
©IACR 2024. This is the full version of an article that will be published in the proceedings of ASIACRYPT 2024.

HARTS: High-Threshold, Adaptively Secure, and
Robust Threshold Schnorr Signatures

Renas Bacho 1,3 Julian Loss 1 Gilad Stern 2

Benedikt Wagner∗ 4

October 5, 2024

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
{renas.bacho,loss}@cispa.de

2 Tel Aviv University, Tel Aviv-Yafo, Israel
giladstern@tauex.tau.ac.il

3 Saarland University, Saarbrücken, Germany

4 Ethereum Foundation, Germany
benedikt.wagner@ethereum.org

Abstract
Threshold variants of the Schnorr signature scheme have recently been at the center of attention

due to their applications to cryptocurrencies. However, existing constructions for threshold Schnorr
signatures among a set of n parties with corruption threshold tc suffer from at least one of the
following drawbacks: (i) security only against static (i.e., non-adaptive) adversaries, (ii) cubic or
higher communication cost to generate a single signature, (iii) strong synchrony assumptions on the
network, or (iv) tc + 1 are sufficient to generate a signature, i.e., the corruption threshold of the
scheme equals its reconstruction threshold. Especially (iv) turns out to be a severe limitation for
many asynchronous real-world applications where tc < n/3 is necessary to maintain liveness, but a
higher signing threshold of n− tc is needed. A recent scheme, ROAST, proposed by Ruffing et al.
(ACM CCS 2022) addresses (iii) and (iv), but still falls short of obtaining subcubic communication
complexity and adaptive security.

In this work, we present HARTS, the first threshold Schnorr signature scheme to incorporate all
these desiderata. More concretely:

• HARTS is adaptively secure and remains fully secure and operational even under asynchronous
network conditions in the presence of up to tc < n/3 malicious parties. This is optimal.

• HARTS outputs a Schnorr signature of size λ with a near-optimal amortized communication
cost of O(λn2 log n) bits and a single asynchronous online round per signature.

• HARTS is high-threshold: no fewer than tr + 1 signature shares can be combined to yield a full
signature, where any tr ∈ [tc, n−tc) is supported. This especially covers the case tr ≥ 2n/3 > 2tc.
This is optimal.

We prove our result in a modular fashion in the algebraic group model. At the core of our construction,
we design a new simple and adaptively secure high-threshold asynchronous verifiable secret sharing
(AVSS) scheme which may be of independent interest.

Keywords: Threshold Signatures, Schnorr Signatures, Adaptive Security, Robustness, High-
Threshold, Asynchronous Network

∗This work was done while the author was at CISPA Helmholtz Center for Information Security.

https://orcid.org/0009-0007-7037-2458
https://orcid.org/0000-0002-7979-3810
https://orcid.org/0000-0002-0358-2689
https://orcid.org/0000-0002-4620-7264
mailto:mail here
mailto:mail here
mailto:mail here
mailto:mail here
mailto:mail here
mailto:mail here
mailto:mail here
mailto:mail here

Table 1: Comparison table of some relevant threshold Schnorr signatures.

Scheme Robust Corrupt Reconst Adapt Commun Rounds
FROST [KG20] ✗ tc < n tr = tc ✗ O(λn2) 2
Sparkle [CKM23a] ✗ tc < n tr = tc ✓ O(λn2) 3
GJKR [GJKR07] (✓) tc < n/2 tr = tc ✗ O(λn3) 3 BC
ROAST [RRJ+22] ✓ tc < n† tr < n− tc ✗ O(λn3 + n4) O(n)
SPRINT [BHK+24] ✓ tc < n/3 tr = tc ✗ O(λn2) 3 BC
GS23 [GS24] ✓ tc < n/3 tr = tc ✗ O(λn) O(1)
Our work ✓ tc < n/3 tr < n− tc ✓ O(λn2) O(1)

Robust denotes robustness, i.e., signing sessions always produce valid signatures. The work [GJKR07] assumes a synchronous
network and thus is not robust in our sense. The protocols [CKM23a, KG20] are not robust in synchrony, as a malicious signer in the
signing set can cause the session to abort or the final signature to be invalid, and do not necessarily terminate in full asynchrony (we
refer to [RRJ+22] for a discussion on that). However, we note that both protocols still remain unforgeable in asynchrony. Corrupt
denotes corruption threshold. † ROAST has a weaker notion of robustness and does not guarantee signature generation for tc ≥ n/3.
Reconst denotes reconstruction threshold. Adapt denotes adaptive security. Commun denotes (amortized) communication
cost per signature in bits. Rounds denotes number of rounds per signature. The works [BHK+24, GJKR07] assume an (atomic)
broadcast channel BC that parties can access: the former employs a blockchain for this, while the latter does not specify how to
implement it. The work [GS24] and ours can generate many batches of O(n) ephemeral nonces in a message-independent offline
phase with round complexity O(1) per batch and a single message-dependent online round per signature upon a signing request.

1 Introduction
A threshold signature [Des88, DF90] scheme is a special type of digital signature scheme that allows any
set of tr + 1 signers in a system of n parties to jointly generate a compact signature σ on a message
m. On the other hand, this should be infeasible for tr or less signers. Over the last two decades, many
threshold versions of the Schnorr signature scheme [Sch91] have been proposed [BP23, CGRS23, CKM23a,
GJKR07, KG20, Lin24, RRJ+22, SS01, TZ23, WNR20]. Collectively, these schemes offer a great variety
of trade-offs between efficiency and robustness to adverse signer behaviour and network conditions. A
recent work, ROAST [RRJ+22], combines several of these desirable features into a single scheme which
supports high reconstruction threshold (see below) and maintains liveness even under full asynchrony.
Unfortunately, the scheme is rather inefficient: creating a single signature costs O(λn3 + n4) bits and
O(n) rounds of communication, where λ denotes the size of a signature.
Our Contribution. In this work, we propose HARTS, a novel threshold Schnorr signature scheme that
improves significantly over prior works. Concretely, HARTS has the following properties:

• Adaptive Security: HARTS is secure against strongly adaptive corruptions.

• Asynchrony: HARTS remains fully secure and operational against up to (optimal) tc < n/3
corrupted parties in a fully asynchronous network where message delivery between honest parties
can take longer than expected [LSP82].

• Efficiency: HARTS allows for message-independent, offline generation of (ephemeral) nonces with
an amortized communication cost of O(λn2 log n) bits per nonce and O(1) round complexity. Upon
a signing request, it produces a Schnorr signature in a single round with a total communication
cost of O(λn2) bits, where each party only sends a single field element.

• High-threshold: HARTS is a high-threshold signature scheme satisfying the following features:
(i) a signing session results in a valid signature even in the presence of up to tc malicious parties
that try to prevent the other parties from generating a signature, (ii) a signature cannot be created
given less than tr + 1 signature shares, where any tr ∈ [tc, n− tc) is supported. In particular, this
also covers the case tr ≥ 2n/3 > 2tc and thus offers more flexibility. This notion of enhanced
security has found many applications and real-world significance in recent years, especially in the
context of consensus and blockchain systems [BCG+23, GKKS+22, YMR+19] where signatures
from a Byzantine quorum of size n− tc ≥ 2tc + 1 > tc + 1 are needed.

We refer to Table 1 for a complete overview and comparison of our scheme’s properties with existing
schemes from the literature.

2

Section 6

VABA [AJM+23]

Pascal [GS24]

AVSS

MVBA

SI Matrix
Packed
ADKG

Threshold
Schnorr

Section 5 Section 4

Figure 1: Overview of our framework to construct high-threshold and robust threshold Schnorr signatures.

A Modular Approach. We build HARTS by following a modular approach, which is summarized
in Figure 1 and outlined in more detail below.

• Threshold Schnorr Signatures from ADKG. Building upon the technique of Gennaro et
al. [GJKR99], we construct a generic high-threshold and robust threshold Schnorr signature scheme.
As a building block, we use a (packed) high-threshold asynchronous distributed key generation
(ADKG) protocol. We prove unforgeability of this scheme against an adaptive adversary in the
algebraic group model (AGM) [FKL18] based on the security of the (packed) ADKG protocol and
the one-more discrete logarithm assumption.

• Packed ADKG from AVSS. We give a generic construction (cf. Figure 2) for an efficient
packed high-threshold ADKG from a high-threshold asynchronous verifiable secret sharing (AVSS)
scheme using the technique of superinvertible matrices [HN06]. We prove the adaptive security of
this construction by reduction to the security of the AVSS scheme and the underlying consensus
primitives.

• New High-Threshold AVSS. We design a simple high-threshold AVSS scheme and give an
adaptive security proof. This gives the first pairing-free, adaptively secure AVSS scheme with
quadratic communication cost (cf. Table 2 for a comparison with existing schemes). With our new
AVSS scheme and building blocks from the literature, we instantiate our framework, yielding a
threshold Schnorr signature scheme with (amortized) communication cost of O(λn2 log n) bits per
signature.

1.1 Technical Overview
In the following, we provide a technical overview of our work.
Starting Point: Robust Threshold Schnorr Signatures. Our starting point is the construction
for robust threshold Schnorr signatures by Gennaro et al. [GJKR99]. First, we recall the (single-party)
Schnorr signature scheme. For this, let G = ⟨g⟩ be a group of prime order p with generator g. The secret
key is a random element sk←$ Zp and the public key is pk := gsk. To sign a message m, the party samples a
random element r←$ Zp and computes the signature on m as σ := (R, s) where s = H(pk, R, m)·sk+r ∈ Zp

and R = gr. Here, H : {0, 1}∗ → Zp is a hash function (modeled as a random oracle). Verification of
the signature (R, s) is done by checking gs = R · pkc where c := H(pk, R, m). Now let us switch to
the multi-party setting in which n parties P1, . . . , Pn want to jointly create a signature σ on m. For
convenience we assume that parties have already established a (tr, n)-threshold key setup, e.g., by running
a distributed key generation (DKG) protocol. Concretely, this means that each party Pi has a share ski

of the secret key sk such that any set of tr + 1 shares uniquely determine the secret key and the public
key shares pki := gski are known to all parties.

In order to transform the Schnorr signature scheme into a (tr, n)-threshold signature scheme, Gennaro
et al.’s insight was to run a DKG protocol to generate shares ri of a secret nonce r for parties along with
associated public shares Ri = gri and R = gr. To sign a message m, each party Pi computes its share of
the signature on m as σi := (Ri, si) where si = H(pk, R, m) · ski + ri. Verification of a signature share σi

is done with respect to the public key share pki and the public nonce share Ri. It can be seen that any
tr + 1 valid signature shares recover the full signature σ = (R, s). However, a major drawback of this
approach is its efficiency: parties need to run a DKG protocol each time they want to sign a new message.
Using a state-of-the-art asynchronous DKG protocol in terms of efficiency [AJM+23, DXKKR23], this
yields a communication cost of O(λn3) bits per signature. On the other hand, assuming nonce shares
have already been generated, each party can locally compute its signature share and send it to all other
parties, which costs only O(λn2) bits of communication and a single asynchronous round.

3

Regaining Efficiency: Superinvertible Matrices. Introduced by Hirt and Nielsen [HN06] in the
context of multi-party computation (MPC) protocols, we use the technique of superinvertible (SI) matrices
to construct an (ℓ, tc, tr, n)-packed ADKG protocol for more efficient multi-nonce generation. Informally,
such a protocol executed by n parties has the following property in the presence of up to tc malicious
parties: it outputs ℓ independent keys distributed among the parties such that each of them can be
reconstructed independently from the others with reconstruction threshold tr. Our construction has the
following parameters: it generates ℓ = tc + 1 keys with (arbitrary) reconstruction threshold tr < n− tc in
the presence of tc < n/3 malicious parties. Our construction (cf. Figure 2) follows the usual flow of an
ADKG protocol with some tweaks in the parameters in order to apply an SI matrix at the end.

We briefly elaborate on this. Each party Pi samples a random element si←$ Zp and shares it via an
(tc, tr, n)-threshold asynchronous verifiable secret sharing (AVSS) scheme where si lies on some polynomial
fi ∈ Zp[X] of degree tr. Then, parties agree on a set I ⊂ [n] of n − tc dealers whose AVSS sharings
completed successfully using a consensus tool. Say I = {1, . . . , n− tc} so that after this phase, each party
Pi has shares f1(i), . . . , fn−tc

(i). Instead of just summing up these shares, as is done usually in an ADKG,
parties take different linear combinations given by the rows of an (ℓ, n − tc)-dimensional SI matrix SI
to obtain ℓ new shares r1(i), . . . , rℓ(i). The special feature of an SI matrix now tells us that if at least
ℓ input secrets are independent and uniformly random, then the ℓ output secrets are also guaranteed
to be independent and uniformly random. Since there are at most tc malicious parties, we know that
|I| − tc ≥ tc + 1 of the dealers specified by the set I are honest. Thus, we can set ℓ := tc + 1.

Similar constructions were recently introduced in [BHK+24, GS24, Sho23] for the same purpose of
efficient multi-nonce generation. These constructions, however, employ low-threshold AVSS schemes
with tr = tc < n/3. To the best of our knowledge, the only existing high-threshold AVSS schemes
are [AJM+23, AVZ21, DYX+22, KMS20], each of them with its own limitations. Kokoris-Kogias et
al.’s AVSS [KMS20] has cubic communication cost, resulting in prohibitive Ω(λn4) communication to
share tc + 1 nonces. Alhaddad et al. [AVZ21] provide a generic construction for AVSS with quadratic
communication cost, but lacks a proof of adaptive security. Das et al.’s AVSS [DYX+22] is based on
publicly verifiable secret sharing (PVSS) and has quadratic communication cost, but also lacks a proof of
adaptive security1. Abraham et al.’s AVSS [AJM+23] relies on the KZG polynomial commitment [KZG10]
that requires pairings (and trusted setup) which is not suitable for Schnorr signatures.
HAVSS: New AVSS Scheme to the Rescue. We take insights from both protocols, Bingo [AJM+23]
and HAVEN [AVZ21], and combine certain aspects to obtain a simple high-threshold AVSS scheme called
HAVSS. On a high level, our AVSS scheme works as follows.

The designated dealer Pd holds a secret s ∈ Zp as input that it wants to share among all parties. For
this, it samples a bivariate polynomial S ∈ Zp[X, Y] of degree tr in X and tc in Y such that S(0, 0) = s.
The goal is to let each party Pi receive the column polynomial Ci(Y) := S(i, Y) assigned to it so that
it can recover its share si := S(i, 0) ∈ Zp of the secret s. Note that the shares si lie on a polynomial
S(X, 0) ∈ Zp[X] of degree tr. We follow a simple two-step approach which results in an (n×n)-dimensional
matrix whose entry at coordinates a, b ∈ [n] is S(a, b). First, the dealer reliably broadcasts Pedersen
commitments {com1, . . . , comtr+1} on the column polynomials C1(Y), . . . , Ctr+1(Y), from which parties
can locally (by interpolation) derive the commitments {com1, . . . , comn} to all n column polynomials
C1(Y), . . . , Cn(Y). Following this, Pd sends each party Pi shares {C1(i), C2(i), . . . , Cn(i)} on each other
party’s assigned column polynomial, along with proofs that the openings are correct. This can be thought
of as sending to Pi the evaluations along the row Ri(X) := S(X, i). Whenever a party Pi receives a row
with correct opening proofs, it sends every other party Pj the share Cj(i) (along with the proof sent by
the dealer) on its column polynomial Cj(Y). In this way, it is guaranteed that each party Pi obtains
at least tc + 1 shares on its column polynomial Ci(Y) and can recover its share si = Ci(0) = S(i, 0) of
the dealer’s initial secret s. To guarantee unanimous termination, we employ a Bracha-style termination
gadget [Bra84] in which parties send their approval to all parties upon receiving a correct row, and echo
other parties’ approvals upon seeing a total of n− tc approvals.

HAVSS has a near-optimal communication cost of O(λn2 log n) per sharing (cf. Table 2). In combination
with the aforementioned technique of superinvertible matrices, we are able to construct a packed ADKG
protocol that outputs ℓ = tc + 1 ∈ O(n) nonces with O(λn3 log n) bits and O(1) rounds of communication.

1Crucially, no adaptively secure PVSS for field elements is known to date. We note, however, that a recent work [BL23]
shows adaptive security of several (efficient) PVSS schemes from the literature, but these can only share a group element
which is not suitable for Schnorr signatures, as the signing key is a field element.

4

Table 2: Comparison table of some relevant AVSS schemes.

Scheme Adaptive High-Thresh Pairing-Free No Trust Commun
Backes et al. [BDK13] ✗ ✗ ✗ ✗ O(λn2)
hbACSS [YLF+22] ✗ ✗ ✓ ✓ O(λn2 log n)
GoAVSS [SS24] ✗ ✗ ✓ ✓ O(λn2)
Cachin et al. [CKLS02] ✗ (✓)⋆ ✓ ✓ O(λn3)
Das et al. [DYX+22] ✗ ✓ ✓ ✓ O(λn2)
HAVEN [AVZ21] ✗ ✓ ✓ ✓ O(λn2 log n)
HAVEN++ [AVY24] (concurrent) ✗ ✓ ✓ ✓ O(λn2 log n)
Bingo [AJM+23] ✓ ✓ ✗ ✗ O(λn2)
Kokoris et al. [KMS20] ✓ ✓ ✓ ✓ O(λn3)
HAVSS (our work) ✓ ✓ ✓ ✓ O(λn2 log n)

Adaptive denotes adaptive security. High-Thresh denotes support for high reconstruction threshold. ⋆The work [CKLS02] only
achieves suboptimal corruption threshold tc < n/4 (in asynchrony). Pairing-Free denotes suitability for pairing-free groups. No
Trust denotes no trusted setup other than a uniform reference string (URS). The works [AJM+23, BDK13] rely on the structured
powers-of-tau setup [NRBB24]. Commun denotes communication cost per sharing in bits.

As a result, we achieve an amortized communication cost of O(λn2 log n) per generated nonce and Schnorr
signature. We reiterate that our online phase requires only a single asynchronous round.
Handling Adaptive Corruptions. To prove adaptive security, our starting point is the recent work
of Bacho and Loss [BL22] who introduced a new security notion for DKG protocols called oracle-aided
simulatability. Loosely speaking, this notion states the existence of an efficient simulator Sim that on input
k group elements ξ1, . . . , ξk ∈ G can simulate an execution of the DKG protocol under adaptive corruptions
while having (k − 1)-time access to a discrete logarithm oracle DLG,g. With this notion of security for
DKG, they show a reduction from the one-more discrete logarithm (OMDL) assumption [BNPS03] of
degree k to the unforgeability of the threshold BLS signature scheme against an adaptive adversary.
Their reduction internally runs Sim (on input the OMDL challenge ξ1, . . . , ξk ∈ G) in order to simulate
an execution of the DKG protocol as part of the broader simulation of the unforgeability experiment. To
emulate the oracle DLG,g for the simulator Sim, the reduction simply forwards any query Sim makes to
its own oracle. We want to employ a similar strategy to simulate the executions for multi-nonce and key
generation. However, we encounter several challenges when trying to adopt this strategy naively. For the
remainder of this overview, we assume for simplicity that parties employ a regular single-output ADKG
protocol for nonce generation instead of a packed one.
Challenges in Our Context. Very recently, Crites et al. [CKM23a] gave an adaptive security proof for
their threshold Schnorr signature scheme under the algebraic OMDL assumption. This assumption is
widely used in the context of multi-party Schnorr signatures [BTZ22, NRS21]. So far, the scheme by Crites
et al. is the only threshold Schnorr signature with adaptive security. In their proof, corruption queries are
simulated using the oracle DLG,g and signing queries are simulated using honest-verifier zero-knowledge
and by programming the random oracle suitably. Omitting details, their simulator essentially samples
random signature shares σi←$ Zp for honest parties and retroactively defines the public nonce shares Ri

by suitably programming the random oracle.
To make this strategy work in our context, the (packed) ADKG protocol NDKG for nonce generation

would have to be fully secret in the sense of Gennaro et al. [GJKR99], i.e., there exists an efficient
simulator that on input a group element R ∈ G can simulate an execution of NDKG that terminates with
R as public nonce. While there are constructions [AF04, JL00] relying on the single-inconsistent player
(SIP) technique that achieve this kind of property, these fail to work in our setting. On a high level, the
SIP technique allows to reveal the internal state of all but one single party which is chosen randomly
at the beginning of the protocol execution. For this to work, the sharing of this special party has to be
included in the final transcript of the DKG. However, in an asynchronous DKG, there is only the guarantee
that the sharings of at most n− tc parties are included2, of which tc may be corrupted. Therefore, the
probability that the sharing of the special party is included is bounded by (n − 2tc)/(n − tc) ≤ 1/2.
Multiple applications of an ADKG would therefore lead to a negligible success probability of the reduction.
Therefore, to deal with adaptive corruptions in our setting, a new approach is required.

2This feature is specific to the asynchronous network model and necessary to maintain liveness of protocols. For more
details, we refer to [AJM+21, DYX+22].

5

Combining Different Proof Strategies. In their work, Bellare et al. [BTZ22] provide a security
reduction from the OMDL assumption to the security of the FROST1 and FROST2 schemes under a
static adversary. Their reduction uses the discrete logarithm oracle DLG,g to answer certain signing
queries. Essentially, the values for the nonce Rj , the challenge cj , and the public key shares pki = gski

are fixed and determine the signature shares σj,i by the relation gσj,i = Rj · pkcj

i . We observe that a
similar strategy could be useful for our scheme, in particular in combination with previously explained
oracle-aided simulatability. And indeed, combining these two proof strategies [BL22, BTZ22] (almost!)
succeeds: using oracle-aided simulators to simulate executions of IDKG and NDKG along with corruption
queries3, and at the same time using the oracle DLG,g separately to answer signing queries.

However, trying to employ this approach as it currently stands, we exceed the number of allowed
queries to the oracle DLG,g prescribed by the OMDL challenge: assume the reduction simulating the
unforgeability game uses DLG,g on input gσj,i to answer a signing query for party Pi and nonce Rj . If
Pi gets corrupted later on, the simulators for IDKG and the j-th execution of NDKG that generated Rj

might make discrete logarithm queries such that they can internally compute the secret key share ski

and the secret nonce share rj,i, respectively. Three discrete logarithm oracle queries have been made to
return the values σj,i, ski, rj,i, although by the identity σj,i = cj · ski + rj,i two queries would suffice. To
resolve this issue we have to (i) adapt the original definition of oracle-aided simulatability delicately and
(ii) cleverly design the reduction to limit the number of its queries to DLG,g.

1.2 More on Related Work
We discuss related work on threshold signatures and DKG, and give a brief overview on other asynchronous
threshold Schnorr signatures. In Appendix A, we discuss related work on AVSS and further threshold
Schnorr signatures with a focus on robustness, high-threshold, and efficiency. Additionally, we provide
there a detailed comparison to other AVSS schemes relevant to our work.
Threshold Signatures. Most of the threshold signature schemes [BCK+22, CKM+23b, KY02, LP01]
focus on threshold DSA/ECDSA and threshold Schnorr [CGG+20, CKM21, CKM23a, DOK+20, GG18,
KG20], mainly due to their significance in blockchain systems and cryptocurrency wallets. Among the
threshold Schnorr signatures, only the work [CKM23a] provides adaptive security. Further, several
protocols for threshold RSA signatures were proposed [ADN06, KY02, Sho00] from which only [ADN06]
provides adaptive security. In the domain of pairing-based threshold signatures, there are several
constructions [Bol03, CKP+23, DR24, LJY14] from which [Bol03, DR24, LJY14] provide adaptive security.
A recent work [BLT+24] studies rewinding-free, adaptively secure threshold signatures without pairings.
For a comprehensive survey on threshold signatures, we further refer to [SY23].
Asynchronous Threshold Schnorr Signatures. In recent years, several constructions for robust
threshold Schnorr signatures have been proposed [BHK+24, GS24, RRJ+22]. Closest to our work are the
constructions in [BHK+24, GS24], which follow the same high-level idea of running an ADKG protocol
in combination with a superinvertible matrix for nonce generation. However, these protocols only provide
low-threshold reconstruction with tr = tc < n/3. Essentially, the reason for this is that both rely on
a low-threshold AVSS, which cannot be used in the high-threshold setting without sacrificing security.
Further, the protocol in [Sho23] uses online error correction [CP17] which inherently requires tr < n/3.
For security reasons, the protocol in [BHK+24] only allows parties to sign batches of tc + 1 messages (and
not individual messages). On the other hand, ROAST [RRJ+22] supports high-threshold reconstruction
and works fundamentally different. Essentially, it transforms FROST [KG20] into a protocol for robust
and asynchronous threshold signatures by running n− tc + 1 concurrent signing sessions of FROST in
such a clever way that guarantees successful termination of at least one of these sessions. In particular, it
inherits the high-threshold property of FROST. Finally, we stress that none of the works in this category
achieve adaptive security.
Distributed Key Generation. Most of the DKG protocols assume an underlying synchronous
network [BLL+23, CGJ+99, GJKR07, GJM+21, JL00, KG20, SBKN24]. Among these protocols, only the
ones in [BLL+23, CGJ+99, JL00] provide adaptive security. On the other hand, DKGs in the asynchronous
setting have only recently attracted attention [AJM+23, AJM+21, DXKKR23, DYX+22, KMS20]. Among
these, only the works of Abraham et al. [AJM+23] and Kokoris-Kogias et al. [KMS20] provide adaptive
security. The protocols in [AJM+23, DXKKR23, KMS20] provide high-threshold reconstruction of the

3Here, IDKG denotes the initial ADKG protocol employed for key generation.

6

Party P1 Party Pn
. . .

. . .

Initial ADKG
. . .

Signing

Packed Nonce ADKG

(pk1, . . . , pkn) sk1 (pk1, . . . , pkn) skn

{Rj,i}i,j (r1,1, . . . , rℓ,1) {Rj,i}i,j (r1,n, . . . , rℓ,n)

b := Hnon(pk, Rj , Rj+1, m) b := Hnon(pk, Rj , Rj+1, m)
R̂ := RjRb

j+1, r̂1 := rj,1 + brj+1,1 R̂ := RjRb
j+1, r̂n := rj,n + brj+1,n

c := H(pk, R̂, m), σ1 := c · sk1 + r̂1 c := H(pk, R̂, m), σn := c · skn + r̂n

Send σ1, Receive S = {(σi, i)} Send σn, Receive S = {(σi, i)}
Output σ := (R̂,

∑
(σi,i)∈S Li,Sσi) Output σ := (R̂,

∑
(σi,i)∈S Li,Sσi)

AVSS.Share s1←$ Zp AVSS.Share sn←$ Zp

Wait for n− tc completed
sharings

Wait for n− tc completed
sharings

MVBA: Agree on n− tc dealers I ⊂ [n] with completed sharings

AVSS.Rec for all sharings specified by I

Apply Superinv. Matrix Apply Superinv. Matrix

Figure 2: Overview of our protocol to generate threshold Schnorr signatures.

key with optimal resilience threshold, but we note that [KMS20] is substantially less efficient than the
other two protocols [AJM+23, DXKKR23]. The asynchronous DKG protocols have cubic communication
cost except the one in [KMS20] which has quartic communication cost. Finally, the DKG protocol
in [BCLZL23] works in a network-agnostic model and the authors also show that asynchronous DKG is
impossible to achieve for tc ≥ n/3 (by setting ts = ta in their impossibility result), thus implying that
our packed ADKG protocol has optimal resilience.
Concurrent Work. Concurrent with our work, another work on AVSS has appeared [AVY24]. While
their construction is very similar to ours and has the same properties as HAVEN (cf. Table 2), the authors
do not consider adaptive security and especially not in the context of adaptive security for asynchronous
DKG protocols or threshold Schnorr signatures.

1.3 Outline of the Paper
The paper is organized as follows. In Section 2, we define relevant preliminaries. In Section 3, we define the
model of syntax and security of a robust threshold signature scheme relevant for this work. In Section 4, we
give a generic construction for a high-threshold, robust, and efficient threshold Schnorr signature scheme
and prove it adaptively secure in the AGM. In Section 5, we give a generic construction for an efficient
packed ADKG protocol and prove it adaptively secure from its building blocks. In Section 6, we present
our new high-threshold AVSS scheme and prove it adaptively secure. In Section 7, we instantiate our
framework to obtain HARTS, and evaluate the communication and round complexity of it. In Appendix A,
we discuss further related work on AVSS schemes and threshold Schnorr signatures. In Appendix B, we
cover there additional preliminaries and definitions relevant for the paper. In Appendix C, we provide
the security proofs for our theorems. And in Appendix D, we provide formal descriptions as pseudocode
for our packed ADKG and AVSS constructions.

2 Preliminaries and Model
In this section, we fix notation and preliminaries for our paper.
General Notation. Let λ denote the security parameter. Throughout the paper, we assume that global
parameters par := (G, p, g) implicitly parameterized by λ are fixed and known to all parties. Here, G is a
cyclic group of prime order p generated by g. For two integers a ≤ b, we define the set [a, b] := {a, . . . , b};
if a = 1, we denote this set by [b], and if a = 0, we denote it by JbK. For an element x in a finite set S,

7

we write x←$ S to denote that x was sampled from S uniformly at random. All our algorithms may be
randomized, unless stated otherwise. We use the acronym PPT to mean probabilistic polynomial-time.
By x← A(x1, . . . , xn) we denote running algorithm A on inputs (x1, . . . , xn) and uniformly random coins
and then assigning its output to x.
Adversarial and Network Model. We consider a complete network of n parties P1, . . . , Pn (modeled as
PPT machines) connected by bilateral private and authenticated channels4. We consider an asynchronous
network model, i.e., any message can be delayed arbitrarily under the constraint that messages sent
between correct parties must eventually be delivered. We consider an adversary who can corrupt up to
tc < n/3 parties maliciously and may cause them to deviate from the protocol arbitrarily. We refer to tc

as the corruption threshold and to tr ∈ [tc, n− tc) as the reconstruction threshold. Further, the adversary
is strongly adaptive and can choose its corruptions at any time during the protocol execution. When it
corrupts a party, it can delete or substitute any undelivered messages that this party sent while being
correct. We refer to the correct parties as honest and to the malicious parties as corrupt.
Public Key Infrastructure. As common in this line of work on distributed cryptographic proto-
cols [AJM+23, BHK+24], we assume that parties have established a bulletin board public key infrastructure
(PKI) before the protocol execution. Concretely, this means that every party Pi has a verification-signing
key pair (vki, siki) for a digital signature scheme, where vki is known to all parties but siki is known only
to Pi. For this, we assume that each party generates its keys locally (where corrupt parties may choose
their keys arbitrarily) and then makes its verification key known to everybody using a public bulletin
board. These keys are used to provide authentication. In particular, we assume that parties sign each
message before they send it to other parties.
Algebraic Group Model. In the algebraic group model (AGM) [FKL18], all algorithms are treated as
algebraic: whenever an algorithm outputs a group element, it must also provide a representation of that
element with respect to all of the inputs the algorithm has received so far. Formally, an algorithm A is
called algebraic (over a group G) if for all group elements h ∈ G that A outputs, it additionally outputs a
vector zζ = (z1, . . . , zm) of integers such that h =

∏
i∈[m] gzi

i , where ζ = (g1, . . . , gm) ∈ Gm is the list of
group elements A has received so far.
Computational Assumptions. We rely on the standard one-more discrete logarithm (OMDL) as-
sumption [BNPS03] for our security proofs. Throughout the paper, we denote by DLG,g an oracle that on
input ξ := gz ∈ G returns the discrete logarithm z ∈ Zp of ξ to base g.

Let G be a cyclic group of prime order p generated by g. For an algorithm A and k ∈ N, we consider
the following experiment:

• Offline Phase. Sample (z1, . . . , zk)←$ Zk
p and set ξi := gzi ∈ G for all i ∈ [k].

• Online Phase. Run A on input (G, p, g) and (ξ1, . . . , ξk). Here, A gets access to the oracle DLG,g.

• Winning Condition. Let (z′
1, . . . , z′

k) denote the output of A. Return 1 if (i) z′
i = zi for all i ∈ [k],

and (ii) DLG,g was queried at most k − 1 times during the online phase. Otherwise, return 0.

We say that the one-more discrete logarithm assumption of degree k holds relative to (G, p, g) if for any
PPT algorithm A, the probability that the above experiment outputs 1 is negligible in λ. Further, the
discrete logarithm assumption (DLOG) is the one-more discrete logarithm assumption of degree k = 1.

2.1 Cryptographic and Consensus Primitives
In this section, we formally define syntax and security notions of the cryptographic and consensus
primitives used in the paper.

Definition 2.1 (MVBA Protocol). A multivalued validated Byzantine agreement (MVBA) proto-
col [CKPS01] allows a set of parties, each holding an input vi ∈ V from a value set V with |V | ≥ 2, to
agree on a common output value v′ ∈ V satisfying a predefined external validity function Val : V → {0, 1}.
A value v ∈ V is said to be externally valid if Val(v) = 1. We formally define an MVBA protocol.

