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Abstract. The Learning Parity with Noise (LPN) problem and its spe-
cific form, LPN with regularity, are widely utilized in crafting crypto-
graphic primitives. Recently, extending these problems to operate over
larger fields has been considered to enhance applications. Despite the
broad analysis available for traditional LPN approaches, the exploration
of LPN over large fields remains underdeveloped. This gap in research
has led to the development of improved attacks, suggesting that prim-
itives based on LPN over large fields may not meet necessary security
standards.
We have developed an algorithm that enhances the efficiency of solving
the LPN over large fields. This method innovatively modifies the Gaus-
sian elimination attack, traditionally known as Prange’s information set
decoding algorithm. Our key advancement involves the selective use of
partial Gaussian elimination rather than employing the full Gaussian al-
gorithm throughout, which we have termed the “Reduce and Prange’s
(RP) algorithm.” Additionally, we apply the RP algorithm to address
the LPN problem over large fields with regular noise. Our RP highlights
two key aspects: the vulnerability of existing schemes and the superiority
of our approach compared to recent analyses.
Our findings reveal that cryptographic applications, including Syndrome
Decoding in the Head frameworks (Crypto’22, Asiacrypt’23, Eurocrypt’24)
and Scalable Multiparty Garbling (CCS’23), are not secure enough. To
be precise, the schemes fail to achieve their intended bit-security.
Compared to the previous analysis by Liu et al. (Eurocrypt’24), we show
that for LPN over large fields (e.g., 128-bit field size), the bit-security is
reduced by 5-11 bits . Furthermore, our RP algorithm for solving LPN
with regular noise outperforms recent results by Liu et al., Briaud, and
Øygard (Eurocrypt’23) under certain parameter choices, leading to a
reduction in bit-security by 5-20 bits for LPN with regular noise.

Keywords: LPN (over large fields), LPN with regular noise, Concrete
security

1 Introduction

As the central problem of learning theory and coding theory, the learning parity
with noise (LPN) problem has affected numerous cryptographic primitives such



as secure arithmetic computations [7, 9, 17, 19, 20, 28, 36, 41, 44, 56, 62, 70], zero
knowledge proofs [10,32,39,66] and more [4–6,14,25,29,35,45,46,48,51,71,72].
The LPN problem is defined as follows.

Problem 1 (Learning Parity with Noise (LPN)). Let m,n, t be positive integers
and R be a ring. Let C be a probabilistic code generation algorithm such that
C(m,n,R) returns a matrix A ∈ Rm×n. Let χ(R) = {χm,t}m,t∈N(R) be a
family of distributions over Rm that returns a vector in Rm, where the number
of nonzero coefficients in the vector is t.

The computational Learning Parity with Noise (LPN) problem with respect
to parameters m,n and t involves obtaining a secret vector s given instances

(A,b = A · s+ e mod R)

where A ← C(m,n,R), s ← Rn and e ← χm,t(R). We simply say the problem
(m,n, t)-LPN problem over R.1

To the best of our knowledge, F2,Fq and ring Z2λ for some λ > 1 has been
primarily considered. Recently, [50] proved that (m,n, t)-LPN over Z2λ can be
reduced to (m,n, t/2)-LPN over F2, which suffices to analyze the security of LPN
over both fields F2 and Fq, respectively. If R = F2, then it is called the standard
LPN problem or simply LPN. If R = Fq with a prime power q ≫ 2, then we
call it ‘LPN over large fields’, where it is a natural variant of the (standard)
LPN. On the other hand, for post-quantum signatures, LPN over F28 is usually
considered [1–3,39].

The PCG-based primitives sometimes assume the regularity of the error dis-
tribution, which yields significant improvements in the design of efficient cryp-
tographic primitives with practical applications [9,10,18,20,22,28,30,31,33,34,
43,47,57,60–62,64–70]. Such a variant of LPN is called, LPN with regular noise
(for short regular-LPN) defined as below. Even more, these protocols addition-
ally employ a low-noise setting that t/m = 1/nε for some constant ε > 0 with
bounded samples.

Problem 2 (LPN with regular noise, regular-LPN). Let m,n, t, β be positive
integers with m = t · β and R be a ring. Let C be a probabilistic code genera-
tion algorithm such that C(m,n,R) returns a matrix A ∈ Rm×n. Let τ(R) =
{τm,t}m,t∈N(R) be a family of distributions over Rm. Given m, t, a distribution
τm,t returns a vector e = (e1∥ . . . ∥et) ∈ Rm such that ei ∈ Rβ is of Hamming
weight |ei| = 1 for 1 ≤ i ≤ t.

1 Following the previous work [19,20,50], we adapt the definition for our purpose. We
note that the definition of LPN originally states that the goal is to find s using oracle
access to O, which returns a LPN instance. To be specific, we only consider an LPN
where the number of oracle queries are limited to m. (The problem can be considered
as a variant of decoding linear code.) This constraint is reasonable because most
cryptographic primitives built on LPN use the parameter regime where the number
of oracle queries are bounded.
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The computational LPN with regular noise (regular-LPN) involves obtaining
a secret vector s given instances

(A,b = A · s+ e mod R)

where A ← C(m,n,R), s ← Rn and e ← τm,t(R). We simply say the problem
(m,n, t)-regular-LPN problem over R.

Note that LPN instances of the form (A,b) = (A,A · s + e mod R) can be
easily transformed into a problem of finding e when there exists a matrix H
such that H · e = H · b, and vice versa, as demonstrated in [55, Lemma 4.9].
Therefore, we can restrict our attention to (A,b) = (A,A · s + e mod R). In
particular, this paper mainly focuses on R = Fq with q ≫ 2.

Concrete Analysis for LPN over large fields. While various applications
have been developed using LPN over large fields, the focus of cryptanalysis has
predominantly been on standard LPN. Accurately estimating the security level
of cryptographic primitives is critical for assessing their robustness.

While the Blum-Kalai-Wasserman (BKW) algorithm [15] is highly effective
in solving standard LPN problems, its efficiency diminishes when applied to LPN
over large fields, particularly when q significantly exceeds 2. This discrepancy
arises because the BKW algorithm is optimized for scenarios where the field
size is smaller, and it relies on a subexponential number of samples for optimal
performance. As a result, its application to larger fields like Fq is not as effective.

