, 𝐹); 𝑏 = 0;AORegNT(·,·) ,ORegT(·) ,OEnc(·,·) ,ODec(·) (crs)]

where oracles work as follows with aux = ⊥, E = ∅, R = ∅ and 𝑡 = ⊥:
7 The (𝑘, ℓ, 𝑑)-MDDH assumption holds unconditionally when ℓ > 𝑘.

14

– ORegNT(pk, 𝑓): run (mpk, aux′) ← Reg(crs, aux, pk, 𝑓), update aux = aux′, append (mpk, aux) to R and return
(|R|,mpk, aux);

– ORegT(𝑓 ∗): run (pk∗, sk∗) ← Gen(crs, aux) , (mpk, aux′) ← Reg(crs, aux, pk∗, 𝑓 ∗), update aux = aux′, compute
hsk∗ ← Upd(crs, aux, pk∗), append (mpk, aux) to R, return (𝑡 = |R |,mpk, aux, pk∗, sk∗, hsk∗);

– OEnc(𝑖, 𝑥): let R[𝑖] = (mpk,★), run ct← Enc(mpk, 𝑥), append (𝑥, ct) to E and return (|E |, ct);
– ODec(𝑗): let E[𝑗] = (𝑥 𝑗 , ct 𝑗), compute 𝑧 𝑗 ← Dec(sk∗, hsk∗, ct 𝑗); if 𝑧 𝑗 = getupd, run hsk∗ ← Upd(crs, aux, pk∗)

and recompute 𝑧 𝑗 ← Dec(sk∗, hsk∗, ct 𝑗). Set 𝑏 = 1 when 𝑧 𝑗 ≠ 𝑓 ∗ (𝑥 𝑗).

with the following restrictions:

– there are at most 𝐿− 1 queries to ORegNT and there is exactly one query to ORegT; therefore, we will consider
𝑓 ∗, pk∗, sk∗, hsk∗ to be global;

– for query (𝑖, 𝑥) to OEnc, it holds that 𝑖 ≥ 𝑡, R[𝑖] ≠ ⊥;
– for query (𝑗) to ODec, it holds that E[𝑗] ≠ ⊥.

Compactness means that, for all mpk and hsk in the above, we have

|mpk| = poly(𝜆, par, log 𝐿), |hsk| = poly(𝜆, par, log 𝐿);

where par is a parameter depending on the functionality 𝐹. Furthermore, update efficiency means that the number
of invocations of Upd in ODec is at most 𝑂(log |R |) and each invocation costs poly(log |R |) time.

Indistinguishability-based Security (IND-security). For all stateful PPT adversary A, the adaptive (resp., se-
lective) indistinguishability-based security requires the advantage function IndAdvAd-Reg-FE

A (resp., IndAdvSel-Reg-FE
A)

defined as follows is negligible in 𝜆:

IndAdvAd-Reg-FE
A (𝜆) = Pr

𝑏 = 𝑏′

��������
crs← Setup(1𝜆 , 𝐹);
𝑥∗0 , 𝑥

∗
1 ← AORegCK(·,·) ,ORegHK(·) ,OCorHK(·) (crs);

𝑏← {0, 1}, ct∗ ← Enc(mpk, 𝑥∗
𝑏
), 𝑏′ ← A(ct∗)

 − 1/2,
where the oracles work as follows with initial setting aux = ⊥, mpk = ⊥,H = ∅, C = ∅ and D being a dictionary
withD[pk] = ∅ for all possible pk:

– ORegCK(pk, 𝑓): run (mpk′, aux′) ← Reg(crs, aux, pk, 𝑓), updatempk = mpk′, aux = aux′,D[pk] = D[pk]∪{ 𝑓 },
append pk to C and return (mpk, aux);

– ORegHK(𝑓): run (pk, sk) ← Gen(crs, aux) and (mpk′, aux′) ← Reg(crs, aux, pk, 𝑓), update mpk = mpk′, aux =

aux′,D[pk] = D[pk] ∪ { 𝑓 }, append (pk, sk) toH and return (|H |,mpk, aux, pk);
– OCorHK(𝑖): letH[𝑖] = (pk, sk), append pk to C and return sk;

with the following restrictions:

– for query 𝑖 to OCorHK, it holds thatH[𝑖] ≠ ⊥;
– for all 𝑓 ∈ ⋃

pk∈C D[pk], it holds that 𝑓 (𝑥∗0) = 𝑓 (𝑥∗1).

The selective IND-security is analogous to above definition of adaptive security, except thatA claim the challenge
𝑥∗0 , 𝑥

∗
1 at the begining.

15

2.3 Slotted Registered Functional Encryption

Algorithms. A slotted Reg-FE (sReg-FE for short) for functionality 𝐹 = { 𝑓 : 𝑋 → 𝑍} consists of six efficient
algorithms:

– Setup(1𝜆 , 1𝐿, 𝐹) → crs: It takes as input security parameter 1𝜆 , maximum number of slots 1𝐿, functionality 𝐹,
outputs a common reference string crs.

– Gen(crs, 𝑖) → (pk𝑖 , sk𝑖): It takes as input crs and slot number 𝑖 ∈ [𝐿], outputs key pair (pk𝑖 , sk𝑖).
– Ver(crs, 𝑖, pk𝑖) → 0/1: It takes as input crs, 𝑖, pk𝑖 and outputs a bit.
– Agg(crs, (pk𝑖 , 𝑓𝑖)𝑖∈[𝐿]) → (mpk, (hsk 𝑗) 𝑗∈[𝐿]):8 It takes as input crs and a series of pk𝑖 with 𝑓𝑖 ∈ 𝐹 for all 𝑖 ∈ [𝐿],

outputs master public key mpk and a series of helper keys hsk 𝑗 for all 𝑗 ∈ [𝐿].
– Enc(mpk, 𝑥) → ct: It takes as input mpk, 𝑥 ∈ 𝑋 , outputs a ciphertext ct.
– Dec(sk, hsk, ct) → 𝑧/⊥: It takes as input sk, hsk, ct and outputs 𝑧 ∈ 𝑍 or a special symbol ⊥.

We require that Agg and Dec are deterministic.

Completeness. For all 𝜆, 𝐿 ∈ N, all 𝐹, and all 𝑖 ∈ [𝐿], we have

Pr
[
Ver(crs, 𝑖, pk𝑖) = 1

��crs← Setup(1𝜆 , 1𝐿, 𝐹); (pk𝑖 , sk𝑖) ← Gen(crs, 𝑖)
]
= 1.

Correctness. For all 𝜆, 𝐿 ∈ N, all 𝐹, all 𝑖∗ ∈ [𝐿], all crs ← Setup(1𝜆 , 1𝐿, 𝐹), all (pk𝑖∗ , sk𝑖∗) ← Gen(crs, 𝑖∗), all
{pk𝑖}𝑖∈[𝐿]\{𝑖∗ } such that Ver(crs, 𝑖, pk𝑖) = 1, all 𝑥 ∈ 𝑋 and 𝑓1, . . . , 𝑓𝐿 ∈ 𝐹, we have

Pr

[
Dec(sk𝑖∗ , hsk𝑖∗ , ct) = 𝑓𝑖∗ (𝑥)

����� (mpk, (hsk 𝑗) 𝑗∈[𝐿]) ← Agg(crs, (pk𝑖 , 𝑓𝑖)𝑖∈[𝐿])
ct← Enc(mpk, 𝑥)

]
= 1.

Compactness. For all 𝜆, 𝐿 ∈ N, all 𝑃, and all 𝑖 ∈ [𝐿], we have

|mpk| = poly(𝜆, 𝑃, log 𝐿) and |hsk𝑖 | = poly(𝜆, 𝑃, log 𝐿).

Indistinguishability-based Security (IND-security). For all stateful PPT adversaryA, the adaptive (resp., selec-
tive) indistinguishability-based security requires the advantage function IndAdvAd-sReg-FE

A (resp., IndAdvSel-sReg-FE
A)

defined as follows is negligible in 𝜆:

IndAdvAd-sReg-FE
A (𝜆) = Pr


𝑏 = 𝑏′

�����������
𝐿← A(1𝜆); crs← Setup(1𝜆 , 1𝐿, 𝐹)
(pk∗𝑖 , 𝑓 ∗𝑖)𝑖∈[𝐿] , 𝑥

∗
0 , 𝑥
∗
1 ← AOGen(·) ,OCor(·) (crs)

(mpk, . . .) ← Agg(crs, (pk∗1, 𝑓 ∗1), . . . , (pk
∗
𝐿, 𝑓
∗
𝐿))

𝑏← {0, 1}, ct∗ ← Enc(mpk, 𝑥∗
𝑏
), 𝑏′ ← A(ct∗)


− 1/2,

where the oracles work as follows with the initial setting C = ∅ andD𝑖 = ∅ for all 𝑖 ∈ [𝐿]:

– OGen(𝑖): run (pk, sk) ← Gen(crs, 𝑖), setD𝑖 [pk] = sk and return pk.
– OCor(𝑖, pk): returnD𝑖 [pk] and update C = C ∪ {(𝑖, pk)}.

and for all 𝑖 ∈ [𝐿], we require that

D𝑖 [pk∗𝑖] = ⊥ =⇒ Ver(crs, 𝑖, pk∗𝑖) = 1 and (𝑖, pk∗𝑖) ∈ C ∨ D𝑖 [pk∗𝑖] = ⊥ =⇒ 𝑓 ∗𝑖 (𝑥
∗
0) = 𝑓 ∗𝑖 (𝑥

∗
1).

The selective IND-security is analogous to above definition of adaptive security, except thatA claim the challenge
𝑥∗0 , 𝑥

∗
1 at the begining. Analogous to sReg-ABE [HLWW23], there is no need to give mpk and hsk1, . . . , hsk𝐿 to A

explicitly and to consider post-challenge queries.
8 Note that we use two difference indices 𝑖 and 𝑗 for pk𝑖 and hsk 𝑗 , respectively; both of them range from 1 to 𝐿.

16

2.4 Quasi-Adaptive Non-Interactive Zero-Knowledge Argument

Algorithms. A Quasi-adaptive Non-interactive Zero-knowledge Argument (QA-NIZK) for linear space over bilinear
group G [JR13,KW15] consists of four efficient algorithms:

– LGen(1𝜆 , 1𝑛, 1𝑚, 1ℓ, [M]1) → (crs, td): It takes as input the security parameter 1𝜆 , language parameter 1𝑛, 1𝑚, 1ℓ,
and a matrix [M]1 ← G𝑛×𝑚1 defining a linear space, outputs common reference string crs and trapdoor td.

– LPrv(crs, [Y]1,X) → 𝜋: It takes as input crs, a matrix [Y]1 ∈ G𝑛×ℓ1 along with X ∈ Z𝑚×ℓ𝑝 such that Y = MX,
outputs a proof 𝜋.

– LVer(crs, [Y]1, 𝜋) → 0/1: It takes as input crs, [Y]1 and 𝜋, outputs a bit showing the validity of 𝜋.
– LSim(crs, td, [Y]1) → 𝜋: It takes as input crs, td, [Y]1, outputs a simulated proof 𝜋.

Perfect Completeness. For all 𝜆, M, and all X,Y such that Y = MX:

Pr

[
LVer(crs, [Y]1, 𝜋) = 1

����� (crs, td) ← LGen(1𝜆 , 1𝑛, 1𝑚, 1ℓ, [M]1)
𝜋← LPrv(crs, [Y]1,X)

]
= 1.

Perfect Zero-knowledge. For all 𝜆, M, (crs, td) ← LGen(1𝜆 , 1𝑛, 1𝑚, 1ℓ, [M]1), and all X,Y such that Y = MX:

LPrv(crs, [Y]1,X) ≡ LSim(crs, td, [Y]1).

Unbounded Simulation Soundness. For all adversaryA, the advantage

Pr


([Y∗]1, 𝜋) ∉ Q ∧
Y∗ ∉ span(M) ∧
LVer(crs, [Y∗]1, 𝜋∗) = 1

��������
M← Z𝑛×𝑚𝑝

(crs, td) ← LGen(1𝜆 , 1𝑛, 1𝑚, 1ℓ, [M]1)
([Y∗]1, 𝜋∗) ← ALSim(crs,td,·) (1𝜆 , crs,M)


is negligible in 𝜆, whereQ records all queries to LSim(crs, td, ·) along with response. We use AdvUSSA,𝑛,𝑚,ℓ (𝜆) to denote
the advantage function. Note that our definition is stronger in the sense that the adversary is given M instead of
[M]1.

Scheme from Pairings. It is shown in [KW15] that there exists QA-NIZK scheme for ℓ = 1 in the prime-order
bilinear group whose enhanced soundness (defined above) relies on MMDH assumption (see Assumption 1). For
general ℓ > 1, we simply employ ℓ parallel fresh instances. See [ZZGQ23] for more details.

2.5 Bilateral Public-Key Encryption with Linear Decryption

Algorithms. A bilateral public-key encryption (Bi-PKE) over bilinear groupG consists of three efficient algorithms:

– Gen(1𝜆) → ([pk]1, [pk]2, sk): It takes as input the security parameter 1𝜆 , outputs public keys [pk]1 (over G1)
and [pk]2 (over G2) and a secret key sk (over Z𝑝).

– Enc([pk]1, [pk]2,m) → ([ct]1, [ct]2): It takes as input [pk]1, [pk]2 and a message m ∈ Z𝑝, outputs ciphertext
[ct]1 (over G1) and [ct]2 (over G2).

– Dec𝑠 ([ct]𝑠, sk) → m′, 𝑠 ∈ {1, 2}: It takes as input a (partial) ciphertext [ct]𝑠 overG𝑠 and a secret key sk, outputs
m′.

17

Correctness. For all 𝜆 ∈ N, all m ∈ Z𝑝 all 𝑠 ∈ {1, 2}, we have:

Pr

[
Dec𝑠 ([ct]𝑠, sk) = m

����� ([pk]1, [pk]2, sk) ← Gen(1𝜆)
([ct]1, [ct]2) ← Enc([pk]1, [pk]2,m)

]
= 1.

Linear Decryption. For all 𝜆 ∈ N, all m ∈ Z𝑝, we have [ct]1, [ct]2 and sk are vectors with same size (respectively
over G1, G2 and Z𝑝), and for all 𝑠 ∈ {1, 2}, we have:

sk · ct⊤ = Dec𝑠 ([ct]𝑠, sk).

Security. For all statefulA, the following advantage function is negligible

AdvBi-PKE
A = Pr


𝑏 = 𝑏′

�����������
([pk]1, [pk]2, sk) ← Gen(1𝜆)
𝑚∗0, 𝑚

∗
1 ← A([pk]1, [pk]2)

𝑏← {0, 1}, ([ct∗]1, [ct∗]2) ← Enc([pk]1, [pk]2, 𝑚∗𝑏)
𝑏′ ← A([pk]1, [pk]2, [ct∗]1, [ct∗]2)


− 1/2.

Group-based Encryption. For all ([pk]1, [pk]2) ∈ Gen(1𝜆), there exists a group-based algorithm Enc′ such that

Enc′ ([pk]1, [pk]2, [m]1, [m]2) ≡ Enc([pk]1, [pk]2,m)

A Concrete Bi-PKE. We present a Bi-PKE transformed from ElGamal PKE:

– Gen(1𝜆): Run G := (𝑝,G1,G2,G𝑇 , 𝑒) ← G(1𝜆). Sample

A← Z𝑘×(𝑘+1)𝑝 , w← Z1×(𝑘+1)𝑝

Output:
[pk]1 = [A,Aw⊤]1, [pk]2 = [A,Aw⊤]2 and sk = (−w, 1)

– Enc([pk]1, [pk]2,m): Sample s← Z1×𝑘𝑝 , output

[ct]1 = [sA, sAw⊤ +m]1, [ct]2 = [sA, sAw⊤ +m]2

– Dec([ct]𝑠, sk): Compute
[𝑧]𝑠 = [sk · ct⊤]𝑠

Recover 𝑧 from [𝑧]𝑠 via brute-force DLOG and output 𝑧.

3 Slotted Registered Inner-product Functional Encryption

In this section, we present our slotted Reg-IPFE scheme for the inner product functionality which is defined by
𝑋 = Z1×𝑛𝑝 , 𝑍 = Z𝑝 and

IP𝑛 = {y : x ↦→ xy⊤}

The scheme achieves the adaptive IND-security defined in Section 2.3 under the 𝑘-Lin assumption. Applying generic
transformation [HLWW23,FFM+23,DP23] gives our Reg-IPFE scheme. Let us define dual basis and show related
facts and assumptions.

18

Dual Basis. Let ℓ1, ℓ2, ℓ3 ≥ 1 and ℓ := ℓ1 + ℓ2 + ℓ3. We use basis

B1 ← Zℓ×ℓ1𝑝 , B2 ← Zℓ×ℓ2𝑝 , B3 ← Zℓ×ℓ3𝑝 ,

we denote B∥1 ,B
∥
2 ,B

∥
3 as its dual basis, for all 𝜎, 𝛿 ∈ {1, 2, 3}, it holds that:

B⊤𝜎B
∥
𝛿
=


I when 𝜎 = 𝛿 (non-degeneracy)

0 when 𝜎 ≠ 𝛿 (orthogonality)

Facts. With basis B1,B2,B3 and its dual basis B∥1 ,B
∥
2 ,B

∥
3 , for all v ∈ Z1×𝑛ℓ𝑝 , we can uniquely decompose v as

v =
∑︁

𝜎∈{1,2,3}
v(𝜎) where v(𝜎) ∈ span(I𝑛 ⊗ (B∥𝜎)⊤)

Note that for all 𝜎 ∈ {1, 2, 3} and 𝑛 ∈ N, v(𝜎) can be seen as the projection of v onto span(I𝑛 ⊗ (B∥𝜎)⊤), and for each
𝑆 ⊆ {1, 2, 3}, we write v𝑆 =

∑
𝜎∈𝑆 s(𝜎) . Moreover, it holds that:

vB𝜎 = v(𝜎)B𝜎 , and
{
v(𝜎) , {v(𝛿) }𝛿≠𝜎

}
≡

{
v∗, {v(𝛿) }𝛿≠𝜎

}
where v∗ ← span(I𝑛 ⊗ (B∥𝜎)⊤).

Assumption 2 (SDG𝑠B1 ↦→B2 for 𝑠 ∈ {1, 2}) Let ℓ1, ℓ2, ℓ3 ≥ 1 and ℓ := ℓ1 + ℓ2 + ℓ3. We say that the subspace deci-
sion assumption SDG𝑠B1 ↦→B2 holds in G𝑠 if there exist an efficient sampler outputting random [B1]𝑠 ∈ Gℓ×ℓ1𝑠 , [B2]𝑠 ∈
Gℓ×ℓ2𝑠 , [B3]𝑠 ∈ Gℓ×ℓ3𝑠 along with its dual basis: B∥1 ,B

∥
2 ,B

∥
3 such that for all PPT adversariesA, the following advantage

function is negligible in 𝜆.

Adv
SDG𝑠B1 ↦→B2
A,𝑠,ℓ1 ,ℓ2 ,ℓ3 = | Pr[A(G, 𝐷, [t

⊤
0]𝑠) = 1] − Pr[A(G, 𝐷, [t⊤1]𝑠) = 1] |

where G := (𝑝,G1,G2,G𝑇 , 𝑒) ← G(1𝜆), 𝐷 :=
(
[B1]𝑠, [B2]𝑠, [B3]𝑠, basis(B∥1 ,B

∥
2), basis(B

∥
3)) and t0 ← span(B⊤1), t1 ←

span(B⊤2).

3.1 Scheme

Assuming QA-NIZK Π0 = (LGen, LPrv, LVer, LSim) for linear space over bilinear groups, see Section 2.4, our slotted
Reg-IPFE scheme in prime-order bilinear groups works as follows:

– Setup(1𝜆 , 1𝑛, 1𝐿) : Run G := (𝑝,G1,G2,G𝑇 , 𝑒) ← G(1𝜆). Sample

A← Z𝑘×(2𝑘+1)𝑝 , B1 ← Z(2𝑘+1)×𝑘𝑝 , V← Z(2𝑘+1)×(2𝑘+1)𝑝 .

For all 𝑖 ∈ [𝐿], sample
W𝑖 ← Z(2𝑘+1)×(2𝑘+1)𝑛𝑝 , R𝑖 ← Z(2𝑘+2)×(2𝑘+1)𝑝 , r𝑖 ← Z1×𝑘𝑝 .

For all 𝑖 ∈ [𝐿], write A𝑖 =
(A
R𝑖

)
∈ Z(3𝑘+2)×(2𝑘+1)𝑝 , run

(crs𝑖 , td𝑖) ← LGen(1𝜆 ,G1, [A𝑖]1).

Output

crs =
©­­­«
[A,AV]1,

{
[B1r⊤𝑗]2

}
𝑗∈[𝐿]{

crs𝑖 , [R𝑖 ,AW𝑖]1
}
𝑖∈[𝐿]{

[W𝑖 (I𝑛 ⊗ B1r⊤𝑗)]2
}
𝑗∈[𝐿],𝑖∈[𝐿]\{ 𝑗}

ª®®®¬ .
Note that we do not use td1, . . . , td𝐿 in the actual scheme.

19

– Gen(crs, 𝑖) : Sample U𝑖 ← Z(2𝑘+1)×(2𝑘+1)𝑝 . Define F𝑖 =
(T𝑖
Q𝑖

)
=

(AU𝑖
R𝑖U𝑖

)
= A𝑖U𝑖 ∈ Z(3𝑘+2)×(2𝑘+1)𝑝 and run

𝜋𝑖 ← LPrv(crs𝑖 , [F𝑖]1,U𝑖).

Fetch {[B1r⊤𝑗]2} 𝑗∈[𝐿]\{𝑖} from crs and output

pk𝑖 =
(
[AU𝑖︸︷︷︸

T𝑖

, R𝑖U𝑖︸︷︷︸
Q𝑖

]1, {[U𝑖B1r⊤𝑗︸ ︷︷ ︸
h𝑖, 𝑗

]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖
)

and sk𝑖 = U𝑖 .

– Ver(crs, 𝑖, pk𝑖) : Parse pk𝑖 =
(
[T𝑖 ,Q𝑖]1, {[h𝑖, 𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖

)
. Write F𝑖 =

(T𝑖
Q𝑖

)
and check

LVer(crs𝑖 , [F𝑖]1, 𝜋𝑖)
?
= 1.

For each 𝑗 ∈ [𝐿] \ {𝑖}, check

𝑒([A]1, [h𝑖, 𝑗]2)
?
= 𝑒([T𝑖]1, [B1r⊤𝑗]2).

If all these checks pass, output 1; otherwise, output 0.
– Agg(crs, (pk𝑖 , y𝑖)𝑖∈[𝐿]): For all 𝑖 ∈ [𝐿], parse pk𝑖 =

(
[T𝑖 ,Q𝑖]1, {[h𝑖, 𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖

)
. Output:

mpk =

([
A,

∑︁
𝑖∈[𝐿]
(T𝑖 + AW𝑖 (y⊤𝑖 ⊗ I2𝑘+1)),

∑︁
𝑖∈[𝐿]

AW𝑖 , AV

]
1

)
and for all 𝑗 ∈ [𝐿]

hsk 𝑗 =

([
B1r⊤𝑗︸︷︷︸
k⊤0

,
∑︁

𝑖∈[𝐿]\{ 𝑗}
(h𝑖, 𝑗 +W𝑖 (I𝑛 ⊗ B1r⊤𝑗)y

⊤
𝑖)︸ ︷︷ ︸

k⊤1

,
∑︁

𝑖∈[𝐿]\{ 𝑗}
W𝑖 (I𝑛 ⊗ B1r⊤𝑗)︸ ︷︷ ︸

K2

]
2

)
.

– Enc(mpk, x): Sample s← Z1×𝑘𝑝 . Output:

ct =

([
sA︸︷︷︸
c0

,
∑︁
𝑖∈[𝐿]
(sT𝑖 + sAW𝑖 (y⊤𝑖 ⊗ I2𝑘+1))︸ ︷︷ ︸

c1

, x ⊗ sAV +
∑︁
𝑖∈[𝐿]

sAW𝑖︸ ︷︷ ︸
c2

, sAV︸︷︷︸
c3

]
1

)
.

– Dec(sk𝑖∗ , hsk𝑖∗ , ct): Parse

sk𝑖∗ = U𝑖∗ , hsk𝑖∗ = ([k⊤0, k⊤1,K2]2), ct = ([c0, c1, c2, c3]1).

Recover
[z1]𝑇 = 𝑒([c2]1, [I𝑛 ⊗ k⊤0]2), [z2]𝑇 = 𝑒([c0]1, [K2]2);
[𝑧3]𝑇 = 𝑒([c1]1, [k⊤0]2), [𝑧4]𝑇 = 𝑒([c0]1, [k⊤1]2);
[𝑧5]𝑇 = 𝑒([c0U𝑖∗]1, [k⊤0]2),
[𝑧6]𝑇 = 𝑒([c3]1, [k⊤0]2).

Compute

[𝑧′]𝑇 = [(z1 − z2)y⊤𝑖∗ − (𝑧3 − 𝑧4 − 𝑧5)]𝑇 .

Recover 𝑧 from [𝑧′]𝑇 over [𝑧6]𝑇 via brute-force DLOG and output 𝑧.

20

Completeness. For all 𝜆, 𝐿, 𝑛 ∈ N, all 𝑖 ∈ [𝐿], all crs← Setup(1𝜆 , 1𝑛, 1𝐿) and (pk𝑖 , sk𝑖) ← Gen(crs, 𝑖), we have

pk𝑖 =
(
[T𝑖 ,Q𝑖]1, {[h𝑖, 𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖

)
=

(
[AU𝑖 ,R𝑖U𝑖]1, {[U𝑖B1r⊤𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖

)
for some U𝑖 ← Z(2𝑘+1)×(2𝑘+1)𝑝 and 𝜋𝑖 ← LPrv(crs𝑖 , [A𝑖U𝑖]1,U𝑖) where (crs𝑖 , td𝑖) ← LGen(1𝜆 ,G1, [A𝑖]1) and A𝑖 =

(A
R𝑖

)
with A← Z𝑘×(2𝑘+1)𝑝 , R𝑖 ← Z(2𝑘+2)×(2𝑘+1)𝑝 . Then

– Write F𝑖 =
(T𝑖
Q𝑖

)
=

(AU𝑖
R𝑖U𝑖

)
, we have LVer(crs𝑖 , [F𝑖]1, 𝜋𝑖) = 1 by the perfect completeness of Π0 (see Section 2.4) and

the fact that F𝑖 = A𝑖U𝑖 ;
– For each 𝑗 ∈ [𝐿] \ {𝑖}, we have 𝑒([A]1, [U𝑖B1r⊤𝑗]2) = 𝑒([AU𝑖]1, [B1r

⊤
𝑗
]2) by the definition of bilinear map 𝑒 (see

Section 2.1) and the fact that A · U𝑖B1r⊤𝑗 = AU𝑖 · B1r⊤𝑗 .

This ensures that Ver(crs, 𝑖, pk𝑖) = 1 by the specification of Ver and readily proves the completeness.

Correctness. For all 𝜆, 𝐿, 𝑛 ∈ N, , all 𝑖∗ ∈ [𝐿], all crs ← Setup(1𝜆 , 1𝑛, 1𝐿), all (pk𝑖∗ , sk𝑖∗) ← Gen(crs, 𝑖∗), all
{pk𝑖}𝑖∈[𝐿]\{𝑖∗ } such that Ver(crs, 𝑖, pk𝑖) = 1, for all y1, . . . , y𝐿 ∈ Z𝑛𝑝 and x ∈ Z𝑛𝑝, we have:

sk𝑖∗ = U𝑖∗ ,

ct =

([
sA︸︷︷︸
c0

,
∑︁
𝑖∈[𝐿]
(sT𝑖 + sAW𝑖 (y⊤𝑖 ⊗ I2𝑘+1))︸ ︷︷ ︸

c1

, x ⊗ sAV +
∑︁
𝑖∈[𝐿]

sAW𝑖︸ ︷︷ ︸
c2

, sAV︸︷︷︸
c3

]
1

)

hsk𝑖∗ =

([
B1r⊤𝑖∗︸︷︷︸
k⊤0

,
∑︁

𝑖∈[𝐿]\{𝑖∗ }
(h𝑖,𝑖∗ +W𝑖 (I𝑛 ⊗ B1r⊤𝑖∗)y

⊤
𝑖)︸ ︷︷ ︸

k⊤1

,
∑︁

𝑖∈[𝐿]\{𝑖∗ }
W𝑖 (I𝑛 ⊗ B1r⊤𝑖∗)︸ ︷︷ ︸

K2

]
2

)

where
Ah𝑖,𝑖∗ = T𝑖B1r⊤𝑖∗ ∀𝑖 ∈ [𝐿] \ {𝑖

∗} and AU𝑖∗ = T𝑖∗ .

Note that here we actually consider hsk 𝑗 for 𝑗 = 𝑖∗ and sk𝑖 for 𝑖 = 𝑖∗ and all above equalities are ensured by Ver
and Gen. we have

z1 = (x ⊗ sAV) (I𝑛 ⊗ B1r⊤𝑖∗) +
∑︁
𝑖∈[𝐿]

sAW𝑖 (I𝑛 ⊗ B1r⊤𝑖∗)

= sAV(x ⊗ I2𝑘+1) (I𝑛 ⊗ B1r⊤𝑖∗) +
∑︁
𝑖∈[𝐿]

sAW𝑖 (I𝑛 ⊗ B1r⊤𝑖∗)

= sAVB1r⊤𝑖∗x +
∑︁
𝑖∈[𝐿]

sAW𝑖 (I𝑛 ⊗ B1r⊤𝑖∗) (11)

z2 =
∑︁

𝑖∈[𝐿]\{𝑖∗ }
sAW𝑖 (I𝑛 ⊗ B1r⊤𝑖∗)

𝑧3 =
∑︁
𝑖∈[𝐿]
(sT𝑖B1r⊤𝑖∗ + sAW𝑖 (y⊤𝑖 ⊗ I2𝑘+1)B1r

⊤
𝑖∗)

=
∑︁
𝑖∈[𝐿]
(sT𝑖B1r⊤𝑖∗ + sAW𝑖 (I𝑛 ⊗ B1r⊤𝑖∗)y

⊤
𝑖) (12)

𝑧4 =
∑︁

𝑖∈[𝐿]\{𝑖∗ }
(sAh𝑖,𝑖∗ + sAW𝑖 (I𝑛 ⊗ B1r⊤𝑖∗)y

⊤
𝑖)

𝑧5 = sAU𝑖∗B1r⊤𝑖∗

𝑧6 = sAVB1r⊤𝑖∗

21

and then

[𝑧′]𝑇 = [(z1 − z2)y⊤𝑖∗ − (𝑧3 − 𝑧4 − 𝑧5)]𝑇
= [(sAVB1r⊤𝑖∗ · xy

⊤
𝑖∗ + sAW𝑖∗ (I𝑛 ⊗ B1r⊤𝑖∗)y

⊤
𝑖∗) − (sT𝑖∗B1r

⊤
𝑖∗ + sAW𝑖∗ (I𝑛 ⊗ B1r⊤𝑖∗)y

⊤
𝑖∗ − sAU𝑖∗B1r

⊤
𝑖∗)]𝑇 (13)

= [sAVB1r⊤𝑖∗ · xy
⊤
𝑖∗]𝑇 (14)

Here, equality (11) and equality (12) follows from the property of tensor product: (M ⊗ I) (I ⊗ a⊤) = M ⊗ a⊤ =

(I ⊗ a⊤)M for matrices of proper size; equality (13) follows from the fact that Ah𝑖,𝑖∗ = T𝑖B1r⊤𝑖∗ for all 𝑖 ∈ [𝐿] \ {𝑖∗};
equality (14) follows from the fact that T𝑖∗ = AU𝑖∗ . Treat [𝑧6]𝑇 = [sAVB1r⊤𝑖∗]𝑇 as the basis, and recover 𝑧 from
[𝑧′]𝑇 = [sAVB1r⊤𝑖∗ · xy

⊤
𝑖∗]𝑇 via brute-force DLOG, we have

𝑧 = xy⊤𝑖∗

This proves the correctness.

Compactness and Efficiency. Our slotted Reg-IPFE has the following properties:

|crs| = 𝐿2 · 𝑛 · poly(𝜆); |mpk| = 𝑛 · poly(𝜆); |hsk 𝑗 | = 𝑛 · poly(𝜆); |ct| = 𝑛 · poly(𝜆).

Note that the total size of {crs𝑖}𝑖∈[𝐿] is 𝐿 · poly(𝜆) according to the efficiency of the pairing-based QA-NIZK scheme
by Kiltz and Wee [KW15] and the fact that the size of language description is poly(𝜆).

Security. We have the following theorem. Given pairing-based QA-NIZK in [KW15] with unbounded simulation
soundness under MDDH assumption and the fact that MDDH assumption implies subspace decision assumption [CGKW18],
our slotted Reg-IPFE scheme achieves adaptive IND-security from MDDH assumption.

Theorem 1. Assume Π0 = (LGen, LPrv, LVer, LSim) is a QA-NIZK with perfect completeness, perfect zero-knowledge
and unbounded simulation soundness for linear space defined in Section 2.4, our slotted Reg-IPFE scheme achieves
the adaptive IND-security defined in Section 2.3 under MDDH assumption and subspace decision assumption.

3.2 Proof

We prove the following technical lemma; this immediately proves Theorem 1.

Lemma 1. For all adversariesA, there exist adversaries B1, B2, B3 and B4 such that:

IndAdvAd-sReg-IPFE
A (𝜆) ≤ 𝐿 · AdvUSSB1 (𝜆) + Adv

MDDH
B2 (𝜆) + 𝐿 · Adv

SDG2B1 ↦→B3
B3 (𝜆) + 𝐿 · Adv

SDG2B3 ↦→B2
B4 (𝜆) + negl(𝜆)

where 𝐿 is the number of slots and Time(B1), Time(B2), Time(B3), Time(B4) ≈ Time(A).

Game Sequence. Suppose that crs is the common reference string, (x∗0, x∗1) is the challenge pair, {pk∗𝑖 , y∗𝑖 }𝑖∈[𝐿] are
challenge public keys along with challenge functions to be registered. For all 𝑖 ∈ [𝐿], define 𝐷𝑖 = {pk𝑖 : D𝑖 [pk𝑖] =
sk𝑖 ≠ ⊥} be responses to OGen(𝑖) and 𝐶𝑖 = {pk𝑖 : (𝑖, pk𝑖) ∈ C} records public keys in 𝐷𝑖 that have been sent to
OCor(𝑖, ·). Recall that, for each 𝑖 ∈ [𝐿], we require that

pk∗𝑖 ∉ 𝐷𝑖 =⇒ Ver(crs, 𝑖, pk∗𝑖) = 1, pk∗𝑖 ∈ 𝐶𝑖 ∨ pk
∗
𝑖 ∉ 𝐷𝑖 =⇒ x∗0 (y∗𝑖)

⊤ = x∗1 (y∗𝑖)
⊤.

Note that pk𝑖 serves as a general entry in 𝐷𝑖 while pk∗𝑖 is the specific challenge public for slot 𝑖; there can be more
than one assignments for pk𝑖 since the adversary can invoke OGen(𝑖) for many times. We prove the Lemma 1 via
nested dual-system method using the following game sequence.

22

– G0: This is the real game, recall that we have
• crs is in the form:

crs =
©­­­«
[A,AV]1,

{
[B1r⊤𝑗]2

}
𝑗∈[𝐿]{

crs𝑖 , [R𝑖 ,AW𝑖]1
}
𝑖∈[𝐿]{

[W𝑖 (I𝑛 ⊗ B1r⊤𝑗)]2
}
𝑗∈[𝐿],𝑖∈[𝐿]\{ 𝑗}

ª®®®¬ .
where crs𝑖 ∈ LGen(1𝜆 ,G1, [A𝑖]1), A𝑖 =

(A
R𝑖

)
.

• For each 𝑖 ∈ [𝐿], each pk𝑖 , ∈ 𝐷𝑖 is in the form:

pk𝑖 =
(
[AU𝑖︸︷︷︸

T𝑖

, R𝑖U𝑖︸︷︷︸
Q𝑖

]1, {[U𝑖B1r⊤𝑗︸ ︷︷ ︸
h𝑖, 𝑗

]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖
)

where 𝜋𝑖 ← LPrv(crs𝑖 , [F𝑖]1,U𝑖), F𝑖 =
(AU𝑖
R𝑖U𝑖

)
, and U𝑖 is the corresponding sk𝑖 .

• For all 𝑖 ∈ [𝐿], pk∗𝑖 is in the form:

pk∗𝑖 = ([T
∗
𝑖 ,Q

∗
𝑖]1, {[h

∗
𝑖, 𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋

∗
𝑖)

such that Ver(crs, 𝑖, pk∗𝑖) = 1which means LVer

(
crs𝑖 ,

[
T∗
𝑖

Q∗
𝑖

]
1

, 𝜋∗
𝑖

)
= 1 andAh∗

𝑖, 𝑗
= T∗

𝑖
B1r⊤𝑗 for each 𝑗 ∈ [𝐿] \{𝑖}.

• ct∗ for (x∗0, x∗1) is in the form:

ct∗ =

([
sA︸︷︷︸
c∗0

,
∑︁
𝑖∈[𝐿]
(sT𝑖 + sAW𝑖 ((y∗𝑖)

⊤ ⊗ I2𝑘+1))︸ ︷︷ ︸
c∗1

, x∗𝑏 ⊗ sAV +
∑︁
𝑖∈[𝐿]

sAW𝑖︸ ︷︷ ︸
c∗2

, sAV︸︷︷︸
c∗3

]
1

)
.

where 𝑏← {0, 1} is the secret bit.
– G1: Identical to G0 except that, for all 𝑖 ∈ [𝐿] and all pk𝑖 ∈ 𝐷𝑖 , we replace 𝜋𝑖 with

𝜋𝑖 ← LSim (crs𝑖 , td𝑖 , [F𝑖]1) where F𝑖 =
(
AU𝑖
R𝑖U𝑖

)
.

We have G1 ≡ G0. This follows from the perfect zero-knowledge of Π0.
– G2: Identical to G1 except that we sample s← Z1×𝑘𝑝 along with A and replace all R𝑖 in crs with

R̂𝑖 = R̃𝑖

(
sA

I2𝑘+1

)
, R̃𝑖 ← Z(2𝑘+2)×(2𝑘+2)𝑝 .

We have G2 ≡ G1. This follows from the fact that both R𝑖 (in G1) and R̂𝑖 (in G2) are truly random since matrix(sA
I2𝑘+1

)
is full-rank.

– G3: Identical to G2 except that we generate the c∗1 as follows:

c∗1 =
∑︁
𝑖∈[𝐿]
(e1R̃−1𝑖 Q∗𝑖 + sAW𝑖 (y⊤𝑖 ⊗ I2𝑘+1)).

We have G3 ≈𝑐 G2. This follows from stronger unbounded simulation soundness of Π0 along with the fact that

LVer(crs𝑖 , [F∗𝑖], 𝜋
∗
𝑖
) = 1 for all 𝑖 ∈ [𝐿] where F∗

𝑖
=

(
T∗
𝑖

Q∗
𝑖

)
. Assume pk∗𝑖∗ ∉ 𝐷𝑖∗ , i.e., pk∗𝑖∗ is malicious. In the reduction,

we guess 𝑖∗ ← [𝐿] and obtain A, R̂𝑖∗ , crs𝑖∗ as input; we simulate honestly as in G3 except that for all pk𝑖∗ ∈ 𝐷𝑖∗ ,
we make an oracle query [F𝑖∗]1 and get 𝜋𝑖∗ in it; we finally output ([F∗

𝑖∗]1, 𝜋
∗
𝑖∗) in pk∗𝑖∗ ∉ 𝐷𝑖∗ . Observe that once

it happens that e1R̃−1𝑖∗ Q
∗
𝑖∗ ≠ sT∗

𝑖∗ , we must have F∗
𝑖∗ ∉ span(A𝑖∗). When pk∗𝑖∗ ∈ 𝐷𝑖∗ , we always have G3 ≡ G2.

23

– G4: Identical to G3 except that we replace all sA with c← Z1×(2𝑘+1)𝑝 ; in particular, we generate R̂𝑖 as follows:

R̂𝑖 = R̃𝑖

(
c

I2𝑘+1

)
, R̃𝑖 ← Z(2𝑘+2)×(2𝑘+2)𝑝

and generate the challenge ciphertext as follows:

ct∗ =

([
c︸︷︷︸
c∗0

,
∑︁
𝑖∈[𝐿]
(e1R̃−1𝑖 Q∗𝑖 + c W𝑖 ((y∗𝑖)

⊤ ⊗ I2𝑘+1))︸ ︷︷ ︸
c∗1

, x∗𝑏 ⊗ c V +
∑︁
𝑖∈[𝐿]

c W𝑖︸ ︷︷ ︸
c∗2

, c V︸︷︷︸
c∗3

]
1

)
.

We have G4 ≈𝑐 G3. This follows from MDDH assumption which ensures that ([A]1, [sA]1) ≈𝑐 ([A]1, [c]1) when
A← Z𝑘×(2𝑘+1)𝑝 , s← Z1×𝑘𝑝 , c← Z1×(2𝑘+1)𝑝 .

– G5: Identical to G4 except that for all 𝑖 ∈ [𝐿], we replace AV in crs with

Ṽ← Z𝑘×(2𝑘+1)𝑝

we replace cV in challenge ciphertext with
v← Z1×(2𝑘+1)𝑝

In particular, we generate crs as below:

crs =
©­­­«
[A, Ṽ]1,

{
[B1r⊤𝑗]2

}
𝑗∈[𝐿]{

crs𝑖 , [R̂𝑖 ,AW𝑖]1
}
𝑖∈[𝐿]{

[W𝑖 (I𝑛 ⊗ B1r⊤𝑗)]2
}
𝑗∈[𝐿],𝑖∈[𝐿]\{ 𝑗}

ª®®®¬ ,
and generate the challenge ciphertext as

ct∗ =

([
c︸︷︷︸
c∗0

,
∑︁
𝑖∈[𝐿]
(e1R̃−1Q∗𝑖 + cW𝑖 ((y∗𝑖)

⊤ ⊗ I2𝑘+1))︸ ︷︷ ︸
c∗1

, x∗𝑏 ⊗ v +
∑︁
𝑖∈[𝐿]

cW𝑖︸ ︷︷ ︸
c∗2

, v︸︷︷︸
c∗3

]
1

)
.

We have G5 ≡ G4. This follows from the fact that when V is uniformly sampled from Z(2𝑘+1)×(2𝑘+1)𝑝 and not
published elsewhere, (AV, cV) (in G4) is statically equivalent with the uniformly sampled (Ṽ, v) where Ṽ ←
Z
𝑘×(2𝑘+1)
𝑝 , v← Z1×(2𝑘+1)𝑝 (in G5) , since both A and c are full row rank (with overwhelming probability).

– G6: Identical to G5 except that we randomly sample B2 ← Z2𝑘+1𝑝 ,B3 ← Z(2𝑘+1)×𝑘𝑝 , and compute the dual basis
B∥1 ,B

∥
2 ,B

∥
3 . And we change c∗2 as follows:

c∗2 = x∗𝑏 ⊗ v
(1,3) + x∗0 ⊗ v(2) +

∑︁
𝑖∈[𝐿]

cW𝑖

We have G6 ≡ G5. This follows from the following argument for 𝑏′ = 𝑏 (in G5) or 𝑏′ = 0 (in G6):

x∗𝑏′ ⊗ v
(2) +

∑︁
𝑖∈[𝐿]
(cW𝑖) (2) ≡

∑︁
𝑖∈[𝐿]
(cW𝑖) (2)

This argument follows from the fact that the basis B2 and dual basis B∥2 are not revealed, so we have (cW𝑖) (2)

is hidden, this can imply that
∑
𝑖∈[𝐿] (cW𝑖) (2) hides x∗

𝑏′ ⊗ v
(2) .

– G7,ℓ, (ℓ ∈ [0, 𝐿]): Identical to G6 except that for all 𝑗 ∈ [ℓ] we replace all B1r⊤𝑗 in crs with

d⊤𝑗 where d 𝑗 ← span(B⊤2)

We have that

24

• G7,0 = G6; the two games are actually identical, since [0] = ∅;
• G7,ℓ−1 ≈𝑐 G7,ℓ for all ℓ ∈ [𝐿], we will employ a sub-sequence of games for the proof described later.

– G8: Identical to G7,𝐿 except that we generate the c∗2 as follows:

c∗2 = x∗0 ⊗ v(1,3) + x∗0 ⊗ v(2) +
∑︁
𝑖∈[𝐿]

cW𝑖

We have G8 ≡ G7,𝐿. The proof is analogous to that of G6 ≡ G5, with the fact that basis B1,B3 and dual basis
B∥1 ,B

∥
3 are not revealed in G7,𝐿, we have the following argument for 𝑏′ = 𝑏 (in G7,𝐿) or 𝑏′ = 0 (in G8):

x∗𝑏′ ⊗ v
(1,3) +

∑︁
𝑖∈[𝐿]
(cW𝑖) (1,3) ≡

∑︁
𝑖∈[𝐿]
(cW𝑖) (1,3)

Observe that, in the final gameG8 the challenge ciphertext ct is independent of the random bit 𝑏 and the adversary’s
advantage is exactly 0.

From G7,ℓ−1 to G7,ℓ. We are ready to prove G7,ℓ−1 ≈𝑐 G7,ℓ and this will complete the proof of Lemma 1. For this,
we need the following sub-sequence of games for each ℓ ∈ [𝐿]:

– G7,ℓ−1,0: Identical toG7,ℓ−1 where we recall crs,pk𝑖 ∈ 𝐷𝑖 and c∗2, with highlighting relevant terms in the following
sub-sequence with dashed boxes as follows:

crs =

©­­­­­­­­­­­«

[A, Ṽ]1,
{
[d⊤

𝑗
]2

}
𝑗∈[ℓ−1] , [B1r

⊤
ℓ]2 ,

{
[B1r⊤𝑗]2

}
𝑗∈[𝐿]\[ℓ]{

crs𝑖 , [R̂𝑖 ,AW𝑖]1
}
𝑖∈[𝐿]{

[W𝑖 (I𝑛 ⊗ d⊤𝑗)]2
}
𝑗∈[ℓ−1],𝑖∈[𝐿]\{ 𝑗} ,{

[W𝑖 (I𝑛 ⊗ B1r⊤ℓ)]2
}
𝑖∈[𝐿]\{ℓ} ,{

[W𝑖 (I𝑛 ⊗ B1r⊤𝑗)]2
}
𝑗∈[𝐿]\[ℓ],𝑖∈[𝐿]\{ 𝑗}

ª®®®®®®®®®®®¬
,

pk𝑖 =

{ (
[

T𝑖︷︸︸︷
AU𝑖 ,

Q𝑖︷︸︸︷
R̂𝑖U𝑖]1, {[

h𝑖, 𝑗︷︸︸︷
U𝑖d⊤𝑗]2} 𝑗∈[ℓ−1]\{𝑖} , [

h𝑖,ℓ︷ ︸︸ ︷
U𝑖B1r⊤ℓ]2 , {[

h𝑖, 𝑗︷ ︸︸ ︷
U𝑖B1r⊤𝑗]2} 𝑗∈[𝐿]\[𝑖,ℓ] , 𝜋𝑖

)
if 𝑖 ≠ ℓ(

[AUℓ︸︷︷︸
Tℓ

, R̂𝑖Uℓ︸︷︷︸
Qℓ

]1, {[Uℓd⊤𝑗︸︷︷︸
hℓ, 𝑗

]2} 𝑗∈[ℓ−1] , {[UℓB1r⊤𝑗︸ ︷︷ ︸
hℓ, 𝑗

]2} 𝑗∈[𝐿]\[ℓ] , 𝜋ℓ
)

if 𝑖 = ℓ

c∗2 = x∗𝑏 ⊗ v
(1) + x∗0 ⊗ v(2) + x∗

𝑏
⊗ v(3) + cWℓ +

∑︁
𝑖∈[𝐿]\{ℓ}

cW𝑖

Where d 𝑗 ← span(B⊤2) for all 𝑗 ∈ [ℓ − 1]. We have G7,ℓ−1,0 = G7,ℓ−1; all changes are conceptual.
– G7,ℓ−1,1: Identical to G7,ℓ−1,0 except that we replace all B1r⊤ℓ in crs with

d⊤ℓ where dℓ ← span(B⊤3) .

In particular, we change the dashed boxed term in crs and pk𝑖 as follows:

[d⊤ℓ]2, {[W𝑖 (I𝑛 ⊗ d⊤ℓ)]2, [U𝑖 d
⊤
ℓ]2}𝑖∈[𝐿]\{ℓ}

We have G7,ℓ−1,1 ≈𝑐 G7,ℓ−1,0. This follow from the SDG2B1 ↦→B3 assumption which ensure that

[t0]2 ≈𝑐 [t1]2 given [B1]2, [B2]2, [B3]2, basis(B∥1 ,B
∥
3), basis(B

∥
2)

Where t0 ← span(B⊤1) corresponding to G7,ℓ−1,0, and dℓ ← span(B⊤3) corresponding to G7,ℓ−1,1.