Let Π be a protocol executed by n parties P1, . . . , Pn, where each party Pi holds vi ∈ V as input, and
let Val : V → {0, 1} be an external validity function. We say that Π is a (tc, n)-secure MVBA protocol if

4When implementing those channels, one has to make sure that they are secure in the presence of adaptive corruptions.
For efficient implementations of these, we refer to the early works [BH93, Nie02].

8

whenever at most tc parties are corrupted the following properties hold. (i) External Validity: If every
honest party’s input is externally valid, then every honest party Pi that outputs a value outputs an
externally valid value v′

i. (ii) Consistency: If every honest party’s input is externally valid, then all honest
parties output the same value v′. (iii) Termination: If every honest party’s input is externally valid, then
every honest party Pi terminates with an output value v′

i.

Definition 2.2 (RBC Protocol). A reliable broadcast (RBC) protocol [Bra84] allows a designated party
Ps (called sender) to consistently distribute a message among all parties. In contrast to synchronous
broadcast, reliable broadcast does not require full termination. We formally define an RBC protocol.

Let Π be a protocol executed by n parties P1, . . . , Pn, where a designated sender Ps holds v ∈ V as
input. We say that Π is a (tc, n)-secure RBC protocol if whenever at most tc parties are corrupted the
following properties hold. (i) Validity: If the sender Ps is honest and holds v as input, then every honest
party Pi outputs v′

i = v. (ii) Consistency: All honest parties that output a value output the same value
v′. (iii) Totality: If an honest party outputs a value, then every honest party eventually outputs a value.

Superinvertible Matrices. A superinvertible (SI) matrix of dimension (ℓ, k) with k ≥ ℓ [HN06] is a
matrix A ∈ Zℓ×k

p over some field Zp with the property that each of its (ℓ×ℓ)-dimensional square submatrix
AI is invertible. Large classes of superinvertible matrices are given in [BHK+24, GS24]. Looking ahead,
each party Pi applies the SI matrix A of dimension (ℓ, k) := (n − 2tc, n − tc) to its k secret shares
f1(i), . . . , fk(i) that it received from different completed AVSS sharings. The result is ℓ new secret shares
r1(i), . . . , rℓ(i) with the property that if at least ℓ input secrets are independent and uniformly random,
then the ℓ output secrets are also guaranteed to be independent and uniformly random.

Definition 2.3 ((tc, tr, n)-Threshold AVSS Scheme). An asynchronous verifiable secret sharing (AVSS)
scheme [BCG93, CR93] consists of two protocols Share and Rec which allow a designated dealer to
share a secret s over some field Zp among all parties using Shamir secret sharing. Here, the threshold
tr ∈ [tc, n− tc) specifies the degree of the shared polynomial f . We formally define an AVSS scheme.

Let Π = (Share, Rec) be a pair of protocols executed by n parties P1, . . . , Pn, where a designated
dealer Pd holds a secret s ∈ Zp as input. Upon completion of Share parties only maintain a state and do
not output anything. Parties can then call Rec with their state and output a tuple of n + 1 elements in G
and an element in Zp. We say that Π is a complete (tc, tr, n)-threshold AVSS scheme if whenever at most
tc parties are corrupted the following properties hold:

• Correctness. Once the first honest party completes Share, there exists a unique polynomial f ∈ Zp[X]
of degree tr such that every honest party Pi upon completing Rec outputs an element f(i) ∈ Zp and
the same tuple (S, S1, . . . , Sn) of elements in G such that S = gf(0) and Sj = gf(j) for all j ∈ [n].
Further, if Pd is honest, then it holds that f(0) = s.

• Termination. If Pd is honest and all honest parties call Share, then all honest parties complete
Share. Further, if all honest parties call Share and an honest party completes Share, then all honest
parties complete Share. Finally, if all honest parties call Rec, then all honest parties complete Rec.

Hereafter, we write AVSS := (Share, Rec) to denote a generic complete (tc, tr, n)-threshold asynchronous
verifiable secret sharing scheme. If AVSS allows for an arbitrary threshold tr ∈ [tc, n− tc), we call it a
high-threshold AVSS scheme.

Remark 2.4 In this definition, we leave out a notion of secrecy and postpone it to Section 6 instead. We
do this for the following reasons. (i) This allows us to provide the reader with a clearer picture of our
work and not overload him with several new technical definitions right at the beginning. (ii) Our secrecy
definition for an AVSS scheme is strongly motivated by the one we introduce for an ADKG protocol in
the next section. As we organize this work according to a top-down structure, it makes more sense to
introduce the secrecy notion after that.

Non-Interactive Zero-Knowledge Proofs. In our AVSS construction, we use non-interactive zero-
knowledge (NIZK) proofs [BFM88]. Informally, a non-interactive proof system for an NP relation R
with respect to a random oracle H is a pair of PPT algorithms PS = (PProve, PVer), where PProveH

takes a statement x and a witness w with (x, w) ∈ R as input and outputs a proof π, and PVerH takes
the statement x and the proof π as input and decides to accept or reject. Completeness requires that
honestly computed proofs for (x, w) ∈ R are accepted, whereas soundness requires that no malicious

9

prover can find an accepting proof for a false statement x, i.e., a statement such that (x, w) /∈ R for all w.
Further, zero-knowledge requires that there is a simulator that can simulate proofs without knowing w by
programming the random oracle H. Finally, the system is a proof of knowledge, if there is an extractor that
can extract the witness from any proof provided by the adversary. To do so, the extractor is allowed to
observe the random oracle queries made by the adversary. Our definitions hence model online-extraction,
which is reasonable in the algebraic group model. We defer formal definitions to Appendix B.

3 Packed Asynchronous DKG and Threshold Signatures
In this section, we introduce the notion of a packed asynchronous distributed key generation (ADKG)
protocol and define our model of syntax and security of a threshold signature scheme.

3.1 Packed Asynchronous DKG
In a regular distributed key generation (DKG) protocol, a set of mutually distrusting parties securely
establish a public-secret key pair without relying on a trusted dealer. At the end of the protocol, the
public key is output in the clear, whereas the secret key is kept as a virtual secret distributed among all
parties. This shared secret key can then be used for threshold cryptosystems, such as threshold signatures
or threshold encryption, without ever being explicitly reconstructed. When the underlying network is
asynchronous, we call it an asynchronous DKG (ADKG).

In the following, we introduce and define the notion of an (ℓ, tc, tr, n)-packed ADKG protocol which
allows n parties out of which at most tc are corrupted to generate ℓ ≥ 1 independent shared keys each
with reconstruction threshold tr ∈ [tc, n− tc) in a way that is potentially more efficient than just executing
ℓ instances of an ADKG protocol in parallel. The basic idea is to realize the same functionality as if ℓ
independent instances of an ADKG protocol were run in parallel. For the definition, we use the group
G specified by par = (G, p, g). Hereafter, fix the parameter δa := tr + 1− tc. The subscript stands for
asynchrony, since the two thresholds tr and tc coincide in synchrony.

Definition 3.1 ((ℓ, tc, tr, n)-Packed ADKG Protocol). Let Π be a protocol executed by n parties
P1, . . . , Pn, where for each j ∈ [ℓ], Pi outputs a secret key share rj,i, a vector of public key shares
(Rj,1, . . . , Rj,n), and a public key Rj . We say that Π is an oracle-aided secure (ℓ, tc, tr, n)-packed ADKG
protocol if whenever at most tc parties are corrupted the following properties hold:

• Consistency. For each j ∈ [ℓ], all honest parties output the same public key Rj = gxj and the same
vector of public key shares (Rj,1, . . . , Rj,n).

• Correctness. For each j ∈ [ℓ], there exists a unique polynomial fj ∈ Zp[X] of degree tr such that
for all i ∈ [n], rj,i = fj(i) and Rj,i = grj,i . Moreover, Rj = gfj(0).

• Termination. If all honest parties participate in the protocol execution, then all honest parties
terminate with an output.

• Oracle-aided Simulatability. There exists k ∈ poly(λ) with k ≥ ℓ(tr + 1) such that for any PPT
algorithm A, there exists an algebraic PPT simulator Sim that on input ξ := (gz1 , . . . , gzk) ∈ Gk

makes k′ := k − ℓδa queries to the oracle DLG,g and such that:

– Syntax. Sim simulates the role of the honest parties in an execution of Π. At the end of the
simulation, Sim outputs the public keys R1, . . . , Rℓ and public key shares (Rj,1, . . . , Rj,n) for
all j ∈ [ℓ].

– Queries upon Corruption. Denote by C ⊂ [n] the dynamic set of corrupted parties. Once the
first honest party outputs (Rj,1, . . . , Rj,n) for all j ∈ [ℓ], the following holds. Upon corruption
query i ∈ [n] \ C, Sim invokes DLG,g on input Rj,i = grj,i for all j ∈ [ℓ] among (possibly) other
input elements. Conversely, it does not query Rj,i for any j ∈ [ℓ] before that corruption.

– Query Independence. Let C be as before andH := [n]\C. Assume that |C| = tc after a simulation
of Π. For i ∈ [k − ℓδa], denote by gi ∈ G the i-th query to DLG,g and let (âi, ai,1, . . . , ai,k)
be the corresponding algebraic vector, i.e., gi = gâi · ξai,1

1 · . . . · ξai,k

k . Further, denote by

10

(b̂i, bi,1, . . . , bi,k) the algebraic vector of the public key share Ri for all i = (j, i) ∈ [ℓ]×H. Then
for all I := Iℓ ⊂ Hℓ with |I| = δa, the following matrix is invertible over Zp

L(I, C) :=



a1,1 a1,2 · · · a1,k

...
...

...
ak−ℓδa,1 ak−ℓδa,2 · · · ak−ℓδa,k

bi1,1 bi1,2 · · · bi1,k

...
...

...
biℓδa ,1 biℓδa ,2 · · · biℓδa ,k


∈ Zk×k

p ,

where the indices i(·) range over the set
⋃

j∈[ℓ]({j}× I). Whenever Sim completes a simulation
of an execution of Π, we call L(I, C) the simulatability matrix of Sim (for this particular
simulation and the set I). Further, we call k a simulatability factor of Π.

– Bad Event. There is an event Bad, such that for any PPT algorithm A, the probability of Bad
in an execution of Π with adversary A is negligible.

– Indistinguishability. Denote by viewA,Π the view of A in an execution of Π. Denote by
viewA,ξ,Sim the view of A when interacting with Sim on input ξ. Then, the distributions
(ξ, viewA,Π) and (ξ, viewA,ξ,Sim) where ξ←$ Gk and both distributions conditioned on ¬Bad are
statistically close.

For ℓ = 1 (when the packing is trivial), we simply call Π a (tc, tr, n)-threshold ADKG protocol (over
(G, p, g)). Further, we call ℓ ≥ 1 the packing parameter.

Remark 3.2 In our above definition of oracle-aided security, we do not require the simulator Sim to
terminate once it outputs the public keys, but only after it has made the required k−ℓδa calls to the oracle
DLG,g (conditioned on the simulation of Π being completed). The reason for this being that adaptive
corruptions can happen even after termination of the DKG protocol, e.g., when the DKG is part of a
more complex protocol such as a threshold signature scheme.

Discussion. For simplicity, we consider only the case ℓ = 1 in this discussion. First, note that consistency,
correctness, and termination notions are in line with established definitions from the literature for DKG
protocols. In addition, our definition is built upon the oracle-aided algebraic security (OAAS) notion
from [BL22] which is defined for DKG protocols with a single threshold t. We adjust their definition
in several ways. First, we extend it to the (tc, tr)-dual-threshold setting which is often relevant in
asynchronous networks.Second, we state a more precise requirement on the behavior of the oracle-aided
simulator Sim, which is explained below. This allows us to make the DKG definition suitable for a more
general framework of adaptively secure threshold signatures like threshold Schnorr and threshold BLS.

We begin with our new property “Queries upon Corruption” that specifies Sim’s behavior when a
corruption i ∈ H happens after the public key shares are defined from the protocol. Specifically, we
require Sim to call DLG,g on input Ri = gf(i) only upon that event and not before. The intuition for
this being that any reasonable simulator should not know the secret key share f(i) of that party Pi

before the corruption happens; not surprisingly, all the OAAS simulators constructed in [BL22] have this
property. We proceed with the property “Query Independence” that upon [BL22] takes a dual-threshold
(tc, tr) into consideration. For this, we introduce the set I. To understand this, we observe that the
idea behind the invertability of the matrix L(C) as given in their paper is that the joint secret key f(0)
should not be known to the simulator even after tc corruptions happened. In the dual-threshold setting,
we want this property to hold even if tr − tc = δa − 1 additional secret key shares are leaked. That is
why we require the algebraic vectors of any |I| = δa additional public key shares to be independent from
already leaked data. Finally, note that [BL22] does not take computationally indistinguishable simulations
into consideration. For better composability, we separate the computational and statistical aspects by
introducing the property “Bad Event” and making the property “Indistinguishability” statistical.

3.2 Robust Threshold Signatures
In the following, we introduce the syntax and security notions for robust threshold signature schemes.
These are in line with established definitions but adopted to the structure of our protocol.

11

Syntax and Completeness. In our model, a threshold signature scheme has the following structure.
First, all parties P1, . . . , Pn run a regular (tc, tr, n)-threshold ADKG protocol denoted by IDKG (called
the initial ADKG). Having done this, each party Pi holds a secret key share ski and the public key
shares pk1, . . . , pkn of other parties along with the public key pk. Following this, parties repeatedly run
two parallel instances of an (ℓ, tc, tr, n)-packed ADKG protocol denoted by NDKG in the background.
The keys generated by these executions are interpreted as nonces. In particular, after each parallel
execution of the Nonce-ADKG protocol NDKG, the parties obtain 2ℓ new and independent nonces. To
simplify matters, we assume that the nonces are output in pairs (Rj , R′

j). For each such public nonce
Rj (respective R′

j), each party Pi also obtains its secret nonce share rj,i (respective r′
j,i) along with the

public nonce shares (Rj,1, . . . , Rj,n) (respective (R′
j,1, . . . , R′

j,n)) of other parties. For signing, we adapt
the double-nonce approach introduced by Komlo and Goldberg [KG20] in order to prevent concurrent
session attacks [BLL+21, DEF+19]5. That is, we assume that parties have agreement on a previously
generated but never before used nonce pair (Rj , R′

j) and use the effective nonce R̂j = RjR′b
j to sign a

message m where the scalar b ∈ Zp is derived from a random oracle Hnon as b = Hnon(pk, Rj , R′
j , m).

Upon such a signing request, each party derives the effective nonce shares (R̂j,1, . . . , R̂j,n) and its effective
secret nonce share r̂j,i analogously.

In this light, the protocol essentially becomes non-interactive: When party Pi wants to sign message
m with respect to effective nonce R̂j , it runs an algorithm SSign using its secret key ski and its secret
nonce share r̂j,i on message m. As a result, the party obtains a signature share σi that it sends to all
other parties. This signature share can be verified with respect to the parties public key share pki and
the public nonce share R̂j,i. Upon receiving tr + 1 valid signature shares, a party can locally combine
them into a full signature σ on m with randomness R̂j . This signature can now be verified with respect
to the public key pk only. From this explanation of the execution model, it is clear that we can define
such a threshold signature scheme by specifying the initial ADKG protocol, the packed ADKG protocol
for nonce generation, and algorithms for signing and verification similar to a non-interactive threshold
signature scheme [BL22, LJY14].

Definition 3.3 (Threshold Signature Scheme). An (ℓ, tc, tr, n)-threshold signature scheme is a tuple of
PPT protocols and algorithms Σ = (IDKG, NDKG, SSign, SVer, Comb, Ver) with the following syntax:

• IDKG: This is a (tc, tr, n)-threshold asynchronous DKG protocol as specified in Definition 3.1.

• NDKG: This is an (ℓ, tc, tr, n)-packed asynchronous DKG protocol as specified in Definition 3.1.

• SSign: The signature share generation algorithm takes as input a secret key share ski ∈ Zp, a
public key pk ∈ G, two secret nonce shares ri, r′

i ∈ Zp, two public nonces R, R′ ∈ G, and a message
m ∈ {0, 1}∗. It outputs a signature share σi.

• SVer: The signature share verification algorithm takes as input a public key pk ∈ G, a public
key share pki ∈ G, two public nonces R, R′ ∈ G, two public nonce shares Ri, R′

i ∈ G, a message
m ∈ {0, 1}∗, and a signature share σi. It outputs 1 (accept) or 0 (reject).

• Comb: The signature share combining algorithm takes as input two public nonces R, R′ ∈ G, a
message m ∈ {0, 1}∗, and a set S of tr + 1 signature shares (σi, i) with corresponding indices. It
outputs either a signature σ or ⊥.

• Ver: The signature verification algorithm takes as input a public key pk ∈ G, a message m ∈ {0, 1}∗,
and a signature σ. It outputs 1 (accept) or 0 (reject).

Further, we require the following correctness properties to hold:

• For any m ∈ {0, 1}∗, any ski, ri, r′
i ∈ Zp, and any pk, R, R′ ∈ G, we have

Pr [SVer(pk, pki, R, R′, Ri, R′
i, m, SSign(ski, pk, ri, r′

i, R, R′, m)) = 1] = 1,

where Ri = gri , R′
i = gr′

i , and pki = gski .
5Nick et al. [NRS21] introduced essentially the same technique at the same time to construct a two-round Schnorr

multi-signature with a rigorous security analysis.

12

• For all sets I ⊂ [n] with |I| = tr + 1, all messages m ∈ {0, 1}∗, all polynomials f, r, r′ ∈ Zp[X] of
degree tr, and all possible sets S of the form {(σi, i)}i∈I ,

(∀i ∈ I : SVer(pk, pki, R, R′, Ri, R′
i, m, σi) = 1) =⇒ Ver(pk, m, Comb(R, R′, m,S)) = 1,

where pk = gf(0), R = gr(0), R′ = gr′(0), pki = gf(i), Ri = gr(i), and R′
i = gr′(i) for all i ∈ I.

We emphasize that our definition models a robust threshold signing protocol [GJKR07]. The reason for
this is that the protocol NDKG terminates with distributed nonces each having reconstruction threshold
tr. Since there are at least n− tc ≥ tr + 1 honest parties in the system, it is guaranteed for every honest
party to obtain enough valid signature shares (even if no corrupt party sends a valid signature share or
anything at all) and thus to compute the full signature.
Security Model. We define the security of a threshold signature scheme following our syntax. The
established security definition for non-interactive adaptively secure threshold signatures [BL22, LJY14]
allows the adversary to adaptively ask for signature shares and corruptions for up to tc parties of its
choice. In the end, the adversary succeeds if it outputs a message m∗ and a valid signature σ∗ for it
such that it obtained at most tc signature shares for m∗. In the synchronous setting, the thresholds
for corruption and reconstruction coincide. As we work in an asynchronous network, we adjust their
definition to a dual-threshold: the protocol should be resistant against tc corruptions while providing
security for even up to tr leaked signature shares. Additionally, we let the adversary freely decide when
parties execute a new (parallel) instance of the Nonce-ADKG protocol in which he also participates.
Finally, signature shares are generated with respect to a specific nonce pair that has been generated but
not used previously and is specified by the adversary.

Definition 3.4 (Unforgeability Under Chosen Message Attack). Let Σ = (IDKG, NDKG, SSign, SVer,
Comb, Ver) be an (ℓ, tc, tr, n)-threshold signature scheme. For an algorithm A, we consider the following
experiment:

1. Setup. Initialize a corruption set C := ∅ and a signing query set Q := ∅. For each party Pi, i ∈ [n],
initialize an empty state Sti. Run A on input par . At any point throughout the experiment, A can
issue corruption queries by submitting an index i ∈ [n] \ C. In this case, update C := C ∪ {i} and
return the internal state Sti of party Pi to A. Henceforth, A fully controls Pi.

2. Initial Asynchronous DKG. Initiate an execution of IDKG among parties P1, . . . , Pn, where at any
point in time, A controls all parties Pi with i ∈ C, and the experiment simulates all other parties
following the protocol, and adds their respective state to Sti. Denote by pk and (pk1, . . . , pkn) the
public key and public key shares determined by IDKG, respectively. Denote by ski for all i ∈ [n] \ C
the secret key shares of the honest parties. When the execution of IDKG has terminated, add ski to
Sti for all i ∈ [n] \ C.

3. Online Phase. During this phase, A gets additional access to oracles that answer queries of the
following types:

• Nonce-ADKG Query. When A queries this oracle, a new parallel protocol execution6 of NDKG
among the parties P1, . . . , Pn is initiated. As for the initial distributed key generation, A
controls all parties Pi with i ∈ C, and the experiment simulates all other parties following
the protocol, and adds their respective state to Sti. When this protocol terminates for the
(k +1)-th time, let (Rkℓ+1, R′

kℓ+1), . . . , (Rkℓ+ℓ, R′
kℓ+ℓ) be the respective public nonce pairs, and

let Rkℓ+j,1, . . . , Rkℓ+j,n and R′
kℓ+j,1, . . . , R′

kℓ+j,n for each j ∈ [ℓ] be the respective public nonce
shares. Further, for each party Pi with i ∈ [n] \ C, let (rkℓ+1,i, r′

kℓ+1,i), . . . , (rkℓ+ℓ,i, r′
kℓ+ℓ,i) be

the respective secret nonce share pairs that party Pi obtains. These secret nonce share pairs
are added to Sti.

• Signing Query. When A submits a new tuple (i, j, m) /∈ Q for an i ∈ [n] \ C and nonce
index j such that (Rj , R′

j) is defined, then: If there is an m′ ≠ m and an i′ ∈ [n] such
that (i′, j, m′) ∈ Q, then return ⊥. Otherwise, set Q := Q ∪ {(i, j, m)} and return σ ←
SSign(ski, pk, rj,i, r′

j,i, Rj , R′
j , m).

6By a parallel execution, we refer to a pair of instances of NDKG.

13

4. Winning Condition. When A outputs a message m∗ and a signature σ∗, let S ⊂ [n] denote the
subset of parties for which A made a signing query for m∗, i.e., let

S := {i ∈ [n] | ∃j s.t. (i, j, m∗) ∈ Q} .

Return 1 if |C| ≤ tc, |C ∪ S| ≤ tr, and Ver(pk, m∗, σ∗) = 1. Else, return 0.

We say that Σ is unforgeable under chosen message attacks (or UF-CMA secure) if for any PPT algorithm
A, the probability that the above experiment outputs 1 is negligible in λ.

Remark 3.5 In our security model, we assume that parties agree on which nonce to use for which message
(similar to a session identifier). The reason for this is to make our reduction in the security proof for our
protocol (cf. Theorem 4.1) to go through. We note that it is also not clear to us if the protocol remains
secure otherwise. Interestingly, the reductions in prior works [BHK+24, CKM21, CKM23a, RRJ+22]
also seem to rely on this assumption without explicitly stating it in their security model; however, the
works [GS24, Sho23] explicitly state this requirement in their security model and mention that on a
distributed system signing requests must go through a consensus mechanism anyway.

4 Robust Threshold Schnorr Signatures
In this section, we provide a generic construction for a high-threshold, robust, and efficient threshold
Schnorr signature scheme and analyze its security.

4.1 Our Construction
In the following, we give a generic construction for a robust threshold Schnorr signature scheme (also refer
to Figure 2). Our construction is based on the technique introduced by Gennaro et al. [GJKR99, GJKR07].
In their work, they observed that in order to obtain a robust threshold Schnorr signature, the nonce itself
should be computed in a distributed threshold fashion realized via a DKG protocol. Building upon this
idea, we implement the DKG protocol for nonce generation with a packed ADKG protocol. For this, let
ℓ, tc, tr, n ∈ N be natural numbers such that tc < n/3 and tr ∈ [tc, n− tc).
Construction. Let IDKG be a (tc, tr, n)-threshold ADKG protocol and let NDKG be an (ℓ, tc, tr, n)-packed
ADKG protocol. Further, let H, Hnon : {0, 1}∗ → Zp be two hash functions (modeled as random oracles).
Then, the threshold Schnorr signature scheme SchnorrTS[IDKG, NDKG] = (IDKG, NDKG, SSign, SVer, Comb,
Ver) is defined as follows:

• SSign(ski, pk, ri, r′
i, R, R′, m): Compute b := Hnon(pk, R, R′, m) and the effective nonce R̂ := RR′b.

Further, compute r̂i := ri+b·r′
i and c := H(pk, R̂, m). Return the signature share σi := c·ski+r̂i ∈ Zp.

• SVer(pk, pki, R, R′, Ri, R′
i, m, σi): Compute b := Hnon(pk, R, R′, m), the effective nonce R̂ := RR′b,

the effective nonce share R̂i := RiR
′b
i , and further c := H(pk, R̂, m). Return 1 if pkc

i · R̂i = gσi and
0 otherwise.

• Comb(R, R′, m,S): Parse S as a set of tr + 1 signature shares (σi, i) with corresponding indices.
Denote the set of these indices by I. Compute s :=

∑
i∈I Li,Iσi where Li,I denotes the i-

th Lagrange coefficient for the set I. Further, compute the effective nonce R̂ := RR′b where
b := Hnon(pk, R, R′, m). Return the signature σ := (R̂, s).

• Ver(pk, m, σ): Parse σ as σ = (R̂, s). Return 1 if pkc · R̂ = gs and 0 otherwise.

4.2 Security Analysis
We proceed with the security proof of SchnorrTS[IDKG, NDKG] assuming oracle-aided security of IDKG
and NDKG. For this, we give a security reduction from the hardness of the OMDL assumption to the
unforgeability (cf. Definition 3.4) of our threshold signature scheme SchnorrTS[IDKG, NDKG].
Proof Intuition. We give here an intuition for our proof. The key idea of our reduction is to embed
the OMDL challenge ξ into the public keys pk1, . . . , pkn of parties that are output by IDKG and into

14

the public nonces {Ri, R′
i | i ∈ [ℓqr]} that are output by the qr parallel executions of NDKG. Recall

that each parallel execution outputs 2ℓ nonces that we interpret as ℓ nonce pairs. In order to do so, we
employ the oracle-aided simulators Sim0 for IDKG and Simj , Sim′

j for the j-th parallel execution NDKGj

of NDKG. Corruption queries i ∈ H are handled by Sim0 to return its secret key share ski (along with
other internal data generated from IDKG related to Pi), and by Simj , Sim′

j to return its 2ℓ secret nonce
shares from NDKGj (along with other internal data generated from NDKGj related to Pi). Signature
share queries (i, j, m) for an honest party Pi and (previously generated) nonce pair (Rj , R′

j) are handled
in one of two ways. (i) If the reduction already knows tr + 1 signature shares for (j, m)7, then it computes
the remaining shares by Lagrange interpolation and returns the signature share σj,i of that party. (ii)
If the reduction knows tr or less signature shares for (j, m), then it calls the discrete logarithm oracle
DLG,g on input pkcj · R̂j,i to obtain σj,i := cj · ski + r̂j,i and returns it. Here, it can derive the values
cj := H(pk, R̂j , m), R̂j,i := Rj,iR

′bj

j,i , and bj := Hnon(pk, Rj , R′
j , m) by itself from local computations and

consistent lazy sampling for random oracle outputs (if not yet defined).
However, this approach has the subtlety that it exceeds the number of allowed calls to DLG,g. If the

adversary A makes a signature share query (i, j, m) and later in the course of the protocol execution
corrupts that same party Pi, then the reduction would have used DLG,g too often: once for Sim0 to return
the secret key share ski, once for Simj to return the secret nonce share rj,i, once for Sim′

j to return the
secret nonce share r′

j,i, and once to compute the signature share σj,i. On the other hand, the identity
σj,i = cj · ski + r̂j,i tells us that three calls are enough to derive those four values. To make use of this, we
carefully leverage the “queries upon corruption” property of the simulators Simj , Sim′

j for j ≥ 1. More
precisely, as we know that Simj queries the discrete logarithm oracle on the element Rj,i upon corruption
of party Pi, we simply answer this query on Rj,i by computing r̂j,i := σj,i− cj · ski and returning the value
rj,i = r̂j,i − bjr′

j,i directly instead of calling DLG,g. In particular, we avoid redundant calls to DLG,g. At
the end of the game, we obtain a forgery (m∗, σ∗) from A which we convert into a solution of the OMDL
challenge ξ; recall that σ∗ is of the form (R∗, s∗). This is done as follows. First, as A is an algebraic
adversary, it returns the random oracle query H(pk, R∗, m∗) together with a representation of elements in
Zp. Second, using the forgery (m∗, σ∗), known signature shares {σj,1, . . . , σj,n}j , and known secret key
shares ski from tr parties, we can compute the secret key sk. Third, this allows us to compute all secret
key shares sk1, . . . , skn and thus using the signature shares also all secret nonce shares {r̂j,1, . . . , r̂j,n}j .
Finally, by inverting the simulatability matrices of all oracle-aided simulators Sim0, Sim1, . . . , we can
translate the aforementioned values into an OMDL solution. We provide a full proof of the following
theorem in Appendix C.1.

Theorem 4.1 (ADKG −→ Threshold Schnorr). Let ℓ, tc, tr, n ∈ N be natural numbers such that
tc < n/3 and tr ∈ [tc, n− tc). Let IDKG be an algebraic8 oracle-aided secure (tc, tr, n)-threshold ADKG
protocol and let NDKG be an algebraic oracle-aided secure (ℓ, tc, tr, n)-packed ADKG protocol. Fur-
ther, let H, Hnon : {0, 1}∗ → Zp be two random oracles. Then, the threshold Schnorr signature scheme
SchnorrTS[IDKG, NDKG] (cf. Section 4.1) is UF-CMA secure in the algebraic group model under the
OMDL assumption.

5 Efficient Packed ADKG Protocol
In this section, we provide a generic construction for a packed ADKG protocol that is more efficient than
naively executing many instances of a regular ADKG protocol in parallel.

5.1 Our Construction
In the following, we give a construction PADKG of an (ℓ, tc, tr, n)-packed ADKG protocol over (G, p, g)
where ℓ = n− 2tc and tr ∈ [tc, n− tc) is arbitrary. Our protocol PADKG relies on the following building
blocks: (i) a high-threshold AVSS scheme AVSS, (ii) an MVBA protocol MVBA with external validity
function checkValidity (cf. Equation (1) below), and (iii) a bulletin board PKI (cf. Section 2). We give an
informal description of the protocol and refer to Algorithm 1 for a formal description as pseudocode.

7Recall that in our model, a message m ∈ {0, 1}∗ is always signed with respect to a previously generated and agreed-upon
nonce pair (Rj , R′

j). That is, when message m is signed, the parties have agreement on which nonce index j to use for it.
8That is, all parties behave algebraically and can be modeled as algebraic machines.

15

Packed ADKG Description. Conceptually, parties agree on n− tc AVSS sharings and use a superin-
vertible (SI) matrix to extract as much randomness from these as possible. In more detail, our protocol
has the following four steps:

1. Sharing. In the first step, each party Pi shares a secret si←$ Zp via AVSS. This means that si lies
on a polynomial fi ∈ Zp[X] of degree tr. Afterwards, each party waits for n− tc AVSS sharings
to complete locally and stores the corresponding indices of the dealers in a set dealersi. Since the
network is asynchronous, each party might have a different set dealersi of locally completed sharings.
Therefore, parties need to agree on exactly one such set using an MVBA protocol MVBA. However,
the problem is that these sets as are cannot be checked via an external validity function which is
needed for the MVBA protocol. This issue is resolved as follows.

2. MVBA Execution. Once its set dealersi of completed sharings reaches size n− tc, party Pi sends
it as a proposal propi to all other parties with the aim to collect at least tc + 1 signatures from
other parties on it that it stores in a set sigsi. Conversely, a party Pj only issues a signature on
propi once all AVSS sharings specified by propi have completed at Pj itself. Once the set sigsi of
collected signatures on propi reaches size tc + 1 (guaranteeing that these sharings completed at an
honest party and thus by completeness of AVSS eventually also at all other honest parties), party
Pi invokes MVBA on input (propi, sigsi) with external validity function checkValidity given by:

(|prop| = n− tc) ∧ (|sigs| ≥ tc + 1) ∧ (∀(j, σj) ∈ sigs : Ver(vkj , prop, σj) = 1) . (1)

3. AVSS Reconstruction. Once the MVBA terminates and parties have agreement on a set dealers of
n− tc dealers whose sharings completed (we assume that parties order the set dealers by increasing
party index), parties proceed with the (possibly interactive) reconstruction phase. The result is that
each party Pi obtains a vector (Sj , Sj,1, . . . , Sj,n) of group elements in G such that Sj,k = gfj(k) for
k ∈ [n] along with its secret share sj,i = fj(i) for all j ∈ dealers. While this phase comes for free for
some AVSS schemes [DYX+22], it is required for other schemes, e.g., those that build upon KZG
commitments [AJM+23]. This phase comes for free with our AVSS scheme in Section 6.1.