Boyle et al. [17] initiates a study of a concrete analysis of LPN over Fq in order
to instantiate PCG-based protocols.The subsequent work by Liu et al. [50] shows
that the analysis of [17] is oversimplified, which yields the time cost of actual
attacks are overestimated. Moreover, they demonstrate that to solve LPN over
F2 and Z2λ , advanced algorithms such as [12, 16, 52, 53] yield the most effective
results, as expected. Nevertheless, when these techniques are applied to solving
LPN over Fq with large q, their performance, which is considerable for solving
LPN over F2, diminishes as the value of q increases.

Concrete Analysis for regular-LPN (over large fields). In the case of
regular-LPN, the work proposed by [21] describes a novel algebraic attack that
exploits regular noise distributions on Fq for any q ≥ 2. Specifically, the regular
noise distribution is used to generate multivariate polynomials, which can re-
duce the concrete security of regular-LPN. Subsequently, Esser and Santini [38]
modified the well-known algorithms for solving LPN into specified algorithms for
solving regular-LPN on F2. They mainly exploit the specific structure derived
from the regular distribution of the error vector. These results demonstrate the
importance of addressing the regular noise distribution in LPN. Unfortunately,
similar to a LPN case, if R = Fq with large q, algorithms in [38] are not suitable
for solving regular-LPN, except for the permutation-based algorithm.2

2 This permutation-based algorithm is identical to a Prange’s ISD algorithm except
for the guessing probability induced by regular noise assumption.
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These two results have in common that, despite powerful applications in
the case of LPN over large fields, more advanced analysis algorithms are still
lacking. According to [21,24,38,50,54,58], when the field size is sufficiently large,
Prange’s Information Set Decoding (ISD) algorithm has a comparable cost to
other algorithms.

1.1 Our Contribution

In this paper, we revisit Prange’s ISD algorithm to improve its performance
by reducing the cost of the Gaussian elimination part. We named the modi-
fied Prange’s algorithm as Reduce and Prange algorithm (RP). As a natural
application of RP algorithm, we further provide an algorithm: RP for specify-
ing regular-LPN, so-called regular-RP. We implement a SageMath [63] script to
search for near-optimal parameterization for our attacks. The main impact of
our algorithm is then two-fold:

Direct Impacts on Primitives. Our findings demonstrate that recent applica-
tions based on LPN over large fields—referenced in [2,3,11,39,42] are not secure
enough. Specifically, while these applications are typically designed to provide
80/128-bit security, our algorithm reveals that their actual security falls below
this threshold. This result is represented in Table 1.

Table 1. Target schemes and parameters.

Scheme
Parameters

Previous RP
Fq m n t

SDitH [2,3, 39]3 F28 256 128 80 128 115

Scalable Multiparty Garbling [11] 4 555 127 139 80 73

785 214 197 128 119

[42]

F28 220 101 90 128 125

F29 207 93 90 128 126

F210 196 92 84 128 124

Implicit Impacts on PCG-like protocols. Recently, Liu et al. [50] provides
a bit-security estimation for solving LPN over Fq, especially focusing on PCG
protocols. They re-calculate all parameters in [17] and reproduce more accurate
security estimation to tightly choose parameters. Furthermore, based on their

3 In case of [39], the parameter is used in a variant 3 scheme. Other schemes are based
on the hardness of LPN over F2.

4 [11] does not provide an exact field size, but explicitly mentioned that their scheme
is based on the hardness of LPN over large field.
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estimation, they also provide recommendation parameters for PCG applications
to achieve 128-bit security.

By applying RP to such parameters, we demonstrate that RP can surpass
existing methods for solving the LPN problem over large fields in PCG parameter
settings. The estimated results for various parameters are given by Table 2.
Indeed, the bit-security of LPN over F2128 is reduced by 5-11 bits when log q =
128 compared to [50].

For regular-LPN over large fields, the results show that our algorithm out-
performs the recent work proposed in [21,50] for certain parameter settings with
relatively small n.5 Specifically, the bit-security is reduced by 5-20 bits for small
(m,n) and log q = 128. However, when t/n is sufficiently small, the approach pre-
sented in [21] outperforms regular-RP. For detailed numerical results on solving
LPN with regular noise, please refer to Table 4.

Moreover, for recommended parameters to achieve 128-bit security in [50],
we provide numerical results for our RP and regular-RP algorithms. For LPN
defined over Fq with log q = 128, our algorithm outperforms the previous works
and reduces the bit-security by 5-9 bits. The regular-RP can reduce the bit-
security of regular-LPN by 8-11 bits for smallm. However for largem, it becomes
worse quickly. We refer to Table 3 and Table 5, respectively.

1.2 Technical Idea

We first recall Prange’s Information Set Decoding (ISD) algorithm to describe
our idea. To this end, we introduce some notations: Given any vector x ∈ Fm

q ,
|x| is denoted by the Hamming weights of x. Let (A,b) ∈ Fm×n

q × Fm
q be LPN

instances and I ⊂ [m] an index set of size n. Then, we can obtain AI (Resp. bI)
by a submatrix of A (Resp. subvector of b) by collecting i-th row of A (Resp.
i-th coordinate of b) for i ∈ I.

Under notations, Prange’s Information Set Decoding algorithm is given in
Algorithm 1.

Algorithm 1 Prange’s ISD

Input: (m,n, t)-LPN over Fq instances (A,b) ∈ Fm×n
q × Fm

q .
Output: The secret s such that |b−A · s mod Fq| = t.
1: repeat
2: Choose random index subsets I ⊂ [m] of size n
3: Generate a submatrix (AI ,bI) collecting i-th row of A (Resp. b) for i ∈ I
4: until AI is invertible and |b−A · s mod Fq| = t where s = A−1

I · bI mod Fq

5: return (s, I)

It is clear that Prange’s algorithm terminates in G/P, where P denotes the
probability of collecting n error-free instances (i.e., bi = ⟨ai, s⟩) and G denotes

5 Note that [38] mainly focuses on how to efficiently solve regular-LPN over the binary
field. Indeed, their algorithms are not suit for regular-LPN over large fields.
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time cost of the Gaussian elimination algorithm. Although the Gaussian elim-
ination operation has a time complexity of only O(nω) for the linear algebra
constant ω, where it is typically disregarded in the context of asymptotic anal-
ysis, its concrete time complexity is of significant consequence in estimating the
bit-security. For instance, we consider the (1024, 652, 57)-LPN over Fq. Accord-
ing to [50], the bit-size of the total cost associated with this problem is reported
to be 111, with the Gaussian elimination accounting for a bit-size of 23 when we
take O(nω) = n2.8. This highlights that the Gaussian elimination contributes to
approximately one-fifth of the total complexity exponent involved in solving the
problem. Consequently, to improve Prange’s ISD, it is essential to reduce the
cost of the Gaussian algorithm G since the probability of collecting n error-free
samples cannot be changed.

