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Abstract. The AES block cipher is today the most important and an-
alyzed symmetric algorithm. While all versions of the AES are known to
be secure in the single-key setting, this is not the case in the related-key
scenario. In this article we try to answer the question whether the AES
would resist better differential-like related-key attacks if the key sched-
ule was different. For this, we search for alternative permutation-based
key schedules by extending the work of Khoo et al. at ToSC 2017 and
Derbez et al. at SAC 2018. We first show that the model of Derbez
et al. was flawed. Then, we develop different approaches together with
MILP-based tools to find good permutations that could be used as the
key schedule for AES-128, AES-192 and AES-256. Our methods per-
mitted to find permutations that outperform the permutation exhibited
by Khoo et al. for AES-128. Moreover, our new approach based on two
MILP models that call one another allowed us to handle a larger search
space and thus to search for alternative key schedules for the two big-
ger versions of AES. This method permitted us to find permutations for
AES-192 and AES-256 that provide better resistance to related-key dif-
ferential attacks. Most importantly, we showed that these variants can
resist full-round boomerang attacks.

Keywords: AES · key schedule MILP · related-key attacks · differ-
ential cryptanalysis

1 Introduction

The Rijndael family of block ciphers was designed by Joan Daemen and Vin-
cent Rijmen in the late 90’s. In 2000, the National Institute of Standards and
Technology (NIST) selected three members of this family of ciphers to replace
the DES and to form what is known today as the Advanced Encryption Standard
(AES) [10]. In the standardized version, the block size is equal to 128 bits and
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the key size can be 128, 192 or 256 bits. The AES is considered today as the
most important and widely deployed symmetric primitive and its elegant design
inspired several others through the years.

After almost 25 years of intense analysis and scrutiny, all three versions, i.e.
AES-128, AES-192 and AES-256, are still considered secure in the single-key
scenario. However, in the related-key setting, the two bigger variants of the AES
were shown to be much weaker. In 2009, Biryuvov et al. discovered full-round
related-key boomerang attacks, with respectively 299.5 time and data complexity
for AES-256 and 2123 data and 2176 time complexity for AES-192 [2, 3]. More
attacks on AES-192 or AES-256, breaking all rounds or a high number of them,
were described later, notably boomerang attacks [12, 8], differential meet-in-the-
middle attacks [5] or attacks exploiting other properties [11].

The design of the AES round function, including its S-box as well as the
MixColumns operation, was done with concrete criteria in mind and was based
on solid mathematical arguments borrowed from the theory of Boolean functions
and error-correcting codes. On the other hand, the design of the key schedule
was much more ad-hoc with much less precise and formal security arguments
employed. Mainly, the authors wanted the key schedule to be "different enough"
from the round function. It is today considered that this component is responsible
for the weaknesses discovered on the biggest versions in the related-key setting.

Even if the AES was not designed with related-key security in mind, the
importance of this design necessitates that its security is analyzed even in weaker
scenarios in which the adversary has access to data encrypted through related
keys. In parallel, a natural question that is often asked for such important targets,
is whether replacing a particular component of the cipher would make it more
resistant to attacks the original version is not so strong against. As the AES
is weaker than expected against related-key attacks of differential nature, i.e.
attacks exploiting the existence of high-probability differential characteristics, it
is therefore interesting to see whether the level of security would increase against
such attacks if the original key schedule of AES was replaced by an alternative
one.

This question was first investigated by Nikolic in [18] just after the attacks on
the full AES-192 and the full AES-256 in the related-key setting got published.
In this paper, Nikolic proposed to tweak the original key schedule of all three
versions of the AES by adding more rotations and some additional S-box appli-
cations but keeping a global structure quite close to the original key schedule.
Much later, Khoo et al. focused only on the smallest AES version and presented
an alternative key schedule for AES-128 that could ensure pure differential trun-
cated characteristics with more active S-boxes in the related-key setting than the
original key schedule [15]. A very interesting approach in this paper is that the
proposed key schedule consisted of a simple byte permutation of the 16 bytes of
the key state and offered for this reason excellent performances in both software
and hardware. This work was further extended by Derbez et al. who automated
the search for good permutations to replace the key schedule of AES-128 and
used a constraint programming (CP) model to evaluate the minimum number
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of active S-boxes of an AES-128 cipher with a modified key schedule [9]. This
permitted them to find the first permutation reaching at least 16 active S-boxes
for 5 rounds of AES-128 and a different permutation that could reach at least
20 active S-boxes for 6 rounds, thus improving the results of [15].

