
Perfect 2-Party Computation from Additive

Somewhat Homomorphic Encryption

Jonathan Trostle

Independent Consultant

Abstract. Two-party computation has been an active area of research
since Yao's breakthrough results on garbled circuits. We present se-
cret key somewhat additive homomorphic schemes where the client has
perfect privacy (server can be computationally unbounded). Our basic
scheme is somewhat additive homomorphic and we extend it to support
multiplication. The server handles circuit multiplication gates by return-
ing the multiplicands to the client which updates the decryption key so
that the original ciphertext vector includes the encrypted multiplication
gate outputs. We give a 2-party protocol that also incorporates server
inputs where the client has perfect privacy. Server privacy holds against
a computationally bounded adversary since it depends on the hardness
of the subset sum problem. Correctness of the server in the malicious
model can be veri�ed by a 3rd party where the client and server privacy
are protected from the veri�er.

Keywords: Somewhat additive homomorphic encryption · perfect se-
curity.

1 Introduction

Two-party computation protocols include garbled circuit based protocols which
is a technique �rst presented by Yao [30]. Goldreich Micali Wigderson [17], [5]
apply to n parties. These protocols allow for the secure computation of arbi-
trary functions keeping the inputs of each party private except for any leakage
associated with the function output.

Homomorphic encryption schemes with respect to a single operation (ad-
dition or multiplication) include Goldwasser-Micali, Paillier [25],and textbook
RSA [27]. Rivest et al. posed the question of homomorphic encryption [26] in
1978. Gentry's breakthrough work [14] presented a fully homomorphic scheme
and accelerated the study of homomorphic schemes that can compute arbitrary
functions in a model with circuits that have both addition and multiplication
gates.

Gentry's scheme along with follow-up work [12], [6], [7], [2], [13] features
schemes where security depends on computationally hard problems in lattices
or number theory (e.g. lattice SVP, approximate GCD problem). The security
of these schemes may be a�ected by advances in algorithms to more e�ciently
solve these problems.

In this work, we present somewhat homomorphic additive encryption schemes
(any circuit can be handled by setting scheme parameters to be large enough
for the circuit). Our schemes are secret key based and provide security against
a computationally unbounded attacker. These schemes are the basis for our 2-
party computation (2PC) protocols that provide perfect security for the client.

Our basic scheme includes a modulus m, base b where m is prime and ran-
dom exponents ei corresponding to each client ciphertext input for the circuit.
The ciphertext tuple consists of the vector (be1 mod m, . . . , bec mod m). For en-
crypting bits, the parity of each ei determines the plaintext bit. The size of the
e′is is bounded using the max norm so that the client can decrypt the returned
result by multiplying by b−1 mod m. This scheme has two interesting properties:

1. it's additive homomorphic
2. as illustrated in Figure 1, it allows distinct (plaintext key) pairs to map to

the same ciphertext. (The key is b.)

The 2nd property is the basis for perfect security. Our main results for
somewhat homomorphic additive encryption are Theorem 1 and Theorem 4
which prove that our Perfect Somewhat Homomorphic Additive Encryption (P-
SWHAE) scheme has perfect security.

Key1, plaintext1

Key2, plaintext2

KeyN, plaintextN

.

.

.

ciphertext1

Fig. 1. Distinct Plaintext Key Pairs Map to Same Ciphertext

We extend P-SWHAE to handle multiplication gates (Section 2.3). In P-
SWHAE with multiplication, the server returns the multiplicands to the client
which updates the secret key so that decryption produces the correct output. By
leveraging the concept from Figure 1, we are able to modify the underlying secret
key and plaintext on the client without any change to the original ciphertext sent
to the server. The modi�ed plaintext then includes the outputs for each of the
circuit multiplication gates. The additions and multiplications of the underlying
plaintexts are modulo N where N is a power of 2. The P-SWHAE with multipli-
cation protocol provides perfect security for the client. Subsequent requests from

2

the client can be processed locally on the client given the stored state from the
initial reply from the server. Thus the server reply can be viewed as an encoding
of the circuit. This circuit encoding may be of independent interest.

We give a 2-party MPC (2PC) scheme where client privacy is perfect and
server privacy is based on the hardness of the modular subset sum problem.
Initially, in a preprocessing step, the client sends two additional sets of elements
to the server; one set has odd parity exponent elements and the other set has even
parity exponent elements. When the server has two multiplicands to return to the
client, it actually returns four elements where the additional two elements have
opposite parity exponents which are obtained by adding odd parity subset sums
to the original multiplicands. Then the client will compute all four products and
return four new ciphertext elements to the server. The server discards the three
incorrect elements and keeps the fourth element. Thus the server evaluates the
circuit obliviously except for knowledge of addition gates, multiplication gates,
and its own inputs. Our security argument for server privacy requires that the
client is semi-honest.

There exist 2-party schemes [22], [3] where one party enjoys statistical privacy
and the other party is protected from a computationally bounded adversary. Our
2-party scheme provides perfect privacy for one party and computational security
for the other party. The schemes in [22] are in the malicious security model where
our 2PC protocol client is assumed to be semi-honest.

In our protocol, receiver (client) privacy is protected unconditionally includ-
ing if the sender (server) is malicious provided the client does not share the
output with the server. Sender correctness can be established by a veri�er. The
client and server privacy is protected unconditionally from the veri�er, provided
that the veri�er does not have access to the client secret key, client plaintext
inputs, or server plaintext inputs.

1.1 An Example

We now give an example to motivate and brie�y illustrate the ideas in our work.
Suppose we desire to homomorphically evaluate the circuit C in Figure 2. C

has two addition gates and a single output; the output is obtained by adding
(over the �eld Z2) the three input bits.

The client will send a ciphertext vector with 3 components to the server
which will use the ciphertext components as inputs into the circuit. The server
returns the (encrypted) output of the circuit to the client which decrypts to
obtain the one bit output of the circuit.

We will show an additive homomorphic encryption algorithm for the circuit C
that has perfect security. Consider the permutation table T (see De�nition 1)
in Table 1, with m − 1 = 96 rows and c = 3 columns, where each column is
a permutation of the nonzero elements in the additive group Z97. The element
in row i and column j is isj mod m where s1 = 1, s2 = 4, and s3 = 16; we
take representatives to be integers between 1 and 96. There are other possible
choices for the si (the column start elements) but one property is that si/si+1

which results in the table having some short vectors (components sum to less

3

x

output

x+

+
Circuit C

input i2input i1 input i3

Fig. 2. Circuit C with Two Addition Gates

than m.) (Note there are 3 columns of the permutation table in each column of
Table 1 and the ith column of the permutation table is the concatenation of the
ith columns in each of the 6 columns of Table 1, 1 ≤ i ≤ 3.)

We associate with each three component vector in the permutation table a
three component associated binary vector where each component is the parity
(least signi�cant bit) of the corresponding component in the table. For example,
the associated binary vector for the �rst row vector (1, 4, 16) is (1, 0, 0).

We de�ne a distinguished subset of vectors in the permutation table as the
target set of short vectors; these are the bold faced vectors in Table 1 (see
De�nition 2). This set has two properties:

1. The vectors are short (the sum of the row components is less than m = 97.)
This property facilitates decryption.

2. The associated binary vectors for this set is the set of all possible binary
vectors in 3 components (see Table 2).

We now describe encryption and decryption for this example:

1. The plaintext is a 3 component binary vector. Suppose the plaintext is
(1, 1, 0). The client selects the corresponding target set vector (see Table 2).
In this case the target set vector is (25, 3, 12). The general case is Algorithm 1.

2. The client selects a secret encryption key b that is uniformly distributed
between 1 and 96. The key b is only used for this encryption. Suppose b = 60.

3. The client computes b(25, 3, 12) mod 97 = 60(25, 3, 12) mod 97 = (45, 83, 41).
as the ciphertext vector. The ciphertext vector is sent to the server. Note
that the ciphertext vector is also in the permutation table T.

4. The server uses the received vector components as the circuit inputs. It
obtains 45 + 83 + 41 = 169 as the output. It sends the output back to the
client.

4

Table 1. Permutation Table T for m = 97, c = 3, s1 = 1, s2 = 4, s3 = 16; Target Set
Vectors are Bolded

1 4 16 17 68 78 33 35 43 49 2 8 65 66 70 81 33 35

2 8 32 18 72 94 34 39 59 50 6 24 66 70 86 82 37 51

3 12 48 19 76 13 35 43 75 51 10 40 67 74 5 83 41 67

4 16 64 20 80 29 36 47 91 52 14 56 68 78 21 84 45 83

5 20 80 21 84 45 37 51 10 53 18 72 69 82 37 85 49 2

6 24 96 22 88 61 38 55 26 54 22 88 70 86 53 86 53 18

7 28 15 23 92 77 39 59 42 55 26 7 71 90 69 87 57 34

8 32 31 24 96 93 40 63 58 56 30 23 72 94 85 88 61 50

9 36 47 25 3 12 41 67 74 57 34 39 73 1 4 89 65 66

10 40 63 26 7 28 42 71 90 58 38 55 74 5 20 90 69 82

11 44 79 27 11 44 43 75 9 59 42 71 75 9 36 91 73 1

12 48 95 28 15 60 44 79 25 60 46 87 76 13 52 92 77 17

13 52 14 29 19 76 45 83 41 61 50 6 77 17 68 93 81 33

14 56 30 30 23 92 46 87 57 62 54 22 78 21 84 94 85 49

15 60 46 31 27 11 47 91 73 63 58 38 79 25 3 95 89 65

16 64 62 32 31 27 48 95 89 64 62 54 80 29 19 96 93 81

Table 2. Associated Binary Vectors for T

Target Set Vector from T Associated Binary Vector

1, 4, 16 1, 0, 0

2, 8, 32 0, 0, 0

7, 28, 15 1, 0, 1

8, 32, 31 0, 0, 1

25, 3, 12 1, 1, 0

26, 7, 28 0, 1, 0

31, 27, 11 1, 1, 1

32, 31, 27 0, 1, 1

5

5. The client decrypts the received ciphertext by computing b−1(169) mod 97 =
76(169) mod 97 = 40. The client completes the decryption by computing
40 mod 2 = 0. Thus the output is 0 as expected.

