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Abstract. Polynomial commitment is a crucial cryptographic primi-
tive in constructing zkSNARKs. Most practical constructions to date
are either vulnerable against quantum adversaries or lack homomorphic
properties, which are essential for recursive proof composition and proof
batching. Recently, lattice-based constructions have drawn attention for
their potential to achieve all the desirable properties, though they often
suffer from concrete inefficiency or rely on newly introduced assumptions
requiring further cryptanalysis.
In this paper, we propose a novel construction of a polynomial commit-
ment scheme based on standard lattice-based assumptions. Our scheme
achieves a square-root proof size and verification complexity, ensuring
concrete efficiency in proof size, proof generation, and verification. Ad-
ditionally, it features a transparent setup and publicly verifiability.
When compared with Brakedown (CRYPTO 2023), a recent code-based
construction, our scheme offers comparable performance across all met-
rics. Furthermore, its proof size is approximately 4.1 times smaller than
SLAP (EUROCRYPT 2024), a recent lattice-based construction.
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1 Introduction

Polynomial commitment (PC) is a cryptographic primitive that allows a prover
to commit to a polynomial f ∈ Zp[X] by publishing a short commitment. Later,
given two public values x and y, the prover can generate a proof π convincing a
verifier that y = f(x). A polynomial commitment scheme is said to be evaluation
binding if it cannot be proven to evaluate to any other value y′ ̸= y for x, evalu-
ation hiding if the proof does not reveal any information on the coefficients of f ,
and extractable if it provides a proof of knowledge. It has been a core building
block for many cryptographic protocols, such as verifiable secret sharing [38,41],
or composing zero-knowledge arguments for membership or range relations [14].

The most prominent use case of polynomial commitments is in constructing
zero-knowledge non-interactive succinct arguments of knowledge (zkSNARKs),
as recent zkSNARKs are based on polynomial interactive oracle proofs [18] com-
bined with polynomial commitment schemes. Consequently, constructing effi-
cient polynomial commitment schemes in terms of prover complexity, verifier
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complexity, and proof size has been a significant focus of recent research. To
date, the most efficient polynomial commitment schemes [9, 16, 25, 26, 30] are
either based on discrete logarithm assumptions or error-correcting codes. The
discrete logarithm-based constructions [16, 26, 30] are known for their compact
proof sizes and rich features, such as proof batching or recursive SNARK com-
positions [12,17,28], due to their homomorphic properties, but they are insecure
against quantum adversaries. In contrast, code-based constructions [9, 25] pos-
sess post-quantum security but lack the homomorphic properties that enable
efficient proof composition.

Recently, lattice-based constructions [2, 3, 21, 23] have drawn attention for
possessing all these desirable properties for SNARKs. These studies primarily
focus on asymptotically succinct proof size and verification complexity, achiev-
ing polylogarithmic scale. However, some of these constructions have issues with
extractability, a crucial requirement for SNARKs. For example, the extractabil-
ity of [2, 21, 23] relies on newly introduced assumptions, called the k-R-ISIS
assumption, which has been heuristically broken in [39]. Additionally, all these
constructions require a trusted setup1 and lack concrete benchmark results to
demonstrate their practicality.

1.1 Our Contribution

In this paper, we propose a new lattice-based polynomial commitment scheme
that is practical in terms of proof size and efficient in proof generation and
verification. Additionally, our polynomial commitment scheme utilizes a trans-
parent setup and is publicly verifiable. As mentioned above, there have been
several research efforts on lattice-based polynomial commitments, but their con-
crete efficiency has not been thoroughly discussed. Hence, our aim is to provide
a lattice-based polynomial commitment scheme that is concretely efficient, ad-
dressing practical concerns that arise in actual implementations.

Modified Ajtai Commitment Scheme. For the basic building block, we
employ the Ajtai commitment scheme [1]. There has been a line of research
[7,11,15,36] which focused on constructing SNARKs directly from Ajtai commit-
ment schemes. This is due to its intrinsic compressing property, where commit-
ment size is almost independent of the input size, akin to the Pedersen commit-
ment. Following their approaches, we also utilize the Ajtai commitment scheme
to commit coefficients of the input polynomial to reduce asymptotic proof size.
We note that the security of the Ajtai commitment scheme relies on standard
assumptions: the MSIS and MLWE problems. However, several practical issues
arise when we use Ajtai commitment for constructing polynomial commitments:
we can only commit small messages for the binding property, and we need to
perform rejection sampling [31] to achieve zero-knowledgeness. These two issues
can be critical in the context of polynomial commitment schemes. Firstly, due
to soundness, the modulus p of polynomial coefficients is typically set to expo-
nentially large values, such as 255 bits in size. This incurs parameter blow-ups if
1 In this context, we only consider the extractable versions of [2, 21].
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we directly commit these large coefficients. Secondly, multiple polynomials are
committed during the instantiation of PIOP, leading to degraded prover perfor-
mance since the rejection rate grows exponentially with respect to the number
of committed polynomials.

To address the first issue, we propose a new encoding method inspired by
[19,20], which maps vectors of elements in Zp into small normed polynomial ring
elements while preserving the homomorphic property. For example, our method
can encode 255-bit-sized messages into polynomials with 16-bit-sized coefficients.
As a result, the new encoding method effectively resolves overhead from the large
modulus p. For the second issue, we newly devise a randomized encoding tech-
nique to achieve the simulatability of Ajtai-based proof systems. Kim et al. [27]
achieves simulatability of BDLOP-based proof systems [4, 8, 22] without rejec-
tion sampling by leveraging the properties of the discrete Gaussian distribution.
Inspired by their approach, we develop a new technique that randomizes en-
coded messages so they follow discrete Gaussian distributions over cosets of a
lattice. As a consequence, we successfully eliminate rejection sampling from our
protocol.

Polynomial Evaluation Protocol. Based on our improvements in Ajtai-based
proof systems, we design a protocol for proving polynomial evaluation. We
adapt the methodology from [13,14], which constructs polynomial commitment
schemes based on the Pedersen commitment scheme, achieving proof sizes that
are square-root in the polynomial degree. However, directly converting these
techniques to our context is not straightforward due to the inherent differences
in the proof techniques between the Pedersen commitment scheme and the Ajtai
commitment scheme.

To resolve the issues, we first redesign the knowledge extractor based on the
batched sigma protocol in [7], as the knowledge extractor in [13, 14] relies on
the invertibility of the Vandermonde matrix over Zp, which is not compatible
with the Ajtai commitment scheme. Second, we adapt the blinding technique
from [13, 14] into the Ajtai commitment scheme. To achieve the evaluation hid-
ing property, which ensures the proof does not reveal information other than
evaluation results, the previous construction uses random blinders from Zp to
hide committed polynomial coefficients. We adapt this by sampling random blin-
ders from the discrete Gaussian distribution, extending our randomized encod-
ing technique. As a result, we successfully construct a polynomial commitment
scheme that provides square-root proof size and verification complexity in terms
of polynomial degree, along with extractability and evaluation hiding proper-
ties. Additionally, we note that our construction is publicly verifiable and uses a
transparent setup.

PoC Implementation. We implement our polynomial commitment scheme at
a proof-of-concept level to demonstrate its concrete performance. Since our pro-
tocol requires sampling from discrete Gaussian distributions over cosets of the
integer lattice, we use the convolution sampler introduced in [35]. Additionally,
we utilize Residue Number System (RNS) representation and Number Theoretic
Transform (NTT) to instantiate efficient polynomial ring arithmetic. Finally, we
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use the optimization technique from [5] to further reduce the proof size. The
benchmark results indicate that our polynomial commitment scheme offers com-
parable performance in terms of proof generation, verification, and proof size
when compared to Brakedown [25], a recent code-based polynomial commitment
scheme, which also yields square-root proof size. Furthermore, in comparison to
SLAP [3], a recent lattice-based polynomial commitment scheme, our construc-
tion achieves approximately 4.1 times smaller proof size for a polynomial degree
of 220.

1.2 Related Works

The most relevant work to ours is [29], which constructs a polynomial com-
mitment scheme based on BDLOP, following the methodology from [13, 14].
However, due to the usage of the BDLOP commitment scheme, which does
not have a compressing property, its proof size is not sublinear in the input
polynomial degree. Additionally, they utilize rejection sampling to achieve zero-
knowledgeness. Recently, there has been a line of research [2, 21, 23, 40], which
constructs lattice-based polynomial commitment schemes from newly introduced
assumptions. However, as discussed earlier, their extractability requires further
analysis, and their setup phase is not transparent. Meanwhile, there is another
construction [3] that provides an efficient polynomial commitment scheme based
on standard assumptions, but it also requires a trusted setup, and concrete per-
formance for the prover and verifier were not provided.

On the other hand, another series of work [7,11,15,36] has focused on directly
building SNARKs from the Ajtai commitment scheme. To address the issues re-
lated to small messages, [7] employed an encoding method for the finite field
GF (pk) when p is small, [36] used base representation to decompose inputs into
small elements, and [11] utilized non-adjacent form. Concerning the asymptotic
proof size, the SNARK constructions in [7, 36] provide a proof size that scales
with the square root of the input size. The leveled Ajtai commitment scheme
in [15] further reduces the asymptotic proof size by generalizing the approach
in [7]. Meanwhile, the proof size in [11] and the Bulletproof variant of [15] pro-
vide a polylogarithmic scale. To achieve zero-knowledgeness, [7, 15, 36] utilize
rejection sampling, but the zero-knowledgeness of [11] and the Bulletproof vari-
ant of [15] were not precisely described in the literature. Regarding the concrete
instantiation, [36] and [11] provide concrete proof sizes that can be practically
deployed, but the performance of the prover and verifier was not provided.

2 Preliminaries

2.1 Notation

For a positive integer q, we use Z∩ (−q/2, q/2] as a representative set of Zq, and
denote by [a]q the reduction of a modulo q. Vectors over Z or Zq are denoted
with regular lowercase letters and arrows, such as v⃗, and matrices over Z or Zq
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are represented by regular uppercase letters. We regard all vectors as column
vectors, and we use the symbol ∥ for the concatenation of two vectors.

Let d be a power of two. We denote by R = Z[X]/(Xd + 1) the ring of
integers of the 2d-th cyclotomic field and Rq = Zq[X]/(Xd +1) the residue ring
of R modulo q. For polynomials in R or Rq, we use bold lowercase letters to
denote them e.g. fff . We often regard them as d-dimensional vectors over Z or Zq
with components corresponding to coefficients. Vectors over R or Rq are denoted
with bold lowercase letters and arrows, such as f⃗ff , and matrices over R or Rq are
represented by bold uppercase letters.

For a vector v⃗ = (v0, . . . , vn−1) ∈ Zn, the ℓp (p ≥ 1) and ℓ∞ norms are
defined as follows:

∥v∥p :=
p

√√√√n−1∑
i=0

|vi|p, ∥v∥∞ := max
0≤i<n

|vi|

For a polynomial fff or a vector of polynomials f⃗ff , ∥fff∥p and
∥∥∥f⃗ff∥∥∥

p
are calculated

by regarding them as coefficient vectors. For a matrix A ∈ Rn×n, we denote the
matrix norm of A by ∥A∥2 := max0̸=x⃗∈Rn

∥Ax⃗∥2
∥x⃗∥2

.

2.2 Probability Distributions

We denote sampling x from the distribution D by x← D. For distributions D1

and D2 over a countable set S (e.g. Zn), the statistical distance of D1 and D2 is
defined as 1

2 ·
∑
x∈S |D1(x)−D2(x)| ∈ [0, 1]. We denote the uniform distribution

over S by U(S) when S is finite.
We define the n-dimensional spherical Gaussian function ρ : Rn → (0, 1] as

ρ(x⃗) := exp(−π · x⃗⊤x⃗). In general, for a positive definite matrix Σ ∈ Rn×n,
we define the elliptical Gaussian function ρ√Σ : Rn → (0, 1] as ρ√Σ(x⃗) :=

exp(−π · x⃗⊤Σ−1x⃗). Let Λ ⊆ Rn be a lattice and c⃗ ∈ Rn. The discrete Gaussian
distribution Dc⃗+Λ,√Σ is defined as a distribution over the coset c⃗ + Λ, whose
probability mass function is Dc⃗+Λ,√Σ(x⃗) = ρ√Σ(x⃗)/ρ

√
Σ(c⃗ + Λ) for x⃗ ∈ c⃗ + Λ

where ρ√Σ(c⃗+ Λ) :=
∑
v⃗∈c⃗+Λ ρ

√
Σ(v⃗) <∞. When Σ = σ2 · In for σ > 0 where

In is the n-dimensional identity matrix, then we substitute
√
Σ by σ in the

subscript and refer to σ as the width parameter. For a polynomial xxx, we denote
by xxx← Dc⃗+Λ,√Σ if we sample its coefficient vector from Dc⃗+Λ,√Σ .

2.3 Useful Lemmas

Definition 1 (Def. 3.1 [34]). For an n-dimensional lattice Λ and positive real
ε > 0, the smoothing parameter ηε(Λ) is the smallest s such that ρ1/s(Λ∗\{0}) ≤
ε.

Definition 2 (Def. 2.3 [37]). Let Σ be a positive-definite matrix. We say that√
Σ ≥ ηε(Λ) if ηε(

√
Σ
−1 · Λ) ≤ 1.
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Lemma 1 (Lem. 3.3 [34]). For any n-dimensional lattice Λ and ε > 0,

ηε(Λ) ≤
√

ln(2n(1 + 1/ε))

π
· λn(Λ)

where λn(Λ) is the smallest real number r > 0 such that dim(span(Λ∩B(r))) = n
and B(r) is the n-dimensional ball with radius r centered at the origin.

Lemma 2 (Lem. 5 [27]). For a positive-definite matrix Σ,
√
Σ ≥ ηε(Λ) holds

if
∥∥Σ−1∥∥

2
≤ ηε(Λ)−2.