Our Contributions In this paper we focus on the design of alternative key
schedules for all three versions of the AES. Similarly to what was done in [15]
and [9], we only analyzed key schedules that are built as a byte permutation of
the key state, as these key schedules have excellent implementation properties.
We first prove that the CP-model used in [9] is flawed and thus all the results
obtained in this paper are wrong. Then, we build our own MILP model to com-
pute the minimum number of active S-boxes for a modified AES and investigate
several strategies to search for good permutation-based key schedules. Our first
strategy improves the method used in [9] which consisted in searching for good
permutations by decomposing them into disjoint cycles. The idea is to build a
permutation cycle by cycle and early abort when we are sure a partially formed
permutation cannot be extended to a strong one. This method works well for
AES-128 and permitted us to obtain many different permutations that could
reach 15 active S-boxes for 5 rounds and 20 active S-boxes for 6 rounds, lead-
ing thus to better permutations than the one designed by Khoo et al. in [15].
However, this method scales badly for the other two variants. For this reason,
we propose a different strategy based on two MILP models that call each other.
The first model starts to search for a key schedule by having as its only con-
straint that this key schedule should be a permutation. This model then calls
a second model that computes the minimum number of active S-boxes of any
characteristic of the AES with key schedule the one found by the first model.
If a characteristic activating less S-boxes than the desired bound is found, then
this second model calls again the first one by adding to it extra constraints for
the key schedule to prevent that such a weak characteristic reappears. This is
done until a good permutation is found or until the problem has no solution.
This method is efficient, as each time the first model is called, extra constraints
are added on the top of the previous ones, restricting the search space more and
more. This strategy permitted us to find strong permutations that can be used
as the key schedule for all three AES variants. In particular, we show in the last
part of this article, that the key schedules we propose would permit AES-192
and AES-256 to resist full-round boomerang attacks in the related-key setting.

The rest of the paper is organized as follows. Section 2 provides a brief
description of the AES, introduces some preliminary notions on differential char-
acteristics and introduces the Mixed Integer Linear Programming (MILP) prin-
ciple. In Section 3 we recall previous results on alternative key schedules for the
AES and prove that the results of [9] are wrong. Then, in Section 4 we describe
our first method based on the decomposition of a permutation into cycles for
AES-128. Section 5 presents our new method based on the two MILP models
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that call each other. Finally, our results for all versions of the AES are summa-
rized and discussed in Section 6.

Our code is available at:

https://github.com/pderbez/acns2024/

2 Background

2.1 Description of the AES

The AES is a Substitution Permutation Network that processes data blocks of
128 bits, using keys of 128, 192 or 256 bits. The number of rounds Nr depends
on the key size. It is Nr = 10 for AES-128, Nr = 12 for AES-192 and Nr = 14
for AES-256. From the initial master key, Nr + 1 round subkeys of 128 bits
are generated with a key schedule algorithm that is composed of XORs and the
application of an 8-bit S-box (the same as in the round function). We refer the
reader to [10] for the detailed specification of the key schedule.

Both the internal block state and each 128-bit subkey can be represented by
an array of 4 × 4 bytes. We will use the numbering below to refer to the bytes
of such a state.

After an initial subkey addition, the state is transformed by iterating a round
function composed of four byte-oriented transformations as depicted in Figure 1.
SubBytes (SB) applies to each byte of the state the same non-linear bijection
called S-box. ShiftRows (SR) shifts the i-th row by i bytes to the left. MixColumns
(MC) transforms each column of the state by multiplying it by an MDS (Maxi-
mum Distance Separable) matrix. Finally, AddRoundKey (ARK) XORs the state
with the round subkey. For the last round, the MixColumns operation is omitted.

2.2 AES Differential Characteristics

Differential cryptanalysis is a classical technique for symmetric primitives in-
troduced in 1990 by Biham and Shamir [1]. The idea of this technique is to
study the propagation of an input difference through several rounds of the ci-
pher. In order for a cipher to be immune against this family of attacks, there
should not exist an input difference a that propagates to an output difference b
with a probability higher than expected for a random permutation. Such couples
of input/output differences (a, b) are called differentials. Computing the exact
probability of a differential is a very hard computational problem. In practice,
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Fig. 1: The AES round function. X1 is obtained by xoring the input block and
the subkey K0. The output block is XNr+1. MC is omitted for the last round.

we search to approximate this probability by studying sequences of differences
(a = δ0, δ1, . . . , δR = b) that start from the difference a and end with the differ-
ence b, and that we call differential characteristics. As the number of differential
characteristics is too high to be exhausted, a common search method is to use
a truncated representation of the characteristics [16]. This approach that works
particularly well for word-oriented ciphers consists in abstracting each word by
a Boolean value that indicates whether this word is active, i.e. has a non-zero
difference on it, or inactive. Furthermore, we say that an S-box is active if there
exists a non-zero difference at its input. The number of active S-boxes of a differ-
ential characteristic is an important quantity as, combined with the maximum
differential probability of a non-trivial transition through the S-box, permits
to provide an upper bound on the probability of any differential characteristic
following the truncated pattern. The higher the number of active S-boxes, the
lower the probability of a characteristic can be.

The authors of the AES employed an approach known as the wide-trail strat-
egy [7] to ensure that all characteristics have, after a certain number of rounds, a
relatively high number of active S-boxes. Thanks to this, the AES can be proven
immune to classical differential attacks in the single-key setting. On the other
hand, the attacks of Biryukov et al. [3, 4] and the works that followed showed
that if differences are permitted in the key, then there exist related-key charac-
teristics with much less active S-boxes than classical characteristics of the same
length.

Modeling the Propagation of Truncated Differences through the AES
Modeling the propagation of truncated differences on the AES can be done quite
easily by exploiting the byte-oriented structure of the cipher. A state in a trun-
cated differential of the AES is seen as the concatenation of 16 Boolean variables,
each indicating whether the corresponding byte is active or inactive. Then the
activity pattern of a byte does not change after the application of the S-box,
as this operation is bijective. ShiftRows is a simple reorganization of the bytes
inside the state and for MixColumns we use the fact that the matrix is MDS and
that its branch number is 5. This means that the sum of the active bytes in a
column before and after the application of the matrix is 0 if the column is inac-
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tive and at least 5 if the column is active. Finally, we model the AddRoundKey
operation, by supposing that the XOR of two active bytes can give an active
byte or an inactive byte. We call a pure truncated differential characteristic a se-
quence of truncated differences that respect these propagation rules. A truncated
related-key characteristic for 3 rounds of AES-128 is depicted in Figure 2.