We now discuss security. Each of the possible distinct secret keys b results
in a distinct row vector in the permutation table T. Given the ciphertext C =
(45, 83, 41), we see from Table 3 that each of the plaintexts is possible.

Table 3. Plaintext Possibilities Given Ciphertext C = (45, 83, 41), m = 97.

Plaintext Pi Target Set Vector from T Secret Key b Pr(C|Pi)

1, 0, 0 1, 4, 16 45 1/(m-1)

0, 0, 0 2, 8, 32 71 1/(m-1)

1, 0, 1 7, 28, 15 48 1/(m-1)

0, 0, 1 8, 32, 31 42 1/(m-1)

1, 1, 0 25, 3, 12 60 1/(m-1)

0, 1, 0 26, 7, 28 95 1/(m-1)

1, 1, 1 31, 27, 11 39 1/(m-1)

0, 1, 1 32, 31, 27 59 1/(m-1)

We have

Pr(C) = Pr(C AND (OR8
i=1 Pi)) =

8∑
i=1

Pr(C AND Pi) =

8∑
i=1

Pr(Pi)

m− 1
=

1

m− 1

Thus Pr(C) = Pr(C|P) for all of the plaintext vectors P. So C and P are
independent. Pr[P |C] = Pr[P AND C]/Pr[C] = (Pr[P]Pr[C])/Pr[C] = Pr[P]
for each of the possible plaintexts P in Table 3 and for every possible probability
distribution on the plaintexts. Thus we have perfect security. We will prove this
assertion formally in Theorem 4.

1.2 Our Contributions

We have the following results:

1. We give a secret key additive homomorphic encryption algorithm (P-SWHAE)
that provides perfect client privacy, and extend this to include homomorphic
multiplication. The resulting protocol protects the client privacy from a com-
putationally unbounded server. To the best of our knowledge, our additive
somewhat homomorphic encryption is the �rst such algorithm that provides
perfect privacy.

2. We show that our P-SWHAE scheme has perfect security in Theorem 1,
Theorem 4, and Theorem 6.

6

3. Based on the somewhat additive homomorphic encryption, we construct a
2-party protocol (2PC) where both the client and server provide inputs and
the server processes the encrypted inputs through the circuit returning the
output to the client. We show that this protocol provides perfect client pri-
vacy (Theorems 7 and 8.) Client privacy is protected from a malicious server
if the server does not receive output (Theorem 7).

4. We show the 2PC protocol protects server privacy assuming hardness of the
subset sum assumption given a semi-honest client.

5. The 2PC protocol malicious server's correctness can be veri�ed in the proto-
col by a veri�er entity where the veri�er has access to the protocol transcript,
the server computations, and the circuit speci�cation. The client and server
privacy is information-theoretic secure from the veri�er provided the veri�er
does not have access to the client secret key, client plaintext inputs, or server
plaintext inputs.

1.3 Related Work

There has been extensive work in homomorphic encryption since the break-
through work of Gentry [14] (e.g., [15], [16], [12], [6], [7], [2], [13]. Our schemes
provide perfect privacy for the client.

Foundational work in multiparty computation includes [30], [17], [5], [9].
It is not possible to protect both parties with statistical or perfect security

in a 2-party secure computation protocol.
Dakshita and Mughees [22] give 2-party secure protocols where one party is

statistically secure and the other party is computationally secure. Their protocols
use garbled circuits [30] in combination with Oblivious Transfer to obtain a 5
round protocol. Their protocols are secure against a malicious adversary whereas
we assume our client, or receiving party, is in the semi honest model (but our
receiving party's privacy is protected even if the sender is malicious as long as
only the receiving party gets output).

Badrinarayanan [3] allows the results of [22] to be based on additional as-
sumptions such as CDH. Acharya [1] generalizes [22] from 2 parties to n parties;
one party can be protected with statistical security and their fallback security
provides computational security for the other parties.

Koleskinov [24] gives a 2-party secure protocol (GESS) where the secrets
are assigned to wires. Their protocol can be viewed as a generalization of Yao's
circuit garbling [30]. It has information theoretic security if the underlying obliv-
ious transfer (OT) protocol does. OT protocols exist that provide information
theoretic security for either the sender or the receiver, but not both [8], [11].
Crepeau et. al. [11] leverages a noisy channel for unconditional OT. The GESS
protocol's applicability is for shallow circuits. Additional work on information-
theoretic secure computation includes [4], [10], [21], [23], and [29]. The scheme
in [20] provides perfect security. This scheme is less scaleable than [24].

Rothblum [28] gives constructions for building public key encryption from
additively homomorphic secret key encryption. These constructions do not apply
to our scheme since they require l = 4m or l = 8m where m is the modulus bit

7

length. Thus security for the Rothblum constructions requires the underlying
secret key encryption to be secure when the number of ciphertexts for a given
key exceeds the bit length of the homomorphically evaluated ciphertext. For a
good security bound, our secret key scheme requires that the number of original
ciphertexts (parameter c in our scheme) is less than the bit length of m where m
is the modulus in our scheme (see Remark 3). Thus the Rothblum constructions
do not apply to our scheme.

1.4 Terminology and Background

A vector x of elements in Zm (the integers modulo m) will be denoted in boldface.
Elements in Zm will be taken to be integers between 0 andm−1, inclusive. Given
x = (x1, . . . , xc). We de�ne x mod m to be the vector v = (v1, . . . , vc) where
vi = xi mod m, vi ∈ [0,m − 1], 1 ≤ i ≤ c. For b ∈ Zm and x ∈ Zcm, we de�ne
bx = (bx1, . . . , bxc) mod m.

We will use the terms perfect privacy and perfect security interchangeably:
our secret key encryption scheme has perfect security if

Pr[Encb1(r1) = w] = Pr[Encb2(r2) = w]

for all ciphertexts w and all plaintexts r1, r2 where b1, b2 are uniform random
secret keys from [1,m− 1].

Server privacy depends on the modular subset sum problem. More precisely,
we will assume the following: Given uniform random e1, . . . , en where ei ≤ m/2n,
1 ≤ i ≤ n. Let a = (a1, . . . , an) where ai = bei mod m, 1 ≤ i ≤ n. De�ne
fa(s) = (a, s · a) for uniform random s ∈ {0, 1}n, where · denotes vector inner
product. Then fa(s) is a 1/m universal hash function. In other words,

Pr(fa(v) = fa(w)) ≤ 1/m

for every pair v,w ∈ {0, 1}n where the probability is over the random choice of
a. We require log(m) ≤ cn where c < 1.

Following [19], we de�ne a probability distribution D on {0, 1}m to be quasi-
random within ε if ∀X ⊂ {0, 1}m we have that |PrD[X] − |X|/2m| < ε, where
PrD[X] is the probability that an element chosen according to D is in X. We
use Proposition 1.1(2) from [19]:

Proposition 1. Let log(m) ≤ cn for c < 1. For all but an exponentially small
fraction of a = (a1, . . . , an), the distribution given by fa(s) for a randomly
chosen s is quasi-random within an exponentially small amount.

For circuits, we let the parameter a be the number of addition gates and g
is the number of multiplication gates. For boolean circuits, the multiplication
gates could be either AND or NAND gates, and the addition gates are XOR
gates. We will assume the addition and multiplication gates have two inputs.

The notation s ← S is used when s is randomly selected from S via the
uniform distribution.

8

A function µ(n) is negligible if for every positive polynomial p(n), µ(n) <
1/p(n) for su�ciently large n ∈ N.

Let X = {X(a, κ)}a∈{0,1}∗,κ∈N be an in�nite family of random variables in-
dexed by a and κ ∈ N. Two families of random variablesX = {X(a, κ)}a∈{0,1}∗,κ∈N
and Y = {Y (a, κ)}a∈{0,1}∗,κ∈N are computationally indistinguishable if for every
non-uniform polynomial-time algorithm A there exists a negligible function µ
such that for every a ∈ {0, 1}∗ and κ ∈ N we have

|Pr[A(X(a, κ))]− Pr[A(Y (a, κ))]| ≤ µ(κ).

We denote computational indistinguishability by X ≡c Y.
Two families of random variables X = {X(a, κ)}a∈{0,1}∗,κ∈N and

Y = {Y (a, κ)}a∈{0,1}∗,κ∈N are perfectly indistinguishable if for every non-uniform
algorithm A and every a ∈ {0, 1}∗ and κ ∈ N we have

|Pr[A(X(a, κ))]− Pr[A(Y (a, κ))]| = 0.

We denote perfect indistinguishability by X ≡perf Y.
We consider two security models in Section 3. For the case where only the

client receives output, we have one-sided simulation for the client to show server
security, and indistinguishability for the server's view of the client inputs to show
client security [18]. We also consider the two-sided simulation model where both
parties are semi-honest and the server can receive output. In all cases, the client
is semi-honest, but the �rst model enables client privacy even when the server
is malicious.