Canteaut and Chabaud (CC) [23] and Bernstein, Lange and Peters (BLP)
[13] proposed algorithms for solving LPN through reducing the cost of Gaussian
elimination via so-called reusing existing pivots and forcing more existing pivots.
In this work, we propose a method to extend these algorithms. The simplest
RP is performed by two steps:

1. Guess N zero positions in e and transform from (m,n, t)-LPN instances to
(m−N,n−N, t)-LPN instances.

2. Solve the (m−N,n−N, t)-LPN problem using Prange’s ISD algorithm.

Since the secret dimension is n−N , the Gaussian elimination algorithm is con-
ducted over a matrix of size n − N , which reduces the cost of the Gaussian
elimination. This approach is performed iteratively, with the number of itera-
tions being referred to as a level. As a result, the Reduce and Prange algorithms,
which are defined by their level, are naturally defined. For example, when k = 2,
then we first guess N1 positions, to generate (m−N1, n−N1, t)-LPN instances.
Then, we additionally guess N2 positions to get (m−N1 −N2, n−N1 −N2, t)-
LPN instances. As the final step, we solve the LPN problem using Prange’s ISD
algorithm.

Advantages of Reduce and Prange’s ISD. The Reduce and Prange’s ISD
algorithm offers a key advantage by lowering the cost per iteration compared to
the original Prange’s ISD. While the original algorithm requires nω cost for each
iteration due to performing Gaussian elimination on an n-dimensional matrix,
the Reduce and Prange’s algorithm strategically divides zero indices into sets,
I1 and I2. If an error occurs in I2, only this subset is replaced rather than
all n indices, reducing the iteration cost to (n − N1)

ω. Similarly, when I1 is
incorrectly guessed, the Reduce and Prange’s algorithm only repeats the Step
1 with a complexity Cm,N1 . This approach significantly lowers the (concrete)
iteration cost, while maintaining the overall success probability, as the algorithm
still collects n zero indices.

Comparison to previous works [13,23].We provide a conceptual comparison
between previous works and our algorithm in terms of G. The key idea behind
the algorithms in [13,23] involves reusing the pivots from the previous iteration.
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In a nutshell, suppose that (A,b) with b = A · s + e mod Fq is given. The

BLP/CC algorithms [13, 23] transform this into a pair (A′,b′) ∈ Fm−n×(n+1)
q

where b′ = A′ ·e′+e′′ mod Fq by reducing s. If the partial noise vector e′ ∈ Zn
q is

zero, then b′ has a Hamming weight of t, leading to the algorithm’s termination.
If not, some components of e′ will be zero, allowing the reuse of the n − c zero
coordinates in e′ and collection of c new samples to obtain n error-free instances.

When guessing that n − c coordinates of e′ are zero, the corresponding
columns of A′ are not needed. As a result, the pair (A′,b′) becomes (A′′,b′) ∈
Zm−n×(c+1)
q . Since Gaussian elimination is required over a smaller dimension

c < n, the overall complexity is reduced compared to Prange’s algorithm. This
optimization can be seen as collecting error-free instances from two separate
lists, one of size n− c and the other of size c.

Our RP algorithm starts from an extension of the BLP/CC observation: In
the perspective, we aim at collecting n error-free instances using ’multi’ separated
lists (N1, N2, . . . , Nk) such that

∑k
i=1 Ni = n, where k is called a level. Given

the multi-size set, the RP collects N1 error-free instances and converts (m,n, t)-
LPN instances into (m1, n1, t)-LPN instances with m1 = m−N1, n1 = n−N1 by
reducing the secret vector from the N1 error-free instances. This technique can
be iteratively applied for multiple rounds with the given set. The time complexity
of each iteration is then less than that of G. By selecting {Ni}ki=1 properly, it
improves the overall performance of the algorithm. For the detailed algorithmic
description, we refer Section 2.

2 Reduce and Prange Technique

This section introduces a new approach for solving LPN over large fields, simply
called the Reduce and Prange. For the algorithm description, we suppose that
LPN instances of the form (A,b = A · s + e mod Fq) with A ∈ Fm×n

q , s ∈ Fn
q

and e← χt,m are given.
It is important to note that the probability of collecting n error-free polyno-

mials is
(m−n

t )
(mt )

. Therefore, the Prange’s ISD algorithm 1 ensures that the desired

secret vector can be recovered with
(mt )
(m−n

t )
iterations. Therefore, the time com-

plexity of Prange’s ISD algorithm is estimated by

O

( (
m
t

)(
m−n

t

) · nω

)
where nω is a cost of the Gaussian elimination with the linear algebra constant
2 ≤ ω ≤ 3.

2.1 Reduce and Prange’s ISD

The intuition of the attack is that we first guess N1 error-free samples to obtain
LPN samples themselves of less dimension. We then apply Prange’s algorithm
to the LPN of n−N1 dimensions.
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Suppose that LPN instances of the form (A,b = A · s + e mod Fq) with
A ∈ Fm×n

q , s ∈ Fn
q and e ← χt,m. We let ai (Resp. bi and ei) denote the i-th

vector of A (Resp. b and e).