SB

SR MC

KS

SB

SR MC

KS

SB

SR MC

Fig. 2: A 3-round related key characteristic for AES-128 (drawn with the li-
brary [14]).

Invalid Truncated Differential Characteristics It can happen that a trun-
cated differential characteristic that follows the propagation rules described
above cannot be instantiated with real differences. Such characteristics are called
invalid. Some invalid characteristics can however directly be avoided by exploit-
ing linear relations between the round function and the key schedule. An example
of an invalid truncated differential characteristic is shown in Figure 3.

x0x1 y0y1

k0k1

KS

MC
SB
SR MC

Fig. 3: Example of a linear incompatibility. The key schedule’s transition is only
possible if the subkeys’ active columns k0 and k1 are equal. This equality also
implies an equality between the columns y0 and y1. This contradicts the fact
that the columns x0 and x1 are different.

A common method to remove such invalid characteristics consists in writing
down a system of equations including all or a subset of linear relations resulting
from the round function and the key schedule and apply linear algebra to it.

2.3 Mixed Integer Linear Programming

A well-known method to get a lower bound on the number of active S-boxes
of a differential characteristic consists in reducing the problem to a Constraint
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Optimization Problem (COP) than can be solved by a dedicated solver. Among
all existing methods, the MILP (Mixed Integer Linear Program) approach be-
came during the last decade particularly popular among cryptographers. This
approach was used for the first time by Mouha et al. in [17] and by Wu and Wang
in [19] to prove, among others, lower bounds on the minimal number of active
S-boxes for the AES in the single key setting. In a MILP model the variables are
either integers or real numbers, the constraints are linear inequalities and the
objective function, if any, is a linear function of the variables. The goal is to find
values for the variables such that all the constraints are satisfied and such that
the objective function is optimized (i.e. maximized or minimized). This model-
ing technique is particularly well suited for byte-oriented ciphers like the AES:
each byte is abstracted by a Boolean that indicates whether this byte is active
or not; the objective function simply corresponds to the sum of all the variables
that go through an S-box and each of the byte-oriented operations can easily be
encoded. For instance, the XOR of 3 bytes a, b and c can be modeled with 3
linear inequalities (see Algorithm 1).

The constraints for the basic model for the AES are described in Algorithm 2
and 3 with the same notations as in Figure 1 (i.e. for 1 ≤ r ≤ R, Xr refers
to the state after the AddRoundKey operation of round r-1, Yr corresponds to
the state after the MixColumns operation and Kr is the subkey used in round r).
The objective function to be minimized is returned by the function getSboxes.
This basic model allows one to easily get a bound on the number of active S-
boxes. However, all the truncated characteristics that are solutions of the model
cannot be instantiated into actual characteristics. In particular, inconsistencies
may come from the fact that encoding a set of linear equations between variables
does not encode the vector space spanned by these equations. A first approach
to reduce the number of invalid trails is to add extra variables and constraints
to the model. Another approach, used by Derbez et al. in [8] is to perform linear
algebra to check if the solution found by the solver respects the whole system of
linear equations induced by the cipher. When a linear inconsistency is detected,
the authors of [8] used the callback functionality of the solver Gurobi [13] to add
new constraints during the solving process in order to prevent this inconsistency
for the upcoming solutions.

Algorithm 1: XOR(model, a, b, c)

model.addConstr(1 - a + b + c ≥ 1)
model.addConstr(a + 1 - b + c ≥ 1)
model.addConstr(a + b + 1 - c ≥ 1)

Algorithm 2: addConstrForAddRoundKey(model, R)

for r = 1 . . .R-1 do
for i = 0 . . . 15 do

XOR(model, Xr+1[i], Kr[i], Yr[i])
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Algorithm 3: addConstrForShiftRowsMixColumns(model,
R)

for r = 1 . . .R−1 do
for c = 0 . . . 3 do

e ← 0
for i = 0 . . . 3 do

e ← e + Yr[c + 4i]
e ← e + Xr[(c + i) mod 4 + 4i]

Let f be a dummy binary variable
model.addConstr(e ≤ 8f)
model.addConstr(e ≥ 5f)

Algorithm 4: getSboxes(model, R)

output: The number of active S-boxes
Sboxes ← 0
for r = 1 . . . R do

for i = 0 . . . 15 do
Sboxes ← Sboxes + Xr[i]

return Sboxes

3 Permutation-based Key Schedules for the AES

While the AES is secure in the single key model, its two bigger variants were
shown to be vulnerable to full-round related-key attacks that exploit the exis-
tence of high probability differential characteristics for some number of rounds [3,
2]. It is widely admitted today that the success of these attacks is mainly due to
weaknesses in the key schedules of AES-192 and AES-256. Furthermore, while
the design of the AES round function was based on solid mathematical prop-
erties, the design of the key schedule was done with much less formal criteria
in mind. It is therefore natural to ask the question whether an alternative key
schedule design could strengthen the resistance of the AES against related-key
differential-like attacks.