25

– G7,ℓ−1,2: Identical to G7,ℓ−1,1 except that we generate the c∗2 as follows:

c∗2 = x∗𝑏 ⊗ v
(1) + x∗0 ⊗ v(2) + x∗0 ⊗ v(3) + cWℓ +

∑︁
𝑖∈[𝐿]\{ℓ}

cW𝑖

We have G7,ℓ−1,2 ≈𝑐 G7,ℓ−1,1. We provide an overview of the proof in Section 3.3.
– G7,ℓ−1,3: Identical to G7,ℓ−1,2 except that we replace all d⊤ℓ in crs with

d⊤ℓ where dℓ ← span(B⊤2)

In particular, we change the dashed boxed term in crs and pk𝑖 as follows:

[d⊤ℓ]2, {[W𝑖 (I𝑛 ⊗ d⊤ℓ)]2, [U𝑖 d
⊤
ℓ]2}𝑖∈[𝐿]\{ℓ}

We have G7,ℓ−1,3 ≈𝑐 G7,ℓ−1,2. This follow from the SDG2B3 ↦→B2 assumption which ensure that

[t0]2 ≈𝑐 [t1]2 given [B1]2, [B2]2, [B3]2, basis(B∥2 ,B
∥
3), basis(B

∥
1)

Where t0 ← span(B⊤3) corresponding to G7,ℓ−1,2, and dℓ ← span(B⊤2) corresponding to G7,ℓ−1,3.
– G7,ℓ−1,4: Identical to G7,ℓ−1,3 except that we generate the c∗2 as follows:

c∗2 = x∗𝑏 ⊗ v
(1) + x∗0 ⊗ v(2) + x∗𝑏 ⊗ v

(3) + cWℓ +
∑︁

𝑖∈[𝐿]\{ℓ}
cW𝑖

We have G7,ℓ−1,4 ≈𝑐 G7,ℓ−1,3. The proof is identical to that for G7,ℓ−1,2 ≈ G7,ℓ−1,1.

Observe that G7,ℓ−1,4 = G7,ℓ and this prove G7,ℓ−1 ≈𝑐 G7,ℓ.

3.3 From G7,ℓ−1,1 to G7,ℓ−1,2

We review G7,ℓ−1,1 and G7,ℓ−1,2 in the following form. Here we use solid box to indicate the difference between two
games and use dashed boxes to highlight those terms that are relevant to our proof. For all 𝑗 ∈ [ℓ − 1], we rewrite
d 𝑗 ← span(B⊤2) with B⊤2𝑟 𝑗 , for some 𝑟 𝑗 ← Z𝑝.

crs =

©­­­­­­­­­­­«

[A, Ṽ]1,
{
[B2𝑟 𝑗]2

}
𝑗∈[ℓ−1] , [d

⊤
ℓ]2 ,

{
[B1r⊤𝑗]2

}
𝑗∈[𝐿]\[ℓ]{

crs𝑖 , [R̂𝑖 ,AW𝑖]1
}
𝑖∈[𝐿]{

[W𝑖 (I𝑛 ⊗ B2𝑟 𝑗)]2
}
𝑗∈[ℓ−1],𝑖∈[𝐿]\{ 𝑗} ,{

[W𝑖 (I𝑛 ⊗ d⊤ℓ)]2
}
𝑖∈[𝐿]\{ℓ} ,{

[W𝑖 (I𝑛 ⊗ B1r⊤𝑗)]2
}
𝑗∈[𝐿]\[ℓ],𝑖∈[𝐿]\{ 𝑗}

ª®®®®®®®®®®®¬
,

pk𝑖 =

{ (
[

T𝑖︷︸︸︷
AU𝑖 ,

Q𝑖︷︸︸︷
R̂𝑖U𝑖]1, { [

h𝑖, 𝑗︷ ︸︸ ︷
U𝑖B2𝑟 𝑗]2 } 𝑗∈[ℓ−1]\{𝑖} , [

h𝑖,ℓ︷︸︸︷
U𝑖d⊤ℓ]2 , {[

h𝑖, 𝑗︷ ︸︸ ︷
U𝑖B1r⊤𝑗]2} 𝑗∈[𝐿]\[𝑖,ℓ] , 𝜋𝑖

)
if 𝑖 ≠ ℓ(

[AUℓ︸︷︷︸
Tℓ

, R̂𝑖Uℓ︸︷︷︸
Qℓ

]1, { [UℓB2𝑟 𝑗︸ ︷︷ ︸
hℓ, 𝑗

]2 } 𝑗∈[ℓ−1] , {[UℓB1r⊤𝑗︸ ︷︷ ︸
hℓ, 𝑗

]2} 𝑗∈[𝐿]\[ℓ] , 𝜋ℓ
)

if 𝑖 = ℓ

c∗1 = (e1R̃−1ℓ Q∗ℓ + cWℓ ((y∗ℓ)
⊤ ⊗ I2𝑘+1)) +

∑︁
𝑖∈[𝐿]\{ℓ}

(e1R̃−1𝑖 Q∗𝑖 + cW𝑖 ((y∗𝑖)
⊤ ⊗ I2𝑘+1))

c∗2 = x∗𝑏 ⊗ v
(1) + x∗0 ⊗ v(2) + x∗0 ⊗ v(3) + cWℓ +

∑︁
𝑖∈[𝐿]\{ℓ}

cW𝑖

26

where dℓ ← span(B⊤3). We define c⊥ ∈ Z2𝑘+1𝑝 such that Ac⊥ = 0 and cc⊥ = 1. With the orthogonality of dual basis,
for all v(3) ∈ span((B∥3)

⊤), we have:

v(3)B1 = 0, v(3)B2 = 0.

We will proof G7,ℓ−1,2 ≈𝑐 G7,ℓ−1,1 by considering two cases: (1) pk∗ℓ is honest; (2) pk∗ℓ is corrupted or maliciously
generated by the adversary.

Useful Lemma. Before we proceed, we prepare the following lemma.

Lemma 2. For all basis B1 ← Z(2𝑘+1)×𝑘𝑝 , B2 ← Z(2𝑘+1)𝑝 , B3 ← Z(2𝑘+1)×𝑘𝑝 , and its dual basis B∥1 ,B
∥
2 ,B

∥
3 . For all d⊥ ∈

span((B∥3)
⊤) such that d⊥B1 = 0 and d⊥B2 = 0. For any adversaryA, there exist an adversary B2 such that�� Pr[A(A, c, [R]1,B1,B2, d⊥,AU, cU, [RU]1, UB1,UB2) = 1]−

Pr[A(A, c, [R]1,B1,B2, d⊥,AU, cU, [RU + u⊤d⊥]1, UB1,UB2) = 1]
��

≤ 2 · AdvMDDH
B2 + negl(𝜆)

where A← Z𝑘×(2𝑘+1)𝑝 , c← Z1×(2𝑘+1)𝑝 , R← Z(2𝑘+2)×(2𝑘+1)𝑝 , U← Z(2𝑘+1)×(2𝑘+1)𝑝 and u← Z1×(2𝑘+2)𝑝 .

Honest Case. In this case, we have pk∗ℓ = ([T∗ℓ,Q
∗
ℓ]1, {[h

∗
ℓ, 𝑗
]2} 𝑗∈[𝐿]\{ℓ} , 𝜋∗ℓ) ∈ 𝐷ℓ \ 𝐶ℓ. Namely, we know U∗ℓ (such

that T∗ℓ = AU∗ℓ and Q∗ℓ = R̂ℓU∗ℓ) and U∗ℓ is hidden from the adversary. We can write the dashboxed terms in c∗1 as
follows:

cU∗ℓ + cWℓ ((y∗ℓ)
⊤ ⊗ I2𝑘+1)

and replace R̂ℓ in crs with a random Rℓ as in G1.
Let’s use x∗

𝑏′ to denote the challenge message, which is x∗
𝑏

in G7,ℓ−1,1 and x∗0 in G7,ℓ−1,2 respectively. We have the
following argument holds for both 𝑏′ = 𝑏 (in G7,ℓ−1,1) and 𝑏′ = 0 (in G7,ℓ−1,2), which proves that G7,ℓ−1,1 ≈𝑐 G7,ℓ−1,2

in the honest case:

A, c⊥, [Rℓ]1,B1,B2, d⊤ℓ,AWℓ,Wℓ (I𝑛 ⊗ B1),Wℓ (I𝑛 ⊗ B2) //crs, pkℓ

c, cU∗ℓ + cWℓ ((y∗ℓ)
⊤ ⊗ I2𝑘+1), x∗𝑏′ ⊗ v

(3) + cWℓ //ct∗

AU∗ℓ, [RℓU
∗
ℓ]1,U

∗
ℓB1,U

∗
ℓB2 //pk∗ℓ

≈𝑐 A, c⊥, [Rℓ]1,B1,B2, d⊤ℓ,AWℓ,Wℓ (I𝑛 ⊗ B1),Wℓ (I𝑛 ⊗ B2)

c, cU∗ℓ + cWℓ ((y∗ℓ)
⊤ ⊗ I2𝑘+1), x∗𝑏′ ⊗ v

(3) + cWℓ

AU∗ℓ, [RℓU
∗
ℓ + û⊤v(3)]1,U∗ℓB1,U

∗
ℓB2

≈𝑠 A, c⊥, [Rℓ]1,B1,B2, d⊤ℓ,AWℓ,Wℓ (I𝑛 ⊗ B1),Wℓ (I𝑛 ⊗ B2)

c, cU∗ℓ + cWℓ ((y∗ℓ)
⊤ ⊗ I2𝑘+1) + 𝑢ℓv(3) +wℓ (y∗ℓ)

⊤v(3) , x∗
𝑏′ ⊗ v

(3) + cWℓ + wℓ ⊗ v(3)

AU∗ℓ, [RℓU
∗
ℓ + Rℓc⊥𝑢ℓv(3) + û⊤v(3)]1,U∗ℓB1,U

∗
ℓB2

≈𝑠 A, c⊥, [Rℓ]1,B1,B2, d⊤ℓ,AWℓ,Wℓ (I𝑛 ⊗ B1),Wℓ (I𝑛 ⊗ B2)

c, cU∗ℓ + cWℓ ((y∗ℓ)
⊤ ⊗ I2𝑘+1) + 𝑢ℓv(3) +wℓ (y∗ℓ)

⊤v(3) ,�����x∗
𝑏′ ⊗ v

(3) + cWℓ +wℓ ⊗ v(3)

AU∗ℓ, [RℓU
∗
ℓ + Rℓc

⊥𝑢ℓv(3) + û⊤v(3)]1,U∗ℓB1,U
∗
ℓB2

27

where û ← Z1×(2𝑘+2)𝑝 and 𝑢ℓ ← Z𝑝, wℓ ← Z1×𝑛𝑝 . We justify each step as below: The first ≈𝑐 uses Lemma 2 with
R = Rℓ, U = U∗ℓ, u = û and d⊥ = v(3) . The second ≈𝑠 uses change of variables

Wℓ ↦→Wℓ + c⊥ (wℓ ⊗ v(3)) and U∗ℓ ↦→ U∗ℓ + c
⊥𝑢ℓv(3)

The last ≈𝑠 follows from the fact that û hides Rc⊥𝑢ℓ, this implies that 𝑢ℓ can hide wℓ (y∗ℓ)
⊤ in c∗1, and wℓ hides x∗

𝑏′ in
c∗2.

Corrupted & Malicious Case. In this case, we have pk∗ℓ = ([T∗ℓ,Q
∗
ℓ]1, {[h

∗
ℓ, 𝑗
⊤]2} 𝑗∈[𝐿]\{ℓ} , 𝜋∗ℓ) ∈ 𝐶ℓ∪𝐷ℓ. It is required

that x∗0 (y∗𝑖)
⊤ = x∗1 (y∗𝑖)

⊤. We prove G7,ℓ−1,2 ≈𝑐 G7,ℓ−1,1 in this case using the following argument for all 𝑏 ∈ {0, 1}:

A, c⊥,B1,B2, d⊤ℓ,AWℓ,Wℓ (I𝑛 ⊗ B1),Wℓ (I𝑛 ⊗ B2) //crs

c, e1R̃−1ℓ Q∗ℓ + cWℓ ((y∗ℓ)
⊤ ⊗ I2𝑘+1), x∗𝑏 ⊗ v

(3) + cWℓ //ct∗ in G7,ℓ−1,1

≈𝑠 A, c⊥,B1,B2, d⊤ℓ,AWℓ,Wℓ (I𝑛 ⊗ B1),Wℓ (I𝑛 ⊗ B2)

c, e1R̃−1ℓ Q∗ℓ + cWℓ ((y∗ℓ)
⊤ ⊗ I2𝑘+1) − x∗𝑏 (y

∗
ℓ)
⊤v(3) ,����x∗

𝑏
⊗ v(3) + cWℓ

= A, c⊥,B1,B2, d⊤ℓ,AWℓ,Wℓ (I𝑛 ⊗ B1),Wℓ (I𝑛 ⊗ B2)

c, e1R̃−1ℓ Q∗ℓ + cWℓ ((y∗ℓ)
⊤ ⊗ I2𝑘+1) − x∗0 (y∗ℓ)

⊤v(3) , cWℓ

≈𝑠 A, c⊥,B1,B2, d⊤ℓ,AWℓ,Wℓ (I𝑛 ⊗ B1),Wℓ (I𝑛 ⊗ B2) //crs

c, e1R̃−1ℓ Q∗ℓ + cWℓ ((y∗ℓ)
⊤ ⊗ I2𝑘+1) +�����x∗0 (y∗ℓ)

⊤v(3) , x∗0 ⊗ v(3) + cWℓ //ct∗ in G7,ℓ−1,2

We justify each step as follows: the first ≈𝑠 uses the change of variables

Wℓ ↦→Wℓ − c⊥ (x∗𝑏 ⊗ v
(3))

The second = uses the fact that x∗
𝑏
(y∗ℓ)

⊤ = x∗0 (y∗ℓ)
⊤ in this case. The last ≈𝑠 uses the change of variables

Wℓ ↦→Wℓ + c⊥ (x∗0 ⊗ v(3))

4 Simulation-based Security for Reg-FE

In this section, we define the notion of simulation-based security in the context of Reg-FE. We give both the adaptive
variant and the very selective variant followed by several remarks.

4.1 Adaptive SIM-security for Reg-FE

Definition. For all stateful PPT adversaryA, there exists simulator (S̃etup, G̃en, Ẽnc) such that:
crs← Setup(1𝜆 , 1𝐿, 𝐹);
𝑥∗ ← AORegCK(·,·) ,ORegHK(·) ,OCorHK(·) (crs);
ct∗ ← Enc(mpk, 𝑥∗);
AOCorHK(·) (ct∗), 𝛼← A(ct∗)


≈𝑐


(c̃rs, td) ← S̃etup(1𝜆 , 1𝐿, 𝐹);
𝑥∗ ← AORegCK(·,·) ,ORegHK(·) ,OCorHK(·) (c̃rs);
c̃t∗ ← Ẽnc((pk∗1, . . . , pk∗𝐿′); td)
AOCorHK(·) (c̃t∗), 𝛼← A(c̃t∗)


Here, in the real world (on the left-hand side), the oracles work as follows with initial setting aux = ⊥, mpk = ⊥,
H = ∅, C = ∅ andD being a dictionary withD[pk] = ∅ for all possible pk:

28

– ORegCK(pk, 𝑓): run (mpk′, aux′) ← Reg(crs, aux, pk, 𝑓), updatempk = mpk′, aux = aux′,D[pk] = D[pk]∪{ 𝑓 },
append pk to C and return (mpk, aux);

– ORegHK(𝑓): run (pk, sk) ← Gen(crs, aux) and (mpk′, aux′) ← Reg(crs, aux, pk, 𝑓), update mpk = mpk′, aux =

aux′,D[pk] = D[pk] ∪ { 𝑓 }, append (pk, sk) toH and return (|H |,mpk, aux, pk);
– OCorHK(𝑖): letH[𝑖] = (pk, sk), append pk to C and return sk;

with the following restrictions:

– for query 𝑖 to OCorHK, it holds thatH[𝑖] ≠ ⊥.

In the ideal world (on the right-hand side), the oracles are analogous to that in the real world; except that they use
c̃rs simulated by S̃etup instead of crs, and ORegHK invokes G̃en instead of Gen.

4.2 Very Selective SIM-security for Reg-FE

In the very selective setting, the adversary claims the challenge, challenge functions, and the types of challenge
public keys at the beginning. The specific definition is as follows:

Definition. For all stateful PPT adversaryA, there exists simulator (S̃etup, G̃en, Ẽnc) such that:
𝐿, 𝐿′, 𝑥∗, { 𝑓 ∗

𝑖
}𝑖∈[𝐿′] , 𝐶𝐾, 𝐻𝐾, 𝐶𝐻 ← A(1𝜆);

crs← Setup(1𝜆 , 1𝐿, 𝐹);
AO(crs,{ 𝑓 ∗

𝑖
}𝑖∈ [𝐿′] ,𝐶𝐾,𝐻𝐾,𝐶𝐻,·,·) (crs);

ct∗ ← Enc(mpk, 𝑥∗), 𝛼← A(ct∗)


≈𝑐


𝐿, 𝐿′, 𝑥∗, { 𝑓 ∗

𝑖
}𝑖∈[𝐿′] , 𝐶𝐾, 𝐻𝐾, 𝐶𝐻 ← A(1𝜆);

(c̃rs, td) ← S̃etup(1𝜆 , 1𝐿, 𝐹; { 𝑓 ∗
𝑖
}𝑖∈𝐶𝐾∪𝐻𝐾 , { 𝑓 ∗𝑖 (𝑥

∗)}𝑖∈𝐶𝐾∪𝐶𝐻);
AO(c̃rs,{ 𝑓 ∗

𝑖
}𝑖∈ [𝐿′] ,𝐶𝐾,𝐻𝐾,𝐶𝐻,·,·) (c̃rs);

c̃t∗ ← Ẽnc((pk∗1, . . . , pk∗𝐿′); td), 𝛼← A(c̃t
∗)


where 𝐶𝐾, 𝐻𝐾 ⊆ [𝐿′], 𝐶𝐾 ∪ 𝐻𝐾 = [𝐿′] for some 𝐿′ ≤ 𝐿, 𝐶𝐻 ⊆ 𝐻𝐾 and 𝐶𝐾 ∩ 𝐻𝐾 = ∅, and O works as follows with
a counter ℓ = 1 and the same set of auxiliary data structure as in the definition of IND-security: on input (𝑖, pk∗𝑖),
return ⊥ when 𝑖 ≠ ℓ, otherwise set ℓ = ℓ + 1 and do

– when 𝑖 ∈ 𝐶𝐾 , return ORegCK(pk∗𝑖 , 𝑓 ∗𝑖);
– when 𝑖 ∈ 𝐻𝐾 , return ORegHK(𝑓 ∗

𝑖
); furthermore, if 𝑖 ∈ 𝐶𝐻 , return OCorHK(|𝐻𝐾 ∩ [𝑖] |).

HereORegCK andORegHK invoke Reg in both cases: in the real world (on the left-hand side), they use crs generated
by Setup and ORegHK invokes Gen; in the ideal world (on the right-hand side), they use c̃rs simulated by S̃etup and
ORegHK invokes G̃en.

Remark. We give several remarks on our formalization.

– We do not require simulated version of Reg and Upd since both of them are public.
– We allow the adversary to choose pk∗𝑖 at any point, only functions 𝑓𝑖 and types of public keys (i.e., honest,

malicious, honest but corrupted) are chosen “very selectively”.
– The set 𝐶𝐻 does not give the timing to invoke OCorHK. One could let the adversary make an explicit query;

however we call the oracle automatically just after invocation of ORegHK. This gives a simple but not weaker
model in the very selective setting. In the definition, |𝐻𝐾 ∩ [𝑖] | is the first item of the response of ORegHK(𝑓 ∗

𝑖
).

– In very selective SIM-security, there is no need to consider post-challenge queries. This relies on the fact that
the adversary should state the set 𝐶𝐻 at the beginning, so the pre-challenge and post-challenge corruption
queries are equivalent in the very-selective SIM-security setting.

29

5 Compact Reg-FE from Multi-instance Slotted Reg-FE

In this section, we define multi-instance slotted Reg-FE and give a transformation to get compact Reg-FE. Our trans-
formation works well for both IND and SIM security.

5.1 Multi-instance Slotted Reg-FE

Algorithms. A multi-instance slotted Reg-FE for the functionality 𝐹 = { 𝑓 : 𝑌 → 𝑍}, consists of eight efficient
algorithms:

– Setup(1𝜆 , 1𝑚, 1𝐿1 , . . . , 1𝐿𝑚 , 𝐹) → crs: It takes as input security parameter 1𝜆 , maximum instance index 1𝑚, max-
imum slot indices 1𝐿1 , . . . , 1𝐿𝑚 of every instances and functionalities 𝐹, outputs common reference string crs.

– Gen(crs, 𝑞, 𝑖) → (pk𝑞,𝑖 , sk𝑞,𝑖): It takes as input crs, instance index 𝑞 ∈ [𝑚], and slot index 𝑖 ∈ [𝐿𝑞], outputs key
pair (pk𝑞,𝑖 , sk𝑞,𝑖).

– Ver(crs, 𝑞, 𝑖, pk𝑞,𝑖) → 0/1: It takes as input crs, 𝑞 ∈ [𝑚], 𝑖 ∈ [𝐿𝑞] and pk𝑞,𝑖 , outputs a bit.
– Agg+ (crs) → mpk+: It takes as input crs, outputs the shared parts of master public key mpk+.
– Agg(crs, 𝑞, (pk𝑞,𝑖 , 𝑓𝑞,𝑖)𝑖∈[𝐿𝑞]) → (mpk𝑞, (hsk𝑞, 𝑗) 𝑗∈[𝐿𝑞]): It takes as input crs, 𝑞 ∈ [𝑚], a series of pk𝑞,𝑖 with 𝑓𝑞,𝑖 ∈ 𝐹

for all 𝑖 ∈ [𝐿𝑞], outputs master public key mpk𝑞 and helper keys hsk𝑞, 𝑗 for instance 𝑞.
– Enc+ (mpk+, 𝑥) → ct+: It takes mpk+ and message 𝑥 ∈ 𝑋 as input, outputs ciphertext ct+.
– Enc(mpk𝑞) → ct𝑞: It takes as input mpk𝑞 (for some 𝑞 ∈ [𝑚]), outputs ciphertext ct𝑞.
– Dec(sk, hsk, (ct+, ct𝑞)) → 𝑧/⊥: It takes as input sk, hsk, ct+ and ct𝑞 (for some 𝑞 ∈ [𝑚]), outputs 𝑧 ∈ Z𝑝 or a

special symbol ⊥.

We require that Agg+, Agg and Dec are deterministic, and Enc+ and Enc share the random coin space Coin. And we
allow the case that some instance 𝑞∗ to be empty, namely Agg(crs, 𝑞∗, ·) takes (pk𝑞∗ ,𝑖 , 𝑓𝑞∗ ,𝑖) = (⊥,⊥) for all 𝑖 ∈ [𝐿𝑞∗]
as input, and return mpk𝑞∗ = ⊥ and hsk𝑞∗ , 𝑗 = ⊥ for all 𝑗 ∈ [𝐿𝑞∗], and we allow Enc to take mpk𝑞∗ = ⊥ as input and
output ct𝑞∗ = ⊥.

Completeness. For all 𝜆, 𝑚, 𝐿1, . . . , 𝐿𝑚 ∈ N, all 𝐹, all 𝑞 ∈ [𝑚] and 𝑖 ∈ [𝐿𝑞], we have

Pr
[
Ver(crs, 𝑞, 𝑖, pk𝑞,𝑖) = 1

���crs← Setup(1𝜆 , 1𝑚, 1𝐿1 , . . . , 1𝐿𝑚 , 𝐹); (pk𝑞,𝑖 , sk𝑞,𝑖) ← Gen(crs, 𝑞, 𝑖)
]
= 1.

Correctness. For all 𝜆, 𝑚, 𝐿1, . . . , 𝐿𝑚 ∈ N, all 𝐹, all 𝑞∗ ∈ [𝑚] and 𝑖∗ ∈ [𝐿𝑞∗]; all crs← Setup(1𝜆 , 1𝑚, 1𝐿1 , . . . , 1𝐿𝑚 , 𝐹),
all (pk𝑞∗ ,𝑖∗ , sk𝑞∗ ,𝑖∗) ← Gen(crs, 𝑞∗, 𝑖∗); all {pk𝑞∗ ,𝑖}𝑖∈[𝐿𝑞∗]\{𝑖∗ } such that Ver(crs, 𝑞∗, 𝑖, pk𝑞∗ ,𝑖) = 1; for all 𝑥 ∈ 𝑋 , 𝑓𝑞∗ ,𝑖 ∈ 𝐹,
we have

Pr

Dec(sk𝑞
∗ ,𝑖∗ , hsk𝑞∗ ,𝑖∗ , (ct+, ct𝑞∗)) = 𝑓𝑞∗ ,𝑖∗ (𝑥)

��������
mpk+ ← Agg+ (crs);
(mpk𝑞∗ , (hsk𝑞∗ , 𝑗) 𝑗∈[𝐿𝑞∗]) ← Agg(crs, 𝑞∗, (pk𝑞∗ ,𝑖 , 𝑓𝑞∗ ,𝑖)𝑖∈[𝐿𝑞∗])
𝑠← Coin; ct+ ← Enc+ (mpk+, 𝑥; 𝑠); ct𝑞∗ ← Enc(mpk𝑞∗ ; 𝑠)

 = 1.

Ciphertext Compactness. For all 𝜆, 𝑚, 𝐿1, . . . , 𝐿𝑚 ∈ N, all 𝐹, all 𝑞 ∈ [𝑚] and 𝑖 ∈ [𝐿𝑞]; all crs← Setup(1𝜆 , 1𝑚, 1𝐿1 , . . . , 1𝐿𝑚 , 𝐹),
all (pk𝑞,𝑖 , sk𝑞,𝑖) ← Gen(crs, 𝑞, 𝑖) such that Ver(crs, 𝑞, 𝑖, pk𝑞,𝑖) = 1; for all 𝑥 ∈ 𝑋 , 𝑓𝑞,𝑖 ∈ 𝐹; all mpk+ ← Agg+ (crs), all
(mpk𝑞, (hsk𝑞, 𝑗) 𝑗∈[𝐿𝑞]) ← Agg(crs, 𝑞, (pk𝑞,𝑖 , 𝑓𝑞,𝑖)𝑖∈[𝐿𝑞]), all ct+ ← Enc+ (mpk+, 𝑥), all ct𝑞 ← Enc(mpk𝑞), we have

|ct+ | = |𝑥 | + poly(𝜆) and |ct𝑞 | = poly(𝜆).

30

IND-security in Joint Challenge Setting. For all stateful PPT adversary A, the following advantage function is
negligible in 𝜆:

IndAdvmiReg-FE
A (𝜆) = Pr


𝑏 = 𝑏′

����������������

𝑚, 𝐿1, . . . , 𝐿𝑚 ← A(1𝜆); crs← Setup(1𝜆 , 1𝑚, 1𝐿1 , . . . , 1𝐿𝑚 , 𝐹)
(pk∗𝑞,𝑖 , 𝑓 ∗𝑞,𝑖)𝑞∈[𝑚],𝑖∈[𝐿𝑚] , 𝑥

∗
0 , 𝑥
∗
1 ← AOGen(·,·) ,OCor(·,·,·) (crs)

mpk+ ← Agg+ (crs)
(mpk𝑞, . . .) ← Agg(crs, 𝑞, (pk∗𝑞,1, 𝑓 ∗𝑞,1), . . . , (pk

∗
𝑞,𝐿𝑞

, 𝑓 ∗𝑞,𝐿𝑞)), ∀𝑞 ∈ [𝑚]
𝑏← {0, 1}, 𝑠← Coin, ct∗+ ← Enc+ (mpk+, 𝑥∗𝑏; 𝑠), ct

∗
𝑞 ← Enc(mpk𝑞; 𝑠),∀𝑞 ∈ [𝑚]

𝑏′ ← A(ct∗+, ct∗1, . . . , ct∗𝑞)


−1/2

where the oracles work as follows with the initial setting C = ∅ andD𝑞,𝑖 = ∅ for all 𝑞 ∈ [𝑚], 𝑖 ∈ [𝐿𝑞]:

– OGen(𝑞, 𝑖): run (pk, sk) ← Gen(crs, 𝑞, 𝑖), setD𝑞,𝑖 [pk] = sk and return pk.
– OCor(𝑞, 𝑖, pk): returnD𝑞,𝑖 [pk] and update C = C ∪ {(𝑞, 𝑖, pk)}.

and for all 𝑞 ∈ [𝑚], 𝑖 ∈ [𝐿𝑞], we require that

D𝑞,𝑖 [pk∗𝑞,𝑖] = ⊥ =⇒ Ver(crs, 𝑞, 𝑖, pk∗𝑞,𝑖) = 1 and (𝑞, 𝑖, pk∗𝑞,𝑖) ∈ C ∨ D𝑞,𝑖 [pk∗𝑞,𝑖] = ⊥ =⇒ 𝑓 ∗𝑞,𝑖 (𝑥
∗
0) = 𝑓 ∗𝑞,𝑖 (𝑥

∗
1).

In IND-security model, we allow the case that some instance 𝑞∗ to be empty, namelyA submit the challenge pairs
(pk∗𝑞∗ ,𝑖 , 𝑓 ∗𝑞∗ ,𝑖) = (⊥,⊥) for all 𝑖 ∈ [𝐿𝑞∗], and challenge ciphertext ct∗𝑞∗ = ⊥. We use IndAdvmiReg-FE

A (𝜆) to denote
the advantage function. Analogous to sReg-ABE [HLWW23], there is no need to give mpk and hsk1, . . . , hsk𝐿 to A
explicitly and to consider post-challenge queries.

Very Selective SIM-security in Joint Challenge Setting. For all stateful PPT adversaryA, there exists simulator
(S̃etup, G̃en, Ẽnc+, Ẽnc) such that the following distributions are indistinguishable

𝑥∗, {𝐿𝑞,M∗𝑞, C∗𝑞 , { 𝑓 ∗𝑞,𝑖}𝑖∈[𝐿𝑞]}𝑞∈[𝑚] ← A(1
𝜆);

crs← Setup(1𝜆 , 1𝑚, 1𝐿1 , . . . , 1𝐿𝑚 , 𝐹);
{pk∗𝑞,𝑖}𝑞∈[𝑚],𝑖∈[𝐿𝑞] ← AOGen(·,·) ,OCor(·,·,·) (crs);
mpk+ ← Agg+ (crs), (mpk𝑞, . . .) ← Agg(crs, 𝑞, (pk∗𝑞,1, 𝑓 ∗𝑞,1), . . . , (pk

∗
𝑞,𝐿𝑞

, 𝑓 ∗𝑞,𝐿𝑞)), ∀𝑞 ∈ [𝑚]
𝑠← Coin, ct∗+ ← Enc+ (mpk+, 𝑥∗; 𝑠), ct∗𝑞 ← Enc(mpk𝑞; 𝑠),∀𝑞 ∈ [𝑚]
𝛼← A(ct∗+, ct∗1, . . . , ct∗𝑞)


≈𝑐



𝑥∗, {𝐿𝑞,M∗𝑞, C∗𝑞 , { 𝑓 ∗𝑞,𝑖}𝑖∈[𝐿𝑞]}𝑞∈[𝑚] ← A(1
𝜆);

(c̃rs, td) ← S̃etup(1𝜆 , 1𝑚, 1𝐿1 , . . . , 1𝐿𝑚 , 𝐹; {{ 𝑓 ∗
𝑞,𝑖
}𝑖∈[𝐿𝑞] , { 𝑓 ∗𝑞,𝑖 (𝑥

∗)}𝑖∈M∗𝑞∪C∗𝑞 }𝑞∈[𝑚]);
{pk∗𝑞,𝑖}𝑞∈[𝑚],𝑖∈[𝐿𝑞] ← AOGen(·,·) ,OCor(·,·,·) (c̃rs);
c̃t∗+ ← Ẽnc+ (td), c̃t

∗
𝑞 ← Ẽnc((pk∗𝑞,1, . . . , pk∗𝑞,𝐿𝑞); td),∀𝑞 ∈ [𝑚]

𝛼← A(c̃t∗+, c̃t
∗
1, . . . , c̃t

∗
𝑞)


whereM∗𝑞, C∗𝑞 ⊆ [𝐿𝑞] for 𝑞 ∈ [𝑚] denote the sets of malicious and corrupted slots in instance 𝑞, and the oracles
work as follows with initial setting C𝑞 = ∅ andD𝑞,𝑖 = ∅ for all 𝑖 ∈ [𝐿𝑞] and 𝑞 ∈ [𝑚]:

– OGen(𝑞, 𝑖): run (pk, sk) ← Gen(crs, 𝑞, 𝑖), setD𝑞,𝑖 [pk] = sk and return pk.
– OCor(𝑞, 𝑖, pk): returnD𝑞,𝑖 [pk] and update C𝑞 = C𝑞 ∪ {(𝑖, pk)}.

In the ideal world, OGen invokes G̃en instead of Gen; and the following restrictions: for all 𝑞 ∈ [𝑚],

𝑖 ∈ M∗𝑞 =⇒ D𝑞,𝑖 [pk∗𝑞,𝑖] = ⊥ ∧ Ver(crs, 𝑞, 𝑖, pk
∗
𝑞,𝑖) = 1

𝑖 ∈ C∗𝑞 =⇒ (𝑖, pk∗𝑞,𝑖) ∈ C𝑞
𝑖 ∈ [𝐿𝑞] \ (M∗𝑞 ∪ C∗𝑞) =⇒ D𝑞,𝑖 [pk∗𝑞,𝑖] ≠ ⊥ ∧ (𝑖, pk

∗
𝑞,𝑖) ∉ C𝑞

31

In SIM-security model, we allow the case that some instance 𝑞∗ to be empty, namelyA givesM∗𝑞∗ , C∗𝑞∗ = ∅, and the
challenge functions 𝑓 ∗

𝑞∗ ,𝑖 = ⊥, challenge public keys pk∗𝑞∗ ,𝑖 = ⊥ for all 𝑖 ∈ [𝐿𝑞∗], and we have challenge ciphertext

ct∗𝑞∗ = ⊥ (resp. c̃t∗𝑞∗ = ⊥) in real (resp. ideal) world. We use AdvmiReg-FE
A to denote the advantage function. Similarly,

there is no need to givempk+, {mpk𝑞, hsk𝑞,1, . . . hsk𝑞,𝐿𝑞 }𝑞∈[𝑚] toA explicitly in real game (or explicitly in simulation
game) and consider post-challenge queries.

5.2 Compact Reg-FE

We give a generic transformation from multi-instance slotted Reg-FE to Reg-FE (c.f. Section 2.2) with compact ci-
phertext. Here we will apply a conceptual change to multi-instance slotted Reg-FE: we will always add an instance
with index 0 and count slot index from 0 instead of 1. Namely, Setup that takes 1𝑚 and 1𝐿0 , 1𝐿1 , . . . , 1𝐿𝑚 as input
will give us 𝑚 + 1 instances indexed by 0, 1, . . . , 𝑚; for each 𝑞 ∈ [0, 𝑚], the 𝑞-th instance has 𝐿𝑞 slots indexed by
0, 1, . . . , 𝐿𝑞 − 1. Clearly, this does not change correctness and security. Note that in the remaining subsections of
Section 5, we use two difference indices 𝑖 and 𝑗, respectively referring to the global range from 0 to 𝐿 − 1 and
instances’ internal ranges from 0 to 𝐿𝑞 − 1 (for each 𝑞 ∈ [0, 𝑚]).

Auxiliary Data Structure. We will count users from 0 and set aux = (ctr,D1,D2,mpk):

– Counter ctr ∈ [0, 𝐿] is the current number of registered users in the system, or the index of the next user.
– D1 is a dictionary that maps 𝑞 ∈ [0, 𝑚] and 𝑗 ∈ [0, 2𝑞 − 1] to public key pk𝑞, 𝑗 and function 𝑓𝑞, 𝑗 .
– D2 is a dictionary that maps 𝑞 ∈ [0, 𝑚] and 𝑖 ∈ [0, 𝐿 − 1] to a helper key hsk.
– mpk will be in the form (ctr,mpk+,mpk0, . . . ,mpk𝑚).

Initially, we set ctr = 0,D1 = ∅,D2 = ∅, mpk = (0,⊥, . . . ,⊥); the system is overloaded when ctr = 𝐿.

Generic Transformation. Our Reg-FE with compact ciphertext works as follows with multi-instance slotted Reg-
FE (mSetup,mGen,mVer,mAgg+,mAgg,mEnc+,mEnc,mDec):

– Setup(1𝜆 , 1𝐿, 𝐹): Compute 𝑚 = log 𝐿, output

crs← mSetup(1𝜆 , 1𝑚, 120 , . . . , 12𝑚 , 𝐹)

– Gen(crs, aux): Parse aux = (ctr,D1,D2,mpk) and run

(pkctr𝑞 , skctr𝑞) ← mGen(crs, 𝑞, ctr mod 2𝑞), ∀𝑞 ∈ [0, 𝑚]

Output
pk = (ctr, pkctr0 , . . . , pkctr𝑚) and sk = (ctr, skctr0 , . . . , pkctr𝑚).

– Reg(crs, aux, pk, 𝑓): Parse aux = (ctr,D1,D2,mpk)wherempk = (ctr,mpk+,mpk0, . . . ,mpk𝑚) andpk = (ctrpk, pkctr0 , . . . , pkctr𝑚).
Abort if the following does not hold:

ctr = ctrpk and mVer(crs, 𝑞, ctr mod 2𝑞, pkctr𝑞) = 1, ∀𝑞 ∈ [0, 𝑚]

For each 𝑞 ∈ [0, 𝑚], updateD1 [𝑞, ctr mod 2𝑞] = (pkctr𝑞 , 𝑓); furthermore, if ctr + 1 = 0 mod 2𝑞, run

(mpk′𝑞, hsk
′
𝑞,0, . . . , hsk

′
𝑞,2𝑞−1) ← mAgg(crs, 𝑞,D1 [𝑞, 0], . . . ,D1 [𝑞, 2𝑞 − 1])

and updateD2 [𝑞, ctr − 2𝑞 + 1 + 𝑗] = hsk′𝑞, 𝑗 for all 𝑗 ∈ [0, 2𝑞 − 1]; otherwise, set mpk′𝑞 = mpk𝑞. Output

mpk = (ctr + 1,mpk+,mpk′0, . . . ,mpk′𝑚) and aux = (ctr + 1,D1,D2,mpk).

32

– Enc(mpk, 𝑥): Parse mpk = (ctr,mpk+,mpk0, . . . ,mpk𝑚). Sample 𝑠← Coin and compute

ct+ ← mEnc+ (mpk+, 𝑥; 𝑠) and ct𝑞 ← mEnc(mpk𝑞; 𝑠), ∀𝑞 ∈ [0, 𝑚]

Output
ct = (ctr, ct+, ct0, . . . , ct𝑚).

– Upd(crs, aux, pk): Parse aux = (ctr,D1,D2,mpk) and pk = (ctrpk, pkctr0 , . . . , pkctr𝑚). Abort if ctrpk ≥ ctr; otherwise,
output

hsk = (D2 [0, ctrpk + 1], . . . ,D2 [𝑚, ctrpk + 1]).

– Dec(sk, hsk, ct): Parse sk = (ctrsk, sk0, . . . , sk𝑚), hsk = (hsk0, . . . , hsk𝑚) and ct = (ctrct, ct+, ct0, . . . , ct𝑚). Abort if
ctrsk ≥ ctrct. Find the largest 𝑞∗ ∈ [0, 𝑚] such that 2𝑞∗ ≤ (ctrct ⊕ ctrsk) Output

𝑧 =

{
getupd if hsk𝑞∗ = ⊥
mDec(sk𝑞∗ , hsk𝑞∗ , (ct+, ct𝑞∗)) otherwise

Correctness, Update Efficiency and Compactness. Our generic transformation employs “power-of-two” tech-
nique in [HLWW23]. The analysis in [HLWW23] can be adapted to show the correctness, update efficiency and
compactness of ours. We omit the details and mention that

|crs| = 𝑂(𝐿2 · |𝑥 |2) · poly(𝜆), |hsk| = 𝑂(|𝑥 | · log 𝐿) · poly(𝜆), |mpk| = 𝑂(|𝑥 | + log 𝐿) · poly(𝜆).

Furthermore, by the ciphertext compactness of multi-instance slotted Reg-FE, our transformation achieves:

|ct| = |ct+ | + |ct0 | + . . . + |ctlog 𝐿 | = 𝑂(|𝑥 |) + 𝑂(log 𝐿) · poly(𝜆)

IND-security. Analogous to [HLWW23], we have the following theorem. The proof is analogous to [HLWW23],
except that we don’t need to build a series of hybrid experiments and reduce the security to𝑚+1 parallel instances
one-by-one, we can directly reduce the security to the multi-instance slotted scheme at once time.

Theorem 2. Assume (mSetup,mGen,mVer,mAgg+,mAgg,mEnc+,mEnc,mDec) is a multi-instance slotted Reg-FE
with adaptive (resp. selective) IND-security, our Reg-FE scheme generates via above transformation achieves adaptive
(resp. selective) IND-security.

5.3 SIM-security

We have the following theorem. Given multi-instance slotted Reg-QFE with very selective SIM-security under
MDDH assumption, our Reg-QFE scheme uses prime-order bilinear group and the very selective SIM-security can
be reduced to Bi-MDDH assumption.

Theorem 3. Assume (mSetup,mGen,mVer,mAgg+,mAgg,mEnc+,mEnc,mDec) is a multi-instance slotted Reg-FE,
with completeness, correctness and very selective SIM-security, our Reg-FE scheme generate via above transformation
achieves the very selective SIM-security, under bi-MDDH assumption.

Let (mS̃etup,mG̃en,mẼnc+,mẼnc) be the simulator of multi-instance slotted Reg-FE, to build the simulator of
the Reg-FE, we need the following auxiliary data structure and deterministic algorithm which simulate the slot
filling procedure in Reg, to determine the slots’ filling state after all users have registered.

33

Auxiliary Data Structure.

– 𝐷, 𝑅 are dictionaries that map 𝑞 ∈ [0, 𝑚] and 𝑗 ∈ [0, 2𝑞 − 1] to index 𝑖.
– M∗𝑞, C∗𝑞 are the same sets as the definition of SIM-security of multi-instance slotted Reg-FE.

Initially, we set 𝐷 = ∅, 𝑅 = ∅ andM∗𝑞, C∗𝑞 = ∅ for all 𝑞 ∈ [0, 𝑚].

Auxiliary Algorithm. Assume the Reg-FE mostly supports 𝐿 = 2𝑚 users, and 𝐶𝐾, 𝐻𝐾 ⊆ [0, 𝐿′ − 1], 𝐶𝐻 ∪ 𝐻𝐾 =

[0, 𝐿′ − 1] for some 𝐿′ ≤ 𝐿, the algorithms works as follow:

– Fillslot(𝐶𝐾, 𝐻𝐾, 𝐶𝐻): For all 𝑖 ∈ [0, 𝐿′ − 1]: for each 𝑞 ∈ [0, 𝑚], update 𝐷[𝑞, 𝑖 mod 2𝑞] = 𝑖; furthermore, if
𝑖 + 1 = 0 mod 2𝑞, update

𝑅[𝑞, 𝑗] = 𝐷[𝑞, 𝑗] ∀ 𝑗 ∈ [0, 2𝑞 − 1] .

Output 𝑅.

Simulator. The simulator of our multi-instance Reg-QFE is as follows:

– S̃etup(1𝜆 , 1𝐿, 𝐹; { 𝑓𝑖}𝑖∈𝐶𝐾∪𝐻𝐾 , {𝜇𝑖}𝑖∈𝐶𝐾∪𝐶𝐻): Let 𝑚 = log 𝐿, run 𝑅← Fillslot(𝐶𝐾, 𝐻𝐾, 𝐶𝐻). For all 𝑞 ∈ [0, 𝑚]:
• If 2𝑞 ≤ 𝐿′, for all 𝑗 ∈ [0, 2𝑞 − 1]: fetch 𝑅[𝑞, 𝑗] = 𝑖 and output 𝑓𝑞, 𝑗 = 𝑓𝑖 , furthermore, if 𝑖 ∈ 𝐶𝐾 ∪ 𝐶𝐻 , output
𝜇𝑞, 𝑗 = 𝜇𝑖 and update 

M∗𝑞 =M∗𝑞 ∪ { 𝑗} if 𝑖 ∈ 𝐶𝐾

C∗𝑞 = C∗𝑞 ∪ { 𝑗} if 𝑖 ∈ 𝐶𝐻

• If 2𝑞 > 𝐿′, for all 𝑗 ∈ [0, 2𝑞 − 1], output 𝑓𝑞, 𝑗 = ⊥.

And run

(c̃rs,mtd) ← mS̃etup(1𝜆 , 1𝑚, 120 , . . . , 12𝑚 , 𝐹, {{ 𝑓𝑞, 𝑗} 𝑗∈[0,2𝑞−1] , {𝜇𝑞, 𝑗} 𝑗∈M𝑞∪C𝑞 }𝑞∈[0,𝑚])

Output c̃rs, and set trapdoor as td = mtd ∪ 𝑅.
– G̃en(c̃rs, aux; td): Parse aux = (ctr,D1,D2,mpk) and run

(p̃k𝑞, s̃k𝑞) ← mG̃en(c̃rs, 𝑞, ctr mod 2𝑞; td), ∀𝑞 ∈ [0, 𝑚]

Output

pk = (ctr, p̃k0, . . . , p̃k𝑚) and sk = (ctr, s̃k0, . . . , p̃k𝑚).

– Ẽnc((pk1, . . . , pk𝐿′); td): Parse td = (mtd, 𝑅) and pk𝑖 = (𝑖, pk𝑖0, . . . , pk𝑖𝑚). For all 𝑞 ∈ [0, 𝑚]:
• If 2𝑞 ≤ 𝐿′, for all 𝑗 ∈ [0, 2𝑞 − 1]: fetch 𝑅[𝑞, 𝑗] = 𝑖 and set pk𝑞, 𝑗 = pk𝑖𝑞
• If 2𝑞 > 𝐿′, for all 𝑗 ∈ [0, 2𝑞 − 1], set pk𝑞, 𝑗 = ⊥.

Compute

c̃t+ ← mẼnc+ (mtd) and c̃t𝑞 ← mẼnc((pk𝑞,0, . . . , pk𝑞,2𝑞−1);mtd), ∀𝑞 ∈ [0, 𝑚]

Output

c̃t = (ctr, c̃t+, c̃t0, . . . , c̃t𝑚).

The reader can find the sanity check in Appendix D.

34

5.4 Proof

We prove the following technical lemma this immediately proves Theorem 3.

Lemma 3. For all adversariesA, there exist adversary B such that:

AdvReg-FE
A (𝜆) ≤ AdvmiReg-FE

B (𝜆) + negl(𝜆)

where Time(B) ≈ Time(A).

Game Sequence. Suppose that crs is the common reference string. 𝑥∗ is the challenge, with some 𝐿′ ≤ 𝐿, { 𝑓 ∗
𝑖
}𝑖∈[0,𝐿′−1]

are challenge functions that chosen at the beginning. 𝐶𝐾 , 𝐻𝐾 and 𝐶𝐻 are the set of register corrupted (mali-
cious) key index, register honest key index and corrupted honest key index such that 𝐶𝐾, 𝐻𝐾 ⊆ [0, 𝐿′ − 1],
𝐶𝐾 ∪ 𝐻𝐾 = [0, 𝐿′ − 1], 𝐶𝐻 ⊆ 𝐻𝐾 and 𝐶𝐾 ∩ 𝐻𝐾 = ∅. {pk∗𝑖 }𝑖∈[0,𝐿′] are challenge public keys with the form of
pk∗𝑖 = (𝑖, (pk

𝑖
0)∗, . . . , (pk𝑖𝑚)∗). Recall thatH record the (pk∗𝑖 , sk

∗
𝑖)𝑖∈𝐻𝐾 that generated in ORegHK(·).

– G0: This is the real game, recall that we have
• crs is in the form of

crs← mSetup(1𝜆 , 1𝑚, 120 , . . . , 12𝑚 , 𝐹)

• For each 𝑖 ∈ 𝐻𝐾 , each (pk∗𝑖 , sk
∗
𝑖) ∈ H is in the form of

pk∗𝑖 = (𝑖, (pk
𝑖
0)∗, . . . , (pk𝑖𝑚)∗) and sk∗𝑖 = (𝑖, (sk

𝑖
0)∗, . . . , (sk𝑖𝑚)∗).

where (pk∗𝑞,𝑖 , sk
∗
𝑞,𝑖) ← mGen(crs, 𝑞, 𝑖 mod 2𝑞), for all 𝑞 ∈ [0, 𝑚].

