
C’est très CHIC: A compact
password-authenticated key exchange from

lattice-based KEM

Afonso Arriaga1 , Manuel Barbosa2 , Stanislaw Jarecki3 , and

Marjan Škrobot1

1 SnT - University of Luxembourg
{afonso.delerue, marjan.skrobot}@uni.lu
2 University of Porto (FCUP), INESC-TEC

and Max Planck Institute for Security and Privacy
mbb@fc.up.pt

3 University of California at Irvine
stanislawjarecki@gmail.com

Abstract. Driven by the NIST’s post-quantum standardization efforts
and the selection of Kyber as a lattice-based Key-Encapsulation Mech-
anism (KEM), several Password Authenticated Key Exchange (PAKE)
protocols have been recently proposed that leverage a KEM to create
an efficient, easy-to-implement and secure PAKE. In two recent works,
Beguinet et al. (ACNS 2023) and Pan and Zeng (ASIACRYPT 2023)
proposed generic compilers that transform KEM into PAKE, relying on
an Ideal Cipher (IC) defined over a group. However, although IC on a
group is often used in cryptographic protocols, special care must be taken
to instantiate such objects in practice, especially when a low-entropy key
is used. To address this concern, Dos Santos et al. (EUROCRYPT 2023)
proposed a relaxation of the IC model under the Universal Composabil-
ity (UC) framework called Half-Ideal Cipher (HIC). They demonstrate
how to construct a UC-secure PAKE protocol, EKE-KEM, from a KEM
and a modified 2-round Feistel construction called m2F. Remarkably, the
m2F sidesteps the use of an IC over a group, and instead employs an IC
defined over a fixed-length bitstring domain, which is easier to instanti-
ate.
In this paper, we introduce a novel PAKE protocol called CHIC that im-
proves the communication and computation efficiency of EKE-KEM, by
avoiding the HIC abstraction. Instead, we split the KEM public key in
two parts and use the m2F directly, without further randomization. We
provide a detailed proof of the security of CHIC and establish precise se-
curity requirements for the underlying KEM, including one-wayness and
anonymity of ciphertexts, and uniformity of public keys. Our findings
extend to general KEM-based EKE-style protocols and show that a pas-
sively secure KEM is not sufficient. In this respect, our results align with
those of Pan and Zeng (ASIACRYPT 2023), but contradict the analyses
of KEM-to-PAKE compilers by Beguinet et al. (ACNS 2023) and Dos
Santos et al. (EUROCRYPT 2023).

https://orcid.org/0000-0002-1967-3390
https://orcid.org/0000-0002-6848-5564
https://orcid.org/0000-0002-5055-2407
https://orcid.org/0000-0002-7132-7591

Finally, we provide an implementation of CHIC, highlighting its mini-
mal overhead compared to the underlying KEM – Kyber. An interesting
aspect of the implementation is that we reuse the rejection sampling
procedure in Kyber reference code to address the challenge of hashing
onto the public key space. As of now, to the best of our knowledge, CHIC
stands as the most efficient PAKE protocol from black-box KEM that
offers rigorously proven UC security.

Keywords: Password Authenticated Key Exchange, Key Encapsulation
Mechanism, Universal Composability, Post-Quantum, Ideal Cipher.

1 Introduction

The problem of attaining secure communication online is commonly addressed
by employing Authenticated Key Exchange (AKE) protocols that involve high-
entropy long-term private keys, often relying on Public Key Infrastructure (PKI).
However, in scenarios where humans are involved in the authentication process,
secure storage of long-term private keys by users is impractical, and most ap-
plications resort to a simpler and cost-effective solution—human-memorizable
passwords. In most cases, applications carry out password-based authentication
using (variants of) the bare-bones protocol where the user sends a password
across the network to be checked with respect to a previously stored record
(usually a salted hashed value) of the same password. This protocol, which is
chosen due to its usability and ease of deployment, has a number of disadvantages
from the security point of view. An obvious shortcoming is that the password
is explicitly transferred across the communications channel, and so it requires a
previously established secure and one-side-authenticated channel to the server
checking the password. This opens the way to a number of well-known attacks,
such as impersonating the server via a phishing attack.

Password Authenticated Key Exchange (PAKE) [6,5,9] is a cryptographic
primitive that can mitigate some of the limitations associated with low-entropy
passwords, and bootstrap a shared password into a cryptographically strong
session key. Intuitively, PAKE protocols guarantee that the only way to extract
a password from a user over the network is to actively perform a password-
guessing attack by trying to run the protocol with the user multiple times.

The most efficient PAKE constructions to date, namely the CPACE protocol
that has been recently chosen for standardization by the IETF [2], are built as
variants of the Diffie-Hellman protocol and they achieve security with essentially
no bandwidth overhead and minimal computational overhead—in CPACE this
overhead is reduced to hash operations. Indeed, one of the takeaways of the
CPACE selection process was that performance is critical for adoption.4 This
is because target applications include resource-constrained devices (e.g., IoT
networks) and ad-hoc contexts (e.g., ePassports and file transfers). Therefore,
a natural question to ask in the current context of migration to post-quantum
4 https://mailarchive.ietf.org/arch/msg/cfrg/usR4me-MKbW4QO0LprDKXu3TOHY

2

https://mailarchive.ietf.org/arch/msg/cfrg/usR4me-MKbW4QO0LprDKXu3TOHY

secure cryptography is how to construct efficient PAKE protocols that are not
Diffie-Hellman based and that, ideally, can leverage the recent results of the
NIST post-quantum competition.

KEM-based PAKE protocols. In this direction, and very recently, several
works [22,27,4,26,3] proposed black-box constructions of PAKE from a Key-
Encapsulation Mechanism (KEM) and an Ideal Cipher (IC) or its variants (see
below).5 Conceptually, this KEM-based design paradigm sheds new light on the
thirty-year-old Encrypted Key Exchange (EKE) approach to PAKE by Bellovin
and Merritt [6]. From a practical point of view, this recent focus on the generic
conversion of KEM into PAKE is largely driven by the efforts of the National In-
stitute of Standards and Technology (NIST) to standardize Post-Quantum (PQ)
cryptographic schemes, including KEM and digital signatures. In particular, the
standardization of the first post-quantum KEM was just concluded [24] and the
scheme is based on Crystals-Kyber, a module-lattice-based KEM. Kyber has un-
dergone extensive scrutiny regarding its security and anonymity properties, as
well as secure and efficient implementation, and this body of research can be
leveraged when constructing PAKE protocols that use KEM in a black-box way.

A common characteristic of the above KEM-based PAKE proposals is their
reliance on Random Oracle (RO) and Ideal Cipher (IC) models.6 Despite the
similarities among these proposed protocols, they still differ in subtle ways and
can be categorized based on the model of analysis, design structure, and KEM
security properties used to establish PAKE security. The protocols put forth by
Bradley et al. [10], McQuoid et al. [22], Beguinet et al. [4] and Dos Santos et
al. [27] are analysed under Universal Composability (UC) PAKE framework [12],
while Pan and Zeng [26] and Alnahawi et al. [3] prove security under the game-
based PAKE definition of Bellare-Pointcheval-Rogaway (BPR) [5]. We note that
the UC PAKE security model of Canetti et al. [12] is significantly stronger than
the BPR model. The superiority of the former springs fundamentally from the
UC framework’s ability to capture security under arbitrary correlations of pass-
word inputs, which is beyond the scope of current game-based PAKE security
notions. Indeed, another important takeaway from the CPACE selection process
within the IETF, was the relevance of a (thoroughly scrutinized) proof of security
in the UC framework.7

Two approaches to KEM-based PAKE. Prior KEM-based PAKE proto-
cols follow two distinct design patterns. Firstly, sPAKE [22], CAKE [4], and
PAKE-KEM [26], follow a procedure where the initiator Alice employs an IC
to encrypt a KEM public key under her password, and the responder Bob de-
crypts this public key and uses it to encapsulate a secret value.8 This secret value

5 This list can be extended by the PAPKE protocol of [10], which was originally pre-
sented as a generic PAKE from PKE and IC, but it can be recast as construction
from KEM and IC.

6 In [22] security is claimed based solely on RO, but that claim has not been formally
established.

7 https://mailarchive.ietf.org/arch/msg/cfrg/47pnOSsrVS8uozXbAuM-alEk0-s
8 In sPAKE [22] the IC is replaced by a weaker primitive, see more below.

3

https://mailarchive.ietf.org/arch/msg/cfrg/47pnOSsrVS8uozXbAuM-alEk0-s

is used by both parties as an input to a hash function—modeled as a Random
Oracle (RO)—to derive a session key. However, Bob does not send the KEM
ciphertext to Alice in the clear but instead utilizes a second IC to encrypt the
KEM ciphertext before transmitting it to the initiator. This approach ensures
that both parties are committed to a single password via IC encryption, based
on the collision-freeness of IC outputs. A practical disadvantage of this two-sided
usage of IC is that it requires two distinct IC instances, one over the domain
of KEM public keys, and the other over the domain of KEM ciphertexts. In
lattice-based KEMs, these domains are typically different, and both of them are
large, which makes implementing IC for these domains non-trivial.

The second design pattern, employed in protocols PAPKE [10], OCAKE [4],
EKE-KEM [27], and PAKEM [3], takes a slightly different approach. Here, the
KEM ciphertext obtained by Bob is sent in the clear, accompanied by a key con-
firmation tag, whose purpose is to make Bob’s message a commitment to a single
password guess.9 The second design uses only one instance of IC, which makes it
more efficient, and it does not require special properties of KEM ciphertexts, e.g.
that they are indistinguishable from random elements of the ciphertext domain.
In this work, we focus on efficiency and therefore adopt this design pattern.

Opening up the IC blackbox. The sPAKE and EKE-KEM protocols of resp. [22]
and [27] deviate from the above pattern by replacing the Ideal Cipher on the
domain of public keys (and ciphertexts in [22]) with a weaker and easier-to-
construct primitive. One motivation for reducing the requirement on the password-
based encryption component is the difficulty of efficiently instantiating IC on a
group domain—cf. the discussion of the costs of possible approaches in e.g. [27],
which is necessary to instantiate the “KEM+IC" design for PAKE using KEM in-
stantiated as an Elliptic-Curve Diffie-Hellman. However, instantiating the same
KEM+IC approach using a lattice-based KEM is also non-trivial because it
would require a special-purpose IC on a domain of large bit strings (around one
kilobyte in the case of Kyber). Even though there exist methods for extending
an IC domain to bitstrings of arbitrary size, e.g., using Feistel networks, [13,16]
these generic IC domain extension techniques would add significant complexity
to an implementation and incur a significant performance penalty.

Motivated by the above, McQuoid et al. [22] proposed to replace IC in this
KEM+IC approach to PAKE with a weaker primitive of a Programmable-Once
Public Function (POPF), which they showed can be instantiated with a 2-round
Feistel network (2F). In particular, in the case of Kyber KEM, the 2F encryption
would involve just one RO hash onto the KEM public key domain, and one RO
hash onto a domain of bitstrings of length 3λ, where λ is the security parameter.

9 A seeming exception is the PAPKE protocol [10], which does not attach such a
tag explicitly, but it requires a strong robustness property of the KEM, and the
generic method for achieving this property includes expanding a CCA-secure KEM
ciphertext with a key-committing tag [1]. Protocol PAKEM [3] also diverges from the
pattern because it employs an additional message flow where Alice sends her own key
confirmation tag to Bob. This last message achieves explicit mutual authentication
in the Alice-to-Bob direction, but it adds an extra round to the protocol.

4

However, this way of implementing password encryption would add at least 384
(=3x128) bits to the KEM ciphertext. Moreover, as mentioned in footnote 6, the
analysis of the resulting protocol as a UC-secure PAKE is currently incomplete.
Dos Santos et al. [27] modify the 2-round Feistel network used by [22]—calling
the result a modified 2-Feistel (m2F)—by reducing the bandwidth overhead to
256 (=2x128) bits: this is achieved at the cost of adding an IC on 256-bit strings
into the encryption procedure. The security proof in [27] shows that m2F realizes
a UC abstraction of a (randomized) Half-Ideal Cipher (HIC), and then shows that
the above KEM+IC approach to UC PAKE works also in the case of KEM+HIC.
However, because it is a randomized encryption using a 256-bit random seed, it
adds at least 256 bits to the encrypted public key.
Main contribution: Compact m2F and bandwidth-minimal KEM-to-
PAKE compiler. In this paper we revisit the construction of [27] and reduce
the bandwidth overhead to a minimum. We observe that, for Kyber and other
post-quantum KEMs, the public key can be split into two components, one of
which is a 32-byte uniform seed ρ, and ask the following natural question:

Can we reduce the bandwidth overhead of the m2F by using ρ as the
ephemeral randomness r in the m2F construction?