A natural idea for designing an alternative key schedule is to use a simple
byte-permutation of the master key. This design choice is clearly relevant, as key
schedules of this type offer excellent implementation properties both in software
and hardware. This idea was investigated notably by Khoo et al. in [15], where
the authors searched (among others) to replace the key schedule of AES-128
by a key schedule of this type with the goal of increasing the minimal number
of active S-boxes of any differential characteristic after some rounds. The main
result of this part of their paper is the discovery of a byte-permutation that
could play the role of the AES-128 key schedule and that permits to reach more
active S-boxes in the pure related-key setting starting from the third round. This
permutation is:
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0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

 −→


14 15 12 13
3 0 1 2
4 5 6 7
8 9 10 11

 ,

and its table representation is

P1 = [5, 6, 7, 4, 8, 9, 10, 11, 12, 13, 14, 15, 2, 3, 0, 1].

This key schedule permits to achieve at least 5, 10, 14, 18 and 21 active
S-boxes after respectively 3, 4, 5, 6 and 7 rounds of computation in the pure
truncated differential setting, i.e. when linear inconsistencies are not taken into
account. To compare, the original AES-128 key schedule leads to only 3, 9, 11
and 13 active S-boxes for the same number of rounds in the same setting. To
design this permutation, the authors of [15] started from their human-readable
proof of the bound on 3 rounds of AES-128 and searched for modifications in
the design that could increase the minimum number of active S-boxes.

The problem of finding a byte-permutation to replace the key schedule of
AES, was then further analyzed by Derbez et al. in [9]. First, they showed that,
without considering linear inconsistencies, the permutation from [15] is opti-
mal by exhibiting differential characteristics that hold for any permutation and
reaching the corresponding number of active S-boxes. Then, they introduced the
idea to use a more automated approach to search for good permutations and
to consider the underlying equations as well, hence removing all linearly incon-
sistent truncated characteristics. For this search, to test the minimum number
of active S-boxes of AES-128 with a permutation playing the role of the key
schedule could achieve, the authors wrote up a Constraint Programming (CP)
model. As a result, they provided permutations achieving a better security than
the one from [15] and gave upper bounds on the minimum number of active
S-boxes a permutation could reach. More precisely, the authors proposed the
permutation

P2 = [15, 1, 9, 6, 0, 14, 3, 4, 8, 5, 2, 7, 12, 13, 10, 11],

that could reach at least 16 active S-boxes for 5 rounds and the permutation

P3 = [2, 10, 9, 5, 4, 1, 6, 3, 13, 8, 14, 11, 15, 12, 0, 7]

that could reach at least 20 active S-boxes for 6 rounds.

3.1 Analyzing the Results of [9]

We wrote a simple MILP model to compute the minimum number of active
S-boxes that could be achieved by any truncated differential characteristic for
AES-128 with a given permutation-based key schedule. The constraints to add
to the model are described in Algorithms 2, 3 and 5 and the objective func-
tion to minimize (i.e. the number of active Sboxes) is returned by the function
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getSboxes. We also handled linear dependencies of the truncated differential
characteristics with the same method as Derbez et al. in [8].

Algorithm 5: addConstrForKeySchedule128(model, R, P)

for r = 2 . . .R-1 do
for i = 0 . . . 15 do

model.addConstr(Kr[P(i)] = Kr−1[i])

With this MILP model, we confirmed the bounds for the permutation P1
built in [15] in the pure truncated differential model announced by the authors
and showed, that by taking linear dependencies into account, this permutation
actually leads to at least 19 active S-boxes for 6 rounds (see Table 5 of [15]).

However, we were not able to confirm any of the results of [9] obtained with
their CP model. We checked the two proposed permutations P2 and P3 with our
MILP model and we got that the minimum number of active S-boxes reached was
much smaller than what the authors announced. More precisely, we discovered
that the permutation P2 led to a minimum number of 10 active S-boxes after 5
rounds instead of the 16 S-boxes announced, and that P3 resulted in at least 17
active S-boxes after 6 rounds instead of the claimed 20 active S-boxes. As a proof,
we provide an example of a truncated differential characteristic with 10 active
S-boxes for 5 rounds with the permutation P2 in Figure 4 and a characteristic
with 17 active S-boxes for 6 rounds with the permutation P3 is given in Figure 5.
The above prove that the CP model used in [9] was flawed and thus none of the
results of that paper can be considered as correct. For example, the “proof” that
there exists no permutation for the key schedule permitting to reach a minimum
of 18 active S-boxes after 5 rounds of AES-128, cannot be trusted anymore as
this proof was computational and the computations were based on the badly
flawed CP model.

KS

SB

SR MC

KS

SB

SR MC

KS

SB

SR MC

KS

SB

SR MC

SB

SR

Fig. 4: Example of a truncated differential characteristic with 10 active S-boxes
(in red) for 5 rounds with the permutation P2.

We contacted the authors of [9] to let them know about our findings and after
verification they confirmed there is indeed a problem with their CP model and that
the results of this paper should be considered as flawed.
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Fig. 5: Example of a truncated characteristic with 17 active S-boxes (in red) for
6 rounds with the permutation P3.

4 A Cycle-Decomposition Approach to Search for Good
Key Schedules

Once we saw that the results of [9] were wrong, we decided to search ourselves for
alternative permutation-based key schedules for AES-128. We describe in this
section the method we used to do so. This method is based on the decomposition
of a permutation in its disjoint cycles and is inspired from what was done in [9].
As we will see, this method is efficient for AES-128 but is too expensive for
AES-192 and AES-256. Thus, we develop a different approach in Section 5
that we successfully adapt to all three AES variants.