• ct∗ for 𝑥∗ is in the form of
ct∗ = (𝐿, ct∗+, ct∗0, . . . , ct∗𝑚)

where ct∗+ ← mEnc+ (mpk+, 𝑥∗; 𝑠), and ct∗𝑞 ← mEnc(mpk𝑞; 𝑠) for all 𝑞 ∈ [0, 𝑚], with the same random coin
𝑠← Coin.

– G1: Identical to G0 except that we replace (mSetup,mGen,mEnc+,mEnc) with (mS̃etup,mG̃en,mẼnc+,mẼnc).
In particular:
• crs is replaced with c̃rs , where

(c̃rs,mtd) ← mS̃etup (1𝜆 , 1𝑚, 120 , . . . , 12𝑚 , 𝐹, {{ 𝑓 ∗𝑞, 𝑗} 𝑗∈[0,2𝑞−1] , { 𝑓
∗
𝑞, 𝑗 (𝑥

∗)} 𝑗∈M∗𝑞∪C∗𝑞 }𝑞∈[0,𝑚])

where

𝑓 ∗𝑞, 𝑗 =


𝑓 ∗
𝑅[𝑞, 𝑗] if 2𝑞 ≤ 𝐿′

⊥ if 2𝑞 > 𝐿′

with 𝑅← Fillslot(𝐶𝐾, 𝐻𝐾, 𝐶𝐻).
• For each 𝑖 ∈ 𝐻𝐾 , each (pk∗𝑖 , sk

∗
𝑖) ∈ H is in the form of

pk∗𝑖 = (𝑖, (p̃k
𝑖

0)∗, . . . , (p̃k
𝑖

𝑚)∗) and sk∗𝑖 = (𝑖, (s̃k
𝑖

0)∗, . . . , (s̃k
𝑖

𝑚)∗).

where ((p̃k𝑖𝑞)∗, (s̃k
𝑖

𝑞)∗) ← mG̃en (crs, 𝑞, 𝑖 mod 2𝑞; td), for all 𝑞 ∈ [0, 𝑚].
• ct∗ for 𝑥∗ is in the form of

ct∗ = (𝐿′, c̃t∗+, c̃t
∗
0, . . . , c̃t

∗
𝑚)

where c̃t∗+ ← mẼnc+ (td), and c̃t∗𝑞 ← mẼnc ((pk∗𝑞,0, . . . , pk∗𝑞,2𝑞−1); td) for all 𝑞 ∈ [0, 𝑚]. With

pk∗𝑞, 𝑗 =

(pk𝑅[𝑞, 𝑗]𝑞)∗ if 2𝑞 ≤ 𝐿′

⊥ if 2𝑞 > 𝐿′

35

We reduce the security to multi-instance slotted Reg-FE, where the instances 𝑞∗ ∈ {𝑞 : 2𝑞 > 𝐿′} are empty: we
have 𝑓 ∗

𝑞∗ , 𝑗 , pk
∗
𝑞∗ , 𝑗 = ⊥ for all 𝑗 ∈ [0, 2𝑞∗ − 1], andM∗𝑞∗ , C∗𝑞∗ = ∅. Observe that the game G1 can be simulated using the

simulator by setting 𝜇𝑖 = 𝑓 ∗
𝑖
(𝑥∗)

6 Pre-Constrained Slotted Reg-IPFE

In this section, we introduce the notion of pre-constrained slotted Reg-IPFE; the definition for general function-
ality is deferred to Appendix A. We present our pairing-based construction with very selective SIM-security in
Section 6.1. We explain how this implies (standard, without pre-constrain) slotted Reg-IPFE with very selective
SIM-security in Section 6.4 and how this derives (standard, without pre-constrain) slotted Reg-IPFE with selective
IND-security in Section 6.5.

Functionality and Definition. A Pre-constrained Slotted Reg-IPFE is a generalized slotted Reg-FE for linear func-
tionality:

𝐹 = {f : x→ xf⊤}

where x, f ∈ Z1×𝑛𝑝 . The generalization in multi-instance version is in the following four aspects:

– Algorithm: Setup takes as input security parameter 1𝜆 , maximum instance index 1𝑚, maximum slot indices
1𝐿1 , . . . , 1𝐿𝑚 of every instances, function parameter 1𝑛1 , 1𝑛2 and pre-constrained matrix M ∈ Z𝑛1×𝑛2𝑝 , outputs
common reference string crs.

– Correctness: for all 𝜆, 𝑚, 𝐿1, . . . , 𝐿𝑚, 𝑛1, 𝑛2 ∈ N, all 𝑞∗ ∈ [𝑚] and 𝑖∗ ∈ [𝐿𝑞∗]; all crs← Setup(1𝜆 , 1𝑚, 1𝐿1 , . . . , 1𝐿𝑚 , 1𝑛1 , 1𝑛2 ,M),
all (pk𝑞∗ ,𝑖∗ , sk𝑞∗ ,𝑖∗) ← Gen(crs, 𝑞∗, 𝑖∗); all {pk𝑞∗ ,𝑖}𝑖∈[𝐿𝑞∗]\{𝑖∗ } such that Ver(crs, 𝑞∗, 𝑖, pk𝑞∗ ,𝑖) = 1; for all x ∈ Z1×𝑛1𝑝 ,
f𝑞∗ ,𝑖 ∈ Z1×𝑛2𝑝 , we have

Pr

Dec(sk𝑞
∗ ,𝑖∗ , hsk𝑞∗ ,𝑖∗ , (ct+, ct𝑞∗)) = xMf⊤𝑞∗ ,𝑖∗

��������
mpk+ ← Agg+ (crs);
(mpk𝑞∗ , (hsk𝑞∗ , 𝑗) 𝑗∈[𝐿𝑞∗]) ← Agg(crs, 𝑞∗, (pk𝑞∗ ,𝑖 , f𝑞∗ ,𝑖)𝑖∈[𝐿𝑞∗])
𝑠← Coin; ct+ ← Enc+ (mpk+, x; 𝑠); ct𝑞∗ ← Enc(mpk𝑞∗ ; 𝑠)

 = 1.

– IND-security: We let the adversary to choose M at the beginning and require that x∗0M(f∗𝑞,𝑖)
⊤ = x∗1M(f∗𝑞,𝑖)

⊤ for
the case “(𝑞, 𝑖, pk∗𝑞,𝑖) ∈ C ∨ D𝑞,𝑖 [pk∗𝑞,𝑖] = ⊥”.

– SIM-security: We let the adversary to choose M at the beginning and give M and {x∗M(f∗
𝑞,𝑖
)}𝑖∈M∗𝑞∪C∗𝑞 to S̃etup.

It is straightforward to verify that setting 𝑛1 = 𝑛2 = 𝑛 and M = I𝑛 yields standard slotted Reg-IPFE defined above.

Group-based Simulator. We also require the existence of the group-based simulator S̃etupG. For all 𝜆, 𝑚, 𝑛1, 𝑛2 ∈
N, all 𝐿1, . . . , 𝐿𝑚 ∈ N, all M∗𝑞, C∗𝑞 ⊆ [𝐿𝑞], all M ∈ Z𝑛1×𝑛2𝑝 , all f𝑞,1, . . . , f𝑞,𝐿𝑞 ∈ Z

1×𝑛2
𝑝 and 𝜇𝑞,𝑖 ∈ Z𝑝, there exist a

group-based algorithm S̃etup𝑔 such that

S̃etupG (1𝜆 , 1𝑚, 1𝑛1 , 1𝑛2 , [M]1, [M]2; {1𝐿𝑞 , {f𝑞,𝑖}𝑖∈[𝐿𝑞] , {[𝜇𝑞,𝑖]1, [𝜇𝑞,𝑖]2}𝑖∈M∗𝑞∪C∗𝑞 }𝑞∈[𝑚])

≡ S̃etup(1𝜆 , 1𝑚, 1𝑛1 , 1𝑛2 ,M; {1𝐿𝑞 , {f𝑞,𝑖}𝑖∈[𝐿𝑞] , {𝜇𝑞,𝑖}𝑖∈M∗𝑞∪C∗𝑞 }𝑞∈[𝑚])

For simplicity, for the group-based simulator, we do not distinguish the notation of S̃etupG and S̃etup.

36

6.1 Scheme

Assuming a QA-NIZK Π0 = (LGen, LPrv, LVer, LSim) for linear space over bilinear groups, see Section 2.4; a Bi-PKE
Π1 = (Gen1, Enc1,Dec1) with linear decryption over bilinear groups, see Section 2.5. Assuming that |ict| = |isk| = 𝑛,
our multi-instance slotted PReg-IPFE scheme, with a shared pre-constrained M ∈ Z𝑛1×𝑛2𝑝 works as follows in the
prime-order bilinear group:

– Setup(1𝜆 , 1𝑚, 1𝐿1 , . . . , 1𝐿𝑚 , 1𝑛1 , 1𝑛2 ,M) : Run G := (𝑝,G1,G2,G𝑇 , 𝑒) ← G(1𝜆), ([ipk]1, [ipk]2, isk) ← Gen1 (1𝜆).
Sample shared parts:

A← Z𝑘×(2𝑘+1)𝑝 , W← Z(2𝑘+1)×(𝑛1+𝑛)𝑝 .

For each instance 𝑞 ∈ [𝑚], sample B𝑞 ← Z(𝑘+1)×𝑘𝑝 , and for all 𝑖 ∈ [𝐿𝑞], do following operations:
• Run ([ict𝑞,𝑖]1, [ict𝑞,𝑖]2) ← Enc1 ([ipk]1, [ipk]2, 0), for 𝑠 ∈ {1, 2}, set

[M𝑞,𝑖]𝑠 =
[

M 0⊤𝑛1
0𝑛×𝑛2 ict⊤𝑞,𝑖

]
𝑠

∈ G(𝑛1+𝑛)×(𝑛2+1)𝑠 .

• Sample
W𝑞,𝑖 ← Z(2𝑘+1)×(𝑘+1) (𝑛1+𝑛)𝑝 , R𝑞,𝑖 ← Z(2𝑘+2)×(2𝑘+1)𝑝 , r𝑞,𝑖 ← Z1×𝑘𝑝 .

• Run (crs𝑞,𝑖 , td𝑞,𝑖) ← LGen(1𝜆 ,G1, [A𝑞,𝑖]1), where A𝑞,𝑖 =
(A
R𝑞,𝑖

)
∈ Z(3𝑘+2)×(2𝑘+1)𝑝 .

Output9

crs =

©­­­­­­«

[A,AW]1,
{crs𝑞,𝑖 , [R𝑞,𝑖 ,AW𝑞,𝑖 (M𝑞,𝑖 ⊗ I𝑘+1),AW𝑞,𝑖]1}𝑖∈[𝐿𝑞]
{[M𝑞, 𝑗 ,B𝑞r⊤𝑞, 𝑗 ,W𝑞, 𝑗 (M𝑞, 𝑗 ⊗ B𝑞r⊤𝑞, 𝑗) +WM𝑞, 𝑗]2} 𝑗∈[𝐿𝑞]
{[W𝑞,𝑖 (M𝑞,𝑖 ⊗ B𝑞r⊤𝑞, 𝑗)]2} 𝑗∈[𝐿𝑞],𝑖∈[𝐿𝑞]\{ 𝑗}

𝑞∈[𝑚]
ª®®®®®®¬
.

– Gen(crs, 𝑞, 𝑖): Sample U𝑞,𝑖 ← Z(2𝑘+1)×(𝑘+1)𝑝 . Define F𝑞,𝑖 =
(T𝑞,𝑖
Q𝑞,𝑖

)
=

(AU𝑞,𝑖
R𝑞,𝑖U𝑞,𝑖

)
= A𝑞,𝑖U𝑞,𝑖 ∈ Z(3𝑘+2)×(2𝑘+1)𝑝 and run

𝜋𝑞,𝑖 ← LPrv(crs𝑞,𝑖 , [F𝑞,𝑖]1,U𝑞,𝑖).

Fetch {[B𝑞r⊤𝑞, 𝑗]2} 𝑗∈[𝐿𝑞]\{𝑖} from crs and output

pk𝑞,𝑖 =
(
[AU𝑞,𝑖︸︷︷︸

T𝑞,𝑖

,R𝑞,𝑖U𝑞,𝑖︸ ︷︷ ︸
Q𝑞,𝑖

]1, {[U𝑞,𝑖B𝑞r⊤𝑞, 𝑗︸ ︷︷ ︸
h𝑞,𝑖, 𝑗

]2} 𝑗∈[𝐿𝑞]\{𝑖} , 𝜋𝑞,𝑖
)

and sk𝑞,𝑖 = U𝑞,𝑖 .

– Ver(crs, 𝑞, 𝑖, pk𝑞,𝑖): Parse pk𝑞,𝑖 =
(
[T𝑞,𝑖 ,Q𝑞,𝑖]1, {[h𝑞,𝑖, 𝑗]2} 𝑗∈[𝐿𝑞]\{𝑖} , 𝜋𝑞,𝑖

)
. Write F𝑞,𝑖 =

(T𝑞,𝑖
Q𝑞,𝑖

)
and check

LVer(crs𝑞,𝑖 , [F𝑞,𝑖]1, 𝜋𝑞,𝑖)
?
= 1.

For each 𝑗 ∈ [𝐿𝑞] \ {𝑖}, check
𝑒([A]1, [h𝑞,𝑖, 𝑗]2)

?
= 𝑒([T𝑞,𝑖]1, [B𝑞r⊤𝑞, 𝑗]2).

If all these checks pass, output 1; otherwise, output 0.
– Agg+ (crs): Output:

mpk+ = ([A,AW]1).
9 Note that we employ 𝑖 as the index for W𝑞’s and M𝑞’s while 𝑗 is the index for r𝑞’s; both of them range from 1 to 𝐿𝑞. One

exception is the terms with W𝑞, which is conceptually W𝑞,𝑖 (M𝑞,𝑖 ⊗ B𝑞r⊤𝑞, 𝑗) with 𝑖 = 𝑗. Note that we do not use td𝑞,1, . . . , td𝑞,𝐿𝑞
and isk in the actual scheme.

37

– Agg(crs, 𝑞, (pk𝑞,𝑖 , f𝑞,𝑖)𝑖∈[𝐿𝑞]): If 𝑞 is an empty instance, on input (pk𝑞,𝑖 , f𝑞,𝑖) = (⊥,⊥) for all 𝑖 ∈ [𝐿𝑞], abort and
return mpk𝑞 = ⊥, hsk𝑞, 𝑗 = ⊥ for all 𝑗 ∈ [𝐿𝑞]. For all 𝑖 ∈ [𝐿𝑞], parse pk𝑞,𝑖 =

(
[T𝑞,𝑖 ,Q𝑞,𝑖]1, {[h𝑞,𝑖, 𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑞,𝑖

)
,

and set f𝑞,𝑖 = (f𝑞,𝑖 ∥1) ∈ Z1×(𝑛2+1)𝑝 . Output:

mpk𝑞 =

[∑︁
𝑖∈[𝐿𝑞]

(T𝑞,𝑖 + AW𝑞,𝑖 (M𝑞,𝑖f
⊤
𝑞,𝑖 ⊗ I𝑘+1))

]
1

,

and for all 𝑗 ∈ [𝐿𝑞]

hsk𝑞, 𝑗 =

([
B𝑞r⊤𝑞, 𝑗︸︷︷︸

k⊤0

,
∑︁

𝑖∈[𝐿𝑞]\{ 𝑗}
(h𝑞,𝑖, 𝑗 +W𝑞,𝑖 (M𝑞,𝑖f

⊤
𝑞,𝑖 ⊗ B𝑞r⊤𝑞, 𝑗))︸ ︷︷ ︸

k⊤1

,W𝑞, 𝑗 (M𝑞, 𝑗f
⊤
𝑞, 𝑗 ⊗ B𝑞r⊤𝑞, 𝑗) +WM𝑞, 𝑗f

⊤
𝑞, 𝑗︸ ︷︷ ︸

k⊤2

,M𝑞, 𝑗f
⊤
𝑞, 𝑗︸ ︷︷ ︸

k⊤3

]
2

)
.

– Enc+ (mpk+, x): Set x = (x∥0𝑛) ∈ Z1×(𝑛1+𝑛)𝑝 . Sample s← Z1×𝑘𝑝 . Output:

ct+ = ([sA︸︷︷︸
c+,0

, sAW + x︸ ︷︷ ︸
c+,1

]1).

– Enc(mpk𝑞): Abort and return ⊥ if mpk𝑞 = ⊥. Sample s← Z1×𝑘𝑝 , output

ct𝑞 =

[∑︁
𝑖∈[𝐿𝑞]

(sT𝑞,𝑖 + sAW𝑞,𝑖 (M𝑞,𝑖f
⊤
𝑞,𝑖 ⊗ I𝑘+1))︸ ︷︷ ︸

c𝑞

]
1

.

– Dec(sk𝑞∗ ,𝑖∗ , hsk𝑞∗ ,𝑖∗ , (ct+, ct𝑞∗)): Abort and return ⊥ if ct𝑞∗ = ⊥. Parse

sk𝑞∗ ,𝑖∗ = U𝑞∗ ,𝑖∗ , hsk𝑞∗ ,𝑖∗ = ([k⊤0, k⊤1, k⊤2, k⊤3]2), (ct+, ct𝑞∗) = ([c+,0, c+,1, c𝑞∗]1).

Recover
[𝑧1]𝑇 = 𝑒([c𝑞∗]1, [k⊤0]2), [𝑧2]𝑇 = 𝑒([c+,0]1, [k⊤1]2),
[𝑧3]𝑇 = 𝑒([c+,0U𝑞∗ ,𝑖∗]1, [k⊤0]2), [𝑧4]𝑇 = 𝑒([c+,0]1, [k⊤2]2),
[𝑧5]𝑇 = 𝑒([c+,1]1, [k⊤3]2).

Compute
[𝑧]𝑇 = [𝑧1 − 𝑧2 − 𝑧3 − 𝑧4 + 𝑧5]𝑇 .

Recover 𝑧 from [𝑧]𝑇 via brute-force DLOG and output 𝑧.

Completeness. For all 𝜆, 𝑚, 𝑛1, 𝑛2 ∈ N, all 𝐿1, . . . , 𝐿𝑚 ∈ N, all M ∈ Z𝑛1×𝑛2𝑝 , all 𝑞 ∈ [𝑚] and 𝑖 ∈ [𝐿𝑞], all crs ←
Setup(1𝜆 , 1𝑚, 1𝑛1 , 1𝑛2 ,M, 1𝐿1 , . . . , 1𝐿𝑚), and (pk𝑞,𝑖 , sk𝑞,𝑖) ← Gen(crs, 𝑞, 𝑖), we have

pk𝑞,𝑖 =
(
[T𝑞,𝑖 ,Q𝑞,𝑖]1, {[h𝑞,𝑖, 𝑗]2} 𝑗∈[𝐿𝑞]\{𝑖} , 𝜋𝑞,𝑖

)
=

(
[AU𝑞,𝑖 ,R𝑞,𝑖U𝑞,𝑖]1, {[U𝑞,𝑖B𝑞r⊤𝑞, 𝑗]2} 𝑗∈[𝐿𝑞]\{𝑖} , 𝜋𝑞,𝑖

)
for some U𝑞,𝑖 ← Z(2𝑘+1)×(𝑘+1)𝑝 and 𝜋𝑞,𝑖 ← LPrv(crs𝑞,𝑖 , [A𝑞,𝑖U𝑖]1,U𝑖) where (crs𝑞,𝑖 , td𝑞,𝑖) ← LGen(1𝜆 ,G1, [A𝑞,𝑖]1) and
A𝑞,𝑖 =

(A
R𝑞,𝑖

)
with A← Z𝑘×(2𝑘+1)𝑝 , R𝑞,𝑖 ← Z(2𝑘+2)×(2𝑘+1)𝑝 . Then

– Write F𝑞,𝑖 =
(T𝑞,𝑖
Q𝑞,𝑖

)
=

(AU𝑞,𝑖
R𝑞,𝑖U𝑞,𝑖

)
, we have LVer(crs𝑞,𝑖 , [F𝑞,𝑖]1, 𝜋𝑞,𝑖) = 1 by the perfect completeness of Π0 (see Sec-

tion 2.4) and the fact that F𝑞,𝑖 = A𝑞,𝑖U𝑞,𝑖 ;
– For each 𝑗 ∈ [𝐿𝑞] \ {𝑖}, we have 𝑒([A]1, [U𝑞,𝑖B𝑞r⊤𝑞, 𝑗]2) = 𝑒([AU𝑞,𝑖]1, [B𝑞r

⊤
𝑞, 𝑗
]2) by the definition of bilinear map

𝑒 (see Section 2.1) and the fact that A · U𝑞,𝑖B𝑞r⊤𝑞, 𝑗 = AU𝑞,𝑖 · B𝑞r⊤𝑞, 𝑗 .

This ensures that Ver(crs, 𝑞, 𝑖, pk𝑞,𝑖) = 1 by the specification of Ver and readily proves the completeness.

38

Correctness. For all 𝜆, 𝑚, 𝑛1, 𝑛2 ∈ N, all 𝐿1, . . . , 𝐿𝑚 ∈ N, all M ∈ Z𝑛1×𝑛2𝑝 , all 𝑞∗ ∈ [𝑚] and 𝑖∗ ∈ [𝐿𝑞∗]; all crs ←
Setup(1𝜆 , 1𝑚, 1𝑛1 , 1𝑛2 ,M, 1𝐿1 , . . . , 1𝐿𝑚), all (pk𝑞∗ ,𝑖∗ , sk𝑞∗ ,𝑖∗) ← Gen(crs, 𝑞∗, 𝑖∗); all {pk𝑞∗ ,𝑖}𝑖∈[𝐿𝑞∗]\{𝑖∗ } such thatVer(crs, 𝑞∗, 𝑖, pk𝑞∗ ,𝑖) =
1; all x ∈ Z1×𝑛1𝑝 and f𝑞∗ ,𝑖 ∈ Z1×𝑛2𝑝 ; for 𝑠 ∈ {1, 2}, we have:

x = (x∥0𝑛), f𝑞∗ ,𝑖∗ = (f𝑞∗ ,𝑖∗ ∥1), [M𝑞∗ ,𝑖∗]𝑠 =
[

M 0⊤𝑛1
0𝑛×𝑛2 ict⊤𝑞∗ ,𝑖∗

]
𝑠

(15)

where [ict𝑞∗ ,𝑖∗]𝑠 ∈ Enc1 ([ipk]1, [ipk]2, 0) and ([ipk]1, [ipk]2) ∈ Gen1 (1𝜆). And for all s← Z1×𝑘𝑝 , we have

sk𝑞∗ ,𝑖∗ = U𝑞∗ ,𝑖∗ ,

(ct+, ct𝑞∗) =
([

sA︸︷︷︸
c+,0

, sAW + x︸ ︷︷ ︸
c+,1

,
∑︁
𝑖∈[𝐿𝑞]

(sT𝑞∗ ,𝑖 + sAW𝑞∗ ,𝑖 (M𝑞∗ ,𝑖f
⊤
𝑞∗ ,𝑖 ⊗ I𝑘+1))︸ ︷︷ ︸

c𝑞∗

]
1

)

hsk𝑞∗ ,𝑖∗ =

([
B𝑞∗r⊤𝑞∗ ,𝑖∗︸ ︷︷ ︸

k⊤0

,
∑︁

𝑖∈[𝐿𝑞∗]\{𝑖∗ }
(h𝑞∗ ,𝑖,𝑖∗ +W𝑞∗ ,𝑖 (M𝑞∗ ,𝑖f

⊤
𝑞∗ ,𝑖 ⊗ B𝑞∗r⊤𝑞∗ ,𝑖∗))︸ ︷︷ ︸

k⊤1

,

W𝑞∗ ,𝑖∗ (M𝑞∗ ,𝑖∗f
⊤
𝑞∗ ,𝑖∗ ⊗ B𝑞∗r⊤𝑞∗ ,𝑖∗) +WM𝑞∗ ,𝑖∗f

⊤
𝑞∗ ,𝑖∗︸ ︷︷ ︸

k⊤2

, ,M𝑞,𝑖∗f
⊤
𝑞,𝑖∗︸ ︷︷ ︸

k⊤3

]
2

)
.

where
Ah𝑞∗ ,𝑖,𝑖∗ = T𝑞∗ ,𝑖B𝑞∗r⊤𝑞∗ ,𝑖∗ ∀𝑖 ∈ [𝐿𝑞∗] \ {𝑖

∗} and AU𝑞∗ ,𝑖∗ = T𝑞∗ ,𝑖∗ .

Note that here we actually consider hsk𝑞∗ , 𝑗 for 𝑗 = 𝑖∗ and sk𝑞∗ ,𝑖 for 𝑖 = 𝑖∗ and all above equalities are ensured by Ver
and Gen. We have

𝑧1 =
∑︁

𝑖∈[𝐿𝑞∗]
(sT𝑞∗ ,𝑖B𝑞∗r⊤𝑞∗ ,𝑖∗ + sAW𝑞∗ ,𝑖 (M𝑞∗ ,𝑖f

⊤
𝑞∗ ,𝑖 ⊗ I𝑘+1)B𝑞∗r⊤𝑞∗ ,𝑖∗)

=
∑︁

𝑖∈[𝐿𝑞∗]
(sT𝑞∗ ,𝑖B𝑞∗r⊤𝑞∗ ,𝑖∗ + sAW𝑞∗ ,𝑖 (M𝑞∗ ,𝑖f

⊤
𝑞∗ ,𝑖 ⊗ B𝑞∗r⊤𝑞∗ ,𝑖∗)) (16)

𝑧2 =
∑︁

𝑖∈[𝐿𝑞∗]\{𝑖∗ }
(sAh𝑞∗ ,𝑖,𝑖∗ + sAW𝑞∗ ,𝑖 (M𝑞∗ ,𝑖f

⊤
𝑞∗ ,𝑖 ⊗ B𝑞∗r⊤𝑞∗ ,𝑖∗))

𝑧3 = sAU𝑞∗ ,𝑖∗B𝑞∗r⊤𝑞∗ ,𝑖∗

𝑧4 = sAW𝑞∗ ,𝑖∗ (M𝑞∗ ,𝑖∗f
⊤
𝑞∗ ,𝑖∗ ⊗ B𝑞∗r⊤𝑞∗ ,𝑖∗) + sAWM𝑞∗ ,𝑖∗f

⊤
𝑞∗ ,𝑖∗

𝑧5 = sAWM𝑞∗ ,𝑖∗f
⊤
𝑞∗ ,𝑖∗ + xM𝑞∗ ,𝑖∗f

⊤
𝑞∗ ,𝑖∗

and then

𝑧 = 𝑧1 − 𝑧2 − 𝑧3 − 𝑧4 + 𝑧5
= sT𝑞∗ ,𝑖∗B𝑞∗r⊤𝑞∗ ,𝑖∗ + sAW𝑞∗ ,𝑖∗ (M𝑞∗ ,𝑖∗f

⊤
𝑞∗ ,𝑖∗ ⊗ B𝑞∗r⊤𝑞∗ ,𝑖∗) − sAU𝑞∗ ,𝑖∗B𝑞∗r

⊤
𝑞∗ ,𝑖∗

−(sAW𝑞∗ ,𝑖∗ (M𝑞∗ ,𝑖∗f
⊤
𝑞∗ ,𝑖∗ ⊗ B𝑞∗r⊤𝑞∗ ,𝑖∗) + sAWM𝑞∗ ,𝑖∗f

⊤
𝑞∗ ,𝑖∗)

+(sAWM𝑞∗ ,𝑖∗f
⊤
𝑞∗ ,𝑖∗ + xM𝑞∗ ,𝑖∗f

⊤
𝑞∗ ,𝑖∗) (17)

= xM𝑞∗ ,𝑖∗f
⊤
𝑞∗ ,𝑖∗ (18)

= (x∥0𝑛)
(

M 0⊤𝑛1
0𝑛×𝑛2 ict⊤𝑞∗ ,𝑖∗

) (
f⊤
𝑞∗ ,𝑖∗

1

)
(19)

= xMf⊤𝑞∗ ,𝑖∗

39

Here, equality (16) follows from the property of tensor product: (a⊤ ⊗ I)M = a⊤ ⊗ M for matrices of proper size;
equality (17) follows from the fact that Ah𝑞∗ ,𝑖,𝑖∗ = T𝑖B𝑞∗r⊤𝑞∗ ,𝑖∗ for all 𝑖 ∈ [𝐿𝑞∗] \ {𝑖∗}; equality (18) follows from the
fact that T𝑞∗ ,𝑖∗ = AU𝑞∗ ,𝑖∗ ; equality (19) follows from the fact (15). This proves the correctness.

Compactness and Efficiency. Our multi-instance PReg-IPFE has the following properties:

|crs| = 𝑂(𝐿2 · 𝑛1 · 𝑛2) · poly(𝜆), |hsk𝑞, 𝑗 | = 𝑂(𝑛1) · poly(𝜆),
|mpk+ | = 𝑂(𝑛1)poly(𝜆), |mpk𝑞 | = poly(𝜆),
|ct+ | = 𝑂(𝑛1) + poly(𝜆), |ct𝑞 | = poly(𝜆),

where 𝐿 = 𝐿1 + · · · + 𝐿𝑚. Note that the total size of {crs𝑖}𝑖∈[𝐿] is 𝐿 · poly(𝜆) according to the efficiency of the pairing-
based QA-NIZK scheme by Kiltz and Wee [KW15] and the fact that the size of language description is poly(𝜆).

Security. We have the following theorem. Given pairing-based QA-NIZK in [KW15] with unbounded simulation
soundness under MDDH assumption, given Bi-PKE with linear decryption and IND-security under bi-MDDH as-
sumption, our multi-instance slotted PReg-IPFE scheme uses prime-order bilinear group and the security can be
reduced to bi-MDDH assumption.

Theorem 4. Assume Π0 = (LGen, LPrv, LVer, LSim) is a QA-NIZK with perfect completeness, perfect zero-knowledge
and unbounded simulation soundness for linear space defined in Section 2.4, assuming Π1 = (Gen1, Enc1,Dec1) is a Bi-
PKE with correctness, linear decryption and IND-security defined in Section 2.5, our multi-instance slotted PReg-IPFE
scheme achieves the very selective SIM-security as the definition in Section 5.1, under bi-MDDH assumption.

6.2 Simulator

Recall that we allow some instance 𝑞∗ to be empty, namelyM∗𝑞∗ = ∅, C∗𝑞∗ = ∅ and f𝑞∗ ,𝑖 = ⊥, pk𝑞∗ ,𝑖 = ⊥ for all 𝑖 ∈ [𝐿𝑞∗].
Our simulator is as follows:

– S̃etup(1𝜆 , 1𝑚, 1𝐿1 , . . . , 1𝐿𝑚 , 1𝑛1 , 1𝑛2 ,M; {{f𝑞,𝑖}𝑖∈[𝐿𝑞] , {𝜇𝑞,𝑖}𝑖∈M∗𝑞∪C∗𝑞 }𝑞∈[𝑚]): Run G := (𝑝,G1,G2,G𝑇 , 𝑒) ← G(1𝜆),
([ipk]1, [ipk]2, isk) ← Gen1 (1𝜆). Sample shared parts:

c← Z1×(2𝑘+1)𝑝 , A← Z𝑘×(2𝑘+1)𝑝 , W← Z(2𝑘+1)×(𝑛1+𝑛)𝑝 .

For each instance 𝑞 ∈ [𝑚], sample B𝑞 ← Z(𝑘+1)×𝑘𝑝 , for all 𝑖 ∈ [𝐿𝑞], 𝑠 ∈ {1, 2}, set

[M̃𝑞,𝑖]𝑠 =
[

M 0⊤𝑛1
0𝑛×𝑛2 ict⊤𝑞,𝑖

]
𝑠

where [ict𝑞,𝑖]𝑠 ∈
{
Enc1 ([ipk]1, [ipk]2, 0) if 𝑖 ∈ [𝐿𝑞] \ (M∗𝑞 ∪ C∗𝑞)
Enc1 ([ipk]1, [ipk]2, 𝜇𝑞,𝑖) if 𝑖 ∈ M∗𝑞 ∪ C∗𝑞

and for all 𝑖 ∈ [𝐿𝑞], do following operations:
• Sample

W𝑞,𝑖 ← Z(2𝑘+1)×(𝑘+1) (𝑛1+𝑛)𝑝 , R̃𝑞,𝑖 ← Z(2𝑘+2)×(2𝑘+2)𝑝 , r𝑞,𝑖 ← Z1×𝑘𝑝 .

and compute

R̂𝑞,𝑖 = R̃𝑞,𝑖

(
c

I2𝑘+1

)
.

• Run (crs𝑞,𝑖 , td𝑞,𝑖) ← LGen(1𝜆 ,G1, [A𝑞,𝑖]1), where A𝑞,𝑖 =
(A
R̂𝑞,𝑖

)
∈ Z(3𝑘+2)×(2𝑘+1)𝑝 .

40

Output

c̃rs =

©­­­­­­­«

[A,AW]1,
{
crs𝑞,𝑖 , [R̂𝑞,𝑖 ,AW𝑞,𝑖 (M̃𝑞,𝑖 ⊗ I𝑘+1),AW𝑞,𝑖]1

}
𝑖∈[𝐿𝑞]{

[M̃𝑞, 𝑗 ,B𝑞r⊤𝑞, 𝑗 ,W𝑞, 𝑗 (M̃𝑞, 𝑗 ⊗ B𝑞r⊤𝑞, 𝑗) +WM̃𝑞, 𝑗]2
}
𝑗∈[𝐿𝑞]{

[W𝑞,𝑖 (M̃𝑞,𝑖 ⊗ B𝑞r⊤𝑞, 𝑗)]2
}
𝑗∈[𝐿𝑞],𝑖∈[𝐿𝑞]\{ 𝑗}

𝑞∈[𝑚]

ª®®®®®®®¬
.

And set the trapdoor as
td =

({
(R̃𝑞,𝑖 , td𝑞,𝑖)𝑖∈[𝐿𝑞] ,

}
𝑞∈[𝑚] , [ipk]1, [ipk]2, isk, c,W

)
for all 𝑞 ∈ [𝑚], if 𝑞 is not an empty instance, update

td = td ∪


∑︁
𝑖∈[𝐿𝑞]

cW𝑞,𝑖 (M̃𝑞f
⊤
𝑞,𝑖 ⊗ I𝑘+1)


where f𝑞,𝑖 = (f𝑞,𝑖 ∥1).

– G̃en(c̃rs, 𝑞, 𝑖; td) : Fetch td𝑞,𝑖 from td. Sample U𝑞,𝑖 ← Z(2𝑘+1)×(𝑘+1)𝑝 . Define F𝑞,𝑖 =
(T𝑞,𝑖
Q𝑞,𝑖

)
=

(AU𝑞,𝑖
R̂𝑞,𝑖U𝑞,𝑖

)
= A𝑞,𝑖U𝑞,𝑖 ∈

Z
(3𝑘+2)×(2𝑘+1)
𝑝 and run

𝜋𝑞,𝑖 ← LSim(crs𝑞,𝑖 , td𝑞,𝑖 , [F𝑞,𝑖]1).

Fetch {[B𝑞r⊤𝑞, 𝑗]2} 𝑗∈[𝐿𝑞]\{𝑖} from c̃rs and output

p̃k𝑞,𝑖 =
(
[AU𝑞,𝑖︸︷︷︸

T𝑞,𝑖

, R̂𝑞,𝑖U𝑞,𝑖︸ ︷︷ ︸
Q𝑞,𝑖

]1, {[U𝑞,𝑖B𝑞r⊤𝑞, 𝑗︸ ︷︷ ︸
h𝑞,𝑖, 𝑗

]2} 𝑗∈[𝐿𝑞]\{𝑖} , 𝜋𝑞,𝑖
)

and s̃k𝑞,𝑖 = U𝑞,𝑖 .

– Ẽnc+ (td): Fetch c,W, isk from td, set x̃ = (0𝑛1 ∥isk). Output

c̃t+ = ([c︸︷︷︸
c+,0

, cW + x̃︸ ︷︷ ︸
c+,1

]1)

– Ẽnc((pk𝑞,1, . . . , pk𝑞,𝐿𝑞); td): If 𝑞 is an empty instance, on input pk𝑞,𝑖 = ⊥ for all 𝑖 ∈ [𝐿𝑞], abort and return c̃t𝑞 = ⊥.
For all 𝑖 ∈ [𝐿𝑞], parse pk𝑞,𝑖 = ([T𝑞,𝑖 ,Q𝑞,𝑖]1, {[h𝑞,𝑖, 𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑞,𝑖). Fetch {R̃𝑞,𝑖}𝑖∈[𝐿𝑞] and

∑
𝑖∈[𝐿𝑞] cW𝑞,𝑖 (M̃𝑞f

⊤
𝑞,𝑖 ⊗

I𝑘+1) from td. Output:

c̃t𝑞 =

[∑︁
𝑖∈[𝐿𝑞]

(e1R̃−1𝑞,𝑖Q𝑞,𝑖 + cW𝑞,𝑖 (M̃𝑞f
⊤
𝑞,𝑖 ⊗ I𝑘+1))︸ ︷︷ ︸

c𝑞

]
1

.

It is easy to see that with a group-based Bi-PKE (c.f. Section 2.5), our simulator above is a group-based simulator:
it can still simulate even if replace M, 𝜇𝑞,𝑖 with [M, 𝜇𝑞,𝑖]1, [M, 𝜇𝑞,𝑖]2 in the input of S̃etup. The reader can find the
sanity check in Appendix D.

6.3 Proof

We prove the following technical lemma this immediately proves Theorem 4.

Lemma 4. For all adversariesA, there exist adversaries B1, B2, B3 such that:

AdvmiPReg-IPFE
A (𝜆) ≤ 𝐿 · AdvUSSB1 (𝜆) + 𝐿 · Adv

Bi-PKE
B2 (𝜆) + (2𝐿 + 2𝐿 · 𝑄 + 1)AdvMDDH

B3 (𝜆) + negl(𝜆)

where 𝐿 = 𝐿1 + . . . + 𝐿𝑚 is the number of slots, 𝑄 is the maximum number of queries on a slot made by A and
Time(B1), Time(B2), Time(B3) ≈ Time(A).

41

For simplicity, we prove Lemma 4 in the case of nonempty 1-instance and remove the index 𝑞 in the following
proof. For an empty instance, we only need to remove the terms about ct∗1 and all pk∗𝑖 in the following game se-
quence, and notice thatM∗, C∗ = ∅ for empty instance. In the case of 𝑚-instance, it only needs to add back index
𝑞 and apply sub-sequence G7,ℓ−1,0, . . . ,G7,ℓ−1,3 to each instance.

Game Sequence. Suppose that crs is the common reference string, M is the pre-constrained matrix, x∗ is the
challenge, {pk∗𝑖 , f∗𝑖 }𝑖∈[𝐿] are challenge public keys along with challenge functions to be registered,M∗, C∗ ⊆ [𝐿]
are the sets of malicious and corrupted slots. For all 𝑖 ∈ [𝐿], define 𝐷𝑖 = {pk𝑖 : D1,𝑖 [pk𝑖] = sk𝑖 ≠ ⊥} be responses
to OGen(𝑖) and 𝐶𝑖 = {pk𝑖 : (𝑖, pk𝑖) ∈ C1} records public keys in 𝐷𝑖 that have been sent to OCor(𝑖, ·). Recall that, for
each 𝑖 ∈ [𝐿], we require

𝑖 ∈ M∗ =⇒ pk∗𝑖 ∉ 𝐷𝑖 ∧ Ver(crs, 1, 𝑖, pk
∗
𝑖) = 1

𝑖 ∈ C∗ =⇒ pk∗𝑖 ∈ 𝐶𝑖
𝑖 ∈ [𝐿] \ (M∗ ∪ C∗) =⇒ pk∗𝑖 ∈ 𝐷𝑖 ∧ pk

∗
𝑖 ∉ 𝐶𝑖

Note that pk𝑖 serves as a general entry in 𝐷𝑖 while pk∗𝑖 is the specific challenge public for slot 𝑖; there can be more
than one assignment for pk𝑖 since the adversary can invoke OGen(𝑖) for many times. We prove the Lemma 4 via
dual-system method using the following game sequence.

– G0: This is the real game, recall that we have
• crs is in the form:

crs =

©­­­­­­«
[A,AW]1{
crs𝑖 , [R𝑖 ,AW𝑖 (M𝑖 ⊗ I𝑘+1),AW𝑖]1

}
𝑖∈[𝐿]{

[M 𝑗 ,Br⊤𝑗 ,W 𝑗 (M 𝑗 ⊗ Br⊤𝑗) +WM 𝑗]2
}
𝑗∈[𝐿]{

[W𝑖 (M𝑖 ⊗ Br⊤𝑗)]2
}
𝑗∈[𝐿],𝑖∈[𝐿]\{ 𝑗}

ª®®®®®®¬
.

where [M𝑖]𝑠 =
[

M 0⊤𝑛1
0𝑛×𝑛2 ict⊤𝑖

]
𝑠

, [ict𝑖]𝑠 ∈ Enc1 ([ipk]1, [ipk]2, 0) for 𝑠 ∈ {1, 2}, ([ipk]1, [ipk]2) ∈ Gen1 (1𝜆); and

crs𝑖 ∈ LGen(1𝜆 ,G1, [A𝑖]1), with A𝑖 =

(
A

R𝑖

)
.

• For each 𝑖 ∈ [𝐿], each pk𝑖 ∈ 𝐷𝑖 is in the form

pk𝑖 =
(
[AU𝑖︸︷︷︸

T𝑖

, R𝑖U𝑖︸︷︷︸
Q𝑖

]1, {[U𝑖Br⊤𝑗︸︷︷︸
h𝑖, 𝑗

]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖
)

where 𝜋𝑖 ← LPrv(crs𝑖 , [F𝑖]1,U𝑖), F𝑖 =
(AU𝑖
RU𝑖

)
, and U𝑖 is the corresponding sk𝑖 .

• For all 𝑖 ∈ [𝐿], pk∗𝑖 is in the form:

pk∗𝑖 = ([T
∗
𝑖 ,Q

∗
𝑖]1, {[h

∗
𝑖, 𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋

∗
𝑖)

such that Ver(crs, 1, 𝑖, pk∗𝑖) = 1 which means LVer

(
crs𝑖 ,

[
T∗
𝑖

Q∗
𝑖

]
1

, 𝜋∗
𝑖

)
= 1 and Ah∗

𝑖, 𝑗
= T∗

𝑖
Br⊤

𝑗
for each 𝑗 ∈

[𝐿] \ {𝑖}.
• (ct∗+, ct∗1) for x∗ is in the form:

(ct∗+, ct∗1) =
([

sA︸︷︷︸
c∗+,0

, sAW + x∗︸ ︷︷ ︸
c∗+,1

,
∑︁
𝑖∈[𝐿]
(sT𝑖 + sAW𝑖 (M𝑖 (f

∗
𝑖)⊤ ⊗ I𝑘+1))︸ ︷︷ ︸

c∗1

]
1

)
.

42

where f
∗
𝑖 = (f∗𝑖 ∥1) and x∗ = (x∗∥0𝑛).

– G1: Identical to G0, except that for all 𝑖 ∈ [𝐿] and 𝑠 ∈ {1, 2}, we replace [M𝑖]𝑠 with

[M̃𝑖]𝑠 =
[

M 0⊤𝑛1
0𝑛×𝑛2 ict⊤𝑖

]
𝑠

where [ict𝑖]𝑠 ∈

Enc1 ([ipk]1, [ipk]2, 0) if 𝑖 ∈ [𝐿] \ (M ∪ C)
Enc1 ([ipk]1, [ipk]2, x∗M(f∗𝑖)

⊤) if 𝑖 ∈ M ∪ C

In particuar, we generate crs as

crs =

©­­­­­­«
[A,AW]1{
crs𝑖 , [R𝑖 ,AW𝑖 (M̃𝑖 ⊗ I𝑘+1),AW𝑖]1

}
𝑖∈[𝐿]{

[M̃ 𝑗 ,Br⊤𝑗 ,W 𝑗 (M̃ 𝑗 ⊗ Br⊤𝑗) +WM̃ 𝑗]2
}
𝑗∈[𝐿]{

[W𝑖 (M̃𝑖 ⊗ Br⊤𝑗)]2
}
𝑗∈[𝐿],𝑖∈[𝐿]\{ 𝑗}

ª®®®®®®¬
,

and generate challenge ciphertext as

(ct∗+, ct∗1) =
([

sA︸︷︷︸
c∗+,0

, sAW + x∗︸ ︷︷ ︸
c∗+,1

,
∑︁
𝑖∈[𝐿]
(sT𝑖 + sAW𝑖 (M̃𝑖 (f

∗
𝑖)⊤ ⊗ I𝑘+1))︸ ︷︷ ︸

c∗1

]
1

)
.

We have G1 ≈𝑐 G0. This follows from the security of Π1.
– G2: Identical to G1 except that for all 𝑖 ∈ [𝐿] and all pk𝑖 ∈ 𝐷𝑖 , we replace 𝜋𝑖 with

𝜋𝑖 ← LSim (crs𝑖 , td𝑖 , [F𝑖]1) where F𝑖 =
(
AU𝑖
R𝑖U𝑖

)
.

We have G2 ≡ G1. This follows from the perfect zero-knowledge of Π0.
– G3: Identical to G2 except that we sample s← Z1×𝑘𝑝 along with A and replace all R𝑖 in crs with

R̂𝑖 = R̃𝑖

(
sA

I2𝑘+1

)
, R̃← Z(2𝑘+2)×(2𝑘+2)𝑝 .

We have G3 ≡ G2. This follows from the fact that both R𝑖 (in G2) and R̂𝑖 (in G3) are truly random since matrix(sA
I2𝑘+1

)
is full-rank.

– G4: Identical to G3 except that we generate the c∗1 as follows:

c∗1 =
∑︁
𝑖∈[𝐿]
(e1R̃−1𝑖 Q∗𝑖 + sAW𝑖 (M𝑖 (f

∗
𝑖)⊤ ⊗ I𝑘+1))

We have G4 ≈𝑐 G3. This follows from stronger unbounded simulation soundness of Π0 along with the fact that

LVer(crs𝑖 , [F∗𝑖], 𝜋
∗
𝑖
) = 1 for all 𝑖 ∈ [𝐿] where F∗

𝑖
=

(
T∗
𝑖

Q∗
𝑖

)
. The details are identical to that in game G3 of our

sReg-IPFE (c.f. Section 3).
– G5: Identical to G4 except that we replace all sA with c← Z1×(2𝑘+1)𝑝 ; in particular, we generate R̂𝑖 as follows:

R̂𝑖 = R̃𝑖

(
c

I2𝑘+1

)
, R̃← Z(2𝑘+2)×(2𝑘+2)𝑝

and generate the challenge ciphertext as follows:

(ct∗+, ct∗1) =
([

c︸︷︷︸
c∗+,0

, c W + x∗︸ ︷︷ ︸
c∗+,1

,
∑︁
𝑖∈[𝐿]
(e1R̃−1𝑖 Q∗𝑖 + c W𝑖 (M̃𝑖 (f

∗
𝑖)⊤ ⊗ I𝑘+1))︸ ︷︷ ︸

c∗1

]
1

)
.

43

We have G5 ≈𝑐 G4. This follows from MDDH assumption which ensures that ([A]1, [sA]1) ≈𝑐 ([A]1, [c]1) when
A← Z𝑘×(2𝑘+1)𝑝 , s← Z1×𝑘𝑝 , c← Z1×(2𝑘+1)𝑝 .

– G6: Identical to G5 except that
• we generate c∗+,1 as follows:

c∗+,1 = cW + x̃∗

where x̃∗ = (0𝑛1 ∥isk), isk ∈ Gen1 (1𝜆);
• in crs, we change [W 𝑗 (M̃ 𝑗 ⊗ Br⊤𝑗) +WM̃ 𝑗]2 for all 𝑗 ∈ [𝐿] as follows:

[W 𝑗 (M̃ 𝑗 ⊗ Br⊤𝑗) +WM̃ 𝑗 + c⊥a 𝑗]2

where c⊥ ∈ Z2𝑘+1𝑝 such that cc⊥ = 1 and Ac⊥ = 0; and

a 𝑗 =

{
(−x∗M∥0) if 𝑗 ∈ [𝐿] \ (M∗ ∪ C∗)
(−x∗M∥x∗M(f∗

𝑗
)⊤) if 𝑗 ∈ M∗ ∪ C∗

We have G6 ≈𝑠 G5. This follows from the change of variable W ↦→ W + c⊥ (−x∗∥isk). With above variable
substitution, we have

cW + (x∗∥0𝑛) // c∗+,1 in G5

≈𝑠 cW + (−x∗∥isk) + (x∗∥0𝑛)
= cW + (0𝑛1 ∥isk) // c∗+,1 in G6

For all 𝑗 ∈ M∗ ∪ C∗, we have

[WM̃ 𝑗]2 // crs in G5

≈𝑠

[
WM̃ 𝑗 + c⊥ (−x∗∥isk)

(
M 0⊤𝑛1

0𝑛×𝑛2 ict⊤𝑗

)]
2

= [WM̃ 𝑗 + c⊥ (x∗M∥ x∗M(f∗𝑗)
⊤)]2 // crs in G6

the third "=" follows from the fact that [ict 𝑗]2 ∈ Enc1 ([ipk]1, [ipk]2, x∗M(f∗𝑗)
⊤) for 𝑗 ∈ M∗ ∪ C∗, and the linear

decryption of Π1 (defined in Section 2.5). And for all 𝑗 ∈ [𝐿] \ (M∗ ∪ C∗), we have

[WM̃ 𝑗]2 // crs in G5

≈𝑠

[
WM̃ 𝑗 + c⊥ (−x∗∥isk)

(
M 0⊤𝑛1

0𝑛×𝑛2 ict⊤𝑗

)]
2

= [WM̃ 𝑗 + c⊥ (x∗M∥ 0)]2 // crs in G6

the third "=" follows from the fact that [ict 𝑗]2 ∈ Enc1 ([ipk]1, [ipk]2, 0) for 𝑗 ∈ [𝐿] \ (M∗ ∪ C∗), and the linear
decryption of Π1 (defined in Section 2.5).