4. SI Matrix Application. Having done this, each party Pi locally applies (i.e., matrix multiplication
from the left) the (ℓ, n − tc)-dimensional superinvertible matrix SI to its secret shares arranged
in a vector (sj,i)j∈dealers to obtain an ℓ-dimensional vector (r1,i, . . . , rℓ,i) of new private outputs.
Additionally, Pi applies SI in the exponent to the matrix with rows (Sj , Sj,1, . . . , Sj,n) for j ∈ dealers
to obtain an n-dimensional vector (Rj , Rj,1, . . . , Rj,n) of new public outputs for each j ∈ [ℓ].
Looking ahead, these vectors constitute the public nonces and public nonce shares. These operations
are captured by the algorithm ApplySI. At the end of this phase, each party Pi outputs a set
{(j, rj,i, (Rj , Rj,1, . . . , Rj,n))}j∈[ℓ]. For each j ∈ [ℓ], Rj is the j-th public nonce with corresponding
public shares (Rj,1, . . . , Rj,n) of all parties and rj,i is party Pi’s secret share of the nonce Rj .

The idea of the final phase is the following. Only ℓ = n − 2tc of the polynomials fj shared by the
parties j ∈ dealers are guaranteed to be chosen from honest parties and thus uniformly random. By taking
ℓ linearly independent linear combinations specified by the superinvertible matrix SI, parties obtain ℓ
new polynomials r1, . . . , rℓ ∈ Zp[X] of degree tr shared among them that are guaranteed to be uniformly
random and hidden from the adversary. By applying the SI matrix also to public output related to fj (i.e.,
the public elements Sj , Sj,1, . . . , Sj,n) for all j ∈ dealers, parties obtain regular Feldman commitments
to the polynomials r1, . . . , rℓ (i.e., the public elements Rj , Rj,1, . . . , Rj,n for each polynomial rj , j ∈ [ℓ])
which makes subsequent threshold signing for Schnorr signatures in the high-threshold setting possible
and efficient.

5.2 Security Analysis
We proceed with the security analysis of our generic packed ADKG protocol PADKG described before. For
this, we introduce a security notion for AVSS schemes that is very similar to the oracle-aided simulatability
notion for packed ADKG (cf. Definition 3.1). Due to the similarity, we provide the definition in Appendix B.
Then, we show that this notion for the AVSS in combination with the (regular) security of the MVBA
are sufficient to obtain an oracle-aided secure packed ADKG protocol as given in Algorithm 1. Here, we

16

emphasize that the proof crucially relies on the defining property of a superinvertible matrix which is
that any square submatrix of appropriate size is invertible.
Proof Intuition. In the following, we describe how to construct an oracle-aided simulator Sim for PADKG
given oracle-aided simulators for AVSS. For this informal overview, we omit the discussion on correctness,
consistency, and termination for PADKG, since these follow from standard considerations. For each i ∈ [n],
denote by Simi the simulator for the instance AVSSi with dealer Pi. Assume that AVSS has simulatability
factor k. Then, our simulator Sim has simulatability factor kn. Let ξ := (ξ1, . . . , ξn) be elements where
ξi := (ξi,1, . . . , ξi,k) ∈ Gk such that ξi,j = gzi,j for some zi,j ∈ Zp. On input (par , ξ), our simulator Sim
does the following in an execution of PADKG described by its four phases (cf. Section 5.1). First, in the
AVSS sharing phase, it runs Simi on input (par , ξi) for all i ∈ [n]. Second, in the MVBA execution phase,
it runs the protocol faithfully on behalf of all honest parties. Third, the AVSS reconstruction phase is also
handled by the simulators Simi for i ∈ [n]. Finally, in the SI matrix application phase, Sim applies SI to
the reconstructed vectors from the instances AVSSi for all i ∈ dealers to obtain (Rj,1, . . . , Rj,n) for j ∈ [ℓ].
As a result, Sim can output all necessary group elements in the group G and terminate the protocol.

Throughout the simulation up until the point in which the first honest party outputs the elements
{(Rj,1, . . . , Rj,n)}j∈[ℓ], a corruption query l ∈ H is forwarded to all Simi, i ∈ [n], simultaneously. In that
case, to answer discrete logarithm oracle queries from Simi on an element h′ ∈ G, Sim forwards it to its
oracle DLG,g and returns the result to Simi. However, once the event happens in which the first honest
party outputs {(Rj,1, . . . , Rj,n)}j∈[ℓ], subsequent corruption queries have to be answered differently9. The
subtle reason for this is that Sim otherwise would make redundant calls to its oracle DLG,g, thus violating
the required notion of “query independence”. We see this as follows. Assuming party Pl gets corrupted,
the notion of oracle-aided simulatability for (packed) ADKG requires the simulator Sim to query DLG,g

on input Rj,l for all j ∈ [ℓ] at this point in time. On the other hand, by the the notion of oracle-aided
simulatability for AVSS we also know that all simulators Simi for i ∈ [n] will query the discrete logarithm
oracle on input Si,l for all i ∈ [n] at this point in time. By definition of Rj,l, we know that for all j ∈ [ℓ],

rj,l = mj,1s1,l + . . . + mj,n−tcsn−tc,l, (†)

where the mj,i ∈ Zp are the entries of the superinvertible matrix SI := (mj,i)j,i and we assume for simplicity
that dealers = {1, . . . , n− tc}. Obviously, the required calls from Sim to its oracle DLG,g on input Rj,l,
j ∈ [ℓ], cannot be independent from the ones the individual simulators Simi would make on input Si,l,
i ∈ [n]. In order to deal with this issue, the simulator Sim has to return the values si,l = DLG,g(Si,l) to
Simi for all i ∈ [l] differently. Concretely, it will first query DLG,g(Rj,l) for all j ∈ [ℓ] to obtain the values
{rj,l | j ∈ [ℓ]}. Next, it will choose a random subset S ⊂ dealers \ C of size tc − |C ∩ dealers| and query
DLG,g(Si,l) for all i ∈ S to obtain a total of tc values {si,l | i ∈ S ∪ (C ∩dealers)}. From knowledge of these
values, the identities in (†), and the property of SI, Sim can compute the remaining values si,l from (†) by
inverting a suitable submatrix of SI and return these values to the simulators Simi. Still, special care has
to be taken as the set C of corrupt parties is dynamically increasing and we have to make the counting
argument of calls to DLG,g rigorous. We provide a full proof of the following theorem in Appendix C.2.

Theorem 5.1 (AVSS −→ ADKG). Let tc, tr, n ∈ N be natural numbers such that tc < n/3 and
tr ∈ [tc, n − tc). Let AVSS be an oracle-aided secure (tc, tr, n)-threshold AVSS scheme and let MVBA
be a (tc, n)-secure MVBA protocol. Further, let SI be a superinvertible matrix over Zp of dimension
(n−2tc, n−tc). Then, PADKG is an oracle-aided secure (ℓ, tc, tr, n)-packed ADKG protocol with ℓ = n−2tc.

Remark 5.2 We note that our proof does not rely on the algebraic group model. However, if the AVSS
scheme is algebraic (i.e., all parties behave algebraically) and the adversary is algebraic, then all our
reductions are also algebraic.

6 High-Threshold AVSS Scheme
In this section, we design a new high-threshold AVSS scheme and show that it satisfies our notion of
oracle-aided simulatability for AVSS under adaptive corruptions.

9Note that this can only happen under adaptive corruptions.

17

6.1 Our Construction
We construct a simple high-threshold AVSS scheme HAVSS = (HAVSS.Share, HAVSS.Rec), relying on
bivariate polynomials and NIZK proofs for inner product relations. We provide here an informal description
and refer to Appendix D for formal descriptions as pseudocode (cf. Algorithms 2 to 4).
Building Blocks. For the construction, we assume additional tc+1 random generators g0, g1, . . . , gtc

←$ G.
These can for example be derived from a random oracle. We also assume a non-interactive proof system
PSopen = (PProveopen, PVeropen) for the relation

Ropen :=

((g, g0, . . . , gtc , cmi, ω, y), Ci)

∣∣∣∣∣∣ cmi =
tc∏

j=0
g

cj,i

j ∧ Ci(ω) = y

 ,

and a non-interactive proof system PSexp = (PProveexp, PVerexp) for the relation

Rexp :=

((g, g0, . . . , gtc , cmi, ω, Y), Ci)

∣∣∣∣∣∣ cmi =
tc∏

j=0
g

cj,i

j ∧ Y = gCi(ω)

 .

Note that both relations are inner-product relations, as evaluating a polynomial at a known location is an
inner product. For simplicity, we write them using the same random oracle H, while formally we should
understand this as two separate random oracles. Further, we omit the elements g, g0, . . . , gtc from the
statements to avoid clutter. They are always clear from the context.
Finally, we make use of two deterministic algorithms Interpolate and ExpInterpolate, which is Lagrange
interpolation and Lagrange interpolation in the exponent, respectively. In more detail, these algorithms
work as follows:

• Interpolate: This algorithm takes as input a set of tc + 1 pairs {(xi, yi)}i∈[tc+1] of field elements
where xi ̸= xj for i ̸= j. It outputs the unique polynomial C ∈ Zp[X] of degree at most tc such that
C(xi) = yi for all i ∈ [tc + 1]. This can be done by computing the coefficients of the polynomial
using standard Lagrange interpolation.

• ExpInterpolate: This algorithm takes as input a vector of tr + 1 group elements (S1, . . . , Str+1). It
outputs a vector of n + 1 group elements T = (T0, . . . , Tn) where Tj =

∏
i∈[tr+1] S

Li,j

i for all j ∈ JnK
and Li,j denotes the i-th Lagrange coefficient for the set {1, . . . , tr + 1} at the evaluation point j.
Concretely, for all polynomials F ∈ Zp[X] of degree at most tr, we have F (j) =

∑tr+1
i=1 Li,jF (i).

Protocol Description. As said, the formal description of HAVSS from the perspective of a party Pi is
given in Appendix D. Conceptually, HAVSS has the following four steps:

1. Dealer Committing Phase. The dealer Pd samples a uniform bivariate polynomial S ∈ Zp[X, Y]
of degree tr in X and tc in Y such that S(0, 0) = s. It then generates commitments cm1, . . . , cmtr+1
to the (univariate) column polynomials C1(Y) := S(1, Y), . . . , Ctr+1(Y) := S(tr + 1, Y) of degree tc.
Concretely, these commitments are generalized Pedersen commitments and have the following form:

cmi :=
tc∏

j=0
g

cj,i

j where Ci(Y) =
tc∑

j=0
cj,iY

j ∈ Zp[Y].

Additionally, the dealer Pd computes for all i ∈ [tr + 1] the exponentiated evaluations Si := gS(i,0)

of the polynomial S(X, 0) and NIZK proofs πexp
i for the relation Rexp. Having done this, the dealer

reliably broadcasts the message (CM, row0) where CM = (cm1, . . . , cmtr+1) are the commitments and
row0 := ((S1, πexp

1), . . . , (Str+1, πexp
tr+1)) are the exponentiated evaluations along with the NIZK proofs

of correctness. Upon receiving this message, parties can compute commitments (cm0, . . . , comn) to
all column polynomials C0(Y), . . . , Cn(Y) and the exponentiated evaluations Si for all i ∈ JnK using
ExpInterpolate. Here, we rely on the homomorphic properties of the commitments (cf. Remark 6.1).

2. Dealer Distributing Rows. The dealer proceeds by sending each party Pi the evaluations
C1(i), . . . , Cn(i) along the i-th row polynomial S(X, i)10. The dealer also sends for all j ∈ [n]

10Note that the identity Cj(i) = S(j, i) holds by definition of Cj .

18

proofs πj,i for the relation Ropen attesting that the evaluation Cj(i) is correct with respect to the
commitment cmj . Upon receiving such a row along with the evaluation proofs from the dealer,
each party Pi checks the correctness of the evaluations by verifying the proofs. Only in case all
proofs verify, the party Pi distributes the row among all parties. This is done by sending to party
Pj the evaluation Cj(i) along with the proof πj,i in a “column” message. Additionally, it sends
a “vote” message to all parties. Upon receiving tc + 1 “column” messages with valid proofs from
other parties, a party Pi interpolates these received values to obtain a polynomial Ci(Y) ∈ Zp[Y] of
degree tc. This constitutes its column polynomial.

3. Voting Phase. Upon receiving “vote” messages from n− tc parties, every party knows that at least
n− 2tc ≥ tc + 1 honest parties received correct rows. These honest parties have evaluation points
of other party’s column polynomials (one evaluation point per column polynomial) which they will
forward to them. Therefore, every party will eventually receive enough points to interpolate its
column polynomial and will be able to terminate. In order to signify that it thinks that all parties
will be able to terminate, a party also sends a “done” message (upon receiving n− tc vote messages).

4. Termination. Upon receiving “done” messages from tc + 1 parties, every party also sends a “done”
message. Upon receiving “done” messages from n− tc parties, and acquiring its polynomial Ci(Y)
and the exponentiated evaluations S0, . . . , Sn of the polynomial S(X, 0) of degree tr, the party Pi

terminates. This technique of echoing “done” messages is a Bracha-style termination gadget [Bra84].
Before terminating, every party waits to receive n− tc “done” messages. Out of those messages, at
least n− 2tc ≥ tc + 1 were sent by honest parties. As a consequence, every party will receive at
least tc + 1 “done” messages (those sent by honest parties) and thus send a “done” message as well.
This guarantees eventual termination of all parties.

5. Reconstruction. During reconstruction, parties can simply output their shares si := Ci(0) and
the vector S = (S0, S1, . . . , Sn) from the information collected during the sharing phase.

Remark 6.1 In our construction, we rely on the homomorphic properties of the Pedersen commitment in
order to compute Pedersen commitments for the remaining column polynomials. Here, we sketch that this
is possible using algorithm ExpInterpolate, i.e., Lagrange interpolation in the exponent. For the first tr + 1
column polynomials Ci(Y) = S(i, Y), i ∈ [tr + 1], we observe that Ci(y) = S(i, y) =

∑tr+1
j=1 Li,jS(j, y) =∑tr+1

j=1 Li,jCj(y) for all y ∈ Zp and all j ∈ JnK. Since this identity holds for all y ∈ Zp, it also has to
hold as an identity of polynomials C1, . . . , Ctr+1 in Zp[Y]. As a result, we obtain the equivalent identity
S(i, Y) =

∑tr+1
j=1 Li,jS(j, Y) for the bivariate polynomial S(X, Y). From this, we easily see that applying

the same linear relation to the commitments of S(1, Y), . . . , S(tr + 1, Y) (which are the first tr + 1 column
polynomials C1, . . . , Ctr+1) yields a commitment to S(i, Y) for any i ∈ JnK, as required.

6.2 Security Analysis
We proceed with the security analysis of our high-threshold AVSS scheme HAVSS (cf. Section 6.1). In the
following, we give an intuition for the proof of oracle-aided simulatibility. We omit the correctness and
termination properties, since these follow from standard considerations.
Proof Intuition. The simulator Sim runs on an input of k := tr +1 group elements ζ := (ζ1, . . . , ζk) ∈ Gk.
In order to simulate a sharing of a bivariate polynomial S(X, Y) ∈ Zp[X, Y] of degree tr in X and tc in
Y , the simulator Sim embeds the given tr + 1 elements ζ1, . . . , ζk into exponentiated evaluations of the
polynomial S(X, 0) of degree tr at the points {1, . . . , tr + 1}. Since S(X, 0) is of degree tr, these tr + 1
evaluations determine the remaining evaluations in the exponent (to base g). By Lagrange interpolation
in the exponent, Sim obtains evaluations of S(X, 0) in the exponent at all the points {1, . . . , n}. Next, it
samples tr + 1 commitments cm1, . . . , cmtr+1←$ G to the first tr + 1 column polynomials Ci(Y) := S(i, Y)
uniformly at random, and interpolates them in the exponent to obtain the commitments cm1, . . . , cmn

to all column polynomials. From this point on, while simulating we make sure that parties’ messages
are consistent with the commitments and with the polynomial S(X, 0). This mainly involves sending
messages normally while carefully generating a corrupted party Pi’s view upon corruption. This is done by
calling the discrete logarithm oracle (which is provided to Sim by definition of oracle-aided simulatibility)
on input element Si := gS(i,0) to obtain S(i, 0), and sampling polynomials for Pi that is consistent with
these S(i, 0) and with the previously defined polynomials for all other corrupted parties. In this way,

19

the simulator Sim makes at most tc = k − δa calls to the discrete logarithm oracle which is the correct
number of total calls according to our definition of oracle-aided simulatibility. All opening proofs, along
with the exponentiated opening proofs for the Si elements can produced by simulating the NIZKs for the
relations Ropen and Rexp. We provide a full proof of the following theorem in Appendix C.3.

Theorem 6.2 (AVSS). Let tc, tr, n ∈ N be natural numbers such that tc < n/3 and tr ∈ [tc, n − tc).
Further, let PSopen and PSexp be zero-knowledge proofs of knowledge and let the DLOG assumption hold
relative to (G, p, g). Then, assuming secure erasures, HAVSS (cf. Algorithms 2 to 4) is an oracle-aided
secure (tc, tr, n)-threshold AVSS scheme.

Remark 6.3 We note that secure erasures are only used in the protocol to erase the randomness for
generating the proofs. The reason is that without secure erasures, upon an adaptive corruption, we would
need to explain simulated zero-knowledge arguments by revealing appropriate random coins. Hence, if the
underlying proof system is explainable [HK22], we would not need to rely on erasures for our construction.
An example of an explainable proof is the Schnorr NIZK proof, where we can compute the randomness r
from the witness w and a simulated proof σ as r := σ − c · w. We leave it as an interesting problem for
future work to analyze if the arguments we employ are explainable. In that case, our protocol would
work without assuming erasures. We emphasize, however, that secure erasures do not trivialize the task
of achieving adaptive security at all [Can00, CsW19, CDD+99, FMY99].

7 Instantiation and Efficiency
In this section, we instantiate our framework with concrete building blocks to obtain HARTS and evaluate
its communication and round complexity.
Instantiation. For an overview of our instantiation, we refer to Figure 1. Concretely, we use an
upper-triangular Pascal matrix [GS24] for the superinvertible matrix. Further, we use VABA [AJM+23]
for the MVBA protocol. Finally, we use our HAVSS (cf. Section 6) for the AVSS scheme with the following
specifications: the protocol from [DXR22] for the reliable broadcast, and Bulletproofs [BBB+18] for the
inner product arguments. Further, we note that online-extractability of Bulletproofs has been studied
before [GOP+22, GT21]. We emphasize that other inner product arguments could also be used in our
framework, e.g., modern versions of Bulletproofs [CHJ+22, EKRN24] to improve the concrete efficiency.
Our choice of Bulletproofs is based on the fact that it is most widely used in practical applications to date.
Finally, we note that KZG proofs [KZG10] are not suitable for our instantiation: first, KZG relies on a
trusted setup and a long structured common reference string; second, and more importantly, KZG relies
on pairings. Our objective is to obtain a Schnorr-compatible threshold signature, and thus we cannot
assume to have access to a pairing, as Schnorr is typically implemented over pairing-free groups.
Efficiency. We evaluate the communication and round complexity of our threshold Schnorr signature
scheme HARTS. In our AVSS scheme HAVSS, the dealer reliably broadcasts a vector of Pedersen
commitments of size O(λn) along with O(n) group elements and proofs of correctness. Using the reliable
broadcast protocol from [DXR22] and Bulletproofs [BBB+18], this step has a communication cost of
O(λn2 log n). Further, the dealer privately sends n field elements and evaluation proofs to each party, who
then disperses these values among all parties. This step also has a communication cost of O(λn2 log n).
Thus, we see that HAVSS has log-quadratic communication cost. As each party invokes it once, the
overall cost of the AVSS sharing phase is log-cubic. Next, the MVBA protocol VABA [AJM+23] has cubic
communication cost and terminates in expected constant rounds. Obviously, the application of the matrix
SI thereafter is only local and does not affect the communication and round complexity of the protocol.

From this analysis, we see that the protocol PADKG (cf. Algorithm 1) for nonce generation generates
ℓ = tc +1 ∈ O(n) nonces with a communication complexity of O(λn3 log n). Thus, we obtain an amortized
communication cost of O(λn2 log n) per nonce. Finally, for signature generation, each party sends a
threshold Schnorr signature share of size O(λ) to all other parties. Since this step has a communication
cost of O(λn2), we find that a total of O(λn3 log n) communication is required to generate O(n) signatures
in expected constant rounds, as desired. We note that PADKG generates ℓ ∈ O(n) nonces in expected
constant rounds, but only a single round is needed after that to sign a message. In particular, our security
analysis allows parties to run any polynomially-bounded number of instances of PADKG offline (i.e., in
the background or as precomputation), whose generated nonces can then be consumed individually (or in
batches) in a single-round online phase upon a signing request.

20

Acknowledgments. CISPA authors are funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – 507237585, and by the European Union, ERC-StG-2023-101116713. Views and
opinions expressed are however those of the author(s) only and do not necessarily reflect those of the
European Union. Neither the European Union nor the granting authority can be held responsible for
them. Gilad Stern was supported in part by ISF 2338/23, AFOSR Award FA9550-23-1-0387, AFOSR
Award FA9550-23-1-0312, and an Algorand Foundation grant. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect the
views of the United States Government, AFOSR or the Algorand Foundation.

References
[ADN06] Jesús F. Almansa, Ivan Damgård, and Jesper Buus Nielsen. Simplified threshold RSA with

adaptive and proactive security. In Serge Vaudenay, editor, EUROCRYPT 2006, volume
4004 of LNCS, pages 593–611. Springer, Heidelberg, May / June 2006. (Cited on page 6.)

[AF04] Masayuki Abe and Serge Fehr. Adaptively secure feldman VSS and applications to universally-
composable threshold cryptography. In Matthew Franklin, editor, CRYPTO 2004, volume
3152 of LNCS, pages 317–334. Springer, Heidelberg, August 2004. (Cited on page 5.)

[AJM+21] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, and Alin
Tomescu. Reaching consensus for asynchronous distributed key generation. In 40th ACM
Symposium Annual on Principles of Distributed Computing, pages 363–373. Association for
Computing Machinery, Portland, OR, USA, 2021. (Cited on page 5, 6.)

[AJM+23] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, and Gilad Stern. Bingo:
Adaptivity and asynchrony in verifiable secret sharing and distributed key generation. In
Advances in Cryptology – CRYPTO 2023: 43rd Annual International Cryptology Conference,
CRYPTO 2023, Santa Barbara, CA, USA, August 20–24, 2023, Proceedings, Part I, page
39–70, Berlin, Heidelberg, 2023. Springer-Verlag. (Cited on page 3, 4, 5, 6, 7, 8, 16, 20, 28,
29, 30, 31, 50.)

[AVY24] Nicolas Alhaddad, Mayank Varia, and Ziling Yang. Haven++: Batched and packed dual-
threshold asynchronous complete secret sharing with applications. Cryptology ePrint Archive,
Paper 2024/326, 2024. https://eprint.iacr.org/2024/326. (Cited on page 5, 7, 31.)

[AVZ21] Nicolas Alhaddad, Mayank Varia, and Haibin Zhang. High-threshold AVSS with optimal
communication complexity. In Nikita Borisov and Claudia Díaz, editors, FC 2021, Part II,
volume 12675 of LNCS, pages 479–498. Springer, Heidelberg, March 2021. (Cited on page 4,
5, 28, 29, 30, 31.)

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE
Symposium on Security and Privacy, pages 315–334. IEEE Computer Society Press, May
2018. (Cited on page 20.)

[BCG93] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure computation. In
25th ACM STOC, pages 52–61. ACM Press, May 1993. (Cited on page 9, 28.)

[BCG+23] Foteini Baldimtsi, Konstantinos Kryptos Chalkias, Francois Garillot, Jonas Lindstrom, Ben
Riva, Arnab Roy, Mahdi Sedaghat, Alberto Sonnino, Pun Waiwitlikhit, and Joy Wang.
Subset-optimized bls multi-signature with key aggregation. Cryptology ePrint Archive,
Paper 2023/498, 2023. https://eprint.iacr.org/2023/498. (Cited on page 2.)

[BCK+22] Mihir Bellare, Elizabeth C. Crites, Chelsea Komlo, Mary Maller, Stefano Tessaro, and
Chenzhi Zhu. Better than advertised security for non-interactive threshold signatures. In
Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part IV, volume 13510 of
LNCS, pages 517–550. Springer, Heidelberg, August 2022. (Cited on page 6, 28.)

21

https://eprint.iacr.org/2024/326
https://eprint.iacr.org/2023/498

[BCLZL23] Renas Bacho, Daniel Collins, Chen-Da Liu-Zhang, and Julian Loss. Network-agnostic
security comes (almost) for free in dkg and mpc. In Advances in Cryptology – CRYPTO
2023: 43rd Annual International Cryptology Conference, CRYPTO 2023, Santa Barbara,
CA, USA, August 20–24, 2023, Proceedings, Part I, page 71–106, Berlin, Heidelberg, 2023.
Springer-Verlag. (Cited on page 7.)

[BDK13] Michael Backes, Amit Datta, and Aniket Kate. Asynchronous computational VSS with
reduced communication complexity. In Ed Dawson, editor, CT-RSA 2013, volume 7779 of
LNCS, pages 259–276. Springer, Heidelberg, February / March 2013. (Cited on page 5, 28.)

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its
applications (extended abstract). In 20th ACM STOC, pages 103–112. ACM Press, May
1988. (Cited on page 9.)

[BH93] Donald Beaver and Stuart Haber. Cryptographic protocols provably secure against dynamic
adversaries. In Rainer A. Rueppel, editor, EUROCRYPT’92, volume 658 of LNCS, pages
307–323. Springer, Heidelberg, May 1993. (Cited on page 8.)

[BHK+24] Fabrice Benhamouda, Shai Halevi, Hugo Krawczyk, Yiping Ma, and Tal Rabin. Sprint:
High-throughput robust distributed schnorr signatures. In Marc Joye and Gregor Leander,
editors, Advances in Cryptology – EUROCRYPT 2024, pages 62–91, Cham, 2024. Springer
Nature Switzerland. (Cited on page 2, 4, 6, 8, 9, 14, 28, 29.)

[BJMS20] Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and Amit Sahai. Secure MPC:
Laziness leads to GOD. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020,
Part III, volume 12493 of LNCS, pages 120–150. Springer, Heidelberg, December 2020.
(Cited on page 28.)

[BL22] Renas Bacho and Julian Loss. On the adaptive security of the threshold BLS signature
scheme. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS
2022, pages 193–207. ACM Press, November 2022. (Cited on page 5, 6, 11, 12, 13, 31.)

[BL23] Renas Bacho and Julian Loss. Adaptively secure (aggregatable) pvss and application to
distributed randomness beacons. In Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’23, page 1791–1804, New York, NY, USA,
2023. Association for Computing Machinery. (Cited on page 4, 30.)

[BLL+21] Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and Mariana Raykova.
On the (in)security of ROS. In Anne Canteaut and François-Xavier Standaert, editors,
EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages 33–53. Springer, Heidelberg,
October 2021. (Cited on page 12, 29.)

[BLL+23] Renas Bacho, Christoph Lenzen, Julian Loss, Simon Ochsenreither, and Dimitrios Pa-
pachristoudis. Grandline: Adaptively secure dkg and randomness beacon with (almost)
quadratic communication complexity. Cryptology ePrint Archive, Paper 2023/1887, 2023.
https://eprint.iacr.org/2023/1887. (Cited on page 6.)

[BLT+24] Renas Bacho, Julian Loss, Stefano Tessaro, Benedikt Wagner, and Chenzhi Zhu. Twinkle:
Threshold signatures from ddh with full adaptive security. In Marc Joye and Gregor Leander,
editors, Advances in Cryptology – EUROCRYPT 2024, pages 429–459, Cham, 2024. Springer
Nature Switzerland. (Cited on page 6.)

[BNPS03] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko. The
one-more-RSA-inversion problems and the security of Chaum’s blind signature scheme.
Journal of Cryptology, 16(3):185–215, June 2003. (Cited on page 5, 8.)

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on
the gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt, editor, PKC 2003, volume
2567 of LNCS, pages 31–46. Springer, Heidelberg, January 2003. (Cited on page 6.)

22

https://eprint.iacr.org/2023/1887

[BP23] Luís T. A. N. Brandão and Rene Peralta. Nist first call for multi-partythreshold schemes,
2023. NIST IR 8214C (Initial Public Draft). (Cited on page 2.)

[Bra84] Gabriel Bracha. An asynchronous [(n - 1)/3]-resilient consensus protocol. In Proceedings
of the Third Annual ACM Symposium on Principles of Distributed Computing, PODC ’84,
page 154–162, New York, NY, USA, 1984. Association for Computing Machinery. (Cited on
page 4, 9, 19, 30.)

[BTZ22] Mihir Bellare, Stefano Tessaro, and Chenzhi Zhu. Stronger security for non-interactive
threshold signatures: BLS and FROST. Cryptology ePrint Archive, Report 2022/833, 2022.
https://eprint.iacr.org/2022/833. (Cited on page 5, 6.)

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of
Cryptology, 13(1):143–202, January 2000. (Cited on page 20.)

[CDD+99] Ronald Cramer, Ivan Damgård, Stefan Dziembowski, Martin Hirt, and Tal Rabin. Efficient
multiparty computations secure against an adaptive adversary. In Jacques Stern, editor,
EUROCRYPT’99, volume 1592 of LNCS, pages 311–326. Springer, Heidelberg, May 1999.
(Cited on page 20.)

[CGG+20] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi Peled.
UC non-interactive, proactive, threshold ECDSA with identifiable aborts. In Jay Ligatti,
Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 1769–1787.
ACM Press, November 2020. (Cited on page 6.)

[CGJ+99] Ran Canetti, Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Adaptive
security for threshold cryptosystems. In Michael J. Wiener, editor, CRYPTO’99, volume
1666 of LNCS, pages 98–115. Springer, Heidelberg, August 1999. (Cited on page 6.)

[CGRS23] Hien Chu, Paul Gerhart, Tim Ruffing, and Dominique Schröder. Practical schnorr threshold
signatures without the algebraic group model. In Advances in Cryptology – CRYPTO 2023:
43rd Annual International Cryptology Conference, CRYPTO 2023, Santa Barbara, CA,
USA, August 20–24, 2023, Proceedings, Part I, page 743–773, Berlin, Heidelberg, 2023.
Springer-Verlag. (Cited on page 2, 28.)

[CHJ+22] Heewon Chung, Kyoohyung Han, Chanyang Ju, Myungsun Kim, and Jae Hong Seo. Bullet-
proofs+: Shorter proofs for a privacy-enhanced distributed ledger. IEEE Access, 10:42067–
42082, 2022. (Cited on page 20.)

[CKLS02] Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, and Reto Strobl. Asynchronous
verifiable secret sharing and proactive cryptosystems. In Vijayalakshmi Atluri, editor, ACM
CCS 2002, pages 88–97. ACM Press, November 2002. (Cited on page 5, 28.)

[CKM21] Elizabeth Crites, Chelsea Komlo, and Mary Maller. How to prove schnorr assuming schnorr:
Security of multi- and threshold signatures. Cryptology ePrint Archive, Report 2021/1375,
2021. https://eprint.iacr.org/2021/1375. (Cited on page 6, 14, 28.)

[CKM23a] Elizabeth Crites, Chelsea Komlo, and Mary Maller. Fully adaptive schnorr threshold
signatures. In Advances in Cryptology – CRYPTO 2023: 43rd Annual International
Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20–24, 2023,
Proceedings, Part I, page 678–709, Berlin, Heidelberg, 2023. Springer-Verlag. (Cited on
page 2, 5, 6, 14, 28, 31.)

[CKM+23b] Elizabeth Crites, Chelsea Komlo, Mary Maller, Stefano Tessaro, and Chenzhi Zhu. Snowblind:
A threshold blind signature in pairing-free groups. In Advances in Cryptology – CRYPTO
2023: 43rd Annual International Cryptology Conference, CRYPTO 2023, Santa Barbara,
CA, USA, August 20–24, 2023, Proceedings, Part I, page 710–742, Berlin, Heidelberg, 2023.
Springer-Verlag. (Cited on page 6.)

23

https://eprint.iacr.org/2022/833
https://eprint.iacr.org/2021/1375

[CKP+23] Elizabeth Crites, Markulf Kohlweiss, Bart Preneel, Mahdi Sedaghat, and Daniel Slamanig.
Threshold structure-preserving signatures. In Advances in Cryptology – ASIACRYPT 2023:
29th International Conference on the Theory and Application of Cryptology and Information
Security, Guangzhou, China, December 4–8, 2023, Proceedings, Part II, page 348–382, Berlin,
Heidelberg, 2023. Springer-Verlag. (Cited on page 6.)

[CKPS01] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient
asynchronous broadcast protocols. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of
LNCS, pages 524–541. Springer, Heidelberg, August 2001. (Cited on page 8.)

[CP17] Ashish Choudhury and Arpita Patra. An efficient framework for unconditionally secure
multiparty computation. IEEE Trans. Inf. Theor., 63(1):428–468, jan 2017. (Cited on
page 6, 29, 31.)