Lemma 3 (Lem. 2.4 [37]). Let Λ ⊆ Rn be any n-dimensional lattice. For any
0 < ε < 1, Σ > 0 such that

√
Σ ≥ ηε(Λ), and any c⃗ ∈ Rn,

ρ√Σ(c⃗+ Λ) ∈
[
1− ε
1 + ε

, 1

]
· ρ√Σ(Λ)

Lemma 4 (Lem. 2.4 [6]). Let Λ ⊆ Rn be any n-dimensional lattice. For any
0 < ε < 1/3, σ ≥ ηε(Λ), and any c⃗ ∈ Rn,

Pr [∥x⃗∥∞ > 5σ | x⃗← Dc⃗+Λ,σ] ≤ n · 2−111

Lemma 5 (Lem. 4.4 [34]). Let Λ ⊆ Rn be any n-dimensional lattice. For any
0 < ε < 1/3, σ ≥ ηε(Λ), and any c⃗ ∈ Rn,

Pr
[
∥x⃗∥2 > σ

√
n | x⃗← Dc⃗+Λ,σ

]
≤ 2−n+1

Lemma 6 (Fact 2.1 [37]). Let Σ1, Σ2 > 0 be positive-definite matrices. Define
Σ−10 = Σ−11 +Σ−12 > 0 and Σ3 = Σ1 +Σ2 > 0. Let x⃗, c⃗1, c⃗2 ∈ Rn be arbitrary,
and let c⃗0 ∈ Rn be such that Σ−10 c⃗0 = Σ−11 c⃗1 +Σ−12 c⃗2. Then,

ρ√Σ1
(x⃗− c⃗1) · ρ√Σ2

(x⃗− c⃗2) = ρ√Σ0
(x⃗− c⃗0) · ρ√Σ3

(c⃗1 − c⃗2)

Lemma 7 (Simplified Thm. 1 [37]). Let Σ1, Σ2 > 0 be positive-definite ma-
trices. Let Λ1, Λ2 ⊆ Rn be n-dimensional lattices such that Λ2 ⊆ Λ1,

√
Σ1 ≥

ηε(Λ1), and
√
(Σ−11 +Σ−12 )−1 ≥ ηε(Λ2) for some 0 ≤ ε < 1/2. Then, for any

c⃗1, c⃗2 ∈ Rn, the distribution Dc⃗1+Λ1,
√
Σ1

+Dc⃗2+Λ2,
√
Σ2

is within statistical dis-
tance 8ε of Dc⃗1+c⃗2+Λ1,

√
Σ1+Σ2

.

Lemma 8 (Lem. 3.1 [10]). Let d be a power of two, and let 0 ≤ i, j < 2d such
that i ̸= j. Then, 2(Xi −Xj)−1 is an element of R such that∥∥2(Xi −Xj)−1

∥∥
∞ ≤ 1,

where the inverse of (Xi −Xj) is taken over the field Q[X]/(Xd + 1).
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2.4 Module SIS/LWE

Definition 3. Let µ, ℓ be positive integers, and 0 < β < q. Then, the goal of
the Module-SIS (MSIS) problem is to find, for a given matrix A ← U(Rµ×ℓq ),
x⃗xx ∈ Rµ+ℓq such that [Iµ|A]x⃗xx = 0 (mod q) and ∥x⃗xx∥2 < β. We say that a PPT
adversary A has advantages ε in solving MSISR,µ,q,β if

Pr
[
∥x⃗xx∥2 < β ∧ [Iµ|A]x⃗xx = 0 (mod q) | A← U(Rµ×ℓq ); x⃗xx← A(A)

]
≥ ε.

Definition 4. Let ν, ℓ be positive integer, and χ be a distribution over Rν+ℓ.
Then, the goal of the Module-LWE (MLWE) problem is to distinguish (A, u⃗uu)
from (A, [A|Iℓ ]⃗rrr) for A ← U(Rℓ×νq ), u⃗uu ← U(Rℓq), and r⃗rr ← χ. We say that a
PPT adversary A has advantages ε in solving MLWER,ν,q,χ if

|Pr
[
b = 1 | A← U(Rℓ×νq ); r⃗rr ← χ; b← A (A, [A|Iℓ ]⃗rrr)

]
− Pr

[
b = 1 | (A, u⃗uu)← U(Rℓ×νq ×Rℓq); b← A(A, u⃗uu)

]
| ≥ ε.

For spherical discrete Gaussian distributions, we replace them with their width
parameters in the MLWE notation for simplicity.

For both problems, the value of ℓ in the hardness estimation is not significant,
so we omit it in the parameters for both problems.

2.5 Hint-MLWE

The Hint-MLWE problem is a variant of MLWE introduced in recent litera-
ture [27, 33]. This hardness problem is useful when proving the simulatability
of lattice-based proof systems without relying on the rejection sampling tech-
nique [31].

Definition 5 (Hint-MLWE). Let ν, ℓ, n be positive integers, χ and ψ0, . . . , ψn−1
be distributions over Rν+ℓ, and ccc0, . . . cccn−1 be elements in R. The Hint-MLWE
problem, denoted by HintMLWE

ccc0,...,cccn−1

R,ν,q,χ,ψ0,...,ψn−1
, asks the adversary A to distin-

guish the following two distributions:

1.
(
A, [A|Iℓ ]⃗rrr, z⃗zz0, . . . , z⃗zzk−1

)
for A ← U(Rℓ×νq ), r⃗rr ← χ, y⃗yyi ← ψi, and z⃗zzi =

ccci · r⃗rr + y⃗yyi for 0 ≤ i < n.

2.
(
A, u⃗uu, z⃗zz0, . . . , z⃗zzn−1

)
for A ← U(Rℓ×νq ), u⃗uu ← U(Rℓq), r⃗rr ← χ, y⃗yyi ← ψi, and

z⃗zzi = ccci · r⃗rr + y⃗yyi for 0 ≤ i < n.

When χ and ψ0, . . . , ψn−1 are spherical discrete Gaussian distributions, we sim-
ply use their width parameters to denote the Hint-MLWE problem for simplicity.

Theorem 1 (Generalized Thm. 1 [27]). Let ν, n be positive integers and
ccc0, . . . , cccn−1 be elements of R. For σ1, σ2,0, . . . σ2,n−1 > 0, let σ > 0 be defined
as 1/σ2 = 2(1/σ2

1 +
∑n−1
i=0 B

2
i /σ

2
2,i), where Bi’s are upper bounds for ∥ccci∥1’s. If

σ ≥
√
2·ηε(Zd(µ+ν)) for some ε = negl(λ), then there exists an efficient reduction

from MLWER,ν,q,σ to HintMLWE
ccc0,...,cccn−1

R,ν,q,σ1,σ2,0,...,σ2,n−1
.
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2.6 Commitment Scheme

We recall the notion of a commitment scheme. A commitment scheme consists
of three PPT algorithms (Setup, Com, Open).

– Setup(1λ) → ck: Given a security parameter λ, it generates a commitment
key ck.

– Com(ck,m)→ (c, δ): Given a message m, it returns a commitment c and an
opening δ.

– Open(ck, c,m, δ)→ b: Given a commitment c, a message m, and an opening
δ, it outputs 0 or 1.

Definition 6 (Hiding). A commitment scheme satisfies hiding if for all PPT
adversary A, ∣∣∣∣∣∣∣∣∣∣∣∣

Pr

b = b′

∣∣∣∣∣∣∣∣∣∣∣∣

ck← Setup(1λ)

(m0,m1)← A(ck)
b← U({0, 1})

(c, δ)← Com(ck,mb)

b′ ← A(c)

−
1

2

∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

Definition 7 (Binding). A commitment scheme satisfies binding if for all PPT
adversary A,

Pr

 Open(ck, c,m, δ) = 1∧
Open(ck, c,m′, δ′) = 1∧

m ̸= m′

∣∣∣∣∣∣∣
ck← Setup(1λ)

(c,m,m′, δ, δ′)← A(ck)

 ≤ negl(λ).

In some applications of commitment schemes, such as zero-knowledge proof
systems, an interactive protocol called proof of opening knowledge is required,
which proves the knowledge of opening δ for given commitments without re-
vealing the committed messages. Its security is defined as follows, adapted from
[27,32].

Definition 8. An interactive protocol (P,V) is called a secure proof of opening
knowledge protocol for a commitment scheme (Setup, Com, Open) if it satisfies
the followings:

– Completeness. For all message m,

Pr

b = 1 ∧ Open(ck, c,m, δ) = 1

∣∣∣∣∣∣∣
ck← Setup(1λ)

(c, δ)← Com(ck,m)

(π, b)← ⟨P(ck, c, δ),V(ck, c)⟩

 ≥ 1− negl(λ).
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– Soundness. For all PPT adversaries P∗, there exists an expected polynomial
time extractor E such that

Pr

b = 1 ∧ Open(ck, c,m, δ) = 0

∣∣∣∣∣∣∣∣∣∣
ck← Setup(1λ)

c← P∗(ck)
(π, b)← ⟨P∗(ck, c),V(ck, c)⟩

(m, δ)← EP
∗
(ck, c)

 ≤ negl(λ).

– Simulatability. There exists a PPT simulator S such that for all PPT
adversaries A,∣∣∣∣∣Pr

A(c, π) = 1

∣∣∣∣∣∣∣
ck← Setup(1λ)

m← A(ck)
(c, π)← S(ck)



− Pr

A(c, π) = 1

∣∣∣∣∣∣∣∣∣
ck← Setup(1λ)

m← A(ck)
(c, δ)← Com(ck,m)

(π, b)← ⟨P(ck, c, δ),V(ck, c)⟩


∣∣∣∣∣ ≤ negl(λ).

2.7 Polynomial Commitment Scheme

We recall the notion of a polynomial commitment scheme, adapted from [26].
A polynomial commitment scheme consists of five PPT algorithms (PC.Setup,
PC.Com, PC.Open, PC.Eval, PC.Verify).

– PC.Setup(1λ, N) → ck: Given a security parameter λ and a polynomial de-
gree upper bound N , it generates a commitment key ck.

– PC.Com(ck, h(X))→ (c, δ): Given a polynomial h(X) ∈ Zp[X] of degree < N ,
it generates a commitment c and an opening δ.

– PC.Open(ck, c, h(X), δ)→ b: Given a commitment c, an opening δ, and poly-
nomial h(X), it outputs 0 or 1.

– PC.Eval(x, δ)→ (y, ρ): Given an opening δ and an evaluation point x ∈ Zp,
it returns an evaluation result y, and an evaluation proof ρ.

– PC.Verify(ck, c, x, y, ρ) → b: Given a commitment c, an evaluation point x,
an evaluation result y, and an evaluation proof ρ, it outputs 0 or 1.

Definition 9 (Hiding). A polynomial commitment scheme satisfies hiding if
for all PPT adversary A,∣∣∣∣∣∣∣∣∣∣∣∣

Pr

b = b′

∣∣∣∣∣∣∣∣∣∣∣∣

ck← PC.Setup(1λ, N)

(h0(X), h1(X))← A(ck)
b← U({0, 1})

(c, δ)← PC.Com(ck, hb(X))

b′ ← A(c)

−
1

2

∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).
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Definition 10 (Binding). A polynomial commitment scheme satisfies binding
if for all PPT adversary A,

Pr

 PC.Open(ck, c, h(X), δ) = 1∧
PC.Open(ck, c, h′(X), δ′) = 1∧

h(X) ̸= h′(X)

∣∣∣∣∣∣∣
ck← PC.Setup(1λ, N)

(c, h(X), h′(X), δ, δ′)← A(ck)

 ≤ negl(λ).

Definition 11 (Evaluation Binding). A polynomial commitment scheme sat-
isfies evaluation binding if for all PPT adversary A,

Pr

 PC.Verify(ck, c, x, y, ρ) = 1∧
PC.Verify(ck, c, x, y′, ρ′) = 1∧

y ̸= y′

∣∣∣∣∣∣∣
ck← PC.Setup(1λ, N)

(c, x, y, y′, ρ, ρ′)← A(ck)

 ≤ negl(λ).

Definition 12 (Evaluation Hinding). A polynomial commitment scheme sat-
isfies evaluation hiding if there exists a PPT simulator S such that for all PPT
adversary A,

∣∣∣∣∣Pr
A(c, ρ) = 1

∣∣∣∣∣∣∣
ck← PC.Setup(1λ, N)

(h(X), x)← A(ck)
(c, ρ)← S(ck, x, h(x))



− Pr

A(c, ρ) = 1

∣∣∣∣∣∣∣∣∣
ck← PC.Setup(1λ, N)

(h(X), x)← A(ck)
(c, δ)← PC.Com(ck, h(X))

(y, ρ)← PC.Eval(x, δ)


∣∣∣∣∣ ≤ negl(λ).

Similar to commitment schemes, some applications of polynomial commit-
ment schemes, such as zk-SNARK, require an interactive protocol called proof of
opening knowledge. It proves the knowledge of opening δ for given commitments
without revealing the committed polynomials We adapt its definition from [3,25].