We answer this question in the affirmative by giving direct proof that the re-
sulting construction is a UC secure PAKE in the joint Ideal Cipher and Random
Oracle model. By direct proof we mean that we do not rely on the Half-Ideal-
Cipher abstraction of [27], and instead perform the proof over the fully expanded
construction. The reason for this is that the notion of a UC-secure Half-Ideal-
Cipher crucially relies on the fact that the m2F construction is randomized,
i.e., that honest parties choose an ephemeral randomness that is independent of
the input public key. By unifying this ephemeral randomness with a public-key
component we lose this property and the ability to modularize the m2F con-
struction. We call our construction CHIC for Compact Half-Ideal-Cipher, as a
way to acknowledge the inspiration in the work of [27].
Second contribution: Requirements for the KEM. We provide a detailed
proof of the security of CHIC and establish precise security requirements for the
underlying KEM, including passive one-way security (OW-CPA) and pseudo-
uniformity of public-keys (UNI-PK), necessary to achieve UC PAKE security.
Like prior works, our proof shows that anonymity is also a necessary property for
the security of the construction. However, we show that passive anonymity (i.e.,
indistinguishability of public keys and ciphertexts) is not sufficient to conclude
the proof. We show that CHIC requires a ANO-1PCA-secure KEM10, and that our
analysis extends to the proofs by Beguinet et al. [4] and Dos Santos et al. [27],
despite the claims that ANO-CPA-secure KEM would be sufficient.
Practical contribution: Implementation and experimental evaluation.
We give an implementation of the protocol, clarifying all aspects of real-world de-
ployment of the protocol, and we confirm experimentally the efficiency properties
10 We refer the reader to Definition 3.

5

of the protocol. Our implementation builds on the reference implementation of
Kyber—the full construction offering CCA security [8,28] and anonymity [15,20,29].
We clarify how to instantiate the m2F components showing, in particular, that
hashing into the public-key space of Kyber can be done by reusing the code
that the Kyber created for expanding the seed ρ in the public key to a matrix
over the algebraic ring that underlies the KEM construction. Technically, this
entails proving that the rejection sampling procedure specified by Kyber is indif-
ferentiable from a random oracle; a result that may be of independent interest.
Compared to EKE-KEM [27], CHIC saves 32 bytes in bandwidth costs, while also
bringing mild computational savings by (1) eliminating the need for Alice to
generate 32 bytes of random coins, and (2) simplifying the inputs/outputs of the
m2F construction, with the right wire carrying only part of the public key. The
implementation is available as supplementary material.

2 Preliminaries

In this section, we present the definition of Key Encapsulation Mechanism (KEM)
and introduce its security properties of interest for this work.

Definition 1. A Key Encapsulation Mechanism (KEM) scheme is a tuple of
polynomial-time algorithms KEM = (Keygen,Encap,Decap) that behaves as fol-
lows:

– Keygen(λ) → (pk, sk): a key-generation algorithm that on input a security
parameter λ, outputs a public/private key pair (pk, sk).

– Encap(pk) → (c,K): an encapsulation algorithm that on input a public key
pk, generates a ciphertext c and a secret key K.

– Decap(sk, c)→ K: a decapsulation algorithm that on input a private key sk
and a ciphertext c, output a secret key K.

For correctness, we require that for any key pair (pk, sk) ← Keygen(λ), and
ciphertext and secret key (c,K)← Encap(pk), we have that K = Decap(sk, c).

KEM security properties. The standard security notion for key encapsulation
mechanisms and public-key encryption in general is indistinguishability under
chosen-ciphertext attacks (IND-CCA). In addition to achieving IND-CCA secu-
rity, many applications also demand the property of anonymity in a KEM. An
anonymous KEM ensures that a ciphertext conceals the identity of the recipient
by revealing no information about the public key employed in the encapsula-
tion process. Unsurprisingly, the standard definition of this property is a logical
adaptation of IND-CCA known as ‘anonymity under chosen-ciphertext attacks’
(ANO-CCA), and with the adversary’s objective being to determine which of two
public keys was used to generate the given challenge ciphertext.

It has been widely established that Kyber is IND-CCA [8,28] and ANO-CCA
[15,20,29]. However, for our construction, we rely on weaker properties, namely

6

‘one-wayness under plaintext-checkable attacks’ (OW-PCA)11 and anonymity un-
der plaintext-checkable attacks (ANO-PCA). In addition, we require a KEM with
‘splittable and pseudo-uniform public-keys’ (UNI-PK). All these notions are de-
fined in Fig. 1.

Exp ANO-iPCAA
KEM(λ)

(pk0, sk0)← Keygen(λ)

(pk1, sk1)← Keygen(λ)

b←$ {0, 1}
(c∗,_)← Encap(pkb)

b′ ← APCOi,c∗ (sk0,·,·)(pk0, pk1, c
∗)

return b == b′

Oracle PCOi,c∗(sk, c,K)

[A can only make i queries]
if c == c∗return ⊥
return K == Decap(sk, c)

Exp OW-iPCAA
KEM(λ)

(pk, sk)← Keygen(λ)

(c∗,_)← Encap(pk)

K ← APCOi,⊥(sk,·,·)(pk, c∗)

return K == Decap(sk, c∗)

Exp UNI-PKA
KEM,Split(λ)

(pk0,_)← Keygen(λ)

(r0,M0)← Split(pk0)

(r1,M1)← Nλ ×Gλ

b←$ {0, 1}
b′ ← A(rb,Mb)

return b == b′

Fig. 1. Security experiments defining properties of KEM: (1) One-Wayness under
Plaintext-Checkable Attacks (OW-iPCA); (2) Anonymity under Plaintext-Checkable
Attacks (ANO-iPCA); (3) Splittable and pseudo-Uniform Public-Keys (UNI-PK). A is
restricted to making at most i queries to the plaintext-checking oracle PCO. In par-
ticular, if i = 0, the plaintext-checking oracle PCO is not available. In ANO-iPCA
security experiment, A is not allowed to query the plaintext-checking oracle PCO on
the challenge ciphertext c∗. This restriction is not imposed in OW-iPCA experiment.

To elaborate, we first adopt the notion of one-wayness under plaintext check-
able attacks from [25]. We consider an adversary whose goal is to decrypt a KEM
ciphertext without the private decapsulation key but with access to a plaintext-
checking oracle. This oracle allows the adversary to confirm if the decapsulation
of a ciphertext under the challenge decryption key corresponds to a particular
plaintext (i.e., the secret key K in the context of KEM).12

11 Our construction can be proven secure assuming the underlying KEM has only ‘one-
wayness under chosen-plaintext attacks’ (OW-CPA), though the proof is less tight.

12 In IND-CCA security game, the decapsulation oracle can be queried on anything
except the challenge ciphertext. However, in OW-PCA, the plaintext-checking oracle
is unrestricted. Despite this gap, one can show that IND-CCA implies OW-PCA with a
tight reduction, losing only a constant factor 2. For the proof, we refer to Appendix B.

7

Definition 2. (KEM one-wayness under plaintext-checkable attacks)
A Key Encapsulation Mechanism (KEM) scheme is said to be OW-iPCA secure
if for any PPT adversary A engaged in the OW-iPCA security game, where A is
restricted to making at most i queries to the plaintext-checking oracle PCO, the
advantage of A defined as:

AdvOW-iPCA
KEM,A (λ)

def
= Pr[OW-iPCAA

KEM(λ) = 1] (1)

is a negligible function of the security parameter λ. Experiment OW-iPCA is
defined in Fig. 1.

Similarly, we also adopt a weaker variant of the ANO-CCA property, where
the decapsulation oracle is replaced with the less-capable plaintext-checking or-
acle. We call this definition ANO-PCA. In ANO-CCA game, the decryption or-
acle disallows queries on the challenge ciphertext. We preserve this restriction
in ANO-PCA so it is trivial to see that ANO-CCA implies ANO-PCA with no
tightness loss in the reduction, as the plaintext-checking oracle could be easily
simulated with a decapsulation oracle.

Definition 3. (KEM anonymity under plaintext-checkable attacks) A
Key Encapsulation Mechanism (KEM) scheme is said to be ANO-iPCA secure if
for any PPT adversary A engaged in the ANO-iPCA security game, where A is
restricted to making at most i queries to the plaintext-checking oracle PCO and
is prohibited from calling the oracle on the challenge ciphertext, the advantage
of A defined as:

AdvANO-iPCA
KEM,A (λ)

def
= 2 · Pr[ANO-iPCAA

KEM(λ) = 1]− 1 (2)

is a negligible function of the security parameter λ. Experiment ANO-iPCA is
defined in Fig. 1.

Finally, a less common security requirement but which proved to be essential
for the constructions of PAKE protocol from KEM and IC [27,4,26,3] is public
key indistinguishability from uniform. In other words, the public keys output by
the KEM key generation algorithm must be computationally indistinguishable
from public keys uniformly sampled from the same key space. This notion is
also known as fuzziness [4,26]. In this work, we extended the requirements for
KEM public keys. Namely, CHIC requires a KEM with splittable and uniform
public keys that meet the following criteria: (1) the public key can be encoded
as a bitstring and a group element; (2) a random oracle indifferentiable hash
onto the group exists; and (3) honestly generated and decomposed public keys
appear uniformly distributed.13

13 Later in our construction, the KEM public key will be split into two parts. The
first part will be expanded to match the range of the second part—which is an
element of a group—and used to mask the second part of the public key. The ex-
pansion function will be treated as a random oracle in our security proof. While it

8

Definition 4. (KEM with splittable and pseudo-uniform public keys)
A KEM scheme has splittable and pseudo-uniform public keys if (1) there exists
an efficiently computable and invertible map Split : PKλ → Nλ ×Gλ, such that
each security parameter λ defines domains PKλ, Gλ, and Nλ = {0, 1}p(λ) for
some polynomial p; (2) there exists an RO-indifferentiable hash from Nλ onto
Gλ; (3) for any PPT adversary A engaged in the UNI-PK security game, the
advantage of A defined as:

AdvUNI-PKKEM,Split,A(λ)
def
= 2 · Pr[UNI-PKA

KEM,Split(λ) = 1]− 1 (3)

is a negligible function of the security parameter λ. Experiment UNI-PK is defined
in Fig. 1.

PQ KEMs with spittable and uniform public keys. Crystals-Kyber [28]
public key consists of a seed ρ ∈ {0, 1}256 and a group element t ∈ Rk

q , where Rq

is the ring Zq[X]/(Xn +1), q = 3329 is a small prime, n = 256 and k ∈ {2, 3, 4}
depending on the choice of the security parameter λ. Consider the split algorithm
for Kyber KEM to be the trivial breakdown of Kyber public keys into these two
components. Seed ρ is derived from expanding a purely random bitstring d ∈ B32

using a hash function G(d) that produces two 32-byte outputs, with ρ being one
of them. In the security proofs of Kyber [28,15,20,29], function G is modeled as
a random oracle, which ensures that the distribution of ρ is uniform. In FIPS
203 [24] standard, function G is specified to be instantiated as SHA3-512. ρ
is then further expanded into a large stream of candidate 12-bit values via an
eXtendable Output Function (XOF), which Kyber instantiates with SHAKE-128.
From this stream, the first candidate values within the range [0, 3329) are selected
to form the public matrix A ∈ Rk×k

q in the NTT domain. This process is known
as rejection sampling and, again, can be modelled as a random oracle mapping ρ
to A. Matrix A is then used to compute the second component of the public key
as a Module-LWE instance. Therefore, the Kyber public key can be shown to
be pseudo-uniform under the decisional MLWE assumption [4] in the Random
Oracle Model. To instantiate the RO that maps elements in Nλ = {0, 1}256 to
Gλ = Rk

q , we borrow the same rejection sampling procedure from Kyber. We
expand this intuition and show that Kyber has splittable and pseudo-uniform
public keys in Appendix C.

