
NiLoPher: Breaking a Modern SAT-Hardened
Logic-Locking Scheme via Power Analysis Attack

Prithwish Basu Roy1,2, Johann Knechtel1, Akashdeep Saha3, Saideep
Sreekumar1, Likhitha Mankali1,2, Mohammed Nabeel1,2, Debdeep

Mukhopadhyay3, Ramesh Karri2 and Ozgur Sinanoglu1

1 New York University Abu Dhabi, Abu Dhabi, UAE,
{pb2718,johann,sds710,lm4434,mtn2,os22}@nyu.edu

2 NYU Tandon School of Engineering, New York, USA, rkarri@nyu.edu
3 Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India,

{akashdeepsaha95,dmcseiitkgp}@gmail.com

Abstract. LoPher [SSC+20] brings, for the first time, cryptographic security promises
to the field of logic locking in a bid to break the game of cat-and-mouse seen in logic
locking. Toward this end, LoPher embeds the circuitry to lock within multiple rounds
of a block cipher, by carefully configuring all the S-Boxes. To realize general Boolean
functionalities and to support varying interconnect topologies, LoPher also introduces
additional layers of MUXes between S-Boxes and the permutation operations. The
authors of LoPher claim resilience against SAT-based attacks in particular.
Here, we show the first successful attack on LoPher. First, we uncover a signifi-
cant limitation for LoPher’s key-space configuration, resulting in large numbers of
equivalent keys and, thus, a largely simplified search space for attackers in practice.
Second, motivated by their well-proven working against ciphers, we employ a power
side-channel attack against LoPher. We find that ISCAS-85 benchmarks locked with
LoPher can all be broken in few thousands of traces. Finally, we also outline a simple
and low-cost countermeasure to render LoPher more secure.
Keywords: Hardware security · IP piracy · Logic locking · Side-channel attack

1 Introduction
The increasing complexity of Integrated Circuits (ICs) and the rising expenses associated
with establishing and maintaining semiconductor foundries have led to the global expansion
and outsourcing of IC design and manufacturing processes. To streamline design efforts
and meet tight time-to-market deadlines, design houses often acquire Intellectual Property
(IP) cores from third-party vendors. Most design houses also opt for a fabless model, i.e.,
are outsourcing fabrication to offshore foundries offering the latest technology nodes.

In such a globalized IC supply chain, however, the risk of untrusted entities gaining
access to valuable IP or physical ICs introduces security threats. These malicious actors
may engage in activities such as IP piracy, illegal overproduction of ICs, tampering with
ICs by inserting Hardware Trojans (HTs), or reverse engineering the netlist for other
unauthorized means of use [KRRT10]. Furthermore, any sensitive data processing is
threatened by attacks on the IC under operation, e.g., side-channel attacks, fault-injection
attacks, data readout, et cetera [ZF05].

To protect against various threats, logic locking has gained much attention in recent
years [SL22]. Locking means to obfuscate the IC by incorporating additional key-based
logic into the original design. However, there is a continuous game of cat-and-mouse
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in the field of logic locking, with ever-advanced locking schemes versus ever-advanced
attacks; see Section 2.3 for a detailed discussion. Independently, cryptographic ciphers are
well-established for means of protecting sensitive data. While providing clear mathematical
formulations and related security promises, hardware implementations of ciphers are known
to be vulnerable to various attacks also outlined above. See Section 2.1 and 2.2 for more
details on ciphers and related attacks.

LoPher [SSC+20] brings, for the first time, cryptographic security promises to the
field of logic locking. LoPher is embedding the circuitry to lock within multiple rounds
of a block cipher, by carefully configuring all the S-Boxes. To realize general Boolean
functionalities and to support varying interconnect topologies, LoPher introduces layers of
MUXes between S-Boxes and the permutation operations.

Here, we show the first successful attack on LoPher. We also outline simple and low-cost
countermeasures to render LoPher more secure. The contributions of this work can be
summarized as follows:

• A critical review of the implementation structure of LoPher, providing novel insights
on a notable reduction in the key search space in practice.

• The first successful attack on LoPher, based on the well-known and effective principle
of correlation power analysis.

• Proposals for different structural and functional countermeasures to make LoPher
more resilient, with little to no additional overheads.

2 Background and Motivation
2.1 SPN-Based Block Ciphers
Block Ciphers: Block ciphers are a prominent and well-proven mechanism to protect
sensitive data by means of cryptography.

Generally, block cipher algorithms involve the repetition of block-wise operations known
as a round transformation [FS03]. These round transformations within block ciphers
are created by combining two cryptographic sub-systems sharing the same plaintext and
ciphertext space. Another way to define a block cipher is as a set of Boolean transformations
operating on nb-bit vectors, referred to as blocks [Hey01]. This process converts plaintext
blocks of a fixed length nb into ciphertext blocks of the same length under the influence of
a cipher key k. The Boolean transformation in block ciphers typically consists of three
steps: substitution, diffusion, and key mixing, which are all key-dependent. The security
of such systems relies on the repetitive application of such round transformations.

During encryption, the input message is segmented into plaintext blocks, each matching
the block size of the cipher. For example, in the Data Encryption Standard (DES), which
precedes the Advanced Encryption Standard (AES), the block size is 64 bits. In the basic
Rijndael ciphers, there are three variable block sizes: 128, 192, and 256 bits. In the case of
AES, the block size is fixed at 128 bits. This iterative transformation and segmentation of
the input contribute to the security of these block cipher systems [Pat00].

Substitution-Permutation Networks (SPNs): These networks are widely used
architectures in the construction of block ciphers. The SPN architecture is characterized by
alternating layers of substitution operations, through so-called S-Boxes, and permutation
operations. More specifically, the substitution operations involve replacing blocks of input
bits with different output bits using S-Boxes. The latter introduce non-linearities into
the cipher operation, enhancing its resistance against linear and differential cryptanalysis.
The permutation operations, on the other hand, are to re-arrange or shuffle the bits, to
achieve diffusion. The alternation of substitution and permutation operations ensures that
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a change in one input bit propagates across the entire block cipher, providing a high degree
of diffusion in the ciphertext.

In short, the SPN architecture enables two important features/properties for the
block ciphers, namely confusion and diffusion, making the ciphers resistant to various
cryptanalysis techniques [HFPM18].

The security of SPN-based ciphers relies on the properties of the S-Boxes, the number
of rounds of joint substitution and permutation layers, and the key size. As computing
capabilities advance, researchers have to further explore and design SPN-based ciphers with
increased security and efficiency properties, ensuring their relevance in the ever-evolving
landscape of secure data processing. As indicated, the substitution and permutation layers
collectively contribute to achieving confusion and diffusion, making the cipher resistant to
various attacks. The essence of confusion and diffusion is that the internal data processing
is difficult to control in general and practically impossible to predict without knowing the
secret key. The latter is important to remember for the motivation of this work, i.e., a
first-of-its kind attack on LoPher, a logic locking scheme based on SPN ciphers.