Definition 13. An interactive protocol (P,V) is called a secure proof of open-
ing knowledge protocol for a polynomial commitment scheme (PC.Setup, PC.Com,
PC.Open, PC.Eval, PC.Verify) if it satisfies the followings:

– Completeness. For every polynomial h(X) ∈ Zp[X] of degree < N and
every point x ∈ Zp,

Pr


b = 1∧

PC.Open(ck, c, h(X), δ) = 1∧
PC.Verify(ck, c, x, h(x), ρ) = 1

∣∣∣∣∣∣∣∣∣
ck← PC.Setup(1λ,N )

(c, δ)← PC.Com(ck, h(X))

(y, ρ)← PC.Eval(δ, x)

(π, b)← ⟨P(ck, c, δ),V(ck, c)⟩

 ≥ 1− negl(λ)
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– Soundness. For all PPT adversaries P∗, there exists an expected polynomial
time extractor E such that

Pr

 b = 1∧

PC.Verify(ck, c, x, y, ρ) = 1∧(
PC.Open(ck, c, h(X), δ) = 0 ∨ y ̸= h(x)

)
∣∣∣∣∣∣∣∣

ck← PC.Setup(1
λ
, N)

(c, x, y, ρ)← P∗
(ck)

(π, b)←
〈
P∗

(ck, c),V(ck, c)
〉

(h(X), δ)← EP
∗
(ck, c, x, y, ρ)

 ≤ negl(λ)

– Simulatability. There exists a PPT simulator S such that for all PPT
adversaries A,∣∣∣∣∣Pr

A(c, ρ, π) = 1

∣∣∣∣∣∣∣
ck← PC.Setup(1λ, N)

(h(X), x)← A(ck)
(c, π, ρ)← S(ck, x, h(x))



− Pr

A(c, ρ, π) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

ck← PC.Setup(1λ)

(h(X), x)← A(ck)
(c, δ)← PC.Com(ck, h(X))

(y, ρ)← PC.Eval(δ, x)

(π, b)← ⟨P(ck, c, δ),V(ck, c)⟩


∣∣∣∣∣ ≤ negl(λ).

3 Revisiting the Ajtai Commitment Scheme

In this section, we revisit the Ajtai commitment scheme [1] and its proof of open-
ing knowledge (POK) protocol, which we utilize as the main building block for
our polynomial commitment scheme. Our construction is based on the previous
work by Baum et al. [7], which builds a zkSNARK from the Ajtai commitment
scheme.

For the Ajtai commitment scheme, we use it to commit coefficients of an
input polynomial from Zp[X], so it needs to provide a compact commitment
for messages in Zp. In the applications of polynomial commitments, p is usually
set to a large prime to attain negligible soundness error. However, the previous
approach does not effectively handle such cases, so naive adaptation results in
parameter blow-ups.2 To address this, we introduce a novel encoding map for the
Ajtai commitment scheme, which transforms integers in Zp into a polynomial
with coefficients much smaller than p while still preserving the homomorphic
property. This results in a more compact commitment size, preventing parameter
blow-ups.

For our POK protocol, we achieve simulatability without introducing rejec-
tion sampling. Previous constructions used the rejection sampling method [31]
to achieve simulatability. However, this approach can degrade the prover’s per-
formance since the repetition rate grows exponentially with the number of com-
mitted polynomials. This is particularly problematic for use cases of polynomial
2 Baum et al. [7] presented an effective encoding method for a finite field GF (pk) with

a small prime p, but it does not cover large primes.
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commitments, such as PIOP, which require committing to multiple polynomi-
als. To address this issue, we eliminate rejection sampling in the POK protocol
through a newly developed randomized encoding technique. In the rest of this
section, we provide more details on our new approaches to the Ajtai commitment
scheme and its POK protocol.

3.1 New Encoding Method

Let us first recall the basic Ajtai commitment scheme. For a message m⃗mm ∈ Rℓ
and a randomness µ⃗µµ sampled from a distribution over Rµ+ν , the commitment
m⃗mm ∈ Rµq is obtained as

m⃗mm = A0m⃗mm+A1µ⃗µµ (mod q)

where A0 ∈ Rµ×ℓq and A1 ∈ Rµ×(µ+ν)q are (fixed) random matrices. In particular,
the binding property of the Ajtai commitment scheme heavily depends on the
size of m⃗mm.

In the prior work [7], a simple encoding method is used, which embeds ele-
ments of Zp into the coefficients of a polynomial in R. Therefore, the commitment
modulus q should be sufficiently larger than p to meet the security requirements.
If p is a large prime, this approach can lead to significant inefficiencies due to
the scaling of commitments. To address this issue, we introduce a novel encoding
map, which maps messages from Zp for large primes into elements of a polyno-
mial ring with small coefficients. Our encoding map is inspired by [19,20], which
proposes a novel packing method for homomorphic encryption to instantiate
high-precision arithmetic.

Lemma 9. Let b and r be positive integers such that r | d and p = br + 1 is
prime. Then, R/(Xd/r − b) is isomorphic to Zd/rp as Z-modules.

Proof. Using the fact that R/(Xd/r − b) = Z[X]/(Xd + 1, Xd/r − b), we obtain
the following isomorphism.

R/(Xd/r − b) =
d/r−1⊕
i=0

Xi · Z[Xd/r]/(Xd + 1, Xd/r − b)

=

r−1⊕
i=0

Xi · Zp[Xd/r]/(Xd/r − b) ∼=
d/r−1∏
i=0

Zp[Xd/r]/(Xd/r − b).

We note that Zp[Xd/r]/(Xd/r − b) ∼= Zp via an isomorphism f(Xd/r) 7→ f(b).
Therefore, we have R/(Xd/r − b) ∼= Zd/rp with respect to the following isomor-
phism φ from R/(Xd/r − b) to Zd/rp :

φ : āaa =

d/r−1∑
i=0

r−1∑
j=0

a(d/r)j+iX
(d/r)j+i 7→

r−1∑
j=0

a(d/r)jb
j , . . . ,

r−1∑
j=0

a(d/r)(j+1)−1b
j


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We note that the isomorphism φ is defined over the polynomial representation
on R of an element āaa in R/(Xd/r − b). It is well-defined, because for any two
polynomial representations aaa and aaa′ in R of āaa, we have aaa = aaa′ (mod Xd/r − b)
and φ maps Xd/r − b to zero. ⊓⊔

We recall that the space of encoded message in the Ajtai commitment scheme
is Rℓ, so we need to design an encoding map from Zd/rp to R. The main idea
is to utilize the isomorphism between Zd/rp and R/(Xd/r − b), with R serving
as the representation set for elements of R/(Xd/r − b). As stated in the above
lemma, the isomorphism φ : R/(Xd/r − b)→ Zd/rp can be naturally extended to
the map over R, which can be considered as a decoding procedure, the inverse
of encoding. Hence, we aim to construct an encoding map that outputs a poly-
nomial representation of aaa = φ−1(⃗a) ∈ R/(Xd/r− b) in R with small coefficients
for a⃗ ∈ Zd/rp . To achieve this, we present an algorithm in Alg. 1 that outputs
a polynomial representation of aaa with an upper bound ∥aaa∥∞ ≤

1
2 (b + 2) since

|ai,j | ≤ 1
2b and |ci,j | ≤ 1.

Algorithm 1 New encoding method
Input: a⃗ = (a0, . . . , ad/r−1) ∈ Zd/r

p

Output: aaa ∈ R
1: for 0 ≤ i < d/r do
2: if ai = p− 1 (mod p) then
3: (ai,0, . . . , ai,r−1)← (0, . . . , 0, b)
4: else
5: (ai,0, . . . , ai,r−1) is the base-b representation of 0 ≤ ai < br

6: end if
7: end for
8: for 0 ≤ i < d/r, 0 ≤ j < r do
9: if ai,j > b/2 then

10: ai,j ← ai,j − b, ci,j ← 1
11: else
12: ci,j ← 0
13: end if
14: end for
15: aaa←

∑d/r−1
i=0

∑r−1
j=0 ai,jX

(d/r)j+i +
∑d/r−1

i=0

∑r−1
j=0 ci,jX

(d/r)(j+1)+i

Below, we provide the encoding and decoding algorithms for our commitment
scheme.

– Ecd(⃗a) → aaa: Given an element a⃗ = (a0, . . . , ad/r−1) ∈ Zd/rp , it runs Alg. 1
and outputs a ring element aaa where ∥aaa∥∞ ≤

b+2
2 .

– Dcd(aaa) → a⃗: Given a ring element aaa =
∑d/r−1
i=0

∑r−1
j=0 ai,jX

(d/r)j+i ∈ R, it

outputs a⃗ = φ(aaa) =
(∑r−1

j=0 a0,jb
j , . . . ,

∑r−1
j=0 ad/r−1,jb

j
)
∈ Zd/rp .
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We note that our encoding maps a message vector in Zd/rp into a polynomial in R
whose norm is bounded by b+2

2 , which is much smaller than p, while preserving
homomorphic property. This allows for a compact commitment size when com-
mitting messages from large prime fields, as the commitment modulus can be
chosen to be small while still maintaining the binding properties. As an abuse of
notation, we often put an integer a ∈ Zp as an input for the encoding algorithms.
In this case, Ecd(a) outputs a ring element aaa = Ecd(⃗a), where a⃗ = (a, 0, . . . , 0)

such that ∥aaa∥1 ≤
(b+2)r

2 since there are at most r non-zero coefficients.
Now we explain how our encoding method affects the commitment modulus

q. As mentioned above, the binding property of the Ajtai commitment m⃗mm =
A0m⃗mm+A1µ⃗µµ (mod q) is closely related to the size of a message m⃗mm, which is reduced
to the hardness of MSISR,µ,q,β where β = 2∥m⃗mm∥µ⃗µµ∥2. Following the analysis from
[24], the MSIS problem is believed to be computationally hard when β satisfies
the following condition for a constant δ ≈ 1.005:

β ≤ min{q, 22
√
µd log q log δ}

Assuming the second term is smaller than q, it holds that log q = Ω(log2 β)
when other parameters are fixed. If we naively embed the elements in Zp into
coefficients of a polynomial in R, it holds that β = O(log p) = O(r log b), but
with our method, it holds that β = O(log b+log r). Hence, our encoding method
roughly reduces the size log q of the commitment modulus by a factor of r2.

3.2 Randomized Encoding

The rejection sampling is yet another bottleneck in the POK protocol for the
Ajtai commitment scheme. To be precise, in the POK protocol of the Ajtai
commitment scheme, the response of the form t⃗tt = g⃗gg + ccc · m⃗mm and τ⃗ττ = γ⃗γγ + ccc · µ⃗µµ is
transmitted to the verifier, where m⃗mm is an encoded message, µ⃗µµ is a commitment
randomness, ccc is a random challenge from a verifier, and g⃗gg, γ⃗γγ are masks for these
values. Since the responses t⃗tt and τ⃗ττ contain partial information about m⃗mm and µ⃗µµ,
which inhibits the simulatability, the previous construction of the POK protocol
used rejection sampling method [31] to ensure that they follow an independent
distribution from m⃗mm and µ⃗µµ.

Recently, Kim et al. [27] presented a POK protocol for BDLOP [8], which
is another lattice-based commitment scheme that does not rely on the rejection
sampling technique. This work is based on the observation that the protocol can
be still simulatable even if the verifier obtains from the response some partial
information on the commitment randomness which is sampled from a discrete
Gaussian distribution. Unfortunately, this framework is not simply compatible
with the Ajtai scheme where the commitment is represented as a linear combina-
tion of both the message t⃗tt and randomness τ⃗ττ , different from BDLOP whose POK
statement depends only on the commitment randomness. If we directly apply
the same approach, then a POK would leak nonnegligible amount of information
about the committed message.
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To overcome this limitation, we propose a randomized message encoding
method where the output follows a discrete Gaussian distribution. We point out
that the decoding procedure outputs the same result if inputs are congruent
modulo Xd/r − b, i.e., Dcd(aaa) = Dcd(aaa′) whenever aaa = aaa′ (mod Xd/r − b). Since
we aim to construct a commitment scheme for messages in Zp, it is allowed
to incorporate a randomization procedure during the message encoding process
as long as its decoding remains the same. To be precise, let m⃗ ∈ Zd/rp be an
input message, and mmm be the output of the randomized encoding. Since our
goal is to have mmm = Ecd(m⃗) (mod Xd/r − b), we can sample it from a discrete
Gaussian over a coset Ecd(m⃗) + PZd, where P ∈ Rd×d is the negacyclic matrix
corresponding to Xd/r − b, then it satisfies all the required conditions. Below,
we present our randomized encoding algorithm.

– R.Ecd(⃗a, s)→ aaa: Given an element a⃗ ∈ Zd/rp and a positive real s > 0, output
a ring element aaa← DEcd(a⃗)+PZd,sP where P ∈ Zd×d is the negacyclic matrix
of Xd/r − b.

As an abuse of notation, we often put an ℓd/r-dimensional vector a⃗ = a⃗0∥ · · · ∥a⃗ℓ−1
∈ Zℓd/rp as an input for the above algorithms. In this case, R.Ecd(⃗a) outputs a vec-
tor of ring element a⃗aa = (aaa0, . . . , aaaℓ−1) ∈ Rℓ where aaai = R.Ecd(⃗ai; s) for 0 ≤ i < ℓ.
We also note that we use the covariant matrix of the form sP for the sake of
efficiency. We first sample from DP−1Ecd(a⃗)+Zd,s, and then multiply it by P , since
sampling from a spherical discrete Gaussian over a coset of the integer lattice is
much more efficient than sampling from a coset of an arbitrary lattice. Finally,
we remark that P−1 corresponds to the negacyclic matrix of the polynomial
(Xd/r − b)−1 = − 1

br+1

(
Xd−d/r + bXd−2d/r + · · · + br−1

)
. Thus, it holds the

followings:

∥P∥2 ≤
∥∥∥Xd/r − b

∥∥∥
1
= b+ 1,

∥∥P−1
∥∥
2
≤
∥∥∥(Xd/r − b)−1

∥∥∥
1
=

br − 1

(b− 1)(br + 1)
≤ 1

b− 1

3.3 A New Proof of Opening Knowledge Protocol

In this subsection, we present our variant of the Ajtai commitment scheme, which
incorporates a new encoding method for compact proof sizes and a randomized
encoding technique for simulatability. The algorithms (Setup, Com, Open) are de-
fined as follows for the message space Znp .

– Setup(1λ) → ck: Given a security parameter λ, it generates a commitment
key ck = (A0,A1) where n = ℓd/r, A0 ← U(Rµ×ℓq ), and A1 = [A′1|Iµ] ∈
R
µ×(µ+ν)
q with A′1 ← U(Rµ×νq ).