Other lattice-based KEMs employ the same technique of expanding a short
seed into a public matrix, making them good candidates for splittable keys. For

is generally accepted that random oracles with fixed ranges can be easily instan-
tiated with cryptographically-secure hash functions, the instantiation of a random
oracle for hashing into the group where (part of) the KEM public keys reside is less
straightforward. Indifferentiability [21] allows to formally justify the instantiation
of a non-trivial hashing procedure: it ensures that one can safely replace an ideal
object (e.g., a RO that hashes into a group) with a construction that makes use
of another ideal object (e.g., an ideal eXtendable Output Function). The require-
ment (2) emphasizes the need for such a hashing procedure to safely instantiate our
protocol.

9

example, FrodoKEM [23], the lattice-based KEM recommended by the German
Federal Office for Information Security (BSI)14, also has splittable and pseudo-
uniform public keys. Similarly to Kyber, FrodoKEM public keys can be trivially
decomposed into a seed seedA ∈ {0, 1}128 (that expands to an n× n matrix A,
where all the coefficients are in Zq), and a group element B ∈ Zn×8

q . The instan-
tiation of the RO-indifferentiable hash-onto-group is even simpler for FrodoKEM
because q is required to be a power of 2, so rejection sampling is not needed.
CPA versus iPCA. Some essential points should be noted concerning these
security definitions. Firstly, when access to the PCO oracle is restricted to zero
queries, it effectively results in the removal of the oracle from the experiment.
This, in turn, gives rise to the weaker definitional variants known as ‘chosen-
plaintext attacks,’ specifically OW-CPA and ANO-CPA. Furthermore, we made
two adjustments to weaken our ANO-iPCA definition: (a) we refrained from pro-
viding the adversary with the challenge secret key K∗, and (b) we restricted the
PCO oracle to queries on the left private decapsulation key sk0. This contrasts
with definitions in [15,20,29], which grant the adversary access to both keys via
the oracle. These adaptations, which relax the requirements of the underlying
KEM, are proven to be sufficient for establishing the security of the protocol
CHIC presented in this paper.

It is also worth mentioning that for a very limited number of queries to the
PCO oracle, OW-iPCA is equivalent to OW-CPA, as established by Lemma 1.
However, it is essential to recognize that this equivalence cannot be readily ex-
tended to indistinguishability-based games. In such games, a flawed simulation
resulting from an incorrect coin flip could nullify the advantage gained when
the simulation was correct. Consequently, we cannot make a similar assertion
regarding the relationship between ANO-iPCA and ANO-CPA.

Lemma 1. If KEM is a OW-CPA secure key encapsulation mechanism, then it
is also OW-1PCA secure.

Proof. Let A be any adversary against game OW-1PCA. We construct an ad-
versary B against OW-CPA that simulates game OW-1PCA for A as follows: i.
Challenge (pk, c∗) is forwarded to A. ii. The single oracle query to PCO is an-
swered by B with a coin flip. iii. Finally, B forwards A’s answer to OW-1PCA as
its own answer to OW-CPA.

Notice that B perfectly simulates OW-1PCA for A half of the time, no mat-
ter what is A’s strategy for querying the plaintext-checking oracle. Therefore,
at least half of the time (possibly more, in case A wins regardless of the bad
simulation of PCO), a win for A translates into a win for B.

AdvOW-CPA
KEM,B (λ) ≥ 1

2
· AdvOW-1PCA

KEM,A (λ) (4)

In broader terms, OW-iPCA is essentially equivalent to OW-CPA, but only
when the number of queries made to the plaintext-checking oracle is limited to
14 BSI TR-02102-1, Version: 2024-1

10

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf

a few, as attempting to guess the PCO oracle’s responses multiple times leads to
an exponential loss in the number of tosses.

Definition 5. (Modified 2-Feistel construction: m2F) The modified 2-
round Feistel network, as introduced in [27], is constructed using three com-
ponents: (1) block cipher denoted by the tuple of algorithms (IC.Enc, IC.Dec),
with key space K and input/output space N ; (2) hash function H whose output
space is represented by group G; and (3) hash function H′ whose output space
is K. The m2F construction encompasses two efficiently computable functions,
m2Fpw : N ×G→ N ×G and its inverse m2F−1

pw, both shown in Figure 2.

m2Fpw(r,M)

R← H(pw, r)

T ←M ⊙R

t← H′(pw, T)

s← IC.Enc(t, r)

return (s, T)

m2F−1
pw(s, T)

t← H′(pw, T)

r ← IC.Dec(t, s)

R← H(pw, r)

M ← T ⊙R−1

return (r,M)

Fig. 2. The modified 2-Feistel [27], where ⊙ is a group G operation, and (·)−1 is an
inverse in G.

Half-Ideal Cipher (HIC). In [27], the authors introduce a UC security notion
they called (randomized) Half-Ideal Cipher (HIC), which is designed to relax
the UC notion of an ideal cipher. This security notion is established through the
introduction of an ideal functionality, denoted as FHIC, and is parameterized by
the domain N×G. Notably, FHIC features ‘honest’ interfaces accessible for queries
by the environment Z, with these queries being mediated through honest parties.
However, the honest interfaces are restricted w.r.t. to half of the input: Z has no
control over the randomness parameter r ∈ N in the encryption direction, and
it cannot observe the value of r during decryption. By contrast, FHIC provides
two adversarial interfaces that grant the adversary/simulator the capability to
select r and even program half of the output T ∈ G during encryption. In the
decryption direction, the adversary can also observe the value of r.

It is shown in [27] that the m2F construction realizes FHIC functionality in
the Random Oracle and Ideal Cipher (IC) model. The HIC abstraction serves
as an effective replacement for an ideal cipher in the construction of EKE-like
protocols, eliminating the need for the direct use of an IC over groups, whose
instantiations are non-trivial (e.g., see [27]). However, it’s worth noting that the
randomized encryption of HIC introduces an overhead equal to the length of r.
Due to the security proof of m2F requiring no collisions on the domain of the
IC, this overhead essentially amounts to 2λ bits, which is precisely what our
construction CHIC optimizes.

11

HIC+ and why it fails. A natural question is whether the FHIC could be
extended to FHIC+ which empowers honest parties and provides them with the
ability to select and have visibility over r in respectively encryption and de-
cryption. Unfortunately, the m2F construction would not be a provably secure
realization of such extended functionality. To see why, let us exemplify with a
concrete attack coordinated between an environment Z and its adversary A:

1. Z selects r and M at random from the respective domains, picks arbitary
pw, queries FHIC+, via a honest party, on Enc(pw, (r,M)), and obtains some
ciphertext (s, T).

2. Z queries H′(pw, T) via its adversary A and obtains t (a key for IC).
3. Z queries IC.Enc(t, r) via its adversary A and should get back s.

Unfortunately, the simulator SIM cannot possibly know how to correctly answer
the last query because it has no visibility over the first query Z made to FHIC+,
even though it controls IC, H and H′. This would not happen using FHIC interfaces
because the environment Z can only pass message M to the honest party Enc
interface in step (1) above, and it would not know the randomness r (which in
the real-world would be internally chosen by that honest party).

Although we could not leverage the modular abstraction that FHIC introduces
(or an extension of it), we still take full advantage of the m2F construction, as a
white-box drop-in, in our protocol CHIC and rely directly on the RO and IC in
the security proof. Therefore, no security definition is formally introduced here
for FHIC, and m2F is not explicitly parameterized by a security parameter λ,
although its internal components are essential to the security analysis of CHIC.

3 Security Model

We begin this section with a brief review of the Universal Composability (UC)
framework. Then we present the standard PAKE functionality as defined by
Canetti et al. [12].

Let P be a protocol of interest whose security properties are modelled within
the UC framework. In this framework, the environment Z embodies some higher-
level protocol that uses P as a sub-protocol, while also acting as an adversary
attacking that higher-level protocol. Here, the adversary A represents the adver-
sary attacking protocol P. Between the environment Z and the adversary there
is a continuously open communication channel. Such setup allows Z to launch
an attack on the higher-level protocol with the help of A (who is attacking pro-
tocol P). Note that Z can only indirectly (through adversary A) make calls to
idealized primitives such as an Ideal Cipher and/or a Random Oracle.

In the UC framework that models the security of PAKE protocols, parties
are initialized by the environment Z with arbitrary passwords of the environ-
ment’s choice. In the real world, protocols are executed according to protocol
specifications, in the presence of an adversary A capable of dropping, injecting,
and modifying protocol messages at will, thus modelling an insecure network. In
the ideal world, parties do not execute the protocol. Instead, they interact via

12

an ideal functionality FPAKE described in Figure 3, in the presence of a simula-
tor SIM that acts as an adversary operating in the ideal world. The simulator
SIM is also allowed to interact with FPAKE, but only using the FPAKE adversarial
interfaces as defined in Fig. 3.

New Session. On (NewSession, sid, Pi, Pj , pwC , role) from party Pi:

– Ignore this query if two or more records of the form (sid, ...) already exist.
– Else record (sid, Pi, Pj , fresh, pwC ,⊥) and send (NewSession, sid, Pi, Pj , role)

to A.

Test Password Guess. On (TestPw, sid, Pi, pw
∗) from adversary A:

– Retrieve record (sid, Pi, Pj , fresh, pwC ,⊥), abort if no such record exists.
– If pw∗ = pwC , then update the record to (sid, Pi, Pj , compromised, pwC ,⊥)

and send (TestPw, sid, correct) to A.
– Else update record to (sid, Pi, Pj , interrupted, pwC ,⊥) and send

(TestPw, sid,wrong) to A.

Session Key. On (NewKey, sid, Pi, k
∗) from adversary A where |k∗| = λ:

– Retrieve record (sid, Pi, Pj , status, pw,⊥) for
status ∈ {fresh, interrupted, compromised}, abort if no such record exist.

– If status = compromised, set k ← k∗.
– If status = fresh and there exists a record (sid, Pj , Pi, completed, pw, k′) whose

status switched from fresh to completed when Pj received (NewKey, sid, k′),
set k ← k′.

– Else set k ←$ {0, 1}λ.
– Update the record to (sid, Pi, Pj , completed, pw, k), and output

(NewKey, sid, k) to Pi.

Fig. 3. The PAKE ideal functionality FPAKE of Canetti et al. [12].

Finally, the goal of the environment Z that interacts with the parties and the
adversary (either real world A or ideal world SIM) is to guess if it is in the real or
in a simulation of the ideal world. Consequently, if for every efficient adversary
A no such efficient environment Z exists that distinguishes the real world from
the ideal world, we say that the protocol of interest P securely emulates ideal
functionality FPAKE. The UC PAKE definition results in a stronger notion than
game-based PAKE notions and successfully captures the scenario where clients
register related passwords with different servers, as this is captured by the ability
of Z initializing parties with passwords of its choosing. Furthermore, the UC

13

framework also ensures security under arbitrary protocol composition. Note that
the environment Z may reveal various information to the adversary A, thus
allowing UC PAKE definitions to capture password leaks (static adversaries)
and internal state leaks (adaptive adversaries) that may occur anytime during
the protocol execution.

4 UC PAKE from Modified 2-Feistel and KEM

In this section, we present CHIC, a UC-secure Password Authenticated Key Ex-
change protocol. CHIC assumes a KEM scheme that is one-way secure (at least
OW-CPA, but OW-PCA results in a tighter proof), anonymous (ANO-1PCA), and
has splittable and pseudo-uniform public keys (UNI-PK). The protocol, shown in
Figure 4, is built upon the modified 2-Feistel (m2F) construction of Dos Santos
et al. [27]. We take a moment to discuss several design choices in our protocol,
which follows an EKE-style construction combining a KEM and the m2F.

First, a pivotal decision, in contrast to the strategy in [27], was to ‘de-
randomize’ the m2F. We split the KEM public key and use the parts as in-
puts to the m2F. This approach helps us avoid employing an ideal cipher over
a group, which can be both costly and challenging to instantiate and eliminates
any communication overhead associated with the HIC abstraction.

Second, the inputs used for tag and session key generation realized through
the H1 and H2 function calls in CHIC, are identical. This allows us to optimize
our implementation by making a single call to a hash function with an extended
output size of 2λ. Subsequently, the output is cut in two halves, one forming the
tag and the other the session key.

Third, the password is exclusively used in the m2F construction and is not
provided as input to either H1 or H2. This design choice means that the initia-
tor does not need to store the input password in memory while waiting for the
responder’s answer. This choice has potential benefits in the event of a complete
compromise of the initiator (including leakage of its internal state), as an at-
tacker would be required to perform an offline dictionary attack to retrieve the
initiator’s password under such circumstances. (However, we don’t analyse the
security of our protocol under adaptive attacks in the UC sense, and this sort of
attack scenario is not captured by the FPAKE functionality.)