PRESENT: This is an ultra-lightweight SPN-based block cipher. Crafted for compact-
ness and efficiency in hardware design, PRESENT operates by default on 31 rounds, on
64-bit blocks, and accommodates keys of either 80 or 128 bits [BKL+07]. Its design caters
to scenarios demanding low-power consumption and optimal chip efficiency, positioning it
as a noteworthy choice for resource-constrained environments [BKL+07].

PRESENT operates as follows. In general, plaintexts pass through 31 rounds until the
final ciphertexts are obtained. Each of the 31 rounds process the intermediate texts using
a varying round key Ki which is used for a linear bitwise permutation and a non-linear
substitution layer. The latter uses 16 S-Boxes of size 4 bits. More specifically, to obtain
Ki, the register holding the user-provided master key, K is rotated by 61 bit positions to
the left, the left-most four bits are passed through the current S-Box, and the round index
is XORed with specific bits of K with the least significant bit of the round counter on the
right. Then, the actual substitution and permutation operations follow. See [BKL+07] for
more technical details.

2.2 Side-Channel Attacks
Side-channel attacks can infer sensitive information by observing and analyzing physical
channels established by ICs’ hardware during operation. That is, these hardware attacks
exploit information leaked through physical implementations of cryptographic systems,
such as power consumption or timing variations [ZF05]. These kind of information leakages
occur due to the impact the environment has on the physical implementation of the system
and the workings of the circuitry, due to the microarchitectural implementation of the IC,
et cetera [ZF05, RD20].

A classical example of a side-channel attack is a power side-channel (PSC) attack
on SPN-based block ciphers. This attack involves observing and analyzing variations in
power consumption that occur during cryptographic operations. That is, the secret key
of a SPN-based block cipher can be inferred by this analysis of power consumption, thus
breaking the cipher’s security promise [BCO04, SW12]. Different PSC attacks have been
demonstrated, like correlation power analysis (CPA) [BCO04], differential power analysis
(DPA) [MS16], or machine learning-based techniques [PHJ+17]. Furthermore, there are
more generic, analytical approaches like test vector leakage assessment (TVLA) [SM15].
Note that PSC attacks apply to ciphers in general, not only to SPN-based block ciphers.

CPA: We focus on the correlation power analysis attack in this work, as this CPA
approach is proven as quite effective against SPN-based block ciphers [BDG16]. During
CPA, the attacker carefully observes and records the power consumption variations of
the cryptographic device while it processes known plaintexts or ciphertexts. These so-
called power traces are then correlated with the intermediate values or key-dependent
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operations, such as those involving the S-Boxes. The attacker aligns the power traces
with the corresponding intermediate values, often obtained through the inverse S-Box
operation. This alignment helps in identifying patterns or correlations between the power
consumption and the internal states, which then helps to infer the secret keys in turn.

More specifically, statistical techniques like Pearson Correlation Coefficient (PCC)
are applied to quantify the relationship between the observed power traces and all the
intermediate values that could possibly arise for all possible key combinations. The goal is
to find correlation peaks that indicate a high likelihood for the correct key for some specific
intermediate value. The peaks indicate points where the power consumption correlates
strongly with key-dependent operations, thereby revealing the correct key that is used
under the hoods in the IC in operation.

Countermeasures such as masking techniques are often suggested to make PSC attacks
more challenging. However, such techniques often involve trade-offs between power,
performance, and area of the IC hardware versus and the improved security [GMOP15,
KGS+11, GM11].

2.3 Logic Locking
Logic locking has emerged as powerful defense mechanism against different threats in the
IC supply chain [SL22]. The concept involves obfuscating the design by incorporating
additional key-based logic into the original circuit. The secret key, essential for the locked
circuit to function as intended, is securely stored on-chip in a tamper-proof memory.

SAT-Based Attacks: The advent of Boolean satisfiability (SAT)-based attacks has
significantly impacted logic locking [SRM15]. This type of attack operates under an
oracle-guided threat model, necessitating a locked netlist and an activated chip, also known
as oracle. The attack involves transforming the locked netlist into conjunctive normal form
(CNF) clauses and using a SAT solver to eliminate incorrect keys, namely by identifying
distinguishing input patterns (DIPs). A DIP is a pattern that produces different outputs
for different keys; for those patterns, the oracle then assists in identifying the key that
confirms with the oracle’s golden behaviour. This process iterates until all incorrect keys
are eliminated, ultimately extracting the overall correct key.

Advanced Locking Schemes, Advanced Attacks: The advent of SAT-based
attacks has prompted a shift in focus within the community towards developing so-called
provably secure logic locking techniques. For example, SAR-Lock [YMRS16] and Anti-
SAT [XS19, YMSR17a] offer a straightforward solution by controlling the key elimination
capability of SAT-based attacks, forcing them to iterate one by one through the entire key
space to find the correct key. A trivial observation in the aforementioned SAT-resilient
locking techniques is that identifying and correcting the sole incorrect input-output pair for
any given incorrect key renders the netlist functional. This insight is leveraged in creating
the so-called bypass attack [XSTF17], which incorporates additional logic to rectify or
bypass the lone incorrect input-output pair in such low-output-corruption locking schemes.
The overhead associated with the bypass circuitry scales linearly with the number of
incorrect input-output patterns generated. Another attack, utilizing structural traces
and known as the removal attack [YMSR17b] has also gained prominence. This attack
scrutinizes the locked netlist to identify the locations where the locking circuitry has been
augmented with the original design. The removal attack obtains a functional netlist by
eliminating this augmentation and introducing a binary constant at that location.

SFLL-HD [YTS19], a generalization of SFLL [YSN+17] and TTLock [YMRS17], is
another provably secure logic locking technique. Here, a portion of the original circuit
undergoes modification through a so-called “Functionality Stripper” component, subse-
quently being restored to its intended functionality with a “Functionality Restore Unit.”
Furthermore, SFLL-HD employs a comparator to generate more incorrect input-output
patterns, thereby challenging the practicality of bypass attacks in terms of overheads. Note
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that the removal attack fails on SFLL-HD as it produces a non-functional netlist that is
unable to recover the “Functionality Restore Unit.” However, the comparator structure
which SFLL-HD utilizes leaves behind some structural traces that can be exploited by the
structural and functional analysis attack on logic locking (FALL) [SS19]. Following this,
CAS-Lock [SXTF20] has been proposed to mitigate the shortcomings of SFLL-HD. Still,
several novel attacks, including both oracle-guided and oracle-less threat models, have
been proposed to nullify CAS-Lock’s defense [SLS21].

Another genre for defending against SAT-based attacks in logic locking involves so-called
SAT-hard structures into the circuit such that each iteration of the SAT solver requires
exponential time to solve. In FullLock [KAHS19], a key-configurable logarithmic-based
network (CLN) is implemented to obscure routes or a selected group of wires, which
function as SAT-hard structures. Despite these efforts, machine learning-based, especially
graph neural network-based attacks like [APK+21] have proven effective in circumventing
such locking techniques.