– Com(ck, m⃗) → (m⃗mm, δ): Given a message m⃗ ∈ Znp , it returns a commitment
m⃗mm = A0m⃗mm+A1µ⃗µµ ∈ Rµq and an opening δ = (m⃗mm,µ⃗µµ), where m⃗mm← R.Ecd(m⃗; s1)

and µ⃗µµ← Dµ+νZd,σ1
.

– Open(ck, m⃗mm, m⃗, δ)→ b: Given a commitment m⃗mm, a message m⃗, and an opening
δ = (m⃗mm,µ⃗µµ), it outputs 1 if it satisfies ∥2m⃗mm∥2µ⃗µµ∥2 < 2dβOpen, m⃗mm = A0m⃗mm+A1µ⃗µµ

(mod q), and m⃗ = p+1
2 · Dcd(2m⃗mm) (mod p); otherwise, it outputs 0.
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The commitment scheme defined above is computationally hiding if MLWER,ν,q,σ1

is hard, and computationally binding if MSISR,µ,q,4dβOpen is hard. Next, we define
the POK protocol ΠOpen as in Fig. 1. Our POK protocol adapts the batching
technique from [7], hence it can prove the knowledge of openings of k com-
mitments simultaneously. For the challenge set C, we use the set of monomi-
als {1, X, · · · , X2d−1}, following the technique from [10]. The completeness and
soundness of the protocol are as follows.

ΠOpen

Prover P Verifier V
Input: ck = (A0,A1) ck

m⃗mm0, . . . , m⃗mmk−1 ∈ Rµ
q m⃗mm0, . . . , m⃗mmk−1

m⃗mm0, . . . , m⃗mmk−1 ∈ Rℓ
q

η⃗ηη0, . . . , µ⃗µµk−1 ∈ R
µ+ν
q

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 : For 0 ≤ j < κ = ⌈λ/ log(2d)⌉,

2 : g⃗j ← U(Zn
p ),

3 : g⃗ggj ← R.Ecd(g⃗j ,
√
k + 1 · s2)

4 : γ⃗γγj ← D
µ+ν

Zd,
√

k+1·σ2

5 : g⃗ggj = A0g⃗ggj + A1γ⃗γγj
g⃗ggj

6 : cccj,i ccc0,0, . . . , cccκ−1,k−1 ← U(C)

7 : For 0 ≤ j < κ,

8 : t⃗ttj = g⃗ggj +

k−1∑
i=0

cccj,i · m⃗mmi

9 : τ⃗ττj = γ⃗γγj +

k−1∑
i=0

cccj,i · µ⃗µµi
t⃗ttj , τ⃗ττj

10 : For 0 ≤ j < κ,

11 :
∥∥∥⃗tttj∥τ⃗ττj

∥∥∥
2

?
≤ βOpen

12 : A0⃗tttj + A1τ⃗ττj
?
= g⃗ggj +

m∑
i=0

cccj,i · m⃗mmi

Fig. 1. Batched proof of opening protocol for the Ajtai commitment scheme

Theorem 2 (Completeness). The proof of opening knowledge protocol ΠOpen

in Fig. 1 has completeness if it satisfies the following conditions for ε = negl(λ):

– s1,
√
k + 1 · s2 ≥ ηε(Zdℓ)
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– σ1,
√
k + 1 · σ2 ≥ ηε(Zd(µ+ν))

– βOpen =
√(

(kσ1+
√
k+1·σ2)

2·(µ+ν)+(b+1)2·(ks1+
√
k+1·s2)

2·ℓ
)
d

Proof. We use Lem. 5 to attain upper bounds for
∥∥∥⃗tttj∥∥∥

2
and ∥τ⃗ττ j∥2. Let Pℓ = P ⊗

Iℓ ∈ Rdℓ×dℓ. Since gggj ∼ DEcd(g⃗j)+PℓZdℓ,
√
k+1s2Pℓ

≡ Pℓ ·DP−1
ℓ Ecd(g⃗j)+Zdℓ,

√
k+1s2

, the
following holds with overwhelming probability, assuming

√
k + 1 · s2 ≥ ηε(Zdℓ):∥∥gggj∥∥2 ≤ s2 · ∥Pℓ∥2 ·

√
(k + 1)dℓ ≤ (b+ 1)s2 ·

√
(k + 1)dℓ

Similarly, we have ∥mmmi∥2 ≤ (b + 1)s1 ·
√
dℓ, assuming that s1 ≥ ηε(Zdℓ). Thus,

for t⃗ttj = g⃗ggj +
∑k−1
i=0 cccj,i · m⃗mmi, the following holds with overwhelming probability,

given that cccj,i’s are monomials:

∥∥∥⃗tttj∥∥∥
2
≤

∥∥g⃗ggj∥∥2 + k−1∑
i=0

∥m⃗mmi∥2 ≤ (b+ 1)(ks1 +
√
k + 1 · s2)

√
dℓ

Similarly, we obtain the following result for τ⃗ττ j = γ⃗γγj +
∑k−1
i=0 cccj,iµ⃗µµi, assuming

that σ1,
√
k + 1 · σ2 ≥ ηε(Zd(µ+ν)):

∥τ⃗ττ j∥2 ≤
∥∥γ⃗γγj∥∥2 + k−1∑

i=0

∥µ⃗µµi∥2 ≤ (b+ 1)(kσ1 +
√
k + 1 · σ2)

√
d(µ+ ν)

As a result, we have
∥∥∥⃗tttj∥τ⃗ττ j∥∥∥

2
≤ βOpen with overwhelming probability. ⊓⊔

Theorem 3 (Soundness). The proof of opening knowledge protocol ΠOpen in
Fig. 1 satisfies soundness.

Proof. Let ck← Setup(1λ), and P∗ be a PPT adversary which works as follows:

c = (m⃗mm0, . . . , m⃗mmk−1)← P∗(ck), (π, b)← ⟨P∗(ck, c),V(ck, c)⟩

Let α be the probability that b = 1. From Lem. 5 of [7], there exists an extractor
EP∗

that can extract (m⃗mm′i, µ⃗µµ
′
i) such that

∥∥m⃗mm′i∥µ⃗µµ′i∥∥2 < 2dβOpen, and A0m⃗mm
′
i+A1µ⃗µµ

′
i =

2m⃗mmi for 0 ≤ i < k in expected time poly(λ)/α. Then, for δi = ( q+1
2 · m⃗mm

′
i,
q+1
2 · µ⃗µµ

′
i)

and m⃗i =
p+1
2 ·Dcd(m⃗mm

′
i), it always holds that Open(ck, m⃗mmi, m⃗i, δi) = 1 for 0 ≤ i <

k. Thus, in case of non-negligible α, there exists an expected polynomial time
extractor that outputs valid message and opening. ⊓⊔

We now prove the simulatability of our POK protocol. The main idea of our
proof is to utilize the property of discrete Gaussian distribution similar to the
technique from [27]. We first provide a convolution lemma, as a generalization
of Lem. 7.
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Lemma 10. Let k > 1 be an integer, Σ ∈ Rn×n be positive-definitive matrices,
and Λ ⊆ Zn be an n-dimensional lattice. If

√
Σ/2 ≥ ηε(Λ) for some 0 < ε <

1/2, then for any u⃗0, . . . , u⃗k−1 ∈ Rn, the distribution of
∑k−1
i=0 x⃗i, where x⃗i ←

Du⃗i+Λ,
√
Σ, is within a statistical distance of 8(k − 1)ε from Du⃗+Λ,√kΣ, where

u⃗ =
∑k−1
i=0 u⃗i.

Proof. We first define y⃗j :=
∑j−1
i=0 x⃗i and v⃗j :=

∑j−1
i=0 u⃗i. We note that the sample

space of y⃗j is identical to t⃗j+Λ. By induction, it suffices to show that the distri-
bution of y⃗j+1 is within a statistical distance of 8(j +1)ε from D

t⃗j+1+Λ,
√

(j+1)Σ

whenever y⃗j is within a statistical distance of 8jε from Dt⃗j+Λ,√jΣ .
From Lem. 7, the distribution of y⃗j + x⃗j+1 is within statistical distance of

8(j + 1)ε from D
t⃗j+1+Λ,

√
(j+1)Σ

if
√
Σ ≥ ηε(Λ) and

√
j+1
j+2Σ ≥ ηε(Λ), which are

true from the assumption
√
Σ/2 ≥ ηε(Λ). ⊓⊔

Using the above lemma, one can freely add or decompose discrete Gaussian
distributions defined over cosets of the same lattice Λ, under proper conditions.
Next, we provide a useful lemma to be used in our simulatability proof.

Lemma 11. Let k > 0 be an integer, S, Σ0, . . . , Σk−1 ∈ Rn×n be positive-
definitive matrices, C0, . . . , Ck−1 ∈ Zn×n be invertible matrices, and Λ ⊆ Zn be

an n-dimensional lattice. If
√

(S−1 +
∑k−1
i=0 C

⊤
i Σ
−1
i Ci)−1 ≥ ηε(Λ), then for any

u⃗ ∈ Rn, the following two distributions are within a statistical distance of 2ε.{
(z⃗0, . . . , z⃗k−1) | x⃗← Du⃗+Λ,√S, y⃗i ← D−Ciu⃗+Λ,

√
Σi
, z⃗i = Cix⃗+ y⃗i

}
{
(z⃗′0, . . . , z⃗′k−1) | x⃗′ ← DΛ,√S, y⃗

′
i ← DΛ,√Σi

, z⃗′i = Cix⃗′ + y⃗′i

}

Proof. We first note that the sample spaces of the above two distributions are
identical to Λk since Ci’s are integer matrices and Λ ∈ Zn. Thus, it is enough to
show that

Pr[z⃗ = w⃗] ∈ [1− 2ε, 1 + 2ε] · Pr[z⃗′ = w⃗] (1)

for all w⃗ = w⃗0|| · · · ||w⃗k−1 ∈ Λk where z⃗ = z⃗0|| · · · ||z⃗k−1, and z⃗′ = z⃗′0|| · · · ||z⃗′k−1.
The first term of Eq. (1) can be computed as follows:

Pr[z⃗ = w⃗] =
∑

v⃗∈u⃗+Λ

Pr[x⃗ = v⃗] ·
k−1∏
i=0

Pr[y⃗i = w⃗i − Ci · v⃗]

=
∑

v⃗∈u⃗+Λ

ρ√S(v⃗) ·
k−1∏
i=0

ρC−1
i

√
Σi
(v⃗ − C−1i · w⃗i) (2)
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Let S−1i = S−1 +
∑i−1
j=0 C

⊤
j Σ
−1
j Cj for 0 ≤ i < k. Then, we have the following

from Lem. 6:

ρ√Si
(v⃗ − a⃗i) · ρC−1

i

√
Σi
(v⃗ − C−1i w⃗i) = ρ√

Si+1
(v⃗ − a⃗i+1) · ρ√Si+C

−1
i ΣiC

−⊤
i

(⃗bi+1)

where a⃗0 = 0, b⃗0 = C−10 ·w⃗0 and, a⃗i+1 =
(
Si+C

−1
i ΣiC

−⊤
i

)(
S−1i a⃗i+C

⊤
i Σ
−1
i w⃗i

)
,

and b⃗i+1 = a⃗i − b⃗i. Note that both a⃗i and b⃗i are independent of the value of v⃗.
Then, Eq. (2) can be rewritten as follows:

Pr[z⃗ = w⃗] =

k−1∏
i=0

ρ√
Si+C

−1
i ΣiC

−⊤
i

(⃗bi+1) ·
( ∑
v⃗∈u⃗+Λ

ρ√Sk
(v⃗ − a⃗k)

)
Similarly, the second term of Eq. (1) can be computed as follows:

Pr[z⃗′ = w⃗] =

k−1∏
i=0

ρ√
Si+C

−1
i ΣiC

−⊤
i

(⃗bi+1) ·
(∑
v⃗∈Λ

ρ√Sk
(v⃗ − a⃗k)

)

By the given condition, we know that
√
Sk ≥ ηε(Λ). Thus, we obtain the fol-

lowing from Lem. 3.∑
v⃗∈u⃗+Λ

ρ√Sk
(v⃗ − a⃗k) ∈ [1− 2ε, 1 + 2ε] ·

∑
v⃗∈Λ

ρ√Sk
(v⃗ − a⃗k)

Therefore, we prove that Pr[z⃗ = w⃗] ∈ [1− 2ε, 1 + 2ε] · Pr[z⃗′ = w⃗] ⊓⊔

The above lemma essentially says that if we suitably choose the masking
vector y⃗i in the linear combination z⃗i = Ci · x⃗ + y⃗i, we can efficiently simu-
late the resulting distribution without knowing each u⃗i. We sketch our proof
briefly, incorporating the above lemmas. To achieve simulatability without re-
jection sampling, we sample mask vectors g⃗ggj for the responses t⃗ttj as a randomized
encoding of g⃗j , a uniformly sampled vector from Znp . Then, it can be decomposed
into multiple discrete Gaussian distribution over cosets Ecd(−Ci,jm⃗i)+PZdℓ for
0 ≤ i ≤ m and Ecd(g⃗j +

∑k−1
i=0 Ci,jm⃗i) +PZdℓ, using Lem. 10. We note that the

distribution of g⃗j +
∑k−1
i=0 Ci,jm⃗i is identical to g⃗j since g⃗j follows the uniform

random distribution over Znp . Finally, we use Lem. 11 to simulate the distribu-
tion of the responses t⃗ttj . Below, we provide a proof of the simulatability of our
protocol.