Step 1. Guess an index set I1 ⊂ [m] of the size N1(< n), which corresponds
to the zero positions in e. For an easy explanation, we will assume that the last
N1 positions in e are zero. In general, the zero positions can be shifted to the
end through permutation. Let Atop and Abot be a submatrix of A which consists
of the first m − N1 rows of A and the last N1 rows, respectively. Analogously
to the notation, we define btop, bbot, etop, and ebot. The above assumption then
says that ebot = 0. Under the notation, it holds that(

btop

bbot

)
=

(
Atop

Abot

)
· s+

(
etop
0

)
mod Fq

We then apply the Gaussian elimination algorithm to obtain LPN of less di-
mension. For this purpose, We parse s to (s1∥s2) such that s1 ∈ Fn−N1

q and

s2 ∈ FN1
q . Similarly to the s, we split Atop (Resp. Abot) into (Aleft

top∥A
right
top ) (Resp.

(Aleft
bot∥A

right
bot )) as well. Assuming that the matrix Aright

bot is invertible over Fq, (If

not, we change the order of columns until Aright
bot is invertible), one can get the

following LPN samples:

b′ : =
(
Im−N1

∥ −Aright
top · (A

right
bot )

−1
)
·
(
btop

bbot

)
=
(
Im−N1

∥ −Aright
top · (A

right
bot )

−1
)
·
((

Atop

Abot

)
· s+

(
etop
0

))
mod Fq

= (Aleft
top −Aright

top · (A
right
bot )

−1
·Aleft

bot)︸ ︷︷ ︸
=:A′

·s1 + etop mod Fq.

We denote it as (A′,b′) ← Conv((A,b), I1) since this conversion technique
is employed several times.

Complexity. In each guessing, this algorithm computes the matrix A′, which
consists of one matrix inversion and two matrix multiplications so it takes in
time Cm,N1

:= O(Nω
1 +N2

1 · (m−N1)+N1 · (m−N1) · (n−N1)), where ω is the
linear algebra constant. The probability that attackers can correctly guess N1

positions is Pm,t,N1
:=

(m−t
N1

)
(m
N1
)
, which directly implies that the time complexity

to get LPN samples of dimension n−N1 is 1
Pm,t,N1

· Cm,N1
.

Step 2. For ease of representation, we assume that (m − N1, n − N1, t)-LPN
instances (A′,b′) such that b′ = A′ ·s1+etop mod Fq are given, where (A

′,b′)←
Conv(A,b), I1), s1 ∈ Fn−N1

q and etop ∈ χt,m−N1
. In addition, the index of etop is

given as [m] \ I1.
The second step just runs Prange’s algorithm. That is, one first collects an

index set I2 ⊂ [m] \ I1 of size n − N1 from given m − N1 LPN instances.
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Then, one can recover the secret s1 via the Gaussian elimination algorithm.
After recovering s1, one can recover the vector s2 from the identity bbot =
Abot · (s1∥s2).

Complexity. It is obvious to compute the complexity of Prange’s algorithm for
solving LPN over with dimension n−N1, samples m−N1 and t nonzero:

Sm−N1,n−N1,t
def
=

(
m−N1

n−N1

)(
m−N1−t
n−N1

) · (n−N1)
ω =

1

Pm−N1,t,n−N1

· (n−N1)
ω,

where the linear algebra constant ω. Putting it together, the LPN problem is
solved within

1

Pm,t,N1

· (Cm,N1 + Sm−N1,n−N1,t)

In the complexity, the term 1
Pm,t,N1

· Sm−N1,n−N1,t =
(mn)
(m−t

n )
· (n −N1)

ω is a

dominating term. Compared to the original Prange’s ISD algorithm
(m−t

n )
(mn)

· nω,

the fractional part is shared but one can see that the multiplier factor, (n−N1)
ω,

is smaller for the Reduce and Prange algorithm. This can be expected to lower
the overall complexity of the algorithm.

Impact of the Reduce and Prange’s ISD. We present the advantages of
the Reduce and Prange’s ISD algorithm. The main difference lies in the cost of
each iteration. To be precise, the original Prange’s ISD algorithm incurs a cost
of nω, as Gaussian elimination on an n-dimensional square matrix is performed
in each iteration.

The Reduce and Prange’s ISD algorithm reduces the cost per iteration.
Intuitively, the algorithm collects sets of zero indices, I1 and I2, such that
#I1 + #I2 = n with #I1 = N1. Suppose that I2 includes an incorrect zero
index. In this case, the Reduce and Prange’s algorithm only needs to replace I2,
rather than all n zero indices. This step corresponds to Step 2. This adjustment
results in a per-iteration cost of only (n − N1)

ω. Similarly, if I1 is incorrectly
guessed, the Reduce and Prange’s algorithm repeats Step 1 with a complexity
of Cm,N1 .

In summary, the Reduce and Prange’s algorithm reduces the cost per iter-
ation. However, the overall probability remains unchanged since the algorithm
still collects sets of n zero indices.

2.2 Iterative Reduce and Prange Technique

‘Step 1’ in Section 2 can be interpreted as a self-reduction of LPN. As a natural
extension, one can run Step 1 reduction repeatedly to get LPN samples of less
dimension. Thereafter, one can solve the reduced LPN problems by Step 2. With
respect to the number of reductions, we call this algorithm the level-k Reduce
and Prange algorithm.
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For instance, suppose k = 2, the level-2 Reduce and Prange algorithm cor-
responds as follows: First, guess three index sets {I1, I2, I3} ⊂ [m] of size

#Ii = Ni and
∑3

i=1 Ni = n. Then, one can get LPN samples (A(2),b(2))
of dimension N3 from (A(2),b(2)) ← Conv((A(1),b(1)), I2) and (A(1),b(1)) ←
Conv((A,b), I1). Then it can be solved via the Prange algorithm on the less di-
mension N3. The interesting fact is that since this auxiliary step proceeds after
the first step occurs, the overall time complexity for level-2 Reduce and Prange
algorithm is given as

1

Pm,t,N1

·
(
Cm,N1 +

1

Pm−N1,t,N2

(Cm−N1,N2 + Sm−N1−N2,N3,t)

)
.