We assume the client is semi-honest, and we assume a deterministic function-
ality f.Our 2PC protocol has server privacy if there is a probabilistic polynomial-
time algorithm S1 such that

{S1(x, f1(x, y))}x,y∈{0,1}∗ ≡c {V IEWΠ
client(x, y)}x,y∈{0,1}∗

where V IEWclient is the client's view of our protocol Π's execution including
it's input, randomness and messages received, f1(x, y) is the client output, and
x, y are the client and server inputs respectively.

In the �rst security model, the server does not receive output. In this model
client privacy is de�ned as

{V IEWΠ
srv(x, y)}x,y∈{0,1}∗ ≡perf {V IEWΠ

srv(x
′, y)}x′,y∈{0,1}∗

where V IEWsrv is the server's view of our protocol Π ′s execution including it's
input, randomness, and messages received, and |x| = |x′| = |y| where x and x′

are client inputs.
In the second security model, the server receives output, both parties are

semi-honest, and client privacy is de�ned via simulation: Our 2PC protocol has
client privacy if there is a probabilistic polynomial-time algorithm S2 such that

{S2(y, f2(x, y))}x,y∈{0,1}∗ ≡perf {V IEWΠ
srv(x, y)}x,y∈{0,1}∗

where V IEWsrv is the server's view of our protocol Π's execution including it's
input, randomness and messages received, f2(x, y) is the server output, and x, y
are the client and server inputs respectively.

9

2 Somewhat Additive Homomorphic Protocols

In this section we de�ne permutation tables and the target set of short vectors
in a permutation table. We prove a sequence of lemmas leading to Theorem 1
which shows a one to one correspondence between the target set of short vectors
in a permutation table satisfying certain conditions (a perfect table) and the set
of all possible associated vectors in Zcm.

We then present a somewhat homomorphic additive encryption scheme with
perfect security (De�nition 3), and we prove our somewhat homomorphic ad-
ditive encryption (P-SWHAE) scheme has perfect security in Theorem 4. We
prove correctness in Theorem 2 and 3. We present an extension to the scheme to
support both addition and multiplication (Algorithm 2.) We prove correctness
in Theorem 5 and perfect security in Theorem 6. Our schemes are secret key
rather than public key.

2.1 Permutation Tables

Unless stated otherwise, vector components are assumed to be nonnegative.

De�nition 1. Let m be a prime integer, let a be a positive integer, and let
N be an integer that is a power of 2. A vector (e1, . . . , ec) in Zcm generates a
permutation table T with m−1 rows and c columns. The ith row of the table,
1 ≤ i ≤ m − 1, is the vector (ie1 mod m, . . . , iec mod m) in Zcm where we take
representatives to be positive integers less than m. A short vector in the table is
a vector (v1, . . . , vc) such that vi ≤ (m−1)/(a+1) = α for 1 ≤ i ≤ c.We associate
with each short vector v in T a vector r with c components: ri = vi mod N,
1 ≤ i ≤ c. A permutation table with no zeroes (no zeroes or perfect table)
is a table where for each of the possible N c vectors in ZcN there is some short
vector in the table that has that vector as its associated vector.

We will focus on the permutations generated by the columns of a permutation
table. We de�ne a permutation run as the increasing or decreasing sequence of
elements in a column permutation that are all obtained by subtracting the same
multiple of m; in other words, any two elements w1 and w2 in the same run
can be expressed as is = qm + w1 and js = qm + w2 for some integers i and j
where s is the �rst row element in the column (the start element). The length
of a permutation run is the number of elements in the permutation run.
The average of the lengths of the permutation runs in a column is the column
run period. (Each column in the permutation table consists of one or more
permutation runs in sequence.) We call the �rst element of a new permutation
run a �ip, and we say the column �ips in any row that has a �ip.

Remark 1. Since m is prime, the last row in a permutation table potentially
consists of zeroes; however, we do not include the zero row as part of the per-
mutation table.

Example: In Table 1, the 3rd column �rst permutation run has 6 elements. The
second column �rst permutation run has 24 elements.

10

Table 4 gives another example of a perfect permutation table.

Table 4. Perfect or No Zeroes Permutation Table for m = 37, c = 3, a = 1, short
vectors bolded

1 3 9 7 21 26 13 2 6 19 20 23 25 1 3 31 19 20

2 6 18 8 24 35 14 5 15 20 23 32 26 4 12 32 22 29

3 9 27 9 27 7 15 8 24 21 26 4 27 7 21 33 25 1

4 12 36 10 30 16 16 11 33 22 29 13 28 10 30 34 28 10

5 15 8 11 33 25 17 14 5 23 32 22 29 13 2 35 31 19

6 18 17 12 36 34 18 17 14 24 35 31 30 16 11 36 34 28

Fact 1: If s ≤ (m−1)/2, then a permutation run increments each element by s,
where s is the column start element. If s > (m − 1)/2, then a permutation run
decrements each element by m− s where s is the column start element.
Fact 2: If s > (m− 1)/2, then run period(s) = (m− 1)/(m− s), where s is the
column start element. If s ≤ (m− 1)/2, then run period(s) = (m− 1)/s, where
s is the column start element.
Fact 3: For each column in a permutation table where s ≤ (m − 1)/2, the
�rst permutation run has length b(m − 1)/sc and succeeding runs have length
bounded by b(m− 1)/sc+ 1. (see Lemma 3 for a proof).

For the remainder of this paper, we will assume that permutation tables have
start elements s where s ≤ (m− 1)/2.

2.2 Additive Homomorphic Scheme with Perfect Security

We �rst prove a lemma that shows that for certain permutation tables, a column
�ip in a given row implies that the same row �ips in columns to the right:

Lemma 1. Let T be a permutation table with row vector (d1, d2, . . . , dc) where
di/di+1, 1 ≤ i ≤ c − 1 and d1 = 1. Then the di+1 column �ips when the di
column does.

Proof. We have kdi = qm + r, kdi + di = qm + r + di where r + di > m,
0 ≤ r < m. Let di+1 = diw. kdi+1 = kdiw = qmw + rw, rw = q1m+ r1, where
0 ≤ r1 < m. Suppose w ≥ q1 +1. Then r1 +di+1 = r1 +diw = rw−q1m+diw =
(r+di)w−q1m > mw−q1m = m(w−q1) ≥ m. Thus w ≥ q1+1 implies that the
di+1 column �ips as claimed. If w ≤ q1, then rw ≤ q1r < q1m but rw = q1m+r1
so it must be that w ≥ q1 + 1.

Fact 4: Given a permutation table T satisfying the conditions of Lemma 1. By
the lemma, when column i �ips, then all columns to the right of column i �ip
(columns i+1, . . . , c) as well. Before column i �ips again, column i+1 �ips di+1/di
times. (A permutation run has length (m− 1)/di so

(m−1)/di
(m−1)/di+1

= di+1/di.)

11

De�nition 2. Let T be a permutation table with row vector (d1, d2, . . . , dc)
where di/di+1, 1 ≤ i ≤ c− 1 and d1 = 1. Let di > N(a+ 1)di−1, 2 ≤ i ≤ c, and
Ndc ≤ α. Given column j in T where 2 ≤ j ≤ c. A left of j row is a row where
column j−1 has a �ip. The target set of short vectors is the set of vectors in
T for which the jth component, 2 ≤ j ≤ c, occurs in a row prior to the Nth �ip
of the jth column that occurs after some left of j row, the 1st column component
is bounded by α, and the cth component occurs in a row between zero and N − 1
rows after a �ip of the cth column.

Remark 2. Row 1 is a left of j row for columns j, 2 ≤ j ≤ c.

Example: Row 13 is a left of j row for column 3 in Table 4.

Lemma 2. Let T be a permutation table with row vector (d1, d2, . . . , dc) where
di/di+1, 1 ≤ i ≤ c − 1 and d1 = 1. Let di > N(a + 1)di−1, 2 ≤ i ≤ c, and
Ndc ≤ α. Then bN m−1

di
c+ 1 is an upper bound for the sum of the lengths of the

�rst N permutation runs for the column with start element di, where di > 1.

Proof. The element di is the start element of the �rst permutation run in the
sequence of N permutation runs in column i.

di + wdi ≤ m− 1 + (N − 1)(m) = Nm− 1

where w is the number of di values added to di to get to the last element in the
Nth permutation run (prior to reducing modulo m.) Thus

w + 1 ≤ Nm− 1

di

w + 1 ≤
⌊
Nm− 1

di

⌋
≤
⌊
Nm

di

⌋
≤
⌊
N(m− 1)

di

⌋
+ 1

since di ≥ d2 > N(a+ 1) > N.

Lemma 3. Given a permutation table T. Let x be the start element of a permu-
tation run in column i which has di > 1 as the column start element. Let

m− 1

di
−
⌊
m− 1

di

⌋
=
ki
di

where 0 ≤ ki ≤ di − 1. If 1 ≤ x ≤ ki, then the permutation run has length
bm−1di

c+ 1. If x > ki or ki = 0, the permutation run has length bm−1di
c.

Proof.
ki
di

+

⌊
m− 1

di

⌋
=
m− 1

di
so

ki +

⌊
m− 1

di

⌋
di = m− 1.