4.1 Description of the Method

The idea on which the method is based is the following. It is a well known fact
that any permutation can be decomposed in cycles in a unique way. For example,
the permutation P1 above can be written as (0, 5, 9, 13, 3, 4, 8, 12, 2, 7, 11, 15,
1, 6, 10, 14) and consists of a single cycle of length 16, while the permutation
P2 can be written as (0, 15, 11, 7, 4)(2, 9, 5, 14, 10)(3, 6)(1)(8)(12)(13) and
is thus decomposed in 2 cycles of length 5, a cycle of length 2 and four cycles
of length 1. Viewing a permutation as a composition of cycles has an important
advantage: it is possible to evaluate the quality of a permutation to play the
role of the key schedule by only partially defining its decomposition in cycles.
Suppose for example, that we want to verify if a permutation that has in its
decomposition the cycle (0, 2, 7, 13, 15) can lead to a minimum of 15 active
S-boxes after 5 rounds. Then we can write a MILP model for which the key
schedule is only partially defined and the only permitted active bytes in the first
subkey are among the bytes 0, 2, 7, 13 and 15. The cycle structure permits us to
know where these active bytes will be moved to by the key schedule in any of
the following subkeys. If the MILP program manages to find a valid differential
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characteristic with less than 15 active S-boxes then we know that we can throw
away all permutations that have this cycle as part of their decomposition.

Moreover, we do not need to restrict ourselves to complete cycles and can
check with this method permutations for which we have only partially spec-
ified a cycle they contain. To give an example, suppose we want to evalu-
ate a permutation that has in its decomposition the partially defined cycle
(0, 2, 7, 13, 15, . . .). If the partially defined cycle is at least as long as the
number of rounds we want to find a bound for, we can still partially evaluate
its strength, by activating only bytes in the key for which the partial knowledge
of the incomplete cycle permits us to propagate through all subkeys that are
needed for the computation. If our target is again at least 15 active S-boxes for
5 rounds and if this partial evaluation permits to exhibit a characteristic with
less than 15 active S-boxes, we know that we can remove all permutations that
have inside cycles containing the trail 0→ 2→ 7→ 13→ 15.

We describe now our global approach for this method. This approach is based
on the recursive Algorithm 6. This algorithm takes as input the number of rounds
r to analyze, a target bound b for the minimum number of active S-boxes, a
table PKS corresponding to the partially specified permutation the algorithm is
working on, an element x for which we want to fix the image by the permuta-
tion and a variable length corresponding to the actual length of the cycle the
algorithm is working on.

The first call to the algorithm is done for x = 0 and length = 1. The algo-
rithm first checks (line 1) if the image of x has been fixed. If this is the case, mean-
ing that the cycle is complete, the MILP-based routine EvaluatePerm(PKS)
checks whether the partial knowledge of PKS permits to exhibit a characteris-
tic activating less than b S-boxes. At this step, with the method of Derbez et
al. in [8], we also detect linear inconsistencies using linear algebra and handle
them using the callback functionality of the solver Gurobi. If a valid character-
istic is found, then the algorithm returns to the instance that called it as this
means that this partially defined cycle decomposition can never lead to permu-
tations reaching more than b active S-boxes. On the other hand, if the routine
EvaluatePerm(PKS) returns a value higher or equal to the bound b, then if
PKS is entirely specified (line 4) this means that a permutation with the desired
property has been found. If there are still values that remain to be fixed, the
algorithm will start working on a new cycle, by choosing as the beginning of this
new cycle the first available element y (line 7).

Finally, if the image of x has not yet been fixed meaning that the cycle is not
yet complete (line 9), then if the current length of the cycle is long enough to
permit an evaluation of the permutation, the routine EvaluatePerm(PKS) is
called (line 10). If the return value is smaller than b then this partially defined
cycle is abandoned. Otherwise, the next available value y is chosen to continue
the cycle (line 12), the image of x is set to y and the search continues (line 13).

An Improvement The basic algorithm described above can be improved by
taking into account the column symmetry. Indeed let PKS be a permutation for
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Algorithm 6: CycleSearch(r, b, PKS, x, length)
output: All permutations reaching at least b active S-boxes for r rounds of

AES-128
1 if PKS[x] then
2 if EvaluatePerm(PKS) < b then
3 return
4 if all the images of PKS have been fixed then
5 return PKS

6 else
7 Choose the next available value y to start a new cycle.
8 CycleSearch(r,b,PKS,y,1)

9 else
10 if length >= r-1 and EvaluatePerm(PKS) < b then
11 return
12 for all images y available do
13 PKS[x] = y
14 CycleSearch(r,b,PKS,y,length + 1)

15 Set PKS[x] to “unknown”

the key schedule and let P≫ a permutation that shifts the columns of PKS .
Then, both the permutations PKS and P≫ ◦ PKS ◦ P −1

≫ are equivalent and
lead to exactly the same bounds. We have incorporated this observation to our
algorithm to decrease the search space.

5 Double-MILP Model For Permutations

The strategy we presented in Section 4 can be hardly adapted to the bigger
variants of the AES. The reason is that the search space becomes too big, as it
necessitates going through permutations of 24 bytes for AES-192 and 32 bytes
for AES-256. For this reason, we present here an entirely different strategy to
find good alternative permutation-based key schedules that we applied to all AES
versions. This method combines a first MILP model to generate permutations
with a second MILP model to evaluate the generated permutations. The aim of
the second model is twofold. First, it detects when a permutation leads to the
desired minimum number of active S-boxes. Second, it identifies bad subkeys
patterns that a good permutation should prevent. This information is used to
refine the constraints of the first model.