As a generalization, the time complexity for level-k Reduce and Prange al-
gorithm is then obviously computed. Given a set {Ni}k+1

i=1 and sample an index

set {Ii}k+1
i=1 ⊂ [m] such that #Ii = Ni and

∑k+1
i=1 Ii = n. For ease of exposition,

we define simplified notations P(j), C(j),S as follows:

P(j) = Pm−µj−1,t,Nj

C(j) = Cm−µj−1,Nj

S =
1

Pm−µk,t,n−µk

· (n− µk)
ω
,

where µj =
∑j

i=1 Ni for every j ≥ 1. Then, under the notation, the total cost of
our algorithm is

T =
1

P(1)

(
C(1) + 1

P(2)

(
C(2) + · · ·+ 1

P(k)
(C(k) + S)

))

To simplify it, we also define Q(j) as Q(j) =
∏j

i=1 P(i). We then denote the
total cost as

T =

k∑
j=1

C(j)
Q(j)

+
S
Q(k)

.

An algorithm to construct a set {Ni}k+1
i=1 , optimizing the complexity of the

RP algorithm, will be described later. The whole algorithm is then described as
follows.
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Algorithm 2 Reduce and Prange’s ISD

Input: (m,n, t)-LPN over Fq instances (A,b) ∈ Fm×(n+1)
q and an index size {Ni}k+1

i=1 .
Output: The secret vector s such that |b−A · s mod Fq| = t .
1: repeat
2: for i = 1 up to k do
3: Choose a random index set Ii of size Ni

4: Update (A,b)← Conv((A,b), Ii)
5: (s′, Ik+1)← Algorithm 1((A,b), t)
6: I :=

⋃k+1
i=1 Ii and (AI ,bI)← [A,b]I

7: end for
8: until AI is invertible and |b−A · s mod Fq| = t where s = A−1

I · bI
9: return (s, I)

Optimal index size. To (approximately) optimize the cost, we observe T as
two perspectives. First of all, for every j, we observe

Q(j) =

(
m−t
µj

)(
m
µj

)
where µj =

∑j
i=1 Ni. From the observation, C(1)

Q(1) is only determined by the N1

when j = 1. Inductively, when the
∑j−1

i=1 Ni is fixed once, the ratio C(j)
Q(j) is only

determined by the Nj .
Next, we also have

S
Q(k)

=

(
m
µj

)(
m−t
µj

) · S
=

(
m
µj

)(
m−t
µj

) · (n− µk)
ω

Pm−µk,t,n−µk

where µj =
∑j

i=1 Nj for each j. Therefore, it satisfies that

S
Q(k)

= (n− µk)
ω ·

(
m
n

)(
m−t
n

) ,
where the quantity is invariant under the level k. This means that the cost of

the last term is written as
(m−t

n )
(mn)

· α for some α = (n − µk)
ω. Obviously, α gets

smaller as µk gets larger.
Since the overall cost of a positive addition will be optimized when all values

are similar, we let the threshold be
(m−t

n )
(mn)

·∆ for some integer ∆ ∈ Z and choose

the largest integer Ni such that each C(i)
Q(i) term is less than the threshold, starting

at i = 1. If there is no integer Nj for an index j, we let Nj = n − µj−1 and
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operate the Prange’s algorithm of LPN of dimension Nj . Then the total cost is

given as
∑j−1

i=1
C(j)
Q(j) +

(mn)
(m−t

n )
Nω

j .

We try it for all ∆ smaller than n2.8, and give the most optimized cost. The
full algorithm for estimating the Reduce and Prange will be given by Algorithm 3.

Algorithm 3 RP Estimation

1: Input: LPN parameters (m,n, t)
2: Output: The total cost of the Reduce and Prange algorithm.

3: Set T =
(mn)
(m−t

n )
// T is a threshold.

4: Set Cost = T · n2.8

5: for ∆ = 1 up to n2.8 do
6: Set k = 1
7: while ∃Nk such that C(k)

Q(k)
< ∆ · T do

8: Set largest Nk such that C(k)
Q(k)

< ∆ · T
9: Set k = k + 1
10: end while
11: Set Nk+1 = n−

∑k
i=1 Ni

12: Cost = min
{
Cost,

∑k
i=1

C(i)
Q(i)

+ T ·N2.8
k+1

}
13: end for
14: Return Cost and {Ni}k+1

i=1

2.3 Graphical Results and Its Discussion

This section provides graphical results for our RP to provide the improvement
scale with the parameter size. For this purpose, we have tried to find an asymp-

totic time complexity represented by 1
P ·n

C·2.8 with P =
(m−n

t )
(mt )

. For example, it

is obvious that C = 1 when we exploit the original Prange’s ISD. If C is strictly
less than 1, then one concludes RP outperforms Prange’s ISD. This is because P
in RP and P in Prange’s ISD are essentially the same. Thus, C directly measures
how much RP improves the performance rather than Prange’s ISD.

Given two parameters (m,n, t) = (210, 652, 106) and (m,n, t) = (212, 1589, 172),
we provide plots of the change in C by changing only one parameter. For exam-
ple, Figure 1 and Figure 2 show changes of C when increasing m with a fixed
(n, t). According to these figures, we observe that when m goes to infinity, C is
also close to 1.

On the other hand, from Figure 3 and Figure 4, we also observe that when n
is bigger than, RP is more better with a fixed (m, t). Similarly, from Figure 5 and
Figure 6 argues that given a fixed (m,n), whenever t is bigger, the performance
of RP is better than that of Prange’s ISD.

12



When we find an approximation of C very close to each figure, then it would
be helpful to estimate the performance of the asymptotic complexity of RP. We
unfortunately fail to find the closeness of C. However, we believe that it would
be helpful to graphically provide the improvement of RP.

Fig. 1. Graphical results by increasing m
with a fixed (n, t) = (652, 106)

Fig. 2. Graphical results by increasing m
with a fixed (n, t) = (1589, 172)

Fig. 3. Graphical results by increasing n
with a fixed (m, t) = (210, 106)

Fig. 4. Graphical results by increasing n
with a fixed (m, t) = (212, 172)

3 Regular-RP: Application to regular-LPN

This section provides how to apply the RP to the LPN with regular noise, which
is equivalent to the regular syndrome decoding problem. Throughout this section,
we set R = Fq with q ≥ 2.
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Fig. 5. Graphical results by increasing t
with a fixed (m,n) = (210, 652)

Fig. 6. Graphical results by increasing t
with a fixed (m,n) = (212, 1589)

We first introduce a new problem, called the regular syndrome decoding
(RSD). RSD was originated [8], and it has a lot of applications in PGC-like
protocols [9, 18,20,22,28,31,40,60–62,66,70].