12

Thus if ki is the start element of the permutation run, then the length is bm−1di
c+

1. Clearly if x < ki, the permutation run must have length at least bm−1di
c+1. It

is also clear that if x > ki, then the permutation run has length bounded above
by bm−1di

c.
Suppose x = di. Then wdi ≤ m− 1 and (w+ 1)di ≥ m where w is the length

of the permutation run with x as the start element. So m−1
di
≥ w and bm−1di

c ≥ w.
We have m

di
≤ w + 1, m−1di

≤ w − 1
di

+ 1. Thus bm−1di
c ≤ m−1

di
≤ w − 1

di
+ 1

so bm−1di
c ≤ w. Thus bm−1di

c = w. Thus the length of all permutation runs in

column i is always at least bm−1di
c since the start element x ≤ di will always give

at least as long a permutation run as with start element di.
Since the minimal start element for any permutation run is 1, which will

give the longest possible permutation run, it also follows that the length of all
permutation runs is bounded above by bm−1di

c+ 1.
Finally, if di/m − 1, then every permutation run in column i has length

m−1
di

= bm−1di
c.

Lemma 4. Let T be a permutation table with row vector (d1, d2, . . . , dc) where
di/di+1, 1 ≤ i ≤ c − 1 and d1 = 1. Let di > N(a + 1)di−1, 2 ≤ i ≤ c, and
Ndc ≤ α. (Recall α = (m− 1)/(a+ 1).) Then for 2 ≤ i ≤ c we have(⌊

m− 1

di
N

⌋
+ 1

)
di−1 < α.

We also have (
Nm+ di − 2

di

)
di−1 ≤ α

where Nm+di−2
di

is an upper bound on the length of N consecutive permutation
runs in column i.

Proof. We have
di
di−1

≥ N(a+ 1) + 1.

Thus

1 ≥ di−1
di

N(a+ 1) +
di−1
di

and

1/(a+ 1) ≥ di−1
di

N +
di−1

di(a+ 1)

α ≥ m− 1

di
Ndi−1 + α

di−1
di

>
m− 1

di
Ndi−1 + di−1

≥
(⌊

m− 1

di
N

⌋
+ 1

)
di−1 (1)

13

We have N(1− 1
di

) ≥ di−2
di

since N ≥ 2, di ≥ 2. Thus −Ndi +N ≥ di−2
di

. Therefore

N

(
m− 1

di

)
+N ≥ Nm+ di − 2

di
. (2)

From above we have

α ≥ m− 1

di
Ndi−1 + α

di−1
di
≥ m− 1

di
Ndi−1 +Ndi−1

=

(
m− 1

di
+ 1

)
Ndi−1 ≥

(
Nm+ di − 2

di

)
di−1. (3)

due to (2) above and α/di ≥ N. It remains to be shown that Nm+di−2
di

is an
upper bound on the length of N consecutive permutation runs in column i.

For a sequence of permutation runs with start element x of length N we have

x+ wdi ≤ m− 1 + (N − 1)(m) = Nm− 1

where w is the number of di values added to di to get to the last element in the
Nth permutation run (prior to reducing modulo m.) Thus

w + 1 ≤ Nm+ di − x− 1

di
≤ Nm+ di − 2

di
.

Lemma 5. Let T be a permutation table with row vector (d1, d2, . . . , dc) where
di/di+1, 1 ≤ i ≤ c − 1 and d1 = 1. Let di > N(a + 1)di−1, 2 ≤ i ≤ c, and
Ndc ≤ α. The target set of short vectors in T has N c vectors.

Proof. Consider the Nth �ip of the cth column that occurs after the �rst row.
All of the N vector components following each of the �rst N − 1 �ips of the cth
column and the �rst row are target set vector components in the cth column, by
de�nition. By Lemma 4, (⌊

m− 1

dc
N

⌋
+ 1

)
di < α.

for 1 ≤ i ≤ c − 1. Thus the �rst column components prior to the Nth �ip of
the cth column are less than α by Lemma 2. All of the components in column i,
2 ≤ i ≤ c− 1, in rows prior to the Nth �ip of the cth column are in rows prior
to the Nth �ip of column i since di < dc. Thus we have N

2 target set vectors in
the rows prior to the Nth �ip of the cth column.

Inductively consider a row prior to the �rst �ip of the ith column, i < c,
where column i + 1 has �ipped N times and we have collected N c−i+1 vectors
in the target set. Each of the �rst N − 1 �ips of the ith column are left of j
rows for columns i + 1, . . . , c and each collection of rows between the �ips and
immediately after the N − 1 �ip yield N c−i+1 additional target set vectors for
a total of NN c−i+1 = N c−i+2 target set vectors. The induction is complete and
when i = 2 we obtain N c target set vectors in T.

14

We now prove that the vectors in the target set of short vectors are short.

Lemma 6. Let T be a permutation table with row vector (d1, d2, . . . , dc) where
di/di+1, 1 ≤ i ≤ c − 1 and d1 = 1. Let di > N(a + 1)di−1, 2 ≤ i ≤ c, and
Ndc ≤ α. The vectors in the target set of short vectors in T are short.

Proof. We show that the vectors in the target set of vectors (see De�nition 2)
are short vectors. By Lemma 4, we have(⌊

m− 1

d2
N

⌋
+ 1

)
< α.

bm−1d2
Nc + 1 is at least as large as the the number of rows in the 2nd column

that can have target vector components since the 2nd component of the target
set vectors must occur prior to the Nth �ip of the 2nd column (Lemma 2.) Thus
all of the target vector components in the �rst column are short.

We consider the i− 1 column where 3 ≤ i ≤ c. By Lemma 4, we have(⌊
m− 1

di
N

⌋
+ 1

)
di−1 < α.

We consider the vector components in the i − 1 column prior to the 1st �ip
after the �rst row. bm−1di

Nc+ 1 is at least as large as the number of rows in the
ith column that can have target vector components since the ith component of
the target set vectors must occur prior to the Nth �ip of the ith column. Thus
all of the target vector components in the i − 1 column prior to the �rst �ip
after the �rst row are short. The same argument applies to the target vector
components in the later permutation runs of the i− 1 column since the sum of
the permutation run lengths is bounded by Nm+di−2

di
by Lemma 4.

To complete the proof that the target set vector components are short, we
examine the cth column. The cth component occurs at most N − 1 rows after
a �ip of the cth column. Let w denote the starting element of a cth column
permutation run. Then w ≤ dc. We have Nw ≤ Ndc ≤ α by the conditions of
the theorem. Thus the target set vectors are short. See Figure 3 for an illustration
of the c = 4, N = 4 case.

Theorem 1. Given a circuit with a addition gates, let N be a power of 2, and
let m be prime per De�nition 1. Let α = (m− 1)/(a+ 1). Given a permutation
table T with row vector (d1, d2, . . . , dc) where di/di+1, 1 ≤ i ≤ c− 1 and d1 = 1.
Let di > N(a+ 1)di−1, 2 ≤ i ≤ c, and Ndc ≤ α. Then T is a perfect table.

Proof. By Lemma 5, the target set of short vectors has N c vectors and by
Lemma 6 these vectors are short vectors. The set of associated vectors in ZcN
has N c vectors. Thus to prove the theorem, it su�ces to show that the mapping
from target set vectors de�ned by ri = vi mod N, 1 ≤ i ≤ c is one to one, given
target set vector (v1, . . . , vc).

In order to show a contradiction, suppose there exist vectors v = (v1, . . . , vc)
and w = (w1, . . . , wc) in the target set vectors of permutation table T that have

15

the same associated vector in ZcN . Then there exists integers hv and hw where
hv < hw < m and hvdi = pim + vi, hwdi = qim + wi, pi, qi ∈ Z, 1 ≤ i ≤ c,
1 ≤ vi, wi < m, vi ∼= wi mod N, 1 ≤ i ≤ c. We have d1 = 1 so p1 = q1 = 0 and
hv = v1, hw = w1. Thus hv ∼= hw mod N. Thus pi ∼= qi mod N, 1 ≤ i ≤ c.

Suppose q2 ≥ N. Then the 2nd component of w is at a row higher than all
of the target set vector components (the �rst row is the only left of j row for
the 2nd column.) So q2 < N. p2 ≤ q2 so p2 < N. Thus p2 = q2 = 0. Inductively
assume pi = qi = 0 for i ≤ l where 2 ≤ l < c. We have pl+1 ≤ ql+1. ql = 0 so
the only left of j row for the l + 1 column that w is below is the �rst row. Thus
w must be in a row prior to the Nth �ip of the l + 1 column. Thus ql+1 < N.
Thus pl+1 < N and we have pl+1 = ql+1 = 0. The induction is complete and
pi = qi = 0, 2 ≤ i ≤ c.

Since pc = qc = 0, v and w are located in the �rst N vectors of the permu-
tation table but hv ∼= hw mod N so hv = hw which is a contradiction. Thus the
set of target vectors all have distinct associated vectors in ZcN .

1

α

d2 d3

Illustrating flips
and target set of
short vectors for
c = 4, N = 4.

d4 N2 vectors

N3 vectors

N4 vectors

Fig. 3. Target Set of Short Vectors in Permutation Table, c = 4, N = 4. Short Hori-
zontal Lines Indicate Start of New Permutation Runs (�ips). Each Thick Line in Last
Column Represents Last Column Components of N vectors in Target Set

De�nition 3. Perfect Somewhat Homomorphic Additive Encryption
(P-SWHAE) Given a server circuit with a addition gates. N is a positive
integer which is a power of 2.

16

Key Generation: Select positive prime integer m and uniform random pos-
itive integer b, the base, where b < m. The secret key is b. The key is used to
encrypt only one plaintext vector. A new key must be selected for each new plain-
text vector.

Encryption: The input is plaintext vector r = (r1, . . . , rc) where 0 ≤ ri < N,
1 ≤ i ≤ c. Select integers d1, . . . , dc such that di/di+1, 1 ≤ i ≤ c− 1 and d1 = 1.
Also di > N(a + 1)di−1, 2 ≤ i ≤ c, and Ndc ≤ α = (m − 1)/(a + 1). Let T be
the permutation table with (d1, . . . , dc) as its start row vector.