In the following, to simplify the notations, we only describe our algorithms
for the case of AES-128. Note that they can be extended to AES-192 and
AES-256 in a rather straightforward way.

Algorithm 7 summarizes the overall search process. For the initialization
of the model m1 that generates permutations, we add constraints to restrict
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the solutions of m1 to permutation matrices of size 16 × 16. Some extra em-
pirical constraints can possibly be added at this step (see discussion below).
Then, we generate a permutation with the model m1 and evaluate it with
the function evaluateP128. If the key schedule defined by this permutation
allows a differential characteristic with too few active S-boxes, the function
evaluateP128 outputs a bad subkey pattern to be removed by calling the
function addConstrToRemoveKeyPattern128. The form of this bad subkey
pattern and the constraints to remove it will be detailed below. We repeat this
until there is no more permutation matrix satisfying the constraints in m1 or
until a permutation guarantying nbWantedSboxes after R rounds of AES-128
is found.

Algorithm 7: searchP128(R, nbWantedSboxes)

Initialize a model m1
� Ensure that P is a permutation matrix.
for i = 0 . . . 15 do

e1 ← 0
e2 ← 0
for j = 0 . . . 15 do

e1 ← e1 + P[i][j]
e2 ← e2 + P[j][i]

m1.addConstr(e1 = 1)
m1.addConstr(e2 = 1)

� Generate a permutation P with the model m1 and test it
while True do

m1.optimize()
if No solution found then

return
P ← m1.getASolution()
badKeyPattern ← evaluateP128(P, nbWantedSboxes, R)
if badKeyPattern = ∅ then

// P guarantees nbWantedSboxes after R rounds
return P

addConstrToRemoveKeyPattern128(m1, badKeyPattern)

The function evaluateP128 describes a basic MILP model similar to the
one we used for Algorithm 6. However, note that we do not optimize the number
of active S-boxes. Instead, we only add a constraint to know whether there exists
a truncated differential characteristic activating less than nbWantedSboxes S-
boxes. Then, if such a truncated differential characteristic exists, the model will
minimize the number of active bytes in the master key. This is directly related
to the number of permutations for which the characteristic does hold. Indeed,
we observed that in practice, valid truncated characteristics have few active key
bytes (hardly more than 6) and thus, lower this number is, higher the number
of permutations satisfying the pattern and as a consequence, higher the number
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Algorithm 8: evaluateP128(P, nbWantedSboxes, R)
output:

– ∅ if there is no R-round characteristic with less than NbWantedSboxes when the
alternative AES-128 key schedule is based on the permutation P,

– A tuple of subkeys which leads to a characteristic with less than
NbWantedSboxes and which minimizes the number of active bytes in the master
key otherwise.

Initialize a model m2.
� Key schedule and round constraints
addConstrForKeySchedule128(m2, R, P)
addConstrForShiftRowsMixColumns(m2, R)
addConstrForAddRoundKey(m2, R)
� Number of active Sboxes
Sboxes ← getSboxes(m2, R)
m2.addConstr(sboxes ≥ 1)
m2.addConstr(sboxes ≤ nbWantedSboxes)
� Number of active bytes in the master key for AES-128
obj ← 0
for i = 0 . . . 15 do

obj ← obj + K1[i]

m2.addConstr(obj ≥ 1)
� Minimize the objective function
� Handle linear inconsistencies with the callback functionality of Gurobi
m2.minimize(obj)
if No solution found then

return ∅
else

badKeyPattern ← (K1, K2, K3, ..., KR−1)
return badKeyPattern

of permutations removed by the constraint will be. Of course, this is not always
true but remains a quite reasonable assumption.

Algorithm 9: addConstrToRemoveKeyPattern128(m1,(K1,K2,. . . ,KR−1))

e ← 0
for r = 1, . . . , R-2 do

for a such that Kr[a] is an active byte do
bound ← bound + 1
for b such that Kr+1[b] is an active byte do

e ← e + P[a][b]

m1.addConstr(e ≤ bound -1)
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Removing Patterns. In order to better explain how we exploit a particular
“bad” truncated differential characteristic to reduce the search space of possible
permutations, let us focus on a simple example. For this, we denote by P the
permutation that plays the role of the key schedule. Further, we suppose that
MP represents the permutation matrix associated to P , that is MP [i][j] = 1 if
P (i) = j and is 0 otherwise. Assume now for instance that the active bytes of the
characteristic are {0, 1} on the first subkey and {2, 6} on the second one and that
P (0) = 2 and P (1) = 6. A naive way to discard the permutations leading to the
exact same truncated characteristic is to forbid either P (0) = 2 or P (1) = 6. This
can be easily done by adding the constraint MP [0][2] + MP [1][6] ≤ 1. However,
in many cases we can safely remove the transition P ({0, 1}) = {2, 6}, which
includes, among others, the configuration P (0) = 6 and P (1) = 2. Being allowed
to remove the transition from the first set to the second one, depends on the
characteristic and more precisely on the relation between the active key bytes.
If the characteristic is valid if and only if ∆k0[0] = α∆k0[1] with α ̸= α−1, then
we cannot ensure that swapping the images of P (0) and P (1) will not affect the
validity of the truncated characteristic and thus we cannot discard the transition
P ({0, 1}) = {2, 6}. On another hand, whenever α = α−1 or if both ∆k0[0] and
∆k0[1] can be chosen independently, we can immediately forbid the transition
between both sets by adding the constraint MP [0][2] + MP [0][6] + MP [1][2] +
MP [1][6] ≤ 1. To get a simple and efficient model which can be useful as a
heuristic search algorithm, we decided to always remove all transitions from the
first set to the second one, even if this may discard good permutations. The
whole search space would have been out of reach anyway.