[CR93] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal resilience.
In 25th ACM STOC, pages 42–51. ACM Press, May 1993. (Cited on page 9, 28.)

[CsW19] Ran Cohen, abhi shelat, and Daniel Wichs. Adaptively secure MPC with sublinear communi-
cation complexity. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part II, volume 11693 of LNCS, pages 30–60. Springer, Heidelberg, August 2019. (Cited on
page 20.)

[CT05] Christian Cachin and Stefano Tessaro. Asynchronous verifiable information dispersal. In
Pierre Fraigniaud, editor, Distributed Computing, pages 503–504, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg. (Cited on page 28.)

[DEF+19] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory Neven, and
Igors Stepanovs. On the security of two-round multi-signatures. In 2019 IEEE Symposium
on Security and Privacy, pages 1084–1101. IEEE Computer Society Press, May 2019. (Cited
on page 12, 29.)

[Des88] Yvo Desmedt. Society and group oriented cryptography: A new concept. In Carl Pomerance,
editor, CRYPTO’87, volume 293 of LNCS, pages 120–127. Springer, Heidelberg, August
1988. (Cited on page 2.)

[DF90] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 307–315. Springer, Heidelberg, August 1990.
(Cited on page 2.)

[DOK+20] Anders P. K. Dalskov, Claudio Orlandi, Marcel Keller, Kris Shrishak, and Haya Shulman.
Securing DNSSEC keys via threshold ECDSA from generic MPC. In Liqun Chen, Ninghui
Li, Kaitai Liang, and Steve A. Schneider, editors, ESORICS 2020, Part II, volume 12309 of
LNCS, pages 654–673. Springer, Heidelberg, September 2020. (Cited on page 6.)

[DR24] Sourav Das and Ling Ren. Adaptively secure bls threshold signatures from ddh and co-
cdh. In Advances in Cryptology – CRYPTO 2024: 44th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 18–22, 2024, Proceedings, Part VII, page
251–284, Berlin, Heidelberg, 2024. Springer-Verlag. (Cited on page 6.)

[DXKKR23] Sourav Das, Zhuolun Xiang, Lefteris Kokoris-Kogias, and Ling Ren. Practical asynchronous
high-threshold distributed key generation and distributed polynomial sampling. In 32nd
USENIX Security Symposium (USENIX Security 23), pages 5359–5376, Anaheim, CA,
August 2023. USENIX Association. (Cited on page 3, 6, 7.)

[DXR22] Sourav Das, Zhuolun Xiang, and Ling Ren. Balanced quadratic reliable broadcast and
improved asynchronous verifiable information dispersal. Cryptology ePrint Archive, Report
2022/052, 2022. https://eprint.iacr.org/2022/052. (Cited on page 20.)

[DYX+22] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew K. Miller, Lefteris Kokoris-Kogias, and
Ling Ren. Practical asynchronous distributed key generation. In 2022 IEEE Symposium on
Security and Privacy, pages 2518–2534. IEEE Computer Society Press, May 2022. (Cited
on page 4, 5, 6, 16, 29, 30.)

24

https://eprint.iacr.org/2022/052

[EKRN24] Liam Eagen, Sanket Kanjalkar, Tim Ruffing, and Jonas Nick. Bulletproofs++: Next
generation confidential transactions via reciprocal set membership arguments. In Marc Joye
and Gregor Leander, editors, Advances in Cryptology – EUROCRYPT 2024, pages 249–279,
Cham, 2024. Springer Nature Switzerland. (Cited on page 20.)

[Fis05] Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with online
extractors. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 152–168.
Springer, Heidelberg, August 2005. (Cited on page 32.)

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its appli-
cations. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II,
volume 10992 of LNCS, pages 33–62. Springer, Heidelberg, August 2018. (Cited on page 3,
8.)

[FMY99] Yair Frankel, Philip D. MacKenzie, and Moti Yung. Adaptively-secure optimal-resilience
proactive RSA. In Kwok-Yan Lam, Eiji Okamoto, and Chaoping Xing, editors, ASI-
ACRYPT’99, volume 1716 of LNCS, pages 180–194. Springer, Heidelberg, November 1999.
(Cited on page 20.)

[GG18] Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA with fast trustless
setup. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors,
ACM CCS 2018, pages 1179–1194. ACM Press, October 2018. (Cited on page 6.)

[GJKR99] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed key
generation for discrete-log based cryptosystems. In Jacques Stern, editor, EUROCRYPT’99,
volume 1592 of LNCS, pages 295–310. Springer, Heidelberg, May 1999. (Cited on page 3, 5,
14, 28.)

[GJKR07] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed
key generation for discrete-log based cryptosystems. Journal of Cryptology, 20(1):51–83,
January 2007. (Cited on page 2, 6, 13, 14.)

[GJM+21] Kobi Gurkan, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, and Alin
Tomescu. Aggregatable distributed key generation. In Anne Canteaut and François-Xavier
Standaert, editors, EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages 147–176.
Springer, Heidelberg, October 2021. (Cited on page 6.)

[GKKS+22] Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegelman, and
Zhuolun Xiang. Jolteon and ditto: Network-adaptive efficient consensus with asynchronous
fallback. In Ittay Eyal and Juan A. Garay, editors, FC 2022, volume 13411 of LNCS, pages
296–315. Springer, Heidelberg, May 2022. (Cited on page 2, 28.)

[GOP+22] Chaya Ganesh, Claudio Orlandi, Mahak Pancholi, Akira Takahashi, and Daniel Tschudi.
Fiat-shamir bulletproofs are non-malleable (in the algebraic group model). In Orr Dunkelman
and Stefan Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS,
pages 397–426. Springer, Heidelberg, May / June 2022. (Cited on page 20.)

[GS22] Jens Groth and Victor Shoup. On the security of ECDSA with additive key derivation and
presignatures. In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022,
Part I, volume 13275 of LNCS, pages 365–396. Springer, Heidelberg, May / June 2022.
(Cited on page 29.)

[GS24] Jens Groth and Victor Shoup. Fast batched asynchronous distributed key generation. In
Advances in Cryptology – EUROCRYPT 2024: 43rd Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Zurich, Switzerland, May 26–30,
2024, Proceedings, Part V, page 370–400, Berlin, Heidelberg, 2024. Springer-Verlag. (Cited
on page 2, 3, 4, 6, 9, 14, 20, 28, 29, 30, 31.)

25

[GT21] Ashrujit Ghoshal and Stefano Tessaro. Tight state-restoration soundness in the algebraic
group model. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part III, volume
12827 of LNCS, pages 64–93, Virtual Event, August 2021. Springer, Heidelberg. (Cited on
page 20.)

[HK22] Lucjan Hanzlik and Kamil Kluczniak. Explainable arguments. In Ittay Eyal and Juan A.
Garay, editors, FC 2022, volume 13411 of LNCS, pages 59–79. Springer, Heidelberg, May
2022. (Cited on page 20.)

[HN06] Martin Hirt and Jesper Buus Nielsen. Robust multiparty computation with linear communi-
cation complexity. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages
463–482. Springer, Heidelberg, August 2006. (Cited on page 3, 4, 9.)

[JL00] Stanislaw Jarecki and Anna Lysyanskaya. Adaptively secure threshold cryptography:
Introducing concurrency, removing erasures. In Bart Preneel, editor, EUROCRYPT 2000,
volume 1807 of LNCS, pages 221–242. Springer, Heidelberg, May 2000. (Cited on page 5, 6.)

[KG20] Chelsea Komlo and Ian Goldberg. FROST: Flexible round-optimized Schnorr threshold
signatures. In Orr Dunkelman, Michael J. Jacobson Jr., and Colin O’Flynn, editors, SAC
2020, volume 12804 of LNCS, pages 34–65. Springer, Heidelberg, October 2020. (Cited on
page 2, 6, 12, 28, 29.)

[KLX22] Julia Kastner, Julian Loss, and Jiayu Xu. The abe-okamoto partially blind signature scheme
revisited. In Shweta Agrawal and Dongdai Lin, editors, ASIACRYPT 2022, Part IV, volume
13794 of LNCS, pages 279–309. Springer, Heidelberg, December 2022. (Cited on page 32.)

[KMS20] Eleftherios Kokoris-Kogias, Dahlia Malkhi, and Alexander Spiegelman. Asynchronous
distributed key generation for computationally-secure randomness, consensus, and threshold
signatures. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM
CCS 2020, pages 1751–1767. ACM Press, November 2020. (Cited on page 4, 5, 6, 7, 28, 29,
30.)

[KY02] Jonathan Katz and Moti Yung. Threshold cryptosystems based on factoring. In Yu-
liang Zheng, editor, ASIACRYPT 2002, volume 2501 of LNCS, pages 192–205. Springer,
Heidelberg, December 2002. (Cited on page 6.)

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to
polynomials and their applications. In Masayuki Abe, editor, ASIACRYPT 2010, volume
6477 of LNCS, pages 177–194. Springer, Heidelberg, December 2010. (Cited on page 4, 20,
28, 30.)

[Lin24] Yehuda Lindell. Simple three-round multiparty schnorr signing with full simulatability.
IACR Communications in Cryptology, 04 2024. (Cited on page 2, 28.)

[LJY14] Benoît Libert, Marc Joye, and Moti Yung. Born and raised distributively: fully distributed
non-interactive adaptively-secure threshold signatures with short shares. In Magnús M.
Halldórsson and Shlomi Dolev, editors, 33rd ACM PODC, pages 303–312. ACM, July 2014.
(Cited on page 6, 12, 13.)

[LP01] Anna Lysyanskaya and Chris Peikert. Adaptive security in the threshold setting: From
cryptosystems to signature schemes. In Colin Boyd, editor, ASIACRYPT 2001, volume
2248 of LNCS, pages 331–350. Springer, Heidelberg, December 2001. (Cited on page 6.)

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401, jul 1982. (Cited on page 2.)

[Nie02] Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In Moti Yung, editor, Advances in Cryptology —
CRYPTO 2002, pages 111–126, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg. (Cited
on page 8.)

26

[NRBB24] Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau, and Dan Boneh. Powers-of-tau
to the people: Decentralizing setup ceremonies. In Christina Pöpper and Lejla Batina,
editors, Applied Cryptography and Network Security, pages 105–134, Cham, 2024. Springer
Nature Switzerland. (Cited on page 5.)

[NRS21] Jonas Nick, Tim Ruffing, and Yannick Seurin. MuSig2: Simple two-round Schnorr multi-
signatures. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I, volume 12825
of LNCS, pages 189–221, Virtual Event, August 2021. Springer, Heidelberg. (Cited on
page 5, 12, 29, 43.)

[PS17] Rafael Pass and Elaine Shi. The sleepy model of consensus. In Tsuyoshi Takagi and Thomas
Peyrin, editors, ASIACRYPT 2017, Part II, volume 10625 of LNCS, pages 380–409. Springer,
Heidelberg, December 2017. (Cited on page 28.)

[RRJ+22] Tim Ruffing, Viktoria Ronge, Elliott Jin, Jonas Schneider-Bensch, and Dominique Schröder.
ROAST: Robust asynchronous schnorr threshold signatures. In Heng Yin, Angelos Stavrou,
Cas Cremers, and Elaine Shi, editors, ACM CCS 2022, pages 2551–2564. ACM Press,
November 2022. (Cited on page 2, 6, 14, 28, 29.)

[SBKN24] Nibesh Shrestha, Adithya Bhat, Aniket Kate, and Kartik Nayak. Synchronous distributed
key generation without broadcasts. IACR Communications in Cryptology, 07 2024. (Cited
on page 6.)

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, January 1991. (Cited on page 2.)

[Sho00] Victor Shoup. Practical threshold signatures. In Bart Preneel, editor, EUROCRYPT 2000,
volume 1807 of LNCS, pages 207–220. Springer, Heidelberg, May 2000. (Cited on page 6,
28.)

[Sho23] Victor Shoup. The many faces of schnorr. Cryptology ePrint Archive, Paper 2023/1019,
2023. https://eprint.iacr.org/2023/1019. (Cited on page 4, 6, 14, 28, 29.)

[SS01] Douglas R. Stinson and Reto Strobl. Provably secure distributed Schnorr signatures and a
(t, n) threshold scheme for implicit certificates. In Vijay Varadharajan and Yi Mu, editors,
ACISP 01, volume 2119 of LNCS, pages 417–434. Springer, Heidelberg, July 2001. (Cited
on page 2.)

[SS24] Victor Shoup and Nigel P. Smart. Lightweight asynchronous verifiable secret sharing with
optimal resilience. J. Cryptol., 37(3), June 2024. (Cited on page 5, 28, 29, 30.)

[SY23] Kiarash Sedghighadikolaei and Attila Altay Yavuz. A comprehensive survey of threshold
digital signatures: Nist standards, post-quantum cryptography, exotic techniques, and
real-world applications, 2023. (Cited on page 6.)

[TZ23] Stefano Tessaro and Chenzhi Zhu. Threshold and multi-signature schemes from linear hash
functions. In Advances in Cryptology – EUROCRYPT 2023: 42nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Lyon, France, April
23-27, 2023, Proceedings, Part V, page 628–658, Berlin, Heidelberg, 2023. Springer-Verlag.
(Cited on page 2.)

[WNR20] Pieter Wuille, Jonas Nick, and Tim Ruffing. Schnorr signatures for secp256k1. bitcoin
improvement proposal 340. Github, January 2020. (Cited on page 2.)

[YLF+22] Thomas Yurek, Licheng Luo, Jaiden Fairoze, Aniket Kate, and Andrew Miller. hbacss:
How to robustly share many secrets. Proceedings of the Network and Distributed System
Security Symposium (NDSS) 2022, 01 2022. (Cited on page 5.)

[YMR+19] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abraham.
HotStuff: BFT consensus with linearity and responsiveness. In Peter Robinson and Faith
Ellen, editors, 38th ACM PODC, pages 347–356. ACM, July / August 2019. (Cited on
page 2, 28.)

27

https://eprint.iacr.org/2023/1019

Appendix

A Additional Related Work
We discuss further related work on verifiable secret sharing and threshold Schnorr signatures with a focus
on robustness, high-threshold, and efficiency.
Verifiable Secret Sharing. Verifiable secret sharing (VSS) is an essential tool in threshold cryptography
and there has been done a huge amount of research on VSS for different network models and different
security levels (information-theoretic and computational security). Therefore, we only focus on VSS
protocols in the asynchronous setting (AVSS). There has been a long line of research on AVSS proto-
cols [AVZ21, BDK13, BCG93, CT05, CR93, KMS20]. The earlier works in the 1990s [BCG93, CR93]
provide information-theoretic security, but at the expense of huge communication complexity. The first
practical AVSS was given by Cachin et al. [CKLS02] with computational security and achieves (suboptimal)
cubic communication complexity. Backes et al. [BDK13] give the first AVSS with (asymptotically optimal)
quadratic communication complexity. To achieves this, they use the KZG polynomial commitment
scheme [KZG10] which requires trusted setup. All these protocols have low-threshold reconstruction
and the computationally secure ones are only proven against a static adversary. Kokoris-Kogias et
al. [KMS20] provide the first AVSS that supports high-threshold reconstruction. Their construction has
cubic communication complexity. Alhaddad et al. [AVZ21] then gave the first construction of a high-
threshold AVSS with optimal quadratic communication complexity. Abraham et al. [AJM+23] provide
two constructions of AVSS with optimal quadratic communication complexity using KZG commitments:
(i) a high-threshold AVSS that shares one secret, and (ii) a low-threshold AVSS that shares t + 1 secrets
while supporting individual reconstruction of the low-threshold secrets among other desirable properties.
Further, their constructions are proven adaptively secure. Recently, Shoup and Smart [SS24] provide a
(generic) low-threshold AVSS that can share t + 1 secrets with quadratic communication complexity for a
correct dealer while having cubic communication complexity for a dealer that provably misbehaves. Their
AVSS works over any prime-power modulus ring and finite field.
Robustness. Many proposed schemes for threshold Schnorr signatures from the literature [CGRS23,
CKM21, CKM23a, KG20, Lin24] fall short in providing the guarantee of signature output delivery even
when only a single party misbehaves in a signing session. Despite many of these schemes providing
identifiable aborts, i.e., the possibility to identify a signer responsible for failure in a signing session, they
require strong synchrony assumptions on the network11 to restore the property of robustness. Concretely,
each time a signing session fails, parties replace the identified malicious signers and start a new session
with a different set of signers. Despite this requiring strong synchrony assumptions, it can take up to
tc + 1 sequential runs of signing sessions to generate a signature successfully, thus incurring a linear
blowup of tc + 1 in both the communication and round complexity. Since any of these schemes has at
least quadratic communication complexity, this results in potentially cubic communication complexity for
a single signature. More critically, however, the synchrony assumption has been criticized for being too
strong [BJMS20, PS17]: if an honest party ever experiences even a short outage or some other kind of
malfunction, this party is now considered malicious. As a result, these schemes fail to work under more
realistic network conditions [CR93, PS17].
High-Threshold. The general idea of high-threshold signatures was introduced by Shoup [Sho00] in the
context of threshold RSA. Building upon that idea, later works [KG20, BCK+22] focused on high-threshold
Schnorr signatures, but without robustness. Then, initiated by Ruffing et al. [RRJ+22], the last two years
have seen a lot of attention on robust threshold Schnorr signatures [BHK+24, GS24, RRJ+22, Sho23].
All of them, with the exception of ROAST [RRJ+22], follow the technique introduced by Gennaro et
al. [GJKR99] in order to maintain robustness. Concretely, parties run a (packed) (tr, n)-threshold ADKG
protocol with tr = tc < n/3 to generate the nonces used for Schnorr signatures. As a result, their protocols
for threshold Schnorr signatures inherit this property and retain secrecy as long as at most tc signature
shares are revealed, despite there being n− tc > 2n/3 honest parties in the system that keep the protocol
alive. In modern systems [GKKS+22, YMR+19], however, one often demands security to hold even if
up to tr > tc signature shares are revealed. More precisely, the protocol should guarantee robustness
in the presence of up to tc < n/3 malicious parties, while retaining unforgeability for up to tr < n− tc

11In a synchronous network, messages are sent in synchronized rounds and arrive within a given time bound ∆ > 0 that
is known to every party.

28

revealed signature shares. Unfortunately, all previously mentioned schemes for robust threshold Schnorr
signatures [BHK+24, GS24, Sho23], with the exception of ROAST [RRJ+22], fall short in this regard
and only provide low-threshold security with tr = tc < n/3. The reason for this is that their techniques
and building blocks are not applicable to the high-threshold setting. The protocols in [GS24, Sho23]
employ a low-threshold AVSS [SS24] which becomes insecure in the high-threshold setting. Further, these
works use online error correction [CP17] which inherently requires tr < n/3. We note that the protocol
in [GS24] is essentially an instantiation of the general framework for robust threshold Schnorr signatures
given in [Sho23]. Similarly, the protocol in [BHK+24] employs an incomplete AVSS which only guarantees
that tc + 1 honest parties receive valid shares at the end of the sharing phase. As such, it does not work
in the high-threshold setting which requires up to n− tc ≥ 2tc + 1 honest parties to hold valid shares
at the end of the sharing phase. To mitigate known concurrent session attacks [BLL+21, DEF+19], the
protocols in [GS24, Sho23] provide two alternatives: (i) the standard double-nonce approach introduced
in [KG20, NRS21], and (ii) the tweaking approach introduced in [GS22] where a nonce is shifted by a
random δ ∈ Zp from a randomness beacon upon a signing request. The protocol in [BHK+24] uses the
latter strategy, which, however, has the limitation that it allows parties to sign only batches of tc + 1
messages (and not individual messages).
Efficiency. While ROAST [RRJ+22] provides the desirable property of high-threshold reconstruction
with tr < n− tc, it significantly falls back in terms of efficiency. We briefly elaborate on that. ROAST
(which is an acronym for “RObust ASynchronous Threshold signatures”) is a wrapper protocol that
transforms a non-robust threshold signature scheme of a specific type (namely: semi-interactive, two-round,
concurrently secure, identifiable aborts) into a protocol for robust and asynchronous threshold signatures.
Essentially, the way it achieves this is by starting at most n− tc + 1 concurrent signing sessions of the
underlying threshold signature scheme in such a clever way that guarantees successful termination of at
least one of these sessions. By applying the ROAST wrapper to the threshold Schnorr signature scheme
FROST [KG20] (which has the required properties), this yields a robust threshold Schnorr signature
scheme with tc < n and tr < n− tc

12. Without making any further restrictions on the model, such as the
existence of a semi-trusted coordinator, the resulting protocol has a total per-signature communication
complexity of O(λn3 + n4) and a round complexity of O(n). In contrast, the robust low-threshold
schemes in [BHK+24, GS24, Sho23] have per-signature communication complexity of O(λn2) and a round
complexity of O(1). We emphasize that none of these protocols achieves adaptive security.

A.1 Comparison to other High-Threshold AVSS
In the following, we highlight how our AVSS construction differs from previous ones. For this, we briefly
elaborate on the other high-threshold AVSS schemes [AJM+23, AVZ21, DYX+22, KMS20] and also cover
the low-threshold AVSS [GS24], since their work also focuses on robust threshold Schnorr signatures.
Kokoris-Kogias et al. [KMS20]. The first high-threshold AVSS was given by Kokoris-Kogias et
al. [KMS20] and has cubic communication complexity. In their AVSS, the dealer Pd samples a bivariate
polynomial S(X, Y) :=

∑tc,tr

k,l sk,lX
kY l ∈ Zp[X, Y] of degree tr in X and tc in Y to encode the secret

S(0, 0) = s0,0 = s. Then, the dealer reliably broadcasts Feldman commitments comS := {comk,l :=
gsk,l | k ∈ JtcK, l ∈ JtrK} on the bivariate polynomial. Following this, Pd sends each party Pi the
evaluations at the points {1, . . . , n} along the row polynomial Ri(X) := S(X, i) and along the column
polynomial Ci(Y) := S(i, Y). Whenever a party Pi receives a row and column consistent with the
Feldman commitment to S(X, Y), it sends every other party Pj the tuple (Ci(j), Ri(j)). Upon receiving
tc + 1 such tuples that are valid (i.e., consistent with the Feldman commitment to S(X, Y)), the party can
interpolate its row and column polynomials. To guarantee unanimous termination, the protocol employs
the known technique of quorum certificates of size tr + 1 using digital signatures (and thus relies on PKI).
Importantly, the cubic communication complexity of the protocol comes from the following two facts:
(1) the commitment comS to the bivariate polynomial S(X, Y) has size O(λn2) and is broadcast to all
parties; (2) quorum certificates have size O(λn) and are (potentially) sent by all honest parties to all
other parties.
Bingo by Abraham et al. [AJM+23]. Another high-threshold AVSS is Bingo by Abraham et
al. [AJM+23] and has quadratic communication complexity. To achieve this, the authors make some

12Their notion of robustness is weaker than ours and does not guarantee signature generation for tc ≥ n/3 (without
assuming a trusted dealer).

29

modifications to the above scheme [KMS20] as follows. First, instead of committing to the bivariate
polynomial S(X, Y) via Feldman commitment, the dealer commits only to the row polynomials via KZG
polynomial commitment [KZG10]. Second, the dealer sends each party Pi the evaluations at the points
{1, . . . , n} along the row polynomial Ri(X) := S(X, i) only. Also, these evaluations are now augmented
with evaluation/opening proofs. Whenever a party Pi receives a row with correct opening proofs, it sends
every other party Pj the share Ri(j) (along with the proof sent by the dealer) on its row polynomial
Ri(X). Upon receiving tc + 1 shares with valid opening proofs, each party Pj can reconstruct its column
polynomial Cj(Y). To guarantee that all honest parties eventually reconstruct their column polynomials,
each party Pj distributes its reconstructed column to the other parties by sending each Pi the share
Cj(i) = Ri(j) along with an opening proof. This makes the protocol work, as each honest party can
eventually reconstruct its row polynomial (if not yet received from the dealer) and then help others to
obtain their column polynomials. Here, it is crucial that the opening proofs are homomorphic: Upon
reconstruction of its column polynomial, Pj cannot produce an opening proof for evaluations at points
different from what it received. For this, the authors use the KZG polynomial commitment scheme that
provides homomorphic proofs, but relies on pairings and trusted setup.
HAVEN by Alhaddad et al. [AVZ21]. Further, the high-threshold AVSS HAVEN by Alhaddad
et al. [AVZ21] also has quadratic communication complexity. In contrast to Bingo [AJM+23], it uses
a univariate polynomial to share along with tester polynomials for consistency checks. In more detail,
the protocol works as follows. First, the dealer samples a univariate polynomial F (X) ∈ Zp[X] of
degree tr along with n degree-tc polynomials Gi(X) ∈ Zp[X], i ∈ [n], such that F (i) = Gi(i) for all
i ∈ [n]. In particular, these polynomials need not be consistent with any bivariate polynomial. Next,
the dealer commits to F and Gi via a (generic) polynomial commitment scheme and computes the n
tester polynomials Ti(X) := (F − Gi)(X) ∈ Zp[X] along with evaluations proving that Ti(i) = 0 for
i ∈ [n]. Further, the dealer computes a vector commitment VC to all of the polynomial commitments.
Having done this, Pd sends all n + 1 polynomial commitments to F, G1, . . . , Gn, the vector commitment
VC, the evaluation vector Ri := (G1(i), . . . , Gn(i)) along with opening proofs, and all n evaluations
(Ti(1), . . . , Ti(n)) of the test polynomial Ti along with opening proofs to each party Pi. Upon receiving
such a message, party Pi performs straightforward checks to ensure that the message is internally
consistent. If all checks verify, the party disperses the data by sending to each other party Pj the vector
commitment VC, the polynomial commitment to Gj and the evaluation Gj(i) along with the opening proof.
To guarantee termination, the remainder of the protocol proceeds as in Bracha’s reliable broadcast [Bra84].
In contrast to Bingo, this protocol lacks an adaptive security proof. Since the polynomials Gi for i ∈ [n]
do not lie on a bivariate polynomial and are independent, it is unclear how to consistently reveal them
upon corruption of the dealer in a way that is consistent with the commitments. In a typical security
proof, the reduction would obtain tr + 1 points on a polynomial (e.g., via a discrete logarithm oracle) and
then obtain the other points by interpolation. This approach can be generalized to bivariate polynomials,
as we can think of the column polynomials as evaluation points of the bivariate polynomial. However,
since the polynomial G1, . . . , Gn in HAVEN do not have such a structure, this approach does not work
and it is unclear how to show adaptive security.
PVSS by Das et al. [DYX+22]. Further, the high-threshold AVSS by Das et al. [DYX+22] also has
quadratic communication complexity. On a high level, it is a publicly verifiable secret sharing (PVSS)
scheme combined with a reliable broadcast protocol. More concretely, the dealer samples a (univariate)
polynomial F (X) ∈ Zp[X] of degree tr and generates a PVSS transcript TF for it. The transcript TF

consists of commitments com := (gF (1), · · · , gF (n)) to evaluations of F along with verifiable encryptions
E := (E1, . . . , En) of discrete logarithms (i.e., encryptions Ei := Enceki

(F (i)) of parties intended shares
F (i) under a PKI setup {(eki, dki)} along with a proof of correct encryption against the commitment
comi = gF (i)). Then, the dealer reliably broadcasts the transcript TF and each party Pi can locally
compute its share F (i) of the polynomial F (X) by simply decrypting Ei using its secret decryption key
dki from the PKI setup. While the design idea of the protocol is conceptually simple, it lacks an adaptive
security proof. More generally, no adaptively secure PVSS for field elements is known. We note that a
recent work [BL23] shows adaptive security of several efficient PVSS schemes, but these can only share a
group element which is not suitable for Schnorr signatures (as the signing key is a field element).
Low-Threshold AVSS by Shoup and Smart [SS24]. Further, the work [GS24] uses the low-threshold
AVSS from Shoup and Smart [SS24]. Their AVSS can share l ∈ O(n) secrets with quadratic communication
complexity for a correct dealer while having cubic communication complexity for a dealer that provably

30

misbehaves (we will explain this soon). Essentially, the dealer samples l independent polynomials
F1(X), . . . , Fl(X) ∈ Zp[X] of degree tc to encode the secrets si := Fi(0) for i ∈ [l] and an additional
blinding polynomial G(X) ∈ Zp[X] of degree tc. Then, the dealer reliably broadcasts the polynomial
F (X) :=

∑
i∈[l] λiFi(X) + cG(X) where the scalars λ1, . . . , λl, c are output by a randomness beacon on

appropriate input. Additionally, the dealer computes a vector commitment to H(1, Fi(1)), . . . H(n, Fi(n))
for all i ∈ [l] and H(1, G(1)), . . . H(n, G(n)), and then reliably broadcasts these commitments. Here,
H(·) is a collision-resistant hash function. Next, the dealer sends each party Pi its shares (i, Fj(i)) for
all j ∈ [l] and (i, G(i)) along with opening proofs for these tuples. In the next phase, honest parties
make sure that they will eventually all have shares and in that case they terminate. This optimistic
path has quadratic communication cost. However, in case of conflicts, the dealer reliably broadcasts the
respective polynomial shares in plain form. This pessimistic path has cubic communication cost. As such,
their AVSS scheme is a complaint-based AVSS and crucially relies on the reconstruction threshold of
polynomials being tc < n/3. Their security analysis assumes a static adversary. Importantly, we also
note that the protocol for threshold Schnorr signatures in [GS24] employs online error correction [CP17]
which inherently requires tr < n/3. This is due to the fact that the AVSS does not output group-based
commitments to the shared polynomials.
Our High-Threshold AVSS. Our high-threshold AVSS is closest to Bingo [AJM+23] and HAVEN [AVZ21].
On a high level, we augment HAVEN with a bivariate polynomial structure and give a more modular
and cleaner design. The bivariate structure allows us to give an adaptive security proof as in [AJM+23].
Also, we can remove the need of tester polynomials and the vector commitment VC used in HAVEN.
Further, we note that augmenting HAVEN with a bivariate structure while making everything consistent
is not trivial. In particular, the adaptive security proof is highly challenging as evident in previous
works [AJM+23, BL22, CKM23a]. Finally, by letting the dealer commit to column polynomials and
distribute row polynomials, we avoid the need of homomorphic proofs, pairings, and the KZG-setup as
required in Bingo. We also refer to Table 2 for a comparison of representative AVSS schemes.
HAVEN++ by Alhaddad et al. [AVY24]. Finally, we note that concurrent with our work, another
work on AVSS has been uploaded to ePrint [AVY24]. Their AVSS is very similar to ours and has the
same metrics as our AVSS (cf. Table 2). However, one crucial difference is that the authors do not
consider adaptive security and especially not in the context of adaptive security for asynchronous DKG
protocols or threshold Schnorr signatures. Another difference is that their work optimizes the latency
(i.e., round complexity) by opening black-box building blocks, while we take a modular approach which
allows for replacing these building blocks generically. Finally, in their work parties output their shares as
field elements, while our work also focuses on publicly outputting the corresponding group elements (for
subsequent use in threshold signing).

B Additional Preliminaries and Definitions
In this section, we provide additional preliminaries and definitions.

Definition B.1 (NP Relation). Let R be a relation that contains pairs (x, w) of statement and witnesses
such that (i) there exists a polynomial p such that |w| ≤ p(|x|) for all (x, w) ∈ R, and (ii) the relation
can be decided deterministically in polynomial time. In this case, we refer to R as an NP relation. We
allow R to be parameterized implicitly by the security parameter and assume that |x| ≤ poly(λ) for all
(x, w) ∈ R.

We define non-interactive proof systems for such NP relation.

Definition B.2 (Non-Interactive Proof System). Let R be an NP relation and H be a random oracle. A
non-interactive proof system for R with respect to H is defined to be a pair PS = (PProve, PVer) of PPT
algorithms with oracle access to H and the following syntax:

• PProveH(x, w)→ π takes as input a statement x and a witness w, and outputs a proof π.

• PVerH(x, π) → b is deterministic, takes as input a statement x and a proof π, and outputs a bit
b ∈ {0, 1}.

31

Further, we require that the following completeness property holds: For any (x, w) ∈ R, we have

Pr
[
PVerH(x, π) = 1 | π ← PProveH(x, w)

]
= 1.

In addition to completeness, we typically require proof systems to be sound (if no stronger notion is
required). Namely, it should not be possible to come up with an accepting proof for a false statement.

Definition B.3 (Soundness). Let R be an NP relation, H be a random oracle, and PS = (PProve, PVer)
be a non-interactive proof system for R with respect to H. We say that PS is sound if for every PPT
algorithm A, the following advantage is negligible in λ:

Pr
[
b = 1 ∧ ∀w : (x, w) /∈ R

∣∣∣∣ (x, π)← AH(1λ),
b := PVerH(x, π)

]
.

The non-interactive proof systems that we need should be zero-knowledge, meaning that one can
simulate (by programming the random oracle) proofs without using the witness.