Problem 3 (Regular Syndrome Decoding over Fq). Let m,n, t, β be positive in-
tegers with m = t · β and Fq be a finite field. Sample a full rank matrix

H ← F(m−n)×m
q and a column vector e := (e1∥e2∥ . . . ∥et) ← Fm

q such that

ei ∈ Fβ
2 is of Hamming weight |ei| = 1 for 1 ≤ i ≤ t. Given (H,y = H · e),

recover the error e.

3.1 Algorithm for regular-LPN over Large Fields

Esser and Santini [38] proposed an algorithm to solve regular-LPN, with the
permutation-based ISD algorithm leveraging the regular structure to identify
error-free instances. We incorporate this technique into our algorithm to better
estimate the security of regular-LPN over large fields.

This approach optimizes the guessing probability in the RP algorithm to
solve regular-LPN more efficiently in large fields, which we refer to as regular-
RP. Except for the probability, the strategy of RP is used.

Regular-RP. As the standard RP, suppose that {Ni}k+1
i=1 is given and sample

{Ii}k+1
i=1 such that #Ii = Ni and

∑k+1
i=1 Ni = n. Specifically, in the initial step,

we sample I1 to set (A′,b′)← Conv((A,b), I1). We now focus on how to sample
I1 to leverage the regular constraint. Here, we set Ni as a multiple of t for a
simple description.

By definition of regular-LPN, it holds that each ej has exactly one nonzero
element. It immediately implies that the probability of guessing a zero coordinate
of e1 equals to β−1

β . To guess the second zero position, one considers two cases:

– E1: Find the zero coordinate in e1.
– E2: Find the zero coordinate in ej for j ̸= 1.
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The probability of event E1 is β−2
β−1 , whereas the probability of event E2 is β−1

β .

Thus, the best strategy for sampling I1 is to guess N1/t-zero coordinates in each
ej . Consequently, the probability of selecting N1 zero positions is

PR
m,t,N1

=

(
1− N1/t

β

)t

=

(
1− N1

m

)t

.

Similarly, when sampling Ii, guessing Ni/t zero coordinates in each ej yields an
optimal probability. To describe it formally, we denote a coordinate set of ej as
[ej ] and parse Ii = ∪tj=1Iij such that Iij ⊂ [ej ]\∪i−1

ℓ=1Iℓj of size #Iij = Ni/t. We
refer to the RP algorithm using this customized sampling method as regular-RP.

Algorithm 4 Regular Reduce and Prange’s ISD

Input: (m,n, t)-regular LPN over Fq instances (A,b) ∈ Fm×(n+1)
q and an index set

{Ni}k+1
i=1 .

Output: The secret vector s such that |b−A · s mod Fq| = t .
1: repeat
2: for i = 1 up to k do
3: Choose a random index set Iij of size Ni/t for 1 ≤ j ≤ t
4: Update (A,b)← Conv((A,b), Ii)
5: (s′, Ik+1)← Algorithm 1((A,b), t)
6: I :=

⋃k+1
i=1 Ii and (AI ,bI)← [A,b]I

7: end for
8: until AI is invertible and |b−A · s mod Fq| = t where s = A−1

I · bI
9: return (s, I)

Complexity. Based on the modified probability, we can also calculate the time
costs of regular-RP. To this end, we define PR(j), C(j) and SR as follows:

PR(j) = PR
m−µj−1,t,Nj

C(j) = Cm−µj−1,Nj

SR =
1

PR
m−µk,t,n−µk

· (n− µk)
ω

where µj =
∑j

i=1 Ni for every j. Then, under the notation, the total cost of
level-k regular-RP algorithm, denoted by T R, can be expressed as

1

PR(1)

(
C(1) + 1

PR(2)

(
C(2) + · · ·+ 1

PR(k)

(
C(k) + SR

)))
To simplify it, we also define QR(j) as QR(j) =

∏j
i=1 PR(i). We then denote

the total cost as

T R =

k∑
j=1

C(j)
QR(j)

+
SR

QR(k)
.
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4 Concrete Estimation of LPN via Reduce and Prange
algorithm

In this section, we provide the estimated results of our algorithms for solving
the LPN over large fields. Especially, we mainly provide security estimations for
LPN over large fields used in PCG applications. The results are given by

– Table 2: Comparison results between RP and previous works for solving LPN
over F2128

– Table 3: Numerical results of RP on recommendation parameters for 128-bit
security in [50]

– Table 4: Comparison results between regular-RP and previous works for
solving regular-LPN

– Table 5: Numerical results of regular-RP on recommendation parameters for
128-bit security in [50]

We further compare the results with recent attacks [21, 38, 50] depending
on problems in each tables. Throughout this section, time complexity means
the number of arithmetic operations in each field. According to the results in
Table 3, we observe that for LPN over large fields, our algorithm is always better
than previous works. For regular LPN over large fields, which achieves 128-bit
security, our algorithm tends to be better when m,n is small, but the algorithm
quickly becomes worse for large parameters. For this purpose, we first recall the
parameters for LPN over large fields.

– q: the size of fields = 2128.
– m: the number of LPN instances.
– n: the dimension of LPN secret s.
– t: the number of nonzero entries in e.

Our focus is mainly on the parameter regime (m, q, t) = (poly(n), nw(1), o(m)),
which has been widely used in several cryptographic applications including those
presented in [9, 10,17,19,20,28,32,62,66,70].

While setting optimal parameters provides the lowest computational cost
for solving the LPN problem, empirically determining the optimal index size
{Ni}k+1

i=1 can be time-consuming. Furthermore, the level parameter k is usually
set at a minimum of 2000, which adds to the complexity. As an alternative,
we propose a quicker estimation method using the RP algorithm with k = 3.
We configure it by setting N1 = 0.4 · n,N2 = 0.3 · n,N3 = 0.2 · n,N4 = 0.1 · n.
Heuristically, this setup of the RP cost on these index size yields a nearly optimal
cost, with only a 2-3 bit difference in performance. This approach significantly
reduces the setup time while maintaining close to optimal performance levels.
We say the RP on the index size quick-RP. Our analysis primarily utilizes the
RP algorithm. However, for concrete estimations, we occasionally employ the
quick-RP approach and will specifically note this when used.