2.4 Motivation
The perpetual cat-and-mouse game in logic locking emphasizes the continuous need to
develop techniques with solid mathematical security guarantees; otherwise, the community
will likely nullify them over time. The latter is the very motivation for LoPher [SSC+20],
a modern, SAT-hard locking technique that proposes to utilize cryptographic SPN-based
block ciphers to embed a circuit. In other words, the cipher fabric is utilized to realize
logic locking. By inheriting the mathematical security of SPN-based block ciphers, LoPher
aims to provide robust logic locking.

There are no known attacks on LoPher.1 However, considering the well-known success
of PSC attacks against ciphers, in this work, we are the first to thoroughly study the
resilience (or rather lack thereof) of LoPher against such PSC attacks.

2.5 LoPher: A Modern, SAT-Hardened Scheme for Logic Locking
Based on Circuit Embedding into Block Ciphers

As indicated, the main idea of LoPher is to utilize the security offered by SPN-based
block ciphers to securely embed any design of choice into the cipher fabric, so that such
embedding is obfuscated through the cipher’s keys, i.e., the design of choice would only be
operating as intended with the correct key being applied for the cipher. One could also
think of the cipher fabric as some special case of programmable gate array, with the cipher
keys serving to realize the programming of some circuitry of choice (i.e., the design to
protect via means of LoPher logic locking) into the fabric.

By default and without loss of generality, LoPher utilizes PRESENT [SSC+20] as
cipher of choice.

S-Boxes as Logic Gates: As outlined in Sec. 2.1, S-Boxes play a pivotal role in SPN-based
block ciphers by introducing non-linearity. Now, LoPher suggests implementing logic gates
through S-Boxes. Given that each output bit of an S-Box results is a non-linear mapping
of its input bits, such mappings can be configured to achieve any desired Boolean function,
i.e., any logic-gate mapping, namely by fixing specific input bits to binary constants.

For example, consider the input bits i1, i2, i3, i4 to a PRESENT S-Box. The mapping
represented by the second output bit o2 of the PRESENT S-Box can be expressed as:

o2 = i1i2i4 ⊕ i1i3i4 ⊕ i1i3 ⊕ i1i4 ⊕ i1 ⊕ i2 ⊕ i3i4 ⊕ 1 (1)
1A recent but orthogonal attack work has shown that an idea opposite idea to LoPher, namely logic

locking of regular ciphers, can be easily broken by fault attacks [UGP24].
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Table 1: Configuration examples for an S-Box acting as router or switch, i.e., to delegate
selected inputs to specific outputs. Constant ‘0’/‘1’ for inputs values represent the specific
Ks [i].Kc [i] assignments as needed. X denotes do-not-care assignments.

Input Bit Positions Output Bit Positions
i1 i2 i3 i4 o1 o2 o3 o4

I1 0 0 1 I1 X X X
1 I2 0 1 I2 X I2 I2
0 1 I3 1 I3 I3 X I3
1 1 0 I4 I4 I4 I4 X
I1 1 0 1 X I4 I4 I4

By setting i1 and i2 to ‘0’, the above equation simplifies to o2 = i3i4 ⊕ 1 which is the
NAND operation between i3 and i4.

Permutation Operations and S-Boxes for Routing: LoPher furthermore suggests lever-
aging bit-permutation layers of SPN-based block ciphers to establish interconnections
between logic gates. Traditionally, these layers link S-Boxes from one cipher round to the
next. Given that S-Boxes are configured as logic gates in LoPher, these bit-permutation
layers facilitate the gates’ connections based on the desired topology. This is achieved by
configuring specific S-Boxes as buffer gates, which is explained next.

It is important to note that such buffer S-Boxes are crucial to maintain the general
cipher structure/fabric while being able to support the embedding of various designs of
choice. More specifically, these buffer S-Boxes help to route signals across cipher rounds
without engaging in any computational processes. Depending on the circuit to embed,
multiple rounds of buffer S-Boxes may have to be employed to route the output of some
specific S-Box acting as logic gate to the input of another S-Box/gate in subsequent rounds
– see Figure 1 for an example. Table 1 shows further examples for how an S-Box receiving
values to its four input pins can be configured to route out a single value through an
output pin of choice.

As indicated, embedding multi-level circuits with varying fan-ins and fan-outs necessi-
tates connecting the configured S-Boxes within different cipher rounds. Recall that, in an
SPN-based block cipher, the permutation layer determines which S-Box is linked to which
S-Boxes in the next round. For instance, in one round of the PRESENT cipher, there are
16 S-Boxes, with the ith S-Box in round r connecting to the q, q + 4, q + 8, and q + 16
S-Boxes of the succeeding round r + 1, where q = ⌊(i/4)⌋, respectively. Thus, LoPher
utilizes S-Boxes as needed for routing functionality. That is, buffer S-Boxes are also used
to replicate some signals to multiple output bits, thereby realizing multiple fan-outs signals.
Figure 1 shows examples for this feature as well.

Additional MUX Layers for Configuration: As indicated, to configure S-Boxes as logic
gates, buffers or routers, specific input bits of the S-Boxes must be fixed to specific binary
values. To achieve this, LoPher introduces key-based 2 : 1 MUX layers between the S-Boxes
and the permutation layers – see Figure 2. More details for this MUX layer are also
described next.

LoPher Implementation: In the default configuration of LoPher, the PRESENT cipher
works on an 80-bit key and a 64-bit input state. For each round, a 64-bit key is generated
by a key scheduler. Note that, when implementing a logic gate or a router in LoPher,
it is necessary to specify which input bits to the S-Box will represent the inputs to the
gate or the router being implemented. The remaining input bits need to be configured
accordingly. Since there is no direct way of configuring an S-Box in the middle of two
rounds, the vanilla PRESENT cipher is modified for LoPher (Figure 2): after the S-Box
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Figure 1: Embedding a simple circuit c17 of logic level 3 into 7 rounds of LoPher. Gates
in the original circuit and the corresponding S-Boxes have the same color. White S-Boxes
act as routers that pass selected inputs to selected outputs, based on their configuration
keys Kc.
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Figure 2: LoPher round structure. The outputs of S-Box S0 of round r is fed into 4 MUXes.
The other inputs of each of the MUXes are a configuration bit Kc, which determines how
the next S-Boxes should act, and a select bit Ks, respectively, which selects whether the
input from the previous S-Box or the configuration bit should be passed on.

layer, a MUX layer is introduced. Note that the round-key layer of the cipher also remains
present in LoPher, thereby introducing another set of keys Kr. All these layers and keys
are described more formally in the following.

The MUX layer comprises, for each of the S-Box, four 2:1 MUXes. Each MUX takes
two bits as input. One bit is the output bit from the S-Box, while the other bit is a
configuration bit, represented as Kc. The select line of the MUX is another bit, Ks. To
determine whether the next S-Box will act as a logic gate or as router, we need to configure
Kc and Ks accordingly. Equation 2 represents the round equation for one output bit op[i]
of an S-Box j, while Equation 3 represents the round equation for one output bit with the
MUX layer added to it. Here, Kr[i] is the round key bit corresponding to the output bit
of the S-Box, respectively. So, in LoPher, each round has a 64-bit round key Kr, a 64-bit
configuration key Kc, and a 64-bit MUX select key Ks.

op[i] = SBoxj(ip)[i] ⊕ Kr[i] (2)

op[i] = (SBoxj(ip)[i].Ks[i] + Ks[i].Kc[i]) ⊕ Kr[i] (3)

Full Example: Figure 1 shows an example for a small circuit, namely the ISCAS-85
benchmark c17, embedded into the LoPher fabric L. Here, c17 has five primary inputs
and two primary outputs and has a depth of three logic levels.