For vector v̄ in T denote it's associated vector in ZcN by v. (Recall that
vi = v̄i mod N, 1 ≤ i ≤ c.)

We compute the vector (e1, . . . , ec) as follows: First we compute the vector
v = (v1, . . . , vc) :

1. If r1 = j, 1 ≤ j ≤ N − 1, then v is the associated vector of the jth row of T.
2. If r1 = 0, then v is the associated vector of the Nth row of T.

Let w = v, s = m mod N, a = s−1 mod N, wsaved = zero vector. Then we
perform Algorithm 1.

Algorithm 1 Encryption Steps for P-SWHAE

1: while w 6= r do
i is index of the �rst component disagreement between w and r.
Let f = (a(wi − ri) mod N.
Set v̄j = bm−1

di
fcdj mod m, 1 ≤ j ≤ c.

v̄ = (v̄ + wsaved) mod m
Advance up or down the rows of T (at most N rows) starting at v̄
until we �nd w̄ where w1 = r1, . . . , wi = ri.

wi = w̄i mod N for 1 ≤ i ≤ c, where w̄ = (w̄1. . . . , w̄c).
wsaved = w̄

endwhile

Let e = w̄. The components of e are called exponents.
The client ciphertext vector is obtained by selecting an integer representative

hi, 1 ≤ i ≤ c, 1 ≤ hi < m, where hi ≡ bei mod m. Then (h1, . . . , hc) is the client
ciphertext vector.

Decryption: The client decryptor receives an evaluated ciphertext x from
the server. The client sets

Decrypt(x) = r = (b−1x mod m) mod N.

Evaluate: Evaluate takes the ciphertext tuple from Encrypt and the circuit
and outputs another vector of ciphertexts corresponding to the circuit evaluation.
Each addition gate is processed by adding the two inputs as integers.

17

The client sends the client ciphertext request to the server which uses the
input elements as inputs to the circuit. The server returns the output elements
to the client.

Theorem 2. Given the P-SWHAE encrypt algorithm which creates the vector
e = (e1, . . . , ec) ∈ Zcm. We add the restriction that the integers d1, . . . , dc are
odd. e belongs to the target set of short vectors in the permutation table T and
ei mod N = ri, 1 ≤ i ≤ c, where r = (r1, . . . , rc) ∈ ZcN is the plaintext input
vector.

Proof. Initially we assume dc/m− 1. After the initial steps of the encrypt algo-
rithm that compute vector v, we have vector v̄ in the permutation table where
v1 = r1. Let i ≥ 2 and v1 = r1, . . . , vi−1 = ri−1, vi 6= ri. Let xdi < m and
xdi + di > m. Let xdi ∼= li mod N. Then

(x+ 1)di mod m mod N = ((x+ 1)di −m) mod N =

li mod N + di mod N −m mod N

Thus each �ip of the ith column results in subtracting s = m mod N from the
next element in the cyclic progression of the group ZN (di odd implies that the
entire group ZN is cycled.)

Denote the permutation run in the ith column containing vectors with associ-
ated vectors having pre�x r1, . . . , ri as z. Partition z into sequences of consecutive
N vectors. Since there are no �ips of any permutation in columns j where j < i,
or in z during the run of z, then each sequence of N vectors has a vector with
associated vector having pre�x r1, . . . , ri. Thus the pre�x r1, . . . , ri is associated
with a vector in the �rst N vectors of the permutation run of column i containing
vectors that have this associated pre�x.

Let f be the number of permutation runs of column i prior to the permutation
run with vectors associated with pre�x r1, . . . , ri. Then

f(−s) + w̄i = r̄i mod N

Since w̄i mod N = wi, and r̄i mod N = ri, we have

fs mod N = (wi − ri) mod N,

f = s−1(wi − ri) mod N.

(Since m is odd and N is a power of 2, gcd(m,N) = 1 so m has an inverse
modulo N.)

Thus

v̄j =

⌊
m− 1

di
f

⌋
dj mod m, 1 ≤ j ≤ c

calculates the permutation table vector in the last row prior to a �ip in column i
such that the sum v̄+wsaved mod m gives a vector within the �rst N rows after
the column i �ip, where the �rst N rows contain a vector with associated vector
pre�x r1, . . . , ri. Then the advance up or down the rows of T �nds the vector

18

with pre�x r1, . . . , ri, (at most N rows up or down). Note that since f < N, the
update v̄ + wsaved mod m does not cause any �ips in columns j where j < i so
the pre�x r1, . . . , ri−1 is preserved.

Each calculation of pre�x r1, . . . , ri given pre�x r1, . . . , ri−1 selects the high-
est row in the permutation table that has associated vector with pre�x r1, . . . , ri.
The associated pre�x r1, . . . , ri−1 in the �rst i− 1 columns is within N vectors
(rows) of the i− 1 column �ip so the pre�x r1, . . . , ri will be prior to N �ips of
column i after the left of j row. Finally, the associated vector r1, . . . , rc will be
within the �rst N vectors after a �ip of column c. Thus the selected vector is in
the target set of short vectors.

At the end, we obtain the vector e in the target set of short vectors such that
ei mod N = ri, 1 ≤ i ≤ c.

When dc - m−1, the same argument applies except vector row positions may
be o� by 1 row.

Theorem 3. Given m prime, circuit C with a addition gates, N a power of
2, and a permutation table T with start vector d1, . . . , dc as in the setup for
P-SWHAE encryption (di/di+1, 1 ≤ i ≤ c, di > N(a + 1)di−1, 2 ≤ i ≤ c,
and Ndc ≤ α.) We also assume di is odd, 1 ≤ i ≤ c. Given x as input to
P-SWHAE decryption corresponding to plaintext input (r1, . . . , rc). Suppose the
circuit computes wi1 + . . . + wik mod N for some 1 ≤ ii < . . . < ik ≤ c given
inputs w1, . . . , wc. Then Decrypt(x) = (ri1 + . . .+ rik) mod N.

Proof. The client ciphertext vector is (h1, . . . , hc) where hi ∼= bei mod m, 1 ≤
i ≤ c. By Theorem 2, ei mod N = ri, 1 ≤ i ≤ c where (e1, . . . , ec) is in the target

set of short vectors in T. We have x =
∑k
j=1 hij . Thus

b−1x ∼=
k∑
i=1

b−1hij
∼=

k∑
i=1

eij mod m.

ei ≤ (m− 1)/(a+ 1) so
∑k
i=1 eij ≤ k(m− 1)/(a+ 1). Now k ≤ a+ 1 since there

are a addition gates in the circuit so

k
m− 1

a+ 1
≤ (a+ 1)

m− 1

a+ 1
≤ m− 1.

Thus

b−1x mod m =

k∑
i=1

eij

and

Decrypt(x) =

k∑
i=1

eij mod N =

k∑
j=1

rij mod N.

19

Theorem 4. The P-SWHAE scheme has perfect security.

Proof. We will show that

Pr[Encb1(r1) = w] = Pr[Encb2(r2) = w]

where b1, b2 are uniform random in [1,m − 1], w is a ciphertext, and r1, r2
are plaintexts. Encb1(r1) = b1e mod m where e ∈ T is computed according to
the steps in the P-SWHAE encrypt algorithm. w is a ciphertext so w ∈ T,
where T is the permutation table created by the encryption steps (note that T
is determined by m and w.) We will show that

Pr[b1e = w mod m] =
1

m− 1

which su�ces for the proof since the same argument proves Pr[Encb2(r2) =
w] = 1/(m− 1). e = t1s for some t1 ∈ [1,m− 1] where s is the start vector for
T. w = t2s for some t2 ∈ [1,m− 1] since w ∈ T. w = t2s = t2t

−1
1 e where t−11 is

the inverse of t1 modulo m (m is prime). So Pr[b1e = w mod m] ≥ 1/(m − 1).
Let b1e = ye mod m for b1, y ∈ [1,m−1]. Then b−11 ye1 = e1 where e1 is the �rst
coordinate of e. Since e1 ∈]1,m− 1], we have b−11 y = 1 so b1 = y. Thus

Pr[b1e = w mod m] =
1

m− 1

Remark 3. For P-SWHAE we have m ≥ (N(a+ 1))c + 1.

2.3 Incorporating Multiplication

The multiplication of be1 mod m and be2 mod m where ei mod N = ri, i = 1, 2
is de�ned to be be mod m for some e where e ≤ (m− 1)/(a+ 1) and e mod N =
r1r2 mod N. 1

P-SWHAE with Multiplication Scheme To preserve perfect security, the
client is assumed to know the number of multiplication gates in the circuit, and
we will use the P-SWHAE scheme described above. Each multiplication gate will
add 1 to the c parameter.

At a high level, P-SWHAE with Multiplication works by dynamically ad-
justing the secret key and the plaintext vector in response to each multiplication
gate operation. Each such step keeps the ciphertext vector the same. Put another
way, we hop across rows in the permutation table to land in the row with all of
the correct products for the multiplication gates. Communication between the

1 Both addition and multiplication of the plaintexts are in the ring ZN which is a �eld
when N = 2. N is always a power of 2.

20

client and server involves the client sending the ciphertext vector to the server
and the server either sending the multiplicands at each multiplication gate op-
eration or batching all of the multiplicands together with the �nal output. In
the latter case, the protocol has one message from the client to the server and a
single return message to the client.