Definition B.4 (Zero-Knowledge). Let R be an NP relation, H be a random oracle, and PS =
(PProve, PVer) be a non-interactive proof system forR with respect to H. We say that PS is zero-knowledge,
if there is a potentially stateful PPT algorithm PSim such that for every (potentially unbounded) algorithm
A issuing a polynomial number of queries to H, the following advantage is negligible in λ:∣∣∣Pr

[
AH,O0(1λ) = 1

]
− Pr

[
AHPSim,O1(1λ) = 1

]∣∣∣ ,

where HPSim denotes a random oracle simulated by PSim, and Ob for b ∈ {0, 1} takes as input pairs
(x, w) ∈ R and outputs π ← PProveH(xj , wj) if b = 0 and π ← PSim(xj) if b = 1.

Next, we define what constitutes a proof of knowledge.

Definition B.5 (Proof of Knowledge). Let R be an NP relation, H be a random oracle, and PS =
(PProve, PVer) be a non-interactive proof system for R with respect to H. We say that PS is a proof
of knowledge, if there is a PPT algorithm PExt such that for every PPT algorithm A, the following
advantage is negligible in λ:

Pr

b = 1 ∧ (x, w) /∈ R

∣∣∣∣∣∣
(x, π)← AH(1λ),
b := PVerH(x, π),
w ← PExt(x, π,Q)

 ,

where Q denotes the list of all random oracle queries and the resulting outputs.

Our syntax assumes proof systems based on random oracles and that we can extract just by inspecting
the random oracle queries. An instantiation of such an argument system would be the online-extractable
system by Fischlin [Fis05]. However, we emphasize that this is just for readability and ease of presentation,
and rewinding-based proofs may be sufficient. Especially, we do not rely on any witness indistinguishability
which is known to cause problems in combination with rewinding [KLX22].

Definition B.6 (Oracle-aided Simulatability for AVSS). Let Π = (Share, Rec) be a complete (tc, tr, n)-
threshold AVSS scheme (cf. Definition 2.3). We say that Π is an oracle-aided secure (tc, tr, n)-threshold
AVSS scheme if it additionally has oracle-aided simulatability: There exists k ∈ poly(λ) with k ≥ tr + 1
such that for any PPT algorithm A that corrupts at most tc parties, there exists an algebraic PPT
simulator Sim that on input ζ := (gz1 , . . . , gzk) ∈ Gk makes k′ ∈ {k, k − δa} queries to the oracle DLG,g

(recall that δa := tr + 1− tc) and such that:

• Syntax. Sim simulates the role of the honest parties in an execution of Π. At the end of the
simulation, Sim outputs the tuple (S, S1, . . . , Sn).

• Dealer Corruption. If the dealer remains honest at the end of the simulation, Sim makes k′ = k− δa

queries to DLG,g. Otherwise, it makes k′ = k queries.

32

• Queries upon Corruption. Denote by C ⊂ [n] the dynamic set of corrupted parties. Once the first
honest party outputs (S1, . . . , Sn), the following holds. Upon corruption query i ∈ [n] \ C, Sim
invokes DLG,g on input Si = gf(i) among (possibly) other input elements. Conversely, it does not
query Si before that corruption.

• Query Independence. Let C be as before and H := [n] \ C. Assume that |C| = tc after a simulation
of Π. For all i ∈ [k′], denote by hi ∈ G the i-th query to DLG,g and let (âi, ai,1, . . . , ai,k) be the
corresponding algebraic vector, i.e., hi = gâi · ζai,1

1 · . . . · ζai,k

k . Further, denote by (b̂i, bi,1, . . . , bi,k)
the algebraic vector of Si for all i ∈ H. Then for all I ⊂ H with |I| = k− k′13, the following matrix
is invertible over Zp

L(I, C) :=



a1,1 a1,2 · · · a1,k

...
...

...
ak′,1 ak′,2 · · · ak′,k

bi1,1 bi1,2 · · · bi1,k

...
...

...
bi|I|,1 bi|I|,2 · · · bi|I|,k


∈ Zk×k

p ,

where the indices i(·) range over the set I. Whenever Sim completes a simulation of an execution of
Π, we call L(I, C) the simulatability matrix of Sim (for this particular simulation and the set I).
Further, we call k a simulatability factor of Π.

• Bad Event. There is an event Bad, such that for any PPT algorithm A, the probability of Bad in an
execution of Π with adversary A is negligible.

• Indistinguishability. Denote by viewA,Π the view of A in an execution of Π. Denote by viewA,ζ,Sim
the view of A when interacting with Sim on input ζ. Then, the distributions (ζ, viewA,Π) and
(ζ, viewA,ξ,Sim) where ζ←$ Gk and both distributions are conditioned on ¬Bad are statistically close.

13If the dealer gets corrupted, this set is empty and the matrix is defined accordingly. Otherwise, the set is of size δa.

33

C Security Proofs
In this section, we provide the security proofs for the theorems given in the main body of the paper.

C.1 Proof for Threshold Schnorr Signatures
Proof of Theorem 4.1. Let A be an algebraic adversary against the unforgeability of the threshold Schnorr
signature scheme SchnorrTS[IDKG, NDKG] under chosen message attacks (cf. Definition 3.4). We split our
proof of the theorem into two parts. In the first part, we provide a simulation of the UF-CMA experiment
to A via a sequence of games. In the second part, we bound A’s winning probability in the final game by
providing an efficient reduction against the OMDL assumption.

Before we start with the proof, we make some simplifications that are without loss of generality. First,
we assume that A makes exactly tc corruption queries. Second, we assume that A does not make signature
share queries for corrupt parties. These assumptions are without loss of generality, since one could build
a wrapper adversary that internally runs A, but makes enough corruption queries before producing the
output forgery and provides signature shares of corrupt parties for A. Clearly, none of these assumptions
changes the advantage of A, i.e., the wrapper adversary has the same advantage.

Additionally, the reader may recall that the security game assumes the adversary never issues the
same signature share query twice.
Game G0: This is the real game. We recall the game to fix notation. The game samples system
parameters par = (G, p, g) where G is a cyclic group of prime order p with a generator g. It also initializes
a corruption set C := ∅ and sets H := [n] \ C throughout the game. Further, it initializes an empty state
Sti for each party Pi, i ∈ [n]14. Then, the game runs A on input par with access to a corruption oracle.
Whenever A decides to corrupt a party Pi ∈ H, the game returns the internal state Sti of party Pi to A
and sets C := C ∪ {i}. Henceforth, A gets full control over Pi. Following the setup phase, the game runs
IDKG on behalf of the honest parties. Upon termination of IDKG, let pk and (pk1, . . . , pkn) denote the
public key and public key shares determined by IDKG. Moreover, let ski for all i ∈ H denote the secret key
shares of the honest parties. The game updates the state Sti for all honest parties accordingly. Following
the termination of IDKG, the game starts the online phase of the game in which A gets additional access
to the random oracles H, Hnon, to the Nonce-ADKG oracle, and to the signing oracle. As standard,
the game provides the random oracles H, Hnon by lazy sampling using maps H[·], Hnon[·]. The game
initializes an empty Nonce-ADKG set R := ∅ and runs a new parallel execution of NDKG on behalf of
the honest parties for each Nonce-ADKG query A makes. Upon termination of the (k + 1)-th execution
NDKGk+1 of NDKG, let (Rkℓ+1, R′

kℓ+1), . . . , (Rkℓ+ℓ, R′
kℓ+ℓ) denote the respective public nonce pairs, and

let Rkℓ+j,1, . . . , Rkℓ+j,n (respective R′
kℓ+j,1, . . . , R′

kℓ+j,n) for each j ∈ [ℓ] denote the public nonce shares
of Rkℓ+j (respective R′

kℓ+j). Moreover, let (rkℓ+1,i, r′
kℓ+1,i), . . . , (rkℓ+ℓ,i, r′

kℓ+ℓ,i) for i ∈ H denote the
respective secret nonce share pairs of the honest party Pi. Recall that in our notation each NDKGk+1
is a parallel execution of two instances of the Nonce-ADKG protocol NDKG such that the nonces are
output in pairs (Rj , R′

j). These nonce pairs are used for signing later to derive the effective nonce R̂j

upon signing request for message m. The game updates the state Sti for all honest parties accordingly.
Additionally, the game updates R := R∪ {(kℓ + j, (Rkℓ+j , R′

kℓ+j))}j∈[ℓ].
The game initializes an empty signing query set Q := ∅. Whenever A submits a new query (i, j, m) /∈ Q,

the game first checks if i ∈ H and j ∈ π1(R) where π1 : N × G2 → N, (x, y) 7→ x is the projection
onto the first coordinate; this checks if the j-th nonce pair is already defined. If one of the checks
fails, the game returns ⊥ to A. Otherwise, it further checks if there is an m′ ̸= m and an i′ ∈ [n] such
that (i′, j, m′) ∈ Q; this checks if A already queried the signing oracle on a different message m′ for
this particular nonce pair. If this nonce pair was indeed already used for a signature on a different
message m′, then the game returns ⊥ to A. Otherwise, it updates Q := Q ∪ {(i, j, m)} and returns
σj,i ← SSign(ski, pk, rj,i, r′

j,i, Rj , R′
j , m) to A. At the end of the game, A outputs a message m∗ and

a signature σ∗. It wins the game if the following conditions are satisfied: |C| ≤ tc, |C ∪ S| ≤ tr, and
Ver(pk, m∗, σ∗) = 1 where S := {i ∈ [n] | ∃j s.t. (i, j, m∗) ∈ Q} denotes the set of parties for which A
already made a signing query for m∗. Note that we do not require the nonce R∗ of the forgery σ∗ = (R∗, s∗)
to be among the set of already generated nonces R, in which case S would be empty.

14By abuse of notation, we will just write Pi ∈ [n] instead of “Pi, i ∈ [n]”. Similarly, we do the same for any index set of
parties such as C or H instead of [n].

34

Game G1: This game is identical to the game before, except that the game aborts when there is a
collision H[pk, R̂1, m1] = H[pk, R̂2, m2] among distinct random oracle queries (pk, R̂1, m1) ̸= (pk, R̂2, m2)
from A (for convenience, we omit pk from random oracle queries in our analysis hereafter). By a standard
argument, we can bound the probability of this happening by q2

h/p where qh denotes an upper bound on
the number of random oracle H queries A makes throughout the game. As a reminder, p denotes the
order of the underlying system parameters group G. As a consequence, we obtain the bound

Pr [G0 ⇒ 1] ≤ Pr [G1 ⇒ 1] + q2
h

p
≤ Pr [G1 ⇒ 1] + negl(λ).

Game G2: This game is identical to the game before, except that we introduce a coin flip θ←$ {0, 1}
at the beginning of the game. In the following, we denote by qr the number of queries A makes to the
Nonce-ADKG oracle. For i ∈ [qr], we denote by NDKGi the i-th execution of NDKG. Let σ∗ = (m∗, R∗, s∗)
be A’s forgery it outputs at the end of the game. The game aborts if (i) θ = 0 and there exists an ϑ ∈ [qr]
and mϑ ∈ {0, 1}∗ for which R∗ = RϑR′bϑ

ϑ where bϑ = Hnon(pk, (Rϑ, R′
ϑ), mϑ) and (Rϑ, R′

ϑ) has been
output by NDKGϑ, or (ii) θ = 1 and there does not exist such a tuple (ϑ, mϑ)15. Essentially, this means
that the game correctly guesses whether the forgery is produced from a nonce pair along with a message
that was previously output by some NDKGi or not. Since the view of A is independent of the choice of θ,
we obtain the bound

Pr [G2 ⇒ 1] ≥ 1
2 · Pr [G1 ⇒ 1].

Game G3: In this game, we introduce another abort condition. By definition of oracle-aided security,
there are events Bad0 for IDKG and Badi, Bad′

i for NDKGi, i ∈ [qr], that each happen with negligible
probability. We let the game abort if any of these events occur. By a union bound, we obtain

Pr [G2 ⇒ 1] ≤ Pr [G3 ⇒ 1] + Pr[Bad0] +
qr∑

i=1

(
Pr[Badi] + Pr[Bad′

i]
)

≤ Pr [G3 ⇒ 1] + negl(λ).

More formally, we would build a reduction to bound the probability of event Badi (respectively Bad′
i). This

reduction runs in an execution of a single ADKG instance and simulates the game G2 for the adversary
by forwarding between (one of the two instances of) NDKGi and the game in which it runs. Using the
assumption that the DKGs are algebraic, this reduction can easily translate algebraic representations
into the required form.
Game G4: In this game, we change the way the signing oracle computes the signature shares. Specifically,
on input a tuple (i, j, m) /∈ Q that is valid (recall that this means i ∈ H, j ∈ π1(R), and there is no
m′ ≠ m and i′ ∈ [n] such that (i′, j, m′) ∈ Q), the game does the following. It computes g′ := R̂j,i · pkcj

i

where cj := H(pk, R̂j , m) and R̂j := RjR
′bj

j is the effective nonce with bj := Hnon(pk, Rj , R′
j , m) (the

effective nonce shares {R̂j,i}i∈[n] are correspondingly defined) and returns the discrete logarithm value of
g′ to base g. Note that the game is no longer efficient now. By definition of the signature share generation
algorithm SSign, this does not change A’s view and we obtain

Pr [G3 ⇒ 1] = Pr [G4 ⇒ 1].

Game G5: In this game, we change the simulation of IDKG. By definition of oracle-aided security,
there exists an algebraic simulator Sim0 for IDKG with a simulatability factor k0 ≥ tr + 1 that has
all the properties specified in Definition 3.1. At the onset, the game samples an element ξ(0) :=
(ξ1, . . . , ξk0)←$ Gk0 uniformly at random. It then simulates IDKG by running Sim0 on input ξ(0). By
definition of game G3 (event Bad0 not happening), the view of A is statistically close to its view in the
previous game. As a result, we obtain

Pr [G4 ⇒ 1] ≤ Pr [G5 ⇒ 1] + negl(λ).
15Hereafter, we will just write R← NDKGi to mean that R is output by NDKGi.

35

For all i ∈ [qr], we define games G4+2i, G5+2i in sequence as follows.
Game G4+2i: In this game, we change the simulation of the first instance of NDKGi. Recall that we
write NDKGi to denote a parallel execution of NDKG instances. By definition of oracle-aided security,
there exists an algebraic simulator Simi for NDKGi with a simulatability factor k1 ≥ ℓ(tr + 1) that has all
the properties specified in Definition 3.1. At the onset, the game samples an element ξ(i)←$ Gk1 uniformly
at random16. It then simulates the first instance of NDKGi by running Simi on input ξ(i). By definition
of game G3 (event Badi not happening), the view of A is statistically close to its view in the previous
game. As a result, we obtain

∀i ∈ [qr] : Pr [G3+2i ⇒ 1] ≤ Pr [G4+2i ⇒ 1] + negl(λ).

Game G5+2i: In this game, we change the simulation of the second instance of NDKGi. Again by
definition of oracle-aided security, there exists an algebraic simulator Sim′

i for NDKGi with a simulatability
factor k1 ≥ ℓ(tr + 1). At the onset, the game samples an element ξ′

(i)←$ Gk1 uniformly at random. It
then simulates the second instance of NDKGi by running Sim′

i on input ξ′
(i). By definition of game G3

(event Bad′
i not happening), the view of A is statistically close to its view in the previous game. As a

result, we obtain

∀i ∈ [qr] : Pr [G4+2i ⇒ 1] ≤ Pr [G5+2i ⇒ 1] + negl(λ).

Before we proceed, we summarize what we have achieved so far. We have ruled out collisions involving
random oracle queries H. We have changed the signing oracle on input (i, j, m) to return the discrete
logarithm value of R̂j,i · pkcj

i to base g. Further, we have introduced algebraic simulators Sim0 for the
initial ADKG protocol IDKG and Simi, Sim′

i for the nonce generation protocols NDKGi for all i ∈ [qr].
As a result, corruption queries are now completely handled by these algebraic simulators. At this stage,
we are not able to build an efficient reduction (simulating the preceding game) breaking the OMDL
assumption. The reason for this is that we have not yet exploited the algebraic dependence between
signature shares and secret key and nonce shares. A naive reduction would therefore exceed the number
of allowed discrete logarithm oracle DLG,g calls to break the OMDL assumption. To make this point
more precise, we count the number of DLG,g calls a hypothetical reduction Rhyp would have to make in
order to simulate the preceding game G5+2qr

. For the sake of simplicity, we assume that the adversary A
corrupts tc parties C ⊂ [n] right before outputting its forgery. The hypothetical reduction would make the
following number of calls to the oracle: (i) up to nℓqr calls to simulate signing for all n parties using the
ℓqr generated nonce pairs, (ii) k0− δa calls to simulate Sim0 where δa = tr + 1− tc, and (iii) 2qr(k1− ℓδa)
calls to simulate Simi, Sim′

i for all i ∈ [qr]. On the other hand, the degree of the OMDL challenge should
be k0 + 2qrk1 to obtain the elements {ξ(0), ξ(i), ξ′

(i)}i∈[qr]. As a result, the total number of DLG,g calls
Rhyp would have to make is given by

nℓqr + (k0 − δa) + 2qr(k1 − ℓδa) = (k0 + 2qrk1) + (nℓqr − 2qrℓδa − δa).

The second term (nℓqr − 2qrℓδa − δa) can be bound as

ℓqr(n− 2δa)− δa ≥ ℓqr(4tc − n)− (n− 2tc) = ℓqr(tc − 1)− (tc + 1),

which is non-negative for tc > 1 and large enough qr, and thus Rhyp could not solve the given OMDL
challenge without exceeding the number of allowed discrete logarithm oracle calls. To resolve this issue,
we make two further changes to the game that target the signing and corruption oracles. First, when
the game already provided tr + 1 signature shares for a particular tuple message-nonce pair (·, j, m), it
computes the remaining shares via Lagrange interpolation (as the signature shares lie on a polynomial
of degree tr by definition). Second, the game exploits the linear equations σj,i = cj · ski + r̂j,i and
r̂j,i = rj,i + bjr′

j,i in order to obtain the secret nonce shares rj,i, r′
j,i upon corruption query for party Pi

(instead of naively forwarding the corruption query to both simulators Simj and Sim′
j independently).

These changes allow us to correctly limit the number of discrete logarithm calls for our reduction later.
This requires some bookkeeping for which we introduce a binary array Si := [0, . . . , 0] ∈ {0, 1}ℓqr for each
party i ∈ [n]. Its purpose is to keep track for which nonces (Rj , R′

j) with j ∈ [ℓqr], the game already
16Hereafter, we will write ξ(·)[j] to denote the j-th component of the tuple ξ(·).

36

computed a signature share for party Pi on that particular nonce. We proceed with the next game
description.
Game G6+2qr

: Recall the evolving sets R and Q of public nonces output by NDKG1, NDKG2, . . . and
signing queries, respectively. Note that |R| ≤ ℓqr, since each Nonce-ADKG generates ℓ public nonce pairs
at once. At the onset, the game initializes a binary array Si := [0, . . . , 0] ∈ {0, 1}ℓqr for each i ∈ [n]. Its
purpose is to keep track for which nonce pairs (Rj , R′

j), j ∈ [ℓqr], the game already computed a signature
share for Pi using that particular nonce (and some message bound to it). In this game, we further change
the way the signing oracle works. This is done as follows. Whenever A makes a new signing query
(i, j, m) /∈ Q, the game first checks if the query is valid. That is, if i ∈ H, j ∈ π1(R), and there is no
m′ ≠ m such that (·, j, m′) ∈ Q. If the validity check verifies, the game checks if |C|+

∑
v∈H Sv[j] ≤ tr.

In that case, the game retrieves cj := H(pk, R̂j , m), computes the discrete logarithm value of the element
pkcj

i · R̂j,i, and returns the output denoted by σj,i to A. Following this, the game updates the binary array
for that particular party as Si[j] := 1 and also Q := Q∪ {(i, j, m)}. Note that the game does not make
redundant computations of discrete logarithm values, since it by definition only replies to new signing
queries that are not already stored in the set Q. In the other case, i.e., if |C| +

∑
v∈H Sv[j] ≥ tr + 1,

the game gathers the signature shares {(v, σj,v) | v ∈ H, Sv[j] = 1} ∪ {(v, σj,v) | v ∈ C} that it already
provided to A and computes the share σj,i by standard Lagrange interpolation. By the correctness of
Lagrange interpolation, this does not change A’s view and we obtain

∀i ∈ [qr] : Pr [G5+2qr
⇒ 1] = Pr [G6+2qr

⇒ 1].

Game G7+2qr
: In this final game, we change the way the corruption oracle works. This is done as follows.

• Whenever A decides to corrupt a party Pi with i ∈ [n], the game first checks if the query is valid,
i.e., if i ∈ H. If not, it returns ⊥ to A.

• In case the query is valid, the game proceeds as follows. Let r ∈ JqrK denote the number of completed
and ongoing Nonce-ADKG executions up to this point. As before, the game provides discrete
logarithm oracle access for Sim0 by simulating this oracle for itself (directly computing the discrete
logarithm value of the queried group element to base g ∈ G). Since Sim0 has to handle internal
state data from the initial IDKG phase, this also reveals the secret key share ski of the corrupted
party Pi to the game.

• For the remaining simulators {Simj , Sim′
j}j∈[r] (we define this set to be empty if r = 0), the game

provides discrete logarithm oracle access differently. First, the game scans through the array Si[·]
and computes for all j ∈ [ℓr] such that Si[j] = 1 the value r̂j,i := σj,i −H(pk, R̂j , m) · ski (note that
cj := H(pk, R̂j , m) is already defined if Si[j] = 1). By definition of oracle-aided simulatability, we
know that Simj accesses its discrete logarithm oracle on input element Rj,i upon corruption query
for Pi. For all those j ∈ [ℓr] where Si[j] = 1, the game provides this oracle access on Rj,i for Simj

by retrieving both values r̂j,i, r′
j,i, where it knows r′

j,i from the interaction with Sim′
j , and returns

the computed value rj,i = r̂j,i − bjr′
j,i to Simj . Finally, the game updates the i-th binary array of

the corrupted party Pi as Si := [1, . . . , 1].
Since the interface provided to the simulators is the same, this change is independent from A’s view and
we therefore obtain

Pr [G7+2qr
⇒ 1] = Pr [G6+2qr

⇒ 1].

It remains to bound the probability that the final game G7+2qr outputs 1. For that, we build an
efficient reduction R against the OMDL assumption of degree k := k0 + 2qrk1. The way we have defined
the sequence of games, R’s simulation of G7+2qr

on input an k-OMDL instance ξ ∈ Gk is straightforward.
We will describe it in the following and then convert the adversary A’s forgery into a solution of the
challenge ξ.
Building a reduction R. The reduction R gets as input ξ ∈ Gk and simulates game G7+2qr

for A as
follows. First, it parses ξ as (ξ(0), ξ(1), ξ′

(1), . . . , ξ(qr), ξ′
(qr)) where ξ(0) ∈ Gk0 and ξ(i), ξ′

(i) ∈ Gk1 for all
i ∈ [qr]. With that, it runs Sim0 on ξ(0), Simi on ξ(i) and Sim′

i on ξ′
(i) for all i ∈ [qr]. Whenever the game

simulates a discrete logarithm oracle for itself, the reduction R uses its oracle DLG,g for this purpose. In
the following, we describe the simulation R provides in more detail.

37

• Initial ADKG Protocol. The reduction R invokes Sim0 on input ξ(0) in order to simulate the initial
distributed key generation protocol. Whenever Sim0 queries the discrete logarithm oracle, the
reduction simply forwards this query to its own oracle DLG,g. Corruption queries for this phase are
completely handled by the simulator Sim0.

• Nonce-ADKG Protocols. For all i ∈ [qr], the reduction R invokes Simi on input ξ(i) and likewise
Sim′

i on input ξ′
(i) to simulate the i-th (parallel) execution of NDKGi. In general, the reduction does

not know the entire internal states of the honest parties as it delegated parts of the simulation so
far to the oracle-aided simulators.

• Signing Query. Upon a new signing query (i, j, m) /∈ Q, the reduction checks if the query is valid.
In that case, it checks if the sum |C|+

∑
v∈H Sv[j] exceeds the value tr or not. In the first case, R

calls its oracle DLG,g on input pkcj

i · R̂j,i, returns the output σj,i to A, and updates the array as
Si[j] := 1 and Q := Q∪{(i, j, m)}. In the second case, R gathers already computed signature shares
{(v, σj,v)} (where v ∈ C or v ∈ H such that Sv[j] = 1) and computes σj,i via Lagrange interpolation.

• Corruption Query. Upon a new corruption query i ∈ H, the reduction does the following. Again,
r ∈ JqrK denotes the number of completed NDKG executions. Corruption queries are handled
by the simulators {Sim0, Simi, Sim′

i}i∈[r], whereby providing access to a discrete logarithm oracle
by its own oracle DLG,g except for queries in {Rj,i | j ∈ [ℓr], Si[j] = 1}. For these elements, R
computes r̂j,i := σj,i − cj · ski and returns rj,i := r̂j,i − bjr′

j,i. Note that it knows all the values on
the right-hand side of the equations. Finally, it updates C := C ∪ {i} and the i-th binary array as
Si := [1, . . . , 1].

It is clear that the reduction perfectly simulates the game for the adversary, and that its running time is
dominated by the running time of the adversary.
Counting calls to DLG,g. Before we proceed with the forgery (m∗, R∗, s∗) output by the adversary,
we count the number of queries the reduction makes to its discrete logarithm oracle. We need to show
that it does not exceed the number of allowed queries for the given challenge ξ. To this end, we assume
without loss of generality that (i) A makes exactly tc corruption queries C ⊂ [n], (ii) for all non-forgery
indices j ∈ π1(R) \ {ϑ}, A makes at least tr + 1−|C| signature share queries (i, j, mj) for that nonce index
where i ∈ H = [n] \ C17, and (iii) if ϑ ≠ ⊥, A makes exactly tr signature share queries for R∗. Again,
this can trivially be enforced by building a wrapper adversary that internally runs A, but makes enough
corruption and signing queries before outputting its forgery.

Recall that the given OMDL challenge ξ is of degree k = k0 + 2qrk1 and thus at most k − 1 calls to
the oracle are allowed. First, we observe that the simulator Sim0 for the initial ADKG protocol IDKG
gets k0 elements as input, while the simulators Simi, Sim′

i for all i ∈ [qr] for the Nonce-ADKG protocols
NDKGi each gets k1 elements as input. The way R is built, these input elements {ξ(0), ξ(i), ξ′

(i)}i∈[qr] are
chosen disjointly from the OMDL challenge ξ of degree k = k0 + 2qrk1. Second, we observe that the
reduction delegates corruption queries to the simulators Simi, Sim′

i for all i ∈ JqrK that each handles the
internal state data from NDKGi (by abuse of notation, we interpret NDKG0 as IDKG). By definition of
oracle-aided simulatability, each simulator Simi, Sim′

i for i ∈ [qr] makes k1 − ℓδa calls to the discrete
logarithm oracle where δa = tr + 1 − tc. On the other hand, the initial simulator Sim0 makes k0 − δa

queries. Third, we observe that the reduction makes at most tr + 1 calls to its discrete logarithm oracle
for each nonce index j ∈ π1(R) \ {ϑ} to answer signing queries for (Rj , R′

j , m). Having said that, we
obtain the following:

• For each j ∈ [ℓqr], denote by Sj ∈ Jtr + 1K the number of calls the reduction makes to DLG,g in order
to answer signing queries for (Rj , R′

j). In case a party Pi ∈ H gets corrupted after the signature
share σj,i for that party and nonce index j was computed, by design the reduction saves one call to
its discrete logarithm oracle. The reason for this is that by definition the oracle-aided simulator
Simj queries the discrete logarithm value on input Rj,i upon corruption query for party Pi. In case
a party Pi ∈ H gets corrupted before the signature share σj,i was computed, the reduction does not
call its discrete logarithm oracle anymore to answer signing queries for that particular party Pi and
nonce index j. Further, we denote by Cj [+1] the subset of parties that got corrupted after their
signature share for (Rj , R′

j) was computed and by Cj [−1] the remaining corrupted parties (i.e., the
17Effectively, this should reveal at least tr + 1 signature shares for each such index j.

38

parties for which the reduction never explicitly computed a signature share for (Rj , R′
j)). Then,

we find that Sj + |Cj [−1]| = tr + 1 by assumption (ii) and |Cj [−1] ∪ Cj [+1]| = tc by assumption
(i). Since the reduction by design saves one call to its discrete logarithm oracle for all parties in
Cj [+1], the difference Sj − |Cj [+1]| exactly represents the number of calls the reduction would make
to DLG,g in order to compute the signature shares for all parties and nonce (Rj , R′

j) under the
assumption that all tc corruptions happened before any signing query for (Rj , R′

j). In combination,
the above expression Sj − |Cj [+1]| is equal to

Sj − (tc − Cj [−1]) = Sj + Cj [−1]− tc = tr + 1− tc = δa.

Interpreted in another way, this value gives the number of additional calls the reduction makes for
each nonce (Rj , R′

j) besides the ones for corruptions. This calculation is true for all indices j ∈ [ℓqr]
in case θ = 0 (i.e., the forgery nonce R∗ is not among previously queried signature shares for some
nonce pair (Rϑ, R′

ϑ)). In case θ = 1, however, this calculation is true for all j ̸= ϑ. For j = ϑ, this
number is equal to δa − 1, since A makes at most tr signing queries for the nonce R∗ (which is
derived from (Rϑ, R′

ϑ)) and a message m). By summing up over all indices j ∈ [ℓqr], we obtain for
the total number of discrete logarithm oracle calls of this type S := ℓqrδa − θ.

• As a result, the total number of calls the reduction makes to its discrete logarithm oracle, including
the queries from the oracle-aided simulators, is given by the following sum:

(k0 − δa) + 2qr · (k1 − ℓδa) + (ℓqrδa − θ) = k − δa − qrℓδa − θ.

The first summand is the number of calls the initial simulator Sim0 makes, the second summand
is the number of calls the Nonce-ADKG simulators Simi, Sim′

i for i ∈ [qr] make, and the third
summand is the number of calls the game additionally makes for the signing queries (refer to the
preceding discussion).

• Finally, when A outputs its forgery, we let the reduction additionally call its discrete logarithm
oracle DLG,g on input pki for all i ∈ H such that Si[ϑ] = 1 (in the other case where θ = 0, the
reduction randomly chooses a set of indices i ∈ H of size tr − |C|). We denote this set of indices
by I∗. Since we assume that A makes tr signature share queries for R∗, this number is given by
tr − |C| = tr − tc = δa − 1. Further, we let the reduction additionally call its discrete logarithm
oracle DLG,g on input Rj,i for all j ∈ [ℓqr] and i ∈ I∗ (note that these are δa − 1 additional calls for
each j). In case θ = 1, we let the reduction make an additional discrete logarithm oracle call on
input Rϑ. Adding this up with the computed number in the previous bullet point, we thus obtain

(k − δa − qrℓδa − θ) + (δa − 1) + qrℓ · (δa − 1) + θ = k − 1− qrℓ

as the total number of calls the reduction has made so far to the discrete logarithm oracle provided
by the OMDL challenge of degree k.

Now that we have counted queries, let us continue with a look at the bigger picture of the proof. Informally,
what we have done so far is the following. During the game, we have obtained the secret key shares
{ski}i∈C and secret nonce shares {rj,i, r′

j,i | j ∈ [ℓqr]}i∈C of the tc corrupt parties C ⊂ [n]. We have also
obtained tr + 1 signature shares {σj,i | j ∈ [ℓqr], j ̸= ϑ}i∈[n] (by Lagrange interpolation we obtain all n
shares) where ϑ ∈ [ℓqr] ∪ {⊥} denotes the index used for the forgery nonce (recall that ϑ = ⊥ in case
θ = 0, and ϑ ∈ [ℓqr] otherwise). Finally, we have obtained the additional secret key shares {ski}i∈I∗

(thus in total |C ∪ I∗| = tr secret key shares), the secret nonce shares {rj,i | j ∈ [ℓqr], j ̸= ϑ}i∈I∗ (thus
in total |C ∪ I∗| = tr secret nonce shares {rj,i} for each j ∈ [ℓqr] \ {ϑ}), and for the case θ = 1 also the
secret nonce rϑ. In any case, the reduction can obtain from this data the additional secret nonce shares
{r′

j,i | j ∈ [ℓqr], j ≠ ϑ}i∈I∗ . This can be seen as follows. For i ∈ I∗ and j ∈ [ℓqr] \ {ϑ}, it can from the
knowledge of ski and σj,i derive the value for r̂j,i and together with rj,i thus obtain r′

j,i. At this point,
we note that the reduction still has qrℓ discrete logarithm oracle calls at its disposal. Later, the reduction
will use these calls to compute all but one value from among the set {sk, rj}j∈[ℓqr] (via a case distinction
on the algebraic equation obtained from the adversary’s random oracle query H(pk, R∗, m∗)) and derive
the remaining value from the adversary’s forgery signature. As described before, it can then also derive
the value r′

j . Invertibility of the simulatability matrices of the oracle-aided simulators then allows the

39

reduction to obtain a solution to the OMDL challenge ξ. Having conveyed the intuition, we now make
the final part of our proof formal.
Converting forgery to solution of OMDL. In the final part of our proof, we show how the reduction
can efficiently convert the forgery produced by A into a solution of the underlying OMDL challenge ξ. We
give a brief intuition for this part. First, since A is an algebraic adversary, it outputs the random oracle
query H(pk, R∗, m∗) together with an algebraic representation of elements in Zp. Second, using the forgery
(m∗, σ∗), the remaining signature shares {σj,1, . . . , σj,n}ℓqr

j=1, and the secret key shares ski for i ∈ C ∪ I∗,
we can solve for the secret key sk. Third, this enables us to compute all secret key shares sk1, . . . , skn and
thus by going back to the signature shares also all effective secret nonce shares {r̂j,1, . . . , r̂j,n}ℓqr

j=1 from
which we can then derive the secret nonce shares {rj,1, r′

j,1, . . . , rj,n, r′
j,n}

ℓqr

j=1. Finally, by inverting the
simulatability matrices of the oracle-aided simulators Sim0, Sim1, Sim′

1, . . . , Simqr
, Sim′

qr
, we can use the

aforementioned values to obtain a solution to the OMDL challenge ξ. This ends our informal discussion
on the proof strategy for converting the forgery into a solution to OMDL. We proceed with the actual
analysis now.