Fourth, it is worth noting that in our protocol the initiator, instead of abort-
ing, outputs a random session key in the event that the received tag is invalid.
We opt for this approach to ensure that our construction aligns with the secu-
rity requirements specified in the standard UC PAKE functionality from [12]
that foresees implicit authentication. However, in practice, when implementing
the protocol, it is possible for the initiator to abort in that case, thus achieving
explicit responder-to-initiator authentication. Furthermore, it is assumed that
protocol participants erase any internal state as soon as it becomes unneces-
sary for the execution of the protocol. This means that the initiator instance
after computing and sending apk erases its entire internal state (including the
password) except fullsid, apk, pk, and sk.

14

Note that if function Split can be randomized, specifically if Split(pk) returns
(r, pk) for r ←$ N and Split−1(r, pk) returns pk, then the Split+m2F block in
protocol CHIC would instantiate the randomized Half-Ideal Cipher construction
of [27]. In that sense, the Split+m2F procedure used in CHIC can be seen as a
strict generalization of the HIC construction of [27].

5 Security Analysis

In this section, we prove that the protocol described in Figure 4 UC-realizes the
standard PAKE functionality FPAKE shown in Figure 3.

Theorem 1. Let KEM be a OW-CPA, ANO-1PCA, and UNI-PK-secure key en-
capsulation mechanism. Let IC be a block cipher modeled as an ideal cipher,
and H, H′, H1 and H2 be hash functions modeled as random oracles. Then, the
PAKE protocol CHIC described in Fig. 4 UC-realizes FPAKE in the static corrup-
tion model. Furthermore, a OW-PCA-secure KEM leads to a tighter proof.

Proof overview. To prove Theorem 1 we show that the environment cannot
distinguish between the “real world” experiment in which the environment Z
and adversary A have parties Pi and Pj execute the protocol from Fig. 4, from
an “ideal world” experiment in which a simulator SIM interacts with FPAKE and
presents to environment Z a view that is consistent with what A produces in
the real world. We assume without loss of generality that A is the dummy ad-
versary, functioning as a communication intermediary between parties and the
environment.

The simulator. We describe the UC simulator SIM for CHIC that will act as the
ideal-world adversary, having access to the ideal functionality FPAKE. SIM must
simulate to Z protocol messages between honest participants without knowing
the passwords chosen by Z, while consistently answering random oracle and ideal
cipher queries. In a limited number of cases, the simulator is unable to conclude
the simulation and aborts. We argue in the proof that those bad events only
happen with negligible probability and account for these events in the overall
probability of Z distinguishing between the “real world” from the “ideal world”.

– First message: After receiving (NewSession, sid, Pi, Pj , Alice) from FPAKE,
SIM picks a random apk and sends message apk from Pi to Pj .

– Second message: After receiving (NewSession, sid, Pj , Pi, Bob) from FPAKE,
SIM waits for a message apk sent to Pj from A. Then SIM sets fullsid ←
(sid, Pi, Pj). In case the received apk is an output of the m2F that commits
the adversary to a password pw, SIM extracts the password pw and tests
it by sending (TestPwd, sid, Pj , pw) to FPAKE. If FPAKE replies with “correct
guess”, SIM computes the key according to the protocol specification and sends
(NewKey, sid, Pj , key) to FPAKE; in all other cases (including “wrong guess”,

15

A on (NewSession, sid,A,B, pw, init) B on (NewSession, sid,B,A, pw, resp)

fullsid← (sid,A,B) fullsid← (sid,A,B)

(sk, pk)←$ KEM.Keygen(1λ)

(r,M)← KEM.Split(pk)

R← H(fullsid, pw, r)

T ←M ⊙R

t← H′(fullsid, pw, T)

s← IC.Enc(t, r)

apk ← (s, T)

Send (apk)

(s, T)← apk

t← H′(fullsid, pw, T)

r ← IC.Dec(t, s)

R← H(fullsid, pw, r)

M ← T ⊙R−1

pk ← KEM.Split−1(r,M)

(c,K)←$ KEM.Encap(pk)

tag ← H1(fullsid, pk, apk, c,K)

Send (c, tag)

K ← KEM.Decap(sk, c)

if tag ̸= H1(fullsid, pk, apk, c,K)

key ←$ {0, 1}λ

else

key ← H2(fullsid, pk, apk, c,K) key ← H2(fullsid, pk, apk, c,K)

return key return key

m2F

m2F−1

Fig. 4. The CHIC protocol. KEM scheme has splittable public keys (Def. 4) with
an efficiently computable and invertible map Split : PKλ → Nλ × Gλ. The protocol
makes use of a block cipher denoted as IC and hash functions H and H′ in an m2F
configuration (Def. 5), with domains that align with Split and that are characterized
by security parameter λ, i.e. {IC.Enc, IC.Dec} : Kλ × Nλ → Nλ, H : {0, 1}∗ → Gλ,
H′ : {0, 1}∗ → Kλ. Group operations within G are represented by ⊙, and the inverse
operation by (·)−1.

16

honest execution, etc.), SIM runs a KEM.Keygen algorithm, obtains a fresh key
pair (pk, sk), computes the ciphertext c and the tag using the fresh pk, and
sends (NewKey, sid, Pj ,⊥) to FPAKE. To conclude the second message flow,
SIM sends the message (c, tag) from Pj to Pi via A.

– Final output : After receiving message (c, tag) sent to Pi from A, in case of
honest execution, SIM simply sends (NewKey, sid, Pi,⊥) to FPAKE. If message
(c, tag) was tampered with by the adversary, SIM checks for a corresponding
random oracle query to H1 that returned tag. If such query has not been asked,
SIM sends (TestPwd, sid, Pi,⊥) and (NewKey, sid, Pi,⊥) to FPAKE, forcing a
random session key. If tag comes from H1, pk and apk are extracted. If appro-
priate queries were made to the m2F, the password is also extractable. SIM
extracts A’s password guess pw and sends (TestPwd, sid, Pi, pw) to FPAKE.
In case of a “correct guess”, SIM computes the key by following the pro-
tocol and sends (NewKey, sid, Pi, key) to FPAKE. If tag is not valid (even
if the password guess was correct) or FPAKE returned “wrong guess”, SIM
sends (NewKey, sid, Pi,⊥) to FPAKE. If the adversary did not commit to a
password in its interaction with m2F, SIM sends (TestPwd, sid, Pi,⊥) and
(NewKey, sid, Pi,⊥) to FPAKE.

Proof. We prove Theorem 1 via a series of game hops. The first game corresponds
to a simulator that is not constrained in any way and executes the real world for
the environment perfectly. Concretely, this simulator controls all inputs/outputs
to the parties, as well as their communications with the environment. In each
hop, we modify this simulator gradually, so that in the final game one can clearly
see that it can be divided into two parts, where the first part corresponds to the
ideal functionality FPAKE and the second part to the simulator described earlier,
which has only black-box access to FPAKE and does not know the honest parties
secret passwords. Conceptually, we think of FPAKE as always existing alongside
our simulator and receiving the inputs from Z: in the first game it is not used
at all by the simulator, and gradually it will start using FPAKE to define the
outputs of parties. Because the first game is identical to the real world and the
last game is identical to the ideal world, we just need to show that the view of
the environment is not affected by each of our modifications. Hence, in each hop,
we analyze the probability of Z outputting 1 in the game Gi compared to that
of Z outputting 1 in the game Gi−1 and show that these change by a negligible
amount.

Our analysis depends on the number of interactions between the environment
and the execution model. To account for this, we consider and tally all queries
made to the ideal cipher and random oracles, irrespective of whether they origi-
nate from honest parties or the adversary. We denote qIC as the upper bound on
queries to the ideal cipher, regardless of whether it is used for encryption (IC.Enc)
or decryption (IC.Dec). Similarly, qH, qH′ , and qH1

represent upper bounds on the
number of queries made to the H, H′, and H1 oracles, respectively. Furthermore,
we take into account the number of PAKE sessions and interactions occurring
within each session. In this context, qnewSession serves as an upper bound on the

17

number of sessions initiated by Z, while qsend represents an upper bound on the
number of messages delivered by A when interacting with the involved parties.

Game G0 (Real world): Simulation perfectly mimics the world with oracles H,
H′, H1, H2, IC.Enc and IC.Dec.

Pr[G0] = RealZ,A,CHIC (5)

Game G1 (Abort on random oracle collisions): On output collisions of H1,
H or H′, the simulation aborts. This is a statistical hop with a birthday bound.

|Pr[G0]− Pr[G1]| ≤
q2H1

|SpaceH1
|
+

q2H
|SpaceH|

+
q2H′

|SpaceH′ |
(6)

Game G2 (Full domain sampling of IC and abort on collisions): On
new IC.Enc and IC.Dec queries, simulator samples s and r regardless of previous
answers and instead aborts on output collisions (even collisions across different
keys). s and r are high-entropy, therefore this is a statistical hop with a negligible
difference. Note that queries must be answered consistently and thus decrypting
a ciphertext returned by IC.Enc or encrypting a plaintext returned by IC.Dec,
under the same key, is not considered a new query.

|Pr[G1]− Pr[G2]| ≤
q2IC

|SpaceIC|
(7)

Game G3 (Abort if a new sample for H′ collides with a previous record
of the IC): Upon sampling a new t (key for ideal cipher) for the simulation of H′

oracle, if t is not fresh (and therefore already included in ListIC), the simulation
aborts. This is a statistical hop.

|Pr[G2]− Pr[G3]| ≤
qH′ · qIC
|SpaceH′ |

(8)

Game G4 (Abort if a new sample for IC.Dec collides with a previous
record of H): Upon sampling a new r for the simulation of IC.Dec, if r is not
fresh (and therefore already included in ListH), the simulation aborts. This is a
statistical hop.

|Pr[G3]− Pr[G4]| ≤
qIC · qH
|SpaceIC|

(9)

Game G5 (On calls to IC.Dec where the password is extractable from the
ideal cipher key, force a record to H): On a new query IC.Dec(t, s)—i.e., a
query where a fresh ideal cipher preimage r is sampled—check if t came out of H′

oracle and, if so, introduce the following change to the oracle. First, extract the
password pw associated with t (there is at most 1 since we have already discarded
the possibility of collisions in H′), then call H(pw, r), forcing r to be added into
the records of oracle H. Note that due to the abort triggers introduced in the
previous games, this modification is equivalent to sampling a random pair (r,R)

18

and trying to program H directly by adding the tuple (pw, r,R) to ListH. This
action will abort if either (∗, r, ∗) ∈ ListH (see Game G4) or if (∗, ∗, R) ∈ ListH
(see Game G1). Nothing really changes unless IC.Dec triggers an abort that did
not occur in the previous game. This is a statistical hop.

|Pr[G4]− Pr[G5]| ≤
qIC · qH
|SpaceIC|

+
qIC · qH
|SpaceH|

(10)

Game G6 (On calls to IC.Dec where the password is extractable from
the ideal cipher key, use KEM.Keygen and store secrets): On a new query
IC.Dec(t, s), if t came out of H′ oracle, instead of directly sampling a random
pair (r,R), the simulator relies on KEM.Keygen and KEM.Split, and stores the
secrets in Listsecrets for future use. If the adversary attempts to decrypt Alice’s
apk using her password, the record is also added to Listsecrets. More precisely, if
the adversary queries IC.Dec(t, s), where t = H′(fullsid, pw, T) and apk = (s, T)
is the message Alice sent in the session matching fullsid, and pw is Alice’s
password for that session, then add (pw, sk, pk, apk) to Listsecrets, where (sk, pk)
is Alice’s key pair. This hop is down to the uniformity of KEM public keys.

|Pr[G5]− Pr[G6]| ≤ qIC · Advpk-uniformity
KEM,Split (11)

Game G7 (Set random key via FPAKE if tag was not output by H1):
Modify Alice’s response when tag was not output by H1 wrt fullsid, apk and
c: use FPAKE to generate the session key totally at random by compromising the
session with an invalid password and then completing the session with NewKey.
The protocol specification determines Alice’s session key to be random if tag
is incorrect.15 A tag not coming out of H1 will only be valid with negligible
probability. Therefore, this is a statistical hop.

|Pr[G6]− Pr[G7]| ≤
qsend

|SpaceH1
|

(12)

Game G8 (For passive attacks, use a private oracle H∗
1 without inputs pk

and K to compute tag, and set session key directly via FPAKE instead
of using the key coming from H2): For passive attacks, i.e. messages are
correctly computed and forwarded to the intended party (apk from Alice to
Bob, and possibly (c, tag) from Bob to Alice), compute the tag with private
oracle H∗

1 and use the functionality to generate the session key, without testing
the password.