Algorithm 2 P-SWHAE with Multiplication

1: Initialize with P-SWHAE parameters: Circuit C with a addition gates, g multi-
plication gates. N a power of 2, m prime, c1 is number of circuit inputs, c = c1 +g.
Client creates r = r1, . . . , rc1 , r

′
1, . . . , r

′
g where r

′
1, . . . , r

′
g are arbitrary, r1, . . . , rc1

are client plaintext inputs. Create e0 using r as plaintext input to P-SWHAE
encryption. b is secret key. Client sends be0 mod m to the server. Let b0 = 1.

2: Client/Server Processing:
Server assigns client inputs be1, . . . , bec1 to the circuit C input wires.
Denote the multiplicands for the g multiplication gates by bw1

1, bw
1
2, . . . , bw

g
1 , bw

g
2 .

Addition Gates: Server adds the inputs as integers to obtain gate output
Multiplication Gate i: Server sends multiplicands bwi

1, bw
i
2 to client.

(Alternatively, multiplicands for the gates can be batched with the �nal output.)
The client decrypts by multiplying by (bb1 · · · bi−1)−1bwi

j mod m, j = 1, 2
to obtain tj mod m, j = 1, 2. Let rj = tj mod N, j = 1, 2.
The client computes si = r1r2 mod N ; we take 0 < si < N.
Client creates vi = r1, . . . , rc1 , s1, . . . , si, r

′
1, . . . , r

′
g−i; r

′
1, . . . , r

′
g−i arbitrary

Client inputs vi into P-SWHAE encryption step to obtain ei.
Let bie

i = ei−1 mod m.
Server assigns be0

c1+i mod m as output of multiplication gate.
Output: Server returns circuit output o to client. Let bf = bb1b2 · · · bg mod m.
Client computes plaintext output as b−1

f (o) mod m mod N.

P-SWHAE with multiplication works as follows. Initially, the client executes
P-SWHAE key generation and encryption with c = c1+g where c1 is the number
of client inputs and g is the number of multiplication gates in the circuit. The
last g plaintext vector components are arbitrary. The client sends the c vector
components be mod m to the server. The server assigns be1 mod m, . . . , bec1 mod
m to the circuit input wires. The server processing of addition gates does not
create additional overhead whereas multiplication gates require that the server
sends the multiplicands to the client. The client uses the multiplicands to create
an updated secret decryption key. The outputs for the multiplication gates are
the last g elements in the vector be mod m. The reader can see Algorithm 2 for
details. For P-SWHAE encryption, the approximate communication complexity
is log(N(a+ 1))[2g2 + 2g+ 2c1 + 2c1g] which follows from Remark 3 and the fact
that only the �rst element of a request vector needs to be sent to the server.

Theorem 5. The P-SWHAE with Multiplication (Algorithm 2) returns the cor-
rect output to the client. More precisely, let o1 by the output obtained from the
circuit C when the client's c1 plaintext inputs are assigned to C ′s input wires.

21

(Server Assigns Each Multiplication Product as the Output
of the Corresponding Multiplication Gate)

Ciphertext Vector Sent to Server

Client Encrypted Inputs

be1mod m

Encrypted Multiplication Products
(Outputs) for g Multiplication Gates

be2mod m . . . bec1mod m be’1 mod m be’gmod m. . .

Fig. 4. Structure of Ciphertext Vector for P-SWHAE with Multiplication

Let o be the output obtained by the client using P-SWHAE with Multiplication.
Then o1 = o.

Proof. For the �rst 2 multiplicands, we obtain s1 on the client (s1 is the product)
and then the new vectors v1 and e1. e1 has the correct plaintext components in
the �rst c1 + 1 components since e1j mod N = rj , 1 ≤ j ≤ c1 and e1c1+1 mod
N = s1. b1e

1 = e0 mod m so bb1e
1 = be0 mod m. Thus we may consider the

e-vector, secret key pair for the existing ciphertext to be e1 and bb1 mod m.
Inductively consider the e-vector, secret key pair for the existing ciphertext

as ej and bb1 · · · bj mod m where eji mod N = ri, 1 ≤ i ≤ c1 and eji mod N = si,

c1 + 1 ≤ i ≤ c1 + j. Also, bb1 · · · bjej = be0 mod m. Given multiplicands bwj+1
1 ,

bwj+1
2 mod m. The multiplicands can be written as bb1 · · · bjw̄j+1

k , k = 1, 2 where

w̄j+1
k are sums of the �rst c1 + j components of ej . Then the client computes

(bb1 · · · bj)−1bb1 · · · bjw̄j+1
k mod m, k = 1, 2 to obtain w̄j+1

k , k = 1, 2. Thus sj+1

is the plaintext product, modN, of w̄j+1
1 and w̄j+1

2 . Therefore

vj+1 = (r1, . . . , rc1 , s1, . . . sj+1, r
′
1, . . . , r

′
g−j−1),

r′1, . . . , r
′
g−j−1 arbitrary, is input into the P-SWHAE encryption to get ej+1

where ej+1
i mod N = ri, 1 ≤ i ≤ c, and ej+1

i mod N = si, c1+1 ≤ i ≤ c1+j+1.
bj+1e

j+1 = ej so bb1 · · · bj+1e
j+1 = be0 mod m. The induction is complete.

Now consider the vector eg in T : eg = (eg1, . . . , e
g
c) where egi mod N = ri if

1 ≤ i ≤ c1, and egc1+i mod N = si if 1 ≤ i ≤ g. We have si, 1 ≤ i ≤ g, is the
product of the multiplicands for the corresponding multiplication gate. Thus

bfe
g = bb1 · · · bgeg = be0 mod m

which is the ciphertext vector sent to the server. Note that the solution bie
i =

ei−1 always exists since any two vectors in a permutation table are both scalar

22

multiples of the start vector. Thus it follows from Theorem 3 and the homomor-
phic property of the multiplication that the decryption

(bf)−1o mod m mod N

gives the correct output of the circuit.

Theorem 6. The P-SWHAE with Multiplication (Algorithm 2) has perfect se-
curity.

Proof. The only information sent to the server is a ciphertext vector from the P-
SWHAE encryption algorithm in Algorithm 1. By Theorem 4, P-SWHAE with
Multiplication has perfect security.

Subsequent Client Requests Can Be Processed Locally In this section,
we assume that the client has executed a previous request to the server as de-
scribed in Algorithm 2, and that the client has stored the multiplicands from
this previous request denoted by bw1

1, bw
1
2, . . . , bw

g
1 , bw

g
2 . The client can compute

the output given new client inputs without communication with the server. See
Algorithm 3. Thus the multiplicands can be viewed as an encoding of the circuit.
The proofs of correctness and security are similar to the proofs for Algorithm 2.

Algorithm 3 P-SWHAE with Multiplication: Subsequent Request

1: Initialize with P-SWHAE parameters: Circuit C with a addition gates, g multi-
plication gates. The last gate prior to output in C is a multiplication gate. N a
power of 2, m prime, c1 is number of circuit inputs, c = c1 + g.
Client creates r = r1, . . . , rc1 , r

′
1, . . . , r

′
g where r

′
1, . . . , r

′
g are arbitrary, r1, . . . , rc1

are client plaintext inputs. Create f0 using r as plaintext input to P-SWHAE
encryption. b is secret key from previous request. bw1

1, bw
1
2, . . . , bw

g
1 , bw

g
2 are mul-

tiplicands from previous server reply, and (e1, . . . , ec1+g) is the e vector from the
initial request in the previous invocation. Let o be the last component of the vector
bf0 mod m. Let b0 = 1.

2: Client Processing:
Let x = e−1

1 f1 mod m.
for i = 1 to i = g
Let tij = (bb0 . . . bi−1)−1xbwi

j mod m, and rj = tj mod N, j = 1, 2.
si = r1r2 mod N ; we take 0 < si < N.
vi = r1, . . . , rc1 , s1, . . . , si, r

′
1, . . . , r

′
g−i; r

′
1, . . . , r

′
g−i arbitrary

Input vi into P-SWHAE encryption step to obtain f i.
Let bif

i = f i−1 mod m.
end for
Output: Let bf = bb1b2 · · · bg mod m.
Client computes plaintext output as b−1

f (o) mod m mod N.

23

3 Two-Party Computation (2PC)

In this section, we consider the case where the server also has inputs for the
circuit. As in Section 2, the client provides its (encrypted) inputs to the server.
The server processes the client and server inputs through the circuit, and it
returns the output to the client. If we assume the server is semi-honest, or another
mechanism is used to show the server has not deviated from the protocol, then
the client may share the decrypted output with the server (see Theorem 8).

We support boolean (N = 2) circuits with both addition (XOR) and multi-
plication (AND) gates in this section. We will see that client privacy holds even
if the server is fully malicious and computationally unbounded when the client
does not share the output with the server (see Theorem 7.) (If the client shares
the decrypted output with the server then a malicious server could learn addi-
tional information about client input values since the server could have returned
as output the sum of one of its encrypted input values with a client encrypted
input value.) If the client receives noti�cation from a veri�er that veri�es the
correctness of server's processing after the output is delivered to the client, then
the client can deliver an output to the server and be assured that client privacy
is not impacted by a malicious server.

Server privacy depends on the hardness of the subset sum problem and our
assumption that the client is semi-honest. Correctness also assumes the client
is semi-honest. A veri�er can inspect the protocol transcript along with the
speci�cation of the circuit to verify that the server's actions are correct. If the
secret key and parities of the server inputs are not shared with the veri�er, then
client and server privacy is information-theoretically protected from the veri�er.