Theorem 4 (Simulatability). The proof of opening knowledge protocol ΠOpen

in Fig. 1 satisfies simulatability if it satisfies the followings for ε = negl(λ):

– s2√
2
, sOpen ≥ 1

b−1 · ηε((P ⊗ Iℓ)Z
dℓ), where sOpen = (s−21 + κs−22 )−1/2

– σ2√
2
,
σOpen√

2
≥ ηε(Zd(µ+ν), where σOpen = 1√

2
·
(
σ−21 + κσ−22

)−1/2
– The advantage of MLWER,ν,q,σOpen is negl(λ)
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SOpen(ck)
1 : m⃗mmi ← U(Rµ

q ), ccci,0, . . . , ccci,κ−1 ← U(C) for 0 ≤ i < k

2 : m⃗mmi ← R.Ecd(⃗0, s1), µ⃗µµi ← DZd,σ1
for 0 ≤ i < k

3 : g⃗j ← U(Zn
p ), g⃗ggj ← R.Ecd(g⃗j ,

√
k + 1 · s2), γγγj ← DZd,

√
k+1·σ2

for 0 ≤ j < κ

4 : t⃗ttj = g⃗ggj +

k−1∑
i=0

cccj,i · m⃗mmi, τ⃗ττj = γ⃗γγj +

k−1∑
i=0

cccj,i · µ⃗µµi for 0 ≤ j < κ

5 : g⃗ggj = A0⃗tttj + A1τ⃗ττj −
k−1∑
i=0

cccj,i · m⃗mmi (mod q) for 0 ≤ j < κ

6 : Output (m⃗mm, g⃗gg, c⃗cc, t⃗tt, τ⃗ττ)

Fig. 2. Simulator for ΠOpen

Proof. Let m⃗ = m⃗0∥ . . . ∥m⃗k−1 be messages chosen by a PPT adversary A(ck),
where ck ← Setup(1λ). We prove that the algorithm SOpen in Fig. 2 is an effi-
cient simulator for the protocol ΠOpen using hybrid arguments. We first define a
distribution H0(ck, m⃗) as follows, where m⃗mm = m⃗mm0∥ · · · ∥m⃗mmk−1, g⃗gg = g⃗gg0∥ · · · ∥⃗gggκ−1,
c⃗cc = (ccc0,0, . . . , ccck−1,κ−1), t⃗tt = t⃗tt0∥ · · · ∥⃗tttκ−1, and τ⃗ττ = τ⃗ττ0∥ · · · ∥τ⃗ττκ−1.

(m⃗mm, g⃗gg, c⃗cc, t⃗tt, τ⃗ττ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m⃗mmi ← R.Ecd(m⃗i, s1), µ⃗µµi ← D
µ+ν

Zd,σ1
, m⃗mmi = A0m⃗mmi + A1µ⃗µµi for 0 ≤ i < k

cccj,0, . . . , cccj,k−1 ← U(C), g⃗j ← U(Zn
p )

g⃗ggj ← R.Ecd(g⃗j ,
√
2s2), γ⃗γγj ← D

µ+ν

Zd,
√

2σ2

t⃗ttj = g⃗ggj +

k−1∑
i=0

cccj,i · m⃗mmi, τ⃗ττj = γ⃗γγj +

k−1∑
i=0

cccj,i · µ⃗µµi

g⃗ggj = A0⃗tttj + A1τ⃗ττj −
k−1∑
i=0

cccj,i · m⃗mmi for 0 ≤ j < κ


We note that the above distribution corresponds to the distribution of transcripts
from ΠOpen.

Claim 1: H0(ck, m⃗) and H1(ck, m⃗) are statistically indistinguishable, where
H1(ck, m⃗) is defined as follows:

(m⃗mm, g⃗gg, c⃗cc, t⃗tt, τ⃗ττ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m⃗mmi ← R.Ecd(m⃗i, s1), µ⃗µµi ← D
µ+ν

Zd,σ1
, m⃗mmi = A0m⃗mmi + A1µ⃗µµi for 0 ≤ i < k

cccj,0, . . . , cccj,k−1 ← U(C), g⃗j ← U(Zn
p )

g⃗ggj,i ← R.Ecd(−Cj,im⃗i, ·s2) for 0 ≤ i < k, g⃗ggj,k ← R.Ecd(g⃗j +

k−1∑
i=0

Cj,im⃗i, s2)

γ⃗γγj,0, . . . , γ⃗γγj,k ← D
µ+ν

Zd,
√

m+2·σ2

t⃗ttj =

k−1∑
i=0

(⃗gggj,i + cccj,i · m⃗mmi) + g⃗ggj,k, τ⃗ττj =

k−1∑
i=0

(γ⃗γγj,i + cccj,i · µ⃗µµi) + γ⃗γγj,k

g⃗ggj = A0⃗tttj + A1τ⃗ττj −
k−1∑
i=0

cccj,i · m⃗mmi for 0 ≤ j < κ


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The difference between H0(ck, m⃗) and H1(ck, m⃗) lies in how g⃗ggj and γ⃗γγj are sam-
pled, which we underlined in the above. Let Pℓ = P ⊗ Iℓ ∈ Rdℓ×dℓ. In H0(ck, m⃗),
g⃗ggj ∼ DEcd(g⃗j)+PℓZdℓ,

√
k+1s2Pℓ

and γ⃗γγj ∼ D
µ+ν

Zd,
√
k+1σ2

. Meanwhile, in H1(ck, m⃗),

g⃗ggj =

k∑
i=0

g⃗ggj,i ∼
k−1∑
i=0

DEcd(−Cj,im⃗i)+PℓZdℓ,s2Pℓ
+D

Ecd(g⃗j+
∑k−1

i=0 Cj,im⃗i)+PℓZdℓ,s2Pℓ

γ⃗γγj =

k∑
i=0

γ⃗γγj,i ∼
k∑

i=0

Dµ+ν

Zd,σ2

where Cj,i is the negacyclic matrix of cccj,i. From Lem. 10, the distribution of g⃗ggj
in H1(ck, m⃗) is within a statistical distance of 8kε from DEcd(g⃗j)+PℓZdℓ,

√
k+1s2Pℓ

if s2√
2
Pℓ ≥ ηε(PℓZdℓ), which is implied by s2√

2
≥ 1

b−1ηε(PℓZ
dℓ) from Lem. 2 and∥∥P−1∥∥

2
≤ 1

b−1 . In a similar manner, from Lem. 10,
∑k
i=0D

µ+ν
Zd,σ2

is within a
statistical distance of 8kε from Dµ+νZd,

√
k+1σ2

if σ2√
2
≥ ηε(Zd). Therefore, H0(ck, m⃗)

and H1(ck, m⃗) are within a statistical distance 16kε, which is negl(λ).

Claim 2: H1(ck, m⃗) andH2(ck, m⃗) are computationally indistinguishable, where
H2(ck, m⃗) is defined as follows:{

(m⃗mm, g⃗gg, c⃗cc, t⃗tt, τ⃗ττ)

∣∣∣∣m⃗mmi ← R.Ecd(m⃗i, s1), µ⃗µµi ← D
µ+ν

Zd,σ1
, m⃗mmi ← U(Rµ

q ) for 0 ≤ i < k

The rest is the same as H1(ck, m⃗)

}
The difference between H1(ck, m⃗) and H2(ck, m⃗) lies in how m⃗mmi’s are sampled.
Then, distinguishing H1(ck, m⃗) and H2(ck, m⃗) is at least hard as
HintMLWE

ccc0,...,cccκ−1

R,ν,q,σ1,σ2,...,σ2
since

(
m⃗mmi, γ⃗γγ0,i + ccc0,i · µ⃗µµi, . . . , γ⃗γγκ−1,i + cccκ−1,i · µ⃗µµi

)
can be

considered as a HintMLWE instance. By Thm. 1, there is an efficient reduction
from MLWER,ν,q,σOpen to HintMLWE

ccc0,...,cccκ−1

R,ν,q,σ1,σ2,...,σ2
if σOpen ≥

√
2 · ηε(Zd(µ+ν)).

Therefore, H1(ck, m⃗) and H2(ck, m⃗) are computationally indistinguishable due
to the hardness of MLWER,ν,q,σOpen .

Claim 3: H2(ck, m⃗) and H3(ck) are statistically indistinguishable, H3(ck) is
defined as follows:(m⃗mm, g⃗gg, c⃗cc, t⃗tt, τ⃗ττ)

∣∣∣∣∣∣∣∣
m⃗mmi ← R.Ecd(⃗0, s1), µ⃗µµi ← D

µ+ν

Zd,σ1
, m⃗mmi ← U(Rµ

q ) for 0 ≤ i < k

cccj,0, . . . , cccj,k−1 ← U(C), g⃗j ← U(Zn
p )

g⃗ggj,i ← R.Ecd(⃗0, s2) for 0 ≤ i < k, g⃗ggj,k ← R.Ecd(g⃗j , s2)

The rest is the same as H2(ck, m⃗)


The difference between H2(ck, m⃗) and H3(ck) lies in how m⃗mmi, g⃗ggj,i, and g⃗ggj,i are
sampled. From Lem. 11, the distribution of

(⃗
ggg0,i + ccc0,i · m⃗mmi, . . . , g⃗ggκ−1,i + cccκ−1,i · m⃗mmi

)
in H2(ck, m⃗) and H3(ck, m⃗) are within statistical distance 2ε, if the following
condition holds.√√√√(s−2

1 (PℓP⊤
ℓ )−1 + s−2

2 ·
κ−1∑
j=0

C⊤
j (PℓP⊤

ℓ )−1Cj

)−1

≥ ηε(PℓZdℓ)
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From Lem. 2, the above condition is implied by sOpen ≥ 1
b−1 · ηε(PℓZ

dℓ) since
∥Cj∥2 = 1 and

∥∥P−1∥∥
2
≤ 1

b−1 . For the distribution of g⃗ggj,k, it is a randomized
encoding of g⃗j+

∑k−1
i=0 Cj,im⃗i in H2(ck, m⃗), while it corresponds to a randomized

encoding of g⃗j in H3(ck). We note that the distributions of g⃗j +
∑k−1
i=0 Cj,im⃗i

and g⃗j are identical since g⃗j is uniformly sampled from Znp . Thus, we can regard
g⃗ggj,1 in H2 and H3 as following an identical distribution. Therefore, H2(ck, m⃗)
and H3(ck) are within a statistical distance 2ε, which is negl(λ).

Claim 4: H3(ck) and H4(ck) are statistically indistinguishable, where H4(ck)
is defined as follows.

(m⃗mm, g⃗gg, c⃗cc, t⃗tt, τ⃗ττ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m⃗mmi ← R.Ecd(⃗0, s1), µ⃗µµi ← D
µ+ν

Zd,σ1
, m⃗mmi ← U(Rµ

q ) for 0 ≤ i < k

cccj,0, . . . , cccj,k−1 ← U(C), g⃗j ← U(Zn
p )

g⃗ggj ← R.Ecd(g⃗j ,
√
2s2), γ⃗γγj ← D

µ+ν

Zd,
√

2σ2

t⃗ttj = g⃗ggj +

k−1∑
i=0

cccj,i · m⃗mmi, τ⃗ττj = γ⃗γγj +

k−1∑
i=0

cccj,i · µ⃗µµi

g⃗ggj = A0⃗tttj + A1τ⃗ττj −
k−1∑
i=0

cccj,i · m⃗mmi for 0 ≤ j < κ


We note that the above distribution is identical to the distribution of simulated
transcript from SOpen(ck). The difference between H3(ck) and H4(ck) lies in how
g⃗ggj and γ⃗γγj are sampled, similar to Claim 1. Thus, following the proof of Claim 1,
they are within a statistical distance of 16kε, which is negl(λ).

Therefore, we can conclude that H0(ck, m⃗) and H4(ck) are computationally in-
distinguishable under the given conditions. Since H0(ck, m⃗) corresponds to the
distribution of real transcripts from ΠOpen, and H4(ck) corresponds to the distri-
bution of simulated transcripts from SOpen, there is no PPT adversary A that can
distinguish between the two distributions with non-negligible probability. ⊓⊔

4 Lattice-based Polynomial Commitment Scheme

In this section, we present our polynomial commitment scheme based on the
modified Ajtai commitment scheme and its POK protocol described in the pre-
vious section. We basically follow the construction in [13, 14], which builds a
polynomial commitment scheme based on the Pedersen commitment scheme.
Their main strategy in polynomial evaluation is to rearrange the coefficients
of a polynomial to reduce communication cost while preserving secrecy. To be
precise, let h(X) =

∑N−1
i=0 hiX

i ∈ Zp[X], and N = nm. If we define h⃗i =

(hni, hni+1, · · · , hn(i+1)−i) for 0 ≤ i < m, then h(x) =
〈∑m−1

i=0 xni · h⃗i, x⃗
〉

for

x⃗ = (1, x, . . . , xn−1) for all x ∈ Zp. Hence, it suffices to return
∑m−1
i=0 xni · h⃗i as

an evaluation proof, which is of size O(n). However, it still contains information
about each coefficient, which inhibits the evaluation hiding property. To resolve
this issue, we pick random blinders b1, . . . , bn−1 ← U(Zp), and define hm =
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(b1, . . . , bn−1, 0), and hm+1 = (0,−b1, . . . ,−bn−1). Then,
〈
x · h⃗m + h⃗m+1, x⃗

〉
=

0, so it follows the distribution of random vectors whose inner product with x⃗
is 0. Thus, sending

∑m−1
i=0 xni · h⃗i + x · h⃗m + h⃗m+1 achieves the desired goal of

the evaluation proof, revealing nothing about the coefficients but the evaluation
result h(x).