– G7,ℓ, (ℓ ∈ [0, 𝐿]): Identical to G6 except that for all 𝑗 ∈ [ℓ], we change [W 𝑗 (M̃ 𝑗 ⊗ Br⊤𝑗) +WM 𝑗 + c⊥a 𝑗]2 in crs as
follows:

[W 𝑗 (M̃ 𝑗 ⊗ Br⊤𝑗) +WM 𝑗 +���c⊥a 𝑗]2

We have that
• G7,0 = G6; the two games are actually identical, since [0] = ∅;
• G7,ℓ−1 ≈𝑐 G7,ℓ for all ℓ ∈ [𝐿], we will employ a sub-sequence of games for the proof described later.

Observe that in the final gameG7,𝐿 can be simulated using the simulator by setting 𝜇𝑖 = x∗M(f∗
𝑖
)⊤, where we embed

x∗M(f∗
𝑖
)⊤ into crs so that hsk𝑖 for all 𝑖 ∈ M∗ ∪ C∗ and remove x∗ from ct∗.

44

From G7,ℓ−1 to G7,ℓ. We are ready to prove G7,ℓ−1 ≈𝑐 G7,ℓ and this will complete the proof of Lemma 4. For this,
we need the following sub-sequence of games for each ℓ ∈ [𝐿]:

– G7,ℓ−1,0: Identical toG7,ℓ−1 where we recall crs,pk𝑖 ∈ 𝐷𝑖 and c∗1, with highlighting relevant terms in the following
sub-sequence with dashed boxes as follows:

crs =

©­­­­­­­­­­­«

[A,AW]1,
{
crs𝑖 , [R̂𝑖 ,AW𝑖 (M̃𝑖 ⊗ I𝑘+1),AW𝑖]1, [M̃𝑖]2

}
𝑖∈[𝐿]{

[Br⊤
𝑗
,W 𝑗 (M̃ 𝑗 ⊗ Br⊤𝑗) +WM̃ 𝑗]2

}
𝑗∈[ℓ−1]

[Br⊤ℓ,Wℓ (M̃ℓ ⊗ Br⊤ℓ) +WM̃ℓ + c⊥aℓ]2{
[Br⊤

𝑗
,W 𝑗 (M̃ 𝑗 ⊗ Br⊤𝑗) +WM̃ 𝑗 + c⊥a 𝑗]2

}
𝑗∈[𝐿]\[ℓ]{

[W𝑖 (M̃𝑖 ⊗ Br⊤𝑗)]2
}
𝑗∈[𝐿]\{ℓ},𝑖∈[𝐿]\{ 𝑗} ,

{
[W𝑖 (M̃𝑖 ⊗ Br⊤ℓ)]2

}
𝑖∈[𝐿]\{ℓ}

ª®®®®®®®®®®®¬
pk𝑖 =

{ (
[

T𝑖︷︸︸︷
AU𝑖 ,

Q𝑖︷︸︸︷
R̂𝑖U𝑖]1, {[

h𝑖, 𝑗︷︸︸︷
U𝑖d⊤𝑗]2} 𝑗∈[ℓ−1]\{𝑖} , [

h𝑖,ℓ︷︸︸︷
U𝑖Br⊤ℓ]2 , {[

h𝑖, 𝑗︷︸︸︷
U𝑖Br⊤𝑗]2} 𝑗∈[𝐿]\[𝑖,ℓ] , 𝜋𝑖

)
if 𝑖 ≠ ℓ(

[AUℓ︸︷︷︸
Tℓ

, R̂𝑖Uℓ︸︷︷︸
Qℓ

]1, {[Uℓd⊤𝑗︸︷︷︸
hℓ, 𝑗

]2} 𝑗∈[ℓ−1] , {[UℓBr⊤𝑗︸︷︷︸
hℓ, 𝑗

]2} 𝑗∈[𝐿]\[ℓ] , 𝜋ℓ
)

if 𝑖 = ℓ

c∗1 = e1R̃−1ℓ Q∗ℓ + cWℓ (M̃ℓ (f
∗
ℓ)⊤ ⊗ I𝑘+1) +

∑︁
𝑖∈[𝐿]\{ℓ}

(e1R̃−1𝑖 Q∗𝑖 + cW𝑖 (M̃𝑖 (f
∗
𝑖)⊤ ⊗ I𝑘+1))

where c⊥ ∈ Z2𝑘+1𝑝 such that cc⊥ = 1, Ac⊥ = 0. For all 𝑖 ∈ [𝐿], 𝑠 ∈ {1, 2}, recall that [M̃𝑖]𝑠 =
[

M 0⊤𝑛1
0𝑛×𝑛2 ict⊤𝑖

]
𝑠

, where

[ict𝑖]𝑠 ∈
{
Enc1 ([ipk]1, [ipk]2, 0) if 𝑖 ∈ [𝐿] \ (M∗ ∪ C∗)
Enc1 ([ipk]1, [ipk]2, x∗M(f∗𝑖)

⊤) if 𝑖 ∈ M∗ ∪ C∗

For all 𝑗 ∈ [𝐿] \ [ℓ − 1], recall that

a 𝑗 =

{
(−x∗M∥0) if 𝑗 ∈ [𝐿] \ (M∗ ∪ C∗)
(−x∗M∥x∗M(f∗

𝑗
)⊤) if 𝑗 ∈ M∗ ∪ C∗

– G7,ℓ−1,1: Identical to G7,ℓ−1,0 except that we replace all Br⊤ℓ with d⊤ℓ ← Z
𝑘+1
𝑝 in crs; in particular, we change the

dashed boxed term in crs and pk𝑖 as follows:

[d⊤ℓ ,Wℓ (M̃ℓ ⊗ d⊤ℓ) +WM̃ℓ + c⊥aℓ]2, {[W𝑖 (M̃𝑖 ⊗ d⊤ℓ)]2, [U𝑖 d
⊤
ℓ]2}𝑖∈[𝐿]\{ℓ}

We haveG7,ℓ−1,1 ≈𝑐 G7,ℓ−1,0. This follows fromMDDHassumption w.r.t. [B]2 which ensures that ([B]2, [Br⊤ℓ]2) ≈𝑐
([B]2, [d⊤ℓ]2) when B← Z(𝑘+1)×𝑘𝑝 , rℓ ← Z1×𝑘𝑝 , dℓ ← Z1×(𝑘+1)𝑝 .

– G7,ℓ−1,2: Identical to G7,ℓ−1,1, except that we replace Wℓ (M̃ℓ ⊗ d⊤ℓ) +WM̃ℓ + c⊥aℓ with

Wℓ (M̃ℓ ⊗ d⊤ℓ) +WM̃ℓ +���c⊥aℓ

We have G7,ℓ−1,2 ≈𝑐 G7,ℓ−1,1. With defining c⊥ ∈ Z2𝑘+1𝑝 and d⊥ ∈ Z1×(𝑘+1)𝑝 such that cc⊥ = 1, Ac⊥ = 0 and
d⊥d⊤ℓ = 1, d⊥B = 0. We consider two cases
• Honest case (ℓ ∈ [𝐿] \ (M∗ ∪ C∗)): In this case, for all 𝑠 ∈ {1, 2}, with [ictℓ]𝑠 ∈ Enc1 ([ipk]1, [ipk]2, 0), we

have

aℓ = (−x∗M∥0), [Mℓ]𝑠 =
[

M 0⊤𝑛1
0𝑛×𝑛2 ict⊤ℓ

]
𝑠

45

And we have pk∗ℓ = ([T∗ℓ,Q
∗
ℓ]1, {[h

∗
ℓ, 𝑗
⊤]2} 𝑗∈[𝐿]\{ℓ} , 𝜋∗ℓ) ∈ 𝐷ℓ \ 𝐶ℓ in this case. Namely, we know U∗ℓ (such that

T∗ℓ = AU∗ℓ and Q∗ℓ = R̂ℓU∗ℓ) and U∗ℓ is hidden from the adversary. We can write the dash boxed terms in c∗1
as follows:

cU∗ℓ + cWℓ (M̃ℓ (f
∗
ℓ)⊤ ⊗ I𝑘+1)

and replace R̂ℓ in crs with a random Rℓ as in G3. And we can proof G7,ℓ−1,2 ≈𝑐 G7,ℓ−1,1 in this case using the
following argument for all 𝑏 ∈ {0, 1}:

A, c⊥,B, [Rℓ]1, d⊤ℓ,AWℓ, [Wℓ (M̃ℓ ⊗ B),Wℓ (M̃ℓ ⊗ d⊤ℓ) +WM̃ℓ + 𝑏c⊥aℓ]2; //crs, pkℓ

[c, cU∗ℓ + cWℓ (M̃ℓ (f
∗
ℓ)⊤ ⊗ I𝑘+1)]1,AU∗ℓ, [RℓU

∗
ℓ]1,U

∗
ℓB //ct∗, pk∗ℓ

≈𝑐 A, c⊥,B, [Rℓ]1, d⊤ℓ,AWℓ, [Wℓ (M̃ℓ ⊗ B),Wℓ (M̃ℓ ⊗ d⊤ℓ) +WM̃ℓ + 𝑏c⊥aℓ]2;

[c, cU∗ℓ + cWℓ (M̃ℓ (f
∗
ℓ)⊤ ⊗ I𝑘+1)]1,AU∗ℓ, [RℓU

∗
ℓ + û⊤d⊥]1,U∗ℓB

≈𝑠 A, c⊥,B, [Rℓ]1, d⊤ℓ,AWℓ, [Wℓ (M̃ℓ ⊗ B),Wℓ (M̃ℓ ⊗ d⊤ℓ) +WM̃ℓ + c⊥ (wℓM∥0) + 𝑏c⊥aℓ]2;

[c, cU∗ℓ + cWℓ (M̃ℓ (f
∗
ℓ)⊤ ⊗ I𝑘+1) + 𝑢ℓd⊥ +wℓM(f∗ℓ)

⊤d⊥]1,AU∗ℓ, [RℓU
∗
ℓ + Rℓc⊥𝑢ℓd⊥ + û⊤d⊥]1,U∗ℓB

≈𝑠 A, c⊥,B, [Rℓ]1, d⊤ℓ,AWℓ, [Wℓ (M̃ℓ ⊗ B),Wℓ (M̃ℓ ⊗ d⊤ℓ) +WM̃ℓ + c⊥ (wℓM∥0) +���𝑏c⊥aℓ]2;

[c, cU∗ℓ + cWℓ (M̃ℓ (f
∗
ℓ)⊤ ⊗ I𝑘+1) + 𝑢ℓd⊥ +wℓM(f∗ℓ)

⊤d⊥]1,AU∗ℓ, [RℓU
∗
ℓ + Rℓc

⊥𝑢ℓd⊥ + û⊤d⊥]1,U∗ℓB

where û ← Z
1×(2𝑘+2)
𝑝 , 𝑢ℓ ← Z𝑝 and wℓ ← Z𝑛1𝑝 . We justify each step as below: The first ≈𝑐 follows the

argument:
(A, c, [Rℓ]1,B, d⊥,AUℓ, cUℓ [RUℓ]1, UℓB)

≈𝑐 (A, c, [Rℓ]1,B, d⊥,AUℓ, cUℓ, [RℓUℓ + u⊤d⊥]1, UℓB)

which is analogous to the Lemma 2 in [ZZGQ23]. The second ≈𝑠 uses the change of variables:

U∗ℓ ↦→ U∗ℓ + c
⊥𝑢ℓd⊥ and Wℓ ↦→Wℓ + c⊥ ((wℓ∥0𝑛) ⊗ d⊥)

The last≈𝑠 is straight-forward with the observation that û⊤ hidesRℓc⊥𝑢ℓ, this implies that𝑢ℓ hideswℓM(f∗ℓ)
⊤,

and (wℓM∥0) is sufficient to hide aℓ = (−x∗M∥0).

aℓ = (−x∗M∥x∗M(f∗𝑗)
⊤), [Mℓ]𝑠 =

[
M 0⊤𝑛1

0𝑛×𝑛2 ict⊤ℓ

]
𝑠

(20)

• Corrupted & Malicious Case (ℓ ∈ (M∗∪C∗)): And in this case, we havepk∗ℓ = ([T∗ℓ,Q
∗
ℓ]1, {[h

∗
ℓ, 𝑗
⊤]2} 𝑗∈[𝐿]\{ℓ} , 𝜋∗ℓ) ∈

𝐶ℓ ∪ 𝐷ℓ. We prove G7,ℓ−1,2 ≈𝑐 G7,ℓ−1,1 in this case using the following argument:

A, c⊥,B, d⊤ℓ,AWℓ, [Wℓ (M̃ℓ ⊗ B),Wℓ (M̃ℓ ⊗ d⊤ℓ) +WM̃ℓ + c⊥aℓ]2; //crs

[c, e1R̃−1ℓ Q∗ℓ + cWℓ (M̃ℓ (f
∗
ℓ)⊤ ⊗ I2𝑘+1)]1 //ct∗ in G7,ℓ−1,1

≈𝑠 A, c⊥,B, d⊤ℓ,AWℓ, [Wℓ (M̃ℓ ⊗ B),Wℓ (M̃ℓ ⊗ d⊤ℓ) +WM̃ℓ + c⊥ (x∗∥ − isk)M̃ℓ + c⊥aℓ]2;

[c, e1R̃−1ℓ Q∗ℓ + cWℓ (M̃ℓ (f
∗
ℓ)⊤ ⊗ I2𝑘+1) + (x∗∥ − isk)M̃ℓ (f

∗
ℓ)⊤d⊥]1

= A, c⊥,B, d⊤ℓ,AWℓ, [Wℓ (M̃ℓ ⊗ B),Wℓ (M̃ℓ ⊗ d⊤ℓ) +WM̃ℓ +((((((((
c⊥ (x∗∥ − isk)M̃ℓ +���c⊥aℓ]2; //crs

[c, e1R̃−1ℓ Q∗ℓ + cWℓ (M̃ℓ (f
∗
ℓ)⊤ ⊗ I2𝑘+1) +((((((((((

(x∗∥ − isk)M̃ℓ (f
∗
ℓ)⊤d⊥]1 //ct∗ in G7,ℓ−1,2

46

where isk ∈ Gen1 (1𝜆). We justify each step as follows: The first ≈𝑠 uses the change of variable:

Wℓ ↦→Wℓ + c⊥ ((x∗∥ − isk) ⊗ d⊥)

The second = follows from the fact in equility (20), f
∗
ℓ = (f∗ℓ ∥1) and the linear decryption of Π1 (defined in

Section 2.5), which ensure that[
(x∗∥ − isk)

(
M 0⊤𝑛1

0𝑛×𝑛2 ict⊤ℓ

)
(f∗ℓ ∥1)

⊤

]
1

= [0]1,
[
(x∗∥ − isk)

(
M 0⊤𝑛1

0𝑛×𝑛2 ict⊤ℓ

)
+ (−x∗M∥x∗M(f∗𝑗)

⊤)
]
2

= [0]2

– G7,ℓ−1,3: Identical to G7,ℓ−1,2 except that we replace all d⊤ℓ with Br⊤ℓ where r⊤ℓ ← Z𝑘𝑝 in crs; in particular, we
change the dashed boxed term in crs and pk𝑖 as follows:

[Br⊤ℓ ,Wℓ (M̃ℓ ⊗ Br⊤ℓ) +WM̃ℓ]2, {[W𝑖 (M̃𝑖 ⊗ Br⊤ℓ)]2, [U𝑖 Br
⊤
ℓ]2}𝑖∈[𝐿]\{ℓ}

We haveG7,ℓ−1,1 ≈𝑐 G7,ℓ−1,0. This follows fromMDDHassumption w.r.t. [B]2 which ensures that ([B]2, [Br⊤ℓ]2) ≈𝑐
([B]2, [d⊤ℓ]2) when B← Z(𝑘+1)×𝑘𝑝 , rℓ ← Z1×𝑘𝑝 , dℓ ← Z1×(𝑘+1)𝑝 .

6.4 Implication: Slotted Reg-IPFE with Very Selective SIM-Security

Setting the constraintM as I, we immediately have a multi-instance slotted Reg-IPFE which implies a Reg-IPFE with
compact ciphertext. The scheme achieves very selective simulation-based security as our PReg-IPFE. And we delay
the concrete scheme and proof in Appendix C.

6.5 A Variant: Slotted Reg-IPFE with Selective IND-security

The scheme is basically the same with our pre-constrained Reg-IPFE except that we set M𝑖 as I and remove the
extra components for simulation-based security.

Scheme. Assuming QA-NIZK Π0 = (LGen, LPrv, LVer, LSim) for linear space over bilinear groups, see Section 2.4,
our slotted Reg-IPFE scheme in prime-order bilinear groups works as follows:

– Setup(1𝜆 , 1𝑚, 1𝐿1 , · · · , 1𝐿𝑚 , 1𝑛) : Run G := (𝑝,G1,G2,G𝑇 , 𝑒) ← G(1𝜆). Sample

A← Z𝑘×(2𝑘+1)𝑝 , W← Z(2𝑘+1)×𝑛𝑝 .

For each 𝑞 ∈ [𝑚], sample
B𝑞 ← Z(𝑘+1)×𝑘𝑝 ,

and for all 𝑖 ∈ [𝐿𝑞], sample

W𝑞,𝑖 ← Z(2𝑘+1)×(𝑘+1)𝑛𝑝 , R𝑞,𝑖 ← Z(2𝑘+2)×(2𝑘+1)𝑝 , r𝑞,𝑖 ← Z1×𝑘𝑝 .

Run
(crs𝑞,𝑖 , td𝑞,𝑖) ← LGen(1𝜆 ,G1, [A𝑞,𝑖]1),

where A𝑞,𝑖 =
(A
R𝑞,𝑖

)
∈ Z(3𝑘+2)×(2𝑘+1)𝑝 for all 𝑞 ∈ [𝑚] and 𝑖 ∈ [𝐿𝑞]. Output

crs =

©­­­­­­­«

[A,AW]1,
{
crs𝑞,𝑖 , [R𝑞,𝑖 ,AW𝑞,𝑖]1

}
𝑖∈[𝐿𝑞]{

[B𝑞r⊤𝑞, 𝑗 ,W𝑞, 𝑗 (I𝑛 ⊗ B𝑞r⊤𝑞, 𝑗) +W]2]2
}
𝑗∈[𝐿𝑞]{

[W𝑞,𝑖 (I𝑛 ⊗ B𝑞r⊤𝑞, 𝑗)
}
𝑗∈[𝐿𝑞],𝑖∈[𝐿𝑞]\{ 𝑗}

𝑞∈[𝑚]

ª®®®®®®®¬
.

47

– Gen(crs, 𝑞, 𝑖) : Sample U𝑞,𝑖 ← Z(2𝑘+1)×(𝑘+1)𝑝 . Define F𝑞,𝑖 =
(T𝑞,𝑖
Q𝑞,𝑖

)
=

(AU𝑞,𝑖
R𝑞,𝑖U𝑞,𝑖

)
= A𝑞,𝑖U𝑞,𝑖 ∈ Z(3𝑘+2)×(𝑘+1)𝑝 and run

𝜋𝑞,𝑖 ← LPrv(crs𝑞,𝑖 , [F𝑞,𝑖]1,U𝑞,𝑖).

Fetch {[B𝑞r⊤𝑞, 𝑗]2} 𝑗∈[𝐿𝑞]\{𝑖} from crs and output

pk𝑞,𝑖 =
(
[AU𝑞,𝑖︸︷︷︸

T𝑞,𝑖

,R𝑞,𝑖U𝑞,𝑖︸ ︷︷ ︸
Q𝑞,𝑖

]1, {[U𝑞,𝑖B𝑞r⊤𝑞, 𝑗︸ ︷︷ ︸
h𝑞,𝑖, 𝑗

]2} 𝑗∈[𝐿𝑞]\{𝑖} , 𝜋𝑞,𝑖
)

and sk𝑞,𝑖 = U𝑞,𝑖 .

– Ver(crs, 𝑞, 𝑖, pk𝑞,𝑖) : Parse pk𝑞,𝑖 =
(
[T𝑞,𝑖 ,Q𝑞,𝑖]1, {[h𝑖, 𝑗]2} 𝑗∈[𝐿𝑞]\{𝑖} , 𝜋𝑞,𝑖

)
. Write F𝑞,𝑖 =

(T𝑞,𝑖
Q𝑞,𝑖

)
and check

LVer(crs𝑞,𝑖 , [F𝑞,𝑖]1, 𝜋𝑞,𝑖)
?
= 1.

For each 𝑗 ∈ [𝐿𝑞] \ {𝑖}, check
𝑒([A]1, [h𝑖, 𝑗]2)

?
= 𝑒([T𝑞,𝑖]1, [B𝑞r⊤𝑞, 𝑗]2).

If all these checks pass, output 1; otherwise, output 0.
– Agg+ (crs): Output:

mpk+ = ([A, AW]1)

– Agg(crs, 𝑞, (pk𝑞,𝑖 , y𝑞,𝑖)𝑖∈[𝐿𝑞]): If 𝑞 is an empty instance, on input (pk𝑞,𝑖 , f𝑞,𝑖) = (⊥,⊥) for all 𝑖 ∈ [𝐿𝑞], abort and
return mpk𝑞 = ⊥, hsk𝑞, 𝑗 = ⊥ for all 𝑗 ∈ [𝐿𝑞]. For all 𝑖 ∈ [𝐿𝑞], parse pk𝑞,𝑖 =

(
[T𝑞,𝑖 ,Q𝑞,𝑖]1, {[h𝑖, 𝑗]2} 𝑗∈[𝐿𝑞]\{𝑖} , 𝜋𝑞,𝑖

)
.

Output:

mpk𝑞 =

([∑︁
𝑖∈[𝐿𝑞]

(T𝑞,𝑖 + AW𝑞,𝑖 (y⊤𝑞,𝑖 ⊗ I𝑘+1))
]
1

)
and for all 𝑗 ∈ [𝐿𝑞]

hsk𝑞, 𝑗 =

([
B𝑞r⊤𝑞, 𝑗︸︷︷︸

k⊤0

,
∑︁

𝑖∈[𝐿𝑞]\{ 𝑗}
(h𝑞,𝑖, 𝑗 +W𝑞,𝑖 (I𝑛 ⊗ B𝑞r⊤𝑞, 𝑗)y

⊤
𝑞,𝑖)︸ ︷︷ ︸

k⊤1

,W𝑞, 𝑗 (y⊤𝑞, 𝑗 ⊗ B𝑞r
⊤
𝑞, 𝑗) +Wy⊤𝑞, 𝑗︸ ︷︷ ︸

k⊤2

]
2

)
.

– Enc+ (mpk+, x): Sample s← Z1×𝑘𝑝 . Output:

ct+ = ([sA︸︷︷︸
c+,0

, sAW + x︸ ︷︷ ︸
c+,1

]1)

– Enc(mpk𝑞): Abort and return ⊥ if mpk𝑞 = ⊥. Sample s← Z1×𝑘𝑝 . Output:

ct𝑞 =

[∑︁
𝑖∈[𝐿𝑞]

(sT𝑞,𝑖 + sAW𝑞,𝑖 (y⊤𝑞,𝑖 ⊗ I𝑘+1))︸ ︷︷ ︸
c𝑞

]
1

.

– Dec(sk𝑞∗ ,𝑖∗ , hsk𝑞∗ ,𝑖∗ , (ct+, ct𝑞∗)): Abort and return ⊥ if ct𝑞∗ = ⊥. Parse

sk𝑞∗ ,𝑖∗ = U𝑞,𝑖∗ , hsk𝑞∗ ,𝑖∗ = ([k⊤0, k⊤1,K2]2), (ct+, ct𝑞∗) = ([c+,0, c+,1, c𝑞∗]1).

Recover
[𝑧1]𝑇 = 𝑒([c𝑞∗]1, [k⊤0]2), [𝑧2]𝑇 = 𝑒([c+,0]1, [k⊤1]2);
[𝑧3]𝑇 = 𝑒([c+,0U𝑞∗ ,𝑖∗]1, [k⊤0]2), [𝑧4]𝑇 = 𝑒([c+,0]1, [k⊤2]2);
[𝑧5]𝑇 = 𝑒([c+,1]1, [y⊤𝑞∗ ,𝑖∗]2),

Compute
[𝑧]𝑇 = [𝑧1 − 𝑧2 − 𝑧3 − 𝑧4 + 𝑧5]𝑇 .

Recover 𝑧 from [𝑧]𝑇 via brute-force DLOG and output 𝑧.

48

Completeness. For all 𝜆, 𝑚, 𝑛 ∈ N, all 𝐿1, . . . , 𝐿𝑚 ∈ N, all all 𝑞 ∈ [𝑚] and 𝑖 ∈ [𝐿𝑞], all crs← Setup(1𝜆 , 1𝑚, 1𝑛, 1𝐿1 , . . . , 1𝐿𝑚),
and (pk𝑞,𝑖 , sk𝑞,𝑖) ← Gen(crs, 𝑞, 𝑖), we have

pk𝑞,𝑖 =
(
[T𝑞,𝑖 ,Q𝑞,𝑖]1, {[h𝑞,𝑖, 𝑗]2} 𝑗∈[𝐿𝑞]\{𝑖} , 𝜋𝑞,𝑖

)
=

(
[AU𝑞,𝑖 ,R𝑞,𝑖U𝑞,𝑖]1, {[U𝑞,𝑖B𝑞r⊤𝑞, 𝑗]2} 𝑗∈[𝐿𝑞]\{𝑖} , 𝜋𝑞,𝑖

)
for some U𝑞,𝑖 ← Z(2𝑘+1)×(𝑘+1)𝑝 and 𝜋𝑞,𝑖 ← LPrv(crs𝑞,𝑖 , [A𝑞,𝑖U𝑖]1,U𝑖) where (crs𝑞,𝑖 , td𝑞,𝑖) ← LGen(1𝜆 ,G1, [A𝑞,𝑖]1) and
A𝑞,𝑖 =

(A
R𝑞,𝑖

)
with A← Z𝑘×(2𝑘+1)𝑝 , R𝑞,𝑖 ← Z(2𝑘+2)×(2𝑘+1)𝑝 . Then

– Write F𝑞,𝑖 =
(T𝑞,𝑖
Q𝑞,𝑖

)
=

(AU𝑞,𝑖
R𝑞,𝑖U𝑞,𝑖

)
, we have LVer(crs𝑞,𝑖 , [F𝑞,𝑖]1, 𝜋𝑞,𝑖) = 1 by the perfect completeness of Π0 (see Sec-

tion 2.4) and the fact that F𝑞,𝑖 = A𝑞,𝑖U𝑞,𝑖 ;

– For each 𝑗 ∈ [𝐿𝑞] \ {𝑖}, we have 𝑒([A]1, [U𝑞,𝑖B𝑞r⊤𝑞, 𝑗]2) = 𝑒([AU𝑞,𝑖]1, [B𝑞r
⊤
𝑞, 𝑗
]2) by the definition of bilinear map

𝑒 (see Section 2.1) and the fact that A · U𝑞,𝑖B𝑞r⊤𝑞, 𝑗 = AU𝑞,𝑖 · B𝑞r⊤𝑞, 𝑗 .

This ensures that Ver(crs, 𝑞, 𝑖, pk𝑞,𝑖) = 1 by the specification of Ver and readily proves the completeness.

Correctness. For all 𝜆, 𝑚, 𝑛 ∈ N, all 𝑞∗ ∈ [𝑚] and 𝑖∗ ∈ [𝐿𝑞∗]; all crs← Setup(1𝜆 , 1𝑚, 1𝑛, 1𝐿1 , . . . , 1𝐿𝑚), all (pk𝑞∗ ,𝑖∗ , sk𝑞∗ ,𝑖∗) ←
Gen(crs, 𝑞∗, 𝑖∗); all {pk𝑞∗ ,𝑖}𝑖∈[𝐿𝑞∗]\{𝑖∗ } such that Ver(crs, 𝑞∗, 𝑖, pk𝑞∗ ,𝑖) = 1; all x ∈ Z1×𝑛𝑝 and y𝑞∗ ,𝑖 ∈ Z1×𝑛𝑝 , for all s← Z1×𝑘𝑝 ,
we have

sk𝑞∗ ,𝑖∗ = U𝑞∗ ,𝑖∗ ,

(ct+, ct𝑞∗) =
([

sA︸︷︷︸
c+,0

, sAW + x︸ ︷︷ ︸
c+,1

,
∑︁
𝑖∈[𝐿𝑞]

(sT𝑞∗ ,𝑖 + sAW𝑞∗ ,𝑖 (y⊤𝑞∗ ,𝑖∗ ⊗ I𝑘+1))︸ ︷︷ ︸
c𝑞∗

]
1

)

hsk𝑞∗ ,𝑖∗ =

([
B𝑞∗r⊤𝑞∗ ,𝑖∗︸ ︷︷ ︸

k⊤0

,
∑︁

𝑖∈[𝐿𝑞∗]\{𝑖∗ }
(h𝑞∗ ,𝑖,𝑖∗ +W𝑞∗ ,𝑖 (y⊤𝑞∗ ,𝑖∗ ⊗ B𝑞∗r

⊤
𝑞∗ ,𝑖∗))︸ ︷︷ ︸

k⊤1

,W𝑞∗ ,𝑖∗ (y⊤𝑞∗ ,𝑖∗ ⊗ B𝑞∗r
⊤
𝑞∗ ,𝑖∗) +Wy⊤𝑞∗ ,𝑖∗︸ ︷︷ ︸

k⊤2

]2

)
.

where

Ah𝑞∗ ,𝑖,𝑖∗ = T𝑞∗ ,𝑖B𝑞∗r⊤𝑞∗ ,𝑖∗ ∀𝑖 ∈ [𝐿𝑞∗] \ {𝑖
∗} and AU𝑞∗ ,𝑖∗ = T𝑞∗ ,𝑖∗ .

Note that here we actually consider hsk𝑞∗ , 𝑗 for 𝑗 = 𝑖∗ and sk𝑞∗ ,𝑖 for 𝑖 = 𝑖∗ and all above equalities are ensured by Ver
and Gen. We have

𝑧1 =
∑︁

𝑖∈[𝐿𝑞∗]
(sT𝑞∗ ,𝑖B𝑞∗r⊤𝑞∗ ,𝑖∗ + sAW𝑞∗ ,𝑖 (y⊤𝑞∗ ,𝑖∗ ⊗ I𝑘+1)B𝑞∗r

⊤
𝑞∗ ,𝑖∗)

=
∑︁

𝑖∈[𝐿𝑞∗]
(sT𝑞∗ ,𝑖B𝑞∗r⊤𝑞∗ ,𝑖∗ + sAW𝑞∗ ,𝑖 (y⊤𝑞∗ ,𝑖∗ ⊗ B𝑞∗r

⊤
𝑞∗ ,𝑖∗)) (21)

𝑧2 =
∑︁

𝑖∈[𝐿𝑞∗]\{𝑖∗ }
(sAh𝑞∗ ,𝑖,𝑖∗ + sAW𝑞∗ ,𝑖 (y⊤𝑞∗ ,𝑖∗ ⊗ B𝑞∗r

⊤
𝑞∗ ,𝑖∗))

𝑧3 = sAU𝑞∗ ,𝑖∗B𝑞∗r⊤𝑞∗ ,𝑖∗

𝑧4 = sAW𝑞∗ ,𝑖∗ (y⊤𝑞∗ ,𝑖∗ ⊗ B𝑞∗r
⊤
𝑞∗ ,𝑖∗) + sAWy⊤𝑞∗ ,𝑖∗

𝑧5 = sAWy⊤𝑞∗ ,𝑖∗ + xy
⊤
𝑞∗ ,𝑖∗

49

and then

𝑧 = 𝑧1 − 𝑧2 − 𝑧3 − 𝑧4 + 𝑧5
= sT𝑞∗ ,𝑖∗B𝑞∗r⊤𝑞∗ ,𝑖∗ + sAW𝑞∗ ,𝑖∗ (y⊤𝑞∗ ,𝑖∗ ⊗ B𝑞∗r

⊤
𝑞∗ ,𝑖∗) − sAU𝑞∗ ,𝑖∗B𝑞∗r

⊤
𝑞∗ ,𝑖∗

−(sAW𝑞∗ ,𝑖∗ (y⊤𝑞∗ ,𝑖∗ ⊗ B𝑞∗r
⊤
𝑞∗ ,𝑖∗) + sAWy⊤𝑞∗ ,𝑖∗)

+(sAWy⊤𝑞∗ ,𝑖∗ + xy
⊤
𝑞∗ ,𝑖∗) (22)

= xy⊤𝑞∗ ,𝑖∗ (23)

Here, equality (21) follows from the property of tensor product: (a⊤ ⊗ I)M = a⊤ ⊗ M for matrices of proper size;
equality (22) follows from the fact that Ah𝑞∗ ,𝑖,𝑖∗ = T𝑖B𝑞∗r⊤𝑞∗ ,𝑖∗ for all 𝑖 ∈ [𝐿𝑞∗] \ {𝑖∗}; equality (23) follows from the
fact that T𝑞∗ ,𝑖∗ = AU𝑞∗ ,𝑖∗ . This proves the correctness.

Compactness and Efficiency. Our multi-instance Reg-IPFE has the following properties:

|crs| = 𝑂(𝐿2 · 𝑛) · poly(𝜆), |hsk𝑞, 𝑗 | = poly(𝜆),
|mpk+ | = 𝑂(𝑛) · poly(𝜆), |mpk𝑞 | = poly(𝜆),
|ct+ | = 𝑂(𝑛) + poly(𝜆), |ct𝑞 | = poly(𝜆),

where 𝐿 = 𝐿1 + · · · + 𝐿𝑚, mpk = (mpk𝑠, (mpk𝑞)𝑞∈[𝑚]). Note that the total size of {crs𝑖}𝑖∈[𝐿] is 𝐿 · poly(𝜆) according to
the efficiency of the pairing-based QA-NIZK scheme by Kiltz and Wee [KW15] and the fact that the size of language
description is poly(𝜆).

Security. We have the following theorem. Given pairing-based QA-NIZK in [KW15] with unbounded simulation
soundness under MDDH assumption and the fact that MDDH assumption implies subspace assumption [CGKW18],
our slotted Reg-IPFE scheme achieves selective security from MDDH assumption.

Theorem 5. Assume Π0 = (LGen, LPrv, LVer, LSim) is a QA-NIZK with perfect completeness, perfect zero-knowledge
and unbounded simulation soundness for linear space defined in Section 2.4, our slotted Reg-IPFE scheme achieves
the selective IND-security defined in Section 2.3 under MDDH assumption and subspace decision assumption.

Proof We prove the following technical lemma this immediately proves Theorem 5.

Lemma 5. For all adversariesA, there exist adversaries B1, B2 such that:

AdvmiReg-IPFE
A (𝜆) ≤ 𝐿 · AdvUSSB1 (𝜆) + (2𝐿 + 2𝐿 · 𝑄 + 1)Adv

MDDH
B2 (𝜆) + negl(𝜆)

where 𝐿 = 𝐿1 + . . . + 𝐿𝑚 is the number of slots, 𝑄 is the maximum number of queries on a slot made by A and
Time(B1), Time(B2) ≈ Time(A).

For simplicity, we prove Lemma 4 in the case of nonempty 1-instance and remove the index 𝑞 in the follow-
ing proof. For an empty instance, we only need to remove the terms about ct∗1 and all pk∗𝑖 in the following game
sequence and notice there only exists "honest case" for empty instance. In the case of 𝑚-instance, it only needs to
add back index 𝑞 and apply sub-sequence G6,ℓ−1,0, . . . ,G6,ℓ−1,3 to each instance.

50

Game Sequence. Suppose that crs is the common reference string, x∗
𝑏

is the challenge, {pk∗𝑖 , y∗𝑖 }𝑖∈[𝐿] are challenge
public keys along with challenge functions to be registered, . For all 𝑖 ∈ [𝐿], define 𝐷𝑖 = {pk𝑖 : D1,𝑖 [pk𝑖] = sk𝑖 ≠ ⊥}
be responses to OGen(𝑖) and 𝐶𝑖 = {pk𝑖 : (𝑖, pk𝑖) ∈ C1} records public keys in 𝐷𝑖 that have been sent to OCor(𝑖, ·).
Recall that, for each 𝑖 ∈ [𝐿], we require that

pk∗𝑖 ∉ 𝐷𝑖 =⇒ Ver(crs, 𝑖, pk∗𝑖) = 1, pk∗𝑖 ∈ 𝐶𝑖 ∨ pk
∗
𝑖 ∉ 𝐷𝑖 =⇒ x∗0 (y∗𝑖)

⊤ = x∗1 (y∗𝑖)
⊤.

Note that pk𝑖 serves as a general entry in 𝐷𝑖 while pk∗𝑖 is the specific challenge public for slot 𝑖; there can be more
than one assignment for pk𝑖 since the adversary can invoke OGen(𝑖) for many times. We prove the Lemma 4 via
dual-system method using the following game sequence.

– G0: This is the real game, recall that we have
• crs is in the form:

crs =
©­­­«
[A,AW]1,

{
crs𝑖 , [R𝑖 ,AW𝑖]1

}
𝑖∈[𝐿]{

[Br⊤
𝑗
,W 𝑗 (I𝑛 ⊗ Br⊤𝑗) +W]2]2

}
𝑗∈[𝐿]{

[W𝑖 (I𝑛 ⊗ Br⊤𝑗)
}
𝑗∈[𝐿],𝑖∈[𝐿]\{ 𝑗}

ª®®®¬ .
where crs𝑖 ∈ LGen(1𝜆 ,G1, [A𝑖]1), A𝑖 =

(A
R𝑖

)
.

• For each 𝑖 ∈ [𝐿], each (pk𝑖 , sk𝑖) ∈ 𝐷𝑖 is in the form

pk𝑖 =
(
[AU𝑖︸︷︷︸

T𝑖

, R𝑖U𝑖︸︷︷︸
Q𝑖

]1, {[U𝑖Br⊤𝑗︸︷︷︸
h𝑖, 𝑗

]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖
)

and sk𝑖 = U𝑖

where 𝜋𝑖 ← LPrv(crs𝑖 , [F𝑖]1,U𝑖), F𝑖 =
(AU𝑖
RU𝑖

)
.

• For all 𝑖 ∈ [𝐿], pk∗𝑖 is in the form:

pk∗𝑖 = ([T
∗
𝑖 ,Q

∗
𝑖]1, {[h

∗
𝑖, 𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋

∗
𝑖)

such that Ver(crs, 𝑖, pk∗𝑖) = 1 which means LVer

(
crs𝑖 ,

[
T∗
𝑖

Q∗
𝑖

]
1

, 𝜋∗
𝑖

)
= 1 and Ah∗

𝑖, 𝑗
= T∗

𝑖
Br⊤

𝑗
for each 𝑗 ∈ [𝐿] \ {𝑖}.

• (ct∗+, ct∗1) for x∗
𝑏

is in the form:

(ct∗+, ct∗1) =
([

sA︸︷︷︸
c∗+,0

, sAW + x∗𝑏︸ ︷︷ ︸
c∗+,1

,
∑︁
𝑖∈[𝐿]
(sT𝑖 + sAW𝑖 ((y∗𝑖)

⊤ ⊗ I𝑘+1))︸ ︷︷ ︸
c∗1

]
1

)
.

– G1: Identical to G0 except that for all 𝑖 ∈ [𝐿] and all (pk𝑖 , sk𝑖) ∈ 𝐷𝑖 , we replace 𝜋𝑖 with

𝜋𝑖 ← LSim (crs𝑖 , td𝑖 , [F𝑖]1) where F𝑖 =
(
AU𝑖
R𝑖U𝑖

)
.

We have G1 ≡ G0. This follows from the perfect zero-knowledge of Π0.
– G2: Identical to G1 except that we sample s← Z1×𝑘𝑝 along with A and replace all R𝑖 in crs with

R̂𝑖 = R̃𝑖

(
sA

I2𝑘+1

)
, R̃𝑖 ← Z(2𝑘+2)×(2𝑘+2)𝑝 .

We have G2 ≡ G1. This follows from the fact that both R𝑖 (in G2) and R̂𝑖 (in G3) are truly random since matrix(sA
I2𝑘+1

)
is full-rank.

51

– G3: Identical to G2 except that we generate the c∗1 as follows:

c∗1 =
∑︁
𝑖∈[𝐿]
(e1R̃−1𝑖 Q∗𝑖 + sAW𝑖 (y∗𝑖)

⊤ ⊗ I𝑘+1))

We have G3 ≈𝑐 G2. This follows from stronger unbounded simulation soundness of Π along with the fact that

LVer(crs𝑖 , [F∗𝑖], 𝜋
∗
𝑖
) = 1 for all 𝑖 ∈ [𝐿] where F∗

𝑖
=

(
T∗
𝑖

Q∗
𝑖

)
. Assume pk∗𝑖∗ ∉ 𝐷𝑖∗ , i.e., pk∗𝑖∗ is malicious. In the reduction,

we guess 𝑖∗ ← [𝐿] and obtain A, R̂𝑖∗ , crs𝑖∗ as input; we simulate honestly as in G3 except that for all pk𝑖∗ ∈ 𝐷𝑖∗ ,
we make an oracle query [F𝑖∗]1 and get 𝜋𝑖∗ in it; we finally output ([F∗

𝑖∗]1, 𝜋
∗
𝑖∗) in pk∗𝑖∗ ∉ 𝐷𝑖∗ . Observe that once

it happens that e1R̃−1𝑖∗ Q
∗
𝑖∗ ≠ sT∗

𝑖∗ , we must have F∗
𝑖∗ ∉ span(A𝑖∗). When pk∗𝑖∗ ∈ 𝐷𝑖∗ , we always have G4 ≡ G3.

– G4: Identical to G3 except that we replace all sA with c← Z1×(𝑘+1)𝑝 ; in particular, we generate R̂ as follows:

R̂𝑖 = R̃𝑖

(
c

I2𝑘+1

)
, R̃𝑖 ← Z(𝑘+2)×(𝑘+2)𝑝

and generate the challenge ciphertext as follows:

ct∗ =

([
c︸︷︷︸
c∗+,0

, c W + x∗𝑏︸ ︷︷ ︸
c∗+,1

,
∑︁
𝑖∈[𝐿]
(e1R̃−1𝑖 Q∗𝑖 + c W𝑖 ((y∗𝑖)

⊤ ⊗ I𝑘+1))︸ ︷︷ ︸
c∗1

]
1

)
.

We have G4 ≈𝑐 G3. This follows from MDDH assumption which ensures that ([A]1, [sA]1) ≈𝑐 ([A]1, [c]1) when
A← Z𝑘×(2𝑘+1)𝑝 , s← Z1×𝑘𝑝 , c← Z1×(2𝑘+1)𝑝 .

– G5: Identical to G4 except that

• we generate c∗+,1 as follows:

c∗+,1 = [cW + x∗0]1

• in crs, we make the following change for all 𝑗 ∈ [𝐿]:

[W 𝑗 (I𝑛 ⊗ Br⊤𝑗) +W + c⊥ (x∗0 − x∗𝑏)]2

where c⊥ ∈ Z2𝑘+1𝑝 such that cc⊥ = 1, Ac⊥ = 0.

We have G5 ≈𝑠 G4 which follows from the fact that we can utilize the change of variable W ↦→W+ c⊥ (x∗0 −x∗𝑏).
– G6,ℓ (ℓ ∈ [0, 𝐿]): Identical to G5 except that for all 𝑗 ∈ [ℓ], we change [W 𝑗 (I𝑛 ⊗ Br⊤

𝑗
) + c⊥ (x∗0 − x∗𝑏)]2 in crs as

follows:

[W 𝑗 (I𝑛 ⊗ Br⊤𝑗) +W +������c⊥ (x∗0 − x∗𝑏)]2

We have that

• G6,0 = G5; the two games are actually identical, since [0] = ∅;
• G6,ℓ−1 ≈𝑐 G6,ℓ for all ℓ ∈ [𝐿], we will employ a sub-sequence of games for the proof described later.

From G6,ℓ−1 to G6,ℓ. We are ready to prove G6,ℓ−1 ≈𝑐 G6,ℓ and this will complete the proof of Lemma 5. For this,
we need the following sub-sequence of games for each ℓ ∈ [𝐿]:

52

– G6,ℓ−1,0: Identical toG6,ℓ−1 where we recall crs,pk𝑖 ∈ 𝐷𝑖 and c∗1, with highlighting relevant terms in the following
sub-sequence with dashed boxes as follows:

crs =

©­­­­­­­­­­­«

[A,AW]1,
{
crs𝑖 , [R̂𝑖 ,AW𝑖]1

}
𝑖∈[𝐿]{

[Br⊤
𝑗
,W 𝑗 (I𝑛 ⊗ Br⊤𝑗) +W]2

}
𝑗∈[ℓ−1]

[Br⊤ℓ,Wℓ (I𝑛 ⊗ Br⊤ℓ) +W + c
⊥ (x∗0 − x∗𝑏)]2{

[Br⊤
𝑗
,W 𝑗 (I𝑛 ⊗ Br⊤𝑗) +W + c

⊥ (x∗0 − x∗𝑏)]2
}
𝑗∈[𝐿]\[ℓ]{

[W𝑖 (I𝑛 ⊗ Br⊤𝑗)]2
}
𝑗∈[𝐿]\{ℓ},𝑖∈[𝐿]\{ 𝑗} ,

{
[W𝑖 (I𝑛 ⊗ Br⊤ℓ)]2

}
𝑖∈[𝐿]\{ℓ}

ª®®®®®®®®®®®¬
pk𝑖 =

{ (
[

T𝑖︷︸︸︷
AU𝑖 ,

Q𝑖︷︸︸︷
R̂𝑖U𝑖]1, {[

h𝑖, 𝑗︷︸︸︷
U𝑖d⊤𝑗]2} 𝑗∈[ℓ−1]\{𝑖} , [

h𝑖,ℓ︷︸︸︷
U𝑖Br⊤ℓ]2 , {[

h𝑖, 𝑗︷︸︸︷
U𝑖Br⊤𝑗]2} 𝑗∈[𝐿]\[𝑖,ℓ] , 𝜋𝑖

)
if 𝑖 ≠ ℓ(

[AUℓ︸︷︷︸
Tℓ

, R̂𝑖Uℓ︸︷︷︸
Qℓ

]1, {[Uℓd⊤𝑗︸︷︷︸
hℓ, 𝑗

]2} 𝑗∈[ℓ−1] , {[UℓBr⊤𝑗︸︷︷︸
hℓ, 𝑗

]2} 𝑗∈[𝐿]\[ℓ] , 𝜋ℓ
)

if 𝑖 = ℓ

c∗1 = e1R̃−1ℓ Q∗ℓ + cWℓ ((y∗ℓ)
⊤ ⊗ I𝑘+1) +

∑︁
𝑖∈[𝐿]\{ℓ}

(e1R̃−1𝑖 Q∗𝑖 + cW𝑖 ((y∗ℓ)
⊤ ⊗ I𝑘+1))

where c⊥ ∈ Z2𝑘+1𝑝 such that cc⊥ = 1, Ac⊥ = 0.

– G6,ℓ−1,1: Identical to G6,ℓ−1,0 except that we replace all Br⊤ℓ with d⊤ℓ ← Z
𝑘+1
𝑝 in crs; in particular, we change the

dashed boxed term in crs and pk𝑖 as follows:

[d⊤ℓ ,Wℓ (I𝑛 ⊗ d⊤ℓ) +W + c
⊥ (x∗0 − x∗𝑏)]2, {[W𝑖 (I𝑛 ⊗ d⊤ℓ)]2, [U𝑖 d

⊤
ℓ]2}𝑖∈[𝐿]\{ℓ}

We haveG6,ℓ−1,1 ≈𝑐 G6,ℓ−1,0. This follows fromMDDHassumption w.r.t. [B]2 which ensures that ([B]2, [Br⊤ℓ]2) ≈𝑐
([B]2, [d⊤ℓ]2) when B← Z(𝑘+1)×𝑘𝑝 , rℓ ← Z1×𝑘𝑝 , dℓ ← Z1×(𝑘+1)𝑝 .