An Additional Constraint for AES-128 We tried to add several constraints
to the MILP model that generates permutations for AES-128 in order to restrict
the search space while ensuring good properties. One of them permitted us to
find permutations that outperform the permutation in [15]. This constraint is
as follows: a byte of the state cannot be sent by the permutation to a column
where the ShiftRows (SR) permutation would send it. For example byte 0 cannot
be sent by the permutation to the first column while byte 4 cannot be sent to
the last column. This constraint, while being simple, is quite natural as it tries
to minimize the overlapping between ShiftRows and the key schedule in order
to avoid cancellations between the state and the key addition. As a result we
noticed that the permutation P1 found in [15] was actually quite common as we
were able to generate a very high number of permutations achieving a minimum
of 14 active S-boxes after 5 rounds and a minimum of 19 active S-boxes after 6
rounds. More importantly, we were also able to generate permutations achieving
a minimum of 15 active S-boxes after 5 rounds and at least 20 active S-boxes
after 6 rounds.
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6 Results

In this section we present the results we obtained with the algorithms and models
described in the previous sections.

6.1 Results for AES-128

We obtained several permutations reaching at least 20 active S-boxes for 6
rounds. We present two such permutations, respectively denoted by P4 and P5.
The permutation P4 was discovered with the method of Section 4, while P5 was
found with the method of Section 5.

P4 = [6, 0, 4, 9, 13, 10, 8, 3, 7, 12, 15, 14, 11, 5, 1, 2]
P5 = [3, 15, 11, 8, 2, 1, 10, 5, 4, 0, 9, 7, 6, 12, 13, 14]

The bounds for 2 to 7 rounds for these two permutations are given in Table 1.
These permutations can be compared to P1 given in [15] and to P2 and P3 given
in [9]. The permutations P4 and P5 achieve better differential bounds for 5
and 6 rounds than the one proposed by Khoo et al. but none of them is strictly
better. Still, permutation P4 reaches similar or higher bounds up to 6 rounds and
ensures that no differential characteristic with a probability higher than 2−128

does exist on 7 rounds (assuming the best probability of a non-trivial transition
through the S-box is 2−6 as for AES).

Rounds 2 3 4 5 6 7 Ref.

P1 1 5 10 14 19 23 [15]
P2 1 4 8 10 12 14 [9]
P3 1 3 9 14 17 23 [9]
P4 1 5 10 14 20 22 Sec. 4
P5 1 5 9 15 20 23 Sec. 5

Table 1: Bounds on the minimal number of active S-boxes for 2 to 7 rounds for
our permutations P4 and P5 and for the three permutations given previously by
Khoo et al. [15] and Derbez et al [9].

Other Results and Open Problems We used Algorithm 6 on a cluster
equipped with 128 cores to scan the space of all permutations and show that
there does not exist a permutation that could lead to 18 active S-boxes for 5
rounds. We also searched with both methods of Section 4 and Section 5 to find
permutations that could give at least 16 S-boxes for 5 rounds or at least 21
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S-boxes for 6 rounds, but we were not able to find any such permutation. It is
thus an open problem if such permutations exist.

6.2 Results for AES-192 and AES-256

For the first time, we investigate how a permutation as a key schedule could
affect the resistance against differential cryptanalysis for the two bigger versions
of AES. Because the search space is very big for those two variants, we only
used the approach described in Section 5. Actually, it was surprisingly easy to
obtain permutations leading to much stronger variants than with the original
key schedules. In particular, while 9 and 13 rounds respectively are required
to ensure the non-existence of differential distinguishers on both the 192 and
256-bit versions of AES, we found permutations for which only 8 and 9 rounds
are enough. For AES-256 this is 4 rounds less, something we believe is quite
impressive and supports the belief that the key schedule for this version was far
from being optimal with respect to differential cryptanalysis.

The two permutations we propose for these two versions are:

P192 = [2, 17, 19, 9, 13, 12, 23, 0, 4, 21, 18, 16, 10, 20, 22, 1, 11, 3, 7, 5,

15, 6, 14, 8]
P256 = [27, 16, 9, 25, 11, 13, 14, 18, 22, 21, 19, 23, 28, 31, 29, 3, 2, 15, 8,

24, 17, 1, 26, 0, 7, 20, 10, 4, 6, 30, 12, 5]

These two permutations are visualized below by showing how the bytes are
re-arranged inside the key state:


0 1 2 3 4 5
6 7 8 9 10 11
12 13 14 15 16 17
18 19 20 21 22 23

 −→


7 15 0 17 8 19
21 18 23 3 12 16
5 4 22 20 11 1
10 2 13 9 14 6




0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31

 −→


23 21 16 15 27 31 28 24
18 2 26 4 30 5 6 17
1 20 7 10 25 9 8 11
19 3 22 0 12 14 29 13