However, directly adapting their technique to the Ajtai commitment scheme
is not straightforward, as it requires converting all the proof techniques based
on the properties of Zp into the setting of R. First, there is an issue with the
extractability of the polynomial commitment scheme. In [13,14], extractability is
directly attained from evaluation proofs at N different points by computing the
inverse of the Vandermonde matrix over Zp. However, in the Ajtai commitment
scheme, such an extraction technique is not allowed since encoded messages and
randomness are elements of R. Hence, we additionally attach the proof of open-
ing knowledge to provide extractability. Second, the aforementioned blinding
technique is also not converted straightforwardly due to the difference between
Zp and R. To resolve this, we extend the randomized encoding in the previous
method so that blinders sampled from proper discrete Gaussian distributions
effectively hide information of coefficients. In the rest of this section, we present
more details on how we address these issues arising from the difference between
Zp and R.

4.1 Our Polynomial Commitment

Our polynomial commitment scheme is defined as follows.

– PC.Setup(1λ, N) → ck: Given a security parameter λ and a polynomial de-
gree upper bound N = mn, it generates a commitment key ck = (A0,A1)

where n = dℓ/r, A0 ← U(Rµ×ℓq ), and A1 = [A′1|Iµ] ∈ R
µ×(µ+ν)
q with

A′1 ← U(Rµ×νq ).

– PC.Com(ck, h(X))→ (⃗hhh, δ): Given a polynomial h(X) =
∑N−1
i=0 hiX

i ∈ Zp[X],
it generates a commitment h⃗hh and an opening δ = (h⃗hh, η⃗ηη) as follows, where
h⃗hh = h⃗hh0∥ · · · ∥h⃗hhm+1, h⃗hh = h⃗hh0∥ · · · ∥h⃗hhm+1, and η⃗ηη = η⃗ηη0∥ · · · ∥η⃗ηηm+1:
1. Define h⃗i = (hni, . . . , h(n+1)i−1) and 0 ≤ i < m.
2. Sample b1, . . . , bn−1 ← U(Zp), define h⃗m = (b1, . . . , bn−1, 0) and h⃗m+1 =

(0,−b1, . . . ,−bn−1).
3. h⃗hhi ← R.Ecd(⃗hi; s1), η⃗ηηi ← D

µ+ν
Zd,σ1

, and h⃗hhi = A0h⃗hhi + A1η⃗ηηi (mod q) for
0 ≤ i ≤ m.

4. h⃗hhm+1 ← R.Ecd(⃗hm+1,
√
m+ 2 · s3), η⃗ηηm+1 ← D

µ+ν

Zd,
√
m+2·σ3

, and h⃗hhm+1 =

A0h⃗hhm+1 +A1η⃗ηηm+1 (mod q).

– PC.Open(ck, h⃗hh, h(X), δ) → b: Given a commitment h⃗hh, an opening δ = (h⃗hh, η⃗ηη),
and polynomial h(X) of degree < N , output 1 if it satisfies the following
conditions; otherwise, output 0:
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1.
∥∥∥2h⃗hhi∥2η⃗ηηi∥∥∥

2

?
≤ 2dβPC.Open for 0 ≤ i ≤ m

2.
∥∥∥2h⃗hhm+1∥2η⃗ηηm+1

∥∥∥
2

?
≤ 2βPC, where βPC = βPC.Eval +

(b+1)(m+1)dr
2 · βPC.Open

3. h⃗hhi
?
= A0h⃗hhi +A1η⃗ηηi (mod q) for 0 ≤ i ≤ m+ 1

4. h(X)
?
=

∑m−1
i=0 Xni ·

〈
h⃗i, X⃗

〉
+X ·

〈
h⃗m, x⃗

〉
+
〈
h⃗m+1, X⃗

〉
(mod p), where

X⃗ = (1, X, · · · , Xn−1), and h⃗i = p+1
2 ·Dcd(2h⃗hhi) (mod p) for 0 ≤ i ≤ m+1

– PC.Eval(x, δ)→ (y, ρ): Given an opening δ = (h⃗hh, η⃗ηη) and an evaluation point
x ∈ Zp, it generates an evaluation result y and an evaluation proof ρ as
follows:
1. Compute e⃗ee =

∑m−1
i=0 Ecd(xni) · h⃗hhi + Ecd(x) · h⃗hhm + h⃗hhm+1 and

ε⃗εε =
∑m−1
i=0 Ecd(xni) · η⃗ηηi + Ecd(x) · η⃗ηηm + η⃗ηηm+1.

2. Return an evaluation proof ρ = (⃗eee, ε⃗εε), and an evaluation result y =〈
Dcd(⃗eee), (1, x, . . . , xn−1)

〉
(mod p).

– PC.Verify(ck, h⃗hh, x, y, ρ)→ b: Given a commitment h⃗hh, an evaluation point x,
an evaluation result y, and a proof ρ = (⃗eee, ε⃗εε), output 1 if ∥⃗eee∥⃗εεε∥2 ≤ βPC.Eval,
y =

〈
Dcd(⃗eee), (1, x, . . . , xn−1)

〉
(mod p), and A0e⃗ee +A1ε⃗εε =

∑m−1
i=0 Ecd(xni) ·

h⃗hhi + Ecd(x) · h⃗hhm + h⃗hhm+1 (mod q); otherwise, output 0.

The above polynomial commitment scheme is computationally hiding if both
MLWER,ν,q,σ1

and MLWER,ν,q,σ3
are hard, and binding if MSISR,µ,q,4βPC is hard.

We also define a POK protocol ΠPC.Open for the polynomial commitment as ΠOpen

in Fig. 1, with the prover’s input (ck, h⃗hh0∥ · · · ∥h⃗hhm, h⃗hh0∥ · · · ∥h⃗hhm, η⃗ηη0∥ · · · ∥η⃗ηηm), the
verifier’s input (ck, h⃗hh0∥ · · · ∥h⃗hhm), and replacing the value βOpen by βPC.Open. The
evaluation binding property is ensured by the hardness of the MSIS problem as
follows.

Theorem 5 (Evaluation Binding). The polynomial commitment scheme
(PC.Setup, PC.Com, PC.Open, PC.Eval, PC.Verify) is evaluation biding if
MSISR,µ,q,2βPC.Eval is hard.

Proof. Let ck ← PC.Setup(1λ, N), and A(ck) be a PPT adversary that out-
puts (c, x, y, y′, ρ, ρ′). Let α be the probability that PC.Verify(ck, c, x, y, ρ) = 1,
PC.Verify(ck, c, x, y′, ρ′) = 1, and y ̸= y′. Then, for ρ = (⃗eee, ε⃗εε) and ρ′ = (⃗eee′, ε⃗εε′),
it holds that A0(⃗eee − e⃗ee′) +A1(⃗εεε − ε⃗εε′) = 0, and

∥∥(⃗eee− e⃗ee′)∥(⃗εεε− ε⃗εε′)∥∥
2
≤ 2βPC.Eval.

Also, e⃗ee ̸= e⃗ee′ since y =
〈
Dcd(⃗eee), (1, x, . . . , xn−1)

〉
, y′ =

〈
Dcd(⃗eee′), (1, x, . . . , xn−1)

〉
,

and y ̸= y′. Then, A solves MSISR,µ,q,2βPC.Eval with probability α. Therefore, α
should be negl(λ) due to the hardness of MSISR,µ,q,2βPC.Eval . ⊓⊔

For the evaluation hiding property, we extend the randomized encoding tech-
nique to our modified Ajtai commitment scheme. Notably, we sample the blinders
h⃗hhm and h⃗hhm+1 via randomized encoding of h⃗hhm and h⃗hhm+1. This offers simulata-
bility not only in the encoded state in R but also in the decoded state in Zp.
The proof follows a similar workflow as the simulatability proof for the POK
protocol ΠOpen.
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Theorem 6 (Evaluation Hiding). The polynomial commitment scheme
(PC.Setup, PC.Com, PC.Open, PC.Eval, PC.Verify) is evaluation hiding if it sat-
isfies the followings for ε = negl(λ):

– 1√
2
s3, sPC.Eval ≥ 1

b−1 ·ηε
(
(P ⊗ Iℓ)Zdℓ

)
for sPC.Eval =

(
s−21 + ( (b+1)r

2 )2s−23

)−1/2
– 1√

2
σ3,

1√
2
σPC.Eval ≥ ηε

(
Zd(µ+ν)

)
for σPC.Eval = 1√

2
·
(
σ−21 +

(
(b+1)r

2

)2

σ−23

)−1/2
– The advantage of MLWER,ν,q,σPC.Eval is negl(λ)

Proof. We refer to Appendix A.

The security of the POK protocol ΠPC.Open for the polynomial commitment
scheme is as follows. The basic idea of the proof is similar to the case of ΠOpen.

Theorem 7 (Completeness). The proof of opening knowledge protocol ΠPC.Open

has completeness if it satisfies the following conditions for ε = negl(λ):

– s1,
√
m+ 2 · s2, σ1,

√
m+ 2 · σ2 ≥ ηε(Zd)

– βPC.Open =
√(

((m+1)·σ1+
√
m+2·σ2)

2·(µ+ν)+(b+1)2·((m+1)·s1+
√
m+2·s2)

2·ℓ
)
d

– βPC.Eval =
√(
((m+1)(b+1) r

2
·σ1+

√
m+2·σ3)

2
·(µ+ν)+(b+1)2·((m+1)(b+1) r

2
·s1+

√
m+2·s3)

2
·ℓ

)
d

Proof. Following the proof of Thm. 2, we obtain the following upper bounds. For
βPC.Open, setting k = m+1 in Thm. 2 yields the given upper bound. For βPC.Eval,
we can estimate upper bounds for e⃗ee and ε⃗εε as follows

∥⃗eee∥2 ≤
m∑
i=0

(b+ 1)r

2

∥∥∥h⃗hhi∥∥∥
2
+

∥∥∥h⃗hhm+1

∥∥∥
2
, ∥⃗εεε∥2 ≤

m∑
i=0

(b+ 1)r

2
∥η⃗ηηi∥2 +

∥∥η⃗ηηm+1

∥∥
2

since
∥∥Ecd(xk)∥∥ ≤ (b+1)r

2 for any k. Then, applying upper bounds for h⃗hhi and η⃗ηηi
estimated from Lem. 5 yields the given upper bound for βPC.Eval ⊓⊔

Since we cannot compute the inverse Vandermonde matrix in R in general,
we bypass the problem in extractability by additionally offering the proof of
opening knowledge for the commitments. Then, our extractor extracts openings
by rewinding the POK protocol, unlike [13,14].

Theorem 8 (Soundness). The proof of opening knowledge protocol ΠPC.Open

satisfies soundness.

Proof. Let ck ← PC.Setup(1λ, N), and P∗ be a PPT adversary which works as
follows:

(⃗hhh, x, y, e⃗ee, ε⃗εε)← P∗(ck), (π, b)←
〈
P∗(ck, h⃗hh),V(ck, h⃗hh)

〉
Let α be the probability that b = 1 and PC.Verify(ck, h⃗hh, x, y, e⃗ee, ε⃗εε) = 1. Using
Lem. 5 in [7], there exists an extractor EP∗

that can extract (h⃗hh
′
i, η⃗ηη
′
i) such that∥∥∥h⃗hh′i∥η⃗ηη′i∥∥∥

2
≤ 2dβPC.Open and A0h⃗hh

′
i + A1η⃗ηη

′
i = 2h⃗hhi for 0 ≤ i ≤ m in expected time
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poly(λ)/α. Let h⃗hh
′
m+1 = 2⃗eee −

∑m−1
i=0 Ecd(xni) · h⃗hh

′
i − Ecd(x) · h⃗hh

′
m, and η⃗ηη′m+1 =

2⃗εεε−
∑m−1
i=0 Ecd(xni) · η⃗ηη′i − Ecd(x) · η⃗ηη′m. Then, it holds that∥∥∥h⃗hh′m+1∥η⃗ηη

′
m+1

∥∥∥
2
≤ 2βPC.Eval + (b+ 1)(m+ 1)dr · βPC.Open = 2βPC

since
∥∥Ecd(xk)∥∥ ≤ (b+1)r

2 for any k. Also, it holds that

A0h⃗hh
′
m+1 +A1η⃗ηη

′
m+1 = 2h⃗hhm+1 (mod q)

since A0e⃗ee + A1ε⃗εε =
∑m−1
i=0 Ecd(xni) · h⃗hhi + Ecd(x) · h⃗hhm + h⃗hhm+1 (mod q) from

PC.Verify(ck, h⃗hh, x, y, e⃗ee, ε⃗εε) = 1. Then, for δ = ( q+1
2 · h⃗hh

′
, q+1

2 · η⃗ηη
′) and h(X) =∑m−1

i=0 Xni ·
〈
h⃗i, X⃗

〉
+ X ·

〈
h⃗m, X⃗

〉
+

〈
h⃗m+1, X⃗

〉
, it holds that y = h(x) and

PC.Open(ck, h⃗hh, h(X), δ) = 1, where X⃗ = (1, X, · · · , Xn−1), and h⃗i = p+1
2 ·

Dcd(h⃗hh
′
i) (mod p) for 0 ≤ i ≤ m + 1. Thus, in case of non-negligible α, there

exists an expected polynomial time extractor that outputs (h(X), δ) such that
PC.Open(ck, h⃗hh, h(X), δ) = 1 and y = h(x). ⊓⊔

Theorem 9 (Simulatability). The proof of opening knowledge protocol ΠPC.Open

satisfies simulatability if it satisfies the followings for ε = negl(λ):

– s2√
2
, s3√

2
, sPC.Open ≥ 1

b−1 ·ηε((P⊗Iℓ)Z
dℓ) for sPC.Open =

(
s−2
1 +κs−2

2 +( (b+1)r
2 )

2
s−2
3

)−1/2

– σ2√
2
, σ3√

2
,
σPC.Open√

2
≥ ηε(Zd(µ+ν)) for σPC.Open = 1√

2
·
(
σ−2
1 +κσ−2

2 +( (b+1)r
2 )

2
σ−2
3

)−1/2

– The advantage of MLWER,ν,q,σPC.Open is negl(λ)

Proof. Let ck← PC.Setup(1λ), and (h(X), x) be a polynomial and a point chosen
by a PPT adversary A. We prove that the algorithm SPC.Open in Fig. 3 is an
efficient simulator for the distribution of evaluation proofs generated by PC.Eval,
and real transcripts generated from ΠPC.Open. The proof can be directly derived
from Thm. 4 and Thm. 6. ⊓⊔

4.2 Discussions

We first discuss the homomorphic property of our polynomial commitment scheme.