– G6,ℓ−1,2: Identical to G6,ℓ−1,1, except that we make the following change of crs

[Wℓ (I𝑛 ⊗ d⊤ℓ) +W +������c⊥ (x∗0 − x∗𝑏)]2

We have G6,ℓ−1,2 ≈𝑐 G6,ℓ−1,1. With defining c⊥ ∈ Z2𝑘+1𝑝 such that cc⊥ = 1, Ac⊥ = 0. We consider two cases

• Honest case: In this case, we have pk∗ℓ = ([T∗ℓ,Q
∗
ℓ]1, {[h

∗
ℓ, 𝑗
⊤]2} 𝑗∈[𝐿]\{ℓ} , 𝜋∗ℓ) ∈ 𝐷ℓ \ 𝐶ℓ. Namely, we know U∗ℓ

(such that T∗ℓ = AU∗ℓ and Q∗ℓ = R̂ℓU∗ℓ) and U∗ℓ is hidden from the adversary. We can write the dash boxed
terms in c∗1 as follows:

cU∗ℓ + cWℓ ((y∗ℓ)
⊤ ⊗ I𝑘+1)

53

and replace R̂ℓ in crs with a random Rℓ as in G2. And we can prove G6,ℓ−1,2 ≈𝑐 G6,ℓ−1,1 in this case using the
following argument for all 𝑏′ ∈ {0, 1}:

A, c⊥,B, [Rℓ]1, d⊤ℓ,AWℓ, [Wℓ (I𝑛 ⊗ B),Wℓ (I𝑛 ⊗ d⊤ℓ) +W + 𝑏
′c⊥ (x∗0 − x∗𝑏)]2; //crs, pkℓ

[c, cU∗ℓ + cWℓ ((y∗ℓ)
⊤ ⊗ I𝑘+1)]1,AU∗ℓ, [RℓU

∗
ℓ]1,U

∗
ℓB; //ct∗, pk∗ℓ

≈𝑐 A, c⊥,B, [Rℓ]1, d⊤ℓ,AWℓ, [Wℓ (I𝑛 ⊗ B),Wℓ (I𝑛 ⊗ d⊤ℓ) +W + 𝑏
′c⊥ (x∗0 − x∗𝑏)]2;

[c, cU∗ℓ + cWℓ ((y∗ℓ)
⊤ ⊗ I𝑘+1)]1,AU∗ℓ, [RℓU

∗
ℓ + û⊤d⊥]1,U∗ℓB;

≈𝑠 A, c⊥,B, [Rℓ]1, d⊤ℓ,AWℓ, [Wℓ (I𝑛 ⊗ B),Wℓ (I𝑛 ⊗ d⊤ℓ) +W +((((((
𝑏′c⊥ (x∗0 − x∗𝑏);

[c, cU∗ℓ + cWℓ ((y∗ℓ)
⊤ ⊗ I𝑘+1) + 𝑢ℓd⊥ − 𝑏(x∗0 − x∗𝑏) (y

∗
ℓ)
⊤d⊥]1,AU∗ℓ, [RℓU

∗
ℓ + Rℓc⊥𝑢ℓd⊥ + û⊤d⊥]1,U∗ℓB;

≈𝑠 A, c⊥,B, [Rℓ]1, d⊤ℓ,AWℓ, [Wℓ (I𝑛 ⊗ B),Wℓ (I𝑛 ⊗ d⊤ℓ) +W]2;

[c, cU∗ℓ + cWℓ ((y∗ℓ)
⊤ ⊗ I𝑘+1) + 𝑢ℓd⊥ −(((((((((

𝑏′ (x∗0 − x∗𝑏) (y
∗
ℓ)
⊤d⊥]1,AU∗ℓ, [RℓU

∗
ℓ + Rℓc

⊥𝑢ℓd⊥ + û⊤d⊥]1,U∗ℓB;

where û ← Z1×(2𝑘+2)𝑝 , 𝑢ℓ ← Z𝑝, and d⊥ ∈ Z1×(𝑘+1)𝑝 such that d⊥d⊤ℓ = 1, d⊥B = 0. We justify each step as
below: The first ≈𝑐 follows the argument:

(A, c, [Rℓ]1,B, d⊥,AUℓ, cUℓ [RUℓ]1, UℓB)
≈𝑐 (A, c, [Rℓ]1,B, d⊥,AUℓ, cUℓ, [RℓUℓ + u⊤d⊥]1, UℓB)

which is analogous to the Lemma 2 in [ZZGQ23]. The second ≈𝑠 uses the change of variables:

U∗ℓ ↦→ U∗ℓ + c
⊥𝑢ℓd⊥ and Wℓ ↦→Wℓ − 𝑏′c⊥ ((x∗0 − x∗𝑏) ⊗ d

⊥)

The last ≈𝑠 is straight-forward with the observation that û⊤ hides Rℓc⊥𝑢ℓ, this implies that 𝑢ℓ hides 𝑏′ (x∗0 −
x∗
𝑏
)y∗ℓ

⊤.
• Corrupted & Malicious Case: In this case, we have pk∗ℓ = ([T∗ℓ,Q

∗
ℓ]1, {[h

∗
ℓ, 𝑗
⊤]2} 𝑗∈[𝐿]\{ℓ} , 𝜋∗ℓ) ∈ 𝐶ℓ ∪ 𝐷ℓ. We

prove G6,ℓ−1,2 ≈𝑐 G6,ℓ−1,1 in this case using the following argument:

A, c⊥,B, d⊤ℓ,AWℓ, [Wℓ (I𝑛 ⊗ B),Wℓ (I𝑛 ⊗ d⊤ℓ) +W + c
⊥ (x∗0 − x∗𝑏)]2; //crs

[c, e1R̃−1ℓ Q∗ℓ + cWℓ ((y∗ℓ)
⊤ ⊗ I𝑘+1)]1; //ct∗ in G6,ℓ−1,1

≈𝑠 A, c⊥,B, d⊤ℓ,AWℓ, [Wℓ (I𝑛 ⊗ B),Wℓ (I𝑛 ⊗ d⊤ℓ) +W +������c⊥ (x∗0 − x∗𝑏)]2;

[c, e1R̃−1ℓ Q∗ℓ + cWℓ ((y∗ℓ)
⊤ ⊗ I𝑘+1) + (x∗0 − x∗𝑏) (y

∗
ℓ)
⊤d⊥]1;

≈𝑠 A, c⊥,B, d⊤ℓ,AWℓ, [Wℓ (I𝑛 ⊗ B),Wℓ (I𝑛 ⊗ d⊤ℓ) +W]2; //crs

[c, e1R̃−1ℓ Q∗ℓ + cWℓ ((y∗ℓ)
⊤ ⊗ I𝑘+1) +(((((((((x∗0 − x∗𝑏) (y

∗
ℓ)
⊤d⊥]1; //ct∗ in G6,ℓ−1,2

We justify each step as follows: The first ≈𝑠 uses the change of variable:

Wℓ ↦→Wℓ − c⊥ ((x∗0 − x∗𝑏) ⊗ d
⊥)

The second ≈𝑠 uses the fact that (x∗0 − x∗𝑏)yℓ = 0 in this case.
– G6,ℓ−1,3: Identical to G6,ℓ−1,2 except that we replace all d⊤ℓ with Br⊤ℓ where r⊤ℓ ← Z𝑘𝑝 in crs; in particular, we

change the dashed boxed term in crs and pk𝑖 as follows:

[Br⊤ℓ ,Wℓ (I𝑛 ⊗ d⊤ℓ) +W]2, {[W𝑖 (I𝑛 ⊗ Br⊤ℓ)]2, [U𝑖 Br
⊤
ℓ]2}𝑖∈[𝐿]\{ℓ}

We haveG6,ℓ−1,3 ≈𝑐 G6,ℓ−1,2. This follows fromMDDHassumption w.r.t. [B]2 which ensures that ([B]2, [Br⊤ℓ]2) ≈𝑐
([B]2, [d⊤ℓ]2) when B← Z(𝑘+1)×𝑘𝑝 , rℓ ← Z1×𝑘𝑝 , dℓ ← Z1×(𝑘+1)𝑝 .

54

7 Registered Quadratic Functional Encryption

In this section, we present our Reg-QFE scheme for the quadratic functionality which is defined by 𝑋 = Z1×𝑛1𝑝 ×Z1×𝑛2𝑝 ,
𝑍 = Z𝑝 and

QF𝑛1𝑛2 = {f : (x1, x2) ↦→ (x1 ⊗ x2)f
⊤},

where f ∈ Z1×𝑛1𝑛2𝑝 . We first present the multi-instance slotted Reg-QFE by working on our multi-instance slotted
PReg-IPFE scheme in Section 6; with the multi-instance Reg-QFE, we finally lead to the compact Reg-QFE which
achieve the very selective SIM-security defined in Section 2.2.

7.1 Multi-instance slotted Reg-QFE

With the multi-instance slotted PReg-IPFE Π2 = (iSetup, iGen, iVer, iAgg+, iAgg, iEnc+, iEnc, iDec) in Section 6, over
prime-order bilinear group G := (𝑝,G1,G2,G𝑇 , 𝑒); our multi-instance slotted Reg-QFE works as follows in the
bilinear group G:

– Setup(1𝜆 , 1𝑚, 1𝐿1 , . . . , 1𝐿𝑚 , 1𝑛1 , 1𝑛2): Sample A1 ← Z𝑘×𝑛1𝑝 , A2 ← Z𝑘×𝑛2𝑝 . Set 𝑛′1 = 𝑘(𝑛1 + 𝑛2 + 𝑘), 𝑛′2 = 𝑛1𝑛2, run

icrs← iSetup(1𝜆 , 1𝑚, 1𝐿1 , . . . , 1𝐿𝑚 , 1𝑛′1 , 1𝑛′2 ,M) where M =

©­­­«
A1 ⊗ I𝑛2
I𝑛1 ⊗ A2

A1 ⊗ A2

ª®®®¬ .
Output

crs = ([A1]1, [A2]2, icrs)

– Gen(crs, 𝑞, 𝑖): Sample (ipk𝑞,𝑖 , isk𝑞,𝑖) ← iGen(icrs, 𝑞, 𝑖), output

(pk𝑞,𝑖 , sk𝑞,𝑖) = (ipk𝑞,𝑖 , isk𝑞,𝑖)

– Ver(crs, 𝑞, 𝑖, pk𝑞,𝑖): Parse pk𝑞,𝑖 = ipk𝑞,𝑖 , output

iVer(icrs, 𝑞, 𝑖, ipk𝑞,𝑖).

– Agg+ (crs): Sample impk+ ← iAgg+ (icrs), output

mpk+ = ([A1]1, [A2]2, impk+).

– Agg(crs, 𝑞, (pk𝑞,𝑖 , f𝑞,𝑖)𝑖∈[𝐿𝑞]): If 𝑞 is an empty instance, namely (pk𝑞,𝑖 , f𝑞,𝑖) = (⊥,⊥) for all 𝑖 ∈ [𝐿𝑞], abort and
return mpk𝑞 = ⊥, hsk𝑞, 𝑗 = ⊥ for all 𝑗 ∈ [𝐿𝑞]. Sample (impk𝑞, (ihsk𝑞, 𝑗) 𝑗∈[𝐿𝑞]) ← iAgg(icrs, 𝑞, (ipk𝑞,𝑖 , f𝑞,𝑖)𝑖∈[𝐿𝑞]),
output

mpk𝑞 = impk𝑞,

and for all 𝑗 ∈ [𝐿𝑞]
hsk𝑞, 𝑗 = ihsk𝑞, 𝑗 .

– Enc+ (mpk+, (x1, x2)): Sample s1, s2 ← Z1×𝑘𝑝 . Run

ict+ ← iEnc+ ((impk+, x),

where x = (s1 ⊗ x2∥x1 ⊗ s2∥s1 ⊗ s2). Output

ct+ = ([s1A1 + x1︸ ︷︷ ︸
y1

]1, [s2A2 + x2︸ ︷︷ ︸
y2

]2, ict+)

55

– Enc(mpk𝑞): Abort and return ct𝑞 = ⊥ if mpk𝑞 = ⊥. Run

ict𝑞 ← iEnc(impk𝑞),

Output
ct𝑞 = ict𝑞.

– Dec(sk𝑞∗ ,𝑖∗ , hsk𝑞∗ ,𝑖∗ , (ct+, ct𝑞∗)): Abort and return ⊥ if ict𝑞∗ = ⊥. Parse

sk𝑞∗ ,𝑖∗ = isk𝑞∗ ,𝑖∗ , hsk𝑞∗ ,𝑖∗ = ihsk𝑞∗ ,𝑖∗ , (ct+, ct𝑞∗) = ([y1]1, [y2]2, ict+, ict𝑞∗).

Compute
[𝑧]𝑇 = [(y1 ⊗ y2)f⊤𝑞∗ ,𝑖∗ − iDec(isk𝑞∗ ,𝑖∗ , ihsk𝑞∗ ,𝑖∗ , (ict𝑠, ict𝑞∗))]𝑇

Recover 𝑧 from [𝑧]𝑇 via brute-force DLOG and output 𝑧.

Completeness. For all 𝜆, 𝑚, 𝑛1, 𝑛2 ∈ N, all 𝐿1, . . . , 𝐿𝑚 ∈ N, all 𝑞 ∈ [𝑚] and 𝑖 ∈ [𝐿𝑞]; all crs← Setup(1𝜆 , 1𝑚, 1𝐿1 , . . . , 1𝐿𝑚 , 1𝑛1 , 1𝑛2),
and (pk𝑞,𝑖 , sk𝑞,𝑖) ← Gen(crs, 𝑞, 𝑖), we have

crs = ([A1]1, [A2]2, icrs) and (pk𝑞,𝑖 , sk𝑞,𝑖) = (ipk𝑞,𝑖 , isk𝑞,𝑖)

where (ipk𝑞,𝑖 , isk𝑞,𝑖) ← iGen(icrs, 𝑞, 𝑖) and icrs ← iSetup(1𝜆 , 1𝑚, 1𝐿1 , . . . , 1𝐿𝑚 , 1𝑛′1 , 1𝑛′2 ,M), with 𝑛′1 = 𝑘(𝑛1 + 𝑛2 +
𝑘), 𝑛′2 = 𝑛1𝑛2. With the completeness of Π2 (c.f. Section 6.1), we have iVer(icrs, 𝑞, 𝑖, ipk𝑞,𝑖) = 1. This ensures that
Ver(crs, 𝑞, 𝑖, pk𝑞,𝑖) = 1 by the specification of Ver and readily proves the completeness.

Correctness. For all 𝜆, 𝑚, 𝑛1, 𝑛2 ∈ N, all 𝐿1, . . . , 𝐿𝑚 ∈ N, all 𝑞∗ ∈ [𝑚] and 𝑖∗ ∈ [𝐿𝑞∗]; all crs← Setup(1𝜆 , 1𝑚, 1𝐿1 , . . . , 1𝐿𝑚 , 1𝑛1 , 1𝑛2),
all (pk𝑞∗ ,𝑖∗ , sk𝑞∗ ,𝑖∗) ← Gen(crs, 𝑞∗, 𝑖∗); all (x1, x2) ∈ Z1×𝑛1𝑝 × Z1×𝑛2𝑝 and f𝑞∗ ,𝑖 ∈ Z1×𝑛1𝑛2𝑝 ; we have:

(pk𝑞∗ ,𝑖∗ , sk𝑞∗ ,𝑖∗) = (ipk𝑞∗ ,𝑖∗ , isk𝑞∗ ,𝑖∗)

hsk𝑞∗ ,𝑖∗ = ihsk𝑞∗ ,𝑖∗

(ct+, ct𝑞∗) = ([s1A1 + x1︸ ︷︷ ︸
y1

]1, [s2A2 + x2︸ ︷︷ ︸
y2

]2, ict+, ict𝑞∗)

where

ict+ ← iEnc+ (impk+, x; 𝑠)

ict𝑞∗ ← iEnc(impk𝑞∗ ; 𝑠)

impk+ ← iAgg+ (icrs)

(impk𝑞∗ , ihsk𝑞∗ ,𝑖∗) ∈ iAgg(icrs, 𝑞∗, (pk𝑞∗ ,𝑖 , f𝑞∗ ,𝑖)𝑖∈[𝐿𝑞∗])

(pk𝑞∗ ,𝑖∗ , sk𝑞∗ ,𝑖∗) ← iGen(icrs, 𝑞∗, 𝑖∗)

icrs← iSetup(1𝜆 , 1𝑚, 1𝐿1 , . . . , 1𝐿𝑚 , 1𝑛′1 , 1𝑛′2 ,M)

with 𝑛′1 = 𝑘(𝑛1 + 𝑛2 + 𝑘), 𝑛′2 = 𝑛1𝑛2 and 𝑠← Coin. Note that all above equalities are ensured by the specification of
Ver. We have

𝑧 = ((s1A1 + x1) ⊗ (s2A2 + x2))f⊤𝑞∗ ,𝑖∗ − iDec(isk𝑞∗ ,𝑖∗ , ihsk𝑞∗ ,𝑖∗ , (ict𝑠, ict𝑞∗))

= ((s1A1 + x1) ⊗ (s2A2 + x2))f⊤𝑞∗ ,𝑖∗ − xMf⊤𝑞∗ ,𝑖∗ (24)

= (s1A1 ⊗ s2A2 + s1A1 ⊗ x2 + x1 ⊗ s2A2)f⊤𝑞∗ ,𝑖∗ + (x1 ⊗ x2)f
⊤
𝑞∗ ,𝑖∗ − xMf⊤𝑞∗ ,𝑖∗

= (x1 ⊗ x2)f⊤𝑞∗ ,𝑖∗ (25)

56

where equality (24) follows from the correctness of Π2, which is ensure by iVer and iGen; equality (25) follows from

the fact that M =

©­­­«
A1 ⊗ I𝑛2
I𝑛1 ⊗ A2

A1 ⊗ A2

ª®®®¬ and x = (s1 ⊗ x2∥x1 ⊗ s2∥s1 ⊗ s2). This proves the correctness.

Compactness and Efficiency. Our multi-instance slotted Reg-QFE has the following properties:

|crs| = 𝑂(𝐿2 · 𝑛2) · poly(𝜆), |hsk𝑞, 𝑗 | = 𝑂(𝑛) · poly(𝜆),
|mpk+ | = 𝑂(𝑛) · poly(𝜆), |mpk𝑞 | = poly(𝜆),
|ct+ | = 𝑂(𝑛) + poly(𝜆), |ct𝑞 | = poly(𝜆),

where 𝐿 = 𝐿1 + · · · + 𝐿𝑚, 𝑛 = 𝑛1 + 𝑛2.

Security. We have the following theorem. Given multi-instance slotted PReg-IPFE with very selective SIM-security
under MDDH assumption, our multi-instance slotted Reg-QFE scheme uses prime-order bilinear group and the
security can be reduced to bi-MDDH assumption.

Theorem 6. Assume Π2 = (iSetup, iGen, iVer, iAgg+, iAgg, iEnc+, iEnc, iDec) is a multi-instance slotted PReg-IPFE
with completeness, correctness, very selective SIM-security and has group-based simulator defined in Section 6, our
multi-instance slotted Reg-QFE scheme achieves the very selective SIM-security, under bi-MDDH assumption.

7.2 Simulator

Recall that we allow some instance 𝑞∗ to be empty, namelyM∗𝑞∗ , C∗𝑞∗ = ∅ and f𝑞∗ ,𝑖 = ⊥, pk𝑞∗ ,𝑖 = ⊥ for all 𝑖 ∈ [𝐿𝑞∗].
Let (iS̃etup, iG̃en, iẼnc+, iẼnc) be the group-based simulator of multi-instance slotted PReg-IPFE Π2, the simulator of
our multi-instance slotted Reg-QFE is as follows:

– S̃etup(1𝜆 , 1𝑚, 1𝐿1 , . . . , 1𝐿𝑚 , 1𝑛1 , 1𝑛2 , {{f𝑞,𝑖}𝑖∈[𝐿𝑞] , {𝜇𝑞,𝑖}M∗𝑞∪C∗𝑞 }𝑞∈[𝑚]): Sample

ỹ1 ← Z1×𝑛1𝑝 , ỹ2 ← Z1×𝑛2𝑝 , A1 ← Z𝑘×𝑛1𝑝 , A2 ← Z𝑘×𝑛2𝑝

Set 𝑛′1 = 𝑘(𝑛1 + 𝑛2 + 𝑘), 𝑛′2 = 𝑛1𝑛2 and M =

©­­­«
A1 ⊗ I𝑛1
I𝑛2 ⊗ A2

A1 ⊗ A2

ª®®®¬, run

(ic̃rs, itd) ← iS̃etup(1𝜆 , 1𝑚, {1𝐿𝑞 }𝑞∈[𝑚] , 1𝑛
′
1 , 1𝑛

′
2 , {[M]𝑠}𝑠∈{1,2} ; {{f𝑞,𝑖}𝑖∈[𝐿𝑞] , {{[(ỹ1⊗ỹ2)f⊤𝑞,𝑖−𝜇𝑞,𝑖]𝑠}𝑠∈{1,2}}𝑖∈M∗𝑞∪C∗𝑞 }𝑞∈[𝑚])

Output
c̃rs = ([A1]1, [A2]2, ic̃rs)

And set td = (y1, y2, itd).
– G̃en(c̃rs, 𝑞, 𝑖; td): Fetch itd from td, sample (ip̃k𝑞,𝑖 , is̃k𝑞,𝑖) ← iG̃en(ic̃rs, 𝑞, 𝑖; itd), output

(p̃k𝑞,𝑖 , s̃k𝑞,𝑖) = (ip̃k𝑞,𝑖 , is̃k𝑞,𝑖)

– Ẽnc+ (td): Parse td = (ỹ1, ỹ2, itd), sample ic̃t+ ← iẼnc+ (itd). Output

c̃t+ = ([ỹ1]1, [ỹ2]2, ic̃t+),

– Ẽnc((pk𝑞,1, . . . , pk𝑞,𝐿𝑞); td): If 𝑞 is an empty instance, on input pk𝑞,𝑖 = ⊥ for all 𝑖 ∈ [𝐿𝑞], abort and return c̃t𝑞 = ⊥.
For all 𝑖 ∈ [𝐿𝑞], parse pk𝑞,𝑖 = ipk𝑞,𝑖 . Fetch itd from td, sample ic̃t𝑞 ← iẼnc((ipk𝑞,1, . . . , ipk𝑞,𝐿𝑞); itd). Output

c̃t𝑞 = ic̃t𝑞.

The reader can find the sanity check in Appendix D.

57

7.3 Proof

We prove the following technical lemma this immediately proves Theorem 6.

Lemma 6. For all adversariesA, there exist adversaries B1, B2 such that:

AdvmiReg-QFE
A (𝜆) ≤ 𝐿 · AdvmiPReg-IPFE

B1 (𝜆) + 2 · Advbi-MDDH
B2 (𝜆) + negl(𝜆)

where Time(B1), Time(B2) ≈ Time(A).

For simplicity, we prove Lemma 6 in the case that all instances are not empty. For empty instance 𝑞∗, we simply
change ct∗𝑞∗ and pk∗𝑞∗ ,𝑖 to ⊥, and we haveM∗𝑞∗ , C∗𝑞∗ = ∅ in following game sequence.

Game Sequence. Suppose that crs is the common reference string, (x∗1, x∗2) is the challenge; for each instance 𝑞 ∈
[𝑚], {pk∗𝑞,𝑖 , f∗𝑞,𝑖}𝑖∈[𝐿𝑞] are challenge public keys along with challenge functions to be registered, andM∗𝑞, C∗𝑞 ⊆ [𝐿𝑞]
are the sets of malicious and corrupted slots. For all 𝑞 ∈ [𝑚], 𝑖 ∈ [𝐿𝑞], define 𝐷𝑞,𝑖 = {pk𝑞,𝑖 : D𝑞,𝑖 [pk𝑞,𝑖] = sk𝑞,𝑖 ≠ ⊥}
be responses to OGen(𝑞, 𝑖) and 𝐶𝑞,𝑖 = {pk𝑞,𝑖 : (𝑖, pk𝑞,𝑖) ∈ C𝑞} records public keys in 𝐷𝑖 that have been sent to
OCor(𝑞, 𝑖, ·). Recall that, for each 𝑞 ∈ [𝑚], 𝑖 ∈ [𝐿𝑞], we require that

𝑖 ∈ M∗𝑞 =⇒ pk∗𝑞,𝑖 ∉ 𝐷𝑞,𝑖 ∧ Ver(crs, 𝑞, 𝑖, pk
∗
𝑞,𝑖) = 1

𝑖 ∈ C∗𝑞 =⇒ pk∗𝑞,𝑖 ∈ 𝐶𝑞,𝑖
𝑖 ∈ [𝐿𝑞] \ (M∗𝑞 ∪ C∗𝑞) =⇒ pk∗𝑞,𝑖 ∈ 𝐷𝑞,𝑖 ∧ pk

∗
𝑖 ∉ 𝐶𝑞,𝑖

Note that pk𝑞,𝑖 serves as a general entry in 𝐷𝑞,𝑖 while pk∗𝑞,𝑖 is the specific challenge public for slot 𝑖 in instance 𝑞;

there can be more than one assignments for pk𝑞,𝑖 since the adversary can invoke OGen(𝑞, 𝑖) (or ÕGen(𝑞, 𝑖)) for
many times. We prove Lemma 6 using the following game sequence.

– G0: This is the real game, recall that we have
• crs is in the form of

crs = ([A1]1, [A2]2, icrs)

where
icrs← iSetup(1𝜆 , 1𝑚, 1𝐿1 , . . . , 1𝐿𝑚 , 1𝑛′1 , 1𝑛′2 ,M),

with 𝑛′1 = 𝑘(𝑛1 + 𝑛2 + 𝑘), 𝑛′2 = 𝑛1𝑛2 and M =

©­­­«
A1 ⊗ I𝑛2
I𝑛1 ⊗ A2

A1 ⊗ A2

ª®®®¬.

• For each 𝑞 ∈ [𝑚], 𝑖 ∈ [𝐿𝑞], each pk𝑞,𝑖 ∈ 𝐷𝑞,𝑖 and its corresponding sk𝑞,𝑖 are

(pk𝑞,𝑖 , sk𝑞,𝑖) = (ipk𝑞,𝑖 , isk𝑞,𝑖) where (ipk𝑞,𝑖 , isk𝑞,𝑖) ← iGen(icrs, 𝑞, 𝑖)

• (ct∗+, (ct∗𝑞)𝑞∈[𝑚]) for (x∗1, x∗2) is in the form:

(ct∗+, (ct∗𝑞)𝑞∈[𝑚]) = ([s1A1 + x∗1︸ ︷︷ ︸
y∗1

]1, [s2A2 + x∗2︸ ︷︷ ︸
y∗2

]2, ict∗+, (ict∗𝑞)𝑞∈[𝑚])

where ict∗+ ← iEnc(impk+, x∗; 𝑠), ict∗𝑞 ← iEnc(impk𝑞; 𝑠) with x∗ = (s1 ⊗ x∗2∥x∗1 ⊗ s2∥s1 ⊗ s2) and 𝑠← Coin.

– G1: Identical to G0, except that we replace (iSetup, iGen, iEnc+, iEnc) with (iS̃etup, iG̃en, iẼnc+, iẼnc). In particu-
lar:

58

• crs is generated as
crs = ([A1]1, [A2]2, ic̃rs)

where

(ic̃rs, itd) ← iS̃etup (1𝜆 , 1𝑚, {1𝐿𝑞 }𝑞∈[𝑚] , 1𝑛
′
1 , 1𝑛

′
2 , {[M]𝑠}𝑠∈{1,2} ; {{f∗𝑞,𝑖}𝑖∈[𝐿𝑞] , {{[𝜃

∗
𝑞,𝑖]𝑠}𝑠∈{1,2}}𝑖∈M∗𝑞∪C∗𝑞 }𝑞∈[𝑚])

with 𝜃∗
𝑞,𝑖

= x∗M(f∗
𝑞,𝑖
)⊤.

• For each 𝑞 ∈ [𝑚], 𝑖 ∈ [𝐿𝑞], each pk𝑞,𝑖 ∈ 𝐷𝑞,𝑖 and its corresponding sk𝑞,𝑖 are generated as

(pk𝑞,𝑖 , sk𝑞,𝑖) = (ip̃k𝑞,𝑖 , is̃k𝑞,𝑖) where (ip̃k𝑞,𝑖 , is̃k𝑞,𝑖) ← iG̃en (ic̃rs, 𝑞, 𝑖; itd)

• (ct∗+, (ct∗𝑞)𝑞∈[𝑚]) for (x∗1, x∗2) is in the form:

(ct∗+, (ct∗𝑞)𝑞∈[𝑚]) = ([s1A1 + x∗1︸ ︷︷ ︸
y∗1

]1, [s2A2 + x∗2︸ ︷︷ ︸
y∗2

]2, ic̃t
∗
+, (ic̃t

∗
𝑞)𝑞∈[𝑚])

where ic̃t∗+ ← iẼnc+ (itd) and ic̃t∗𝑞 ← iẼnc ((ipk∗𝑞,𝑖 , . . . , ipk
∗
𝑞,𝐿𝑞
); itd).

We have G1 ≈𝑐 G0. This follows from the very selective SIM-security of Π2 with the group-based simulator.
– G2: Identical to G1, except that we replace ic̃rs in crs with

ic̃rs ∈ iS̃etup(1𝜆 , 1𝑚, {1𝐿𝑞 }𝑞∈[𝑚] , 1𝑛
′
1 , 1𝑛

′
2 , {[M]𝑠}𝑠∈{1,2} ; {{f∗𝑞,𝑖}𝑖∈[𝐿𝑞] , {{[𝜃

∗
𝑞,𝑖]𝑠}𝑠∈{1,2}}𝑖∈M∗𝑞∪C∗𝑞 }𝑞∈[𝑚])

where
𝜃∗𝑞,𝑖 = (s1A1 + x∗1) ⊗ (s1A1 + x∗1) (f∗𝑞,𝑖)

⊤ − (x∗1 ⊗ x∗2) (f∗𝑞,𝑖)
⊤

We have G2 ≡ G1. This follows from the fact that

x∗M = (s1 ⊗ x∗2∥x∗1 ⊗ s2∥s1 ⊗ s2)
©­­­«
A1 ⊗ I𝑛2
I𝑛1 ⊗ A2

A1 ⊗ A2

ª®®®¬
= (s1A1 + x∗1) ⊗ (s1A1 + x∗1) − (x∗1 ⊗ x∗2)

– G3: Identical to G2, except that we replace all s1A1 + x∗1 with ỹ1 ← Z𝑛1𝑝 . In particular, we have

ic̃rs ∈ iS̃etup(1𝜆 , 1𝑚, {1𝐿𝑞 }𝑞∈[𝑚] , 1𝑛
′
1 , 1𝑛

′
2 , {[M]𝑠}𝑠∈{1,2} ; {{f∗𝑞,𝑖}𝑖∈[𝐿𝑞] , {{[𝜃

∗
𝑞,𝑖]𝑠}𝑠∈{1,2}}𝑖∈M∗𝑞∪C∗𝑞 }𝑞∈[𝑚])

where
[𝜃∗𝑞,𝑖]𝑠 = [(ỹ1) ⊗ (s1A1 + x∗1) (f∗𝑞,𝑖)

⊤ − (x∗1 ⊗ x∗2) (f∗𝑞,𝑖)
⊤]𝑠 (∀𝑠 ∈ {1, 2})

And we have
ct∗+ = ([ỹ1]1, [s2A2 + x∗2︸ ︷︷ ︸

y2

]2, ic̃t
∗
+)

We haveG3 ≈𝑐 G2. This follows from the bi-MDDH assumption w.r.t.A1 which ensure that ([A1]1, [A1]2, [s1A1+
x∗1]1, [s1A1 + x∗1]2) ≈𝑐 ([A1]1, [A1]2, [ỹ1]1, [ỹ1]2) when s1 ← Z1×𝑘𝑝 , A1 ← Z𝑘×𝑛1𝑝 , x1, ỹ1 ← Z1×𝑛1𝑝 .

– G4: Identical to G3, except that we replace all s2A2 + x∗2 with ỹ2 ← Z𝑛2𝑝 . In particular, we have

ic̃rs ∈ iS̃etup(1𝜆 , 1𝑚, {1𝐿𝑞 }𝑞∈[𝑚] , 1𝑛
′
1 , 1𝑛

′
2 , {[M]𝑠}𝑠∈{1,2} ; {{f∗𝑞,𝑖}𝑖∈[𝐿𝑞] , {{[𝜃

∗
𝑞,𝑖]𝑠}𝑠∈{1,2}}𝑖∈M∗𝑞∪C∗𝑞 }𝑞∈[𝑚])

where
[𝜃∗𝑞,𝑖]𝑠 = [(ỹ1 ⊗ ỹ2) (f∗𝑞,𝑖)

⊤ − (x∗1 ⊗ x∗2) (f∗𝑞,𝑖)
⊤]𝑠 (∀𝑠 ∈ {1, 2})

59

And we have
ct∗+ = ([ỹ1]1, [ỹ2]2, ic̃t

∗
+)

We haveG3 ≈𝑐 G2. This follows from the bi-MDDH assumption w.r.t.A1 which ensure that ([A2]1, [A2]2, [s2A2+
x∗2]1, [s2A2 + x∗2]2) ≈𝑐 ([A2]1, [A2]2, [ỹ2]1, [ỹ2]2) when s2 ← Z1×𝑘𝑝 , A2 ← Z𝑘×𝑛2𝑝 , x2, ỹ2 ← Z1×𝑛2𝑝 .

Observe that in the final game G4 can be simulated using the simulator by setting 𝜇𝑞,𝑖 = (x∗1 ⊗ x∗2) (f∗𝑞,𝑖)
⊤

References

ABDP15. Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple functional encryption schemes
for inner products. In Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS, pages 733–751. Springer, Heidelberg,
March / April 2015. 4

AJJM22. Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta. Pre-constrained encryption. In Mark
Braverman, editor, 13th Innovations in Theoretical Computer Science Conference, ITCS 2022, January 31 - February 3,
2022, Berkeley, CA, USA, volume 215 of LIPIcs, pages 4:1–4:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022. 3

ALS16. Shweta Agrawal, Benoît Libert, and Damien Stehlé. Fully secure functional encryption for inner products, from
standard assumptions. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of
LNCS, pages 333–362. Springer, Heidelberg, August 2016. 9, 10

AMY19. Shweta Agrawal, Monosij Maitra, and Shota Yamada. Attribute based encryption for deterministic finite automata
from DLIN. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS, pages 91–117.
Springer, Heidelberg, December 2019. 11

BB04. Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles. In Matthew Franklin,
editor, CRYPTO 2004, volume 3152 of LNCS, pages 443–459. Springer, Heidelberg, August 2004. 2

BF01. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In Joe Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer, Heidelberg, August 2001. 2

CES21. Kelong Cong, Karim Eldefrawy, and Nigel P. Smart. Optimizing registration based encryption. IACR Cryptol. ePrint
Arch., page 499, 2021. 2

CGKW18. Jie Chen, Junqing Gong, Lucas Kowalczyk, and Hoeteck Wee. Unbounded ABE via bilinear entropy expansion, re-
visited. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages
503–534. Springer, Heidelberg, April / May 2018. 3, 6, 8, 22, 50

CGW15. Jie Chen, Romain Gay, and Hoeteck Wee. Improved dual system ABE in prime-order groups via predicate encodings.
In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 595–624.
Springer, Heidelberg, April 2015. 10

CGW18. Jie Chen, Junqing Gong, and Hoeteck Wee. Improved inner-product encryption with adaptive security and full
attribute-hiding. In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part II, volume 11273 of LNCS,
pages 673–702. Springer, Heidelberg, December 2018. 3, 6, 8

DKL+23. Nico Döttling, Dimitris Kolonelos, Russell W. F. Lai, Chuanwei Lin, Giulio Malavolta, and Ahmadreza Rahimi. Efficient
laconic cryptography from learning with errors. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023,
Part III, volume 14006 of LNCS, pages 417–446. Springer, Heidelberg, April 2023. 2

DP23. Pratish Datta and Tapas Pal. Registration-based functional encryption. Cryptology ePrint Archive, Paper 2023/457,
2023. https://eprint.iacr.org/archive/2023/457/20230330:055744. 1, 2, 3, 4, 8, 14, 18

DPY23. Pratish Datta, Tapas Pal, and Shota Yamada. Registered fe beyond predicates: (attribute-based) linear functions and
more. Cryptology ePrint Archive, Paper 2023/457, 2023. https://eprint.iacr.org/2023/457. 4

EHK+13. Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic framework for Diffie-Hellman
assumptions. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 129–147.
Springer, Heidelberg, August 2013. 14

60

https://eprint.iacr.org/archive/2023/457/20230330:055744
https://eprint.iacr.org/2023/457

FFM+23. Danilo Francati, Daniele Friolo, Monosij Maitra, Giulio Malavolta, Ahmadreza Rahimi, and Daniele Venturi. Regis-
tered (inner-product) functional encryption. Asiacrypt 2023, 2023. https://eprint.iacr.org/2023/395. 1, 2, 3,
4, 8, 14, 18

FKdP23. Dario Fiore, Dimitris Kolonelos, and Paola de Perthuis. Cuckoo commitments: Registration-based encryption and
key-value map commitments for large spaces. Cryptology ePrint Archive, Paper 2023/1389, 2023. https://eprint.
iacr.org/2023/1389. 3

FWW23. Cody Freitag, Brent Waters, and David J. Wu. How to use (plain) witness encryption: Registered abe, flexible broad-
cast, and more. CRYPTO 2023, 2023. https://eprint.iacr.org/2023/812. 2

GHM+19. Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, Ahmadreza Rahimi, and Sruthi Sekar. Registration-
based encryption from standard assumptions. In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part II, volume
11443 of LNCS, pages 63–93. Springer, Heidelberg, April 2019. 2

GHMR18. Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ahmadreza Rahimi. Registration-based encryp-
tion: Removing private-key generator from IBE. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part I,
volume 11239 of LNCS, pages 689–718. Springer, Heidelberg, November 2018. 2, 4, 8

GKMR22. Noemi Glaeser, Dimitris Kolonelos, Giulio Malavolta, and Ahmadreza Rahimi. Efficient registration-based encryp-
tion. Cryptology ePrint Archive, Report 2022/1505, 2022. https://eprint.iacr.org/2022/1505. 2

GV20. Rishab Goyal and Satyanarayana Vusirikala. Verifiable registration-based encryption. In Daniele Micciancio and
Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages 621–651. Springer, Heidelberg, August
2020. 2

HLWW23. Susan Hohenberger, George Lu, Brent Waters, and David J. Wu. Registered attribute-based encryption. In Carmit
Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part III, volume 14006 of LNCS, pages 511–542. Springer, Hei-
delberg, April 2023. 2, 4, 6, 8, 10, 16, 18, 31, 33, 66

HMQS23. Mohammad Hajiabadi, Mohammad Mahmoody, Wei Qi, and Sara Sarfaraz. Lower bounds on assumptions behind
registration-based encryption. In Guy N. Rothblum and Hoeteck Wee, editors, Theory of Cryptography - 21st Inter-
national Conference, TCC 2023, Taipei, Taiwan, November 29 - December 2, 2023, Proceedings, Part II, volume 14370
of Lecture Notes in Computer Science, pages 306–334. Springer, 2023. 4

JR13. Charanjit S. Jutla and Arnab Roy. Shorter quasi-adaptive NIZK proofs for linear subspaces. In Kazue Sako and Palash
Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages 1–20. Springer, Heidelberg, December 2013. 17

KW15. Eike Kiltz and Hoeteck Wee. Quasi-adaptive NIZK for linear subspaces revisited. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 101–128. Springer, Heidelberg, April 2015.
17, 22, 40, 50, 69, 79

LL20. Huijia Lin and Ji Luo. Compact adaptively secure ABE from 𝑘-Lin: Beyond NC1 and towards NL. In Anne Canteaut
and Yuval Ishai, editors, EUROCRYPT 2020, Part III, volume 12107 of LNCS, pages 247–277. Springer, Heidelberg,
May 2020. 12

LV16. Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from DDH-like assumptions on constant-
degree graded encodings. In Irit Dinur, editor, 57th FOCS, pages 11–20. IEEE Computer Society Press, October 2016.
12

LW11. Allison B. Lewko and Brent Waters. Unbounded HIBE and attribute-based encryption. In Kenneth G. Paterson, editor,
Advances in Cryptology - EUROCRYPT 2011 - 30th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings, volume 6632 of Lecture Notes in Computer
Science, pages 547–567. Springer, 2011. 6

MQ23. Mohammad Mahmoody and Wei Qi. Online mergers and applications to registration-based encryption and accu-
mulators. In Kai-Min Chung, editor, 4th Conference on Information-Theoretic Cryptography, ITC 2023, June 6-8, 2023,
Aarhus University, Aarhus, Denmark, volume 267 of LIPIcs, pages 15:1–15:23. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2023. 4

MQR22. Mohammad Mahmoody, Wei Qi, and Ahmadreza Rahimi. Lower bounds for the number of decryption updates
in registration-based encryption. Cryptology ePrint Archive, Paper 2022/1285, 2022. https://eprint.iacr.org/
2022/1285. 3

61

https://eprint.iacr.org/2023/395
https://eprint.iacr.org/2023/1389
https://eprint.iacr.org/2023/1389
https://eprint.iacr.org/2023/812
https://eprint.iacr.org/2022/1505
https://eprint.iacr.org/2022/1285
https://eprint.iacr.org/2022/1285

OT12. Tatsuaki Okamoto and Katsuyuki Takashima. Adaptively attribute-hiding (hierarchical) inner product encryp-
tion. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 591–608.
Springer, Heidelberg, April 2012. 3, 6, 8

Wat05. Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer, editor, EURO-
CRYPT 2005, volume 3494 of LNCS, pages 114–127. Springer, Heidelberg, May 2005. 2

Wee20. Hoeteck Wee. Functional encryption for quadratic functions from 𝑘-lin, revisited. In Rafael Pass and Krzysztof
Pietrzak, editors, TCC 2020, Part I, volume 12550 of LNCS, pages 210–228. Springer, Heidelberg, November 2020. 8, 9

ZZGQ23. Ziqi Zhu, Kai Zhang, Junqing Gong, and Haifeng Qian. Registered abe via predicate encodings. In Asiacrypt, 2023.
2, 3, 4, 5, 6, 10, 17, 46, 54, 74, 86

62

Appendix

A Pre-constrained Reg-FE

In this section, we give the definition of pre-constrained Reg-FE for general functionality and its slotted variant.

A.1 Pre-Constrained Reg-FE

Algorithms. A pre-constrained registered functional encryption, with the functionalities: 𝐺 = {𝑔 : 𝑋 → 𝑌 },
𝐹 = { 𝑓 : 𝑌 → 𝑍} and a pre-constrained 𝑔0 ∈ 𝐺, consists of six efficient algorithms:

– Setup(1𝜆 , 𝐹, 𝐺, 𝑔0, 1𝐿) → crs: It takes as input the security parameter 1𝜆 , the description of functionalities 𝐹, 𝐺,
a pre-constrained 𝑔0 ∈ 𝐺 and the bounded number of user 1𝐿, outputs a common reference string crs.

– Gen(crs, aux) → (pk, sk): It takes as input crs and the public state aux, outputs key pair (pk, sk).
– Reg(crs, aux, pk, 𝑓) → (mpk, aux′): It takes as input crs, aux, and pk along with 𝑓 ∈ 𝐹, outputs master public

key mpk and updated state aux′.
– Enc(mpk, 𝑥) → ct: It takes as input mpk, 𝑥 ∈ 𝑋 , outputs a ciphertext ct.
– Upd(crs, aux, pk) → hsk: It take as input crs, aux, pk, outputs a helper key hsk.
– Dec(sk, hsk, ct) → 𝑧/⊥/getupd: It take as input sk, hsk, ct and outputs 𝑧 ∈ 𝑍 or a special symbol ⊥ to indicate

a decryption failure, or a special flag getupd to indicate the need of an updated helper key.

Correctness. For all stateful adversaryA, the following advantage function is negligible in 𝜆:

Pr

[
𝑏 = 1

�����𝐿← A; crs← Setup(1𝜆 , 𝐹, 𝐺, 𝑔0, 1𝐿);
𝑏 = 0;AORegNT(·,·) ,ORegT(·) ,OEnc(·,·) ,ODec(·) (crs)

]
the oracles work as follows with initial setting aux = ⊥, ctr = 0, E = ∅, R = ∅ and 𝑡 = ⊥:

– ORegNT(pk, 𝑓): run (mpk, aux′) ← Reg(crs, aux, pk, 𝑓), update aux = aux′, ctr = ctr + 1, append (mpk, aux) to
R and return (|R|,mpk, aux);

– ORegT(𝑓 ∗): run (pk∗, sk∗) ← Gen(crs, aux) , (mpk, aux′) ← Reg(crs, aux, pk∗, 𝑓 ∗), update aux = aux′, ctr = ctr+
1 and set ctr∗ = ctr, compute hsk∗ ← Upd(crs, aux, pk∗), append (mpk, aux) to R, return (𝑡 = |R |,mpk, aux, pk∗,
sk∗, hsk∗);

– OEnc(𝑖, 𝑥): let R[𝑖] = (mpk,★), run ct← Enc(mpk, 𝑥), append (𝑥, ct) to E and return (|E |, ct);
– ODec(𝑗): let E[𝑗] = (𝑥 𝑗 , ct 𝑗), compute 𝑧′

𝑗
← Dec(sk∗, hsk∗, ct 𝑗); if 𝑧′

𝑗
= getupd, run hsk∗ ← Upd(crs, aux, pk∗)

and recompute 𝑧′
𝑗
← Dec(sk∗, hsk∗, ct 𝑗). Set 𝑏 = 1 when 𝑧′

𝑗
≠ 𝑓 ∗ ◦ 𝑔0 (𝑥 𝑗).

with the following restrictions:

– for query to above oracles, it holds that ctr ≤ 𝐿;
– there exists one query to ORegT; (we can consider 𝑔∗1 , . . . , 𝑔

∗
𝐿, 𝑓
∗, pk∗, sk∗, hsk∗ to be global;)

– for query (𝑖, 𝑥) to OEnc, it holds that 𝑖 ≥ 𝑡, R[𝑖] ≠ ⊥;
– for query (𝑗) to ODec, it holds that E[𝑗] ≠ ⊥.

Compactness and Efficiency. Compactness means that

|mpk| = poly(𝜆, par, log 𝐿), |hsk𝑖 | = poly(𝜆, par, log 𝐿);

where par is a parameter depending on the functionalities 𝐹, 𝐺. Furthermore, update efficiency means that the
number of invocations of Upd in ODec is at most 𝑂(log |R |) and each invocation costs poly(log |R |) time (in RAM
model).

63

Very Selective Simulation-based Security (SIM-security). For all stateful adversary A, there exist simulator
(S̃etup, G̃en, Ẽnc) such that:

𝐿, 𝐿′, 𝑥∗, 𝑔0, { 𝑓 ∗𝑖 }𝑖∈[𝐿′] , 𝐶𝐾, 𝐻𝐾, 𝐶𝐻 ← A(1
𝜆);

crs← Setup(1𝜆 , 𝐹, 𝐺, 𝑔0, 1𝐿);
AO(crs,{ 𝑓 ∗

𝑖
}𝑖∈ [𝐿′] ,𝐶𝐾,𝐻𝐾,𝐶𝐻,·,·) (crs);

ct∗ ← Enc(mpk, 𝑥∗), 𝛼← A(ct∗)


≈𝑐


𝐿, 𝐿′, 𝑥∗, 𝑔0, { 𝑓 ∗𝑖 }𝑖∈[𝐿′] , 𝐶𝐾, 𝐻𝐾, 𝐶𝐻 ← A(1

𝜆);
c̃rs← S̃etup(1𝜆 , 𝐹, 𝐺, 𝑔0, 1𝐿; { 𝑓 ∗𝑖 }𝑖∈𝐶𝐾∪𝐻𝐾 , { 𝑓

∗
𝑖
◦ 𝑔0 (𝑥∗)}𝑖∈𝐶𝐾∪𝐶𝐻);

AO(c̃rs,{ 𝑓 ∗
𝑖
}𝑖∈ [𝐿′] ,𝐶𝐾,𝐻𝐾,𝐶𝐻,·,·) (c̃rs);

c̃t∗ ← Ẽnc((pk∗1, . . . , pk∗𝐿′); td), 𝛼← A(c̃t
∗)


where 𝐶𝐾, 𝐻𝐾 ⊆ [𝐿′], 𝐶𝐾 ∪ 𝐻𝐾 = [𝐿′] for some 𝐿′ ≤ 𝐿, 𝐶𝐻 ⊆ 𝐻𝐾 and 𝐶𝐾 ∩ 𝐻𝐾 = ∅, and O works as follows with
a counter ℓ = 1 and the same set of auxiliary data structure as in the definition of IND-security: on input (𝑖, pk∗𝑖),
return ⊥ when 𝑖 ≠ ℓ, otherwise set ℓ = ℓ + 1 and do

– when 𝑖 ∈ 𝐶𝐾 , return ORegCK(pk∗𝑖 , 𝑓 ∗𝑖);
– when 𝑖 ∈ 𝐻𝐾 , return ORegHK(𝑓 ∗

𝑖
); furthermore, if 𝑖 ∈ 𝐶𝐻 , return OCorHK(|𝐻𝐾 ∩ [𝑖] |).