Starting from the first level of c17, from the first NAND gate on the left, we configure
the S-Box S0, i.e., the first of all 16 in the PRESENT round structure, such that its first
and the second input pins are connected to the c17 ’s primary inputs I3 and I4.

Note that, albeit not shown in figure, there is another MUX layer just above the
S-Boxes in the first round that helps in configuring the S-Boxes via the respective Kc and
Ks keys. More specifically, for S0, Ks = 0110 and Kc = 0011, respectively. This makes
S-Box S0 act as an NAND gate for inputs I3 and I4; refer to Table 2 for this configuration.
The output of the NAND gate will be available from the first output pin of S0. Note that
all four outputs of S0 are routed within the permutation layer to the next round, namely
to S-Boxes S0, S4, S8, and S12, respectively. This is done to maintain a generic structure
that by itself is not revealing hints to attackers, also following the generic structure of
PRESENT. However, since we are only concerned about the data of the first output, we
will set Ks for the corresponding MUX between rounds 1 and 2 to ‘0’. Next, we embed
the second NAND gate of level 1 into the S-Box S9, in a similar way as we did for the first
NAND gate. It is important to note that the selection of which S-Box to pick for each gate,
as well as the configuration of subsequent S-Boxes, all depends on the overall structure
of c17. For example, the first NAND gate has a fan-out of two, but when we configure
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Table 2: Configuration for an S-Box as logic gates, as shown in LoPher [SSC+20]. Constant
‘0’/‘1’ for inputs represent the specific Ks [i].Kc [i] assignments needed to realize the logic.
op refers to the output of the logic.

Gate S-Box Input Bits S-Box Output Bits

XOR

i1 i2 i3 i4 o1 o2 o3 o4
A 0 B 1 op
A 1 B 1 op op
1 A B 0 op
A B 0 0 op
A B 1 0 op

AND 0 1 A B op
A 1 0 B op

OR 1 0 A B op
A 0 1 B op

NOR 1 A 1 B op
A 1 0 B op

NAND A B 1 1 op
0 0 A B op

NOT 0 A 1 0 op
A 0 0 0 op

an S-Box to act as NAND gate, we have only one output available (from the first S-Box
output pin). To deal with this scenario, we need to introduce one “buffer round” where
we will take the input from S0 of round 1 and duplicate the output into two signals to be
used in the actual round 2 (round 3 in the figure, as the buffer round becomes round 2).

To implement this buffer round, S-Box S0 in round 2, which is connected to S0’s first
output, has to act as a router that receives an input from its first input and relays it to
both its second and fourth outputs. This can be achieved by configuring Ks = 0111 and
Kc = 0101, respectively. This will route the outputs of S0 to the S-Boxes S0 and S4 of
round 3 (originally round 2); refer Table 1 for routing configuration. Since round 2 is
a buffer round now, we also have to ensure that the output from S9 of round 1 passes
through this round unchanged. Thus, we configure S2 of round 2 in a way that passes the
second input bit value to the first output bit, which is connected again to S0 of round
3. S-boxes S4 of round 3 also have to receive an input of I5, this input is sent to it by
configuring S-Box S1 of round 2 as a router with Kc = 0101 and Ks = 0111 respectively.
S1 of round 2 is connected to S4 of round 1, which has the configuration of Kc = 0001 and
Ks = 0111 respectively. For implementing the second gate from left in the second level
of c17, we had to find a common successor of S0 of round 1 and S8 of round 1 (which
is the entry point of I2) with minimum depth. It can be observed that S0 reaches S3 of
round 4 via S12 of round 2. S8 of round 1 also is connected to S3 of round 4 via S6, and
S13 of round 2 and 3 respectively. Similarly, we find common successors of the already
embedded gates in LoPher to embed the remaining gates from c17. The remaining two
gates are embedded in the S8 and S3 of round 7, from where the outputs(o23, o22) are
collected from the first and second output pins of S8 and S3. The S-Boxes that were not
used in the embedding process were assigned the Kc = 0000 and Ks = 0000, respectively.

3 Our Observations for LoPher: Reduced Key Space
Claims in LoPher: According to the LoPher authors, the correct output of the embedded
circuit can only be obtained for a unique set of round keys, with the latter being a unique
combination of a 64-bit Kc value, a 64-bit Ks value, and a 64-bit Kr value. Note that
the key Kr can be derived from a PRESENT 80-bit master key. Accordingly, the LoPher
authors claim that breaking LoPher would require to break (r × 128) + 80 bits for r rounds
of LoPher, which is computationally intractable for classical computing technology.

Next, we will prove otherwise—we show how the LoPher key space is smaller in practice.
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Table 3: Truth table of one S-Box input and output in LoPher along with its MUX.
S-Box ip Ks Kc S-Box op

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

It is important to note that these observations and the actual attack, presented in Section 4,
are orthogonal and separate contributions of this work.

Dependence of Kc on Ks: As explained, LoPher comprises a modified version of
PRESENT cipher by adding MUX layers. These layer determine whether the following
S-Box should act as a logic gate or router (i.e., reroute some values to other S-Boxes
in the next round but without computation). The latter feature can be turned off by
setting all Ks bits to ‘1’s: this would make LoPher pass all 4 bits of an S-Box to the
next round as is and maintain the basic operation of the PRESENT cipher, including
its properties of diffusion and confusion. Now also recall how Equation 3 differs from
Equation 2, considering the additional component of Kc[i].Ks[i] describing the MUX layer
and routing feature of LoPher. When Ks[i] is ‘0’, LoPher sends the output of S-Box S0
to the next S-Box, say S0′, which is the S-Box S0 of the next round. When Ks[i] is ‘1’,
however, the configuration bit Kc[i]’s value gets forwarded.

In Table 3, we show the truth table for the Equation 3. It can be seen here that,
when Ks[i] = 0, the value of Kc[i] does not influence the output. This means that, when
Ks[i] = 0, Kc[i] can take either ‘0’ or ‘1’, but the S-Box output op will not be impacted.

Multiple Equivalent Keys: Recall that PRESENT uses 16 S-Boxes per round, each
with 4-bit inputs and 4-bit outputs. For LoPher, these bits are passed on to four 2:1
MUXes with four configuration bits (Kc3 − −Kc0). Also recall that the selection of a
particular S-Box output bit or configuration bit is controlled by the corresponding Ks bit.

Table 4 shows nibbles of an S-Box output, labelled as (O3–O0), along with different
values for Kc and Ks nibbles. Now, the input bit at position Ii is assigned X (i.e., do-
not-care) when Ksi is set to ‘1’, whereas Kci is assigned X when Ksi is set to ‘0’. These
do-not-care assignments will not affect the output of the MUX.