For a detailed examination of the computational experiments conducted in
this study, the complete source code has been made available. The repository
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includes implementations of the RP estimation and its faster variant, quick-RP,
applied to both LPN and regular-LPN problems. The code can be accessed via
the following link: RP and Quick-RP Estimations.

To assess our algorithm, we compare its performance with ISD and its vari-
ants. We begin by recalling the results from [50]:

– For the parameter regime R = Fq with prime power q = nw(1), t = o(m)
and (1 + β) · n ≤ m = poly(n) for some constant β, the statistical decoding
including the 2.0 variant [26] needs more cost than Prange’s algorithm [59].

– For the above parameter setup, information set decoding and its variants
outperform other algorithms.

Therefore, ISD and its variants serve as the most relevant benchmarks for eval-
uating our results. In the following, we then describe the complexity model of
the algorithms.

For fair comparisons, the time complexity of the Gaussian elimination algo-
rithm on a k × k matrix is based on the same cost model. Indeed, we utilize a
cost model of k2.8 as in the previous works [17,50].6

Cost models of the Previous algorithms. We present the cost models for
known algorithms that solve the LPN problem over large fields, focusing on
three key algorithms: Gauss ISD [59], ISD frameworks, and Statistical Decoding
[26,50].

Gauss Algorithm. The Gauss algorithm is identical to Prange’s algorithm
(see Algorithm 1), but it covers an additional case: LPN instances (A,b) =
(A,A ·s+e) can be transformed into the problem of finding e when H ·e = H ·b
for a parity check matrix H, and vice versa, as shown in [55, Lemma 4.9].

In this scenario, the cost is given by:(m − n)2.8 ·
(

(mt )
(m−n

t )

)
.Combining these

factors, the Gauss algorithm’s cost model is defined as follows:

Gauss cost model = log

(
min{n2.8, (m− n)2.8} ·

( (
m
t

)(
m−n

t

)))

Information Set Decoding. For LPN over large fields and regular-LPN prob-
lems, Liu et. al. [50] showed that SD-ISD is the most efficient algorithm. As
a result, they estimate the hardness of LPN over large fields and regular-LPN
based on the cost of SD-ISD. Thus, we introduce only a cost of SD-ISD attack
as a representative of ISD frameworks.

Lemma 4.1 (Cost of SD-ISD attack [50]) The (m,n, t)-LPN problem over
Fq can be solved by the SD-ISD variant in expected time

TSD(m,n, t) = min
p,ℓ

1

P(p, ℓ)

(
TGauss + 2L ·m

(
1 +

L

qℓ

))
6 The exponent is inspired by the Strassen matrix multiplication algorithm.
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where TGauss =
(m−n−ℓ)·m2

log(m−n−ℓ) , L =
(n+ℓ

2

p/2

)
·(q−1)p/2 and P(p, ℓ) = (m−n−ℓ

t−p )
(mt )

· L2

(q−1)p .
7

Statistical Decoding framework. While ISD algorithms aim to recover the
secret element s directly, the Low Weight Parity Check (LPC) algorithm focuses
on distinguishing between random instances and LPN instances. In other words,
it determines whether b is equal to A · s+ e mod Fq or just a random element.
Although this algorithm is not well-suited for solving LPN over large fields, we
still provide its attack complexity as a comparison for decision problems. For
q ≥ 4t, the adapted SD 2.0 algorithm is proposed in [50].

Lemma 4.2 ([26,50]) The adapted SD 2.0 algorithm can solve the decisional
(m,n, t)-LPN over Fq in time T with constant advantage, where w = w(s) ∈ N
and q ≥ 4t. The formula for T is given by

T = min
s

T1 ·

( (
m
t

)(
m−w

t

) · q

q − 1

)2

+ s · log q · qs
 .

Here, T1 represents the time it takes to find one parity check vector. Following
[17,50], we also set w = n− s+ 1 and T1 = n+ 1. As a result, we have

T = min
s

(n+ 1) ·

( (
m
t

)(
m−n+s−1

t

) · q

q − 1

)2

+ s · log q · qs
 .

4.1 Numerical Results of LPN over large fields

This section presents the numerical results obtained from our attack estimation
for different parameter settings. We developed a SageMath [63] script to search
for near-optimal parameterization for our attack. The original algorithm would
have examined the attack complexity that is minimized for all ∆ values, but
we examined the values via the binary search with depth ≤ 12 to find an ap-
proximate minimum quickly with a constraint ∆ ≤ n2.8. The cost we found also
provides a sufficiently small value compared to the original cost. We also provide
comparison results between [50] and ours for a few parameters. The results are
given by Table 2.

Our results indicate that for the parameters used in [50], the bit-security of
LPN over large fields is reduced by 5-11 bits when log q = 128. Consequently, the
parameters described in [50] do not achieve 128-bit security. To ensure 128-bit
security, we propose new parameter settings, as shown in Table 3.

7 As the paper [50] only presents an estimation of LPN over F2, we rely on the formu-
lation provided by their Python script to describe our approach.

8 [50] also presents numerical results for the statistical decoding 2.0 attack [27]. How-
ever, we did not take these results into account because they showed lower perfor-
mance compared to than Gauss and ISD results in these parameters in the table.
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Table 2. Comparison results with previous results [50, Tab. 2] and ours. All values are
logarithmic scale of arithmetic operations over Fq with the field size log q = 128. The
column SD indicates the result of algebraic attacks In our works, ‘RP’ column presents
the estimated result of Reduce and Prange algorithm. † indicates estimation results
obtained by quick-RP.

Parameters [50]8
This work

m n t Gauss ISD SD

210 652 57 111 111 184 102

212 1589 98 100 100 151 91

214 3482 198 101 101 149 94

216 7391 389 103 103 147 96

218 15536 760 105 105 146 101

220 32771 1419 107 145 102 102

222 67440 2735 108 144 104 104

212 3/4 · 212 44 117 117 189 109

214 3/4 · 214 39 111 111 170 105

216 3/4 · 216 34 107 107 151 102

218 3/4 · 218 32 108 108 145 104†

220 3/4 · 220 31 112 112 143 107†

222 3/4 · 222 30 116 116 141 111†

224 3/4 · 224 29 119 119 139 115†

Remark 1. Some readers might be curious about the configuration of the sub-
dimension sets {Ni}ki=1. Given our observations, with k typically ranging from
over 20 to as high as 2000, accurately defining the set can be challenging. Con-
currently, it has been noted that the size of N1 often exceeds N/3. Similar
occurrences are also observed in the context of the regular-LPN.