HereORegCK andORegHK invoke Reg in both cases: in the real world (on the left-hand side), they use crs generated
by Setup and ORegHK invokes Gen; in the ideal world (on the right-hand side), they use c̃rs simulated by S̃etup and
ORegHK invokes G̃en.

Remark. We give several remarks on our formalization.

– We do not require simulated version of Reg and Upd since both of them are public.
– We allow the adversary to choose pk∗𝑖 at any point, only functions 𝑓𝑖 and types of public keys (i.e., honest,

malicious, honest but corrupted) are chosen “very selectively”.
– The set 𝐶𝐻 does not give the timing to invoke OCorHK. One could let the adversary make an explicit query;

however we call the oracle automatically just after the invocation of ORegHK. This gives a simple but not
weaker model in the very selective setting. In the definition, |𝐻𝐾 ∩ [𝑖] | is the first item of the response of
ORegHK(𝑓 ∗

𝑖
).

– In very selective SIM-security, there is no need to consider post-challenge queries. This relies on the fact that
adversary should state the set 𝐶𝐻 at the beginning, so the pre-challenge and post-challenge corruption queries
are equivalent in the very-selective SIM-security setting.

A.2 Pre-Constrained Slotted Reg-FE

Algorithms. A slotted pre-constrained registered functional encryption, with the functionalities:𝐺 = {𝑔 : 𝑋 → 𝑌 },
𝐹 = { 𝑓 : 𝑌 → 𝑍} and a pre-constrained 𝑔0 ∈ 𝐺, consists of six efficient algorithms:

– Setup(1𝜆 , 𝐹, 𝐺, 𝑔0, 1𝐿) → crs: It takes as input the security parameter 1𝜆 , the description of functionalities 𝐹, 𝐺,
a pre-constrained 𝑔0 ∈ 𝐺 and the upper bound 1𝐿 of the slot numbers, outputs a common reference string crs.

– Gen(crs, 𝑖) → (pk𝑖 , sk𝑖): It takes as input crs and slot number 𝑖 ∈ [𝐿], outputs key pair (pk𝑖 , sk𝑖).
– Ver(crs, 𝑖, pk𝑖) → 0/1: It takes as input crs, 𝑖, pk𝑖 and outputs a bit.
– Agg(crs, (pk𝑖 , 𝑓𝑖)𝑖∈[𝐿]) → (mpk, (hsk 𝑗) 𝑗∈[𝐿]): It takes as input crs and a series of pk𝑖 with 𝑓𝑖 ∈ 𝐹 for all 𝑖 ∈ [𝐿],

outputs master public key mpk and a series of helper keys hsk 𝑗 for all 𝑗 ∈ [𝐿]. This algorithm is deterministic.

64

– Enc(mpk, 𝑥) → ct: It takes as input mpk, 𝑥 ∈ 𝑋 , outputs a ciphertext ct.
– Dec(sk, hsk, ct) → 𝑧/⊥: It takes as input sk, hsk, ct and outputs 𝑧 ∈ 𝑍 or a special symbol ⊥.

We require that Agg and Dec are deterministic.

Completeness. For all 𝜆, 𝐿 ∈ N, all 𝐹, 𝐺, all 𝑔0 ∈ 𝐺 and all 𝑖 ∈ [𝐿], we have

Pr

[
Ver(crs, 𝑖, pk𝑖) = 1

����� crs← Setup(1𝜆 , 𝐹, 𝐺, 𝑔0, 1𝐿)
(pk𝑖 , sk𝑖) ← Gen(crs, 𝑖)

]
= 1.

Correctness. For all 𝜆, 𝐿 ∈ N, all 𝐹, 𝐺, all 𝑔0 ∈ 𝐺, all 𝑖∗ ∈ [𝐿], all crs ← Setup(1𝜆 , 𝐹, 𝐺, 𝑔0, 1𝐿), all (pk𝑖∗ , sk𝑖∗) ←
Gen(crs, 𝑖∗), all {pk𝑖}𝑖∈[𝐿]\{𝑖∗ } such that Ver(crs, 𝑖, pk𝑖) = 1, all 𝑥 ∈ 𝑋 and 𝑓1, . . . , 𝑓𝐿 ∈ 𝐹, we have

Pr

[
Dec(sk𝑖∗ , hsk𝑖∗ , ct) = 𝑓𝑖∗ ◦ 𝑔0 (𝑥)

����� (mpk, (hsk 𝑗) 𝑗∈[𝐿]) ← Agg(crs, (pk𝑖 , 𝑓𝑖)𝑖∈[𝐿])
ct← Enc(mpk, 𝑥)

]
= 1.

Very Selective Simulation-based Security (SIM-security). For all stateful adversary A, there exist simulator
(S̃etup, G̃en, Ẽnc) such that

𝐿, 𝑥∗,M∗, C∗, { 𝑓 ∗
𝑖
}𝑖∈[𝐿] ← A(1𝜆);

crs← Setup(1𝜆 , 𝐹, 𝐺, 𝑔0, 1𝐿);
{pk∗𝑖 }𝑖∈[𝐿] ← AOGen(·) ,OCor(·) (crs);
(mpk, . . .) ← Agg(crs, (pk∗𝑖 , 𝑓 ∗𝑖)𝑖∈[𝐿]);
ct∗ ← Enc(mpk, 𝑥∗), 𝛼← A(ct∗)


≈𝑐


𝐿, 𝑥∗,M∗, C∗, { 𝑓 ∗

𝑖
}𝑖∈[𝐿] ← A(1𝜆);

(c̃rs, td) ← S̃etup(1𝜆 , 𝐹, 𝐺, 𝑔0, 1𝐿; { 𝑓 ∗𝑖 }𝑖∈[𝐿] , { 𝑓
∗
𝑖
◦ 𝑔0 (𝑥∗)}𝑖∈M∗ ,C∗);

{pk∗𝑖 }𝑖∈[𝐿] ← AOGen(·) ,OCor(·) (c̃rs);
c̃t∗ ← Ẽnc(pk∗1, . . . , pk∗𝐿); td), 𝛼← A(c̃t

∗)


whereM∗, C∗ ⊆ [𝐿] denote the sets of malicious and corrupted slots, and the oracles work as follows with initial
setting C = ∅ andD𝑖 = ∅ for all 𝑖 ∈ [𝐿] and 𝑞 ∈ [𝑚]:

– OGen(𝑖): run (pk, sk) ← Gen(crs, 𝑖), setD𝑖 [pk] = sk and return pk.
– OCor(𝑖, pk): returnD𝑖 [pk] and update C = C ∪ {(𝑖, pk)}.

In the ideal world, OGen invokes G̃en instead of Gen; and the following restrictions:

𝑖 ∈ M∗ =⇒ D𝑖 [pk∗𝑖] = ⊥ ∧ Ver(crs, 𝑖, pk
∗
𝑖) = 1

𝑖 ∈ C∗ =⇒ (𝑖, pk∗𝑖) ∈ C

𝑖 ∈ [𝐿] \ (M∗ ∪ C∗) =⇒ D𝑖 [pk∗𝑖] ≠ ⊥ ∧ (𝑖, pk
∗
𝑖) ∉ C

Similarly, there is no need to give mpk, hsk1, . . . hsk𝐿 toA explicitly in real game (or explicitly in simulation game)
and consider post-challenge queries.

B Registered Inner-product Encryption with Full Attribute Hiding

In this section, we present the slotted Reg-IPE with full attribute hiding, motivated by our slotted Reg-IPFE in Sec-
tion 3.

65

Algorithms. A slotted registered inner-product encryption consists of six efficient algorithms:

– Setup(1𝜆 , 1𝑛, 1𝐿) → crs: It takes as input the security parameter 1𝜆 , the size of vector 1𝑛 and the upper bound
1𝐿 of the number of slots, outputs a common reference string crs.

– Gen(crs, 𝑖) → (pk𝑖 , sk𝑖): It takes as input crs and slot number 𝑖 ∈ [𝐿], outputs key pair (pk𝑖 , sk𝑖).
– Ver(crs, 𝑖, pk𝑖) → 0/1: It takes as input crs, 𝑖, pk𝑖 and outputs a bit indicating whether pk𝑖 is valid.
– Agg(crs, (pk𝑖 , y𝑖)𝑖∈[𝐿]) → (mpk, (hsk 𝑗) 𝑗∈[𝐿]): It takes as input crs and a series of pk𝑖 with y𝑖 ∈ Z𝑛𝑝 for all 𝑖 ∈ [𝐿],

outputs master public key mpk and a series of helper keys hsk 𝑗 for all 𝑗 ∈ [𝐿]. This algorithm is deterministic.
– Enc(mpk, x,m) → ct: It takes as input mpk, x ∈ Z𝑛𝑝 and message m, outputs a ciphertext ct.
– Dec(sk, hsk, ct) → m/⊥: It takes as input sk, hsk, ct and outputs m or a special symbol ⊥.

Completeness. For all 𝜆, 𝐿, 𝑛 ∈ N, and all 𝑖 ∈ [𝐿], we have

Pr
[
Ver(crs, 𝑖, pk𝑖) = 1

��crs← Setup(1𝜆 , 1𝑛, 1𝐿); (pk𝑖 , sk𝑖) ← Gen(crs, 𝑖)
]
= 1.

Correctness. For all 𝜆, 𝐿, 𝑛 ∈ N, all 𝑖∗ ∈ [𝐿], all crs ← Setup(1𝜆 , 1𝑛, 1𝐿), all (pk𝑖∗ , sk𝑖∗) ← Gen(crs, 𝑖∗), all
{pk𝑖}𝑖∈[𝐿]\{𝑖∗ } such that Ver(crs, 𝑖, pk𝑖) = 1, all x ∈ Z𝑛𝑝 and y1, . . . , y𝐿 ∈ Z𝑛𝑝 such that xy⊤

𝑖∗ = 0, and all m, we have

Pr
[
Dec(sk𝑖∗ , hsk𝑖∗ , ct) = m

��(mpk, (hsk 𝑗) 𝑗∈[𝐿]) ← Agg(crs, (pk𝑖 , y𝑖)𝑖∈[𝐿]); ct← Enc(mpk, x,m)
]
= 1.

Attribute Hiding Security. For all stateful adversaryA, the advantage

Pr


𝑏 = 𝑏′

�����������
𝐿← A(1𝜆); crs← Setup(1𝜆 , 1𝑛, 1𝐿)
(pk∗𝑖 , y∗𝑖)𝑖∈[𝐿] , x

∗
0, x
∗
1,m

∗
0,m

∗
1 ← AOGen(·) ,OCor(·) (crs)

(mpk, (hsk 𝑗) 𝑗∈[𝐿]) ← Agg(crs, (pk∗𝑖 , y∗𝑖)𝑖∈[𝐿])
𝑏← {0, 1}, ct∗ ← Enc(mpk, x∗

𝑏
,m∗

𝑏
); 𝑏′ ← A(ct∗)


− 1
2

is negligible in 𝜆, where the oracles work as follows with initial setting C = ∅ andD𝑖 = ∅ for all 𝑖 ∈ [𝐿]:

– OGen(𝑖): run (pk, sk) ← Gen(crs, 𝑖), setD𝑖 [pk] = sk and return pk.
– OCor(𝑖, pk): returnD𝑖 [pk] and update C = C ∪ {(𝑖, pk)}.

and, for all 𝑖 ∈ [𝐿], we require that

D𝑖 [pk∗𝑖] = ⊥ =⇒ Ver(crs, 𝑖, pk∗𝑖) = 1,

if m∗0 ≠ m∗1, we require that

(𝑖, pk∗𝑖) ∈ C ∨ D𝑖 [pk∗𝑖] = ⊥ =⇒ x∗0 (y∗𝑖)
⊤ ≠ 0 ∧ x∗1 (y∗𝑖)

⊤ ≠ 0

if m∗0 = m∗1, we require that

(𝑖, pk∗𝑖) ∈ C ∨ D𝑖 [pk∗𝑖] = ⊥ =⇒
(
x∗0 (y∗𝑖)

⊤ ≠ 0 ∧ x∗1 (y∗𝑖)
⊤ ≠ 0

)
∨

(
x∗0 (y∗𝑖)

⊤ = x∗1 (y∗𝑖)
⊤ = 0

)
We use AdvsReg-IPE

A (𝜆) to denote the advantage function. Note that [HLWW23] showed that there is no need to give
mpk and hsk1, . . . , hsk𝐿 toA explicitly and to consider post-challenge queries.

66

B.1 Scheme

Assuming a QA-NIZKΠ0 = (LGen, LPrv, LVer, LSim) for linear space over bilinear groups, our slotted Reg-IPE scheme
works as follows in the prime-order bilinear group:

– Setup(1𝜆 , 1𝑛, 1𝐿) : Run G := (𝑝,G1,G2,G𝑇 , 𝑒) ← G(1𝜆). Sample

A← Z𝑘×(2𝑘+1)𝑝 , B1 ← Z(2𝑘+1)×𝑘𝑝 , V← Z(2𝑘+1)×(2𝑘+1)𝑝 , W0 ← Z(2𝑘+1)×(2𝑘+1)𝑝 , k← Z1×(2𝑘+1)𝑝 .

For all 𝑖 ∈ [𝐿], sample
W𝑖 ← Z(2𝑘+1)×(2𝑘+1)𝑛𝑝 , R𝑖 ← Z(2𝑘+2)×(2𝑘+1)𝑝 , r𝑖 ← Z1×𝑘𝑝 .

For all 𝑖 ∈ [𝐿], write A𝑖 =
(A
R𝑖

)
∈ Z(3𝑘+2)×(2𝑘+1)𝑝 , run

(crs𝑖 , td𝑖) ← LGen(1𝜆 ,G1, [A𝑖]1).

Output

crs =

©­­­­­­«
[A,AV,AW0]1, [Ak⊤]𝑇{
crs𝑖 , [R𝑖 ,AW𝑖]1

}
𝑖∈[𝐿]{

[B1r⊤𝑗 ,W0B1r⊤𝑗 + k
⊤]2

}
𝑗∈[𝐿]{

[W𝑖 (I𝑛 ⊗ B1r⊤𝑗)]2
}
𝑗∈[𝐿],𝑖∈[𝐿]\{ 𝑗}

ª®®®®®®¬
.

Note that we do not use td1, . . . , td𝐿 in the actual scheme.
– Gen(crs, 𝑖) : Sample U𝑖 ← Z(2𝑘+1)×(2𝑘+1)𝑝 . Define F𝑖 =

(T𝑖
Q𝑖

)
=

(AU𝑖
R𝑖U𝑖

)
= A𝑖U𝑖 ∈ Z(3𝑘+2)×(2𝑘+1)𝑝 and run

𝜋𝑖 ← LPrv(crs𝑖 , [F𝑖]1,U𝑖).

Fetch {[B1r⊤𝑗]2} 𝑗∈[𝐿]\{𝑖} from crs and output

pk𝑖 =
(
[AU𝑖︸︷︷︸

T𝑖

, R𝑖U𝑖︸︷︷︸
Q𝑖

]1, {[U𝑖B1r⊤𝑗︸ ︷︷ ︸
h𝑖, 𝑗

]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖
)

and sk𝑖 = U𝑖 .

– Ver(crs, 𝑖, pk𝑖) : Parse pk𝑖 =
(
[T𝑖 ,Q𝑖]1, {[h𝑖, 𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖

)
. Write F𝑖 =

(T𝑖
Q𝑖

)
and check

LVer(crs𝑖 , [F𝑖]1, 𝜋𝑖)
?
= 1.

For each 𝑗 ∈ [𝐿] \ {𝑖}, check
𝑒([A]1, [h𝑖, 𝑗]2)

?
= 𝑒([T𝑖]1, [B1r⊤𝑗]2).

If all these checks pass, output 1; otherwise, output 0.
– Agg(crs, (pk𝑖 , y𝑖)𝑖∈[𝐿]): For all 𝑖 ∈ [𝐿], parse pk𝑖 =

(
[T𝑖 ,Q𝑖]1, {[h𝑖, 𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖

)
. Output:

mpk =

([
A, AW0 +

∑︁
𝑖∈[𝐿]
(T𝑖 + AW𝑖 (y⊤𝑖 ⊗ I2𝑘+1)),

∑︁
𝑖∈[𝐿]

AW𝑖 , AV

]
1

)
and for all 𝑗 ∈ [𝐿]

hsk 𝑗 =

([
B1r⊤𝑗︸︷︷︸
k⊤0

,
∑︁

𝑖∈[𝐿]\{ 𝑗}
(h𝑖, 𝑗 +W𝑖 (I𝑛 ⊗ B1r⊤𝑗)y

⊤
𝑖)︸ ︷︷ ︸

k⊤1

,
∑︁

𝑖∈[𝐿]\{ 𝑗}
W𝑖 (I𝑛 ⊗ B1r⊤𝑗)︸ ︷︷ ︸

K2

,W0B1r⊤𝑗 + k
⊤︸ ︷︷ ︸

k⊤3

]
2

)
.

67

– Enc(mpk, x,m): Sample s← Z1×𝑘𝑝 . Output:

ct =

([
sA︸︷︷︸
c0

, sAW0 +
∑︁
𝑖∈[𝐿]
(sT𝑖 + sAW𝑖 (y⊤𝑖 ⊗ I2𝑘+1))︸ ︷︷ ︸

c1

, x ⊗ sAV +
∑︁
𝑖∈[𝐿]

sAW𝑖︸ ︷︷ ︸
c2

]
1

, [sAk⊤]𝑇 ·m︸ ︷︷ ︸
𝐶

)
.

– Dec(sk𝑖∗ , hsk𝑖∗ , ct): Parse

sk𝑖∗ = U𝑖∗ , hsk𝑖∗ = ([k⊤0, k⊤1,K2, k⊤3]2), ct𝑥 = ([c0, c1, c2]1, 𝐶).

Recover
[z1]𝑇 = 𝑒([c2]1, [I𝑛 ⊗ k⊤0]2), [z2]𝑇 = 𝑒([c0]1, [K2]2);
[𝑧3]𝑇 = 𝑒([c1]1, [k⊤0]2), [𝑧4]𝑇 = 𝑒([c0]1, [k⊤1]2);
[𝑧5]𝑇 = 𝑒([c0U𝑖∗]1, [k⊤0]2), [𝑧6]𝑇 = 𝑒([c0]1, [k⊤3]2).

Compute

𝑧 = [(𝑧3 − 𝑧4 − 𝑧5) − (z1 − z2)y⊤𝑖∗ − 𝑧6]𝑇 · 𝐶.

Completeness. For all 𝜆, 𝐿, 𝑛 ∈ N, all 𝑖 ∈ [𝐿], all crs← Setup(1𝜆 , 1𝑛, 1𝐿) and (pk𝑖 , sk𝑖) ← Gen(crs, 𝑖), we have

pk𝑖 =
(
[T𝑖 ,Q𝑖]1, {[h𝑖, 𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖

)
=

(
[AU𝑖 ,R𝑖U𝑖]1, {[U𝑖B1r⊤𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖

)
for some U𝑖 ← Z(2𝑘+1)×(2𝑘+1)𝑝 and 𝜋𝑖 ← LPrv(crs𝑖 , [A𝑖U𝑖]1,U𝑖) where (crs𝑖 , td𝑖) ← LGen(1𝜆 ,G1, [A𝑖]1) and A𝑖 =

(A
R𝑖

)
with A← Z𝑘×(2𝑘+1)𝑝 , R𝑖 ← Z(2𝑘+2)×(2𝑘+1)𝑝 . Then

– Write F𝑖 =
(T𝑖
Q𝑖

)
=

(AU𝑖
R𝑖U𝑖

)
, we have LVer(crs𝑖 , [F𝑖]1, 𝜋𝑖) = 1 by the perfect completeness of Π0 (see Section 2.4) and

the fact that F𝑖 = A𝑖U𝑖 ;
– For each 𝑗 ∈ [𝐿] \ {𝑖}, we have 𝑒([A]1, [U𝑖B1r⊤𝑗]2) = 𝑒([AU𝑖]1, [B1r

⊤
𝑗
]2) by the definition of bilinear map 𝑒 (see

Section 2.1) and the fact that A · U𝑖B1r⊤𝑗 = AU𝑖 · B1r⊤𝑗 .

This ensures that Ver(crs, 𝑖, pk𝑖) = 1 by the specification of Ver and readily proves the completeness.

Correctness. For all 𝜆, 𝐿, 𝑛 ∈ N, , all 𝑖∗ ∈ [𝐿], all crs ← Setup(1𝜆 , 1𝑛, 1𝐿), all (pk𝑖∗ , sk𝑖∗) ← Gen(crs, 𝑖∗), all
{pk𝑖}𝑖∈[𝐿]\{𝑖∗ } such that Ver(crs, 𝑖, pk𝑖) = 1, for all y1, . . . , y𝐿 ∈ Z𝑛𝑝 and x ∈ Z𝑛𝑝 such that xy⊤

𝑖∗ = 0, we have:

sk𝑖∗ = U𝑖∗ ,

ct =

([
sA︸︷︷︸
c0

, sAW0 +
∑︁
𝑖∈[𝐿]
(sT𝑖 + sAW𝑖 (y⊤𝑖 ⊗ I2𝑘+1))︸ ︷︷ ︸

c1

, x ⊗ sAV +
∑︁
𝑖∈[𝐿]

sAW𝑖︸ ︷︷ ︸
c2

]
1

, [sAk⊤]𝑇 ·m︸ ︷︷ ︸
𝐶

)

hsk𝑖∗ =

([
B1r⊤𝑖∗︸︷︷︸
k⊤0

,
∑︁

𝑖∈[𝐿]\{𝑖∗ }
(h𝑖,𝑖∗ +W𝑖 (I𝑛 ⊗ B1r⊤𝑖∗)y

⊤
𝑖)︸ ︷︷ ︸

k⊤1

,
∑︁

𝑖∈[𝐿]\{𝑖∗ }
W𝑖 (I𝑛 ⊗ B1r⊤𝑖∗)︸ ︷︷ ︸

K2

,W0B1r⊤𝑖∗ + k
⊤︸ ︷︷ ︸

k⊤3

]
2

)

where

Ah𝑖,𝑖∗ = T𝑖B1r⊤𝑖∗ ∀𝑖 ∈ [𝐿] \ {𝑖
∗} and AU𝑖∗ = T𝑖∗ .

68

Note that here we actually consider hsk 𝑗 for 𝑗 = 𝑖∗ and sk𝑖 for 𝑖 = 𝑖∗ and all above equalities are ensured by Ver
and Gen. we have

z1 = (x ⊗ sAV) (I𝑛 ⊗ B1r⊤𝑖∗) +
∑︁
𝑖∈[𝐿]

sAW𝑖 (I𝑛 ⊗ B1r⊤𝑖∗)

= sAV(x ⊗ I2𝑘+1) (I𝑛 ⊗ B1r⊤𝑖∗) +
∑︁
𝑖∈[𝐿]

sAW𝑖 (I𝑛 ⊗ B1r⊤𝑖∗)

= sAVB1r⊤𝑖∗x +
∑︁
𝑖∈[𝐿]

sAW𝑖 (I𝑛 ⊗ B1r⊤𝑖∗) (26)

z2 =
∑︁

𝑖∈[𝐿]\{𝑖∗ }
sAW𝑖 (I𝑛 ⊗ B1r⊤𝑖∗)

𝑧3 = sAW0 +
∑︁
𝑖∈[𝐿]
(sT𝑖B1r⊤𝑖∗ + sAW𝑖 (y⊤𝑖 ⊗ I2𝑘+1)B1r

⊤
𝑖∗)

= sAW0 +
∑︁
𝑖∈[𝐿]
(sT𝑖B1r⊤𝑖∗ + sAW𝑖 (I𝑛 ⊗ B1r⊤𝑖∗)y

⊤
𝑖) (27)

𝑧4 =
∑︁

𝑖∈[𝐿]\{𝑖∗ }
(sAh𝑖,𝑖∗ + sAW𝑖 (I𝑛 ⊗ B1r⊤𝑖∗)y

⊤
𝑖)

𝑧5 = sAU𝑖∗B1r⊤𝑖∗

𝑧6 = sAW0B1r⊤𝑖∗ + sAk
⊤

and then

𝑧 = [(𝑧3 − 𝑧4 − 𝑧5) − (z1 − z2)y⊤𝑖∗ − 𝑧6]𝑇 · 𝐶

= [(sAW0B1r⊤𝑖∗ + sT𝑖∗B1r
⊤
𝑖∗ + sAW𝑖∗ (I𝑛 ⊗ B1r⊤𝑖∗)y

⊤
𝑖∗ − sAU𝑖∗B1r

⊤
𝑖∗) −

(sAVB1r⊤𝑖∗ · xy
⊤
𝑖∗ + sAW𝑖∗ (I𝑛 ⊗ B1r⊤𝑖∗)y

⊤
𝑖∗)

−sAW0B1r⊤𝑖∗ − sAk
⊤]𝑇 · [sAk⊤]𝑇 ·m (28)

= [−sAVB1r⊤𝑖∗ · xy
⊤
𝑖∗]𝑇 ·m (29)

= m (30)

Here, equality (26) and equality (27) follows from the property of tensor product: (M⊗I) (I⊗a⊤) = M⊗a⊤ = (I⊗a⊤)M
for matrices of proper size; equality (28) follows from the fact that Ah𝑖,𝑖∗ = T𝑖B1r⊤𝑖∗ for all 𝑖 ∈ [𝐿] \ {𝑖∗}; equality (29)
follows from the fact that T𝑖∗ = AU𝑖∗ ; equality (30) follows from the fact that xy⊤

𝑖∗ = 0. This proves the correctness.

Compactness and Efficiency. Our slotted Reg-IPFE has the following properties:

|crs| = 𝐿2 · 𝑛 · poly(𝜆); |mpk| = 𝑛 · poly(𝜆); |hsk 𝑗 | = 𝑛 · poly(𝜆); |ct| = 𝑛 · poly(𝜆).

Note that the total size of {crs𝑖}𝑖∈[𝐿] is 𝐿 · poly(𝜆) according to the efficiency of the pairing-based QA-NIZK scheme
by Kiltz and Wee [KW15] and the fact that the size of language description is poly(𝜆).

Security. We have the following theorem. Given pairing-based QA-NIZK in [KW15] with unbounded simulation
soundness under MDDH assumption, our slotted Reg-IPFE scheme uses prime-order bilinear group and the security
can be reduced to MDDH assumption and subgroup decision assumption.

Theorem 7. Assume Π0 = (LGen, LPrv, LVer, LSim) is a QA-NIZK with perfect completeness, perfect zero-knowledge
and unbounded simulation soundness for linear space defined in Section 2.4, our slotted Reg-IPE scheme achieves the
attribute hiding security under MDDH assumption and subspace decision assumption.

69

B.2 Proof

We prove the following technical lemma; this immediately proves Theorem 7.

Lemma 7. For all adversariesA, there exist adversaries B1, B2, B3 and B4 such that:

AdvsReg-IPE
A (𝜆) ≤ 𝐿 · AdvUSSB1 (𝜆) + Adv

MDDH
B2 + 𝐿 · Adv

SDG2B1 ↦→B3
B3 + 𝐿 · Adv

SDG2B3 ↦→B2
B4 negl(𝜆)

where 𝐿 is the number of slots and Time(B1), Time(B2), Time(B3), Time(B4) ≈ Time(A).

Game Sequence. Suppose that crs is the common reference string, (x∗0, x∗1) and (m∗0,m∗1) are the challenge pair,
{pk∗𝑖 , y∗𝑖 }𝑖∈[𝐿] are challenge public keys along with challenge functions to be registered. Let 𝐷𝑖 = {(pk𝑖 , sk𝑖) :
D𝑖 [pk𝑖] = sk𝑖 ≠ ⊥} be responses to OGen(𝑖) and C records public keys in 𝐷1, . . . , 𝐷𝐿 that have been sent to OCor.
Recall that, for challenge public keys {pk∗𝑖 , y∗𝑖 }𝑖∈[𝐿] , we require that

D𝑖 [pk∗𝑖] = ⊥ =⇒ Ver(crs, 𝑖, pk∗𝑖) = 1,

and if m∗0 ≠ m∗1, we require that

(𝑖, pk∗𝑖) ∈ C ∨ D𝑖 [pk∗𝑖] = ⊥ =⇒ x∗0 (y∗𝑖)
⊤ ≠ 0 ∧ x∗1 (y∗𝑖)

⊤ ≠ 0.

if m∗0 = m∗1, we require that

(𝑖, pk∗𝑖) ∈ C ∨ D𝑖 [pk∗𝑖] = ⊥ =⇒ (x∗0 (y∗𝑖)
⊤ ≠ 0 ∧ x∗1 (y∗𝑖)

⊤ ≠ 0) ∨ (x∗0 (y∗𝑖)
⊤ = x∗1 (y∗𝑖)

⊤ = 0).

Note that pk𝑖 serves as a general entry in 𝐷𝑖 while pk∗𝑖 is the specific challenge public for slot 𝑖; there can be more
than one assignments for pk𝑖 since the adversary can invoke OGen(𝑖) for many times. We prove the Lemma 7 via
nested dual-system method using the following game sequence.

– G0: This is the real game, recall that we have
• crs is in the form:

crs =

©­­­­­­«
[A,AV,AW0]1, [Ak⊤]𝑇{
crs𝑖 , [R𝑖 ,AW𝑖]1

}
𝑖∈[𝐿]{

[B1r⊤𝑗 ,W0B1r⊤𝑗 + k
⊤]2

}
𝑗∈[𝐿]{

[W𝑖 (I𝑛 ⊗ B1r⊤𝑗)]2
}
𝑗∈[𝐿],𝑖∈[𝐿]\{ 𝑗}

ª®®®®®®¬
.

where crs𝑖 ∈ LGen(1𝜆 ,G1, [A𝑖]1), A𝑖 =
(A
R𝑖

)
.

• For each 𝑖 ∈ [𝐿], each (pk𝑖 , sk𝑖) ∈ 𝐷𝑖 is in the form:

pk𝑖 =
(
[AU𝑖︸︷︷︸

T𝑖

, R𝑖U𝑖︸︷︷︸
Q𝑖

]1, {[U𝑖B1r⊤𝑗︸ ︷︷ ︸
h𝑖, 𝑗

]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖
)

and sk𝑖 = U𝑖

where 𝜋𝑖 ← LPrv(crs𝑖 , [F𝑖]1,U𝑖), F𝑖 =
(AU𝑖
RU𝑖

)
.

• For all 𝑖 ∈ [𝐿], pk∗𝑖 is in the form:

pk∗𝑖 = ([T
∗
𝑖 ,Q

∗
𝑖]1, {[h

∗
𝑖, 𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋

∗
𝑖)

such that Ver(crs, 𝑖, pk∗𝑖) = 1which means LVer

(
crs𝑖 ,

[
T∗
𝑖

Q∗
𝑖

]
1

, 𝜋∗
𝑖

)
= 1 andAh∗

𝑖, 𝑗
= T∗

𝑖
B1r⊤𝑗 for each 𝑗 ∈ [𝐿] \{𝑖}.

70

• ct∗ for (x∗0, x∗1) and (m∗0,m∗1) is in the form:

ct∗ =

([
sA︸︷︷︸
c∗0

, sAW0 +
∑︁
𝑖∈[𝐿]
(sT𝑖 + sAW𝑖 ((y∗𝑖)

⊤ ⊗ I2𝑘+1))︸ ︷︷ ︸
c∗1

, x∗𝑏 ⊗ sAV +
∑︁
𝑖∈[𝐿]

sAW𝑖︸ ︷︷ ︸
c∗2

, [sAk⊤]𝑇 ·m∗𝑏︸ ︷︷ ︸
𝐶∗

)
.

where 𝑏← {0, 1} is the secret bit.
– G1: Identical to G0 except that, for all 𝑖 ∈ [𝐿] and all (pk𝑖 , sk𝑖) ∈ 𝐷𝑖 , we replace 𝜋𝑖 with

𝜋𝑖 ← LSim (crs𝑖 , td𝑖 , [F𝑖]1) where F𝑖 =
(
AU𝑖
R𝑖U𝑖

)
.

We have G1 ≡ G0. This follows from the perfect zero-knowledge of Π0.
– G2: Identical to G1 except that we sample s← Z1×𝑘𝑝 along with A and replace all R𝑖 in crs with

R̂𝑖 = R̃𝑖

(
sA

I2𝑘+1

)
, R̃𝑖 ← Z(2𝑘+2)×(2𝑘+2)𝑝 .

We have G2 ≡ G1. This follows from the fact that both R𝑖 (in G1) and R̂𝑖 (in G2) are truly random since matrix(sA
I2𝑘+1

)
is full-rank.

– G3: Identical to G2 except that we generate the c∗1 as follows:

c∗1 = sAW0 +
∑︁
𝑖∈[𝐿]
(e1R̃−1𝑖 Q∗𝑖 + sAW𝑖 (y⊤𝑖 ⊗ I2𝑘+1)).

We have G3 ≈𝑐 G2. This follows from stronger unbounded simulation soundness of Π0 along with the fact that

LVer(crs𝑖 , [F∗𝑖], 𝜋
∗
𝑖
) = 1 for all 𝑖 ∈ [𝐿] where F∗

𝑖
=

(
T∗
𝑖

Q∗
𝑖

)
. Assume pk∗𝑖∗ ∉ 𝐷𝑖∗ , i.e., pk∗𝑖∗ is malicious. In the reduction,

we guess 𝑖∗ ← [𝐿] and obtain A, R̂𝑖∗ , crs𝑖∗ as input; we simulate honestly as in G3 except that for all pk𝑖∗ ∈ 𝐷𝑖∗ ,
we make an oracle query [F𝑖∗]1 and get 𝜋𝑖∗ in it; we finally output ([F∗

𝑖∗]1, 𝜋
∗
𝑖∗) in pk∗𝑖∗ ∉ 𝐷𝑖∗ . Observe that once

it happens that e1R̃−1𝑖∗ Q
∗
𝑖∗ ≠ sT∗

𝑖∗ , we must have F∗
𝑖∗ ∉ span(A𝑖∗). When pk∗𝑖∗ ∈ 𝐷𝑖∗ , we always have G3 ≡ G2.

– G4: Identical to G3 except that we replace all sA with c← Z1×(2𝑘+1)𝑝 ; in particular, we generate R̂𝑖 as follows:

R̂𝑖 = R̃𝑖

(
c

I2𝑘+1

)
, R̃← Z(2𝑘+2)×(2𝑘+2)𝑝

and generate the challenge ciphertext as follows:

ct∗ =

([
c︸︷︷︸
c∗0

, c W0 +
∑︁
𝑖∈[𝐿]
(e1R̃−1𝑖 Q∗𝑖 + c W𝑖 ((y∗𝑖)

⊤ ⊗ I2𝑘+1))︸ ︷︷ ︸
c∗1

, x∗𝑏 ⊗ c V +
∑︁
𝑖∈[𝐿]

c W𝑖︸ ︷︷ ︸
c∗2

]
1

, [c k⊤]𝑇 ·m∗𝑏︸ ︷︷ ︸
𝐶∗

)
.

We have G4 ≈𝑐 G3. This follows from MDDH assumption which ensures that ([A]1, [sA]1) ≈𝑐 ([A]1, [c]1) when
A← Z𝑘×(2𝑘+1)𝑝 , s← Z1×𝑘𝑝 , c← Z1×(2𝑘+1)𝑝 .

– G5: Identical to G4 except that for all 𝑖 ∈ [𝐿], we replace AV in crs with

Ṽ← Z𝑘×(2𝑘+1)𝑝

we replace cV in challenge ciphertext with
v← Z1×(2𝑘+1)𝑝

71

In particular, we generate crs as below:

crs =

©­­­­­­«
[A, Ṽ ,AW0]1, [Ak⊤]𝑇{
crs𝑖 , [R̂𝑖 ,AW𝑖]1

}
𝑖∈[𝐿]{

[B1r⊤𝑗 ,W0B1r⊤𝑗 + k
⊤]2

}
𝑗∈[𝐿]{

[W𝑖 (I𝑛 ⊗ B1r⊤𝑗)]2
}
𝑗∈[𝐿],𝑖∈[𝐿]\{ 𝑗}

ª®®®®®®¬
.

and generate the challenge ciphertext as

ct∗ =

([
c︸︷︷︸
c∗0

, cW0 +
∑︁
𝑖∈[𝐿]
(e1R̃−1Q∗𝑖 + cW𝑖 ((y∗𝑖)

⊤ ⊗ I2𝑘+1))︸ ︷︷ ︸
c∗1

, x∗𝑏 ⊗ v +
∑︁
𝑖∈[𝐿]

cW𝑖︸ ︷︷ ︸
c∗2

]
1

, [ck⊤]𝑇 ·m∗𝑏︸ ︷︷ ︸
𝐶∗

)
.

We have G5 ≡ G4. This follows from the fact that when V is uniformly sampled from Z(2𝑘+1)×(2𝑘+1)𝑝 and not
published elsewhere, (AV, cV) (in G4) is statically equivalent with the uniformly sampled (Ṽ, v) where Ṽ ←
Z
𝑘×(2𝑘+1)
𝑝 , v← Z1×(2𝑘+1)𝑝 (in G5) , since both A and c are full row rank (with overwhelming probability).

– G6: Identical to G5 except that we randomly sample B2 ← Z2𝑘+1𝑝 ,B3 ← Z(2𝑘+1)×𝑘𝑝 , and compute the dual basis
B∥1 ,B

∥
2 ,B

∥
3 . And we change c∗2 as follows:

c∗2 = x∗𝑏 ⊗ v
(1,3) + x∗0 ⊗ v(2) +

∑︁
𝑖∈[𝐿]

cW𝑖

We have G6 ≡ G5. This follows from the following argument for 𝑏′ = 𝑏 (in G5) or 𝑏′ = 0 (in G6):

x∗𝑏′ ⊗ v
(2) +

∑︁
𝑖∈[𝐿]
(cW𝑖) (2) ≡

∑︁
𝑖∈[𝐿]
(cW𝑖) (2)

This argument follows from the fact that the basis B2 and dual basis B∥2 are not revealed, so we have (cW𝑖) (2)

is hidden, this can imply that
∑
𝑖∈[𝐿] (cW𝑖) (2) hides x∗

𝑏′ ⊗ v
(2) .

– G7,ℓ, (ℓ ∈ [0, 𝐿]): Identical to G6 except that for all 𝑗 ∈ [ℓ] we replace all B1r⊤𝑗 and W0B1r⊤𝑗 + k
⊤ in crs with

d⊤𝑗 and W0 d⊤𝑗 + k
⊤ + c⊥𝛼

where d 𝑗 ← span(B⊤2), 𝛼← Z𝑝 and c← Z2𝑘+1𝑝 such that Ac⊥ = 0, cc⊥ = 1. We have that
• G7,0 = G6; the two games are actually identical, since [0] = ∅;
• G7,ℓ−1 ≈𝑐 G7,ℓ for all ℓ ∈ [𝐿], we will employ a sub-sequence of games for the proof described later.

– G8: Identical to G7,𝐿 except that we generate the c∗2 as follows:

c∗2 = x∗0 ⊗ v(1,3) + x∗0 ⊗ v(2) +
∑︁
𝑖∈[𝐿]

cW𝑖

We have G8 ≡ G7,𝐿. The proof is analogous to that of G6 ≡ G5, with the fact that basis B1,B3 and dual basis
B∥1 ,B

∥
3 are not revealed in G7,𝐿, we have the following argument for 𝑏′ = 𝑏 (in G7,𝐿) or 𝑏′ = 0 (in G8):

x∗𝑏′ ⊗ v
(1,3) +

∑︁
𝑖∈[𝐿]
(cW𝑖) (2) ≡

∑︁
𝑖∈[𝐿]
(cW𝑖) (1,3)

– G9: Identical to G8 except that we replace terms 𝐶∗ in ct∗ as 𝐶∗ ← G𝑇 . We have G9 ≡ G8. This follows from the
following statistical argument:

(

crs︷ ︸︸ ︷
Ak⊤, k⊤ + c⊥𝛼,

𝐶∗ in ct∗︷︸︸︷
ck⊤) ≡ (Ak⊤, k⊤, ck⊤ − 𝛼)

when k ← Z
1×(2𝑘+1)
𝑝 and the fact that [𝛼]𝑇 only appears in 𝐶∗. We can prove the statement via change of

variable k⊤ ↦→ k⊤ − c⊥𝛼.

72

Observe that, in the final gameG9 the challenge ciphertext ct is independent of the random bit 𝑏 and the adversary’s
advantage is exactly 0.

From G7,ℓ−1 to G7,ℓ. We are ready to prove G7,ℓ−1 ≈𝑐 G7,ℓ and this will complete the proof of Lemma 7. For this,
we need the following sub-sequence of games for each ℓ ∈ [𝐿]:

– G7,ℓ−1,0: Identical to G7,ℓ−1 where we recall crs, pk𝑖 ∈ 𝐷𝑖 and c∗1, c
∗
2, with highlighting relevant terms in the

following sub-sequence with dashed boxes as follows:

crs =

©­­­­­­­­­­­«

[A, Ṽ,AW0]1, [Ak⊤]𝑇 ,
{
crs𝑖 , [R̂𝑖 ,AW𝑖]1

}
𝑖∈[𝐿]{

[d⊤
𝑗
,W0d⊤𝑗 + k

⊤ + c⊥𝛼]2
}
𝑗∈[ℓ−1] , [B1r

⊤
ℓ,W0B1r⊤ℓ + k

⊤]2 ,{
[B1r⊤𝑗 ,W0B1r⊤𝑗 + k

⊤]2
}
𝑗∈[𝐿]\[ℓ]{

[W𝑖 (I𝑛 ⊗ d⊤𝑗)]2
}
𝑗∈[ℓ−1],𝑖∈[𝐿]\{ 𝑗} ,

{
[W𝑖 (I𝑛 ⊗ B1r⊤ℓ)]2

}
𝑖∈[𝐿]\{ℓ} ,{

[W𝑖 (I𝑛 ⊗ B1r⊤𝑗)]2
}
𝑗∈[𝐿]\[ℓ],𝑖∈[𝐿]\{ 𝑗}

ª®®®®®®®®®®®¬
,

pk𝑖 =

{ (
[

T𝑖︷︸︸︷
AU𝑖 ,

Q𝑖︷︸︸︷
R̂𝑖U𝑖]1, {[

h𝑖, 𝑗︷︸︸︷
U𝑖d⊤𝑗]2} 𝑗∈[ℓ−1]\{𝑖} , [

h𝑖,ℓ︷ ︸︸ ︷
U𝑖B1r⊤ℓ]2 , {[

h𝑖, 𝑗︷ ︸︸ ︷
U𝑖B1r⊤𝑗]2} 𝑗∈[𝐿]\[𝑖,ℓ] , 𝜋𝑖

)
if 𝑖 ≠ ℓ(

[AUℓ︸︷︷︸
Tℓ

, R̂𝑖Uℓ︸︷︷︸
Qℓ

]1, {[Uℓd⊤𝑗︸︷︷︸
hℓ, 𝑗

]2} 𝑗∈[ℓ−1] , {[UℓB1r⊤𝑗︸ ︷︷ ︸
hℓ, 𝑗

]2} 𝑗∈[𝐿]\[ℓ] , 𝜋ℓ
)

if 𝑖 = ℓ

c∗1 = (cW0 + e1R̃−1ℓ Q∗ℓ + cWℓ ((y∗ℓ)
⊤ ⊗ I2𝑘+1)) +

∑︁
𝑖∈[𝐿]\{ℓ}

(e1R̃−1𝑖 Q∗𝑖 + cW𝑖 ((y∗𝑖)
⊤ ⊗ I2𝑘+1))

c∗2 = x∗𝑏 ⊗ v
(1) + x∗0 ⊗ v(2) + x∗

𝑏
⊗ v(3) + cWℓ +

∑︁
𝑖∈[𝐿]\{ℓ}

cW𝑖

Where d 𝑗 ← span(B⊤2) for all 𝑗 ∈ [ℓ − 1]. We have G7,ℓ−1,0 = G7,ℓ−1; all changes are conceptual.
– G7,ℓ−1,1: Identical to G7,ℓ−1,0 except that we replace all B1r⊤ℓ in crs with

d⊤ℓ where dℓ ← span(B⊤3) .

In particular, we change the dashed boxed term in crs and pk𝑖 as follows:

[d⊤ℓ,W0d⊤ℓ + k
⊤]2, {[W𝑖 (I𝑛 ⊗ d⊤ℓ)]2, [U𝑖 d

⊤
ℓ]2}𝑖∈[𝐿]\{ℓ}

We have G7,ℓ−1,1 ≈𝑐 G7,ℓ−1,0. This follow from the SDG2B1 ↦→B3 assumption which ensure that

[t0]2 ≈𝑐 [t1]2 given [B1]2, [B2]2, [B3]2, basis(B∥1 ,B
∥
3), basis(B

∥
2)

Where t0 ← span(B⊤1) corresponding to G7,ℓ−1,0, and dℓ ← span(B⊤3) corresponding to G7,ℓ−1,1.
– G7,ℓ−1,2: Identical to G7,ℓ−1,1 except that we change the dashed boxed term in crs and pk𝑖 as follows:

[d⊤ℓ,W0d⊤ℓ + k
⊤ + c⊥𝛼]2, {[W𝑖 (I𝑛 ⊗ d⊤ℓ)]2, [U𝑖d

⊤
ℓ]2}𝑖∈[𝐿]\{ℓ}

We have G7,ℓ−1,2 ≈𝑐 G7,ℓ−1,1. We provide some details in Section B.3.
– G7,ℓ−1,3: Identical to G7,ℓ−1,2 except that we generate the c∗2 as follows:

c∗2 = x∗𝑏 ⊗ v
(1) + x∗0 ⊗ v(2) + x∗0 ⊗ v(3) + cWℓ +

∑︁
𝑖∈[𝐿]\{ℓ}

cW𝑖

We have G7,ℓ−1,3 ≈𝑐 G7,ℓ−1,3. The proof in "honest case" is analogous to that in Section 3.3, the "corrupted or
malicious case" has some difference and we provide it in Section B.4.

73

– G7,ℓ−1,4: Identical to G7,ℓ−1,3 except that we replace all d⊤ℓ in crs with

d⊤ℓ where dℓ ← span(B⊤2)

In particular, we change the dashed boxed term in crs and pk𝑖 as follows:

[d⊤ℓ,W0d⊤ℓ + k
⊤ + c⊥𝛼]2, {[W𝑖 (I𝑛 ⊗ d⊤ℓ)]2, [U𝑖 d

⊤
ℓ]2}𝑖∈[𝐿]\{ℓ}

We have G7,ℓ−1,4 ≈𝑐 G7,ℓ−1,3. This follow from the SDG2B3 ↦→B2 assumption which ensure that

[t0]2 ≈𝑐 [t1]2 given [B1]2, [B2]2, [B3]2, basis(B∥2 ,B
∥
3), basis(B

∥
1)

Where t0 ← span(B⊤3) corresponding to G7,ℓ−1,2, and dℓ ← span(B⊤2) corresponding to G7,ℓ−1,3.
– G7,ℓ−1,5: Identical to G7,ℓ−1,4 except that we generate the c∗2 as follows:

c∗2 = x∗𝑏 ⊗ v
(1) + x∗0 ⊗ v(2) + x∗𝑏 ⊗ v

(3) + cWℓ +
∑︁

𝑖∈[𝐿]\{ℓ}
cW𝑖

We have G7,ℓ−1,5 ≈𝑐 G7,ℓ−1,4. The proof is identical to that for G7,ℓ−1,3 ≈ G7,ℓ−1,2.

Observe that G7,ℓ−1,5 = G7,ℓ and this prove G7,ℓ−1 ≈𝑐 G7,ℓ.

B.3 From G7,ℓ−1,1 to G7,ℓ−1,2

The proof idea is analogous to that in Section 3.3 and [ZZGQ23]: For all 𝑗 ∈ [ℓ − 1], we rewrite d 𝑗 ← span(B⊤2) with
B⊤2𝑟 𝑗 , for some 𝑟 𝑗 ← Z𝑝. And we we define c⊥ ∈ Z2𝑘+1𝑝 such that Ac⊥ = 0 and cc⊥ = 1. With the orthogonality of dual
basis, we can define d⊥ ∈ span((B∥3)

⊤) such that:

d⊥B1 = 0, d⊥B2 = 0, d⊥d⊤ℓ = 1.