In this section, we will assume N = 2.
Our protocol includes a preprocessing step that occurs prior to client and

server inputs and subsequent processing. The client creates elements of the form
be mod m following the P-SWHAE encrypt algorithm as described above. This
set of elements is then partitioned into client input elements, server input el-
ements, multiplication gate elements, and noise generator elements. The client
knows the parities of the elements before creating them; half of the noise gen-
erator element parities are even and the multiplication gate parities are 3 to 1
even to odd or vice versa depending on whether the circuit has AND or NAND
gates. The client sends these elements to the server along with the parities of
the exponents for the server input elements and the noise elements. The server
input elements include an even and an odd parity exponent element for each
server input.

For processing a multiplication gate, the server computes random subset
sums of the noise elements and adds them to each multiplicand. Four elements
are sent to the client.2 Each multiplicand is added to both an odd sum and
an even subset sum prior to both of the resulting elements being sent to the
client. We de�ne an even (odd) sum as a sum where the sum of the exponents is

2 For optimization, only two elements have to be sent; one element from each pair is
sent. The client knows the other values after decrypting these two elements.

24

even (odd). Each pair of elements is randomly ordered prior to being sent to the
client. The client is able to obtain the least signi�cant bit after multiplying by
b−1 mod m for all four of the elements and return four products. Three of the
products will be discarded by the server and the client does not know which of
the products is the correct one (see Figure 5).

Algorithm 4 Preprocessing Steps for 2-Party Protocol with Perfect Security
for Client, Steps Occur Prior to Introduction of Data

1: The client selects the c parameter: c = cc + 2cs + c1 + 4g where g is the number
of multiplication gates in the circuit, cc is the number of client inputs, cs is the
number of server inputs, and c1 is a small integer (e.g., c1 = 8) for the number of
noise generator elements used to create noise elements. Note that the client knows
the parities of the c elements (half of server and noise generator elements are even
parity) so it creates the e vector per the P-SWHAE key-generation and encryption
algorithms (N = 2.) We replace α in P-SWHAE with α2 = (m− 1)/(2(a+ 1)) to
accomodate the subset sums that the server will add to points prior to sending to
the client.

2: The client creates uniform random noise elements from the c1 elements discard-
ing any duplicates until the client has n new elements. n is larger than log(m).
The random noise element exponents have the form a1t1 + a2t2 where a1 and a2
are integers and t1, t2 are relatively prime integers in the set of c1 elements. Let
h1, . . . , hn be the set of noise element exponents. The client ensures that these val-
ues are positive and

∑
i hi < m/2 :

i = 0
while i < n do
hi ← ai1t1 + ai2t2; ai1, ai2 ← Z, t1, t2 are noise generator elements.
if hi = hj for some j < i or hi > m/2n or hi equals a client input or
multiplication gate element then
discard hi

else
store hi, parity(hi)
i = i + 1

endif
endwhile

3: The client sends the noise elements to the server along with information to identify
the parity of the exponents for each element. Noise elements are de�ned to have
even (odd) parity if and only if the noise element exponents have even (odd) parity.
A sum of noise elements is de�ned to be a subset sum with even (odd) parity if
and only if the sum of noise element parities is even (odd).
send zi = bhi mod m, parity(hi) to server, 1 ≤ i ≤ n.
server stores zi, parity(hi), 1 ≤ i ≤ n.
send m to the server (for modular subset sum)

25

Algorithm 5 Input Processing Steps for 2-Party Protocol with Perfect Security
for Client
1: The client creates 2cs server input elements each of the form yi = bei mod m

where these 2cs elements are part of the larger set of c elements. Half of the server
input elements have exponents with even parity; the other half has exponents
with odd parity. Each server input exponent ei is taken from the e vector created
during the P-SWHAE encryption algorithm.

2: Client randomizes the order of yi, 1 ≤ i ≤ cs, and sends the yi to the server.
It sends a separate message with yi exponent parities (the parities of ei in
yi = bei mod m) to the server. (The exponent parities will not be shared with a
veri�er.)

3: The client creates cc input elements each of the form wi = bei mod m where these
cc elements are part of the larger set of c elements. Each client input element
ei value is taken from the e vector created during the P-SWHAE encryption
algorithm.

4: Client sends wi to server, 1 ≤ i ≤ cc.

5: The server can now begin processing through the circuit given the client and server
input elements.

Server(be0, be1)

Keep bfi that corresponds to
parity(e0 + b-1s0) parity(e1 + b-1s2) as output
of multiplication gate (product of be0, be1)

Client
Create subset sums: s0,s2 (even) s1,s3 (odd)

Randomly permute be0+s0, be0+s1 to get u0,u1

Randomly permute be1+s2, be1+s3 to get u2,u3

u0 u1 u2 u3

v0=b-1u0

Client decrypts:

v1=b-1u1

v2=b-1u2 v3=b-1u3

(mod m)
Select fi < (m-1)/(2(a+1)) in
P-SWHAE e-vector, so that
ri = parity(vi)
parity(f0)=r0r2, parity(f1)=r0r3

parity(f2)=r1r2, parity(f3)=r1r3

bf0 bf1 bf2 bf3 (mod m)

(ei + b-1sj < m)

Fig. 5. Multiplication Gate Protocol for 2PC Scheme

26

Algorithm 6 Steps for 2-Party Protocol with Perfect Security for Client: Mul-
tiplication, Addition Gates and Output

1: When the server needs to multiply be1 and be2, it creates four elements (in Zm) to
send to the client: be1 plus an even parity subset sum element (using the n zi noise
elements), be1 plus an odd parity subset sum element, be2 plus plus an even parity
subset sum element, and be2 plus an odd parity subset sum element. The 1st and
2nd elements are randomly ordered and the 3rd and 4th elements are randomly
ordered:
for i = 0 to 3 do
z = (z1, . . . , zn)
s← {0, 1}n
sumi ← s · z mod m
de�ne parity(sumi) =

∑
sj=1 parity(hj)

do while parity(sumi) 6= i mod 2
select random j where sj = 1, sumi = sumi − zj
select random j where sj = 0, sumi = sumi + zj

end do while
end for
x0 = be1 + sum0 mod m.
x1 = be1 + sum1 mod m.
x2 = be2 + sum2 mod m.
x3 = be2 + sum3 mod m.

2: x0 and x1 are randomly ordered and sent to the client.
3: x2 and x3 are randomly ordered and sent to the client.
4: Relabel x0, x1, x2, x3 as u0, u1, u2, u3 where u0, u1, u2, u3 is the receiving order.
5: Client computes:

for i = 0 to 3 do
vi = uib

−1 mod m
if parity(vi) = 1 then
ri = 1

else
ri = 0

endif
end for

6: Client selects f0, f1, f2, f3 from e that was created during P-SWHAE encrypt step
where parity(f0) = r0r2, parity(f1) = r0r3, parity(f2) = r1r2, and parity(f3) =
r1r3.

7: The client computes bf0 mod m, bf1 mod m, bf2 mod m, and bf3 mod m, and sends
these elements to the server in this order.

8: The server keeps the element corresponding the correct product and discards the
other 3 elements. The kept element is the output of the multiplication gate.

9: Addition gates are processed by the server without client interaction; the two inputs
are added as integers to get the output.

10: An output o is summed with an even parity subset sum element s to get s+o mod m
which is sent to the client. The client computes the plaintext output as
parity(b−1(s+ o) mod m). The client does not share the plaintext output with the
server unless the server is semi-honest or there is a mechanism for verifying that
the server has followed the protocol.

27

3.1 Proof of Security

Theorem 7. Given the 2-party protocol of Algorithms 4, 5, and 6 where the
client is semi-honest and does not share the output with the server. The server
may be computationally unbounded and malicious.3 Then the protocol has server
privacy given the hardness of the modular subset sum problem and perfect client
privacy.

Proof. We use a simulator argument for server privacy. Our 2PC protocol has
server privacy if there is a probabilistic polynomial-time algorithm S1 such that

{S1(x, f1(x, y))}x,y∈{0,1}∗ ≡c {V IEWΠ
client(x, y)}x,y∈{0,1}∗

where V IEWclient is the client's view of our protocol Π's execution including
it's input, randomness and messages received, f1(x, y) is the client output, and
x, y are the client and server inputs respectively.

The simulator is given the client inputs, output, and the security parameter
m. It selects uniform random b such that b < m (m prime) and follows P-SWHAE
encrypt steps. It creates the noise elements as described in Algorithm 4.

It then selects cs server input elements of the same form be mod m as de-
scribed in Algorithm 5. The server plaintext bits are random.

The simulator processes the plaintext client input and random server inputs
through the circuit and obtains the simulated client output.

If the simulated output is the same as the actual client output then for the
return of the output to the client, as in the real protocol, the output is summed
with an even parity subset sum element. Otherwise, the output is summed with
an odd parity subset sum element. Thus we ensure that the client obtains the
same output in both the simulation and the real protocol.

Proposition 1.1 (2) of [19] shows that when log(m) < n the sums of noise
elements have a probability distribution that is exponentially close to uniform
random for all but an exponentially small number of sums. Thus the client's
view in the real protocol and the simulated protocol are indistinguishable, with
high probability.