As already stated in the introduction, it is well-known that there exist related-

key boomerang attacks on the full AES-192 and on the full AES-256. A boomerang
distinguisher is composed of two differentials and its probability mostly depends
on the probability of the underlying differentials. Let denote by nr the minimum
number of active S-boxes after r rounds. A first approximation of the probability
of a boomerang characteristic on R-round AES would be minr 2−6×2(nr+nR−r).
While we know this formula is not accurate, especially since the work of Cid et

Note that the bounds are computed assuming the master key is filled into the first
round keys. Shifting the round keys does slightly modify some of the bounds.
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al. regarding Boomerang Connectivity Table (BCT) [6], it still gives the intuition
that nr + nR−r should be as high as possible to ensure good resistance against
boomerang attacks. Hence, when searching for replacement permutations for
both AES-192 and AES-256 we tried to reach 22 active S-boxes with as few
rounds as possible and to optimize minr nr + nR−r for several values of R. Since
most boomerang attacks only add few rounds around their inner distinguisher,
we primarily focused on R = 10 for AES-192 and R = 12 for AES-256. We
also decided empirically to favor 5 and 6 rounds respectively to decide between
two permutations.

Rounds 2 3 4 5 6 7 8 9 10

P192 0 1 5 10 14 19 22 26 29
P256 0 1 2 5 10 15 19 23 28

Table 2: Bounds on the minimal number of active S-boxes for 2 to 10 rounds
for the permutations P192 and P256.

To test our permutations against boomerang cryptanalysis we modified the
MILP model proposed in [8] to handle a linear key schedule. We also removed
the part of the model related to the key recovery process since the complete
model was too slow to finish in a reasonable time. Hence we only searched for
the number of rounds after which there is no boomerang characteristic with a
probability higher than 2−128. As a result we obtain that 10 rounds are enough
for AES-192 and 11 rounds for AES-256. This is much better than with the
original versions of the key schedule and it is highly unlikely that our variants
could be fully broken by this cryptanalysis technique. We believe this result is
important since it supports that the number of rounds set by the designers for
all the different versions would have been enough to ensure full security of the
AES family.

Generic Bounds for Reduced-round AES-192 and AES-256 By looking
at the bounds obtained for AES-192 and AES-256, one may wonder if it is
possible to establish in a generic way bounds on the minimum number of active
S-boxes for a modified AES with a permutation-based key schedule. As we show
in Proposition 1 such bounds can be easily obtained for a small number of rounds
and are valid for any key schedule of this form.

Proposition 1. For AES-256 or AES-192 used with a permutation-based key
schedule there always exist a 4-round differential characteristic with 5 or less ac-
tive S-boxes and a 2-round differential characteristic with 0 active S-box. More-
over for AES-256 (resp. AES-192) there exists a 3-round differential charac-
teristic with 1 (resp. less than 2) active S-boxes.
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4 1 0 0 0 0 1MC

SB, SR

MC

SB, SR
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SB, SR

1 0 1

2 rounds

3 rounds

Fig. 6: A 4-round differential characteristic. The numerals represent the number
of active bytes. They are depicted in red if these bytes go through an S-box.

Proof. Let us denote by w(Ki) the number of active bytes of a subkey Ki. For
any permutation-based key schedule for AES-256 there exist

– a configuration such that (w(K1), w(K2), w(K3)) ∈ {(1, 0, 0), (1, 0, 1)};
– a configuration such that ((w(K1), w(K2)) = (0, 1).

For any permutation-based key schedule for AES-192 there exist
– a configuration such that ((w(K1), w(K2), w(K3)) = (1, 0, 1);
– a configuration such that ((w(K1), w(K2)) ∈ {(0, 1), (0, 2)}.

Together with Figure 6, the following table finishes the proof.

# rounds w(K1) w(K2) w(K3) # active S-boxes that can be reached
4 1 0 1 5 (see the 4 rounds of Figure 6)
4 1 0 0 4 (change the last subkey of the 4 rounds)
3 0 1 1 (see the 3 rounds of Figure 6)
3 0 2 2 (change the last subkey of the 3 rounds)
2 0 0 (see the 2 rounds of Figure 6)

7 Conclusion and Open Problems

We investigate in this work two strategies to find, in an automated way, alterna-
tive permutation-based key schedules for AES that resist differential related-key
attacks. The first one is based as in [9] on a cycle decomposition of permuta-
tions. The other one is based on two nested MILP models that generate and test
permutations. We were able to confirm the results of [15] with our tool, which
is an indication that our program is correct. Further, we analyzed the differen-
tial characteristics matching the lower bound and verified that for none of them
removing one of their active S-boxes was possible, which is another indication
that the bounds obtained are exact. These arguments do not form of course a
formal proof, but providing such a proof is extremely difficult.

Our work is a step forward to the understanding of how to design good key
schedules and raises new questions. First, regarding our double-MILP model,
it is natural to ask whether adding some extra constraints to the model that
generates permutations can improve the search. For AES-128 we tried to add
several constraints related to the composition of permutations and their relations
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to the ShiftRows operation. It was in fact the simplest one that gave the best
results. For the other versions of AES, as there is a discrepancy between the size
of the permutation and the size of the subkeys, it is not clear what would good
constraints for these cases be. More generally, more research efforts are needed
to better understand how good key schedules for block ciphers and tweakable
block ciphers should be designed and what the design criteria should be.
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