The intuition of this hop is that the KEM ciphertext must conceal K, there-
fore the adversary will not call H1(∗, ∗, ∗, ∗,K) nor H2(∗, ∗, ∗, ∗,K). If it does,
the simulator breaks the one-wayness of the KEM. The technical difficulty in the
reduction is that the simulator does not know ahead of time if the session will be
actively attacked. Therefore, it must embed the challenge pk∗ in each session, one
at a time (hybrid argument), and complete the simulation without detectable
changes to the protocol. If the adversary relays correctly apk from Alice to Bob
15 Our protocol is implicitly rejecting to follow the standard FPAKE functionality.

19

but then decides to actively interfere with the communication and forward its
own (c, tag) back to Alice, the simulator faces the dilemma of whether to force
Alice to use a random session key (if tag is invalid) or the session key resulting
from H2(fullsid, pk, apk, c,K) (if tag is valid). This boils down to whether c
encrypts K included in tag or not. However, because we embedded the challenge
pk∗ to compute the first flow of messages, we no longer can decrypt c. For this
reason, we reduce this hop down to OW-PCA and take advantage of the PCO
oracle to check if the key K included in the tag is effectively the key encrypted
under c.

The reduction goes as follows (hybrid argument, one public key at a time): i.
Embed challenge pk∗ into Alice’s initialization procedure. ii. If the adversary is
passive and delivers apk to Bob, reduction uses challenge c∗ and private oracles
H∗

1 and H∗
2 to proceed. These private oracles receive the same inputs as their

public counterparts H1 and H2, except for the arguments pk and K. (Note that
K∗ encrypted under c∗ is unknown to the reduction.) Since the ciphertext c∗ is
an input to both H1 and H2, this fixes a single key anyway and the games are
identical unless K∗ is queried to either oracle. If such a query is never placed,
the usage of these private oracles is independent of Z’s view. iii. On Alice’s side,
if the adversary is still passive, decryption is not needed: tag is valid and session
key is derived from private oracle H∗

2. Due to the uniqueness of inputs, private
oracle H∗

2 will produce the same key on both sides, as would the public oracle
H2 in G7 and NewKey query to FPAKE in G8.

If the adversary is active (and the reduction embedded the challenge pk∗ in
this session) the reduction algorithm will use the PCO oracle to verify the tag: it
verifies that the unique H1 entry corresponding to the tag includes key encrypted
under c∗. In this reduction, there is at most one PCO call per embedded challenge
public key pk∗ since KEM decryption occurs only in one place in our protocol. If
this check fails, the reduction returns a fresh random key to the attacker, which
is consistent with both games: trivially so in G7, and in G8 because this forces
the functionality to produce a fresh random session key by issuing a TestPwd
with ⊥.

When the adversary concludes its run, the reduction algorithm confirms the
inclusion of the correct K∗ in queries to H1 and H2 via calls to the PCO oracle
before submitting its answer against the one-wayness property of KEM cipher-
texts. If no such query with the correct K∗ exists, G7 and G8 are identical. As
an alternative approach, randomly selecting an entry from the H1 and H2 ta-
bles can lead to a less tight reduction. However, this approach does not require
confirmation of the inclusion of K∗ in H1 and H2 oracle queries, and therefore
at most one query to the PCO oracle is required for the correct simulation of
active attacks to Alice, after embedding the challenge public key in the first flow
from Alice to Bob. Importantly, Lemma 1 establishes the equivalence between
OW-1PCA and OW-CPA.

|Pr[G7]− Pr[G8]| ≤ qsend · Advow-pca
KEM (13)

|Pr[G7]− Pr[G8]| ≤ (qH1 + qH2) · qsend · Adv
ow-cpa
KEM (14)

20

Game G9 (Simulate Bob’s response with a fresh public key for passive
attacks): For honestly transmitted apk, the simulator creates ciphertext c with
a fresh public key, then computes tag with the private oracle H∗

1 (as in the
previous game), and finally sends (c, tag) on Bob’s behalf. We bridge this hop
using ANO-1PCA, with a hybrid argument, replacing one public key at a time.
Note that Alice does not decrypt honestly transmitted ciphertexts since G8.
However, if there’s an active attack on the second round of the session where the
reduction programmed the challenge pk0 from ANO-1PCA game, the decryption
key is not available. As before, the reduction takes advantage of a single call to
the PCO oracle and the (single) relevant record of H1 to determine whether the
tag is valid.

More in detail, the reduction goes as follows (hybrid argument, one public
key at the time): i. Embed challenge pk0 into Alice’s initialization procedure. ii.
If the adversary is passive and delivers apk to Bob, reduction uses challenge c∗.
iii. On Alice’s side, if the attack is passive, no need to decrypt c∗. If there is an
active attack, extract K from tag by inspecting H1 records, and check K against
c submitted by the adversary and sk0 to determine the validity of tag without
actually decrypting the ciphertext. Note that the PCO oracle of the standard
ANO-1PCA game allows checks against both sk0 and sk1, and the reduction
embedded pk0 on Alice’s side. Therefore, checks must be carried out against
sk0.

There are a few noteworthy observations regarding the definitional require-
ments for this reduction. For starters, we only need a weaker version of ANO-1PCA
where the PCO oracle only allows plaintext checks against one of the secret keys.
Another observation is that we don’t require the challenger of the ANO-1PCA
game to provide K∗ as part of the challenge. This is a direct result of the modifi-
cation introduced in G8 that lifts the need to use the encapsulated key for passive
attacks (via the usage of private oracle H∗

1 to compute the tag, and NewKey to
FPAKE to set the session key).16 This reduction algorithm perfectly interpolates
between games G8 and G9. If challenge c∗ is a result of KEM.Encap with pk0,
this corresponds to G8. On the other hand, if c∗ is a result of KEM.Encap with
pk1, the simulation adheres to the specifications of G9.

|Pr[G8]− Pr[G9]| ≤ qsend · Advano-1pcaKEM (15)

Game G10 (Active attacks on Alice: The tag is invalid if the password
cannot be extracted from an adversarially crafted message from Bob
to Alice): On adversarially crafted (c, tag) sent to Alice, the tag forces a com-
mitment to a single pk and, consequently, to a unique password due to the joint
operation of IC.Dec and H′. The only case in which password extraction fails is
if the adversary did not reconstruct the pk to which it committed using calls to
IC.Dec and H′. However, in this case, the correct pk that Alice will be using is
information-theoretically hidden from the adversary’s view. More in detail, in
G10 we check if the pk was not obtained from apk via the appropriate calls to
16 We note that this is the point in the proof where we could not find a way to avoid

a decryption-like oracle and that forces us to use an actively secure KEM.

21

H′ and then IC.Dec. (Note that since G6 the appropriate decryption calls create
a record in Listsecrets.) If this is not the case, then tag is declared as invalid. In
such cases, we force a random session key via FPAKE.

The two games G9 and G10 are identical unless the adversary guessed Alice’s
public key (and created the tag sent to Alice with it) without having obtained
it from apk via the appropriate calls to H′ and then IC.Dec. The probability of
guessing Alice’s public key by chance is tied to the min-entropy k of the public
keys generated by KEM.Keygen. This is not a new assumption on the properties
of KEM as it follows from UNI-PK that each part of the split public key has at
least min-entropy λ. We denote ϵ as a negligible function.

|Pr[G9]− Pr[G10]| ≤ ϵ(λ) (16)

Game G11 (Active attacks on Alice: If the password is extractable,
test it and proceed accordingly): On Alice’s side, if the password can be
extracted, test the password via TestPwd. If the guess is correct, run the protocol
honestly and program the session key. If the guess is wrong, tell functionality
to complete the session with a random key. Note that different passwords are
guaranteed to lead to different public keys for a fixed apk, as oracles discard
collisions. In turn, because pk is also included as an argument of H1, the tag-
verification procedure is bound to fail. Therefore, Game G10 and Game G11 are
identical from Z’s perspective. This is a bridge hop.

Pr[G10] = Pr[G11] (17)

Game G12 (Simulate Alice’s initial message without using the pass-
word): Notice that the simulator deals with Alice’s response without using sk,
except for the case where Alice is actively attacked with the correct password.
Therefore, the simulator can simulate a NewSession for Alice by directly sam-
pling apk, leaving the generation of the public key for later. As such, the password
pw is not required at this stage.

Nevertheless, the simulator of G12 creates an IC record for apk := (s, T),
with placeholders that can later be replaced by Alice’s pk. More precisely, it
adds (⊥,⊥, s,mode = E) to ListIC. If s is unfresh, the simulation aborts. The
record only gets updated when Alice’s password pw is confirmed to be correct as
a result of a TestPwd query to FPAKE, and m2F−1

pw(apk) is computed by querying
its oracles. Recall that queries to IC.Dec with t that permits password extraction
leads to sk being embedded in Listsecrets. So, the decryption key is always available
in the only case still needed (active attack with the correct password).

Following the rules of the previous game G11, Alice generates a key-pair with
KEM.Keygen and then computes apk by feeding pk to the oracles of the m2F,
which leads to early abortion if the newly sampled R is in ListH (rule added in G1),
if the newly sampled t is in ListIC (rule added in G3), and if the newly sampled
s is in ListIC (rule added in G2). In G12, we abort only if the newly sampled
s is in ListIC. This means that the other abortion events have to be accounted
for in the analysis of this game hop. Furthermore, if the adversary places a
new query to IC.Enc and happens to land on s —it’s important to emphasize

22

new query, meaning this only applies to queries IC.Enc(t, r) where r is not the
result of a previous query IC.Dec(t, s),— the game aborts since there’s already
a record (albeit incomplete). Notice that in G11 there is one particular value of
r for which the oracle will respond without aborting–this is the r obtained by
splitting Alice’s pk. The probability of guessing r by chance is tied to the min-
entropy k of the first element resulting from the split of public keys generated
by KEM.Keygen. Again, this is not a new assumption about KEM, as it follows
from UNI-PK.

|Pr[G11]− Pr[G12]| ≤
qnewSession · qH
|SpaceH|

+
qnewSession · qH′

|SpaceH′ |
+ ϵ(λ) (18)

Game G13 (Active attacks on Bob: if there’s no record consistent with
apk having been computed in the forward direction, use private oracle
H∗

1 to compute tag an set random session key via FPAKE): The attacker
sends its own apk to Bob and there is no record consistent with apk having been
computed in the forward direction. The term forward direction refers to the
encryption direction within the ideal cipher, which is why the simulator tracks
how the records of the IC were generated. Formally, apk = (s, T) was computed
in the forward direction if there exist a record (t, ∗, s,mode = E) ∈ ListIC such
that there is a record (fullsid, ∗, T, t) ∈ ListH′ wrt the unique fullsid associated
with the Alice instance receiving apk. In such cases, the simulator uses the private
oracle H∗

1 to compute the tag and sets a random session key via FPAKE. Recall
that the private oracle H∗

1 does not take as input pk and K. We reduce this hop
down to OW-PCA. We use a hybrid argument, changing the behavior of one Bob
session at a time. The intuition is that if apk was not computed in the forward
direction with an appropriate call to IC.Enc, the attacker has no control over
the KEM public key (and corresponding secret key) associated with apk sent to
Bob. Therefore, the attacker cannot decrypt Bob’s ciphertext, and is unlikely to
query H1 with K encrypted in Bob’s response. If it does, we break the OW-PCA
game of KEM.

The reduction algorithm knows Bob’s password. The inverse of the attacker’s
apk sent to Bob, under Bob’s password, must be the challenge pk∗ of the
OW-PCA game. The difficulty in arguing this hop arises from the adversary’s
potential actions with apk: they might attempt to decrypt it using Bob’s pass-
word before or after sending it, or they may not decrypt apk with Bob’s password
at all (willingly or because the Bob’s password was never correctly guessed by
the adversary).