Homomorphic Property. In recent years, polynomial commitment schemes
with homomorphic properties have become essential for efficient proof batch-
ing and recursive proof compositions [12, 17, 28]. Our polynomial commitment
scheme naturally possesses homomorphic properties thanks to our new encod-
ing method. Specifically, let α ∈ Zp and h⃗hh, g⃗gg be commitments for polynomials
h(X), g(X) ∈ Zp[X]. Then, f⃗ff = h⃗hh + Ecd(α) · g⃗gg becomes a commitment for the
polynomial f(X) = h(X)+α·g(X) because Ecd(α) is a small-norm element in R,
so it does not significantly degrade the binding property. Thus, our polynomial
commitment scheme supports a linear homomorphic property, which we expect
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SPC.Open(ck, x, y)
1 : h⃗hh0, . . . , h⃗hhm ← U(R

µ
q ), ccc0,0, . . . , cccκ−1,m ← U(C)

2 : h⃗hh0, . . . , h⃗hhm ← R.Ecd(⃗0, s1), η⃗ηη0, . . . , η⃗ηηm ← DZd,σ1

3 : u1, . . . , un−1 ← U(Zp), u0 = y −
n∑

j=1

ujx
j
, u⃗ = (u0, . . . , un−1)

4 : h⃗hhm+1 ← R.Ecd(u⃗,
√
m+ 2 · s3), η⃗ηηm+1 ← DZd,

√
m+2·σ3

5 : e⃗ee =

m−1∑
i=0

Ecd(x
ni

) · h⃗hhi + Ecd(x) · h⃗hhm + h⃗hhm+1

6 : ε⃗εε =

m−1∑
i=0

Ecd(x
ni

) · η⃗ηηi + Ecd(x) · η⃗ηηm + η⃗ηηm+1

7 : h⃗hhm+1 = A0e⃗ee+ A1ε⃗εε−
m−1∑
i=0

Ecd(x
ni

) · h⃗hhi − Ecd(x) · h⃗hhm (mod q)

8 : g⃗j ← U(Zn
p ), g⃗ggj ← R.Ecd(g⃗j ,

√
m+ 2 · s2), γγγj ← DZd,

√
m+2·σ2

for 0 ≤ j < κ

9 : t⃗ttj = g⃗ggj +

m∑
i=0

cccj,i · h⃗hhi, τ⃗ττj = γ⃗γγj +

m∑
i=0

cccj,i · η⃗ηηi for 0 ≤ j < κ

10 : g⃗ggj = A0⃗tttj + A1τ⃗ττj −
m∑

i=0

cccj,i · h⃗hhi (mod q) for 0 ≤ j < κ

11 : Output (h⃗hh, e⃗ee, ε⃗εε, g⃗gg, t⃗tt, τ⃗ττ)

Fig. 3. Simulator for ΠPC.Open

to be beneficial for lattice-based proof batching and recursive proof composition
systems.

We now discuss the complexity of our polynomial commitment scheme when
committing a polynomial of degree less than N = nm.

Prover Complexity. We analyze the prover’s complexity in generating com-
mitments, evaluation proofs, and proofs of opening knowledge. For generating
each commitment h⃗hhi = A0h⃗hhi+A1η⃗ηηi for 0 ≤ i ≤ m+1, it takes O(m·µ(µ+ν+ℓ))
ring arithmetic operations over Rq. For generating an evaluation proof, it takes
O(m · (µ+ν+ℓ)) ring arithmetic operations over Rq and O(n) arithmetic opera-
tions over Zp. Finally, for the proof of opening knowledge, it takesO(m·(µ+ν+ℓ))
ring arithmetic operations over Rq Assuming polynomial multiplications in Rq
are done in O(d log d) complexity, it takes O(md log d·µ(µ+ν+ℓ)) computational
complexity in total. We note that the quantity µd affects the security of MSIS
and νd affects the security of MLWE and they follow O(polylog(N)). Then, the
overall prover’s complexity follows O( 1d log d ·N ·polylog(N)), which is essentially
Õ(N) since d can be considered independent of N . However, taking larger values
of d improves the prover’s concrete performance.

Verifier Complexity. We analyze the verifier’s complexity in verifying evalu-
ation proofs and proofs of opening knowledge. For verifying evaluation proofs,
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it takes O(µ(µ + ν + ℓ + m)) arithmetic operations over Rq and O(n) arith-
metic operations over Zp. For verifying proofs of opening knowledge, it takes
O(µ(µ+ ν + ℓ+m)) arithmetic operations over Rq. Then, the overall verifier’s
complexity follows O((n/d+m) · polylog(N)) using the same assumption as the
prover’s complexity.

Communication Complexity. We analyze the communication cost in sending
commitments, evaluation proofs, and proofs of opening knowledge. For commit-
ments, it sends O(mµ) elements in Rq. For evaluation proofs, it sends O(µ+ν+ℓ)
elements in Rq. Finally, for proofs of opening knowledge, it sends O(µ + ν + ℓ)
elements in Rq. Hence, the communication cost is O(d(mµ + ν + ℓ)) = O(m ·
polylog(N) + n) in total.

Therefore, setting O(n) = O(m) = O(
√
N) results in verifier and communication

complexity in Õ(
√
N), which is sublinear in N .

5 Experimental Results

In this section, we present a proof-of-concept implementation of our sublinear
polynomial commitment scheme and demonstrate its concrete performance. We
implement our protocol using the Rust programming language and convert the
interactive protocol into a non-interactive one using the Fiat-Shamir transform.
For the functionality of the random oracle, we use the SHA-3 hash function. All
experiments were performed with a single thread on a machine with an Intel(R)
Xeon(R) Platinum 8268 CPU running at 2.90GHz with 384GB of RAM. Our
source code is available at https://github.com/SNUCP/celpc.

5.1 Parameter Setting

We summarize all parameters that appear in our protocol in Table. 1. Firstly, we
set the message modulus p = br + 1 to be 255-bit sized primes using b = 63388
and r = 16. Then, we set the parameters that determine the security of the
binding and hiding properties of our polynomial commitment scheme, namely
q, n, µ, ν, s1, s2, s3, σ1, σ2, σ3. We recall that, to ensure the binding and hiding
properties in our protocol, MSISR,µ,q,4βPC and MLWER,ν,q,σPC.Open should be hard.
We set the width parameters as follows for Pℓ := P ⊗ Iℓ, so that they satisfy the
conditions in Thm. 9.

s1 ≥
√
3

b− 1
· ηε(PℓZdℓ), s2 ≥

√
3κ

b− 1
· ηε(PℓZdℓ), s3 ≥

√
3(b+ 1)r

2b− 2
· ηε(PℓZdℓ)

σ1 ≥ 2
√
3 · ηε(Zd(µ+ν)), σ2 ≥ 2

√
3κ · ηε(Zd(µ+ν)), σ3 ≥

√
3(b+ 1)r · ηε(Zd(µ+ν))

We estimate the upper bounds for the smoothing parameters using Lem. 1
for ε = 2−λ and λ = 128. Once the width parameters are determined, the
values of q, d, µ, ν determine the hardness of the MSIS and MLWE problem. To
estimate their hardness, we compute the root Hermite factor δ and set it to be
approximately 1.005. As a result, we set log q ≈ 112, d = 2048, µ = 1, and ν = 2.
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Type Parameter Description

Binding & Hiding

q commitment modulus
d ring dimension
µ MSIS rank
ν MLWE rank

s1, s2, s3, σ1, σ2, σ3 width parameters

Soundness

b base
r digit lengths
p message modulus (= br + 1)
κ # of repetition (= ⌈λ/ log(2d)⌉

Proof Size

n # of messages per commitments
ℓ ring element per commitment (= rn/d)
m # of commitment
N input polynomial degree (= nm)

Table 1. Parameters

We note that d is set to be the largest possible value for the concrete efficiency
of the prover and verifier. Finally, we adjust the parameters n, ℓ,m to yield the
smallest proof size depending on the input polynomial degree N , as summarized
in Table 2.

N n m ℓ

219 212 27 25

221 213 28 26

223 214 29 27

225 215 210 28

Table 2. Parameters for optimal proof size

5.2 Implementation Technique

In this subsection, we present optimization techniques in our implementation.

Ring Arithmetic. For efficient ring arithmetic over Rq, we use Residue Num-
ber System (RNS) representation and Number Theoretic Transform (NTT). We
recall that we use a commitment modulus q of size 112 bits, which cannot be
covered by 64-bit native integer operations. Hence, we set q = q1 · q2, where
q1 and q2 are coprime 56-bit integers so that Rq ∼= Rq1 × Rq2 by the Chinese
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Remainder Theorem. Then, elements in Rq can be represented as a pair of ele-
ments in Rq1 and Rq2 , which is often referred to as a RNS representation. Also,
arithmetic over Rq can be instantiated with arithmetic over Rq1 and Rq2 due to
the isomorphism, which can be implemented with 64-bit integer operations. For
efficient multiplication in Rq1 and Rq2 , we use NTT operations, which reduce
the complexity of polynomial multiplication from O(d2) to O(d log d), by setting
q1 and q2 to be primes such that q1, q2 = 1 (mod 2d).

Discrete Gaussian Distribution. Our commitment scheme requires samples
from several Gaussian distributions. For distributions with small width param-
eters, we use the inversion sampling with precomputed cumulative distribution
table. For larger width parameters with varying cosets, inversion sampling is
infeasible, so we use the convolution sampler from [35] instead. We set the pa-
rameters for the convolution sampler to achieve max-log distance up to 2−59,
which guarantees ≥ 100 bits of security.

Commitment Compression. We use the compression technique in [5] to re-
duce the size of commitments. Instead of sending the full size of commitments
h⃗hh0, · · · , h⃗hhm, we can omit the lower D bits of them while maintaining the binding
property. To be precise, suppose we omit the lowerD bits of commitments. Then,
it increases the bound of βPC.Open in the POK protocolΠPC.Open by (m+1)2D ·

√
µd,

but reduces the commitment size by a factor of (log q −D)/ log q. Hence, in es-
timating proof size, we omit the lower D bits of commitments, where D is set
to 24, the largest value that does not alter the MSIS parameter µ.

5.3 Benchmark Results

We present the benchmark results for our polynomial commitment scheme in Ta-
ble 3 together with other post-quantum secure polynomial commitment schemes
from Brakedown [25] and FRI [9] for the 255-bit base field. Brakedown aims to
provide faster prover’s performance, but it provides square root proof size like
ours. FRI aims to provide a compact proof size, which is polylogarithmic in size
with respect to N , but it has a slower prover’s performance. We note that both
of their constructions are based on cryptographic hash functions. To provide
comparison with them, we measure the elapsed time for the prover and the veri-
fier, as well as the communication cost, which includes the size of commitments,
evaluation proofs, and the proof of knowledge. The benchmark results for other
polynomial commitment schemes are referenced from Fig. 8 in [25].

For the prover’s performance, we measure the elapsed time both with and
without randomized encoding, since the benchmark results in [25] only measured
in the non-zero-knowledge setting. Considering these differences, our scheme
provides comparable performance with Brakedown and faster performance com-
pared to FRI in the non-zero knowledge setting.3 For the verifier’s performance

3 In our benchmark for the non-zero knowledge version, we exclude all random sam-
pling procedures.
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N 219 221 223 225

Prover(seconds)

Ours 3.55 12.8 48.7 188

Ours w/o ZK 0.97 3.47 13.0 50.9

Brakedown 0.60 2.41 9.85 39.2

FRI 6.42 31.9 60.8 353

Verifier(seconds)

Ours 0.14 0.27 0.53 1.07

Brakedown 0.15 0.30 0.61 0.70

FRI 0.03 0.03 0.04 0.04

Communication(MB)

Ours 6.07 11.9 23.6 47.5

Brakedown 10.0 15.8 27.1 49.2

FRI 0.39 0.49 0.61 0.74

Table 3. Benchmark results

and communication costs, our scheme provides comparable results with Brake-
down due to similar asymptotic complexity, while FRI-based constructions offer
better performance due to its polylogarithmic complexity. We note that another
advantage of our polynomial commitment scheme lies in its homomorphic prop-
erty, which may benefit in the recent proof composition techniques from [17,28],
while Brakedown and FRI don’t offer homomorphic properties.

To compare with other lattice-based constructions, we reference the proof size
from SLAP [3]. We compare the proof size for the same polynomial degree and
similar base field size in Table 4. Although SLAP has an asymptotically better
proof size, which is polylogarithmic in N , ours has a much smaller concrete proof
size. Specifically, for a polynomial degree N = 220, our proof size is about 4.1
times smaller.

N log p Proof size

Ours 220 255 8.93 MB

SLAP 220 276 36.5 MB

Table 4. Performance comparison with SLAP [3]
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6 Conclusion

In this paper, we have introduced a novel polynomial commitment scheme based
on lattice-based cryptography. Prior to this work, there have been few studies
addressing the construction of concretely efficient lattice-based polynomial com-
mitments, which primarily focused on addressing asymptotic performance. Our
proof system not only successfully achieves practical proof sizes through an ef-
ficient encoding method for large prime fields, but also provides practical proof
generation and verification performance. Compared to other post-quantum se-
cure polynomial commitments, such as Brakedown [25], our proof system yields
comparable proof sizes, proof generation, and verification performance.