4.2 Numerical Results of regular-LPN over large fields

This section provides numerical results for solving regular-LPN for various pa-
rameters through a regular-RP algorithm, and gives comparison results with
[21,50]. Here, as in the previous section, we mainly cover regular-LPN over large
fields parameters. Thus, we do not cover estimations in [25, 38] specified on
regular-LPN over a binary field.

We first note that [21, 50] provides numerical results of the bit-security of
regular-LPN over Fq with log q = 128 since both algorithms rarely depend on
the field size. Conversely, [38] solely provides the bit-security of regular-LPN
over F2. Thus, we revisit the algorithms in [38] and re-estimate the bit-security
of regular-LPN over F2128 .

[38] proposes three types of algorithms: permutation-based regular-ISD (P-
ISD), enumeration-based regular-ISD (E-ISD), and representation-based regular-
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Table 3. Comparison results with previous results [50, Tab. 3] and ours. All values
are logarithmic scale of arithmetic operations over Fq with the field size log q = 128. In
our works, ‘RP’ column presents the estimated result of Reduce and Prange algorithm.
RP for recommended parameters takes at least 2128 arithmetic operations.

Parameters
[50] RP

Recommend Parameters

Increase n Increase t

m n t m n t m n t

212 1321 172

128

119 212 1400 172 212 1321 188

214 2895 338 120 214 2895 338 214 2895 367

216 6005 667 121 216 6450 667 216 6005 720

218 12160 1312 122 218 12900 1312 218 12160 1400

220 25346 2467 123 220 26900 2467 220 25346 2617

222 50854 4788 123 222 53490 4788 222 50854 5050

ISD (R-ISD), each adapting well-known algorithms [12, 52, 59] for the specific
task of solving regular-LPN. Among these, we specifically focus on the P-ISD
algorithm. This is because the other algorithms require the collection of a large
number of collision vectors over Zq, which significantly increase the concrete
complexity. Indeed, numerical results from [50, Tab 3. Tab. 4] indicate that the
Gauss costs are always comparable to ISD costs for (regular-)LPN over F2128 ,
although ISD consistently surpasses the Gauss in terms of cost for (regular-)LPN
over F2.

Revisiting P-ISD for regular-LPN over Fq with q ≫ 2. As discussed in
Section 3.1 and [37, Sec. 4.1], we can just compute the time cost as follows(

1−
(nt )

(mt )

)−t

·min{n2.8, (m− n)2.8} =
(
1− n

m

)−t

·min{n2.8, (m− n)2.8}

for solving (m,n, t)-regular-LPN. We further note that in [37,38], they computed
the time complexity (

1− n− t

m

)−t

·min{n2.8, (m− n)2.8}

because one can directly obtain extra t error-free polynomials as in Appendix A.
However, in case of regular-LPN over Fq, it does not occur. Hence, we re-estimate
the bit-security of regular LPN over F2128 as follows:(

1− n

m

)−t

·min{n2.8, (m− n)2.8}.

The numerical results are reported in Table 4, which demonstrates that our
attack outperforms several parameter settings. For the regular-LPN parameters
in [50] that meet 128-bit security, we provide a new parameter setup in Table 5.
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However, unlike RP for LPN over large fields, regular-RP may perform worse
than existing attacks in some cases, and for these cases, we do not provide new
parameters.

Table 4. Numerical results for regular-LPN over F2128 . All values are logarithmic scale
of the number of the number of arithmetic operations on F2128 .

Parameters
[49,50] [21] [38]9 This work

m n t

210 652 106 194 179 178 159

212 1589 172 155 150 151 140

214 3482 338 150 150 149 139

216 7391 667 151 150 151 142

218 15336 1312 153 133 154 147

220 32771 2467 155 131 155 148

222 67440 4788 152 110 156 151

210 652 57 111 111 107 98

212 1589 98 100 107 99 89

214 3482 198 101 110 101 94

216 7391 389 103 111 103 97

218 15336 760 105 107 105 100

220 32771 1419 107 102 107 103

222 67440 2735 108 104 108 105

212 3/4 · 212 44 117 127 116 106

214 3/4 · 214 39 111 127 111 105

216 3/4 · 216 34 107 128 107 102

218 3/4 · 218 32 108 132 108 104 †

220 3/4 · 220 31 112 139 112 107†

222 3/4 · 222 30 116 145 116 111†

224 3/4 · 224 29 119 152 119 115†
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A Algorithm for Regular-LPN over Binary Field

According to [21], the regularity of an error distribution τ provides an extra
relations: For any 1 ≤ i ≤ t, we observe that

1−
β∑

j=1

ei,j = 0,

where ei,j is the j-th entry of a vector ei. Consequently, the attack can easily
get t linear equations from the regularity of τm,t.

We can parse b = (b1∥ · · · ∥bt) where bi ∈ Fβ
2 , and our attack exploits this

fact as follows: For every 1 ≤ i ≤ t,

β∑
j=1

bi,j = (

β∑
j=1

aTj ) · s+
β∑

j=1

ei,j mod 2

= (

β∑
j=1

aTj ) · s+ 1 mod 2

Here, bi,j is the j-th entry of bi, and aTj is the j-th row vector of A. Thus, we
automatically obtain an error-free polynomial gi of the form

gi(x) =

β∑
j=1

bi,j − 1− (

β∑
j=1

aTj ) · x.

This exploitation can significantly enhance our attack. Specifically, the purpose
of RP is to collect error-free polynomials, and the t error-free polynomials ob-
tained from the regularity of τm,t reduce the number of error-free polynomials
that we need to obtain. Consequently, we need only n− t error-free polynomials
to solve regular-LPN.

The remaining part is to obtain n − t error-free polynomial through RP in
Section 3.1.
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