Hereafter, let C ⊂ [n] and H = [n] \ C denote the set of corrupt and honest parties, respectively, right
before A outputs its forgery (m∗, R∗, s∗). Let I∗ ⊂ H denote the set of parties for which the reduction
made a call to its discrete logarithm oracle DLG,g on input pki after obtaining the forgery from A. This
set was already defined in the preceding paragraph. In the following, let L ∈ JℓqrK denote the index of
the nonce after whose generation A queried the random oracle on the triple (pk, R∗, m∗). Since A is an
algebraic adversary, when it makes the query H(pk, R∗, m∗), it also outputs an algebraic representation

a :=
(
â, a′, a1, . . . , an, {a1,1, a′

1,1, . . . , a1,n, a′
1,n}, . . . , {aL,1, a′

L,1, . . . , aL,n, a′
L,n}

)
of elements in Zp such that

R∗ = gâ · pka′
· pka1

1 · . . . · pkan
n ·

L∏
j=1

R
aj,1
j,1 R

′a′
j,1

j,1 · . . . ·Raj,n

j,n R
′a′

j,n

j,n .

Here, the representation is split from left to right into powers of the generator g, the public key pk,
the public key shares pk1, . . . , pkn, and the public nonce shares {Rj,i, R′

j,i}i∈[n] for j ∈ [L] returned
by the Nonce-ADKG oracle. We omit the combined nonces {Rj , R′

j}j∈[L] here, since these can be
written as known linear combinations (Lagrange interpolation in the exponent) of the respective shares
{Rj,1, . . . , Rj,n} (analogously for R′

j). Verification of the forgery (m∗, R∗, s∗) implies R∗ = gs∗ · pk−c∗

where c∗ = H(pk, R∗, m∗). Further, recall that Rj,i = grj,i and R′
j,i = gr′

j,i for all j ∈ [L] and i ∈ [n].
Recall by assumption (ii) that the reduction knows the entire set of signature shares {σj,i | j ∈ [L], i ∈ [n]}
and that they satisfy R̂j,i = gσj,i · pk−cj

i . Here, we have cj := H(pk, R̂j , mj) and R̂j := RjR
′bj

j where
bj := Hnon(pk, Rj , R′

j , mj) and mj is the message bound to the nonce pair (Rj , R′
j). Having said that,

the above equation is over Zp equivalent to

s∗ − c∗ · sk = â + a′ · sk +
n∑

i=1
ai · ski +

L∑
j=1

n∑
i=1

aj,irj,i + a′
j,ib

−1
j (σj,i − cj · ski − rj,i). (∇)

By construction, when A outputs its forgery, the reduction calls its discrete logarithm oracle on input
pki for all i ∈ I∗ and thus knows ski for all i ∈ C ∪ I∗. Without loss of generality we assume that
C ∪ I∗ = {1, . . . , tr}. Since the secret key shares sk1, . . . , skn interpolate a polynomial f ∈ Zp[X] of degree
tr + 1, there are coefficients α, α′ ∈ Zp (depending on the scalars a1, . . . , an and sk1, . . . , sktr) such that∑

i∈[n] ai · ski = α · sk + α′. These coefficients α, α′ can efficiently be obtained from Lagrange interpolation
operations using knowledge of sk1, . . . , sktr

. Similarly, for every j ∈ [L] there are coefficients αj , α′
j ∈ Zp

(depending on the scalars aj,1, . . . , aj,n and sk1, . . . , sktr
) such that

∑
i∈[n] a′

j,i · ski = αj · sk + α′
j . As the

known index set for the secret key shares {ski}i and the secret nonce shares {rj,i}i is the same tr-sized
set C ∪ I∗, the interpolation coefficient to obtain sk0 = sk (from the remaining shares {ski}i∈H∗ where
H∗ := H \ I∗ is the complement of C ∪ I∗) and rj = rj,0 (from the remaining shares {rj,i}i∈H∗), we
similarly have the identity

∑
i∈[n] a′

j,i · rj,i = αj · rj + βj for some known scalars βj ∈ Zp. In the above
equation (∇), we put together the known values for {s∗, â, α′, σj,i, α′

j , βj , rj,i, ski} (where the set ranges

40

over j ∈ [L] and i ∈ C ∪ I∗) and thus obtain

s̃− c∗ · sk = ã · sk−
∑

j∈[L]

cjαjb−1
j · sk +

∑
j∈[L]

(ãj − αjb−1
j) · rj , (♢)

where s̃, ã, and ãj are appropriately defined known values. We make the following observation. As
A queries the random oracle on R∗ before obtaining the value c∗, it fixes the algebraic coefficients a
before c∗ is chosen (uniformly at random) by the reduction. The same is true for all (cj , bj), j ∈ [L],
values that were already fixed at the time A made the random oracle query H(pk, R∗, m∗); we denote
the corresponding index set by Lpre ⊆ L := [L]. However, this does not apply to the pairs (cj , bj) that
were only defined after c∗ was chosen; we denote the corresponding index set by Lpost ⊆ L (note that
[L] = Lpre ∪ Lpost). Having said that, we define the following event ROS by: there exists an j ∈ Lpost
such that αj ̸= 0. The reduction proceeds as follows with the goal to compute all the secret shares
ski, rj,i, r′

j,i for all j ∈ [ℓqr] and all i ∈ [n]. We make a case distinction with two cases.
Case I: ROS occurs. In this case, there is an ĵ ∈ Lpost such that αĵ ̸= 0. Now we let the reduction call
its discrete logarithm oracle DLG,g on input Rj for all j ∈ [ℓqr] \ {ĵ} and additionally on input pk. As
a result, the reduction obtains the secret key sk and the secret nonces {rj}j ̸=ĵ . Therefore, the above
equation (♢) reduces to (ãĵ − αĵb−1

ĵ
) · rĵ = (. . .) where the right-hand side is some now known value.

By assumption of ĵ ∈ Lpost, we know that the value for bĵ was chosen by the reduction uniformly at
random and after the values for ãĵ , αĵ were fixed by the adversary (note that these values are derived
from the algebraic coefficients a the adversary fixed at the time of its random oracle query H(pk, R∗, m∗),
the secret key shares ski for i ∈ C ∪ I∗, the secret nonce shares rj,i for j ∈ [L] and i ∈ C ∪ I∗, and fixed
Lagrange interpolation coefficients). As a result, the expression ãĵ − αĵb−1

ĵ
is only zero with negligible

probability 1/p. In particular, we find that rĵ = (. . .) · (ãĵ − αĵb−1
ĵ

)−1 is well-defined with probability
1− 1/p. By knowledge of secret key shares {ski}i∈[n], signature shares {σj,i}, and additionally all secret
nonce shares {rj}j∈[ℓqr], the reduction can efficiently compute all secret nonce shares {r′

j}j∈[ℓqr]. From
this data it can then also compute all the secret nonce shares {rj,i, r′

j,i}j,i. Next, we consider the case
where the event ROS does not occur.
Case II: ROS does not occur. In this case, for all j ∈ Lpost we have αj = 0. Then, the above equation (♢)
reduces to

s̃ +

 ∑
j∈Lpre

cjαjb−1
j − ã− c∗

 · sk =
∑

j∈[L]

(
ãj − αjb−1

j

)
· rj . (♡)

Similarly, we observe that the sum
∑

j∈Lpre
cjαjb−1

j − ã on the left-hand side of the above equation (♡)
only contains values that were fixed by the adversary before the reduction chose c∗ uniformly at random.
As a consequence, the expression

∑
j∈Lpre

cjαjb−1
j − ã− c∗ is only zero with negligible probability 1/p.

In particular, we find from equation (♡) that

sk =

 ∑
j∈[L]

(
ãj − αjb−1

j

)
· rj − s̃

 ·
 ∑

j∈Lpre

cjαjb−1
j − ã− c∗

−1

is well-defined with probability 1− 1/p. Now, we let the reduction call its discrete logarithm oracle DLG,g

on input Rj for all j ∈ [ℓqr] so that it derives sk from the preceding identity. As before, by knowledge of
secret key shares {ski}i∈[n], signature shares {σj,i}, and secret nonce shares {rj}j∈[ℓqr], it can efficiently
compute all secret nonce shares {r′

j}j∈[ℓqr]. Finally, from this data it can then compute all the secret
nonce shares {rj,i, r′

j,i}j,i.
Final Step. What we have achieved so far is that the reduction has obtained from the forgery all the
secret shares ski, rj,i, r′

j,i for all j ∈ [ℓqr] and all i ∈ [n]. From this, we want to derive the solution to
the given OMDL challenge ξ using properties of the oracle-aided simulators {Sim0, Simj , Sim′

j}j∈[qr]. In
the following, denote by g1, . . . , gk0−δa

∈ G the queries the initial simulator Sim0 makes to the discrete
logarithm oracle DLG,g and let (âi, ai,1, . . . , ai,k0) for i ∈ [k0 − δa] be gi’s corresponding algebraic vector.

41

Further, for i ∈ [qr] denote by gi,1, . . . , gi,k1−ℓδa
∈ G the queries the simulator Simi makes to DLG,g and

let (âij
, aij ,1, . . . , aij ,k1) for ij := (i, j) ∈ [qr]× [k1 − ℓδa] be gij

its corresponding algebraic vector, i.e.,

gij
= gâij · ξ

aij ,1

i,1 · . . . · ξ
aij ,k1
i,k1

.

For i ∈ [qr] denote by g′
i,1, . . . , g′

i,k1−ℓδa
∈ G the queries the simulator Sim′

i makes to DLG,g and let
(â′

ij
, a′

ij ,1, . . . , a′
ij ,k1

) for ij := (i, j) ∈ [qr]× [k1 − ℓδa] be g′
ij

its corresponding algebraic vector, i.e.,

g′
ij

= g
â′

ij · ξ
′a′

ij ,1

i,1 · . . . · ξ
′a′

ij ,k1
i,k1

.

Now let I0 ⊂ H be any set of size δa, and for i ∈ [qr] let Ii := Iℓ
i ⊂ Hℓ be any set for which |Ii| = δa.

Further, let (âi, ai,1, . . . , ai,k0) for i ∈ [k0− δa + 1, k0] be the algebraic vectors of the elements in {pki}i∈I0

(in some fixed order), and for i ∈ [qr] let (âij
, aij ,1, . . . , aij ,k1) with ij := (i, j) ∈ [qr]× [k1 − ℓδa + 1, k1]

be the algebraic vectors of the elements in {Ri,j}j∈Ii (in some fixed order). Further, for i ∈ [qr] let
(â′

ij
, a′

ij ,1, . . . , a′
ij ,k1

) with ij := (i, j) ∈ [qr]× [k1 − ℓδa + 1, k1] be the algebraic vectors of the elements in
{R′

i,j}j∈Ii
(in some fixed order). Essentially, this means that we consider the δa public key shares {pki}i∈I0

and their algebraic representation, and for each Nonce-ADKG index i ∈ [qr] we consider ℓδa public nonce
shares {Rℓi+1,j , . . . , Rℓi+ℓ,j}j (respectively the public nonce shares {R′

ℓi+1,j , . . . , R′
ℓi+ℓ,j}j) and their

algebraic representation where j ranges over the set Ii (for each of the ℓ public nonces {Rℓi+k}k∈[ℓ] that
the i-th Nonce-ADKG generates in the first instance, we consider the δa public nonce shares with indices
ranging over the set Ii). Collectively, this gives k0 elements with known discrete logarithm values {vi}i∈[k0]
associated to Sim0, k1 elements with known discrete logarithm values {vi,j}j∈[k1] associated to Simi for all
i ∈ [qr], and k1 elements with known discrete logarithm values {v′

i,j}j∈[k1] associated to Sim′
i for all i ∈ [qr].

We denote the set of these elements (with known value) by V := {vl, vi,j , v′
i,j | l ∈ [k0], i ∈ [qr], j ∈ [k1]}

which is of size k := k0 + 2qrk1. Note that the secret key shares {ski}i for i ∈ C ∪ I0 and the secret
nonce shares {ri,j , r′

i,j}i,j for i ∈ [qr] and j ∈ (C ∪ Ii)ℓ (recall that Ii = Iℓ
i ⊂ Hℓ and |Ii| = δa, and so

the set C ∪ Ii is of size tc + δa = tr + 1) are among the set of known discrete logarithm values and thus
contained in V. In more detail, we have vi = ski for i ∈ C ∪ I0, and vi,j = ri,j , v′

i,j = r′
i,j for i ∈ [qr] and

j ∈ (C ∪ Ii)ℓ. We denote by Li := L(Ii, C) for i ∈ JqrK the simulatability matrix of Simi with respect
to the set Ii. Similarly, we denote by L′

i := L(Ii, C) for i ∈ [qr] the simulatability matrix of Sim′
i with

respect to the set Ii. Recall for all i ∈ [k0 − δa] the identities

gi = gâi · ξai,1
1 · . . . · ξai,k0

k0
⇐⇒ gvi · g−âi = ξ

ai,1
1 · . . . · ξai,k0

k0

from the initial ADKG execution, where the gi = gvi ∈ G are the queries the simulator Sim0 makes to
the discrete logarithm oracle. Further, for all i ∈ [k0 − δa + 1, k0] we have the identities

pki = gâi · ξai,1
1 · . . . · ξai,k0

k0
⇐⇒ gvi · g−âi = ξ

ai,1
1 · . . . · ξai,k0

k0
.

From these equations and by definition of the matrix L0, the identity holds:

L0 ·


z1
z2
...

zk0

 =


v1 − â1
v2 − â2

...
vk0 − âk0

 ,

where zi denotes the discrete logarithm value of the i-th element ξi of the OMDL challenge ξ ∈ Gk.
Analogous considerations for the Nonce-ADKG executions yield the identities

Li ·


zi,1
zi,2

...
zi,k1

 =


vi,1 − âi,1
vi,2 − âi,2

...
vi,k1 − âi,k1

 , L′
i ·


z′

i,1
z′

i,2
...

z′
i,k1

 =


v′

i,1 − â′
i,1

v′
i,2 − â′

i,2
...

v′
i,k1
− â′

i,k1


for all i ∈ [qr]. As before, we denote by zi,j the discrete logarithm value of the OMDL element ξi,j and
by z′

i,j the discrete logarithm value of ξ′
i,j for all i ∈ [qr] and j ∈ [k1]. By definition of oracle-aided

42

simulatability, the matrices L0, Li and L′
i for i ∈ [qr] are invertible and explicitly known (defined by

the algebraic vectors provided by Sim0, Simi and Sim′
i). Moreover, the vectors on the right-hand side

contain explicitly known values (from knowledge of the set V and the algebraic vectors provided by the
simulators). As a result, by inversion of the simulatability matrices L0, Li and L′

i for i ∈ [qr], we can
efficiently compute (z1, . . . , zk0+2qrk1) and thus solve the OMDL challenge ξ of degree k = k0 + 2qrk1
(with at most k − 1 calls to the discrete logarithm oracle). This concludes the proof.

Remark C.1 We note that the above proof also applies to an algebraic version of the OMDL assumption
as defined in [NRS21]. For this, we observe that our security reduction queries the discrete logarithm
oracle DLG,g only in the following two cases: (i) when an algebraic simulator Simi makes a discrete
logarithm oracle query, and (ii) when it needs to compute a signature share σj,i, it calls the oracle on
input Σj,i := pkcj

i · R̂j,i. By algebraicity of all simulators {Sim0, Simi, Sim′
i}i∈[qr], these elements are

linear combinations of the OMDL elements on which the simulators are run. Since R̂j,i itself is also
an algebraic linear combination of the nonces Rj,i and R′

j,i, the reduction can provide (in an efficient
manner) an algebraic representation for the elements Σj,i when calling the oracle DLG,g. As a result, the
reduction itself calls DLG,g only on algebraic linear combinations of the OMDL challenge it is given.

43

C.2 Proof for Packed ADKG
Proof of Theorem 5.1. We show the properties of an oracle-aided secure packed ADKG protocol (cf. Defi-
nition 3.1). We begin with the termination property. To this end, we also recall the protocol PADKG and
go through each of its phases. Hereafter, we use the term party Pi multicasts a message m to mean that
Pi sends the message m to all parties in the system. Further, we use the term (a, b)-dimensional matrix
to mean a matrix of dimension a× b specified over the field Zp. For the following discussion, we split the
protocol PADKG into five phases in contrast to the four phases described in Section 5.1. Specifically, we
split the second MVBA execution phase into a gather proof part and the actual MVBA execution part.
This will make the argumentation easier to follow.
Termination. In the first phase of the protocol, each party Pi samples a secret element si←$ Zp

uniformly at random and shares it among all parties via an execution of the high-threshold AVSS
scheme that we denote by AVSSi for i ∈ [n]. Let fi ∈ Zp[X] denote the corresponding polynomial of
degree tr that interpolates the secret fi(0) = si. More specifically, parties execute the Share protocol
of AVSS = (Share, Rec) at the beginning of this phase. By the correctness property of AVSS we know
that if an instance AVSSj of the AVSS scheme terminates at an honest party Pi, then it will eventually
terminate at all honest parties. Since each honest party executes its AVSS instance correctly, we know
that there are at least n− tc AVSS instances that will terminate at each honest party. Having said that,
each party waits for n− tc AVSS instances to terminate at it locally. By the observation made previously,
this phase will eventually terminate for all honest parties, as there are at least n− tc honest parties and
these execute their AVSS instance correctly. For this, each party Pi locally maintains a set dealersi that is
initially empty but throughout keeps track of the dealers whose AVSS instance AVSSj terminates at Pi.

Once this set has size n − tc, the second phase for the parties begins. This is the typical gather
proof phase in asynchronous consensus protocols. However, we note here that the set dealersi is still
maintained and being filled with completed AVSS instances even in subsequent phases so that it could
even potentially reach a size of n (for instance in case each party behaves honestly and the whole network
progresses fast with minimal delays). The goal of the second phase is to extend a message that is a priori
not externally valid in such a way that it becomes externally valid. Here, the idea is to collect at least
tc + 1 signatures from other parties on its set of dealers to ensure there is at least one honest party that
approves this set. As a consequence, parties can be sure that this set is a valid set of AVSS instances that
will eventually terminate at each honest party. More concretely, each party Pi sends its set of dealers as a
proposal to all parties. For this, it defines the proposal set propi := dealersi and multicasts this set. Upon
receiving such a set propj from another party Pj , the party Pi waits until all AVSS instances declared
in propj terminate at it locally, i.e., until dealersi ⊇ propj (note that the local set dealersi keeps growing
in general). Only after this condition is satisfied, party Pi knows that each of the instances AVSSj′ for
j′ ∈ propj will also eventually terminate at each other honest party and approves this set by providing a
digital signature Sig(siki, propj) on it with its signing key siki and sending this signature back to party Pj .
To this end, each party Pi also maintains a local set of signatures sigsi that is initially empty but keeps
track of exactly these signatures Sig(sikj , propi) from other parties Pj that approve its proposal propi.
Since we know that each AVSS instance AVSSj with j ∈ propi that terminated at Pi, will eventually
also terminate at any other honest party and there are at least n − tc ≥ tc + 1 honest parties, Pi will
eventually collect at least tc + 1 signatures on its proposal and thus terminate the second phase. Once a
party collects tc + 1 signatures on its proposal (i.e., once |sigsi| = tc + 1), it progresses to the next phase.

In the third phase of the protocol, parties execute an instance of the MVBA protocol MVBA whose
goal is to agree on such a set prop of n− tc dealers along with the approval sigs that satisfies the external
validity predicate (i.e., the set prop of dealers is of size n− tc and the approval sigs consists of at least
tc + 1 valid signatures on prop). From the previous phase we know that each honest party Pi will invoke
MVBA with an externally valid input (propi, sigsi). As a consequence, by the termination property of
the MVBA protocol, each honest party will terminate MVBA with the same externally valid output
(prop, sigs) and progress to the next phase.

In the fourth phase of the protocol, parties execute the (exponentiated) reconstruction phase of the
AVSS instance AVSSj for all j ∈ prop for the agreed upon instances from the MVBA protocol. By the
termination property of the MVBA protocol and the AVSS scheme, each honest party Pi will invoke
the reconstruction protocol Rec of AVSSj and terminate with the public output (Sj , Sj,1, . . . , Sj,n) and
private output sj,i. In particular, each honest party will progress to the next phase. In the following,
define ℓ := n − 2tc (which is equal to tc + 1 in the optimal-resilience case). In the fifth phase of

44

the protocol, each party Pi locally applies the (ℓ, n − tc)-dimensional superinvertible matrix SI to its
(n − tc)-dimensional vector of private outputs to obtain an ℓ-dimensional vector (x1,i, . . . , xℓ,i) of new
private outputs. Additionally, Pi locally applies the superinvertible matrix SI in the exponent to the
(n− tc, n)-dimensional matrix consisting of rows (Sj,1, . . . , Sj,n) for j ∈ prop to obtain an n-dimensional
vector (Rj,1, . . . , Rj,n) of new public outputs for each j ∈ [ℓ]. Since all these operations are done locally
and efficiently computable, each honest party will terminate this phase. Additionally, by the correctness
property of the AVSS scheme and the consistency property of the MVBA protocol, the honest parties
have agreement on the public output data which is the resulting n-dimensional vectors (Rj,1, . . . , Rj,n)
for all j ∈ [ℓ]. Finally, each party terminates the whole protocol with public output (Rj , Rj,1, . . . , Rj,n)
for j ∈ [ℓ] and private output (x1,i, . . . , xℓ,i) where Rj is also obtained from the Rj,(·) by Lagrange
interpolation in the exponent. Here, the elements (Rj , Rj,1, . . . , Rj,n) are the public nonce shares in the
j-th slot of the packed ADKG protocol with corresponding secret nonce share xj,i for party Pi. This
concludes the discussion on termination of the protocol.
Correctness and Consistency. We proceed with the consistency and correctness properties of the
protocol. We do not consider these properties separately, since the correctness property will imme-
diately follow from our discussion on consistency. First of all, we show that the public output data
(Rj , Rj,1, . . . , Rj,n) for each slot j ∈ [ℓ] corresponds to a polynomial rj ∈ Zp[X] of degree at most tr. By
the correctness property of the AVSS scheme, we know that each instance AVSSi for the agreed upon set
of instances i ∈ prop output by MVBA corresponds to a polynomial fi ∈ Zp[X] of degree tr; hereafter, we
take w.l.o.g. prop = {1, . . . , n− tc}. In particular, this property is preserved after the application of the
superinvertible matrix SI. The reason for this is that SI considered as an (n− tc, ℓ)-dimensional matrix
over the polynomial ring Zp[X] (via the natural embedding Zp ↪→ Zp[X]) is just a linear transformation
that does

(f1, . . . , fn−tc
) 7→ (r1, . . . , rℓ), ∀i ∈ [ℓ] : ri := mi,1f1 + . . . + mi,n−tc

fn−tc

where SI = (mi,j)i,j . As a result, the n-dimensional vector (Rj,1, . . . , Rj,n) for each j ∈ [ℓ] corresponds
to a polynomial rj ∈ Zp[X] of degree at most tr. Additionally, there is agreement on these elements
from the correctness properties of MVBA and AVSS. Additionally, by correctness of the AVSS scheme we
know that Rj,i = grj(i) for all (j, i) ∈ [ℓ]× [n]. By Lagrange interpolation, a party reconstructs the full
vector of elements (Rj , Rj,1, . . . , Rj,n). In particular, each honest party outputs the same public nonce
Rj and the same vector of public nonce shares (Rj,1, . . . , Rj,n) for each j ∈ [ℓ], and these elements come
from polynomials rj ∈ Zp[X] of degree at most tr. This concludes the discussion on correctness and
consistency of the protocol.
Oracle-aided Simulatability. We proceed with the oracle-aided simulatability property of the protocol.
Here, we have to be careful with how we choose the parameter k̃ for the packed ADKG protocol and how
we use the discrete logarithm oracle DLG,g in order to not exceed the allowed number of queries to it.
However, the basic idea of the simulator Sim for the packed ADKG protocol is quite simple. In essence,
Sim is build upon the individual oracle-aided simulators Simi for each AVSS instance AVSSi with Pi as
dealer and corruptions are handled by each Simi individually. By carefully choosing when to query the
discrete logarithm oracle and other subtle details, we can design Sim in such a way that it satisfies all the
properties the oracle-aided simulatability property requires, including the maximal allowed number of
queries to the oracle DLG,g.

In the following, we provide a full and detailed description. Let AVSS have oracle-aided simulatability
as described in Definition B.6. In particular, there exists a natural number k ∈ poly(λ) with k ≥ tr +1 and
an algebraic simulator that on input k group elements with oracle access simulates the role of the honest
parties in an execution of the AVSS instance and with additional specifications. For each i ∈ [n], let Simi

be the algebraic simulator that simulates the instance AVSSi with Pi as dealer. We build an oracle-aided
simulator Sim for the packed ADKG protocol denoted by PADKG as follows. First, define the simulatability
factor of PADKG to be k̃ := kn ∈ poly(λ). In particular, the condition k̃ ≥ ℓ(tr + 1) is satisfied. Next,
let ξ := (ξ1, . . . , ξn) ∈ Gkn be a tuple of kn group elements where ξi = (gzi,1 , . . . , gzi,k) ∈ Gk for each
i ∈ [n]. We choose to write the input element ξ in this way for reasons that will be clear in a second. The
element ξ ∈ Gkn is the one that Sim gets as input. Additionally, Sim gets access to a discrete logarithm
oracle DLG,g in the group G (to base g)18. To have a clear understanding of how the simulator works,

18In a security proof, these elements along with the discrete logarithm oracle are instantiated with the OMDL assumption
of degree kn.

45

we divide the protocol PADKG into two conceptual phases. The first phase begins with the invocation
of the protocol and ends with the reconstruction of the elements (Sj,1, . . . , Sj,n) for all AVSS instances
j ∈ prop. The second phase begins with the application of the superinvertible matrix SI to public and
private output data and ends after these local operations with public output data (Rj,1, . . . , Rj,n) for all
j ∈ [ℓ] and private output data.

We start with the description of the simulator in the first phase of the protocol. Let A be the PPT
adversary that corrupts at most tc parties. Further, let C ⊂ [n] and H := [n] \ C denote the dynamically
evolving sets of corrupted and honest parties, respectively. For each i ∈ [n], the simulator Sim invokes
Simi on input ξi ∈ Gk to handle the instance AVSSi with party Pi as dealer. Whenever A decides to
corrupt a party Pj with j ∈ H, Sim forwards that corruption query to Simi for all i ∈ [n]. To simulate
the discrete logarithm oracle DLG,g for Simi on an element g′ ∈ G (with algebraic representation), the
simulator Sim simply queries its own discrete logarithm oracle DLG,g on this element g′ and returns
the result to Simi. The simulator Sim works that way throughout the first phase. For the execution of
the MVBA protocol MVBA, the simulator Sim behaves on behalf of the honest parties correctly and
according to the protocol instructions. Upon termination of the MVBA protocol the set prop of n− tc

AVSS instances to be used is fixed. Following this, parties start the exponentiated reconstruction phase of
these AVSS instances and terminate the first conceptual phase of the protocol with the public elements
(Sj,1, . . . , Sj,n) for all j ∈ prop along with some private output data. In the second conceptual phase
of the protocol, the simulator Sim applies the superinvertible matrix SI to the n-dimensional public
vectors (Sj,1, . . . , Sj,n) for all j ∈ prop to obtain the vectors (Rj,1, . . . , Rj,n) for all j ∈ [ℓ] and terminate
the second conceptual phase. Since all involved algorithms are algebraic and the application of the
superinvertible matrix is a linear operation, Sim can provide its output element with a corresponding
algebraic representation. Having done this, Sim can terminate the protocol simulation.

Throughout the simulation up until the point in which the first corrupt party outputs the elements
(Rj,1, . . . , Rj,n) for all j ∈ [ℓ] (by design of the protocol, we can always assume that all slots j ∈ [ℓ] of the
packed ADKG protocol output simultaneously), the simulator Sim delegates corruption queries entirely
to the individual simulators Simi for all i ∈ [n] without interfering. However, once the aforementioned
event (i.e., the first corrupt party outputs (Rj,1, . . . , Rj,n) for all j ∈ [ℓ]) happens and a party Pi with
i ∈ H gets corrupted, the simulator proceeds as follows: it queries its discrete logarithm oracle DLG,g

on input Rj,i for all j ∈ [ℓ] and then forwards this corruption query to all simulators Simi′ with i′ ∈ [n].
Discrete logarithm oracle queries from simulator Simi′ on any input element g′ ̸= Si′,i are answered as
usual (querying its own oracle DLG,g). However, queries on the elements Si′,i for all i′ ∈ [n] are answered
as follows19. By definition of Rj,i, we know that

rj,i = mj,1s1,i + . . . + mj,n−tcsn−tc,i ∀j ∈ [ℓ], (1)
where SI = (mj,i)j,i. Recall that the indices 1, . . . , n− tc for s(·),i are the labels for parties in dealers (we
assumed w.l.o.g. that dealers = {1, . . . , n− tc}). Let C′ := C ∩{dealers} denote the dynamic set of corrupt
parties that are at the same time among the agreed upon set of dealers. At this stage, Sim already knows
the internal data for all parties in C′ and in particular si′,i for all i′ ∈ C′. Now, Sim chooses some set
S ⊂ ({dealers} \ C′) of size tc − |C′| uniformly at random and queries its discrete logarithm oracle DLG,g

on input elements Si′,i for all i′ ∈ ([n] \ dealers) ⊔ (S ∪ C′) := Sd. In particular, this is the usual behavior
as would be done by the simulators Simi′ for these particular i′ ∈ Sd. Note that the set Sd is of size
tc + tc = 2tc and thus its complement Sc

d := [n] \ Sd is of size ℓ = n− 2tc. Having done this, Sim knows
the discrete logarithm value si′,i of Si′,i for the n− ℓ indices i′ ∈ Sd. In particular, it knows the values
for i′ ∈ S ∪ C′ which itself is of size tc. By identities (1) and the properties of the superinvertible matrix
SI, we know that knowledge of the elements {rj,i}j∈[ℓ] and any tc elements among the {s1,i, . . . , sn−tc,i}
is sufficient to recover the remaining n− 2tc = ℓ elements s(·),i in this set (since the equations written in
matrix form exactly give an (ℓ× ℓ)-dimensional submatrix of SI which is invertible by definition). By
taking the set S ∪ C′ of size tc for which Sim knows the corresponding s(·),i values, it can compute all
values s1,i, . . . , sn−tc,i and answer the corresponding discrete logarithm oracle queries from Simi′ on input
Si′,i for i′ ∈ Sc

d (note that this set is the complement of S ∪ C′ in dealers). In total, Sim made ℓ calls to
its discrete logarithm oracle for the Rj,i with j ∈ [ℓ], but afterwards saved (n− tc)− tc = ℓ calls for those
Si′,i with i′ ∈ Sc

d. Finally, before Sim terminates, it invokes the simulators Simj for j /∈ dealers only in
such a way as as if Pj was being corrupted.

19By definition of oracle-aided simulatability we know that the simulators Simi′ ask the discrete logarithm oracle on these
input elements upon corruption of party Pi.

46

One should think of the simulators Simi as being responsible for the private data related to the
instance AVSSi only, and not to Pi’s entire internal state from the data of all the different instances
AVSSj of other parties it obtains. In particular, any party Pi’s internal state should be thought of as
a disjoint union of data from each of the instances AVSSj with j ∈ [n] that is handled by Simj each.
Having said all that, we begin with the analysis of the simulator Sim in order to show that it is indeed an
oracle-aided simulator for PADKG.
Properties. For this, we step-by-step go through each property required for an oracle-aided simulator
according to Definition 3.1.