For security analysis, since Ii can vary, we are mainly concerned with the key Kc, which
should be kept secret and fixed for a given round of LoPher. When Ks is set to all ‘1’s,
only one possible Kc value will give the correct output. However, if Ks is set to all ‘0’s,
then all sixteen possible Kc nibble values will give the correct output, which is actually
totally independent of Kc. It can be inferred that the number of possible Kc nibble values
for a given Ks nibble is determined by the number of bits set to ‘1’ in the Ks nibble. The
important security implication of that insight is the following. For a fixed 64-bit Kr and a
64-bit Ks key, we need only be concerned about the positions where the bit is set to ‘1’,
i.e., to pass on the configuration bits. For all the other remaining positions that are set to
‘0’, the Kc bits in those positions can take either ‘1’ or ‘0’ without impacting the outputs
and behaviour of the LoPher circuitry, i.e., they are do-not-care.

In short, if Ks has k bits set to ‘1’, then only 2k possible combinations of Kc bits are
to be considered by an attacker, not all 264.
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Table 4: For a given Ks nibble, there can be multiple equivalent Kc nibbles that provide
the same output for the round. The values at bit position marked as X is do-not-care, i.e.,
does not get transferred as such to the output.

Ks3Ks2Ks1Ks0 I3I2I1I0 Kc3Kc2Kc1Kc0 # Equiv. Kc O3O2O1O0

0000 I3I2I1I0 XXXX 16 I3I2I1I0

1111 XXXX Kc3Kc2Kc1Kc0 1 Kc3Kc2Kc1Kc0

0101 I3XI1X XKc2XKc0 4 I3Kc2I1Kc0

1010 XI2XI0 Kc3XKc1X 4 Kc3I2Kc1I0

0001 I3I2I1X XXXKc0 8 I3I2I1Kc0

1000 XI2I1I0 Kc3XXX 8 Kc3I2I1I0

0111 I3XXX XKc2Kc1Kc0 2 I3Kc2Kc1Kc0

0011 I3I2XX XXKc1Kc0 4 I3I2Kc1Kc0

4 Power Analysis Attack on LoPher
In this work, for the first time in the literature, we show the vulnerability of LoPher
to traditional PSC attacks. Such attacks are promising since, at its heart, LoPher is a
customized implementation of PRESENT, which itself is known to be vulnerable to such
attacks [LBC18, BDG16].

Attack Assumptions: We follow some traditional assumptions for PSC attacks: the
attacker has access to an oracle, i.e., a chip that secretly holds the correct key and can
be monitored for its power consumption and its functional behaviour. Further, we follow
a chosen-plaintexts attack model where we also observe the ciphertexts. This is valid
because the LoPher circuitry embeds/obfuscates some circuitry that is unknown to the
attacker, but the primary inputs and outputs remain accessible as such, since the circuitry
obfuscated by LoPher is still to be used as is.

Recall that, unlike a vanilla PRESENT, aside from the round keys Kr, each round of
LoPher involves an additional MUX layer with a 64-bit configuration key Kc and another
64-bit selection key Ks. We assume that the values for all keys are fixed in the oracle.
We also assume that the attacker can separately identify each round of LoPher from the
captured power traces.

Attack Implementation: Without loss of generality, we utilize the correlation power
analysis (CPA) attack in this work. Unlike for PSC attacks on a regular PRESENT
implementation, here we need to attack each round separately, to infer the 128-bit Kc and
Ks values which are independent for each round. The specific CPA workflow to attack
LoPher is outlined in Algorithm 1, and important aspects are also outlined next.

We devise a Python implementation of LoPher that mimics the IC oracle. We implement
a pipelined version of the LoPher hardware for that purpose; this is a practical assumption
for IC design in general. Besides, to emulate real-world power traces for that IC oracle,
we implement a Hamming distance (HD)-based power model that can be subjected to
variable Gaussian noise. In other words, given some inputs to the LoPher IC oracle, we can
observe real-world power traces that cover the toggling activities of sensitive flip-flops via
HD-based and noisy power traces. Note that, in another instance without Gaussian noise
turned on, this Python implementation also serves as model for generating all hypothetical
power values for all possible key candidates. This instance is typically also referred to the
actual power model for PSC attacks.

For the main body of the CPA, on the high level, we follow a classical approach: we
attack each S-Box separately, while exploring all related, possible key combinations for Kc

and Ks. However, we also have to follow certain customized steps as required to attack
LoPher. For an important example, we have to attack each round separately, since there is
no dependency of Kc and Ks keys across the different rounds in LoPher. Few more details
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Algorithm 1: CPA on LoPher
Input: M: Model of the LoPher circuitry under attack: O: Oracle, i.e., actual LoPher circuitry under

attack; number of S-Boxes per round; R: number of rounds used in M; N : number of input
patterns; I : list of N input patterns; m: number of input bits for each S-Box; HDO: list of
noisy HD power-model values, obtained from actual oracle, for N input patterns.

Output: A list of recovered equivalent keys Kcrec, Ksrec for all R rounds.
1 r = 0 /* Index of current round under attack; reset */
2 Kcrec[r] = Ksrec[r] = ϕ /* Set for all recovered equivalent keys for each round r;

reset */
3 while r < R do
4 s = 0 /* Index of current S-Box under attack; reset */
5 while s < S do
6 i = 0 /* Data value of current Ksguess nibble for current S-Box s; reset */
7 L = ϕ /* Pearson correlation values for Kc, Ks pairs for current S-Box s;

reset */
8 while i < 2m do
9 Ksguess[s] = i ∗ 0x1000000000000000 >> 4 ∗ s /* Shift bits by 4*s to obtain

bit-level Ksguess for current S-Box s */
10 j = 0 /* Data value of current Kcguess nibble for current S-Box s; reset

*/
11 while j < 2m do
12 Kcguess[s] = j ∗ 0x1000000000000000 >> 4 ∗ s /* Shift bits by 4*s to obtain

bit-level Kcguess for current S-Box s */
13 HDM = calculateHammingDistance(M, r, I, Kcguess[s], Ksguess[s]) /* Calculate

HD power model for current S-Box s, considering the current pair
Kcguess, Ksguess */

14 L = L ∪ PCC(HDM , HDO) /* Calculate and store Pearson correlation for
calculated HD power model versus HD power observed from oracle */

15 j = j + 1 /* Increment for next candidate of Kcguess */

16 i = i + 1 /* Increment for next candidates of Ksguess */

17 Kcpred[s], Kspred[s] = getKcKsW ithMaxCorrelation(L) /* Kc, Ks pairs with max
correlation value are tracked for S-Box s */

18 s = s + 1 /* Increment for next S-Box */

19 s = 0 /* New round; reset S-Box index */
20 while s < S do

/* Store recovered keys Kcrec, Ksrec for all S-Boxes for current round */
21 Kcrec[r] = Kcrec[r] ∪ allCombination(Kcpred[s])

Ksrec[r] = Ksrec[r] ∪ allCombination(Kspred[s])

22 r = r + 1 /* Increment r for next round */

23 return Kcrec, Ksrec /* Final list of all guessed keys for all rounds */

are also outlined next.
For each S-Box in each round, we keep track of the key candidates with the highest

PCC value. If there are multiple (Kc and Ks) pairs that give the same highest correlation
value, all have to be stored as possible key values in Kcrec and Ksrec, respectively. Then,
all possible combinations of key values have to be explored across all rounds, to finally
obtain some recovered keys. It is important to keep the latter in mind for the discussion
of the complexity faced by the attackers; recall Section 3 and also see Section 6. Finally,
all possible recovered keys are verified against the functional behaviour of the oracle, and
the ones that comply are considered as correct keys.