With Lemma 2, we also need to consider following two cases:

Honest Case. In this case, we have pk∗ℓ = ([T∗ℓ,Q
∗
ℓ]1, {[h

∗
ℓ, 𝑗
⊤]2} 𝑗∈[𝐿]\{ℓ} , 𝜋∗ℓ) ∈ 𝐷ℓ \ 𝐶ℓ. Namely, we know U∗ℓ (such

that T∗ℓ = AU∗ℓ and Q∗ℓ = R̂ℓU∗ℓ) and U∗ℓ is hidden from the adversary. We can write the e1R̃−1ℓ in c∗1 as cU∗ℓ , and
replace R̂ℓ in crs with a random Rℓ as in G1. We prove G7,ℓ−1,2 ≈𝑐 G7,ℓ−1,1 in this case using the following argument
for 𝑏′ = 1 (in G7,ℓ−1,1) or 𝑏′ = 0 (in G7,ℓ−1,2):

A, c⊥, [Rℓ]1,B1,B2, d⊤ℓ,AW0,W0B1,W0B2,W0d⊤ℓ + 𝑏
′c⊥𝛼

c, cW0 + cU∗ℓ,AU
∗
ℓ, [RℓU

∗
ℓ]1,U

∗
ℓB1,U

∗
ℓB2

≈𝑐 A, c⊥, [Rℓ]1,B1,B2, d⊤ℓ,AW0,W0B1,W0B2,W0d⊤ℓ + 𝑏
′c⊥𝛼

c, cW0 + cU∗ℓ,AU
∗
ℓ, [RℓU

∗
ℓ + û⊤d⊥]1,U∗ℓB1,U

∗
ℓB2

≈𝑠 A, c⊥, [Rℓ]1,B1,B2, d⊤ℓ,AW0,W0B1,W0B2,W0d⊤ℓ + 𝑏
′c⊥𝛼 + c⊥𝑤

c, cW0 + cU∗ℓ + 𝑤d
⊥ + 𝑢ℓd⊥ ,AU∗ℓ, [RℓU

∗
ℓ + Rℓc⊥𝑢ℓd⊥ + û⊤d⊥]1,U∗ℓB1,U

∗
ℓB2

≈𝑠 A, c⊥, [Rℓ]1,B1,B2, d⊤ℓ,AW0,W0B1,W0B2,W0d⊤ℓ +���𝑏′c⊥𝛼 + c⊥𝑤

c, cW0 + cU∗ℓ + 𝑤d
⊥ + 𝑢ℓd⊥,AU∗ℓ, [RℓU

∗
ℓ + Rℓc

⊥𝑢ℓd⊥ + û⊤d⊥]1,U∗ℓB1,U
∗
ℓB2

where û ← Z1×(2𝑘+2)𝑝 and 𝑢ℓ ← Z𝑝, wℓ ← Z1×𝑛𝑝 . We justify each step as below: The first ≈𝑐 uses Lemma 2 with
M =

(A
c
)
, R = Rℓ, U = U∗ℓ, u = û. The second ≈𝑠 uses change of variables

W0 ↦→W0 + c⊥𝑤d⊥ and Uℓ ↦→ Uℓ + c⊥𝑢ℓd⊥

The last ≈𝑠 follows from the fact that û hides Rc⊥𝑢ℓ, this implies that 𝑢ℓ can hide 𝑤 in c∗1, and 𝑤 hides 𝑏′𝛼 in crs.

74

Corrupted & Malicious Case. In this case, we have pk∗ℓ ∈ 𝐶ℓ ∪ 𝐷ℓ. And we only consider m∗0 ≠ m∗1 here, since
we don’t need to handle k⊤ to hide m∗

𝑏
if they are equal. It is required that x∗0 (y∗ℓ)

⊤ ≠ 0 ∧ x∗1 (y∗ℓ)
⊤ ≠ 0. We prove

G7,ℓ−1,2 ≈𝑐 G7,ℓ−1,1 in this case using the following argument for 𝑏′ = 1 (in G7,ℓ−1,1) or 𝑏′ = 0 (in G7,ℓ−1,2):

A, c⊥,B1,B2, d⊤ℓ,AWℓ,Wℓ (I𝑛 ⊗ B1),Wℓ (I𝑛 ⊗ B2)

AW0,W0B1,W0B2,W0d⊤ℓ + 𝑏
′c⊥𝛼

c, cW0 + cWℓ ((y∗ℓ)
⊤ ⊗ I2𝑘+1), x∗𝑏 ⊗ v

(3) + cWℓ

≈𝑠 A, c⊥,B1,B2, d⊤ℓ,AWℓ,Wℓ (I𝑛 ⊗ B1),Wℓ (I𝑛 ⊗ B2)

AW0,W0B1,W0B2,W0d⊤ℓ + 𝑏
′c⊥𝛼 + 𝑤d⊥

c, cW0 + cWℓ ((y∗ℓ)
⊤ ⊗ I2𝑘+1) + 𝑤d⊥ − x∗𝑏 (y

∗
ℓ)
⊤v(3) ,����x∗

𝑏
⊗ v(3) + cWℓ

≈𝑠 A, c⊥,B1,B2, d⊤ℓ,AWℓ,Wℓ (I𝑛 ⊗ B1),Wℓ (I𝑛 ⊗ B2)

AW0,W0B1,W0B2,W0d⊤ℓ +���𝑏′c⊥𝛼 + 𝑤d⊥

c, cW0 + cWℓ ((y∗ℓ)
⊤ ⊗ I2𝑘+1) + 𝑤d⊥ − x∗𝑏 (y

∗
ℓ)
⊤v(3) , cWℓ

We justify each step as follows: the first ≈𝑠 uses the change of variables

Wℓ ↦→Wℓ − c⊥ (x∗𝑏 ⊗ v
(3)) and W0 ↦→W0 + c⊥𝑤d⊥

The second ≈𝑠 uses the fact that v is hidden and x𝑏 (y∗ℓ)
⊤ ≠ 0 (which is different to our slotted Reg-IPFE), so that

x∗
𝑏
(y∗ℓ)

⊤v(3) hides 𝑤, so we have 𝑏′𝛼 is hidden.

B.4 From G7,ℓ−1,2 to G7,ℓ−1,3 in Corrupted & Malicious Case

In this section, we present the proof of "corrupted & malicious case" in G7,ℓ−1,2 ≈𝑐 G7,ℓ−1,3, which is different to that
in Section 3.3; and we omit the proof of "honest case", which is identical to that in Section 3.3. In the "corrupted &
malicious case", we have pk∗ℓ ∈ 𝐶ℓ ∪ 𝐷ℓ. It is required that x∗0 (y∗ℓ)

⊤ ≠ 0 ∧ x∗1 (y∗ℓ)
⊤ ≠ 0 or x∗0 (y∗ℓ)

⊤ = x∗1 (y∗ℓ)
⊤ = 0. We

prove G7,ℓ−1,3 ≈𝑐 G7,ℓ−1,2 in this case using the following argument for 𝑏′ = 𝑏 (in G7,ℓ−1,2) or 𝑏′ = 0 (in G7,ℓ−1,3):

A, c⊥,B1,B2, d⊤ℓ,AWℓ,Wℓ (I𝑛 ⊗ B1),Wℓ (I𝑛 ⊗ B2)

c, e1R̃−1ℓ Q∗ℓ + cWℓ ((y∗ℓ)
⊤ ⊗ I2𝑘+1), x∗𝑏′ ⊗ v

(3) + cWℓ

≈𝑠 A, c⊥,B1,B2, d⊤ℓ,AWℓ,Wℓ (I𝑛 ⊗ B1),Wℓ (I𝑛 ⊗ B2)

c, e1R̃−1ℓ Q∗ℓ + cWℓ ((y∗ℓ)
⊤ ⊗ I2𝑘+1) − x∗𝑏′ (y

∗
ℓ)
⊤v(3) ,�����x∗

𝑏′ ⊗ v
(3) + cWℓ

≈𝑠 A, c⊥,B1,B2, d⊤ℓ,AWℓ,Wℓ (I𝑛 ⊗ B1),Wℓ (I𝑛 ⊗ B2)

c, e1R̃−1ℓ Q∗ℓ + cWℓ ((y∗ℓ)
⊤ ⊗ I2𝑘+1) −������x∗

𝑏′ (y
∗
ℓ)
⊤v(3) , cWℓ

We justify each step as follows: the first ≈𝑠 uses the change of variables

Wℓ ↦→Wℓ − c⊥ (x∗𝑏′ ⊗ v
(3))

The second ≈𝑠 uses the fact that v(3) is hidden (which is different to that in slotted Reg-IPFE c.f. Section 3.3), so that
x∗
𝑏′ (y

∗
ℓ)
⊤v(3) can be hidden by v(3) no matter x∗

𝑏′ (y
∗
ℓ)
⊤ ≠ 0 or x∗

𝑏′ (y
∗
ℓ)
⊤ = 0.

75

C Slotted Reg-IPFE with Very Selective SIM-Security

This section gives a self-contained description of our slotted Reg-IPFE with very selective SIM-security which is
implied by our pre-constrained slotted Reg-IPFE in Section 6.

C.1 Scheme

Assuming a QA-NIZK Π0 = (LGen, LPrv, LVer, LSim) for linear space over bilinear groups, see Section 2.4; our multi-
instance slotted Reg-IPFE scheme, works as follows in the prime-order bilinear group:

– Setup(1𝜆 , 1𝑚, 1𝑛, 1𝐿1 , . . . , 1𝐿𝑚) : Run G := (𝑝,G1,G2,G𝑇 , 𝑒) ← G(1𝜆). Sample shared parts:

A← Z𝑘×(2𝑘+1)𝑝 , V1 ← Z(2𝑘+1)×𝑛𝑝 , V2 ← Z(2𝑘+1)×𝑘+1𝑝 , v← Z1×(2𝑘+1)𝑝 .

And sample
D← Z(𝑘+1)×𝑘𝑝 , w← Z1×(𝑘+1)𝑝

For each instance 𝑞 ∈ [𝑚], sample B𝑞 ← Z(𝑘+1)×𝑘𝑝 , and for all 𝑖 ∈ [𝐿𝑞], do following operations:
• Sample t𝑞,𝑖 ← Z1×𝑘𝑝 , for 𝑠 ∈ {1, 2}, set

[M𝑞,𝑖]𝑠 =


I𝑛 0⊤𝑛

0(𝑘+1)×𝑛 Dt⊤
𝑞,𝑖

0𝑛 wDt⊤
𝑞,𝑖

 𝑠
∈ G(𝑛1+𝑛)×(𝑛2+1)𝑠 .

• Sample
W1,𝑞,𝑖 ← Z(2𝑘+1)×𝑛(𝑘+1)𝑝 , W2,𝑞,𝑖 ← Z(2𝑘+1)×(𝑘+1) (𝑘+1)𝑝 , W3,𝑞,𝑖 ← Z(2𝑘+1)×(𝑘+1)𝑝 ,

and
R𝑞,𝑖 ← Z(2𝑘+2)×(2𝑘+1)𝑝 , r𝑞,𝑖 ← Z1×𝑘𝑝 , t𝑞,𝑖 ← Z1×𝑘𝑝 .

• Run (crs𝑞,𝑖 , td𝑞,𝑖) ← LGen(1𝜆 ,G1, [A𝑞,𝑖]1), where

A𝑞,𝑖 =
(
A
R𝑞,𝑖

)
∈ Z(3𝑘+2)×(2𝑘+1)𝑝 .

Output10

crs =

©­­­­­­­­­«

[A,AV1,AV2,Av⊤]1,

{crs𝑞,𝑖 , [R𝑞,𝑖 ,AW1,𝑞,𝑖 ,AW2,𝑞,𝑖 ,AW3,𝑞,𝑖 ,A(W2,𝑞,𝑖 (Dt⊤𝑞,𝑖 ⊗ I𝑘+1) +W3,𝑞,𝑖 (wDt⊤𝑞,𝑖 ⊗ I𝑘+1))]1}𝑖∈[𝐿𝑞]
{[Dt⊤

𝑞, 𝑗
,wDt⊤

𝑞, 𝑗
,B𝑞r⊤𝑞, 𝑗 ,W1,𝑞, 𝑗 (I𝑛 ⊗ B𝑞r⊤𝑞, 𝑗) + V1]2} 𝑗∈[𝐿𝑞] ,

{[W2,𝑞, 𝑗 (Dt⊤𝑞, 𝑗 ⊗ B𝑞r
⊤
𝑞, 𝑗
) +W3,𝑞, 𝑗 (wDt⊤𝑞, 𝑗 ⊗ B𝑞r

⊤
𝑞, 𝑗
) + V2Dt⊤𝑞, 𝑗 + v

⊤wDt⊤
𝑞, 𝑗
]2} 𝑗∈[𝐿𝑞]

{[W1,𝑞,𝑖 (I𝑛 ⊗ B𝑞r⊤𝑞, 𝑗),W2,𝑞,𝑖 (Dt⊤𝑞,𝑖 ⊗ B𝑞r
⊤
𝑞, 𝑗
) +W3,𝑞,𝑖 (wDt⊤𝑞,𝑖 ⊗ B𝑞r

⊤
𝑞, 𝑗
)]2} 𝑗∈[𝐿𝑞],𝑖∈[𝐿𝑞]\{ 𝑗}

𝑞∈[𝑚]

ª®®®®®®®®®¬
.

– Gen(crs, 𝑞, 𝑖): Sample U𝑞,𝑖 ← Z(2𝑘+1)×(𝑘+1)𝑝 . Define F𝑞,𝑖 =
(T𝑞,𝑖
Q𝑞,𝑖

)
=

(AU𝑞,𝑖
R𝑞,𝑖U𝑞,𝑖

)
= A𝑞,𝑖U𝑞,𝑖 ∈ Z(3𝑘+2)×(2𝑘+1)𝑝 and run

𝜋𝑞,𝑖 ← LPrv(crs𝑞,𝑖 , [F𝑞,𝑖]1,U𝑞,𝑖).

Fetch {[B𝑞r⊤𝑞, 𝑗]2} 𝑗∈[𝐿𝑞]\{𝑖} from crs and output

pk𝑞,𝑖 =
(
[AU𝑞,𝑖︸︷︷︸

T𝑞,𝑖

,R𝑞,𝑖U𝑞,𝑖︸ ︷︷ ︸
Q𝑞,𝑖

]1, {[U𝑞,𝑖B𝑞r⊤𝑞, 𝑗︸ ︷︷ ︸
h𝑞,𝑖, 𝑗

]2} 𝑗∈[𝐿𝑞]\{𝑖} , 𝜋𝑞,𝑖
)

and sk𝑞,𝑖 = U𝑞,𝑖 .

10 Note that we employ 𝑖 as the index for W𝑞’s and M𝑞’s while 𝑗 is the index for r𝑞’s; both of them range from 1 to 𝐿𝑞. One
exception is the terms with W𝑞, which is conceptually W𝑞,𝑖 (M𝑞,𝑖 ⊗ B𝑞r⊤𝑞, 𝑗) with 𝑖 = 𝑗. Note that we do not use td𝑞,1, . . . , td𝑞,𝐿𝑞
and isk in the actual scheme.

76

– Ver(crs, 𝑞, 𝑖, pk𝑞,𝑖): Parse pk𝑞,𝑖 =
(
[T𝑞,𝑖 ,Q𝑞,𝑖]1, {[h𝑞,𝑖, 𝑗]2} 𝑗∈[𝐿𝑞]\{𝑖} , 𝜋𝑞,𝑖

)
. Write F𝑞,𝑖 =

(T𝑞,𝑖
Q𝑞,𝑖

)
and check

LVer(crs𝑞,𝑖 , [F𝑞,𝑖]1, 𝜋𝑞,𝑖)
?
= 1.

For each 𝑗 ∈ [𝐿𝑞] \ {𝑖}, check
𝑒([A]1, [h𝑞,𝑖, 𝑗]2)

?
= 𝑒([T𝑞,𝑖]1, [B𝑞r⊤𝑞, 𝑗]2).

If all these checks pass, output 1; otherwise, output 0.
– Agg+ (crs): Output:

mpk+ = ([A,AV1,AV2,Av⊤]1).
– Agg(crs, 𝑞, (pk𝑞,𝑖 , y𝑞,𝑖)𝑖∈[𝐿𝑞]): If 𝑞 is an empty instance, on input (pk𝑞,𝑖 , y𝑞,𝑖) = (⊥,⊥) for all 𝑖 ∈ [𝐿𝑞], abort and

return mpk𝑞 = ⊥, hsk𝑞, 𝑗 = ⊥ for all 𝑗 ∈ [𝐿𝑞]. For all 𝑖 ∈ [𝐿𝑞], parse pk𝑞,𝑖 =
(
[T𝑞,𝑖 ,Q𝑞,𝑖]1, {[h𝑞,𝑖, 𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑞,𝑖

)
,

and set y𝑞,𝑖 = (y𝑞,𝑖 ∥1) ∈ Z
1×(𝑛2+1)
𝑝 . Output:

mpk𝑞 =

[∑︁
𝑖∈[𝐿𝑞]

(T𝑞,𝑖 + A(W1,𝑞,𝑖 (y⊤𝑞,𝑖 ⊗ I𝑘+1) +W2,𝑞,𝑖 (Dt⊤𝑞,𝑖 ⊗ I𝑘+1) +W3,𝑞,𝑖 (wDt⊤𝑞,𝑖 ⊗ I𝑘+1)))
]
1

,

and for all 𝑗 ∈ [𝐿𝑞]

hsk𝑞, 𝑗 =

([
B𝑞r⊤𝑞, 𝑗︸︷︷︸

k⊤0

,
∑︁

𝑖∈[𝐿𝑞]\{ 𝑗}
(h𝑞,𝑖, 𝑗 +W1,𝑞,𝑖 (y⊤𝑞,𝑖 ⊗ B𝑞r

⊤
𝑞, 𝑗) +W2,𝑞,𝑖 (Dt⊤𝑞,𝑖 ⊗ B𝑞r

⊤
𝑞, 𝑗) +W3,𝑞,𝑖 (wDt⊤𝑞,𝑖 ⊗ B𝑞r

⊤
𝑞, 𝑗))︸ ︷︷ ︸

k⊤1

,

W1,𝑞, 𝑗 (y⊤𝑞, 𝑗 ⊗ B𝑞r
⊤
𝑞, 𝑗) +W2,𝑞, 𝑗 (Dt⊤𝑞, 𝑗 ⊗ B𝑞r

⊤
𝑞, 𝑗) +W3,𝑞, 𝑗 (wDt⊤𝑞, 𝑗 ⊗ B𝑞r

⊤
𝑞, 𝑗) + V1y⊤𝑞, 𝑗 + V2Dt⊤𝑞, 𝑗 + v

⊤wDt⊤𝑞, 𝑗︸ ︷︷ ︸
k⊤2

,

Dt⊤𝑞, 𝑗︸︷︷︸
k⊤3

,wDt⊤𝑞,𝑖︸ ︷︷ ︸
𝑘4

]
2

)
.

– Enc+ (mpk+, x): Set x = (x∥0𝑛) ∈ Z1×(𝑛1+𝑛)𝑝 . Sample s← Z1×𝑘𝑝 . Output:

ct+ = ([sA︸︷︷︸
c+,0

, sAV1 + x︸ ︷︷ ︸
c+,1

, sAV2︸︷︷︸
c+,2

, sAv⊤︸︷︷︸
𝑐+,3

]1).

– Enc(mpk𝑞): Abort and return ⊥ if mpk𝑞 = ⊥. Sample s← Z1×𝑘𝑝 , output

ct𝑞 =

[∑︁
𝑖∈[𝐿𝑞]

(sT𝑞,𝑖 + sA(W1,𝑞,𝑖 (y⊤𝑞,𝑖 ⊗ I𝑘+1) +W2,𝑞,𝑖 (Dt⊤𝑞,𝑖 ⊗ I𝑘+1) +W3,𝑞,𝑖 (wDt⊤𝑞,𝑖 ⊗ I𝑘+1)))︸ ︷︷ ︸
c𝑞

]
1

.

– Dec(sk𝑞∗ ,𝑖∗ , hsk𝑞∗ ,𝑖∗ , (ct+, ct𝑞∗)): Abort and return ⊥ if ct𝑞∗ = ⊥. Parse

sk𝑞∗ ,𝑖∗ = U𝑞∗ ,𝑖∗ , hsk𝑞∗ ,𝑖∗ = ([k⊤0, k⊤1, k⊤2, k⊤3, 𝑘4]2), (ct+, ct𝑞∗) = ([c+,0, c+,1, c+,2, 𝑐+,3, c𝑞∗]1).

Recover
[𝑧1]𝑇 = 𝑒([c𝑞∗]1, [k⊤0]2), [𝑧2]𝑇 = 𝑒([c+,0]1, [k⊤1]2),
[𝑧3]𝑇 = 𝑒([c+,0U𝑞∗ ,𝑖∗]1, [k⊤0]2), [𝑧4]𝑇 = 𝑒([c+,0]1, [k⊤2]2),
[𝑧5]𝑇 = 𝑒([c+,1]1, [y⊤𝑞∗ ,𝑖∗]2), [𝑧6]𝑇 = 𝑒([c+,2]1, [k⊤3]2),
[𝑧7]𝑇 = 𝑒([𝑐+,3]1, [𝑘4]2).

Compute
[𝑧]𝑇 = [𝑧1 − 𝑧2 − 𝑧3 − 𝑧4 + 𝑧5 + 𝑧6 + 𝑧7]𝑇 .

Recover 𝑧 from [𝑧]𝑇 via brute-force DLOG and output 𝑧.

77

Completeness. For all 𝜆, 𝑚, 𝑛 ∈ N, all 𝐿1, . . . , 𝐿𝑚 ∈ N, all 𝑞 ∈ [𝑚] and 𝑖 ∈ [𝐿𝑞], all crs← Setup(1𝜆 , 1𝑚, 1𝑛, 1𝐿1 , . . . , 1𝐿𝑚),
and (pk𝑞,𝑖 , sk𝑞,𝑖) ← Gen(crs, 𝑞, 𝑖), we have

pk𝑞,𝑖 =
(
[T𝑞,𝑖 ,Q𝑞,𝑖]1, {[h𝑞,𝑖, 𝑗]2} 𝑗∈[𝐿𝑞]\{𝑖} , 𝜋𝑞,𝑖

)
=

(
[AU𝑞,𝑖 ,R𝑞,𝑖U𝑞,𝑖]1, {[U𝑞,𝑖B𝑞r⊤𝑞, 𝑗]2} 𝑗∈[𝐿𝑞]\{𝑖} , 𝜋𝑞,𝑖

)
for some U𝑞,𝑖 ← Z(2𝑘+1)×(𝑘+1)𝑝 and 𝜋𝑞,𝑖 ← LPrv(crs𝑞,𝑖 , [A𝑞,𝑖U𝑖]1,U𝑖) where (crs𝑞,𝑖 , td𝑞,𝑖) ← LGen(1𝜆 ,G1, [A𝑞,𝑖]1) and
A𝑞,𝑖 =

(A
R𝑞,𝑖

)
with A← Z𝑘×(2𝑘+1)𝑝 , R𝑞,𝑖 ← Z(2𝑘+2)×(2𝑘+1)𝑝 . Then

– Write F𝑞,𝑖 =
(T𝑞,𝑖
Q𝑞,𝑖

)
=

(AU𝑞,𝑖
R𝑞,𝑖U𝑞,𝑖

)
, we have LVer(crs𝑞,𝑖 , [F𝑞,𝑖]1, 𝜋𝑞,𝑖) = 1 by the perfect completeness of Π0 (see Sec-

tion 2.4) and the fact that F𝑞,𝑖 = A𝑞,𝑖U𝑞,𝑖 ;

– For each 𝑗 ∈ [𝐿𝑞] \ {𝑖}, we have 𝑒([A]1, [U𝑞,𝑖B𝑞r⊤𝑞, 𝑗]2) = 𝑒([AU𝑞,𝑖]1, [B𝑞r
⊤
𝑞, 𝑗
]2) by the definition of bilinear map

𝑒 (see Section 2.1) and the fact that A · U𝑞,𝑖B𝑞r⊤𝑞, 𝑗 = AU𝑞,𝑖 · B𝑞r⊤𝑞, 𝑗 .

This ensures that Ver(crs, 𝑞, 𝑖, pk𝑞,𝑖) = 1 by the specification of Ver and readily proves the completeness.

Correctness. For all 𝜆, 𝑚, 𝑛 ∈ N, all 𝐿1, . . . , 𝐿𝑚 ∈ N, all 𝑞∗ ∈ [𝑚] and 𝑖∗ ∈ [𝐿𝑞∗]; all crs← Setup(1𝜆 , 1𝑚, 1𝑛, 1𝐿1 , . . . , 1𝐿𝑚),
all (pk𝑞∗ ,𝑖∗ , sk𝑞∗ ,𝑖∗) ← Gen(crs, 𝑞∗, 𝑖∗); all {pk𝑞∗ ,𝑖}𝑖∈[𝐿𝑞∗]\{𝑖∗ } such that Ver(crs, 𝑞∗, 𝑖, pk𝑞∗ ,𝑖) = 1; all x ∈ Z1×𝑛𝑝 and
y𝑞∗ ,𝑖 ∈ Z1×𝑛𝑝 ; for 𝑠 ∈ {1, 2}, we have:

sk𝑞∗ ,𝑖∗ = U𝑞∗ ,𝑖∗ ,

ct+ = ([sA︸︷︷︸
c+,0

, sAV1 + x︸ ︷︷ ︸
c+,1

, sAV2︸︷︷︸
c+,2

, sAv⊤︸︷︷︸
𝑐+,3

]1),

ct𝑞∗ =

[∑︁
𝑖∈[𝐿𝑞∗]

(sT𝑞∗ ,𝑖 + sA(W1,𝑞∗ ,𝑖 (y⊤𝑞∗ ,𝑖 ⊗ I𝑘+1) +W2,𝑞∗ ,𝑖 (Dt⊤𝑞∗ ,𝑖 ⊗ I𝑘+1) +W3,𝑞∗ ,𝑖 (wDt⊤𝑞∗ ,𝑖 ⊗ I𝑘+1)))︸ ︷︷ ︸
c𝑞∗

]
1

,

hsk𝑞∗ ,𝑖∗ =

([
B𝑞∗r⊤𝑞∗ ,𝑖∗︸ ︷︷ ︸

k⊤0

,
∑︁

𝑖∈[𝐿𝑞∗]\{𝑖∗ }
(h𝑞∗ ,𝑖,𝑖∗ +W1,𝑞∗ ,𝑖 (y⊤𝑞∗ ,𝑖 ⊗ B𝑞∗r

⊤
𝑞∗ ,𝑖∗) +W2,𝑞∗ ,𝑖 (Dt⊤𝑞∗ ,𝑖 ⊗ B𝑞∗r

⊤
𝑞∗ ,𝑖∗) +W3,𝑞∗ ,𝑖 (wDt⊤𝑞∗ ,𝑖 ⊗ B𝑞∗r

⊤
𝑞∗ ,𝑖∗))︸ ︷︷ ︸

k⊤1

,

W1,𝑞∗ ,𝑖∗ (y⊤𝑞∗ ,𝑖∗ ⊗ B𝑞∗r
⊤
𝑞∗ ,𝑖∗) +W2,𝑞∗ ,𝑖∗ (Dt⊤𝑞∗ ,𝑖∗ ⊗ B𝑞∗r

⊤
𝑞∗ ,𝑖∗) +W3,𝑞∗ ,𝑖∗ (wDt⊤𝑞∗ ,𝑖∗ ⊗ B𝑞∗r

⊤
𝑞∗ ,𝑖∗) + V1y⊤𝑞∗ ,𝑖∗ + V2Dt⊤𝑞∗ ,𝑖∗ + v

⊤wDt⊤𝑞∗ ,𝑖∗︸ ︷︷ ︸
k⊤2

,

Dt⊤𝑞∗ ,𝑖∗︸︷︷︸
k⊤3

,wDt⊤𝑞∗ ,𝑖∗︸ ︷︷ ︸
𝑘4

]
2

)
.

where

Ah𝑞∗ ,𝑖,𝑖∗ = T𝑞∗ ,𝑖B𝑞∗r⊤𝑞∗ ,𝑖∗ ∀𝑖 ∈ [𝐿𝑞∗] \ {𝑖
∗} and AU𝑞∗ ,𝑖∗ = T𝑞∗ ,𝑖∗ .

78

Note that here we actually consider hsk𝑞∗ , 𝑗 for 𝑗 = 𝑖∗ and sk𝑞∗ ,𝑖 for 𝑖 = 𝑖∗ and all above equalities are ensured by Ver
and Gen. We have

𝑧1 =
∑︁

𝑖∈[𝐿𝑞∗]
(sT𝑞∗ ,𝑖 + sA(W1,𝑞∗ ,𝑖 (y⊤𝑞∗ ,𝑖 ⊗ I𝑘+1) +W2,𝑞∗ ,𝑖 (Dt⊤𝑞∗ ,𝑖 ⊗ I𝑘+1) +W3,𝑞∗ ,𝑖 (wDt⊤𝑞∗ ,𝑖 ⊗ I𝑘+1)))B𝑞∗r

⊤
𝑞∗ ,𝑖∗

=
∑︁

𝑖∈[𝐿𝑞∗]
(sT𝑞∗ ,𝑖B𝑞∗r⊤𝑞∗ ,𝑖∗ + sA(W1,𝑞∗ ,𝑖 (y⊤𝑞∗ ,𝑖 ⊗ B𝑞∗r

⊤
𝑞∗ ,𝑖∗) +W2,𝑞∗ ,𝑖 (Dt⊤𝑞∗ ,𝑖 ⊗ B𝑞∗r

⊤
𝑞∗ ,𝑖∗) +W3,𝑞∗ ,𝑖 (wDt⊤𝑞∗ ,𝑖 ⊗ B𝑞∗r

⊤
𝑞∗ ,𝑖∗)) (31)

𝑧2 =
∑︁

𝑖∈[𝐿𝑞∗]\{𝑖∗ }
(sAh𝑞∗ ,𝑖,𝑖∗ + sA(W1,𝑞∗ ,𝑖 (y⊤𝑞∗ ,𝑖 ⊗ B𝑞∗r

⊤
𝑞∗ ,𝑖∗) +W2,𝑞∗ ,𝑖 (Dt⊤𝑞∗ ,𝑖 ⊗ B𝑞∗r

⊤
𝑞∗ ,𝑖∗) +W3,𝑞∗ ,𝑖 (wDt⊤𝑞∗ ,𝑖 ⊗ B𝑞∗r

⊤
𝑞∗ ,𝑖∗))))

𝑧3 = sAU𝑞∗ ,𝑖∗B𝑞∗r⊤𝑞∗ ,𝑖∗

𝑧4 = sA(W1,𝑞∗ ,𝑖∗ (y⊤𝑞∗ ,𝑖∗ ⊗ B𝑞∗r
⊤
𝑞∗ ,𝑖∗) +W2,𝑞∗ ,𝑖∗ (Dt⊤𝑞∗ ,𝑖∗ ⊗ B𝑞∗r

⊤
𝑞∗ ,𝑖∗) +W3,𝑞∗ ,𝑖∗ (wDt⊤𝑞∗ ,𝑖∗ ⊗ B𝑞∗r

⊤
𝑞∗ ,𝑖∗))

+sA(V1y⊤𝑞∗ ,𝑖∗ + V2Dt⊤𝑞∗ ,𝑖∗ + v
⊤wDt⊤𝑞∗ ,𝑖∗))

𝑧5 = sAV1y⊤𝑞∗ ,𝑖∗ + xy
⊤
𝑞∗ ,𝑖∗

𝑧6 = sAV2Dt⊤𝑞∗ ,𝑖∗

𝑧7 = sAv⊤wDt⊤𝑞∗ ,𝑖∗

and then

𝑧 = 𝑧1 − 𝑧2 − 𝑧3 − 𝑧4 + 𝑧5 + 𝑧6 + 𝑧7
= sT𝑞∗ ,𝑖∗B𝑞∗r⊤𝑞∗ ,𝑖∗ + sA(W1,𝑞∗ ,𝑖∗ (y⊤𝑞∗ ,𝑖∗ ⊗ B𝑞∗r

⊤
𝑞∗ ,𝑖∗) +W2,𝑞∗ ,𝑖∗ (Dt⊤𝑞∗ ,𝑖∗ ⊗ B𝑞∗r

⊤
𝑞∗ ,𝑖∗) +W3,𝑞∗ ,𝑖∗ (wDt⊤𝑞∗ ,𝑖∗ ⊗ B𝑞∗r

⊤
𝑞∗ ,𝑖∗)

−sAU𝑞∗ ,𝑖∗B𝑞∗r⊤𝑞∗ ,𝑖∗ − sA(W1,𝑞∗ ,𝑖∗ (y⊤𝑞∗ ,𝑖∗ ⊗ B𝑞∗r
⊤
𝑞∗ ,𝑖∗) +W2,𝑞∗ ,𝑖∗ (Dt⊤𝑞∗ ,𝑖∗ ⊗ B𝑞∗r

⊤
𝑞∗ ,𝑖∗) +W3,𝑞∗ ,𝑖∗ (wDt⊤𝑞∗ ,𝑖∗ ⊗ B𝑞∗r

⊤
𝑞∗ ,𝑖∗))

−sA(V1y⊤𝑞∗ ,𝑖∗ + V2Dt⊤𝑞∗ ,𝑖∗ + v
⊤wDt⊤𝑞∗ ,𝑖∗))

+sAV1y⊤𝑞∗ ,𝑖∗ + xy
⊤
𝑞∗ ,𝑖∗ + sAV2Dt⊤𝑞∗ ,𝑖∗ + sAv

⊤wDt⊤𝑞∗ ,𝑖∗ (32)

= xy⊤𝑞∗ ,𝑖∗ (33)

Here, equality (31) follows from the property of tensor product: (a⊤ ⊗ I)M = a⊤ ⊗ M for matrices of proper size;
equality (32) follows from the fact that Ah𝑞∗ ,𝑖,𝑖∗ = T𝑖B𝑞∗r⊤𝑞∗ ,𝑖∗ for all 𝑖 ∈ [𝐿𝑞∗] \ {𝑖∗}; equality (33) follows from the
fact that T𝑞∗ ,𝑖∗ = AU𝑞∗ ,𝑖∗ .

Compactness and Efficiency. Our multi-instance PReg-IPFE has the following properties:

|crs| = 𝑂(𝐿2 · 𝑛) · poly(𝜆), |hsk𝑞, 𝑗 | = poly(𝜆),
|mpk+ | = 𝑂(𝑛)poly(𝜆), |mpk𝑞 | = poly(𝜆),
|ct+ | = 𝑂(𝑛) + poly(𝜆), |ct𝑞 | = poly(𝜆),

where 𝐿 = 𝐿1 + · · · + 𝐿𝑚. Note that the total size of {crs𝑖}𝑖∈[𝐿] is 𝐿 · poly(𝜆) according to the efficiency of the pairing-
based QA-NIZK scheme by Kiltz and Wee [KW15] and the fact that the size of language description is poly(𝜆).

Security. We have the following theorem. Given pairing-based QA-NIZK in [KW15] with unbounded simulation
soundness under MDDH assumption, our multi-instance slotted Reg-IPFE scheme uses prime-order bilinear group
and the security can be reduced to MDDH assumption.

Theorem 8. Assume Π0 = (LGen, LPrv, LVer, LSim) is a QA-NIZK with perfect completeness, perfect zero-knowledge
and unbounded simulation soundness for linear space defined in Section 2.4, our multi-instance slotted Reg-IPFE
scheme achieves the very selective SIM-security as the definition in Section 5.1, under bi-MDDH assumption.

79

C.2 Simulator

Recall that we allow some instance 𝑞∗ to be empty, namelyM𝑞∗ , C𝑞∗ = ⊥ and y𝑞∗ ,𝑖 = ⊥, pk𝑞∗ ,𝑖 = ⊥ for all 𝑖 ∈ [𝐿𝑞∗].
Our simulator is as follows:

– S̃etup(1𝜆 , 1𝑚, 1𝐿1 , . . . , 1𝐿𝑚 , 1𝑛; {{y𝑞,𝑖}𝑖∈[𝐿𝑞] , {𝜇𝑞,𝑖}𝑖∈M𝑞∪C𝑞 }𝑞∈[𝑚]): Run G := (𝑝,G1,G2,G𝑇 , 𝑒) ← G(1𝜆). Sample
shared parts:

c← Z1×(2𝑘+1)𝑝 , A← Z𝑘×(2𝑘+1)𝑝 , V1 ← Z(2𝑘+1)×𝑛𝑝 , V2 ← Z(2𝑘+1)×𝑘+1𝑝 , v← Z1×(2𝑘+1)𝑝 .

And sample
D← Z(𝑘+1)×𝑘𝑝 , w← Z1×(𝑘+1)𝑝

For each instance 𝑞 ∈ [𝑚], sample B𝑞 ← Z(𝑘+1)×𝑘𝑝 , for all 𝑖 ∈ [𝐿𝑞], 𝑠 ∈ {1, 2}, set

[M̃𝑞,𝑖]𝑠 =
[

M 0⊤𝑛1
0𝑛×𝑛2 ict⊤𝑞,𝑖

]
𝑠

where [ict𝑞,𝑖]𝑠 ∈
{
Enc1 ([ipk]1, [ipk]2, 0) if 𝑖 ∈ [𝐿𝑞] \ (M𝑞 ∪ C𝑞)
Enc1 ([ipk]1, [ipk]2, 𝜇𝑞,𝑖) if 𝑖 ∈ M𝑞 ∪ C𝑞

and for all 𝑖 ∈ [𝐿𝑞], do following operations:
• Set

𝜃𝑞,𝑖 =

{
0 if 𝑖 ∈ [𝐿𝑞] \ (M𝑞 ∪ C𝑞)
𝜇𝑞,𝑖 if 𝑖 ∈ M𝑞 ∪ C𝑞

• Sample
W1,𝑞,𝑖 ← Z(2𝑘+1)×𝑛(𝑘+1)𝑝 , W2,𝑞,𝑖 ← Z(2𝑘+1)×(𝑘+1) (𝑘+1)𝑝 , W3,𝑞,𝑖 ← Z(2𝑘+1)×(𝑘+1)𝑝 ,

and
R̃𝑞,𝑖 ← Z(2𝑘+2)×(2𝑘+2)𝑝 , r𝑞,𝑖 ← Z1×𝑘𝑝 , t𝑞,𝑖 ← Z1×𝑘𝑝 .

and compute

R̂𝑞,𝑖 = R̃𝑞,𝑖

(
c

I2𝑘+1

)
.

• Run (crs𝑞,𝑖 , td𝑞,𝑖) ← LGen(1𝜆 ,G1, [A𝑞,𝑖]1), where

A𝑞,𝑖 =
(
A
R̂𝑞,𝑖

)
∈ Z(3𝑘+2)×(2𝑘+1)𝑝 .

Output

c̃rs =

©­­­­­­­­­«

[A,AV1,AV2,Av⊤]1,

{crs𝑞,𝑖 , [R̂𝑞,𝑖 ,AW1,𝑞,𝑖 ,AW2,𝑞,𝑖 ,AW3,𝑞,𝑖 ,A(W2,𝑞,𝑖 (Dt⊤𝑞,𝑖 ⊗ I𝑘+1) +W3,𝑞,𝑖 ((wDt⊤𝑞,𝑖 + 𝜃𝑞,𝑖) ⊗ I𝑘+1))]1}𝑖∈[𝐿𝑞]
{[Dt⊤

𝑞, 𝑗
,wDt⊤

𝑞,𝑖
+ 𝜃𝑞,𝑖 ,B𝑞r⊤𝑞, 𝑗 ,W1,𝑞, 𝑗 (I𝑛 ⊗ B𝑞r⊤𝑞, 𝑗) + V1]2} 𝑗∈[𝐿𝑞] ,

{[W2,𝑞, 𝑗 (Dt⊤𝑞, 𝑗 ⊗ B𝑞r
⊤
𝑞, 𝑗
) +W3,𝑞, 𝑗 ((wDt⊤𝑞,𝑖 + 𝜃𝑞,𝑖) ⊗ B𝑞r

⊤
𝑞, 𝑗
) + V2Dt⊤𝑞, 𝑗 + v

⊤ (wDt⊤
𝑞,𝑖
+ 𝜃𝑞,𝑖)]2} 𝑗∈[𝐿𝑞]

{[W1,𝑞,𝑖 (I𝑛 ⊗ B𝑞r⊤𝑞, 𝑗),W2,𝑞,𝑖 (Dt⊤𝑞,𝑖 ⊗ B𝑞r
⊤
𝑞, 𝑗
) +W3,𝑞,𝑖 ((wDt⊤𝑞,𝑖 + 𝜃𝑞,𝑖) ⊗ B𝑞r

⊤
𝑞, 𝑗
)]2} 𝑗∈[𝐿𝑞],𝑖∈[𝐿𝑞]\{ 𝑗}

𝑞∈[𝑚]

ª®®®®®®®®®¬
.

And set the trapdoor as
td =

(
c,V1,V2, v,w,

{
{R̃𝑞,𝑖 , td𝑞,𝑖}𝑖∈[𝐿𝑞]

}
𝑞∈[𝑚]

)
for all 𝑞 ∈ [𝑚], if 𝑞 is not empty instance, update

td = td ∪


∑︁
𝑖∈[𝐿𝑞]

c(W1,𝑞,𝑖 (y⊤𝑞,𝑖 ⊗ I𝑘+1) +W2,𝑞,𝑖 (Dt⊤𝑞,𝑖 ⊗ I𝑘+1) +W3,𝑞,𝑖 ((wDt⊤𝑞,𝑖 + 𝜃𝑞,𝑖) ⊗ I𝑘+1))


80

– G̃en(c̃rs, 𝑞, 𝑖; td) : Fetch td𝑞,𝑖 from td. Sample U𝑞,𝑖 ← Z(2𝑘+1)×(𝑘+1)𝑝 . Define F𝑞,𝑖 =
(T𝑞,𝑖
Q𝑞,𝑖

)
=

(AU𝑞,𝑖
R̂𝑞,𝑖U𝑞,𝑖

)
= A𝑞,𝑖U𝑞,𝑖 ∈

Z
(3𝑘+2)×(2𝑘+1)
𝑝 and run

𝜋𝑞,𝑖 ← LSim(crs𝑞,𝑖 , td𝑞,𝑖 , [F𝑞,𝑖]1).

Fetch {[B𝑞r⊤𝑞, 𝑗]2} 𝑗∈[𝐿𝑞]\{𝑖} from c̃rs and output

p̃k𝑞,𝑖 =
(
[AU𝑞,𝑖︸︷︷︸

T𝑞,𝑖

, R̂𝑞,𝑖U𝑞,𝑖︸ ︷︷ ︸
Q𝑞,𝑖

]1, {[U𝑞,𝑖B𝑞r⊤𝑞, 𝑗︸ ︷︷ ︸
h𝑞,𝑖, 𝑗

]2} 𝑗∈[𝐿𝑞]\{𝑖} , 𝜋𝑞,𝑖
)

and s̃k𝑞,𝑖 = U𝑞,𝑖 .

– Ẽnc+ (td): Fetch c,V1,V2, v,w from td, set x̃ = (0𝑛1 ∥isk). Output

c̃t+ = ([c︸︷︷︸
c+,0

, cV1︸︷︷︸
c+,1

, cV2 −w︸ ︷︷ ︸
c+,2

, cv⊤ + 1︸ ︷︷ ︸
𝑐+,3

]1)

– Ẽnc((pk𝑞,1, . . . , pk𝑞,𝐿𝑞); td): If 𝑞 is an empty instance, on input pk𝑞,𝑖 = ⊥ for all 𝑖 ∈ [𝐿𝑞], abort and return c̃t𝑞 = ⊥.
For all 𝑖 ∈ [𝐿𝑞], parse pk𝑞,𝑖 = ([T𝑞,𝑖 ,Q𝑞,𝑖]1, {[h𝑞,𝑖, 𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑞,𝑖). Fetch {R̃𝑞,𝑖}𝑖∈[𝐿𝑞] and

∑
𝑖∈[𝐿𝑞] c(W1,𝑞,𝑖 (y⊤𝑞,𝑖 ⊗

I𝑘+1) +W2,𝑞,𝑖 (Dt⊤𝑞,𝑖 ⊗ I𝑘+1) +W3,𝑞,𝑖 ((wDt⊤𝑞,𝑖 + 𝜃𝑞,𝑖) ⊗ I𝑘+1)) from td. Output:

c̃t𝑞 =

[∑︁
𝑖∈[𝐿𝑞]

(e1R̃−1𝑞,𝑖Q𝑞,𝑖 + c(W1,𝑞,𝑖 (y⊤𝑞,𝑖 ⊗ I𝑘+1) +W2,𝑞,𝑖 (Dt⊤𝑞,𝑖 ⊗ I𝑘+1) +W3,𝑞,𝑖 ((wDt⊤𝑞,𝑖 + 𝜃𝑞,𝑖) ⊗ I𝑘+1))︸ ︷︷ ︸
c𝑞

]
1

.

C.3 Proof

We prove the following technical lemma this immediately proves Theorem 8.

Lemma 8. For all adversariesA, there exist adversaries B1, B2 such that:

AdvmiReg-IPFE
A (𝜆) ≤ 𝐿 · AdvUSSB1 (𝜆) + (3𝐿 + 2𝐿 · 𝑄 + 1)Adv

MDDH
B2 (𝜆) + negl(𝜆)

where 𝐿 = 𝐿1 + . . . + 𝐿𝑚 is the number of slots, 𝑄 is the maximum number of queries on a slot made by A and
Time(B1), Time(B2) ≈ Time(A).

For simplicity, we prove Lemma 8 in the case of nonempty 1-instance and remove the index 𝑞 in the following
proof. For an empty instance, we only need to remove the terms about ct∗1 and all pk∗𝑖 in following game sequence,
and notice thatM∗, C∗ = ∅ for empty instance. In the case of 𝑚-instance, it only needs to add back index 𝑞 and
apply sub-sequence G8,ℓ−1,0, . . . ,G8,ℓ−1,3 to each instance.

Game Sequence. Suppose that crs is the common reference string, x∗ is the challenge, {pk∗𝑖 , y∗𝑖 }𝑖∈[𝐿] are challenge
public keys along with challenge functions to be registered,M∗, C∗ ⊆ [𝐿] are the sets of malicious and corrupted
slots. For all 𝑖 ∈ [𝐿], define 𝐷𝑖 = {pk𝑖 : D1,𝑖 [pk𝑖] = sk𝑖 ≠ ⊥} be responses to OGen(𝑖) and 𝐶𝑖 = {pk𝑖 : (𝑖, pk𝑖) ∈ C1}
records public keys in 𝐷𝑖 that have been sent to OCor(𝑖, ·). Recall that, for each 𝑖 ∈ [𝐿], we require that

𝑖 ∈ M∗ =⇒ pk∗𝑖 ∉ 𝐷𝑖 ∧ Ver(crs, 1, 𝑖, pk
∗
𝑖) = 1

𝑖 ∈ C∗ =⇒ pk∗𝑖 ∈ 𝐶𝑖
𝑖 ∈ [𝐿] \ (M∗ ∪ C∗) =⇒ pk∗𝑖 ∈ 𝐷𝑖 ∧ pk

∗
𝑖 ∉ 𝐶𝑖

Note that pk𝑖 serves as a general entry in 𝐷𝑖 while pk∗𝑖 is the specific challenge public for slot 𝑖; there can be more
than one assignment for pk𝑖 since the adversary can invoke OGen(𝑖) for many times. We prove the Lemma 4 via
dual-system method using the following game sequence.

81

– G0: This is the real game, recall that we have

• crs is in the form:

crs =

©­­­­­­­­­«

[A,AV1,AV2,Av⊤]1,
{crs𝑖 , [R𝑖 ,AW1,𝑖 ,AW2,𝑖 ,AW3,𝑖 ,A(W2,𝑖 (Dt⊤𝑖 ⊗ I𝑘+1) +W3,𝑖 (wDt⊤𝑖 ⊗ I𝑘+1))]1}𝑖∈[𝐿]
{[Dt⊤

𝑗
,wDt⊤

𝑗
,Br⊤

𝑗
,W1, 𝑗 (I𝑛 ⊗ Br⊤𝑗) + V1]2} 𝑗∈[𝐿] ,

{[W2, 𝑗 (Dt⊤𝑗 ⊗ Br
⊤
𝑗
) +W3, 𝑗 (wDt⊤𝑗 ⊗ Br

⊤
𝑗
) + V2Dt⊤𝑗 + v

⊤wDt⊤
𝑗
]2} 𝑗∈[𝐿]

{[W1,𝑖 (I𝑛 ⊗ Br⊤𝑗),W2,𝑖 (Dt⊤𝑖 ⊗ Br
⊤
𝑗
) +W3,𝑖 (wDt⊤𝑖 ⊗ Br

⊤
𝑗
)]2} 𝑗∈[𝐿],𝑖∈[𝐿]\{ 𝑗}

ª®®®®®®®®®¬
.

where crs𝑖 ∈ LGen(1𝜆 ,G1, [A𝑖]1), with A𝑖 =

(
A

R𝑖

)
.