• Simulatability Factor. In the beginning of the discussion, we defined the simulatability factor k̃ := kn
for Sim. Since k is the simulatability factor of the underlying AVSS, we know that k ≥ tr + 1. In
particular, we have kn ≥ n(tr + 1) ≥ ℓ(tr + 1) since ℓ = n− 2tc ≤ n and thus also k̃ ∈ poly(λ). This
shows that our simulatability factor is well-defined.

• Syntax. Since the simulators Simi for all i ∈ [n] have this property, and MVBA is secure, by design
the simulator Sim outputs the correct public keys R1, . . . , Rℓ and public key shares (Rj,1, . . . , Rj,n)
for all j ∈ [ℓ].

• Queries upon Corruption. By design, the simulator Sim forwards the corruption queries directly to
the individual simulators Simi for all i ∈ [n]. Since these have the property that they query the
discrete logarithm oracle only upon corruption queries and Sim answers their discrete logarithm
oracle queries by (i) calling its own oracle DLG,g or (ii) by calling the oracle on Rj,i for all j ∈ [ℓ]
(once these elements are defined from the protocol execution), it directly follows that Sim has this
property. As already mentioned, by design we let Sim call the oracle DLG,g on input Rj,i for all
j ∈ [ℓ] (once they are defined) upon a corruption query.

• Bad Event. We define the bad event Bad for an execution of PADKG with the simulator Sim as
Bad := Bad1 ∨ . . . ∨ Badn where Badi is the existing bad event for the execution of instance AVSSi

with the simulator Simi for i ∈ [n]. The standard union bound theorem tells us that

Pr[Bad] ≤ Pr[Bad1] + . . . + Pr[Badn] ≤ n · negl(λ),

which itself is negligible.

• Indistinguishability. Conditioned on the previously defined event Bad does not happen, we know
that none of the events Badi for i ∈ [n] happens. In particular, each individual simulator Simi

generates a simulation for the adversary A that is statistically indistinguishable from a real execution
of AVSSi. By a hybrid argument, it follows that the simulation Sim provides to A is also statistically
indistinguishable from a real execution of PADKG, since it simulates the MVBA protocol honestly.

• Number of DLG,g Queries. We count the total number of call Sim makes to its discrete logarithm
oracle DLG,g. For this, we assume without loss of generality that the adversary A corrupts exactly
tc parties during an execution of PADKG. Again, let dealers be the agreed upon set of dealers after
termination of the MVBA protocol. By construction, Sim calls its discrete logarithm oracle in one
of two ways upon a corruption query on Pi. (i) To answer a discrete logarithm query from Simj for
j ∈ [n], and (ii) to compute rj,i for all j ∈ [ℓ] which is the discrete logarithm value of Rj,i. We have
designed Sim in such a way that it answers the discrete logarithm queries from Simj for j /∈ dealers
simply by calling its own oracle DLG,g on the queried element, even for h′ = Sj,i in that case. If the
corruption query happened before the public key shares (Rj,1, . . . , Rj,n) for all j ∈ [ℓ] are defined,
the previous sentence is also true for any j ∈ [n], and not only the once outside the set dealers.
However, if the corruption query happened after the public key shares (Rj,1, . . . , Rj,n) for all j ∈ [ℓ]
are defined, then by design Sim calls its oracle DLG,g on input the elements R1,i, . . . , Rℓ,i and picks
a set S ⊂ ({dealers} \ C′) of size tc − |C′|. Having done this, it also answers the discrete logarithm
queries from Simj for j ∈ (S ∪ C′) simply by calling its own oracle DLG,g on the queried element,
even for the elements h′ = Sj,i. For the remaining ℓ simulators with indices specified by the set
Sc

d, it answers their discrete logarithm queries for all h′ ̸= Sj,i as usual by calling its own oracle on
the queried input. The ℓ values sj,i for j ∈ Sc

d are computed by knowledge of other values and the
property of the superinvertible matrix SI as specified before. That way it saved ℓ further discrete

47

logarithm oracle calls and we can think of the DLG,g calls for the elements R1,i, . . . , Rℓ,i as being a
pulled back oracle call for Sj,i with j ∈ Sc

d. This observation tells us that we can without loss of
generality assume that all corruptions happened before the public key shares are defined from the
protocol execution. With this in mind, we can count the number of total discrete logarithm oracle
calls Sim makes by summing up the number of calls from the individual simulators Simi. Since
each simulator Simi is run on input k elements, we know that it makes exactly k′ = k calls to the
discrete logarithm oracle if party Pi gets corrupted and k′ = k − δa calls otherwise. Assuming that
exactly tc parties get corrupted and dealers contains these corrupt parties, we find that

2tc · k + (n− 2tc) · (k − δa) = 2tck + nk − nδa − 2tck + 2tcδa

= nk − nδa + 2tcδa

= nk − (n− 2tc)δa

= nk − ℓδa,

where the first summand comes from the queries for the tc corrupt parties and the queries for the tc

parties outside the set dealers, and the second summand comes from the queries for the remaining
(n− 2tc) parties. This shows that on input nk elements, our simulator Sim makes exactly nk − ℓδa

queries to the discrete logarithm oracle which is in line with the requirement.

• Query Independence. In this final bullet point we show that the discrete logarithm oracle calls the
simulator Sim makes are independent in the sense that the algebraic vectors from their representation
in ξ ∈ Gkn are independent. For this, we again assume without loss of generality that the adversary
A corrupts exactly tc parties during an execution of PADKG. Again, let dealers be the agreed upon
set of dealers after termination of the MVBA protocol. Further, we assume that C = {1, . . . , tc}
and dealers = {1, . . . , n− tc}. By construction, Sim calls its discrete logarithm oracle in one of two
ways upon a corruption query on Pi. (i) To answer a discrete logarithm query from Simj for j ∈ [n],
and (ii) to compute rj,i for all j ∈ [ℓ] which is the discrete logarithm value of Rj,i. If the adversary
A corrupted all tc parties before the public key shares (Rj,1, . . . , Rj,n) for all j ∈ [ℓ] are defined
from the protocol execution, then Sim does not make any separate calls to any Rj,i and it simply
answers all discrete logarithm oracle queries from the simulators Simi for all i ∈ [n] by calling its
own oracle DLG,g. Now we know that Simi for all i ∈ (C ∪ dealersc) (where we denote Xc := [n] \X
for a set X ⊂ [n] to be the complement of X in [n]) makes exactly k discrete logarithm queries and
that the corresponding (k × k)-dimensional simulatability matrix Li(∅, C) is invertible over Zp. For
the remaining n − 2tc = ℓ indices, we know that the simulators Simi each make k − δa discrete
logarithm queries. Now let I ⊂ H be some set of size δa. Hereafter, for convenience we assume that
tr = n − tc − 1 and I = {tc + 1, . . . , n − tc} ⊂ dealers. The cases tr < n − tc − 1 and I ⊈ dealers
work analogously. By definition of the simulatability matrix for Simi with i ∈ I, we know that
the (k × k)-dimensional matrix Li(I, C) is invertible. Recall that the matrix Li(I, C) consists of
the algebraic vectors of the discrete logarithm queries Simi makes (which are in total k − δa, since
i /∈ C) and the additional algebraic vectors corresponding to the elements Si,j for j ∈ I (which are
|I| = δa elements).
Subsequently, we write Li(0I, C) to denote the (k− δa, k)-dimensional matrix resulting from Li(I, C)
by deleting the rows corresponding to the elements Si,j for j ∈ I (i.e., the last δa rows). On the
other hand, these additional elements (or better, their corresponding algebraic vectors) Si,j for
(i, j) ∈ I × I (note that ℓ = n − 2tc = tr − tc + 1 = δa) are not considered in the simulatability
matrix for Sim, but instead the elements Rj,i with (j, i) ranging over j ∈ [ℓ] and i ∈ I. Since each
simulator Simi takes a disjoint part of the kn-wise vector ξ as input, we can arrange the matrices
Li(∅, C) for i ∈ Ic and Li(0I, C) in a block diagonal matrix L where each block has full rank and
has size (k × k) for i ∈ Ic and (k − δa, k) for i ∈ I. In order to make the matrix L quadratic,
we need to add additional |I| · δa = ℓδa rows of length kn to it. This is done by the algebraic
vectors for the elements Rj,i with (j, i) ranging over the set [ℓ]× I. By definition of Rj,i and its
counterpart R′

j,i, we recall that rj,i = mj,1s1,i + . . . + mj,n−tc
sn−tc,i for all j ∈ [ℓ], where the mj,i

are the coefficients of the superinvertible matrix SI. As a result, the algebraic representation of Rj,i

is a long vector with the first k coordinates being mj,1 multiplied by the representation for S1,i, the
next k coordinates being mj,2 multiplied by the representation for S2,i, and so on. Adding these
long vectors as additional rows into the matrix L, we obtain an (kn, kn)-dimensional square matrix

48

whose upper part Lu consists of blocks and its lower part Ll of long vectors as described before.
The first block column (by this we mean the first k columns) of the lower part Ll are the vectors
{m1,1rep(S1,i), . . . , mℓ,1rep(S1,i)}i∈I . The second up to (n − tc)-th block columns are framed in
a similar way with respective factors mj,i and vectors rep(Sj,i). Since we want to show that this
resulting matrix L is invertible, which is factually the simulatability matrix L(I, C) for Sim for the
set I := I × . . .× I ⊂ Hℓ (ℓ-fold Cartesian product), it suffices to show that the rows given in Ll

are linearly independent from the rows in Lu.
Since Lu consists of full rank blocks, it is even enough to show that the rows in Ll cut in between
the (tc + 1)-th and (n− tc)-th block column are linearly independent from the rows in Lu cut in
between the (tc + 1)-th and (n− tc)-th block column. By carefully looking, we observe that the
former rows when written in matrix form just result from the multiplication of the (ℓ× ℓ)-square
submatrix SI[tc] of SI (where the first tc columns are deleted) with the matrix formed by the vectors
Stc+1,i, . . . , Sn−tc,i with i ∈ I. By definition of an SI matrix, we know that SI[tc] is invertible and
since the vectors Sj,i are linearly independent from the other vectors in the j-th block column by
definition of the simulatability matrix for Simj , we know that this final transformation is isomorphic
and also gives rows that are linearly independent from the rows in the upper part Ll (in between
the aforementioned block columns). As a result, we find that the final matrix L := L(I, C) for the
simulator Sim is also invertible of dimension (k̃, k̃) which is exactly what we want. This proves the
query independence property.

This concludes the proof of Theorem 5.1.

49

C.3 Proof for High-Threshold AVSS
Before we start with a proof of Theorem 6.2, we show that the Pedersen commitment used in our
construction of HAVSS (cf. Algorithms 2 to 4) satisfies three properties that we show in Lemmata C.2
to C.4. In Lemma C.2, we want to show the property of interpolation-binding as defined in [AJM+23].
Informally, this notion tells us that if an adversary generates a commitment for a polynomial of degree tc

and opens tc + 1 evaluations of it, then these evaluations fully determine the committed polynomial. More
concretely, interpolating these points and computing the commitment to the interpolated polynomial will
yield the same commitment.

Lemma C.2 Consider parameters (G, p, g). Assume that PSopen is a proof of knowledge and that the
DLOG assumption (i.e., the one-more discrete logarithm assumption of degree 1) holds relative to (G, p, g).
Further, consider an algorithm A and the following experiment:

1. Sample g0, . . . , gtc
←$ G and run A on input (G, p, g, g0, . . . , gtc

).

2. Obtain from A a group element cm ∈ G and tc + 1 triples ((xi, yi, πi))i∈[tc+1] where xi, yi ∈ Zp.

3. Output 1 if and only if the following properties hold, otherwise output 0:

(a) All xi are distinct, i.e., for all i ̸= j, we have xi ̸= xj.
(b) All proofs verify, i.e., PVerH

open((cm, xi, yi), πi) = 1.

(c) We have cm ̸=
∏tc

j=0 g
aj

j , where A(X) =
∑tc

j=0 ajXj ∈ Zp[X] is the unique polynomial of degree
at most tc such that A(xi) = yi for all i ∈ [tc + 1].

Then, for every PPT algorithm A, the probability that the game outputs 1 is negligible.

Proof. Let A be a PPT algorithm and let ε be the probability that the game in the lemma outputs 1.
Our goal is to upper bound ε. To do so, we provide a sequence of games.
Game G0: This game is the game in the lemma. By definition, we have

ε = Pr [G0 ⇒ 1].

Game G1: This game is as G0, but when G0 would output 1, the new game G1 additionally runs
(b0, . . . , btc

)← PExt((cm, x1, y1), π1,Q). Here, PExt is the extractor from the proof of knowledge property
of PSopen and Q is the list of random oracle queries with respect to H. That is, the game tries to extract
a witness (b0, . . . , btc) ∈ Ztc+1

p specifying a polynomial B(X) =
∑tc

j=0 bjXj from the proof π1. If either
cm ̸=

∏tc

j=0 g
bj

j or y1 ̸= B(x1), the game aborts and we say the event Bad1 occurs. Otherwise, it outputs
1 as G0 does. Clearly, G0 and G1 differ only if Bad1 occurs. We can easily bound the probability
of event Bad1 using a reduction breaking the proof of knowledge property of PSopen. The reduction
forwards random oracle queries and responses between A and the proof of knowledge game and outputs
the statement (cm, x1, y1) and the proof π1. We get

Pr [G0 ⇒ 1] ≤ Pr [G1 ⇒ 1] + Pr [Bad1] ≤ Pr [G1 ⇒ 1] + negl(λ).

Game G2: This game is as G1, but when G1 would output 1, the new game G2 additionally identifies
the minimal index î ∈ [tc + 1] such that A(xî) ̸= B(xî). We can see that such an index exists as follows:
first, since

∏tc

j=0 g
bj

j = cm ̸=
∏tc

j=0 g
aj

j , it must be the case that B ≠ A. As both are of degree tc,
B(xi) = A(xi) can only hold for at most tc indices i ∈ [tc + 1]. Once this minimal index î is identified,
the game computes a witness (c0, . . . , ctc

) ← PExt((cm, xî, yî), πî,Q), i.e., it computes a polynomial
C =

∑tc

j=0 cjXj by running the proof of knowledge extractor another time. If either cm ̸=
∏tc

j=0 g
cj

j or
yî ̸= C(xî), the game aborts and we say the event Bad2 occurs. Otherwise, it outputs 1 as G1 does.
Again, G1 and G2 differ only if Bad2 occurs and we can bound the probability of Bad2 using a reduction
breaking the proof of knowledge property of PSopen. We get

Pr [G1 ⇒ 1] ≤ Pr [G2 ⇒ 1] + Pr [Bad2] ≤ Pr [G2 ⇒ 1] + negl(λ).

50

Note what we have achieved so far: if G2 outputs 1, then we know A(xî) ̸= B(xî) and A(xî) = yî = C(xî).
In combination, we get B(xî) ̸= C(xî) and especially B ≠ C. Thus, there has to exists at least one j∗

such that bj∗ ̸= cj∗ . But B and C commit to the same element cm. We will now use this to break DLOG.
Game G3: This game is as G2, but in the beginning it samples j′←$ JtcK. Then, if G2 would output
1 but j′ ̸= j∗, where j∗ is as above, the game aborts. By the discussion above, and as A’s view is
independent from j′, we get

Pr [G3 ⇒ 1] ≥ 1
tc + 1 · Pr [G2 ⇒ 1].

Finally, we bound the probability that G3 outputs 1. For that, we sketch a reduction that breaks the
DLOG assumption whenever G3 outputs 1:

1. The reduction gets as input parameters (G, p, g) and an element h = gx ∈ G. The goal is to compute
the discrete logarithm x of h to base g.

2. The reduction samples j′←$ JtcK as G3 does and sets gj′ := h. For every j ∈ JtcK with j ̸= j′ the
reduction samples δj←$ Zp and sets gj := gδj .

3. The reduction continues running G3, which includes extracting the polynomials B and C.

4. If G3 outputs 1, we know that

x · bj∗ +
∑
j ̸=j∗

bjδj = x · cj∗ +
∑
j ̸=j∗

cjδj .

Isolating x, we get

x =
∑

j ̸=j∗ δj(bj − cj)
cj∗ − bj∗

.

The reduction now computes x in this way and outputs it.

It is clear that the reduction perfectly simulates G3 for A and finds the correct x whenever G3 outputs 1.
Using the DLOG assumption, we get

Pr [G3 ⇒ 1] ≤ negl(λ).

In Lemma C.3, we prove that if an adversary generates a commitment cm, a polynomial A whose
commitment is cm, and a valid opening of the commitment, then the opening is consistent with A.
This can be seen as a relaxed version of the well-known evaluation-binding property of polynomial
commitments.

Lemma C.3 Consider parameters (G, p, g). Assume that PSopen is a proof of knowledge and that the
DLOG assumption (i.e., the one-more discrete logarithm assumption of degree 1) holds relative to (G, p, g).
Further, consider an algorithm A and the following experiment:

1. Sample g0, . . . , gtc
←$ G and run A on input (G, p, g, g0, . . . , gtc

).

2. Obtain from A a group element cm ∈ G, a polynomial A ∈ Zp[x], and a triple (x, y, π) where
x, y ∈ Zp.

3. Output 1 if and only if the following properties hold, otherwise output 0:

(a) A is of degree at most tc.
(b) The proof verifies, i.e., PVerH

open((cm, x, y), π) = 1.

(c) We have cm =
∏tc

j=0 g
aj

j , where A(X) =
∑tc

j=0 ajXj .
(d) We have A(x) ̸= y.

Then, for every PPT algorithm A, the probability that the game outputs 1 is negligible.

51

Proof. Let A be a PPT algorithm and let ε be the probability that the game in the lemma outputs 1.
Our goal is to upper bound ε. To do so, we provide a sequence of games.
Game G0: This game is the game in the lemma. By definition, we have

ε = Pr [G0 ⇒ 1].

Game G1: This game is as G0, but when G0 would output 1, the new game G1 additionally runs
(b0, . . . , btc)← PExt((cm, x, y), π,Q). Here, PExt is the extractor from the proof of knowledge property of
PSopen and Q is the list of random oracle queries with respect to H. That is, the game tries to extract
a witness (b0, . . . , btc

) ∈ Ztc+1
p specifying a polynomial B(X) =

∑tc

j=0 bjXj from the proof π. If either
cm ̸=

∏tc

j=0 g
bj

j or y ̸= B(x), the game aborts and we say the event Bad1 occurs. Otherwise, it outputs
1 as G0 does. Clearly, G0 and G1 differ only if Bad1 occurs. We can easily bound the probability
of event Bad1 using a reduction breaking the proof of knowledge property of PSopen. The reduction
forwards random oracle queries and responses between A and the proof of knowledge game and outputs
the statement (cm, x, y) and the proof π. We get

Pr [G0 ⇒ 1] ≤ Pr [G1 ⇒ 1] + Pr [Bad1] ≤ Pr [G1 ⇒ 1] + negl(λ).

Note that if G1 outputs 1, then we know that A(x) ̸= y = B(x), and thus A ̸= B. As a consequence,
there exists an index j∗ ∈ JtcK such that aj∗ ̸= bj∗ . We will now use this to break DLOG, similarly to
what we have done in Lemma C.2.
Game G2: This game is as G1, but in the beginning it samples j′←$ JtcK. Then, if G2 would output
1 but j′ ̸= j∗, where j∗ is as above, the game aborts. By the discussion above, and as A’s view is
independent from j′, we get

Pr [G2 ⇒ 1] ≥ 1
tc + 1 · Pr [G1 ⇒ 1].

Finally, we bound the probability that G2 outputs 1. For that, we sketch a reduction that breaks the
DLOG assumption whenever G2 outputs 1:

1. The reduction gets as input parameters (G, p, g) and an element h = gx ∈ G. The goal is to compute
the discrete logarithm x of h to base g.

2. The reduction samples j′←$ JtcK as G2 does and sets gj′ := h. For every j ∈ JtcK with j ̸= j′ the
reduction samples δj←$ Zp and sets gj := gδj .

3. The reduction continues running G2, which includes extracting B.

4. If G2 outputs 1, we know that

x · aj∗ +
∑
j ̸=j∗

ajδj = x · bj∗ +
∑
j ̸=j∗

bjδj .

Isolating x, we get

x =
∑

j ̸=j∗ δj(aj − bj)
bj∗ − aj∗

.

The reduction now computes x in this way and outputs it.

It is clear that the reduction perfectly simulates G2 for A and finds the correct x whenever G2 outputs 1.
Using the DLOG assumption, we get

Pr [G2 ⇒ 1] ≤ negl(λ).

In Lemma C.4, we prove a variation of the property shown in Lemma C.3. Namely, we show that
if an adversary generates a commitment cm, a polynomial A whose commitment is cm, and a valid
exponentiated opening of cm, then the exponentiated opening is consistent with A. That is, if it provides
a group element Y and a valid proof π of an exponentiated opening at a point x, then Y = gA(x).

52

Lemma C.4 Consider parameters (G, p, g). Assume that PSexp is a proof of knowledge and that the
DLOG assumption (i.e., the one-more discrete logarithm assumption of degree 1) holds relative to (G, p, g).
Further, consider an algorithm A and the following experiment:

1. Sample g0, . . . , gtc
←$ G and run A on input (G, p, g, g0, . . . , gtc

).

2. Obtain from A a group element cm ∈ G, a polynomial A ∈ Zp[x], and a triple (x, Y, π) where x ∈ Zp

and y ∈ G.

3. Output 1 if and only if the following properties hold, otherwise output 0:

(a) A is of degree at most tc.
(b) The proof verifies, i.e., PVerH

exp((cm, x, Y), π) = 1.

(c) We have cm =
∏tc

j=0 g
aj

j , where A(X) =
∑tc

j=0 ajXj .

(d) We have gA(x) ̸= Y .

Then, for every PPT algorithm A, the probability that the game outputs 1 is negligible.

Proof. The proof is very similar to that of Lemma C.3. Let A be a PPT algorithm and let ε be the
probability that the game in the lemma outputs 1. Our goal is to upper bound ε. To do so, we provide a
sequence of games.
Game G0: This game is the game in the lemma. By definition, we have

ε = Pr [G0 ⇒ 1].

Game G1: This game is as G0, but when G0 would output 1, the new game G1 additionally runs
(b0, . . . , btc)← PExt((cm, x, Y), π,Q). Here, PExt is the extractor from the proof of knowledge property
of PSexp and Q is the list of random oracle queries with respect to H. That is, the game tries to extract
a witness (b0, . . . , btc

) ∈ Ztc+1
p specifying a polynomial B(X) =

∑tc

j=0 bjXj from the proof π. If either
cm ̸=

∏tc

j=0 g
bj

j or Y ̸= gB(x), the game aborts and we say the event Bad1 occurs. Otherwise, it outputs 1
as G0 does. Clearly, G0 and G1 differ only if Bad1 occurs. We can easily bound the probability of event
Bad1 using a reduction breaking the proof of knowledge property of PSexp. The reduction forwards random
oracle queries and responses between A and the proof of knowledge game and outputs the statement
(cm, x, Y) and the proof π. We get

Pr [G0 ⇒ 1] ≤ Pr [G1 ⇒ 1] + Pr [Bad1] ≤ Pr [G1 ⇒ 1] + negl(λ).

Note that if G1 outputs 1, then we know that gA(x) ̸= Y = gB(x), and thus A ̸= B. As a consequence,
there exists an index j∗ ∈ JtcK such that aj∗ ̸= bj∗ . But A and B commit to the same element cm. We
will now use this to break DLOG, similarly to what we have done in previous lemmata.
Game G2: This game is as G1, but in the beginning it samples j′←$ JtcK. Then, if G2 would output
1 but j′ ̸= j∗, where j∗ is as above, the game aborts. By the discussion above, and as A’s view is
independent from j′, we get

Pr [G2 ⇒ 1] ≥ 1
tc + 1 · Pr [G1 ⇒ 1].

Finally, we bound the probability that G2 outputs 1. For that, we sketch a reduction that breaks the
DLOG assumption whenever G2 outputs 1:

1. The reduction gets as input parameters (G, p, g) and an element h = gx ∈ G. The goal is to compute
the discrete logarithm x of h to base g.

2. The reduction samples j′←$ JtcK as G2 does and sets gj′ := h. For every j ∈ JtcK with j ̸= j′ the
reduction samples δj←$ Zp and sets gj := gδj .

3. The reduction continues running G2, which includes extracting B.

53

4. If G2 outputs 1, we know that

x · aj∗ +
∑
j ̸=j∗

ajδj = x · bj∗ +
∑
j ̸=j∗

bjδj .

Isolating x, we get

x =
∑

j ̸=j∗ δj(aj − bj)
bj∗ − aj∗

.

The reduction now computes x in this way and outputs it.

It is clear that the reduction perfectly simulates G2 for A and finds the correct x whenever G2 outputs 1.
Using the DLOG assumption, we get

Pr [G2 ⇒ 1] ≤ negl(λ).

In Lemma C.5, we show that once tc +1 honest parties send their “column” messages as in the protocol
specification (cf. Algorithm 3), it is possible to efficiently extract a polynomial for the AVSS instance from
their views. By this, we mean that it is possible to compute a bivariate polynomial S(X, Y) of correct
degrees in X and Y such that all opened evaluations are consistent with S and all of the exponentiated
openings Si are such that Si = gS(i,0) holds. Informally, we do this by taking the evaluations of these
tc + 1 honest parties along each of the columns. Each set of tc + 1 evaluations should fully define the
committed polynomial, as shown in Lemma C.2. All opened evaluations and exponentiated evaluations
should be consistent with these polynomials, as shown in Lemmata C.3 and C.4. Once this is established,
it will be easy to show that all honest parties’ outputs will be consistent with S because they compute
their outputs as functions of the openings they received. Note that this process can actually be done
with any set of tc + 1 honest parties that sent “column” messages, but we choose the first tc + 1 parties
that do so. If we construct a polynomial in this way from any other set of tc + 1 parties, the evaluations
must also be consistent with S (as shown in the following lemma), and thus we will also construct S.

Lemma C.5 Consider parameters (G, p, g) and g0, . . . , gtc
←$ G. Assume that PSopen and PSexp are proofs

of knowledge and that the DLOG assumption holds relative to (G, p, g). Consider the experiment of running
HAVSS.Share as specified in Algorithm 3. Assume that in this experiment tc+1 honest parties send “column”
messages at some point throughout the protocol after they receive a ⟨“commits”, CM′, (Si, πexp

i)i∈[tr+1]⟩
broadcast from the dealer.

Then, it is possible to efficiently compute a bivariate polynomial S(X, Y) of degree tr in X and tc in
Y from the views of the first tc + 1 honest parties that do so (i.e., send “column” messages) such that for
every PPT adversary corrupting at most tc parties, the following hold with all but negligible probability:

(a) For all i ∈ [tr + 1], we have Si = gS(i,0), and

(b) if any honest Pi adds (j, Ci(j)) to pointscol,i, then Ci(j) = S(i, j).

Further, if the dealer is honest, then S(X, Y) is the polynomial it sampled in HAVSS.Deal (cf. Algorithm 2).

Proof. Assume that tc + 1 honest parties sent such messages, and let I ⊆ [n] be the indices of the first
honest parties to do so. Before doing so, they must have had CM ̸= ⊥, and thus they received a “commits”
message from the dealer, verified it, and updated both CM and S by using the ExpInterpolate algorithm on
the received values. In addition, each Pi received a “row” message containing a vector ((Cj(i), πj,i))j∈[n]
and verifying it before sending the “column” message. For each i ∈ I, define Ri(X) to be the unique
polynomial of degree tr or less such that Ri(j) = Cj(i) for every i ∈ [tr + 1]. In addition, let S(X, Y) be
the unique polynomial of degree at most tr in X and at most tc in Y such that S(X, i) = Ri(X) for every
i ∈ I. Note that it is indeed possible to efficiently interpolate both of these polynomials from the views of
the aforementioned parties. Also, if the dealer is honest, then it sampled a polynomial S′(X, Y) and sent
each party Pi “row” messages with evaluations on the polynomial R′

i(X) = S′(X, i). These means that
the interpolated Ri polynomials are the R′

i polynomials and thus S(X, Y) is the polynomial S′(X, Y)
sampled by the dealer.

54

Now that this is established, we need to bound the probability that one of the two properties in the
lemma do not hold, with respect to S(X, Y). To this end, let A be a PPT adversary running in the
protocol. We denote by ε the probability that there is an i ∈ [tr + 1] with Si ̸= gS(i,0) or some honest
party Pi adds (j, Ci(j)) to pointscol,i but Ci(j) ̸= S(i, j).
Game G0: This game is the game that runs the protocol with the adversary. It outputs 1 if there is an
i ∈ [tr + 1] with Si ̸= gS(i,0) or some honest party Pi adds (j, Ci(j)) to pointscol,i but Ci(j) ̸= S(i, j). We
have

ε = Pr [G0 ⇒ 1].

Game G1: This game is the same as G0, but if at any point tc +1 honest parties send “column” messages
after accepting a “commits” message from the dealer, it computes Ri(X) for every such party and
S(X, Y) as defined above. It then computes Ci(Y) = S(i, Y) =

∑tc

k=0 ak,iY
k for every i ∈ [tr + 1]. If

cmi ̸=
∏tc

k=0 g
ak,i

k for any i ∈ [tr + 1], then G1 aborts and we say that event Bad1 occurred. Otherwise, it
acts identically to G0 and outputs 1 when it does.

Clearly, G0 and G1 only differ if the event Bad1 occurs. We can bound the probability that the event
occurs by the following reduction to Lemma C.2:

1. The reduction gets as input parameters (G, p, g, g0, . . . , gtc
).

2. The reduction runs the protocol as G1 does, and if the event Bad1 ever occurs, it finds an index
i ∈ [tr + 1] such that cmi ̸=

∏tc

k=0 g
ak,i

k . It then outputs cmi and the triples ((xi, yi, πi))i∈I where I
is the set of tc + 1 honest parties that sent “row” messages first.

Note that before sending a “column” message, every honest party makes sure that all of the openings and
proofs it received in its “row” message verify. This means that if the event Bad1 occurred, the reduction
wins in the game described in Lemma C.2. Therefore:

Pr [G0 ⇒ 1] ≤ Pr [G1 ⇒ 1] + Pr [Bad1] ≤ Pr [G1 ⇒ 1] + negl(λ).

Game G2: This game is the same as G1, and it computes S in the same way as G1. However, it stores all
“column” messages received by honest parties throughout the protocol. If at any point, an honest party i
receives a ⟨“column”, C ′

i(j), πi,j⟩ message such that C ′
i(j) ̸= S(i, j) and PVeropen((cmi, j, C ′

i(j)), πi,j) = 1,
G2 aborts and we say that event Bad2 occurred. Otherwise, G2 continues the same as G1 and outputs 1
in the same situations. Clearly, G1 and G2 only differ if the event Bad1 does not occur and the event
Bad2 does occur. We can bound the probability that Bad2 takes place given that Bad1 did not take place
by the following reduction to Lemma C.3:

1. The reduction gets as input parameters (G, p, g, g0, . . . , gtc
).

2. The reduction runs the protocol as G2 does, and if the event Bad2 ever occurs without Bad1
taking place, it find the indices i, j described above such that PVeropen((cmi, j, C ′

i(j)), πi,j) = 1, but
C ′

i(j) ̸= S(i, j). It then outputs cmi, the polynomial Ci(Y) = S(i, Y) and (j, C ′
i(j), πi,j).

Given that Bad1 does not occur, cmi is indeed a commitment to Ci. That is, if Ci(Y) =
∑tc

k=0 akXk,
then cmi =

∏tc

k=0 gak

k . Therefore, the reduction outputs a commitment, a consistent polynomial and an
inconsistent opening that verifies, winning in the game described in Lemma C.3. Note that G1 and G2
only differ if Bad2 occurs, and thus:

Pr [G1 ⇒ 1] ≤ Pr [G2 ⇒ 1] + Pr [Bad2|¬Bad1] ≤ Pr [G2 ⇒ 1] + negl(λ).

Finally, we bound the probability of G2 outputting 1. First of all, the game never outputs 1 if the
events Bad1 or Bad2 take place. This means that no honest party i received a “column” message with
an evaluation and verifying proof that is inconsistent with Ci(Y) = S(i, Y). Since those are the only
values it adds to pointscol,i, G2 cannot output 1 as a result of the second bullet described in the lemma.
Therefore, G2 only outputs 1 if there exists some i ∈ [tr + 1] such that Si ≠ gS(i,0). We denote this event
Bad3. Note that honest parties only send their “column” messages if they receive a “commits” broadcast
from the dealer with verifying proofs. Thus, we can construct the following reduction to Lemma C.4:

1. The reduction gets as input parameters (G, p, g, g0, . . . , gtc
).

55

2. The reduction runs the protocol as G2 does, and if the event Bad3 ever occurs without Bad1 taking
place, it find the index i described above such that PVerexp((cmi, 0, Si), πexp

i) = 1, but Si ≠ gS(i,0).
It then outputs cmi, the polynomial Ci(Y) = S(i, Y) and (0, Si, πexp

i).