Remember, in this particular game hop, we are exclusively handling adversary-
generated apk values, which are not computed following the forward direction of
the m2F. Therefore, we apply a hybrid argument over all qsend queries from Alice
to Bob, and all IC.Dec queries, carefully associating the challenge pk∗ with one
of these queries. The reduction algorithm loses the ability to decrypt ciphertexts
encrypted under pk∗, but in the protocol only Alice needs to decrypt ciphertexts
and she will do so under her secret key (regardless of whether apk sent out is
crafted by the adversary and possibly associated with pk∗).

23

The reduction algorithm also embeds c∗ in the computation of tag with
private oracle H∗

1 and in Bob’s response. It also monitors queries to public oracles
H1 and H2, extracting K and testing with the PCO oracle against challenge c∗.
If the PCO oracle returns true, the reduction would submit K and would win
the OW-PCA game. Otherwise, the usage of private oracle H∗

1 and setting Bob’s
session key to be random via FPAKE is identical from Z’s view.

Alternatively, as also described in the proof strategy of the hop to G8, if
we are willing the bear the cost of a loss in tightness, we could use a guessing
argument instead by simply outputting a K queried to one of the public oracles
H1 and H2, and avoid relying on any PCO oracle for this reduction (as mentioned
earlier, Alice is always able to decrypt).

|Pr[G12]− Pr[G13]| ≤ (qsend + qIC) · Advow-pca
KEM (19)

|Pr[G12]− Pr[G13]| ≤ (qH1 + qH2) · (qsend + qIC) · Advow-cpa
KEM (20)

Game G14 (Active attacks on Bob: if there’s no record consistent with
apk having been computed in the forward direction, encrypt the ci-
phertext under a freshly generated public key): As in the case of the
previous game hop, the attacker sends its own apk to Bob and there’s no record
consistent with apk having been computed in the forward direction. Now, the
simulator encrypts the ciphertext that Bob sends out under a freshly generated
public key. This is a reduction to ANO-CPA.

The reduction is similar to the previous game hop in that we embed pk0 in
one send query to Bob at the time, and then embed the challenge c∗ in Bob’s
response. As in the analysis of the previous game hop, we have to account for the
possibility that the attacker tried to decrypt apk under Bob’s password before
sending it. In that case, pk0 needs to be embedded upon the IC.Dec call. In the
worst case, the lost in tightness w.r.t. to ANO-CPA is limited by qsend + qIC. If
c∗ was encrypted under pk0, we adhere to the specifications of G13. If it was
encrypted under pk1, we adhere to the rules of G14. We have already established
in the previous game that tag is computed via private oracle H1 (that does not
take pk as input). As in the reduction strategy of the previous game hop, the
challenge pk∗ of ANO-CPA is never associated with the apk sent by Alice. Thus,
Alice’s decryption key sk is always available when needed, and a PCO oracle is
also not needed for this reduction.

|Pr[G13]− Pr[G14]| ≤ (qsend + qIC) · Advano-cpaKEM (21)

Game G15 (Active attacks on Bob: if there is a record consistent with
apk having been computed in the forward direction, extract the pass-
word, test it, and use private oracle H∗

1 and set a random session key if
“wrong guess"): The simulator now deals with the case where there is a record
consistent with apk having been computed in the forward direction. The simu-
lator extracts the password and tests it. If “correct guess", the simulator keeps
following the protocol and sets the correctly-computed session key via FPAKE

(this doesn’t change anything from Z’s view). If “wrong guess", the simulator

24

makes use of private oracle H∗
1 to compute the tag and sets a random session

key via FPAKE. The reduction is similar to that of G13.

|Pr[G14]− Pr[G15]| ≤ (qsend + qIC) · Advow-pca
KEM (22)

|Pr[G14]− Pr[G15]| ≤ (qH1
+ qH2

) · (qsend + qIC) · Advow-cpa
KEM (23)

Game G16 (Active attacks on Bob: if there is a record consistent with
apk having been computed in the forward direction, extract the pass-
word, test it, and encrypt the ciphertext under a freshly generated
public key if “wrong guess"): This change and reduction is similar to that
argued in G14.

|Pr[G15]− Pr[G16]| ≤ (qsend + qIC) · Advano-cpaKEM (24)

Game G17 (Ideal world): At this point, we are in the ideal world, where the
simulator is using the ideal functionality FPAKE to generate all keys except for
those where there is a correct password guess.

Pr[G16] = Pr[G17] = IdealZ,SIM,FPAKE
(25)

Bringing all these elements together and assuming KEM is a OW-PCA-secure
key encapsulation mechanism, we obtain the result shown in Equation 26. For
the sake of completeness, a description in pseudo-code of the simulator SIM of
the ideal world is provided in Appendix A. Each step of the process, starting
from the code execution of uncorrupted parties in the real world and leading to
the simulation of the ideal world, is meticulously detailed. Every modification
is framed and cross-referenced with the specific game hop where it was initially
introduced to ensure a traceable progression of the proof.

|RealZ,A,CHIC − IdealZ,SIM,FPAKE
| ≤

qIC · Advpk-uniformity
KEM,Split

+ (3 · qsend + 2 · qIC) · Advow-pca
KEM

+ (3 · qsend + 2 · qIC) · Advano-1pcaKEM

+
q2IC + 2 · qIC · qH
|SpaceIC|

+
q2H1

+ qsend

|SpaceH1
|

+
q2H + qIC · qH + qnewSession · qH

|SpaceH|

+
q2H′ + qIC · qH′ + qnewSession · qH′

|SpaceH′ |
+ ϵ(λ)

(26)

⊓⊔

On tightness. The bounds we give here are aligned with those obtained in prior
works on EKE-like constructions from KEMs. The main difference with respect

25

to Diffie-Hellman based constructions is that we cannot use self reducibiliy prop-
erties to remove the multiplicative factors associated with dealing with multiple-
instance KEM security properties. Intuitively, the qIC multiplicative factor is the
most problematic, but it seems intrinsic to the use of the ideal cipher: it corre-
sponds to the reduction’s uncertainty as to which of the adversary’s reverse ideal
cipher queries will the adversary choose to fix the KEM public key on which it
will be challenged. A KEM with a tight proof of multi-instance security would
solve this problem.

Implications for the proofs in [27,4]. In game G9 we explain why at that
point in the proof we could not avoid making a decryption-like query, and that
forces us to use an actively secure KEM. Furthermore, the 1 PCA query needed
for the reduction seems applicable regardless of whether the protocol uses IC [4],
HIC [27], or directly m2F [here], to password-encrypt the pk. This stands in
contention with the results in [27,4], where we believe the authors have missed
this point. A guessing strategy does not work for indistinguishability-based defi-
nitions for the reasons discussed in “CPA versus iPCA” subsection. We also note
that ANO-PCA was already used in the security proof from Pan and Zeng [26].
The authors claim that OCAKE protocol in [4] lacks perfect forward secrecy
(PFS), but it is unclear whether the claim is attributed to the fact that the
original proof for the protocol requires the underlying KEM to satisfy merely
ANO-CPA.

6 Implementation and Performance Analysis

We make two preliminary notes on our instantiation of CHIC, which distinguish
this work from previous proposals for building PAKE from a lattice-based KEM
in the Ideal Cipher model.

Firstly, contrary to what has been suggested in previous papers [4,27], our
security proof shows that the construction requires a KEM that offers more
than just passive security (namely ANO-1PCA). For this reason, we take the
(CCA-secure) Kyber standard defined in FIPS 203 [24] as the natural off-the-
shelf lattice-based KEM instantiation. Indeed, Kyber has been shown to be
IND-CCA [8,28] and ANO-CCA secure in [15,20,29].

Secondly, we recall that the bandwidth requirements of the IND-CCA version
of Kyber are the same as that of the underlying IND-CPA construction: this is
one of the properties of the Fujisaki-Okamoto transformation used by Kyber.
For this reason, when it comes to bandwidth usage, our construction still out-
performs previous proposals that (unjustifiably) propose to use the IND-CPA
version. Indeed, there is no overhead in public-key transmission in the first flow
of our protocol due to the compact half-ideal cipher, whereas in the second flow
we have only the overhead of transmitting the (short) MAC tag.

It remains to show that the Kyber KEM satisfies the remaining requirements
of having splittable and pseudo-uniform public keys. We refer to Appendix C for

26

a detailed proof that Kyber indeed satisfies the conditions outlined in Def. 4.

Our Implementation. We have implemented CHIC in C by extending the ref-
erence implementation of Kyber available from github.com/pqcrystals/kyber.
The implementation is provided as supplementary material.

Before discussing parameter choices and giving some performance figures,
we briefly describe how we implemented the three components of the compact
half-ideal cipher construction, as well as the computation of the MAC tag and
key derivation hashes, which are all that’s needed beyond Kyber KEM:

– Ideal cipher over 256-bits: We take the Rijndael variant that uses 256-bit
blocks and 256-bit keys17. The code was taken from the open-source tool
ccrypt, which in turn adapts on the original Rijndael reference implementa-
tion. We recall that this block cipher is used to hide the seed component ρ
that results from public-key splitting.

– Hashing to the Kyber polynomial ring Rq: We reuse the implementa-
tion of the rejection sampling procedure that is used internally by Kyber to
expand the public-key seed to a k × k matrix over Rq. The only difference
to the Kyber implementation is that, rather than sampling a k × k matrix
starting from a seed ρ, our implementation samples a vector of size k, seeded
by the input to random oracle H in our m2F construction. We recall that
the output of this procedure is used to mask the vector over Rk

q that results
from public-key splitting using a group operation.

– Masking vectors in Rk
q : We reuse the functions already available in the

Kyber code that permit adding and subtracting vectors over Rk
q .

– Hashing to the key space of Rijndael: We use SHA3-256 to produce the
required 32-bytes.

– Key Derivation Function and Tag Computation Since these two hash
functions take the same input, we implement them as a single SHA3-512
computation that produces 64 bytes, which we then split to obtain the session
key (which is kept secret) and the tag (which is transmitted).

Parameter selection. We consider all three variants of Kyber (Kyber512,
Kyber768 and Kyber1024) as plausible instantiations for KEM. In our security
analysis, we exclude the possibility of collisions on the block cipher, as well as on
the hash function that derives the block cipher key. For this reason, we opt to use
Rijndael with 256-bit block and key sizes. As a result, our parameter selection
ensures at least 128-bit security against classical adversaries. We extend the
discussion on the guarantees provided by CHIC in the conclusion section.

Performance Analysis. The bandwidth overhead of our protocol over Kyber
KEM is minimal: it comprises of only 32-bytes for the tag in the second flow.
Concerning execution time, Table 1 shows values in microseconds for the two
17 Alternatively, we could employ standard AES and extend its domain from 128-bit

to 256-bit blocks using the 3-round Feistel domain extender from [14], which is also
indifferentiable from IC if AES itself is indifferentiable from IC.

27

github.com/pqcrystals/kyber

stages of the initiator and the single stage of the responder for three cases: 1)
using just the IND-CPA version of Kyber; 2) using just the IND-CCA version of
Kyber; and 3) using CHIC. The measurements were taken in a modest laptop
with a 2.3 GHz Intel “Core i5” processor with four cores, 128 MB of embedded
eDRAM, a 6 MB shared level 3 cache, and 16GB of RAM. We did not explore
aggressive optimizations using parallelism (or even SIMD implementations), so
these results can definitely be improved. The overhead in computation time for
initiators is around 25% for Kyber 768 wrt the bare CCA KEM key exchange. For
responders, it is around 50%. Overall, these overheads decrease as the security
level of Kyber increases, but the execution times are still in the order of tens of
microseconds.

Table 1. Experimental results in microseconds. Comparison of execution times of
CHIC participants (two initiator stages and responder single stage) with respect to key
exchange using only a CPA or CCA Kyber KEM.

CPA KEM CCA KEM CHIC
KeyGen Enc Dec KeyGen Enc Dec Start Resp End

Kyber512 25 29 9 45 49 12 70 74 14
Kyber768 28 36 41 49 59 65 75 85 93
Kyber1024 36 56 53 61 87 83 89 123 117

7 Conclusion

It’s important to underscore the significance of the 30+ years of research en-
abling CHIC’s development. The concept of constructing PAKE by encrypting a
public key with a password dates back to EKE [6]. However, EKE and its variant
OEKE [11] upon which EKE-KEM [27] and CHIC are based, were never standard-
ized or deployed because of the difficulty of encrypting group elements with a
password while preventing offline dictionary attacks. The work of [27] cleverly
sidesteps the use of the IC over groups by using the m2F as a randomized ci-
pher, which increases ciphertext size. CHIC avoids this ciphertext expansion by
splitting Kyber pk and using the m2F instead as a keyed PRP. Our implementa-
tion represents the first practical realization of an approach previously deemed
impractical [17], and it leverages the just-concluded ML-KEM standard [24].