There are still several ways to improve our polynomial commitment. For the
concrete performance, improving the discrete Gaussian sampling algorithm can
lead to faster proof generation, as generating random samples currently consumes
a significant portion of the total elapsed time. For reducing the proof size, we
can enhance its asymptotic scale by adopting the leveled Ajtai commitment [15],
which achieves Õ(N1/c) complexity by generalizing the POK protocols.
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A Proof of Thm. 6

SPC.Eval(ck, x, y)
1 : h⃗hh0, . . . , h⃗hhm ← U(R

µ
q )

2 : h⃗hh0, . . . , h⃗hhm ← R.Ecd(⃗0, s1), η⃗ηη0, . . . , η⃗ηηm ← DZd,σ1

3 : u1, . . . , un−1 ← U(Zp), u0 = y −
n∑

j=1

ujx
j
, u⃗ = (u0, . . . , un−1)

4 : h⃗hhm+1 ← R.Ecd(u⃗,
√
m+ 2 · s3), η⃗ηηm+1 ← DZd,

√
m+2·σ3

5 : e⃗ee =

m−1∑
i=0

Ecd(x
ni

) · h⃗hhi + Ecd(x) · h⃗hhm + h⃗hhm+1

6 : ε⃗εε =

m−1∑
i=0

Ecd(x
ni

) · η⃗ηηi + Ecd(x) · η⃗ηηm + η⃗ηηm+1

7 : h⃗hhm+1 = A0e⃗ee+ A1ε⃗εε−
m−1∑
i=0

Ecd(x
ni

) · h⃗hhi − Ecd(x) · h⃗hhm (mod q)

8 : Output (h⃗hh, e⃗ee, ε⃗εε)

Fig. 4. Simulator for PC.Eval

Proof. Let ck← PC.Setup(1λ), and (h(X), x) be a polynomial and a point chosen
by a PPT adversary A. We prove that the algorithm SPC.Eval in Fig. 4 is an
efficient simulator for the distribution of evaluation proofs generated by PC.Eval
using hybrid arguments. We first define a distribution H0(ck, h(X), x) as follows.



(⃗hhh, e⃗ee, ε⃗εε)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b1, . . . , bn−1 ← U(Zp), h⃗m = (b1, . . . , bn−1, 0), h⃗m+1 = (0,−b1, . . . ,−bn−1)

h⃗hhi ← R.Ecd(h⃗i, s1), η⃗ηηi ← D
µ+ν

Zd,σ1
, h⃗hhi = A0h⃗hhi + A1η⃗ηηi for 0 ≤ i ≤ m

h⃗hhm+1 ← R.Ecd(h⃗m+1,
√
m+ 2 · s3), η⃗ηηm+1 ← D

µ+ν

Zd,
√

m+2·σ3

e⃗ee =

m−1∑
i=0

Ecd(x
ni

) · h⃗hhi + Ecd(x) · h⃗hhm + h⃗hhm+1

ε⃗εε =

m−1∑
i=0

Ecd(x
ni

) · η⃗ηηi + Ecd(x) · η⃗ηηm + η⃗ηηm+1

h⃗hhm+1 = A0e⃗ee+ A1ε⃗εε−
m−1∑
i=0

Ecd(x
ni

) · h⃗hhi − Ecd(x) · h⃗hhm


We note that the above distribution is identical to the distribution of evaluation
proofs generated from PC.Eval
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Claim 1: H0(ck, h(X), x) and H1(ck, h(X), x) are statistically indistinguish-
able, where H1(ck, h(X), x) is defined as follows.

(⃗hhh, e⃗ee, ε⃗εε)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b1, . . . , bn−1 ← U(Zp), h⃗m = (b1, . . . , bn−1, 0), h⃗m+1 = (0,−b1, . . . ,−bn−1)

h⃗hhi ← R.Ecd(h⃗i, s1), η⃗ηηi ← D
µ+ν

Zd,σ1
, h⃗hhi = A0h⃗hhi + A1η⃗ηηi for 0 ≤ i ≤ m

h⃗hhm+1,i ← R.Ecd(−xni · h⃗i, s3) for 0 ≤ i < m, h⃗hhm+1,m ← R.Ecd(−x · h⃗m, s3)

h⃗hhm+1,m+1 ← R.Ecd(

m−1∑
i=0

x
ni · h⃗i + x · h⃗m + h⃗m+1, s3)

η⃗ηηm+1,0, . . . , η⃗ηηm+1,m+1 ← D
µ+ν

Zd,σ3

e⃗ee =

m−1∑
i=0

(h⃗hhm+1,i + Ecd(x
ni

) · h⃗hhi) + (h⃗hhm+1,m + Ecd(x) · h⃗hhm) + h⃗hhm+1,m+1

ε⃗εε =

m−1∑
i=0

(η⃗ηηm+1,i + Ecd(x
ni

) · η⃗ηηi) + (η⃗ηηm+1,m + Ecd(x) · η⃗ηηm) + η⃗ηηm+1,m+1

h⃗hhm+1 = A0e⃗ee+ A1ε⃗εε−
m−1∑
i=0

Ecd(x
ni

) · h⃗hhi − Ecd(x) · h⃗hhm


The difference between H0(ck, h(X), x) and H1(ck, h(X), x) lies in how h⃗hhm+1

and η⃗ηηm+1 are sampled. Let Pℓ = P ⊗ Iℓ ∈ Rdℓ×dℓ. In H0(ck, h(X), x), h⃗hhm+1 ∼
D

Ecd(h⃗m+1)+PℓZdℓ,
√
m+2·s3Pℓ

and η⃗ηηm+1 ∼ D
µ+ν

Zd,
√
m+2·σ3

. Meanwhile, inH1(ck, h(X), x),

h⃗hhm+1 =

m+1∑
i=0

h⃗hhm+1,i ∼
∑m−1
i=0 DEcd(−xni ·⃗hi)+PℓZdℓ,s3Pℓ

+D
Ecd(−x·⃗hm)+PℓZdℓ,s3Pℓ

+

D∑m−1
i=0 xni ·⃗hi+x·⃗hm+h⃗m+1+PℓZdℓ,s3Pℓ

η⃗ηηm+1 =

m+1∑
i=0

η⃗ηηm+1,i ∼
m+1∑
i=0

Dµ+νZd,σ3

By Lem. 10, the distribution of h⃗hhm+1 inH1(ck, h(X), x) is within a statistical dis-
tance of 8(m+1)ε from D

Ecd(h⃗m+1)+PℓZdℓ,
√
m+2·s3Pℓ

if s3√
2
Pℓ ≥ ηε(PℓZdℓ), which is

implied by s3√
2
≥ 1

b−1ηε(PℓZ
dℓ). In a similar manner, by Lem. 10,

∑m+1
i=0 D

µ+ν
Zd,σ3

is
within a statistical distance of 8(m+1)ε from Dµ+νZd,

√
m+2·σ3

if σ3√
2
≥ ηε(Zd(µ+ν)).

Therefore, H0(ck, m⃗) and H1(ck, m⃗) are within a statistical distance 16(m+1)ε,
which is negl(λ).

Claim 2: H1(ck, h(X), x) and H2(ck, h(X), x) are computationally indistin-
guishable, where H2(ck, h(X), x) is defined as follows.(⃗hhh, e⃗ee, ε⃗εε)

∣∣∣∣∣∣
b1, . . . , bn−1 ← U(Zp), h⃗m = (b1, . . . , bn−1, 0), h⃗m+1 = (0,−b1, . . . ,−bn−1)

h⃗hhi ← R.Ecd(h⃗i, s1), η⃗ηηi ← D
µ+ν

Zd,σ1
, h⃗hhi ← U(R

µ
q ) for 0 ≤ i ≤ m

The rest is same as H1(ck, h(X), x).


The difference between H1(ck, h(X), x) and H2(ck, h(X), x) lies in how h⃗hh is sam-
pled. Then, distinguishing H1(ck, h(X), x) and H2(ck, h(X), x) is at least hard
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as HintMLWE
Ecd(xni)
R,ν,q,σ1,σ3

from some k since (⃗hhhi, η⃗ηηm+1,i+Ecd(xni) · η⃗ηηi) can be con-
sidered as a HintMLWE instance for 0 ≤ i < m. Similarly, (⃗hhhm, η⃗ηηm+1,m+Ecd(x) ·
η⃗ηηm) can be considered as an instance from HintMLWE

Ecd(x)
R,ν,q,σ1,σ3

. By Thm. 1,

there is an efficient reduction from MLWER,ν,q,σPC.Eval to HintMLWE
Ecd(xk)
R,ν,q,σ1,σ3

for
any k if σPC.Eval ≥

√
2 · ηε(Zd), given that

∥∥Ecd(xk)∥∥
1
≤ (b+1)r

2 . Therefore,
H1(ck, h(X), x) and H2(ck, h(X), x) are computationally indistinguishable due
to the hardness of MLWER,ν,q,σPC.Eval .

Claim 3: H2(ck, h(X), x) and H3(ck, x, h(x)) are statistically indistinguishable,
where H3(ck, x, h(x)) is defined as follows.


(⃗hhh, e⃗ee, ε⃗εε)

∣∣∣∣∣∣∣∣∣∣∣

u1, . . . , un−1 ← U(Zp), u0 = h(x)−
n∑

j=1

bjx
j
, u⃗ = (u0, . . . , un−1)

h⃗hhi ← R.Ecd(⃗0, s1), η⃗ηηi ← D
µ+ν

Zd,σ1
, h⃗hhi ← U(R

µ
q ) for 0 ≤ i ≤ m

h⃗hhm+1,i ← R.Ecd(⃗0, s3) for 0 ≤ i ≤ m, h⃗hhm+1,m+1 ← R.Ecd(u⃗, s3)

The rest is same as H2(ck, h(X), x).



The difference betweenH2(ck, h(X), x) andH3(ck, x, h(x)) lies in how h⃗hh0, . . . h⃗hhm,
and h⃗hhm+1,0, . . . , h⃗hhm+1,m+1 are sampled. We note that e⃗ee =

∑m−1
i=0 (h⃗hhm+1,i +

Ecd(xni) ·h⃗hhi)+(h⃗hhm+1,m+Ecd(x) ·h⃗hhm)+h⃗hhm+1,m+1, so it suffices to consider only
the distribution of (h⃗hhm+1,i+Ecd(xni) ·h⃗hhi) for 0 ≤ i < m, (h⃗hhm+1,m+Ecd(x) ·h⃗hhm),
and h⃗hhm+1,m+1. By Lem. 11, the first two distributions in H2(ck, h(X), x) and
H3(ck, x, h(x)) are within a statistical distance 2ε, if the following holds

√(
s−21 (PℓP⊤ℓ )−1 + s−23 ·X⊤k (PℓP⊤ℓ )−1Xk

)−1 ≥ ηε(PℓZdℓ)
where Xk is the negacyclic matrix of Ecd(xk). By Lem. 2, this condition is
implied by sPC.Eval ≥ 1

b−1 · ηε(PℓZ
dℓ) since ∥Xk∥2 ≤

(b+1)r
2 and

∥∥P−1∥∥
2
≤ 1

b−1 .
For h⃗hhm+1,m+1, it is a randomized encoding of

∑m−1
i=0 xni · h⃗i + x · h⃗m + h⃗m+1

in H2(ck, h(X), x), whereas that of H3(ck, x, h(x)) is a randomized encoding of
u⃗. We note that these distributions are identical in the sense that a uniformly
sampled vector, whose inner product with (1, x, . . . , xn−1), results in h(x). Thus,
we can regard b⃗bb0,m+1 in H2 and H3 as following an identical distribution, given
the evaluation point x and the evaluation result h(x). Therefore, H2(ck, h(X), x)
and H3(ck, x, h(x)) are within a statistical distance 2(m+ 1)ε, which is negl(λ).
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Claim 4: H3(ck, x, h(x)) and H4(ck, x, h(x)) are statistically indistinguishable,
where H4(ck, x, h(x)) is defined as follows.

(⃗hhh, e⃗ee, ε⃗εε)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u1, . . . , un−1 ← U(Zp), u0 = h(x)−
n∑

j=1

bjx
j
, u⃗ = (u0, . . . , un−1)

h⃗hhi ← R.Ecd(⃗0, s1), η⃗ηηi ← D
µ+ν

Zd,σ1
, h⃗hhi ← U(R

µ
q ) for 0 ≤ i ≤ m

h⃗hhm+1 ← R.Ecd(u⃗,
√
m+ 2 · s3), η⃗ηηm+1 ← D

µ+ν

Zd,
√

m+2·σ3

e⃗ee =

m−1∑
i=0

Ecd(x
ni

) · h⃗hhi + Ecd(x) · h⃗hhm + h⃗hhm+1

ε⃗εε =

m−1∑
i=0

Ecd(x
ni

) · η⃗ηηi + Ecd(x) · η⃗ηηm + η⃗ηηm+1

h⃗hhm+1 = A0e⃗ee+ A1ε⃗εε−
m−1∑
i=0

Ecd(x
ni

) · h⃗hhi − Ecd(x) · h⃗hhm


The difference between H3 and H4 lies in how h⃗hhm+1 and η⃗ηηm+1 are sampled,
similar to Claim 1. Thus, following the proof of Claim 1, they are within a
statistical distance of 16(m+ 1)ε, which is negl(λ).

Therefore, we can conclude that H0(ck, h(X), x) and H4(ck, x, h(x)) are compu-
tationally indistinguishable under the given conditions. Since H0(ck, h(X), x)
corresponds to the distribution of evaluation transcripts from PC.Eval, and
H4(ck, x, h(x)) corresponds to the distribution of simulated proofs from SPC.Eval,
there is no PPT adversary A that can distinguish between the two distributions
with non-negligible probability. ⊓⊔

https://orcid.org/0009-0005-3870-2096
https://orcid.org/0000-0001-9080-5272
https://orcid.org/0000-0002-0496-9789

	Concretely Efficient Lattice-based Polynomial Commitment from Standard Assumptions