As before, G2 only outputs 1 if the event Bad3 occurs and the event Bad1 does not occur and thus:

Pr [G2 ⇒ 1] ≤ Pr [Bad3|¬Bad1] ≤ negl(λ).

To prove security of our AVSS (Theorem 6.2), we need to prove correctness and termination as defined
in Definition 2.3 and oracle-aided simulatability as defined in Definition B.6. We do so in the following
lemmata. We begin with the correctness property.

Lemma C.6 Assume that PSopen and PSexp are proofs of knowledge and that the DLOG assumption holds
relative to the parameters of the protocol (G, p, g). Then, HAVSS = (HAVSS.Share, HAVSS.Rec) has the
Correctness property.

Proof. To recall, we need to show that – in presence of at most tc corruptions – when the first honest
party completes HAVSS.Share, then there is a unique polynomial f ∈ Zp[X] of degree at most tr such
that every honest party completing HAVSS.Rec outputs (S, S1, . . . , Sn) and f(i) ∈ Zp with S = gf(0) and
Sj = gf(j) for all j ∈ [n]. If the dealer is honest, it has to hold that f(0) is equal to the dealer’s input.

We now give the proof. Assume some honest party completes the protocol. Before it does so, it
receives “done” messages from n− tc different parties. We know that n− tc ≥ 2tc + 1 and thus at least
one of these messages was sent by an honest party. Consider the first honest party to send a “done”
message. At that time, it did not receive a “done” message from another honest party, so it received at
most tc “done” messages. This means that it must have sent its “done” message after receiving “vote”
messages from at least n− tc parties. Out of those, at least n− 2tc ≥ tc + 1 are honest. Honest parties
only send such messages if they have CM ̸= ⊥, and they only update CM after receiving a “commits”
broadcast from the dealer. In addition, before sending “vote” messages, these parties also send “column”
message to everybody. Therefore we have successfully argued that the conditions of Lemma C.5 hold.
Now, recall Lemma C.5 implies the existence of a bivariate polynomial S(X, Y) with certain properties.
We will show that the Correctness property holds with respect to f(X) = S(X, 0).

First, S is of degree tr in X and thus f is also of degree tr. Let row′
0 = ((Si, πexp

i))i∈[tr+1] be the value
broadcast by the dealer in its “commits” message. By Lemma C.5, we have Si = gS(i,0) = gf(0) for every
i ∈ [tr + 1]. Parties then interpolate the Si values and evaluate them at 0 to get S0 and at tr + 2, . . . , n
to get Str+2, . . . , Sn. Since the discrete logarithms of the Si elements lie on f(X) for every i ∈ [tr + 1],
it is also true that Si = gf(i) for every one of the interpolated values. In addition, assume some honest
party Pi completed the HAVSS.Share protocol. It only did so after having Ci ̸= ⊥, which it updated by
interpolating the pairs (j, Ci(j)) in pointscol,i once there are tc + 1 such pairs. By Lemma C.5, for every
such pair (j, Ci(j)), we have Ci(j) = S(i, j). This means that the interpolated polynomial Ci(Y) must be
S(i, Y) the unique polynomial of degree tc or less that is consistent with all of these evaluations. When
parties output values in HAVSS.Rec, they output (S0, . . . , Sn) and Ci(0). As shown above, Si = gf(i) for
every i ∈ [0, n]. In addition, Ci(0) = S(i, 0) = f(i), as required. Finally, if the dealer is honest, then S is
the polynomial sampled by it, meaning that f(0) = S(0, 0) = s.

Lemma C.7 Assume that PSopen is a proof of knowledge and that the DLOG assumption holds relative to
the parameters of the protocol (G, p, g). Then, HAVSS = (HAVSS.Share, HAVSS.Rec) has the Termination
property.

Proof. We have to prove three properties, namely (1) if the dealer is honest and all honest parties call
HAVSS.Share, then all honest parties complete HAVSS.Share, (2) if all honest parties call HAVSS.Share
and an honest party completes HAVSS.Share, then all honest parties complete HAVSS.Share, and (3) if all
honest parties call HAVSS.Rec, then all honest parties complete HAVSS.Rec.

We start with (1). So, assume that the dealer is honest and that all honest parties called HAVSS.Share.
Recall that the dealer starts by sampling a polynomial S(X, Y) and computing Si = gS(i,0), Ci(Y) =∑tc

k=0 ak,iY
k and cmi =

∏tc

k=0 g
ak,i

k for every i ∈ [tr + 1]. It then reliably broadcasts a “commits” message
containing these Si and cmi values along with proofs that the discrete log of Si is indeed Ci(0). It similarly

56

computes cmi and Ci(Y) for every other i ∈ [tr + 2, n], and sends every Pi the values Cj(i) for every
j ∈ [n] along with proofs that these are the correct values in “row” messages. Since all of these proofs are
generated honestly, all honest parties will accept these proofs (by completeness of the non-interactive
proof system), update their CM and S variables and send “vote” messages. They will also accept the
“row” message and send “column” messages to all parties with the same values and proofs. Every honest
party will accept “column” messages from every other honest party, for a total of at least n− tc messages.
After accepting tc + 1 such messages, every honest party Pi will interpolate a polynomial Ci. In addition,
after receiving “vote” messages from n − tc parties, every honest party will send a “done” message to
all parties. After receiving those messages from all honest parties, every party will have received “done”
messages from n− tc parties and will have S ̸= ⊥ and Ci ̸= ⊥. Consequently, it will terminate.

We now turn to proving (2). To this end, assume some honest party terminates. This means that
it received “done” messages from n − tc parties. Out of those, at least n − 2tc ≥ tc + 1 are honest, so
every honest party will receive tc + 1 such messages and also send a “done” message. This means that
every party will receive “done” messages from at least n − tc parties. Consider the first honest party
to send a “done” message. It could not have done so as a result of receiving “done” messages from
tc + 1 different parties, because that would mean it received one of those messages from an honest party,
contradicting the fact that it is the first to do so. This means that it sent the message after receiving
“vote” messages from n− tc different parties. Out of those parties, at least n− 2tc ≥ tc + 1 are honest.
Before sending their “vote” messages, every one of those parties receives a “commits” broadcast with
verifying proofs. Accordingly, it updates CM and S. Following that, they also receive a “row” message
with a vector rowi = ((Cj(i), πj,i))j∈[n] with verifying proofs. Every one of those parties Pi sends a
⟨“column”, Cj(i), πj,i⟩ to every Pj . Every honest Pj receives the same “commits” broadcast, sees that
the proofs verify and updates CM and S. They also receive the “column” messages sent by the honest
parties that sent “vote” messages, see that the proofs verify, and add a tuple to pointscol,j each time.
After adding tc + 1 different tuples, Pj interpolates pointscol,j and stores the result in Ci. In total, every
honest party Pi eventually receives “done” messages from at least n − tc parties and has S ̸= ⊥ and
Ci ̸= ⊥. At that point, every honest party terminates.

Finally, (3) follows directly from the fact that parties immediately terminate upon starting HAVSS.Rec.
This completes the proof.

In order to prove that the protocol has the Oracle-Aided Simulatibility property, we first define a bad
event for the Bad Event property, and show that there is a negligible property of it taking place.

Lemma C.8 Assume that PSopen is a proof of knowledge and that the DLOG assumption holds relative
to the values (G, p, g) used in the public parameters of the protocol. Then, HAVSS = (HAVSS.Share,
HAVSS.Rec) has the Bad Event property.

Proof. First, we will define two separate sub-events as follows:

• BadOpen: This is the event in an execution of the real protocol in which an honest dealer sampled the
polynomial S and some honest party Pi received a ⟨“column”, Ci(j), πi,j⟩ message from a corrupt
party Pj such that Ci(j) ̸= S(j, i) and PVerH

open((cmi, j, Ci(j)), πi,j) = 1.

• BadM: Define the parameters to be (G, p, g, g0, . . . , gtc) and let δ0, . . . , δtc ∈ Zp be field elements
such that ∀i ∈ JtcK gi = gδi . Observe the set of corrupted parties C ⊆ [n] at any time throughout
the protocol and let I ⊆ JnK be the set of tc − |C| minimal indices that aren’t in C. Let M be the
matrix whose first row is (δ0, . . . , δtc

) and the next tc rows are Vandemonde rows (j0, . . . , jtc) for
j ∈ I ∪ C. We define 00 to be the value 1 in all of these computations. Define the event BadM as
the event that at any time throughout the run, the matrix M is not invertible.

Finally, define Bad as BadOpen ∨ BadM Let A be some PPT adversary for the protocol. Our goal is to
bound the probability of the event Bad taking place. We will do so by bounding the probability of each
one of the events taking place.
Bounding BadOpen. We will bound the probability of BadOpen by constructing a reduction to Lemma C.3
that acts as follows:

1. The reduction gets as input parameters (G, p, g, g0, . . . , gtc
).

57

2. The reduction runs the protocol by running the adversary and controlling all honest parties,
instructing them to act honestly. It stores the polynomial S sampled by an honest dealer and
all “column” messages received by honest parties. If it sees that at any point BadOpen occurs by
checking if at any point an honest party receives a verifying “column” message with an evaluation
that is inconsistent with S. If that happens, some honest party received a ⟨“column”, Ci(j), πi,j⟩
message from a corrupt party Pj such that Ci(j) ̸= S(j, i) and PVerH

open((cmi, j, Ci(j)), πi,j) = 1. It
then outputs cmi, S(i, Y), (j, Ci(j), πi,j).

An honest dealer does compute the polynomial S(i, Y) =
∑tc

k=0 akY k and send the commitment
cmi =

∏tc

k=0 gak

k . Therefore, if the event BadOpen takes place, the reduction outputs a commitment cmi,
a corresponding polynomial S(i, Y) and a verifying opening (j, Ci(j), πi,j) such that Ci(j) ̸= S(i, j),
meaning that it wins in the game described in Lemma C.3. As shown in Lemma C.3, the probability of
this taking place is negligible and thus:

Pr[BadOpen] ≤ negl(λ).

Bounding BadM. We will bound the probability that BadM takes place by the following reduction to the
DLOG assumption:

1. The reduction gets as input parameters (G, p, g, h) and attempts to find the discrete log of h with
respect to g.

2. For every i ∈ Jtc − 1K the reduction samples a field element δi←$ Zp and defines gi = gδi . In
addition, it defines gtc = h.

3. The reduction runs the protocol with parameters (G, p, g, g0, . . . , gtc
) by controlling all honest parties

and running the adversary A.

4. Whenever a party is corrupted, the reduction adds its index to C In the beginning of the protocol
and after each such update, the reduction defines I ⊆ JnJ to be the tc − |C| minimal indices not
in C. Let V be a matrix with tc Vandermonde rows (j0, . . . , jtc) for different values j ∈ I ∪ C and
let its columns be V 0, . . . , V tc . The reduction finds the unique coefficients a0, . . . , atc−1 such that
V tc =

∑tc−1
k=0 akV k by Gaussian elimination. It then computes x =

∑tc−1
k=0 akδk. If h = gx, the

reduction outputs x and otherwise it continues running the protocol.

The adversary’s view is identical in the reduction and in a real execution, since the parameters are
sampled identically. If the event BadM takes place, then after adding some index to C, the matrix M
was not invertible. The matrix has one row of the form (δ0, . . . , δtc−1, x) where h = gx, and the rest
of the rows are the rows of V . Since the rows of V are Vandermonde rows, the matrix whose columns
are V 0, . . . , V tc−1 is invertible. This means that the vectors V 0, . . . , V tc−1 are a basis for Ztc

p , and thus
there is a unique choice of coefficients a0, . . . , atc−1 such that V tc−1 =

∑tc−1
k=0 akV k. The matrix M is

not invertible if and only if this linear relationship holds for the first row as well. In other words, it is not
invertible if and only if x =

∑tc−1
k=0 akδk. In this case, the reduction outputs x and succeeds in finding the

discrete log of h. Therefore:
Pr[BadM] ≤ negl(λ).

Combining these two results, we find that:

Pr[Bad] = Pr[BadOpen ∨ BadM] ≤ Pr[BadOpen] + Pr[BadM] ≤ negl(λ).

Lemma C.9 Assume that PSopen and PSexp are zero-knowledge and that the DLOG assumption holds rel-
ative to the parameters of the protocol (G, p, g). Then, assuming secure erasures, HAVSS = (HAVSS.Share,
HAVSS.Rec) has the Oracle-Aided Simulatibility property.

Proof. We will start by constructing a simulator Sim. The simulator receives an OMDL instance
gz1 , . . . , gztr+1 of elements in G. It starts by defining C = ∅. It then uniformly samples discrete logs
(δ0, . . . , δtr

)←$ Ztr+1
p and defines the parameters g, g0 = gδ0 , . . . , gtr

= gδtr . Sim then runs the protocol.

58

Honest dealer activation. When the dealer is first activated, if it is not corrupted, Sim sets Si = gzi ,
for every i ∈ [tr + 1]. Sim then interpolates the set {(i, Si)}i∈[tr+1] in the exponent and evaluates the
exponentiated polynomial at 0 to get S0 and at tr + 2, . . . , n to get the values Str+2, . . . , Sn. Following
that, Sim uniformly samples tr + 1 values (r1, . . . , rtr+1)←$ Ztr+1

p . Note that ExpInterpolate performs a
constant linear operation in the exponent on tr + 1 group elements to generate n group elements. Sim
performs the same linear operation on r1, . . . , rtr+1 to generate n field elements r1, . . . , rn and computes
cmi = gri for every i ∈ [n]. Finally, Sim simulates proofs πexp

i for every i ∈ [tr +1] showing that (cmi, 0, Si)
is in the relation Rexp. Sim adds messages to the queue as if it broadcasted a “commits” message with
CM = (cm1, . . . , cmtr+1) and row0 = ((S1, πexp

1), . . . , (Str+1, πexp
tr+1)), as well as “row” messages for all

parties.
Honest party receiving a message. Whenever an honest party (i.e., a party not in C) gets a message,

Sim accepts it as a correct message if it was sent by a party that was honest at the time, or checks it if it
was sent by a corrupt party. Sim then adds any messages that are sent as a result of processing messages.
In more detail, whenever an honest party Pi receives a message from party Pj , Sim acts as follows:

• If the message is a “commits” message the dealer Pj , then if the dealer is honest, Sim considers
Pi as having received a commitment CM. Otherwise, Sim checks that the message contains a
commitment CM′ = (cm1, . . . , cmtr+1) and a row row′

0 = ((S1, πexp
1), . . . , (Str+1, πexp

tr+1)) such that
∀j ∈ [tr + 1] PVerH

exp((cmj , 0, Sj), πexp
j) = 1. If that is the case, Sim considers Pi as having received

the commitment CM = ExpandCom(CM′). Sim delays the execution of any following bullets for Pi

until Pi has received a commitment.

• If the message is a “row” message from the dealer, then if the dealer is honest, Sim considers
Pi as receiving a correct polynomial. If the dealer is corrupt, and the message contains a row
rowi = ((Ci(1), πi,1), . . . , (Ci, πi,n)), then Pi is said to have received a correct polynomial only if for
all j ∈ [n], we have PVerH

open((cmj , i, Cj(i)), πj,i) = 1. In both of these cases, if Pi received a correct
polynomial, then Sim adds “column” and “vote” messages to the queue from i to all parties if it
hasn’t done so earlier.

• If the message is a “column” message with the values yj , πj from Pj , then if Pj is honest, Sim
considers Pi as receiving a correct message from Pj . If Pj is corrupt, then Pi checks that
PVerH

open((cmj , i, yj), πj) = 1 and if that is the case, it considers Pi as receiving a correct mes-
sage from Pj . If the received message is the tc + 1’th correct “column” message received by Pi, then
Sim considers Pi as having interpolated Ci.

• If Pi received “vote” messages from n− tc different parties or “done” messages from tc + 1 different
parties, add “done” messages to the queue from i to all parties.

• If Pi received “done” messages from n − tc parties, and it has received a commitment from the
dealer and interpolated a polynomial Ci, Sim considers it as having completed the HAVSS.Share
protocol.

If at any time an honest party Pi is activated in the HAVSS.Rec protocol, Sim waits until it completes
the HAVSS.Share protocol, and then immediately considers it as having completed the protocol.

Party corruption. Whenever a party Pi is corrupted, Sim starts by defining its polynomials Ci and
Ri under the condition that Ci is also consistent with the commitment cmi and that Ci(j) = Rj(i) and
Ri(j) = Cj(i) for every corrupt Pj . First, it defines a polynomial Ci for Pi It does so by calling its
discrete log oracle on Si and set the response to be the value R0(i). The algebraic representations of
Si is the one defined by the linear transformation for interpolating and evaluating the Si. Sim defines
the set I ⊆ JnK to be the tc − |C| minimal indices that aren’t in C. Note that 0 is always in I. For every
j ∈ I \ (C ∪{0}), Sim uniformly samples a value Rj(i)←$ Zp. It then constructs a matrix M of dimensions
(tc + 1)× (tc + 1) where the first row is the vector (δ0, . . . , δtc

) and the next tc rows are Vandermonde rows
of form (j0, j1, . . . , jtc) for different values j ∈ I ∪ C. We define 00 to be 1 in all of these vectors. If the
resulting matrix is not invertible, Sim aborts. Sim then defines the vector v = (ri, Rj1(i), . . . , Rjtc

(i))T

with j1, . . . , jtc being the indices of I ∪ C in the same order as above. Finally, Sim computes the vector
(ai,0, . . . , ai,tc)T = M−1v and defines Ci(Y) =

∑tc

k=0 ai,kY k. Note that by construction, ri =
∑tc

k=0 δkai,k

and Ci(j) = Rj(i) for every j ∈ I. This also means that Ci(0) = R0(i) and thus Si = gCi(0). Following

59

that, Sim adds to i to C and turns to define Ri(X). It does so by simply uniformly sampling a polynomial
of degree tr under the condition that for every j ∈ C, Ri(j) = Cj(i).

Sim then saves Ci and Ri. Note that there are at most tc corruptions. Since I is defined before adding
a newly corrupted party’s index to C, at that time C is of size tc − 1 at most, and thus it is possible find
a set I as defined above, and it always includes at least one index, namely 0. In addition, there is indeed
at least one polynomial Ri of degree tr ≥ tc for which the required equalities hold.

Delivery of message to corrupt party. After sampling these polynomials, whenever Sim delivers a
message to Pi from an honest party Pj , it does so in a consistent way with Ci and Ri. Similarly, before
providing Pi’s state to the adversary, it updates it as if it received similar messages from honest parties.
In more detail whenever Pi receives a message from an honest Pj :

• If the message is a “commits” message from the dealer, then Sim delivers the message containing
the commitments CM and the row row0 defined above.

• If the message is a “row” message from the dealer, Sim delivers the message containing the
row rowi = ((Ri(1), πi,1), . . . , (Ri(n), πi,n)), with πi,j being simulated proofs of the statement
(cmj , i, Ri(j)) with respect to the relation Ropen.

• If the message is a “column” message, then Sim delivers message ⟨“column”, Ci(j), πi,j⟩ with πi,j

being a simulated proof of the statement (cmi, j, Ci(j)) with respect to the relation Ropen.

• If the message is a “vote” or a“done” message, Sim delivers it normally.

Also, whenever such a corrupt Pi receives a message from a corrupt Pj , Sim delivers that message to Pi.
Corrupted party’s state. Before completing Pi’s corruption, Sim constructs Pi’s state by going through

the messages Pi received, and computing the state it would have had after receiving those messages if
it were honest. Note that by this we mean that Sim constructs its state as if it received the messages
described above from honest parties and the actual messages sent by corrupt parties. Finally, after
the first honest party completes the HAVSS.Rec protocol, Sim outputs (S0, S1, . . . , Sn) with the same
algebraic representation described above for each R value.

Corruption of the dealer. If at any time the dealer is corrupted, Sim chooses a set of indices I ⊂ [n]
such that I ∩ C = ∅, |I ∪ C| = tr + 1 (for example, the minimal indices for which this holds). It then calls
the discrete log oracle on Si for every i ∈ I. Then, Sim generates polynomials Ci of degree tc for every
i ∈ I in the same manner as the one described above. Finally, Sim defines S to be the unique bivariate
polynomial of degree tr in X and tc in Y such that for every i ∈ I ∪ C S(i, Y) = Ci(Y). It then generates
the state of all honest parties by simulating them receiving messages consistent with the dealer sampling
the bivariate polynomial S by defining the polynomials Ri(X) = S(X, i) and Ci(Y) = S(i, Y). This can
be done in the same way as generating the newly corrupted parties’ state. Then, whenever an honest party
receives a message, it is processed as an honest party would in HAVSS.Share, and whenever a corrupt
party receives a message it is simply delivered. At the end of simulation, Sim outputs (S0, . . . , Sn).

Simply following the description above, it is clear that the Syntax, Dealer Corruption and Queries upon
Corruption properties hold. In addition, only Si elements are queries, which are generated by interpolating
and evaluating the OMDL challenge. These are generated by by multiplying by a Vandermonde matrix
and its inverse, which are both invertible. Therefore, the Query Independence property holds. As shown
in Lemma C.8, the protocol has the Bad Event property. It is only left to show that the protocol has the
Indistinguishability property. We proceed with that.
Indistinguishability. We will show a series of games that are indistinguishable from each other if the
event Bad does not take place such that the first game is an execution of the protocol, and the last is the
simulated execution of the protocol. Let A be some PPT adversary for the protocol.
Game G0: This game is a normal execution of the protocol given that the event Bad does not take place
with the adversary A controlling the corrupt parties, and all other parties acting honestly.
Game G1: This game is identical to G1, except all parties abort if the event Bad ever takes place. As
shown in the Bad Event property, the probability of the parties ever aborting is negligible. Further, this
event is efficiently detectable. It is possible to check whether the event BadOpen took place by simply
checking if at any point a verifying “column” message was received that is inconsistent with an honest
dealer’s sampled polynomial S. In addition, it is possible to check whether the event BadM took place

60

by computing the same Vandermonde rows described in the Bad Event property, computing the linear
transformation from the first tc columns of these rows to the final column, and then computing the same
transformation in the exponent on g0, . . . , gtc−1. The matrix is not invertible if and only if the result is
gtc

, in which case all honest parties can abort.
Game G2: This game is identical to G1, all proofs of knowledge computed by honest parties are simulated
instead of being computed honestly. G1 and G2 are indistinguishable because of the zero-knowledge
property of the proofs of knowledge.
Game G3: This game is identical to G2, except that if the dealer is honest, it sends tr + 1 uniformly
sampled commitments cmi and uniform values Si in its “commits” message. Additionally, whenever an
honest party Pi gets corrupted, two polynomials Ci, Ri of degrees tc and tr are chosen for it uniformly
under the condition that Ci(j) = Rj(i) and Cj(i) = Ri(j) for every corrupt Pj and under the condition
that Si = gCi(0) and that cmi = g

∑tc

k=0
δkak where Ci(Y) =

∑k
i=0 akY k and gk = gδk for every k. Then,

whenever Pi receives a “row” message from the dealer, it contains the values ((Ri(j), πj,i))j∈[n] with πj,i

being simulated proofs. Similarly, whenever it receives a “column” message from Pj , it contains the values
Ci(j), πi,j with πi,j being a simulated proof. If at any point the dealer is corrupted, the same process
takes place, but Ci polynomials are sampled for tr + 1− |C| additional parties as well. A polynomial S is
defined to be the bivariate polynomial of degrees tr in X and tc in Y consistent with these Ci polynomials
(i.e., S(i, y) = Ci(Y) for every such i), and the dealer’s view is generated as if it originally sampled S.
Also, all honest parties act as if messages that they received from the dealer are consistent with S, as
well as messages from other honest parties. From this point on, honest parties continue acting as they
would normally in the protocol.

First, we will show that the adversary’s view is identical in G2 and G3. In a both games the
dealer does indeed uniformly sample a bivariate polynomial S(X, Y) of degree tr in X and tc in Y . As
long as the event Bad does not take place, all honest parties only receive points and proofs consistent
with S, and send consistent messages to corrupt parties. This means that the corrupt parties’ views
consist of random values sent in the dealer’s “commits” message, and of values on the polynomials
Ci(Y) = S(i, Y), Ri(X) = S(X, i). These are simply uniformly sampled polynomials which are consistent
with all other Cj , Rj polynomials and with the broadcasted Si values. That is, Ci(j) = Rj(i) and
Cj(i) = Ri(j) and Si = gCi(0). Since the adversary only has access to the polynomials Cj , Rj held by
corrupt parties Pj , all it sees are Cj and Rj polynomials consistent with each other and with the Si

values in both G2 and G3. If at any point the dealer is corrupted, then its view should be consistent
with that same S, and all honest parties simply act normally under the condition that messages sent up
until that point are consistent with S.

In order complete the proof, it is now left to argue that the view the adversary has in G3 is identical
to the view it has while interacting with Sim. The “commits” message is indeed generated by using
the uniform OMDL instance gz1 , . . . , gztr+1 as S1, . . . , Sztr+1 and uniformly generating commitments.
Following that, whenever a party Pi is corrupted, two polynomials Ci, Ri are defined for it. These
polynomials are generated in a way consistent with Si and with the other corrupted parties’ Cj , Rj

polynomials All messages sent to Pi then contain values consistent with Ci and Ri and with simulated
proofs. If the dealer is corrupted, then tr + 1− |C| polynomials Ci are defined. These polynomials are
used to define S and the dealer’s and honest parties’ views are generated in a way consistent with S,
after which they continue acting honestly. This means that it is enough to show that the distribution of
the Ci and Ri polynomials in G3 is identical to the distribution while interacting with Sim. Note that
the Ri polynomials are simply uniformly sampled by Sim under the condition that they are consistent
with Cj for every j ∈ C. This is the same distribution as the one in G3.

The proof for the distribution of the Ci polynomials is a little more intricate. Given that the event
Bad does not take place, M is invertible at any point throughout the protocol. This means that M
defines a bijection between coefficients a = (ai,0, . . . , ai,tc

)T and evaluations v = (ri, Rj1(i), . . . , Rjtc
)T

such that Ma = v and a = M−1v. By construction, ri is the discrete log of cmi. In addition, the set I
always includes the index 0, and R0(i) is defined to be the discrete log of Si. Finally, for every jk ∈ C,
Rjk

(i) is the evaluation of jk’s R polynomial at i. The rest of the Rjk
(i) values are sampled uniformly.

Therefore, because M−1 is a bijection, the coefficient vector a is sampled uniformly under the condition
that the resulting polynomial Ci(Y) =

∑tc

k=0 ai,kY k has Ci(j) = Rj(i) for every j ∈ C, Si = gCi(0), and
ri =

∑tc

k=0 δkai,k. I.e., the view generated when interacting with Sim is identical to the view in G3.

61

D Deferred Figures
In this section, we provide the formal descriptions for our packed ADKG protocol PADKG and our AVSS
scheme HAVSS. The former is given in Algorithm 1, and the latter is given in Algorithms 2 to 4.

Algorithm 1 PADKG from the view of Pi

1: initialize propi, dealersi, sigsi, sharingsi, noncesi := ∅
// Share a random secret via AVSS, and wait to complete n− tc sharings

2: sample si←$ Zp uniformly at random
3: call Share, sharing the secret si

4: upon completing AVSS invocation with Pj as dealer, do
5: dealersi := dealersi ∪ {j}
6: if |dealersi| = n− tc then
7: propi := dealersi

8: send ⟨“proposal”, propi⟩ to all parties
// Gather proof that share completed, and agree on a set of dealers

9: upon receiving the first ⟨“proposal”, propj⟩ message from party Pj , do
10: upon propj ⊆ dealersi, do ▷ Wait to complete Share for dealers in propj

11: send ⟨“signature”, Sig(siki, propj)⟩ to party Pj

12: upon receiving ⟨“signature”, σj⟩ from Pj , do
13: if propi ̸= ∅ and Ver(vkj , propi, σj) = 1 then
14: sigsi := sigsi ∪ {(j, σj)}
15: if |sigsi| = tc + 1 then
16: call MVBA on input (propi, sigsi) and external validity function checkValidity ▷ Agree on

n− tc dealers with at least one honest approval
// Reconstruct shared values

17: upon MVBA terminating with output (prop, sigs), do
18: upon prop ⊆ dealersi, do
19: call Rec for the AVSS instance with Pj as dealer for all j ∈ prop

// Save reconstructed sharings and apply superinvertible matrix
20: upon Rec terminating for dealer Pj with output (Sj , Sj,1, . . . , Sj,n) and sj,i, do
21: sharingsi := sharingsi ∪ {(j, sj,i, (S, Sj,1, . . . , Sj,n))}
22: if |sharingsi| = n− tc then
23: noncesi := ApplySI(sharingsi)
24: output noncesi and terminate

62

Algorithm 2 HAVSS.Deal(r)
1: sample a uniform bivariate polynomial S ∈ Zp[X, Y] of degree tr in X and degree tc in Y

such that S(0, 0) = r
// Generate Pedersen commitments and opening proofs

2: for all i ∈ [n] do
3: Ci(Y) = S(i, Y), cmi :=

∏tc

j=0 g
cj,i

j where Ci(Y) =
∑tc

j=0 cj,iY
j

4: ∀j ∈ [n] πj,i ← PProveH
open((cmj , i, Cj(i)), Cj)

5: rowi := ((Cj(i), πj,i))j∈[n]
6: Si := gCi(0)

7: πexp
i ← PProveH

exp((cmi, 0, Si), Ci)
8: CM := (cm1, . . . , cmtr+1), row0 := ((S1, πexp

1), . . . , (Str+1, πexp
tr+1))

9: securely erase the randomness for generating all proofs
10: reliably broadcast ⟨“commits”, CM, row0⟩
11: for every party Pi send ⟨“row”, rowi⟩ to Pi

Algorithm 3 HAVSS.Sharei

1: CM := ⊥, S := ⊥ Ci := ⊥, pointscol,i := ∅
2: if Pi is the dealer with input r ∈ Zp then
3: HAVSS.Deal(r)

// Check exponentiated openings, then store commitments
4: upon receiving a ⟨“commits”, CM′, row′

0⟩ broadcast from the dealer, do
5: parse CM′ = (cm1, . . . , cmtr+1) and row′

0 = ((S1, πexp
1), . . . , (Str+1, πexp

tr+1)
6: if ∀j ∈ [tr + 1] PVerH

exp((cmj , 0, Sj), πexp
j) = 1 then

7: CM := ExpInterpolate(CM′) ▷ CM = (cm0, cm1, . . . , cmn)
8: S := ExpInterpolate((S1, . . . , Str+1)) ▷ S = (S0, . . . , Sn)

// Check all openings, then forward them
9: upon receiving a ⟨“row”, rowi⟩ message from the dealer, do

10: upon CM ̸= ⊥, do
11: parse rowi = ((C1(i), π1,i), . . . , (Cn(i), πn,i))
12: if ∀j ∈ [n] PVerH

open((cmj , i, Cj(i)), πj,i) = 1 then
13: for every party Pj send ⟨“column”, Cj(i), πj,i⟩ to Pj

14: send ⟨“vote”⟩ to every party Pi

// Collect forwarded points and interpolate them
15: upon receiving a ⟨“column”, Ci(j), πi,j⟩ from party Pj , do
16: upon CM ̸= ⊥, do
17: if PVerH

open((cmi, j, Ci(j)), πi,j) = 1 then
18: pointscol,i := pointscol,i ∪ {(j, Ci(j))}
19: if

∣∣pointscol,i

∣∣ = tc + 1 then ▷ Interpolate points after receiving enough
20: Ci := Interpolate(pointscol,i)

// Bracha-style termination gadget
21: upon receiving ⟨“vote”⟩ messages from n− tc different parties, do
22: send a ⟨“done”⟩ message to all parties
23: upon receiving ⟨“done”⟩ messages from tc + 1 different parties, do
24: send a ⟨“done”⟩ message to all parties
25: upon receiving ⟨“done”⟩ from n− tc different parties and S ̸= ⊥, Ci ̸= ⊥, do
26: terminate

Algorithm 4 HAVSS.Reci

1: output si := Ci(0) and S = (S0, S1, . . . , Sn) and terminate

63

	Introduction
	Technical Overview
	More on Related Work
	Outline of the Paper

	Preliminaries and Model
	Cryptographic and Consensus Primitives

	Packed Asynchronous DKG and Threshold Signatures
	Packed Asynchronous DKG
	Robust Threshold Signatures

	Robust Threshold Schnorr Signatures
	Our Construction
	Security Analysis

	Efficient Packed ADKG Protocol
	Our Construction
	Security Analysis

	High-Threshold AVSS Scheme
	Our Construction
	Security Analysis

	Instantiation and Efficiency
	Additional Related Work
	Comparison to other High-Threshold AVSS

	Additional Preliminaries and Definitions
	Security Proofs
	Proof for Threshold Schnorr Signatures
	Proof for Packed ADKG
	Proof for High-Threshold AVSS

	Deferred Figures