This brings up the question: What security guarantees does CHIC provide
against a quantum adversary? We proved that CHIC UC-realizes FPAKE in the
IC and RO model. The UC framework is the gold standard security definition
for PAKE because it captures arbitrary password distributions. Unfortunately,
it’s known that FPAKE cannot be UC-realized without an idealized computation
model or CRS [12]. In our implementation we instantiate the IC with Rijndael-
256 and the RO with SHA3. These building blocks are quantum-resistant, but
our security proof does not allow the adversary to query the RO and IC in super-
position. Sufficiently large quantum computers don’t yet exist, but adversaries

28

today can actively attack the protocol with classical computing capabilities and
store PAKE transcripts now, hoping to decrypt them later with a quantum com-
puter. However, such decryption would require breaking the KEM, and Kyber is
quantum-resistant. This puts CHIC in the category of protocols secure against
the “harvest-now/decrypt-later” quantum threat.

With a UC proof in the plain model aside, a consolidated analysis against
adversaries that can actively attack the protocol with the support of a quantum
computer, demands working in the Quantum Random Oracle Model (QROM) [7]
and/or Quantum Ideal Cipher Model (QICM) [18], which is a future direction
to pursue. The QROM is better understood than the QICM [18]. To the best of
our knowledge, the only PAKE protocols analysed in the UC framework and the
QROM were only very recently proposed in [19]. While the authors’ contribution
is a significant step forward, a modular approach based on standard KEMs
is likely yield a better candidate as a practical substitute of currently widely-
used PAKE protocols. In this respect, CHIC is extremely efficient, with minimal
overhead compared to the KEM it’s based on.

Acknowledgements

We thank the anonymous reviewers of ASIACRYPT’24 for their valuable feed-
back. Afonso Arriaga and Marjan Škrobot received support from the Luxem-
bourg National Research Fund (FNR) under the CORE Junior project (C21/
IS/16236053/FuturePass).

References

1. Abdalla, M., Bellare, M., Neven, G.: Robust encryption. In: Theory of Cryptogra-
phy – TCC 2010. pp. 480–497. Springer (2010)

2. Abdalla, M., Haase, B., Hesse, J.: Security analysis of CPace. In: Advances in
Cryptology – ASIACRYPT 2021. pp. 711–741. Springer (2021)

3. Alnahawi, N., Hövelmanns, K., Hülsing, A., Ritsch, S., Wiesmaier, A.: Towards
post-quantum secure PAKE - A tight security proof for OCAKE in the BPR model.
Cryptology ePrint Archive, Paper 2023/1368 (2023), https://eprint.iacr.org/
2023/1368

4. Beguinet, H., Chevalier, C., Pointcheval, D., Ricosset, T., Rossi, M.: GeT a CAKE:
Generic transformations from key encaspulation mechanisms to password authen-
ticated key exchanges. In: Applied Cryptography and Network Security – ACNS
2023. pp. 516–538. Springer (2023)

5. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Advances in Cryptology – EUROCRYPT 2000. pp.
139–155. Springer (2000)

6. Bellovin, S., Merritt, M.: Encrypted key exchange: password-based protocols secure
against dictionary attacks. In: Symposium on Research in Security and Privacy –
S&P 1992. pp. 72–84. IEEE Computer Society (1992)

7. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Advances in Cryptology – ASIACRYPT
2011. pp. 41–69. Springer (2011)

29

https://eprint.iacr.org/2023/1368
https://eprint.iacr.org/2023/1368

8. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehle, D.: CRYSTALS - Kyber: A CCA-secure module-
lattice-based KEM. In: European Symposium on Security and Privacy – EuroS&P
2018. pp. 353–367. IEEE Computer Society (2018)

9. Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Advances in Cryptology – EUROCRYPT 2000.
pp. 156–171. Springer (2000)

10. Bradley, T., Camenisch, J., Jarecki, S., Lehmann, A., Neven, G., Xu, J.: Password-
authenticated public-key encryption. In: Applied Cryptography and Network Se-
curity – ACNS 2019. pp. 442–462. Springer (2019)

11. Bresson, E., Chevassut, O., Pointcheval, D.: Security proofs for an efficient
password-based key exchange. In: ACM Conference on Computer and Communi-
cations Security – CCS 2003. pp. 241–250. Association for Computing Machinery
(2003)

12. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally composable
password-based key exchange. In: Advances in Cryptology – EUROCRYPT 2005.
pp. 404–421. Springer (2005)

13. Coron, J.S., Dodis, Y., Mandal, A., Seurin, Y.: A domain extender for the ideal
cipher. In: Theory of Cryptography – TCC 2010. pp. 273–289. Springer (2010)

14. Coron, J.S., Dodis, Y., Mandal, A., Seurin, Y.: A domain extender for the ideal
cipher. In: Theory of Cryptography – TCC 2010. pp. 273–289. Springer (2010)

15. Grubbs, P., Maram, V., Paterson, K.G.: Anonymous, robust post-quantum public
key encryption. In: Advances in Cryptology – EUROCRYPT 2022. pp. 402–432.
Springer (2022)

16. Guo, C., Lin, D.: Improved domain extender for the ideal cipher. Cryptography
and Communications 7(4), 509–533 (2015)

17. Hao, F., van Oorschot, P.C.: SoK: Password-authenticated key exchange – the-
ory, practice, standardization and real-world lessons. In: ACM Asia Conference on
Computer and Communications Security – AsiaCCS 2022. pp. 697–711. Associa-
tion for Computing Machinery (2022)

18. Hosoyamada, A., Yasuda, K.: Building quantum-one-way functions from block ci-
phers: Davies-meyer and merkle-damgård constructions. In: Advances in Cryptol-
ogy – ASIACRYPT 2018. pp. 275–304. Springer (2018)

19. Lyu, Y., Liu, S., Han, S.: Universal composable password authenticated key ex-
change for the post-quantum world. In: Advances in Cryptology – EUROCRYPT
2024. pp. 120–150. Springer (2024)

20. Maram, V., Xagawa, K.: Post-quantum anonymity of Kyber. In: Public-Key Cryp-
tography – PKC 2023. pp. 3–35. Springer (2023)

21. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: Theory of
Cryptography – TCC 2004. pp. 21–39. Springer (2004)

22. McQuoid, I., Rosulek, M., Roy, L.: Minimal symmetric PAKE and 1-out-of-n OT
from programmable-once public functions. In: ACM Conference on Computer and
Communications Security – CCS 2020. pp. 425–442. Association for Computing
Machinery (2020)

23. Naehrig, M., Alkim, E., Bos, J., Ducas, L., Easterbrook, K., LaMacchia, B.,
Longa, P., Mironov, I., Nikolaenko, V., Peikert, C., Raghunathan, A., Stebila, D.:
FrodoKEM. Tech. rep., National Institute of Standards and Technology (2020),
available at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions

30

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

24. NIST: FIPS203, Module-Lattice-based Key-Encapsulation Mechanism Standard.
Federal Information Processing Standards Publication (2023), https://nvlpubs.
nist.gov/nistpubs/FIPS/NIST.FIPS.203.pdf

25. Okamoto, T., Pointcheval, D.: REACT: Rapid enhanced-security asymmetric cryp-
tosystem transform. In: Topics in Cryptology – CT-RSA 2001. pp. 159–174.
Springer (2001)

26. Pan, J., Zeng, R.: A generic construction of tightly secure password-based au-
thenticated key exchange. In: Advances in Cryptology – ASIACRYPT 2023. pp.
143–175. Springer (2023)

27. Santos, B.F.D., Gu, Y., Jarecki, S.: Randomized half-ideal cipher on groups with
applications to UC (a)PAKE. In: Advances in Cryptology – EUROCRYPT 2023.
pp. 128–156. Springer (2023)

28. Schwabe, P., Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky,
V., Schanck, J.M., Seiler, G., Stehlé, D., Ding, J.: CRYSTALS-KYBER. Tech. rep.,
National Institute of Standards and Technology (2022), available at https://csrc.
nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

29. Xagawa, K.: Anonymity of NIST PQC round 3 KEMs. In: Advances in Cryptology
– EUROCRYPT 2022. pp. 551–581. Springer (2022)

A The simulator

We detail the ideal world simulator SIM for proof of Theorem 1, using labeled
frames to indicate the game hops where modifications occur.

On query H1(fullsid, pk, apk, c,K):
find (fullsid,pk,apk, c,K, tag) ∈ ListH1

if found return tag

tag ← SpaceH1

if ∃ (∗, ∗, ∗, ∗, ∗, tag) ∈ ListH1 abort G1

add (fullsid, pk, apk, c,K, tag) to ListH1

return tag

On query H2(fullsid, apk, c, tag,K):
find (fullsid,apk, c, tag,K, key) ∈ ListH2

if found return key

key ← SpaceH2

add (fullsid, apk, c, tag,K, key) ∈ ListH2

return key

On query H(fullsid, pw, r):
find (fullsid,pw, r, R) ∈ ListH

if found return R

R← SpaceH

if ∃ (∗, ∗, ∗, R) ∈ ListH abort G1

add (fullsid, pw, r,R) to ListH

31

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

return R

On query H′(fullsid, pw, T):
find (fullsid,pw,T, t) ∈ ListH′

if found return t

t← SpaceH′

if ∃ (∗, ∗, ∗, t) ∈ ListH′ abort G1

if ∃ (t, ∗, ∗, ∗) ∈ ListIC abort G3

add (pw, T, t) to ListH′

return t

On query IC.Enc(t, r):
find (t, r, s,mode) ∈ ListIC

if found return s

s← SpaceIC
if ∃ (∗, ∗, s, ∗) ∈ ListIC abort G2

add (t, r, s,mode = E) to ListIC
return s

On query IC.Dec(t, s):
find (t, r, s,mode) ∈ ListIC

if found return r

find (fullsid, pw, T, t) ∈ ListH′

if found
(sk, pk)← KEM.Keygen(λ)
(r,M)← KEM.Split(pk)
R←M ⊙ T

if (∗, ∗, r, ∗) ∈ ListH abort G4

if (∗, ∗, ∗, R) ∈ ListH abort G5

add (fullsid, pw, r,R) to ListH
apk ← (s, T)
add (pw, sk, pk, apk) to Listsecrets

if not found

G6

r ← SpaceIC

if ∃(t, r, s, ∗) ∈ ListIC abort G2

add (t, r, s,mode = D) to ListIC
return r

32

On query (NewSession, sid, Pi, Pj , role) from FPAKE:
if role = Bob

add (sid, Pi, Pj , Bob,⊥,⊥) to Listtranscripts
if role = Alice

apk ← Spaceapk
(s, T)← apk
if ∃ (∗, ∗, T, ∗) ∈ ListH′ abort
if ∃ (∗, ∗, s, ∗) ∈ ListIC abort
add (⊥,⊥, s,mode = E) to ListIC

G12

add (sid, Pi, Pj , Alice,msg1,⊥) to Listtranscripts
send apk from Pi to Pj

return

On query (Send,msg) from A to (sid, Pi):

find (sid, Pi, Pj , role,msg1,msg2) ∈ Listtranscripts
if not found return ⊥ // ignore query

// msg is either for Alice or Bob;
// check consistency of state in the recorded transcript
if role = Bob && (msg1 ̸=⊥ || msg2 ̸=⊥) return ⊥ // ignore query
if role = Alice && (msg1 =⊥ || msg2 ̸=⊥) return ⊥ // ignore query

if role = Bob
update record (sid, Pi, Pj , Bob,msg,⊥) ∈ Listtranscripts
fullsid← (sid, Pj , Pi)

// case (a) msg is apk transmitted by Alice,
// legitimate partner of Bob
if ∃(sid, Pj , Pi, Alice,msg, ∗) ∈ Listtranscripts

(sk, pk)← KEM.Keygen(λ)
(c,_)← KEM.Encap(pk)