5 Experimental Investigation

5.1 Setup
Code: All the codes required for this study, including plot generation, were devised in
Python. The implementation of the LoPher-tailored CPA framework, which is the main
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asset for this study, is outlined in Section 4.
We will release all codes post peer-review.
Computation Platform: All codes were implemented and executed on a desktop

workstation with Intel Xeon Processor W-2245 (8C, 3.9GHz 4.7GHz Turbo HT 16.5MB)
and with 128GB RAM.

Dataset: Experiments are conducted on ISCAS-85 benchmarks. Selected benchmarks
locked using LoPher have been provided to us as courtesy by the LoPher authors.

5.2 Detailed Case Study for c17
In this section, we describe in detail the proposed, custom CPA-based attack on LoPher
for the case of the c17 benchmark. We will also cover the role of noise on the success of
the attack, as well as the dependence of the PCC on the number of power traces.

c17 in LoPher: Recall the embedding of c17 into LoPher from Section 2.5. The first
round has two S-Boxes, S0 and S9, that acted as the two NAND gates residing in the first
logic level of c17. Then there were two other S-Boxes, S4 and S8, that acted as routers that
send the primary inputs I5 and I2 to the subsequent rounds. For all the S-Boxes that were
not used, neither as logic gate nor as switch, default Kc and Ks values of ‘0’ were assigned.
Further recall that we have a software implementation of the LoPher hardware, called
the IC oracle, which is used to obtain noisy power traces for the LoPher-locked design
operating within the PRESENT cipher fabric (Section 4). We also have another simplified
instance of the LoPher hardware that models (without noise) the toggling activities for all
possible key combinations while attacking individual S-Boxes in each round of LoPher.
The latter is also called the hypothetical power model for PSC attacks.

Attack Operation and General Observations: First, we create a set of input
patterns of size N . This set will be provided to the hypothetical power model as well as to
the IC oracle. As for any CPA, the power traces from the IC oracle are correlated against
all the values obtained from the hypothetical power model. However, for attacking LoPher,
we have to tackle each round separately, unlike for other classical ciphers. Again, this is
because the Kc, Ks keys for LoPher are independent for each round.

More details for the attack on c17 are discussed next. For the first S-Box S0, we
consider the Kc, Ks value as a pair of two 4-bit keys. Then we calculate the HD for that
S-Box for each of the N input patterns and the S-Box output, considering all possible key
assignments. Once this list of HD values is obtained from the hypothetical power model,
the PCC is calculated against the noisy power traces obtained from the IC oracle. For
each (Kc, Ks) combination considered for the S-Box S0, the value of the (Ks, Kc) pair
for which the maximum value of PCC is observed is recorded. In Figure 3a, we show the
PCC values for all possible (Kc, Ks) guesses for an input set of size N = 1500. It can be
observed that the (Ks, Kc) pair of (3, 3) has the highest correlation – and that indeed is
the actual (Ks, Kc) value for the S-Box S0 for c17. Similarly, we tackle all other S-Boxes
in that first round of LoPher. For the S-Box S9, which embeds the second NAND gate
of the first logic level of c17, we successfully retrieve the correct (Ks, Kc) pair as (3, 3)
again. For the other two relevant S-Boxes, S4 and S8, that were acting as a router for the
primary inputs I5 and I2, respectively, the highest PCC value revealed the correct (Ks,
Kc) pairs to be (7, 1) (Figure 3c) and (11, 3) (Figure 3d). Thus, have we retrieved all the
(Ks, Kc) pairs of the configured S-Boxes successfully.

Next, we tried to retrieve the (Ks, Kc) pair for the S-Box S1, which is an unused S-Box.
It is important to note that, in the real world, attackers would not be able to differentiate
unused S-Boxes from others; hence, we cannot and do not rely on such information, but
only want to emphasize the different role of S-Boxes here. Now, the actual (Ks, Kc) value
for the S-Box S1 is (0, 0). While computing the PCC values against the noisy power
traces from the IC oracle, we observed something interesting: there were 16 different (Ks,
Kc) pairs, all of whom had shown the same, highest PCC values. This is visualized in
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Figure 3b, where multiple peaks with the same maximum PCC value can be observed.
This behavior is due to the fact, for the S-Box S1, Ks = 0000. This means that Kc is
independent of Ks here. In other words, the output of the S-Box S1 – and thus also its
corresponding HD value that is utilized for the PCC computation – does not depend on
the value of Kc. In short, there are multiple (Ks, Kc) pairs or equivalent keys that work
correctly, and for all those keys the value of Kc is of do-not-care assignment. Recall that
this shortcoming of LoPher was already discussed in Section 3.

Impact of Noise: Power traces obtained in the real world can exhibit varying levels
of noise. Recall that, to emulate the effects of such noisy traces, we implemented the
capability to consider different Gaussian noise profiles for the IC oracle. More specifically,
noise profiles are superimposed onto the HD values observed from each S-Box toggling.

For the following experiments to study the impact of noise, we consider the relevant
S-Boxes S0, S4, S8, and S9 of round 1. We also consider the S-Box S1, which is neither
used as gate nor as router. We perform the first set of experiments by adding relatively low
Gaussian noises, with means of the profiles ranging from 0 to 3 and standard deviations
ranging from 0 to 3. Note that the only positive mean values can be thought of as
being introduced by additional switching activities from other S-Boxes or from other,
non-state-related flip-flops.

We observe that S-Box S8, which acts as router, experiences the largest impact by noise
(Figure 4a). This is because Ks = 1101 for S8, which means that, apart from Kc = 0011, all
other combinations of Kc like Kc = {7, 11, 15} will exhibit very similar baseline correlation
values. Similarly, the (Kc, Ks) combinations for which Kc&Ks = 0001 will also exhibit
high PCC values. After addition of noise, any one of these (Kc, Ks) combinations can be
easily mis-predicted as an incorrect (Ks, Kc) pair.

In contrast, for the S-Boxes S9 (Figure 3e) and S0, Kc = 0011, Ks = 0011. Since there
are limited possible choices for which Kc&Ks = 0011, the probability of finding the correct
(Kc, Ks) remains high even under noise. For the unused S-Box 1, Ks = 0000, which means
that the output is practically independent of the Kc assignment. This is manifested as
distinct peaks having the same PCC values (7 distinct peaks are shown in Figure. 4c).
Even in the presence of noise, these peaks stand out in the traces, thus making it evident
that Ks has been set as ‘0,’ thereby leaking crucial information to the attacker. Due to
such information leakage, we also refer to an assignment of Ks = 0000 as weak assignment.