• For each 𝑖 ∈ [𝐿], each pk𝑖 ∈ 𝐷𝑖 is in the form

pk𝑖 =
(
[AU𝑖︸︷︷︸

T𝑖

, R𝑖U𝑖︸︷︷︸
Q𝑖

]1, {[U𝑖Br⊤𝑗︸︷︷︸
h𝑖, 𝑗

]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖
)

where 𝜋𝑖 ← LPrv(crs𝑖 , [F𝑖]1,U𝑖), F𝑖 =
(AU𝑖
RU𝑖

)
, and U𝑖 is the corresponding sk𝑖 .

• For all 𝑖 ∈ [𝐿], pk∗𝑖 is in the form:

pk∗𝑖 = ([T
∗
𝑖 ,Q

∗
𝑖]1, {[h

∗
𝑖, 𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋

∗
𝑖)

such that Ver(crs, 1, 𝑖, pk∗𝑖) = 1 which means LVer

(
crs𝑖 ,

[
T∗
𝑖

Q∗
𝑖

]
1

, 𝜋∗
𝑖

)
= 1 and Ah∗

𝑖, 𝑗
= T∗

𝑖
Br⊤

𝑗
for each 𝑗 ∈

[𝐿] \ {𝑖}.
• ct∗+ for x∗ is in the form:

ct∗+ = ([sA︸︷︷︸
c+,0

, sAV1 + x∗︸ ︷︷ ︸
c+,1

, sAV2︸︷︷︸
c+,2

, sAv⊤︸︷︷︸
𝑐+,3

]1).

• ct∗1 for x∗ is in the form:

ct∗1 =

[∑︁
𝑖∈[𝐿𝑞]

(sT𝑖 + sA(W1,𝑖 (y⊤𝑖 ⊗ I𝑘+1) +W2,𝑖 (Dt⊤𝑖 ⊗ I𝑘+1) +W3,𝑖 (wDt⊤𝑖 ⊗ I𝑘+1)))︸ ︷︷ ︸
c𝑞

]
1

.

– G1: Identical to G0, except that for all 𝑖 ∈ [𝐿], we replace wDt⊤
𝑖

in crs with

wDt⊤𝑖 + 𝜃𝑖 where 𝜃𝑖 =


0 if 𝑖 ∈ [𝐿𝑞] \ (M𝑞 ∪ C𝑞)
x∗ (y∗𝑖)

⊤ if 𝑖 ∈ M𝑞 ∪ C𝑞

In particuar, we generate crs as

crs =

©­­­­­­­­­«

[A,AV1,AV2,Av⊤]1,
{crs𝑖 , [R𝑖 ,AW1,𝑖 ,AW2,𝑖 ,AW3,𝑖 ,A(W2,𝑖 (Dt⊤𝑖 ⊗ I𝑘+1) +W3,𝑖 ((wDt⊤𝑖 + 𝜃𝑖) ⊗ I𝑘+1))]1}𝑖∈[𝐿]
{[Dt⊤

𝑗
, (wDt⊤

𝑗
+ 𝜃 𝑗),Br⊤𝑗 ,W1, 𝑗 (I𝑛 ⊗ Br⊤𝑗) + V1]2} 𝑗∈[𝐿] ,

{[W2, 𝑗 (Dt⊤𝑗 ⊗ Br
⊤
𝑗
) +W3, 𝑗 ((wDt⊤𝑗 + 𝜃 𝑗) ⊗ Br

⊤
𝑗
) + V2Dt⊤𝑗 + v

⊤ (wDt⊤
𝑗
+ 𝜃 𝑗)]2} 𝑗∈[𝐿]

{[W1,𝑖 (I𝑛 ⊗ Br⊤𝑗),W2,𝑖 (Dt⊤𝑖 ⊗ Br
⊤
𝑗
) +W3,𝑖 ((wDt⊤𝑖 + 𝜃𝑖) ⊗ Br

⊤
𝑗
)]2} 𝑗∈[𝐿],𝑖∈[𝐿]\{ 𝑗}

ª®®®®®®®®®¬
,

82

and generate challenge ciphertext ct∗1 as[∑︁
𝑖∈[𝐿𝑞]

(sT𝑖 + sA(W1,𝑖 (y⊤𝑖 ⊗ I𝑘+1) +W2,𝑖 (Dt⊤𝑖 ⊗ I𝑘+1) +W3,𝑖 ((wDt⊤𝑖 + 𝜃𝑖) ⊗ I𝑘+1)))︸ ︷︷ ︸
c𝑞

]
1

.

We have G1 ≈𝑐 G0. This follows from MDDH assumption which ensures that ([D]1, [wDt⊤𝑖]1) ≈𝑐 ([D]1, [wDt
⊤
𝑖
+

𝜃𝑖]1) when D← Z(𝑘+1)×𝑘𝑝 , t𝑖 ← Z1×𝑘𝑝 ,w← Z1×(𝑘+1)𝑝 .
– G2: Identical to G1 except that for all 𝑖 ∈ [𝐿] and all pk𝑖 ∈ 𝐷𝑖 , we replace 𝜋𝑖 with

𝜋𝑖 ← LSim (crs𝑖 , td𝑖 , [F𝑖]1) where F𝑖 =
(
AU𝑖
R𝑖U𝑖

)
.

We have G2 ≡ G1. This follows from the perfect zero-knowledge of Π0.
– G3: Identical to G2 except that we sample s← Z1×𝑘𝑝 along with A and replace all R𝑖 in crs with

R̂𝑖 = R̃𝑖

(
sA

I2𝑘+1

)
, R̃← Z(2𝑘+2)×(2𝑘+2)𝑝 .

We have G3 ≡ G2. This follows from the fact that both R𝑖 (in G2) and R̂𝑖 (in G3) are truly random since matrix(sA
I2𝑘+1

)
is full-rank.

– G4: Identical to G3 except that we generate the c∗1 as follows:

c∗1 =
∑︁
𝑖∈[𝐿]
(e1R̃−1𝑖 Q∗𝑖 + sA(W1,𝑖 (y⊤𝑖 ⊗ I𝑘+1) +W2,𝑖 (Dt⊤𝑖 ⊗ I𝑘+1) +W3,𝑖 ((wDt⊤𝑖 + 𝜃𝑖) ⊗ I𝑘+1)))

We have G4 ≈𝑐 G3. This follows from stronger unbounded simulation soundness of Π0 along with the fact that

LVer(crs𝑖 , [F∗𝑖], 𝜋
∗
𝑖
) = 1 for all 𝑖 ∈ [𝐿] where F∗

𝑖
=

(
T∗
𝑖

Q∗
𝑖

)
. The details are identical to that in game G3 of our

sReg-IPFE (c.f. Section 3).
– G5: Identical to G4 except that we replace all sA with c← Z1×(2𝑘+1)𝑝 ; in particular, we generate R̂𝑖 as follows:

R̂𝑖 = R̃𝑖

(
c

I2𝑘+1

)
, R̃← Z(2𝑘+2)×(2𝑘+2)𝑝

and generate the challenge ciphertext ct∗+ as follows:

ct∗+ = ([c︸︷︷︸
c+,0

, c V1 + x∗︸ ︷︷ ︸
c+,1

, c V2︸︷︷︸
c+,2

, c v⊤︸︷︷︸
𝑐+,3

]1).

generate the challenge ciphertext ct∗1 as follows:

ct∗1 =

([∑︁
𝑖∈[𝐿]
(e1R̃−1𝑖 Q∗𝑖 + c (W1,𝑖 (y⊤𝑖 ⊗ I𝑘+1) +W2,𝑖 (Dt⊤𝑖 ⊗ I𝑘+1) +W3,𝑖 ((wDt⊤𝑖 + 𝜃𝑖) ⊗ I𝑘+1)))︸ ︷︷ ︸

c∗1

]
1

)
.

We have G5 ≈𝑐 G4. This follows from MDDH assumption which ensures that ([A]1, [sA]1) ≈𝑐 ([A]1, [c]1) when
A← Z𝑘×(2𝑘+1)𝑝 , s← Z1×𝑘𝑝 , c← Z1×(2𝑘+1)𝑝 .

– G6: Identical to G5 except that

83

• we generate c∗+ as follows:

ct∗+ = ([c︸︷︷︸
c+,0

, cV1 +��x∗︸ ︷︷ ︸
c+,1

, cV2︸︷︷︸
c+,2

, cv⊤︸︷︷︸
𝑐+,3

]1).

• In crs, we change [W1, 𝑗 (I𝑛 ⊗ Br⊤𝑗) + V1]2 for all 𝑗 ∈ [𝐿] as follows:

[W1, 𝑗 (I𝑛 ⊗ Br⊤𝑗) + V1 + c⊥ (−x∗)]2.

where c⊥ ∈ Z2𝑘+1𝑝 such that cc⊥ = 1 and Ac⊥ = 0.

We have G6 ≈𝑠 G5. This follows from the change of variable V1 ↦→ V1 + c⊥ (−x∗).
– G7: Identical to G6, except that

• we generate c∗+ as follows:

ct∗+ = ([c︸︷︷︸
c+,0

, cV1︸︷︷︸
c+,1

, cV2 + −w︸ ︷︷ ︸
c+,2

, cv⊤ + 1︸ ︷︷ ︸
𝑐+,3

]1).

• In crs, we change [W2, 𝑗 (Dt⊤𝑗 ⊗ Br⊤
𝑗
) +W3, 𝑗 ((wDt⊤𝑗 + 𝜃 𝑗) ⊗ Br⊤

𝑗
) + V2Dt⊤𝑗 + v

⊤ (wDt⊤
𝑗
+ 𝜃 𝑗)]2 for all 𝑗 ∈ [𝐿] as

follow:

[W2, 𝑗 (Dt⊤𝑗 ⊗ Br
⊤
𝑗) +W3, 𝑗 ((wDt⊤𝑗 + 𝜃 𝑗) ⊗ Br

⊤
𝑗) + V2Dt⊤𝑗 + v

⊤ (wDt⊤𝑗 + 𝜃 𝑗) + c⊥𝜃 𝑗]2

where c⊥ ∈ Z2𝑘+1𝑝 such that cc⊥ = 1 and Ac⊥ = 0.

We have G7 ≈𝑠 G6. This follows from the change of variable V2 ↦→ V2 + c⊥ (−w) and v ↦→ v + c⊥.

– G8,ℓ, (ℓ ∈ [0, 𝐿]): Identical to G8 except that for all 𝑗 ∈ [ℓ], we change [W1, 𝑗 (I𝑛 ⊗ Br⊤𝑗) + V1 + c⊥ (−x∗)]2 in crs as
follows:

[W1, 𝑗 (I𝑛 ⊗ Br⊤𝑗) + V1 +����c⊥ (−x∗)]2.

and change [W2, 𝑗 (Dt⊤𝑗 ⊗ Br
⊤
𝑗
) +W3, 𝑗 ((wDt⊤𝑗 + 𝜃 𝑗) ⊗ Br

⊤
𝑗
) + V2Dt⊤𝑗 + v

⊤ (wDt⊤
𝑗
+ 𝜃 𝑗) + c⊥𝜃 𝑗]2 in crs as follows:

[W2, 𝑗 (Dt⊤𝑗 ⊗ Br
⊤
𝑗) +W3, 𝑗 ((wDt⊤𝑖 + 𝜃𝑖) ⊗ Br

⊤
𝑗) + V2Dt⊤𝑗 + v

⊤ (wDt⊤𝑖 + 𝜃𝑖) +���c⊥𝜃𝑖]2

We have that

• G8,0 = G8; the two games are actually identical, since [0] = ∅;
• G8,ℓ−1 ≈𝑐 G8,ℓ for all ℓ ∈ [𝐿], we will employ a sub-sequence of games for the proof described later.

Observe that in the final game G8,𝐿 can be simulated using the simulator by setting 𝜇𝑖 = x∗ (y∗
𝑖
)⊤, where we embed

x∗ (y∗
𝑖
)⊤ into crs so that hsk𝑖 for all 𝑖 ∈ M∗ ∪ C∗ and remove x∗ from ct∗.

From G8,ℓ−1 to G8,ℓ. We are ready to prove G8,ℓ−1 ≈𝑐 G8,ℓ and this will complete the proof of Lemma 4. For this,
we need the following sub-sequence of games for each ℓ ∈ [𝐿]:

84

– G8,ℓ−1,0: Identical toG8,ℓ−1 where we recall crs,pk𝑖 ∈ 𝐷𝑖 and c∗1, with highlighting relevant terms in the following
sub-sequence with dashed boxes as follows:

crs =

©­­­­­­­­­­­­­­­­­­­­­­­­­­­­«

[A,AV1,AV2,Av⊤]1, {[Dt⊤𝑗 , (wDt
⊤
𝑗
+ 𝜃 𝑗)]2} 𝑗∈[𝐿]{

crs𝑖 , [R̂𝑖 ,AW1,𝑖 ,AW2,𝑖 ,AW3,𝑖 ,A(W2,𝑖 (Dt⊤𝑖 ⊗ I𝑘+1) +W3,𝑖 ((wDt⊤𝑖 + 𝜃𝑖) ⊗ I𝑘+1))]1
}
𝑖∈[𝐿]{

[Br⊤
𝑗
,W1, 𝑗 (I𝑛 ⊗ Br⊤𝑗) + V1]2

}
𝑗∈[ℓ−1]

[Br⊤ℓ,W1,ℓ (I𝑛 ⊗ Br⊤ℓ) + V1 + c⊥ (−x∗)]2{
[Br⊤

𝑗
,W1, 𝑗 (I𝑛 ⊗ Br⊤𝑗) + V1 + c⊥ (−x∗)]2

}
𝑗∈[𝐿]\[ℓ]{

[W2, 𝑗 (Dt⊤𝑗 ⊗ Br
⊤
𝑗
) +W3, 𝑗 ((wDt⊤𝑗 + 𝜃 𝑗) ⊗ Br

⊤
𝑗
) + V2Dt⊤𝑗 + v

⊤ (wDt⊤
𝑗
+ 𝜃 𝑗)]2

}
𝑗∈[ℓ−1]

[W2,ℓ (Dt⊤ℓ ⊗ Br
⊤
ℓ) +W3,ℓ ((wDt⊤ℓ + 𝜃ℓ) ⊗ Br

⊤
ℓ) + V2Dt⊤ℓ + v

⊤ (wDt⊤ℓ + 𝜃ℓ) + c
⊥𝜃ℓ]2{

[W2, 𝑗 (Dt⊤𝑗 ⊗ Br
⊤
𝑗
) +W3, 𝑗 ((wDt⊤𝑗 + 𝜃 𝑗) ⊗ Br

⊤
𝑗
) + V2Dt⊤𝑗 + v

⊤ (wDt⊤
𝑗
+ 𝜃 𝑗) + c⊥𝜃 𝑗]2

}
𝑗∈[𝐿]\[ℓ]{

[W1,𝑖 (I𝑛 ⊗ Br⊤𝑗),W2,𝑖 (Dt⊤𝑖 ⊗ Br
⊤
𝑗
) +W3,𝑖 ((wDt⊤𝑖 + 𝜃𝑖) ⊗ Br

⊤
𝑗
)]2

}
𝑗∈[𝐿]\{ℓ},𝑖∈[𝐿]\{ 𝑗} ,{

[W1,𝑖 (I𝑛 ⊗ Br⊤ℓ),W2,𝑖 (Dt⊤𝑖 ⊗ Br
⊤
ℓ) +W3,𝑖 ((wDt⊤𝑖 + 𝜃𝑖) ⊗ Br

⊤
ℓ)]2

}
𝑖∈[𝐿]\{ℓ}

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬
pk𝑖 =

{ (
[

T𝑖︷︸︸︷
AU𝑖 ,

Q𝑖︷︸︸︷
R̂𝑖U𝑖]1, {[

h𝑖, 𝑗︷︸︸︷
U𝑖d⊤𝑗]2} 𝑗∈[ℓ−1]\{𝑖} , [

h𝑖,ℓ︷︸︸︷
U𝑖Br⊤ℓ]2 , {[

h𝑖, 𝑗︷︸︸︷
U𝑖Br⊤𝑗]2} 𝑗∈[𝐿]\[𝑖,ℓ] , 𝜋𝑖

)
if 𝑖 ≠ ℓ(

[AUℓ︸︷︷︸
Tℓ

, R̂𝑖Uℓ︸︷︷︸
Qℓ

]1, {[Uℓd⊤𝑗︸︷︷︸
hℓ, 𝑗

]2} 𝑗∈[ℓ−1] , {[UℓBr⊤𝑗︸︷︷︸
hℓ, 𝑗

]2} 𝑗∈[𝐿]\[ℓ] , 𝜋ℓ
)

if 𝑖 = ℓ

c∗1 = e1R̃−1ℓ Q∗ℓ + c(W1,ℓ (y⊤ℓ ⊗ I𝑘+1) +W2,ℓ (Dt⊤ℓ ⊗ I𝑘+1) +W3,ℓ ((wDt⊤ℓ + 𝜃ℓ) ⊗ I𝑘+1))

+
∑︁

𝑖∈[𝐿]\{ℓ}
(e1R̃−1𝑖 Q∗𝑖 + c(W1,𝑖 (y⊤𝑖 ⊗ I𝑘+1) +W2,𝑖 (Dt⊤𝑖 ⊗ I𝑘+1) +W3,𝑖 ((wDt⊤𝑖 + 𝜃𝑖) ⊗ I𝑘+1)))

where c⊥ ∈ Z2𝑘+1𝑝 such that cc⊥ = 1, Ac⊥ = 0. For all 𝑖 ∈ [𝐿], recall that

𝜃𝑖 =

{
0 if 𝑖 ∈ [𝐿] \ (M ∪ C)
x∗ (y∗

𝑖
)⊤ if 𝑖 ∈ M ∪ C

– G8,ℓ−1,1: Identical to G8,ℓ−1,0 except that we replace all Br⊤ℓ with d⊤ℓ ← Z
𝑘+1
𝑝 in crs; in particular, we change the

dashed boxed term in crs and pk𝑖 as follows:

[d⊤ℓ ,W1,ℓ (I𝑛 ⊗ d⊤ℓ) + V1 + c⊥ (−x∗)]2
[W2,ℓ (Dt⊤ℓ ⊗ d⊤ℓ) +W3,ℓ ((wDt⊤ℓ + 𝜃ℓ) ⊗ d⊤ℓ) + V2Dt⊤ℓ + v

⊤ (wDt⊤ℓ + 𝜃ℓ) + c
⊥𝜃ℓ]2{

[W1,𝑖 (I𝑛 ⊗ d⊤ℓ),W2,𝑖 (Dt⊤𝑖 ⊗ d⊤ℓ) +W3,𝑖 ((wDt⊤𝑖 + 𝜃𝑖) ⊗ d⊤ℓ)]2
}
𝑖∈[𝐿]\{ℓ}

We haveG8,ℓ−1,1 ≈𝑐 G8,ℓ−1,0. This follows fromMDDHassumption w.r.t. [B]2 which ensures that ([B]2, [Br⊤ℓ]2) ≈𝑐
([B]2, [d⊤ℓ]2) when B← Z(𝑘+1)×𝑘𝑝 , rℓ ← Z1×𝑘𝑝 , dℓ ← Z1×(𝑘+1)𝑝 .

– G8,ℓ−1,2: Identical to G8,ℓ−1,1, except that we replace W1,ℓ (I𝑛 ⊗ d⊤ℓ) + V1 + c⊥ (−x∗) with

W1,ℓ (I𝑛 ⊗ d⊤ℓ) + V1 +����c⊥ (−x∗)

and replace W2,ℓ (Dt⊤ℓ ⊗ d
⊤
ℓ) +W3,ℓ ((wDt⊤ℓ + 𝜃ℓ) ⊗ d

⊤
ℓ) + V2Dt⊤ℓ + v

⊤ (wDt⊤ℓ + 𝜃ℓ) + c
⊥𝜃ℓ with

W2,ℓ (Dt⊤ℓ ⊗ d
⊤
ℓ) +W3,ℓ ((wDt⊤ℓ + 𝜃ℓ) ⊗ d

⊤
ℓ) + V2Dt⊤ℓ + v

⊤ (wDt⊤ℓ + 𝜃ℓ) +���c⊥𝜃ℓ

We have G8,ℓ−1,2 ≈𝑐 G8,ℓ−1,1. With defining c⊥ ∈ Z2𝑘+1𝑝 and d⊥ ∈ Z1×(𝑘+1)𝑝 such that cc⊥ = 1, Ac⊥ = 0 and
d⊥d⊤ℓ = 1, d⊥B = 0. We consider two cases

85

• Honest case (ℓ ∈ [𝐿]\(M∗∪C∗)): In this case, we have 𝜃ℓ = 0, and we havepk∗ℓ = ([T∗ℓ,Q
∗
ℓ]1, {[h

∗
ℓ, 𝑗
⊤]2} 𝑗∈[𝐿]\{ℓ} , 𝜋∗ℓ) ∈

𝐷ℓ \𝐶ℓ. Namely, we know U∗ℓ (such that T∗ℓ = AU∗ℓ and Q∗ℓ = R̂ℓU∗ℓ) and U∗ℓ is hidden from the adversary. We
can write the dash boxed terms in c∗1 as follows:

cU∗ℓ + c(W1,ℓ (y⊤ℓ ⊗ I𝑘+1) +W2,ℓ (Dt⊤ℓ ⊗ I𝑘+1) +W3,ℓ ((wDt⊤ℓ + 𝜃ℓ) ⊗ I𝑘+1))

and replace R̂ℓ in crs with a random Rℓ as in G3. And we can proof G8,ℓ−1,2 ≈𝑐 G8,ℓ−1,1 in this case using the
following argument for all 𝑏 ∈ {0, 1}:

A, c⊥,B, [Rℓ]1, d⊤ℓ,AW1,ℓ,AW2,ℓ,AW3,ℓ, [W1,ℓ (I𝑛 ⊗ d⊤ℓ) + V1 + 𝑏c⊥ (−x∗)]2

[W2,ℓ (Dt⊤ℓ ⊗ d
⊤
ℓ) +W3,ℓ ((wDt⊤ℓ + 𝜃ℓ) ⊗ d

⊤
ℓ) + V2Dt⊤ℓ + v

⊤ (wDt⊤ℓ + 𝜃ℓ) + 𝑏c
⊥𝜃ℓ]2; //crs, pkℓ

[c, cU∗ℓ + c(W1,ℓ (y⊤ℓ ⊗ I𝑘+1) +W2,ℓ (Dt⊤ℓ ⊗ I𝑘+1) +W3,ℓ ((wDt⊤ℓ + 𝜃ℓ) ⊗ I𝑘+1))]1

AU∗ℓ, [RℓU
∗
ℓ]1,U

∗
ℓB //ct∗, pk∗ℓ

≈𝑐 A, c⊥,B, [Rℓ]1, d⊤ℓ,AW1,ℓ,AW2,ℓ,AW3,ℓ, [W1,ℓ (I𝑛 ⊗ d⊤ℓ) + V1 + 𝑏c⊥ (−x∗)]2

[W2,ℓ (Dt⊤ℓ ⊗ d
⊤
ℓ) +W3,ℓ ((wDt⊤ℓ + 𝜃ℓ) ⊗ d

⊤
ℓ) + V2Dt⊤ℓ + v

⊤ (wDt⊤ℓ + 𝜃ℓ) + 𝑏c
⊥𝜃ℓ]2;

[c, cU∗ℓ + c(W1,ℓ (y⊤ℓ ⊗ I𝑘+1) +W2,ℓ (Dt⊤ℓ ⊗ I𝑘+1) +W3,ℓ ((wDt⊤ℓ + 𝜃ℓ) ⊗ I𝑘+1))]1

AU∗ℓ, [RℓU
∗
ℓ + û⊤d⊥]1,U∗ℓB

≈𝑠 A, c⊥,B, [Rℓ]1, d⊤ℓ,AW1,ℓ,AW2,ℓ,AW3,ℓ, [W1,ℓ (I𝑛 ⊗ d⊤ℓ) + V1 + c⊥wℓ + 𝑏c⊥ (−x∗)]2,

[W2,ℓ (Dt⊤ℓ ⊗ d
⊤
ℓ) +W3,ℓ ((wDt⊤ℓ + 𝜃ℓ) ⊗ d

⊤
ℓ) + V2Dt⊤ℓ + v

⊤ (wDt⊤ℓ + 𝜃ℓ) + 𝑏c
⊥𝜃ℓ]2;

[c, cU∗ℓ + c(W1,ℓ (y⊤ℓ ⊗ I𝑘+1) +W2,ℓ (Dt⊤ℓ ⊗ I𝑘+1) +W3,ℓ ((wDt⊤ℓ + 𝜃ℓ) ⊗ I𝑘+1)) + 𝑢ℓd
⊥ +wℓ (y∗ℓ)

⊤d⊥]1

AU∗ℓ, [RℓU
∗
ℓ + Rℓc⊥𝑢ℓd⊥ + û⊤d⊥]1,U∗ℓB

≈𝑠 A, c⊥,B, [Rℓ]1, d⊤ℓ,AW1,ℓ,AW2,ℓ,AW3,ℓ, [W1,ℓ (I𝑛 ⊗ d⊤ℓ) + V1 + c⊥wℓ +�����
𝑏c⊥ (−x∗)]2,

[W2,ℓ (Dt⊤ℓ ⊗ d
⊤
ℓ) +W3,ℓ ((wDt⊤ℓ + 𝜃ℓ) ⊗ d

⊤
ℓ) + V2Dt⊤ℓ + v

⊤ (wDt⊤ℓ + 𝜃ℓ) +���𝑏c⊥𝜃ℓ]2;

[c, cU∗ℓ + c(W1,ℓ (y⊤ℓ ⊗ I𝑘+1) +W2,ℓ (Dt⊤ℓ ⊗ I𝑘+1) +W3,ℓ ((wDt⊤ℓ + 𝜃ℓ) ⊗ I𝑘+1)) + 𝑢ℓd
⊥ +wℓ (y∗ℓ)

⊤d⊥]1

AU∗ℓ, [RℓU
∗
ℓ + Rℓc

⊥𝑢ℓd⊥ + û⊤d⊥]1,U∗ℓB

where û ← Z
1×(2𝑘+2)
𝑝 , 𝑢ℓ ← Z𝑝 and wℓ ← Z𝑛1𝑝 . We justify each step as below: The first ≈𝑐 follows the

argument:

(A, c, [Rℓ]1,B, d⊥,AUℓ, cUℓ [RUℓ]1, UℓB)
≈𝑐 (A, c, [Rℓ]1,B, d⊥,AUℓ, cUℓ, [RℓUℓ + u⊤d⊥]1, UℓB)

which is analogous to the Lemma 2 in [ZZGQ23]. The second ≈𝑠 uses the change of variables:

U∗ℓ ↦→ U∗ℓ + c
⊥𝑢ℓd⊥ and W1,ℓ ↦→W1,ℓ + c⊥ (wℓ ⊗ d⊥)

The last ≈𝑠 is straight-forward with

* the fact that 𝜃ℓ = 0 in this case;
* the observation that û⊤ hides Rℓc⊥𝑢ℓ, this implies that 𝑢ℓ hides wℓ (y∗ℓ)

⊤, and wℓ is sufficient to hide x∗.

86

• Corrupted & Malicious Case (ℓ ∈ (M∗ ∪ C∗)): And in this case, we have 𝜃ℓ = x∗ (y∗ℓ)
⊤, and we have pk∗ℓ =

([T∗ℓ,Q
∗
ℓ]1, {[h

∗
ℓ, 𝑗
⊤]2} 𝑗∈[𝐿]\{ℓ} , 𝜋∗ℓ) ∈ 𝐶ℓ ∪ 𝐷ℓ. We prove G8,ℓ−1,2 ≈𝑐 G8,ℓ−1,1 in this case using the following

argument:

A, c⊥,B, d⊤ℓ,AWℓ,AW1,ℓ,AW2,ℓ,AW3,ℓ, [W1,ℓ (I𝑛 ⊗ d⊤ℓ) + V1 + c⊥ (−x∗)]2

[W2,ℓ (Dt⊤ℓ ⊗ d
⊤
ℓ) +W3,ℓ ((wDt⊤ℓ + 𝜃ℓ) ⊗ d

⊤
ℓ) + V2Dt⊤ℓ + v

⊤ (wDt⊤ℓ + 𝜃ℓ) + c
⊥𝜃ℓ]2;

[c, cU∗ℓ + c(W1,ℓ (y⊤ℓ ⊗ I𝑘+1) +W2,ℓ (Dt⊤ℓ ⊗ I𝑘+1) +W3,ℓ ((wDt⊤ℓ + 𝜃ℓ) ⊗ I𝑘+1))]1

≈𝑠 A, c⊥,B, d⊤ℓ,AWℓ,AW1,ℓ,AW2,ℓ,AW3,ℓ, [W1,ℓ (I𝑛 ⊗ d⊤ℓ) + V1 + c⊥x∗ + c⊥ (−x∗)]2

[W2,ℓ (Dt⊤ℓ ⊗ d
⊤
ℓ) +W3,ℓ ((wDt⊤ℓ + 𝜃ℓ) ⊗ d

⊤
ℓ) + V2Dt⊤ℓ + v

⊤ (wDt⊤ℓ + 𝜃ℓ) + c⊥wDt⊤ℓ + c
⊥ (−wDt⊤ℓ − 𝜃ℓ) + c⊥𝜃ℓ]2;

[c, cU∗ℓ + c(W1,ℓ (y⊤ℓ ⊗ I𝑘+1) +W2,ℓ (Dt⊤ℓ ⊗ I𝑘+1) +W3,ℓ ((wDt⊤ℓ + 𝜃ℓ) ⊗ I𝑘+1)) + x∗ (y∗ℓ)
⊤d⊥ +wDt⊤ℓd

⊥ + (−wDt⊤ℓ − 𝜃ℓ)d
⊥]1

= A, c⊥,B, d⊤ℓ,AWℓ,AW1,ℓ,AW2,ℓ,AW3,ℓ, [W1,ℓ (I𝑛 ⊗ d⊤ℓ) + V1 +(((((((c⊥x∗ + c⊥ (−x∗)]2

[W2,ℓ (Dt⊤ℓ ⊗ d
⊤
ℓ) +W3,ℓ ((wDt⊤ℓ + 𝜃ℓ) ⊗ d

⊤
ℓ) + V2Dt⊤ℓ + v

⊤ (wDt⊤ℓ + 𝜃ℓ) +
(((((((((((((((
c⊥wDt⊤ℓ + c

⊥ (−wDt⊤ℓ − 𝜃ℓ) + c
⊥𝜃ℓ]2;

[c, cU∗ℓ + c(W1,ℓ (y⊤ℓ ⊗ I𝑘+1) +W2,ℓ (Dt⊤ℓ ⊗ I𝑘+1) +W3,ℓ ((wDt⊤ℓ + 𝜃ℓ) ⊗ I𝑘+1)) +
(((((((((((((((((

x∗ (y∗ℓ)
⊤d⊥ +wDt⊤ℓd

⊥ + (−wDt⊤ℓ − 𝜃ℓ)d
⊥]1

We justify each step as follows: The first ≈𝑠 uses the change of variables:

W1,ℓ ↦→W1,ℓ + c⊥ (x∗ ⊗ d⊥), W2,ℓ ↦→W2,ℓ + c⊥ (w ⊗ d⊥), W3,ℓ ↦→W3,ℓ + c⊥ ((−1) ⊗ d⊥)

The second = follows from the fact that 𝜃ℓ = x∗ (y∗ℓ)
⊤ in this case.

– G8,ℓ−1,3: Identical to G8,ℓ−1,2 except that we replace all d⊤ℓ with Br⊤ℓ where r⊤ℓ ← Z𝑘𝑝 in crs; in particular, we
change the dashed boxed term in crs and pk𝑖 as follows:

[Br⊤ℓ ,W1,ℓ (I𝑛 ⊗ Br⊤ℓ) + V1 + c⊥ (−x∗)]2
[W2,ℓ (Dt⊤ℓ ⊗ Br⊤ℓ) +W3,ℓ ((wDt⊤ℓ + 𝜃ℓ) ⊗ Br⊤ℓ) + V2Dt⊤ℓ + v

⊤ (wDt⊤ℓ + 𝜃ℓ) + c
⊥𝜃ℓ]2{

[W1,𝑖 (I𝑛 ⊗ Br⊤ℓ),W2,𝑖 (Dt⊤𝑖 ⊗ Br⊤ℓ) +W3,𝑖 ((wDt⊤𝑖 + 𝜃𝑖) ⊗ Br⊤ℓ)]2
}
𝑖∈[𝐿]\{ℓ}

We haveG8,ℓ−1,1 ≈𝑐 G8,ℓ−1,0. This follows fromMDDHassumption w.r.t. [B]2 which ensures that ([B]2, [Br⊤ℓ]2) ≈𝑐
([B]2, [d⊤ℓ]2) when B← Z(𝑘+1)×𝑘𝑝 , rℓ ← Z1×𝑘𝑝 , dℓ ← Z1×(𝑘+1)𝑝 .

D Sanity Check of the Simulators

This section provides sanity check for all simulators appeared in this paper.

D.1 Sanity Check of the simulator in Section 6.2

In this section, we show that the simulator of our multi-instance slotted PReg-IPFE in Section 6.2 can pass the
sanity check. The simulated c̃rs has the full capacity as the crs of the scheme in Section 6.1. For all 𝜆, 𝑚, 𝑛1, 𝑛2 ∈ N,
all 𝐿1, . . . , 𝐿𝑚 ∈ N, all M ∈ Z𝑛1×𝑛2𝑝 , all {M∗𝑞, C∗𝑞 }𝑞∈[𝑚] , all f′

𝑞,𝑖
∈ Z1×𝑛2𝑝 , 𝜇𝑞,𝑖 ∈ Z𝑝, all 𝑞∗ ∈ [𝑚] and 𝑖∗ ∈ [𝐿𝑞∗]; all

c̃rs← S̃etup(1𝜆 , 1𝑚, 1𝐿1 , . . . , 1𝐿𝑚 , 1𝑛1 , 1𝑛2 ,M; {{f′𝑞,𝑖}𝑖∈[𝐿𝑞] , {𝜇𝑞,𝑖}𝑖∈M∗𝑞∪C∗𝑞 }𝑞∈[𝑚]),

87

all (pk𝑞∗ ,𝑖∗ , sk𝑞∗ ,𝑖∗) ← Gen(c̃rs, 𝑞∗, 𝑖∗); all {pk𝑞∗ ,𝑖}𝑖∈[𝐿𝑞∗]\{𝑖∗ } such that Ver(c̃rs, 𝑞∗, 𝑖, pk𝑞∗ ,𝑖) = 1; all x ∈ Z1×𝑛1𝑝 and
f𝑞∗ ,𝑖 ∈ Z1×𝑛2𝑝 ; we have:

Pr

Dec(sk𝑞
∗ ,𝑖∗ , hsk𝑞∗ ,𝑖∗ , (ct+, ct𝑞∗)) = xMf⊤𝑞∗ ,𝑖∗

��������
mpk+ ← Agg+ (c̃rs);
(mpk𝑞∗ , (hsk𝑞∗ , 𝑗) 𝑗∈[𝐿𝑞∗]) ← Agg(c̃rs, 𝑞∗, (pk𝑞∗ ,𝑖 , f𝑞∗ ,𝑖)𝑖∈[𝐿𝑞∗])
𝑠← Coin; ct+ ← Enc+ (mpk+, x; 𝑠); ct𝑞∗ ← Enc(mpk𝑞∗ ; 𝑠)

 = 1.

This follows from the fact that the analysis of correctness in Section 6.1: for 𝑠 ∈ {1, 2}, we have:

x = (x∥0𝑛), f𝑞∗ ,𝑖∗ = (f𝑞∗ ,𝑖∗ ∥1)

and

[M̃𝑞∗ ,𝑖∗]𝑠 =
[

M 0⊤𝑛1
0𝑛×𝑛2 ict⊤𝑞∗ ,𝑖∗

]
𝑠

where [ict𝑞∗ ,𝑖∗]𝑠 ∈
{
Enc1 ([ipk]1, [ipk]2, 0) if 𝑖∗ ∈ [𝐿𝑞∗] \ (M∗𝑞∗ ∪ C∗𝑞∗)
Enc1 ([ipk]1, [ipk]2, 𝜇𝑞∗ ,𝑖∗) if 𝑖 ∈ M∗𝑞∗ ∪ C∗𝑞∗

with ([ipk]1, [ipk]2) ∈ Gen1 (1𝜆). And for all s← Z1×𝑘𝑝 , we have

sk𝑞∗ ,𝑖∗ = U𝑞∗ ,𝑖∗ ,

(ct+, ct𝑞∗) =
([

sA︸︷︷︸
c+,0

, sAW + x︸ ︷︷ ︸
c+,1

,
∑︁
𝑖∈[𝐿𝑞]

(sT𝑞∗ ,𝑖 + sAW𝑞∗ ,𝑖 (M̃𝑞∗ ,𝑖f
⊤
𝑞∗ ,𝑖 ⊗ I𝑘+1))︸ ︷︷ ︸

c𝑞∗

]
1

)

hsk𝑞∗ ,𝑖∗ =

([
B𝑞∗r⊤𝑞∗ ,𝑖∗︸ ︷︷ ︸

k⊤0

,
∑︁

𝑖∈[𝐿𝑞∗]\{𝑖∗ }
(h𝑞∗ ,𝑖,𝑖∗ +W𝑞∗ ,𝑖 (M̃𝑞∗ ,𝑖f

⊤
𝑞∗ ,𝑖 ⊗ B𝑞∗r⊤𝑞∗ ,𝑖∗))︸ ︷︷ ︸

k⊤1

,

W𝑞∗ ,𝑖∗ (M̃𝑞∗ ,𝑖∗f
⊤
𝑞∗ ,𝑖∗ ⊗ B𝑞∗r⊤𝑞∗ ,𝑖∗) +WM̃𝑞∗ ,𝑖∗f

⊤
𝑞∗ ,𝑖∗︸ ︷︷ ︸

k⊤2

, , M̃𝑞,𝑖∗f
⊤
𝑞,𝑖∗︸ ︷︷ ︸

k⊤3

]
2

)
.

where

Ah𝑞∗ ,𝑖,𝑖∗ = T𝑞∗ ,𝑖B𝑞∗r⊤𝑞∗ ,𝑖∗ ∀𝑖 ∈ [𝐿𝑞∗] \ {𝑖
∗} and AU𝑞∗ ,𝑖∗ = T𝑞∗ ,𝑖∗ .

Note that here we actually consider hsk𝑞∗ , 𝑗 for 𝑗 = 𝑖∗ and sk𝑞∗ ,𝑖 for 𝑖 = 𝑖∗ and all above equalities are ensured by Ver
and Gen. We have

𝑧1 =
∑︁

𝑖∈[𝐿𝑞∗]
(sT𝑞∗ ,𝑖B𝑞∗r⊤𝑞∗ ,𝑖∗ + sAW𝑞∗ ,𝑖 (M̃𝑞∗ ,𝑖f

⊤
𝑞∗ ,𝑖 ⊗ I𝑘+1)B𝑞∗r⊤𝑞∗ ,𝑖∗)

=
∑︁

𝑖∈[𝐿𝑞∗]
(sT𝑞∗ ,𝑖B𝑞∗r⊤𝑞∗ ,𝑖∗ + sAW𝑞∗ ,𝑖 (M̃𝑞∗ ,𝑖f

⊤
𝑞∗ ,𝑖 ⊗ B𝑞∗r⊤𝑞∗ ,𝑖∗))

𝑧2 =
∑︁

𝑖∈[𝐿𝑞∗]\{𝑖∗ }
(sAh𝑞∗ ,𝑖,𝑖∗ + sAW𝑞∗ ,𝑖 (M̃𝑞∗ ,𝑖f

⊤
𝑞∗ ,𝑖 ⊗ B𝑞∗r⊤𝑞∗ ,𝑖∗))

𝑧3 = sAU𝑞∗ ,𝑖∗B𝑞∗r⊤𝑞∗ ,𝑖∗

𝑧4 = sAW𝑞∗ ,𝑖∗ (M̃𝑞∗ ,𝑖∗f
⊤
𝑞∗ ,𝑖∗ ⊗ B𝑞∗r⊤𝑞∗ ,𝑖∗) + sAWM̃𝑞∗ ,𝑖∗f

⊤
𝑞∗ ,𝑖∗

𝑧5 = sAWM̃𝑞∗ ,𝑖∗f
⊤
𝑞∗ ,𝑖∗ + xM̃𝑞∗ ,𝑖∗f

⊤
𝑞∗ ,𝑖∗

88

and then

𝑧 = 𝑧1 − 𝑧2 − 𝑧3 − 𝑧4 + 𝑧5
= sT𝑞∗ ,𝑖∗B𝑞∗r⊤𝑞∗ ,𝑖∗ + sAW𝑞∗ ,𝑖∗ (M̃𝑞∗ ,𝑖∗f

⊤
𝑞∗ ,𝑖∗ ⊗ B𝑞∗r⊤𝑞∗ ,𝑖∗) − sAU𝑞∗ ,𝑖∗B𝑞∗r

⊤
𝑞∗ ,𝑖∗

−(sAW𝑞∗ ,𝑖∗ (M̃𝑞∗ ,𝑖∗f
⊤
𝑞∗ ,𝑖∗ ⊗ B𝑞∗r⊤𝑞∗ ,𝑖∗) + sAWM̃𝑞∗ ,𝑖∗f

⊤
𝑞∗ ,𝑖∗)

+(sAWM̃𝑞∗ ,𝑖∗f
⊤
𝑞∗ ,𝑖∗ + xM̃𝑞∗ ,𝑖∗f

⊤
𝑞∗ ,𝑖∗)

= xM̃𝑞∗ ,𝑖∗f
⊤
𝑞∗ ,𝑖∗

= (x∥0𝑛)
(

M̃ 0⊤𝑛1
0𝑛×𝑛2 ict⊤𝑞∗ ,𝑖∗

) (
f⊤
𝑞∗ ,𝑖∗

1

)
= xM̃f⊤𝑞∗ ,𝑖∗

Here, equalities hold analogous to the analysis of correctness in Section 6.1, and the last equality holds even if we
replace [M𝑞∗ ,𝑖∗]𝑠 with

[M̃𝑞∗ ,𝑖∗]𝑠 =
[

M 0⊤𝑛1
0𝑛×𝑛2 ict⊤𝑞∗ ,𝑖∗

]
𝑠

where [ict𝑞∗ ,𝑖∗]𝑠 ∈
{
Enc1 ([ipk]1, [ipk]2, 0) if 𝑖 ∈ [𝐿𝑞∗] \ (M∗𝑞∗ ∪ C∗𝑞∗)
Enc1 ([ipk]1, [ipk]2, 𝜇𝑞∗ ,𝑖∗) if 𝑖 ∈ M∗𝑞∗ ∪ C∗𝑞∗

D.2 Sanity Check of the simulator in Section 7.2

In this section, we show that the simulator of our multi-instance slotted Reg-QFE can pass the sanity check. The
simulated c̃rs has the full capacity as the crs of the scheme in Section 7.1. For all 𝜆, 𝑚, 𝑛1, 𝑛2 ∈ N, all 𝐿1, . . . , 𝐿𝑚 ∈ N,
all {M∗𝑞, C∗𝑞 }𝑞∈[𝑚] , all f′

𝑞,𝑖
∈ Z1×𝑛1𝑛2𝑝 , 𝜇𝑞,𝑖 ∈ Z𝑝, all 𝑞∗ ∈ [𝑚] and 𝑖∗ ∈ [𝐿𝑞∗]; all

c̃rs← S̃etup(1𝜆 , 1𝑚, 1𝐿1 , . . . , 1𝐿𝑚 , 1𝑛1 , 1𝑛2 , {{f′𝑞,𝑖}𝑖∈[𝐿𝑞] , {𝜇𝑞,𝑖}M∗𝑞∪C∗𝑞 }𝑞∈[𝑚]),

all (pk𝑞∗ ,𝑖∗ , sk𝑞∗ ,𝑖∗) ← Gen(c̃rs, 𝑞∗, 𝑖∗); all {pk𝑞∗ ,𝑖}𝑖∈[𝐿𝑞∗]\{𝑖∗ } such that Ver(c̃rs, 𝑞∗, 𝑖, pk𝑞∗ ,𝑖) = 1; all x1 ∈ Z1×𝑛1𝑝 , x2 ∈
Z1×𝑛2𝑝 and f𝑞∗ ,𝑖 ∈ Z1×𝑛1𝑛2𝑝 ; we have:

Pr

Dec(sk𝑞
∗ ,𝑖∗ , hsk𝑞∗ ,𝑖∗ , (ct+, ct𝑞∗)) = (x1 ⊗ x2)f⊤𝑞∗ ,𝑖∗

��������
mpk+ ← Agg+ (c̃rs);
(mpk𝑞∗ , (hsk𝑞∗ , 𝑗) 𝑗∈[𝐿𝑞∗]) ← Agg(c̃rs, 𝑞∗, (pk𝑞∗ ,𝑖 , f𝑞∗ ,𝑖)𝑖∈[𝐿𝑞∗])
𝑠← Coin; ct+ ← Enc+ (mpk+, (x1, x2); 𝑠); ct𝑞∗ ← Enc(mpk𝑞∗ ; 𝑠)

 = 1.

This follows from the analysis of correctness in Section 7.1 and the fact that the simulator of our multi-instance
slotted PReg-IPFE (iS̃etup, iG̃en, iẼnc+, iẼnc) can pass the sanity check as shown in Appendix D.1.

D.3 Sanity Check of the simulator in Section 5.3

In this Section, we show that when apply our multi-instance slotted Reg-QFE in Section 7.1 to the transformation in
Section 5.2, the simulator of the compact Reg-QFE can pass the sanity check. The simulated c̃rs has the full capacity
as the crs. For all 𝐿 ∈ N, all 𝑓 ′

𝑖
∈ 𝐹, 𝜇𝑖 ∈ 𝑍 and all𝐶𝐾, 𝐻𝐾, 𝐶𝐻 such that𝐶𝐾, 𝐻𝐾 ⊆ [0, 𝐿′−1],𝐶𝐻∪𝐻𝐾 = [0, 𝐿′−1] for

some 𝐿′ ≤ 𝐿. For all stateful adversaryAmaking a polynomial number of oracle queries (defined as in Section 2.2)
and all 𝐿, we have the following advantage function is negligible in 𝜆:

Pr[𝑏 = 1|c̃rs← S̃etup(1𝜆 , 1𝐿, 𝐹; { 𝑓 ′𝑖 }𝑖∈𝐶𝐾∪𝐻𝐾 , {𝜇𝑖}𝑖∈𝐶𝐾∪𝐶𝐻); 𝑏 = 0;AORegNT(·,·) ,ORegT(·) ,OEnc(·,·) ,ODec(·) (c̃rs)]

we recall that oracles work as follows with aux = ⊥, E = ∅, R = ∅ and 𝑡 = ⊥:

89

– ORegNT(pk, 𝑓): run (mpk, aux′) ← Reg(c̃rs, aux, pk, 𝑓), update aux = aux′, append (mpk, aux) to R and return
(|R|,mpk, aux);

– ORegT(𝑓 ∗): run (pk∗, sk∗) ← Gen(c̃rs, aux) , (mpk, aux′) ← Reg(c̃rs, aux, pk∗, 𝑓 ∗), update aux = aux′, compute
hsk∗ ← Upd(c̃rs, aux, pk∗), append (mpk, aux) to R, return (𝑡 = |R |,mpk, aux, pk∗, sk∗, hsk∗);

– OEnc(𝑖, 𝑥): let R[𝑖] = (mpk,★), run ct← Enc(mpk, 𝑥), append (𝑥, ct) to E and return (|E |, ct);
– ODec(𝑗): let E[𝑗] = (𝑥 𝑗 , ct 𝑗), compute 𝑧 𝑗 ← Dec(sk∗, hsk∗, ct 𝑗); if 𝑧 𝑗 = getupd, run hsk∗ ← Upd(c̃rs, aux, pk∗)

and recompute 𝑧 𝑗 ← Dec(sk∗, hsk∗, ct 𝑗). Set 𝑏 = 1 when 𝑧 𝑗 ≠ 𝑓 ∗ (𝑥 𝑗).

with the following restrictions:

– there are at most 𝐿− 1 queries to ORegNT and there is exactly one query to ORegT; therefore, we will consider
𝑓 ∗, pk∗, sk∗, hsk∗ to be global;

– for query (𝑖, 𝑥) to OEnc, it holds that 𝑖 ≥ 𝑡, R[𝑖] ≠ ⊥;
– for query (𝑗) to ODec, it holds that E[𝑗] ≠ ⊥.

This follows from the analysis of correctness in Section 5.2, and the fact that the simulator of our multi-instance
slotted Reg-QFE (mS̃etup,mG̃en,mẼnc+,mẼnc) can pass the sanity check as shown in Appendix D.2.

90

	Introduction
	Preliminaries
	Slotted Registered Inner-product Functional Encryption
	Simulation-based Security for Reg-FE
	Compact Reg-FE from Multi-instance Slotted Reg-FE
	Pre-Constrained Slotted Reg-IPFE
	Registered Quadratic Functional Encryption
	Pre-constrained Reg-FE
	Registered Inner-product Encryption with Full Attribute Hiding
	Slotted Reg-IPFE with Very Selective SIM-Security
	Sanity Check of the Simulators