G9

tag ← H∗
1(fullsid, apk, c)

send (c, tag) to Pj

send (NewKey, sid, Pi,⊥)
update Bob’s record in Listtranscripts
return

G8

// apk comes from A
apk ← msg1
(s, T)← apk

for (fullsid, pw,T, t) ∈ ListH′

find (t, r, s,mode = E) ∈ ListIC
G13

33

// case (b) apk computed in the forward direction
if record found

// pw is extractable
send (TestPwd, sid, Pi, pw) to FPAKE // test pw
if “correct guess"

// execute the protocol honestly
R← H(fullsid, pw, r)
M ← T ⊙R−1

pk ← KEM.Split−1(r,M)
(c,K)← KEM.Encap(pk)
tag ← H1(fullsid, pk, apk, c,K)
key ← H2(fullsid, pk, apk, c,K)
send (c, tag) to Pj

send (NewKey, sid, Pi, key)
update Bob’s record in Listtranscripts
return

if “wrong guess"

// complete session with fresh key
(sk, pk)← KEM.Keygen(λ)
(c,K)← KEM.Encap(pk)

G16

tag ← H∗
1(fullsid, apk, c)

send (c, tag) to Pj

send (NewKey, sid, Pi,⊥)
update Bob’s record in Listtranscripts
return

G15

// case (c) all other cases
// (e.g. no record of apk in the forward direction)
if no record found

(sk, pk)← KEM.Keygen(λ)
(c,_)← KEM.Encap(pk)

G14

tag ← H∗
1(fullsid, apk, c)

send (c, tag) to Pj

send (NewKey, sid, Pi,⊥)
update Bob’s record in Listtranscripts
return

G13

if role = Alice

update record (sid, Pi, Pj , Alice,msg1,msg) ∈ Listtranscripts
fullsid← (sid, Pi, Pj)

(c, tag)← msg

apk ← msg1

if ∃(sid, Pj , Pi, Bob, apk,msg) ∈ Listtranscripts
send (NewKey, sid, Pi,⊥)
return

G8

34

if ∄ (fullsid, ∗, apk, c, ∗, tag) ∈ ListH1

send (TestPwd, sid, Pi,⊥)
send (NewKey, sid, Pi,⊥)
return

G7

// extract pk from tag, record must exist
find (fullsid, pk,apk, c,K, tag) to ListH1

find (pw, sk,pk,apk) to Listsecrets

G10

if record found
send (TestPwd, sid, Pi, pw) to FPAKE

if “correct guess”
// run protocol honestly
// program the session key
// and replace placeholders if needed
(s, T)← apk

if ∃ (⊥,⊥, s,mode = E) ∈ ListIC
(r,M)← KEM.Split(pk)
t← H′(pw,M ⊙ H(fullsid, pw, r))
upd. record (t, r, s,mode = E) in ListIC

G12

K ← KEM.Decap(sk, c)
if tag ̸= H1(fullsid, pk, apk, c,K)

// send random key via functionality
send (NewKey, sid, Pi,⊥)
return

else
// tell FPAKE to complete session with key
key ← H2(fullsid, apk, c, tag,K)
send (NewKey, sid, Pi, key)
return

if “wrong guess”
// tell FPAKE to complete the session
// with a random key
send (NewKey, sid, Pi,⊥)
return

G11

if no record found
send (TestPwd, sid, Pi,⊥)
send (NewKey, sid, Pi,⊥)
return

G10

B IND-CCA =⇒ OW-PCA

A plaintext-checking oracle is obviously less powerful than a full-fledged decap-
sulation oracle. However, in IND-CCA security experiment (refer to Fig. 5 below),
the adversary is prohibited from calling the decapsulation oracle on the challenge

35

ciphertext, whereas in the OW-PCA game (Fig. 1), there are no such restrictions
on the adversary’s queries. In fact, for the tighter reduction shown in the proof
of Theorem 1, we cannot impose such a restriction because the reduction must
check the challenge ciphertext against the key provided by the adversary (games
G8, G13, and G15). Thus, the reader might wonder if an IND-CCA-secure KEM,
which is the standard notion of security for KEMs, actually implies that the
KEM is OW-PCA-secure with a tight reduction. We answer this question affir-
matively here.

We also note that we do forbid the adversary in ANO-PCA game (Fig. 1)
from querying the challenge ciphertext. This is because the reduction only needs
to decapsulate adversarially-crafted ciphertexts, which are different from the
challenge ciphertext (games G9, G14, and G16).

Definition 6. (KEM indistinguishability against chosen ciphertext at-
tacks) A Key Encapsulation Mechanism (KEM) scheme is said to be IND-CCA
secure if for any PPT adversary A engaged in the IND-CCA security game, where
A is prohibited from calling the Decap oracle on the challenge ciphertext, the ad-
vantage of A defined as:

AdvIND-CCA
KEM,A (λ)

def
= 2 · Pr[IND-CCAA

KEM(λ) = 1]− 1 (27)

is a negligible function of the security parameter λ. Experiment IND-CCA is
defined in Fig. 5.

Exp IND-CCAA
KEM(λ)

(pk, sk)← Keygen(λ)

(c∗,K0)← Encap(pk)

K1 ← K
b←$ {0, 1}

b′ ← ADecapc∗ (sk,·)(pk, c∗,Kb)

return b == b′

Oracle Decapc∗(sk, c)

if c == c∗return ⊥
K ← Decap(sk, c)

return K

Fig. 5. Security experiment defining indistinguishability against chosen ciphertext at-
tacks (IND-CCA). A is prohibited from calling the Decap oracle on the challenge ci-
phertext c∗.

Lemma 2. If KEM is a IND-CCA secure key encapsulation mechanism, then it
is also OW-PCA secure.

Proof. Let A be any adversary against game OW-PCA. We construct an ad-
versary B against IND-CCA that simulates game OW-PCA for A as follows: B
receives (pk, c∗,K∗) from the IND-CCA challenger and runs A(pk, c∗). B has to

36

provide a PCO oracle to A and has access to a Decap oracle that can be queried
on anything except c∗.

Here’s how B answers PCO queries:

– If A queries PCO(c,K) for c ̸= c∗, B calls Decap(c) and checks the result
against K.

– If A queries PCO(c∗,K∗), B guesses b = 0 (i.e. ciphertext c∗ encrypts K∗)
and terminates. Note that K∗ is high entropy and is perfectly hidden from
A unless c∗ encrypts it, and the probability that A queries PCO(c∗,K∗)
without c∗ actually encrypting K∗ is statistically negligible.

– If A queries PCO(c∗,K), for K ̸= K∗, B responds with false (indicating that
c∗ does not encrypt K).

When A terminates and outputs K ′, B guesses b = 0 if K ′ == K∗ (same
reason as to why B terminates on query PCO(c∗,K∗)), otherwise B picks a
random b as its final guess for the IND-CCA game.

The simulation of OW-PCA game is perfect, unless b = 1 and A queried
PCO(c∗,Kb), meaning that at least half of the time, a victory of A against
OW-PCA translates to a victory of B against IND-CCA.

AdvIND-CCA
KEM,B (λ)

def
= 2 · Pr[IND-CCAB

KEM(λ) = 1]− 1 (28)

= 2 · Pr[b = b′]− 1 (29)
= 2 · (Pr[b = 0 ∧ b′ = 0] + Pr[b = 1 ∧ b′ = 1])− 1 (30)
= Pr[b′ = 0|b = 0] + Pr[b′ = 1|b = 1]− 1 (31)

= Pr[b′ = 0|b = 0] + (
1

2
− ϵ)− 1 (32)

= Pr[K ′ = K∗] +
1

2
· Pr[K ′ ̸= K∗] + (

1

2
− ϵ)− 1 (33)

= AdvOW-PCA
KEM,A (λ) +

1

2
· (1− AdvOW-PCA

KEM,A (λ)) + (
1

2
− ϵ)− 1 (34)

=
1

2
· AdvOW-PCA

KEM,A (λ)− ϵ (35)

The term ϵ = n
|K| is statistically negligible and depends on the number n of

queries that A makes to the PCO oracle and the size of the encapsulation key
space K.

⊓⊔

C Kyber has splittable and pseudo-uniform public keys

Theorem 2. Kyber has splittable and pseudo-uniform public keys.

Proof. Kyber works over ring Rq = Zq[X]/(Xn + 1), where q = 3329 is a small
prime and n = 256. A public key consists of two parts:

37

1. A seed ρ ∈ {0, 1}256 that is derived from expanding a purely random bitstring
d ∈ B32 using a hash function G(d) that produces two 32-byte outputs, with
ρ being one of them.

2. A byte encoding of a vector t ∈ Rk
q , where k ∈ {2, 3, 4} is fixed by the

security parameter λ.

Let Split : PKλ → Nλ×Gλ be the function that trivially decomposes Kyber
public keys into ρ and t, and let Split−1 be the reverse operation. This fulfills
Condition (1) of Definition 4.

In the security proofs of Kyber [28,15,20,29], function G is modeled as a
random oracle, which ensures that the distribution of ρ is uniform. ρ is then
further expanded into a large stream of candidate 12-bit values via an eXtendable
Output Function (XOF). From this stream, the first candidate values within the
range [0, 3329) are selected to form the public matrix A ∈ Rk×k

q in the NTT
domain. This process is known as rejection sampling.

More precisely, each entry in matrix A is sampled independently by calling a
procedure Parse that takes as input the seed ρ and some public domain separation
inputs, including column and row indices. Parse first uses its input to seed the
XOF, which Kyber instantiates with SHAKE-128. The procedure then rejection-
samples one coefficient at a time, by taking the next 12 bits from the output
of SHAKE-128 and checking if they encode an integer in the range [0, q). Values
that are out of range are discarded, so the polynomial is intuitively just the
first set of 12-bit sequences produced by SHAKE-128 that fall within the correct
range.

Public matrix A and vector t = AT s + e, where s (the secret key) and e
the ephemeral noise are sampled from a suitable (low norm) distribution, form
a Module-LWE instance. Therefore, modeling G and the procedure that maps
ρ to A as random oracles, ensures that Kyber public keys are pseudo-uniform
(security experiment UNI-PK in Fig. 1) under the decisional MLWE assumption
in the Random Oracle Model. This satisfies Condition (3) of Definition 4.

It remains to demonstrate that Condition (2) is also satisfied. More precisely,
using the terminology of both the definition and the construction of CHIC in
Fig. 4, we need to show that there exists an RO-indifferentiable hash function H
that maps elements from Nλ = {0, 1}256 to Gλ = Rk

q .18

To implement H, we simply repurpose the rejection sampling procedure used
in Kyber key generation for sampling matrix A. However, instead of rejection-
sampling k × k elements in Rq, one coefficient at the time, we sample only k
elements to match the size of vector t. We first note that, because each element in
Rq is sampled independently using a domain-separated instance of SHAKE-128,
it suffices to prove that Parse is indifferentiable from a random oracle that maps
a seed ρ to a polynomial in Rq. Let O denote SHAKE-128 and let I denote
the ideal random function that maps each seed ρ to a uniform value in Rq.

18 Note that this proof of indifferentiability also justifies why the rejection sampling
procedure that maps ρ to A can be seen as a random oracle when justifying the
pseudorandomness of t under decisional MLWE.

38

Indifferentiability requires that a simulator S can explain the outputs of Parse
to an adversary with access to O in the following sense.

AParseO(·),O(·) ∼ AI(·),SI(·) .

We now describe the simulator S. When A queries O on fresh input ρ, S can
obtain a ring element y ∈ Rq by querying I(ρ)—recall that Parse just passes its
own input to the XOF, so S immediately knows what the adversary sees at the
output of I for that specific seed. Then, S runs ParseO(ρ) lazily sampling O as
needed, to obtain a discardable ring element y′. This creates a state of O that
is consistent with a fresh execution of Parse for ρ, and this has never been seen
by the adversary. One characteristic of this trace is that S can easily identify
the values that gave rise to coefficients in y′: these are sequences of 12-bits that
contain those coefficients, and they correspond to the first n = 256 positions in
the trace that yield values in the range [0, q). Now S simply rewrites this trace
replacing the y′ coefficients with y coefficients. The resulting trace is a perfect
simulation of a trace that produces y. This means that all future queries to O
associated with ρ will be consistent with the value of y observed by the adversary
in the output of I, exactly as it occurs in the real world. This simulation is, in
fact, perfect and it follows that Parse is indifferentiable from I as required.

⊓⊔

39

	C'est très CHIC: A compact password-authenticated key exchange from lattice-based KEM