Impact of Noise under Varying Number of Traces: Next, we study how the
number of traces impacts the correct inference of the (Kc, Ks) pairs for different S-Boxes.
In Figure 5a, we can see that the impact of low noise on the PCC values of various (Kc,
Ks) combinations is large when the number of traces is small, i.e., 100 here. For such small
numbers of traces, even low noise impacts the PCC values quite significantly, which can
easily lead to a mis-prediction of the (Ks, Kc) pair. In Figure 5c, the same noise profile
is added, but the number of traces is 2,500 now. We can see that the increased number
of traces smooths out the imbalances or variations introduced by the noise significantly.
Similar observations can be made for Figure 5b versus Figure 5d, where larger noises are
added, namely with means = {5,7,9}, and standard deviations ranging from 0 to 3.

Hence, as expected, we can conclude that larger number of traces are beneficial to dis-
tinctly identify the maximum PCC values of different (Kc, Ks) combinations. Throughout
our various experiments, we observe that 2,500 traces is a practical choice value for making
correct predictions for all types of S-Boxes.

5.3 Further Results on ISCAS-85 Benchmarks
For the c432 benchmark (160 gates, 36 primary inputs, and 7 primary outputs), a sub-
circuit comprising 4 nodes was embedded into LoPher within 3 rounds by following the
LoPher algorithm for gate selection and locking. Our attack successfully retrieved all the
exact Ks and Kc keys by just considering the top values of (Ks, Kc) pairs for each S-Box.
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In other words, the step for exploration of all possible key combinations was trivially solved
in one iteration. For c499 (202 gates, 41 primary inputs, and 32 primary outputs), a
sub-circuit with 7 nodes was embedded into LoPher within 4 rounds. For this locked circuit,
apart from round 3, all the Kc and Ks assignments were again successfully determined
from the most probable (Ks, Kc pairs). For the third round, the actual Ks value was
among the top 5 predictions based on PCC. Thus, the exploration of key combinations
still succeeded with only few iterations. For c1908 (880 gates, 33 primary inputs, and 25
primary outputs), a sub-circuit of 7 nodes was embedded within 4 rounds of LoPher. For
the fourth round, the guessed Ks value’s most likely nibble differs from the actual one.
Still, the Kc &Ks computation are the same for the actual and the recovered key, making
the latter an equivalent key. The actual Ks value was also found in the top 3 key choices
considering the PCC values. For c6288 (2,406 gates, 32 primary inputs, and 32 primary
outputs), 10 rounds of LoPher were utilized to embed 5 circuit nodes. Across all circuits,
the impact of noise was highest for this case. More specifically, for noise profiles with
mean = 0, standard deviation = 3.0, and for 1,500 input patterns, we see mis-predictions
in rounds 5, 6, 7, and 8, i.e., when we just consider the (Ks, Kc) pairs having the highest
PCC. Still, once considering the top-5 candidates for each S-Box, we can still infer all the
correct key values. For c17, recall that this circuit was completely embedded within 7
rounds of LoPher. Our attack recovered exact or equivalent (Kc, Ks) pairs for all rounds
except for rounds 4 and 5. For the S-Boxes S0, S2, S3 in round 4, the 1st candidate of
(Ks, Kc) were not the same or equivalent to those in the oracle, but the correct values
were still found in the top-10 PCC values for each of the S-Boxes.

Overall, our proposed attack was able to recover actual/exact or equivalent keys for all
circuits within few iterations of exploring the possible key combinations defined by the
top-5/top-10 PCC-based key candidates for each S-Box.

6 Countermeasure: Varying Ks for Unused S-Boxes
In LoPher, there are three configurations for S-Boxes: logic gates, routers, and not in use.
When an S-Box is not in use, recall that the ease of detecting the (Kc, Ks) pair depends
on the value of Ks. That is, the Kc values for a given Ks are dependent on the number of
bits in Ks that are set to ‘1’. When considered together, Kc and Ks have a key space of
28 for each S-Box. Further recall that, when all the Ks bits are set to ‘0’, any Kc value
will work, which significantly reduces the (Kc, Ks) key space, namely from 28 to 24.

To further understand this limitation of LoPher, we performed an analysis where we
varied the number of unused S-Boxes in a given round of LoPher. For the best case, we
assumed that one out of the sixteen S-Boxes, whereas in the worst case, only four S-Boxes
remain unused (i.e., twelve S-Boxes are used). We simulated various scenarios where the
different Ks nibbles of the unused S-Boxes are configured as follows:

1. Each Ks nibble is configured the same, with k ∈ {0, 1, 2, 3, 4} bits set to ‘1’ (Fig-
ure 6a).

2. Each Ks nibbles have random numbers of bits set to ‘1’ (Figure 6b).

3. Some fractions of the S-Boxes have all Ks bits set to ‘1’, while the remaining S-Boxes
have random Ks values assigned (Figure 6c,6d).

4. Some arrangements of S-Boxes which all have equal random probability for having
their Ks values with four, three, or two bits set to ‘1’ (Figure 6e,6f).

For Scenario 1, we observed that, as the number of bits set to ‘1’ decreases, the key
space increases exponentially for a given number of unused S-Boxes. The best scenario, for
the defender, occurs when all the S-Boxes are assigned the value of 0xF , which eliminates
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all equivalent (Kc, Ks) key pairs. For the cases where Ks had three, two, one, and zero
bits set to ‘1’, the number of equivalent (Kc, Ks) key pairs doubled from 210 to 240.
For Scenario 2, we saw that, in the worst-case configuration, where all the 14 Ks values
are randomly assigned, the equivalent key space went up to 240, while in the best-case
configuration, it was around 210. For Scenario 3, we studied two specific sub-cases. In
the first case (Figure 6c), we kept 25% of the Ks nibbles set as 0xF , while the remaining
ones were randomly assigned. In the second case (Figure 6d), 50% of the Ks nibbles were
set to 0xF , while the remaining values were assigned again randomly. For the first case,
we observed a possible worst-case scenario of 230 equivalent (Kc, Ks) pairs, while for the
second case, the worst-case scenario was limited to 220 equivalent key pairs. Finally, for
Scenario 4, it can be seen that a uniform arrangement of four and three bits set to ‘1’
(Figure 6e) performs better – as in the numbers of equivalent keys falls in the range of 27 –
when compared to arrangements with four, three, and two bits equi-probably set to ‘1’ –
the number of equivalent keys are in the range of 214 here.

From all the above observations, it can be said that, for an effective countermeasure
that avoids redundant key assignments, all the unused S-Boxes should have their Ks values
either a) all set to all ‘1’s or b) configured for three and four bits having equi-probably
been set to ‘1’. Note that the choice a), while the best-case scenario in principle, it is easy
to explore by attackers as well. Hence, the choice b) is the more suitable. Other choices,
especially weak ones with all bits set to ‘0’ or only a single bit set to ‘1’ should be avoided.

It is important to note that this outlined countermeasure incurs zero overheads/cost,
as it only requires to re-configure the already existing LoPher circuitry. In future work, we
will also explore this countermeasure in more detail and end-to-end, i.e., in terms of how
many more traces are needed for PSC attacks with that countermeasure applied.

7 Conclusions and Future Work
In this work, we have provided a critical review of, and a successful attack on, a supposedly
secure logic-locking technique called LoPher [SSC+20]. LoPher brings the security promises
of cryptography to the domain of logic locking, and its strength lies in the idea of embedding
(selected parts of) a design IP within multiple rounds of a block cipher, taking advantage
of the inherent resistance of block ciphers against SAT-based attacks on locking.

To fully support different Boolean gates and varying interconnect topologies found
in any regular design to lock, however, LoPher extends the block-cipher architecture to
a) re-configure the S-Boxes and b) include an additional MUX layer between S-Boxes
and permutation operations in every cipher round. We have critically analyzed these
architectural changes and noted that adding such layers comes with considerable impact
on the claimed security: while the main part of the key space of LoPher is claimed to be
2128 (for 64-bit Kc and 64-bit Ks configuration keys), our analysis shows otherwise. We
show that the value of Kc is closely related to the value of Ks, which means there are
multiple Kc and Ks assignments that can act as equivalent keys. This reduces the effective
key space drastically.

We have exploited this fact in the second major contribution of this work: a tailored
correlation power analysis attack. We have attacked a set of ISCAS-85 circuits (locked and
provided as courtesy by the LoPher authors), where we successfully retrieved all the Ks

and Kc key combinations, either the exact ones or equivalent ones, in only few thousands
traces, even in the presence of considerable noise for the power traces. Our attack clearly
demonstrates that LoPher is vulnerable to power side-channel analysis.

We have also outlined a simple countermeasure to render LoPher more resilient against
such attacks. Toward this end, we first explored the nature of weak key assignments which
are easy to detect by correlation analysis and thus reduce the effective key space. Second,
based on that analysis, we also propose the use of strong and randomized key assignments,
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in particular for the Ks nibble of all unused S-Boxes. Note that this countermeasure
requires no additional circuitry and, thus, incurs no cost or overheads to LoPher.

In future work, we will extend our experimental study to an FPGA implementation of
LoPher including the proposed countermeasure. Recall that we already model a real-world
scenario of noisy power traces, but using an FPGA and actual power measurement is still
relevant. We also aim to study another countermeasure: given the minimum number of
traces required to break LoPher under varying noise, an additional system-level circuitry
may control and revise the embedding of the design IP at runtime. This is feasible since
circuits can be embedded in many different ways into the LoPher fabric, given the flexibility
of assignment of gates and routing topologies to different S-Boxes and a varying number
of cipher rounds to use for LoPher. However, given the presence of equivalent keys, such a
countermeasure would require a careful investigation for its true benefits.
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(a) (Ks, Kc) pair (3,3) with the highest PCC value is correctly identified for S-Box S0.
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(c) (Ks, Kc) pair (7,1) with the highest PCC value is correctly identified for S-Box S4.
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(d) (Ks, Kc) pair (b,3) with the highest PCC value is correctly identified for S-Box S8.
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(e) (Ks, Kc) pair (3,3) with the highest PCC value is correctly identified for S-Box S9.

Figure 3: Attack on c17 embedded in LoPher. We successfully recover the (Ks, Kc) pairs
for the four relevant S-Boxes S0, S1, S4, S8 and S9.
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(a) Variation of PCC under noise, S-Box S8 which is configured as a router.

9_
0_

0
9_

1_
0

9_
2_

0
9_

3_
0

9_
4_

0
9_

5_
0

9_
6_

0
9_

7_
0

9_
8_

0
9_

9_
0

9_
a_

0
9_

b_
0

9_
c_

0
9_

d_
0

9_
e_

0
9_

f_0
9_

0_
1

9_
1_

1
9_

2_
1

9_
3_

1
9_

4_
1

9_
5_

1
9_

6_
1

9_
7_

1
9_

8_
1

9_
9_

1
9_

a_
1

9_
b_

1
9_

c_
1

9_
d_

1
9_

e_
1

9_
f_1

9_
0_

2
9_

1_
2

9_
2_

2
9_

3_
2

9_
4_

2
9_

5_
2

9_
6_

2
9_

7_
2

9_
8_

2
9_

9_
2

9_
a_

2
9_

b_
2

9_
c_

2
9_

d_
2

9_
e_

2
9_

f_2
9_

0_
3

9_
1_

3
9_

2_
3

9_
3_

3
9_

4_
3

9_
5_

3
9_

6_
3

9_
7_

3
9_

8_
3

9_
9_

3
9_

a_
3

9_
b_

3
9_

c_
3

9_
d_

3
9_

e_
3

9_
f_3

9_
0_

4
9_

1_
4

9_
2_

4
9_

3_
4

9_
4_

4
9_

5_
4

9_
6_

4
9_

7_
4

9_
8_

4
9_

9_
4

9_
a_

4
9_

b_
4

9_
c_

4
9_

d_
4

9_
e_

4
9_

f_4
9_

0_
5

9_
1_

5
9_

2_
5

9_
3_

5
9_

4_
5

9_
5_

5
9_

6_
5

9_
7_

5
9_

8_
5

9_
9_

5
9_

a_
5

9_
b_

5
9_

c_
5

9_
d_

5
9_

e_
5

9_
f_5

9_
0_

6
9_

1_
6

9_
2_

6
9_

3_
6

9_
4_

6

Sbox No_Ks _Kc

0.50

0.25

0.00

0.25

0.50

0.75

1.00

PC
C 

Va
lu

e

Max match 9_3_3
mean=0 std_dev=0
mean=0 std_dev=1.0
mean=0 std_dev=2.0
mean=0 std_dev=3.0
mean=1 std_dev=0
mean=1 std_dev=1.0
mean=1 std_dev=2.0
mean=1 std_dev=3.0
mean=2 std_dev=0
mean=2 std_dev=1.0
mean=2 std_dev=2.0
mean=2 std_dev=3.0
mean=3 std_dev=0
mean=3 std_dev=1.0
mean=3 std_dev=2.0
mean=3 std_dev=3.0

(b) Variation of PCC under noise, S-Box S9 which is configured as NAND gate.
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Figure 4: Impact of low-noise profiles on different types of S-Boxes in c17.
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(a) Variation of PCC with the addition of noise for S8, low noise, # traces = 100
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(b) Variation of PCC with the addition of noise for S8, high noise, # traces = 100
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(c) Variation of PCC with the addition of noise for S8, low noise, # traces = 2,500
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(d) Variation of PCC with the addition of noise for S8, high noise, # traces = 2,500

Figure 5: Impact of noise and number of traces on PCC values, for c17.
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Figure 6: Analyzing different possible assignments of Ks nibbles for unused S-Boxes and
their role for the number of equivalent (Kc, Ks) pairs. This analysis is done on 10,000
different, randomized logic and routing embeddings in a single round of LoPher.
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