We now prove that our 2PC protocol has client privacy; we will show that

{V IEWΠ
srv(x, y)}x,y∈{0,1}∗ ≡perf {V IEWΠ

srv(x
′, y)}x′,y∈{0,1}∗

where V IEWsrv is the server's view of our protocol Π ′s execution including it's
input, randomness, and messages received, and |x| = |x′| = |y| where x and x′

are client inputs.
Theorem 4 gives that

Pr[Encb1(r1) = w] = Pr[Encb2(r2) = w]

for keys b1, b2 uniformly random, plaintexts r1, r2 and ciphertext w. We have
x and x′ as a subset of bits of r1 and r2. The server input candidate bits,

3 Our protocol does not ensure correctness when the server is malicious.

28

noise generator bits, and multiplication element bits generate components of
r1 and r2. The 2PC protocol messages from the client to the server consist of
components from the ciphertext vector w. Thus we have

{V IEWΠ
srv(x, y)}x,y∈{0,1}∗ ≡perf {V IEWΠ

srv(x
′, y)}x′,y∈{0,1}∗

We now prove security in the semi-honest model where the client may share
the output with the server.

Theorem 8. Given the 2-party protocol of Algorithms 4, 5, and 6 where both
the client and server are semi-honest and the client may share the output with
the server. The server may be computationally unbounded. Then the protocol has
server privacy given the hardness of the modular subset sum problem and perfect
client privacy.

Proof. The proof for server privacy is the same as the proof of server privacy in
Theorem 7.

In order to prove client privacy we will show a probabilistic polynomial-time
algorithm S2 such that

{S2(y, f2(x, y))}x,y∈{0,1}∗ ≡perf {V IEWΠ
srv(x, y)}x,y∈{0,1}∗

where V IEWsrv is the server's view of our protocol Π's execution including it's
input, randomness and messages received, f2(x, y) is the server output, and x, y
are the client and server inputs respectively.
S2 selects uniform random b < m (m prime) and follows P-SWHAE encrypt

steps. It creates noise generator elements as described in Algorithm 4. The client
plaintext bits are random. The probability of selecting any set of bits for the noise
generator, multiplication, and server inputs between the real protocol and the
simulator is the same. The di�erence is the client input bits; however, Theorem 4
gives

Pr[Encb1(r1) = w] = Pr[Encb2(r2) = w]

for keys b1, b2 uniformly random, plaintexts r1, r2 and ciphertext w. In the real
protocol, the client messages to the server are components of the ciphertext
vector w. The same is true for S2. Finally, S2 has the same server output. Thus
the server's view is replicated with the same probability by S2 and the proof is
complete.

References

1. Acharya, A., Hazay, C., Poburinnaya, O., Venkitasubramaniam, M.: Best of both
worlds: Revisiting the spymasters double agent problem. In: Advances in Cryptol-
ogy � CRYPTO 2023: 43rd Annual International Cryptology Conference, CRYPTO
2023, Santa Barbara, CA, USA, August 20�24, 2023, Proceedings, Part I. pp. 328�
359. Springer-Verlag, Berlin, Heidelberg (2023)

29

2. Alperin-Sheri�, J., Peikert, C.: Faster bootstrapping with polynomial error. Cryp-
tology ePrint Archive, Paper 2014/094 (2014), https://eprint.iacr.org/2014/094,
https://eprint.iacr.org/2014/094

3. Badrinarayanan, S., Patranabis, S., Sarkar, P.: Statistical security in two-party
computation revisited. In: Theory of Cryptography: 20th International Conference,
TCC 2022, Chicago, IL, USA, November 7�10, 2022, Proceedings, Part II. pp.
181�210. Springer-Verlag, Berlin, Heidelberg (2022). https://doi.org/10.1007/978-
3-031-22365-5_7, https://doi.org/10.1007/978-3-031-22365-5_7

4. Beaver, D.: Minimal-latency secure function evaluation. In: Proceedings EURO-
CRYPT 2000. Lecture Notes in Computer Science, vol. 1807, pp. 335�350. Springer-
Verlag, Berlin, Heidelberg (2000)

5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing. pp. 1�10.
STOC '88, Association for Computing Machinery, New York, NY, USA (1988).
https://doi.org/10.1145/62212.62213, https://doi.org/10.1145/62212.62213

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryp-
tion without bootstrapping. Cryptology ePrint Archive, Paper 2011/277 (2011),
https://eprint.iacr.org/2011/277, https://eprint.iacr.org/2011/277

7. Brakerski, Z., Vaikuntanathan, V.: E�cient fully homomorphic encryption from
(standard) lwe. In: 2011 IEEE 52nd Annual Symposium on Foundations of Com-
puter Science. pp. 97�106 (2011). https://doi.org/10.1109/FOCS.2011.12

8. Branco, P., Döttling, N., Srinivasan, A.: A framework for statistically sender
private ot with optimal rate. In: Advances in Cryptology � CRYPTO 2023:
43rd Annual International Cryptology Conference, CRYPTO 2023, Santa Bar-
bara, CA, USA, August 20�24, 2023, Proceedings, Part I. pp. 548�576.
Springer-Verlag, Berlin, Heidelberg (2023). https://doi.org/10.1007/978-3-031-
38557-5_18, https://doi.org/10.1007/978-3-031-38557-5_18

9. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure pro-
tocols. In: Proceedings of the Twentieth Annual ACM Symposium on The-
ory of Computing. pp. 11�19. STOC '88, Association for Computing Ma-
chinery, New York, NY, USA (1988). https://doi.org/10.1145/62212.62214,
https://doi.org/10.1145/62212.62214

10. Cleve, R.: Towards optimal simulations of formulas by bounded-width programs.
In: STOC 90: Proceedings of the 22nd ACM Symposium on Theory of Computing.
pp. 271�277. ACM Press, New York, NY (1990)

11. Crepeau, C., Morozov, K., Wolf, S.: E�cient unconditional oblivious transfer from
almost any noisy channel. In: Security in Communication Networks 2004. pp. 47�59
(2004)

12. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic en-
cryption over the integers. Cryptology ePrint Archive, Paper 2009/616 (2009),
https://eprint.iacr.org/2009/616, https://eprint.iacr.org/2009/616

13. Ducas, L., Micciancio, D.: Fhew: Bootstrapping homomorphic encryption
in less than a second. Cryptology ePrint Archive, Paper 2014/816 (2014),
https://eprint.iacr.org/2014/816, https://eprint.iacr.org/2014/816

14. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceed-
ings of the Forty-First Annual ACM Symposium on Theory of Computing. pp.
169�178. Association for Computing Machinery, New York, NY, USA (2009),
https://doi.org/10.1145/1536414.1536440

30

15. Gentry, C., Halevi, S.: Implementing gentry's fully-homomorphic en-
cryption scheme. Cryptology ePrint Archive, Paper 2010/520 (2010),
https://eprint.iacr.org/2010/520, https://eprint.iacr.org/2010/520

16. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with
polylog overhead. Cryptology ePrint Archive, Paper 2011/566 (2011),
https://eprint.iacr.org/2011/566, https://eprint.iacr.org/2011/566

17. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game.
In: Proceedings of the Nineteenth Annual ACM Symposium on Theory
of Computing. pp. 218�229. STOC '87, Association for Computing Ma-
chinery, New York, NY, USA (1987). https://doi.org/10.1145/28395.28420,
https://doi.org/10.1145/28395.28420

18. Hazay, C., Lindell, Y.: E�cient secure two-party protocols, techniques and con-
structions. Springer-Verlag (2010)

19. Impagliazzo, R., Naor, M.: E�cient cryptographic schemes provably as secure as
subset sum. Journal of Cryptology 1996(9), 199�216 (1996)

20. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: ICALP 2002. pp. 244�256 (2000)

21. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with ap-
plications to round-e�cient secure computation. In: Proceedings 41th IEEE Sym-
posium on Foundations of Computer Science. IEEE Computer Society (2000)

22. Khurana, D., Mughees, M.H.: On statistical security in two-party computa-
tion. In: Theory of Cryptography: 18th International Conference, TCC 2020,
Durham, NC, USA, November 16�19, 2020, Proceedings, Part II. pp. 532�
561. Springer-Verlag, Berlin, Heidelberg (2020). https://doi.org/10.1007/978-3-
030-64378-2_19, https://doi.org/10.1007/978-3-030-64378-2_19

23. Kilian, J.: Founding crytpography on oblivious transfer. In: Proceedings of
the Twentieth Annual ACM Symposium on Theory of Computing. pp. 20�31.
STOC '88, Association for Computing Machinery, New York, NY, USA (1988).
https://doi.org/10.1145/62212.62215, https://doi.org/10.1145/62212.62215

24. Kolesnikov, V.: Gate evaluation secret sharing and secure one-round
two-party computation. In: Advances in Cryptology - ASIACRYPT
2005, 11th International Conference on the Theory and Application
of Cryptology and Information Security, Chennai, India, December 4-
8, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3788,
pp. 136�155. Springer (2005). https://doi.org/10.1007/11593447_8,
https://iacr.org/archive/asiacrypt2005/134/134.pdf

25. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Proceedings of the 17th International Conference on Theory and Ap-
plication of Cryptographic Techniques. pp. 223�238. EUROCRYPT'99, Springer-
Verlag, Berlin, Heidelberg (1999)

26. Rivest, R.L., Adleman, L., Dertouzos, M.: On data banks and privacy homomor-
phisms. In: Foundations of Secure Computation. pp. 169�180 (1978)

27. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signa-
tures and public-key cryptosystems. Commun. ACM 21(2), 120�126 (feb 1978).
https://doi.org/10.1145/359340.359342, https://doi.org/10.1145/359340.359342

28. Rothblum, R.: Homomorphic encryption: from private-key to public-key. In: The-
ory of Cryptography - 8th Theory of Cryptography Conference, TCC 2011. pp.
219�234 (2011)

29. Sander, T., Young, A., Yung, M.: Non-interactive cryptocomputing for nc1. In:
Proceedings 40th IEEE Symposium on Foundations of Computer Science. pp. 554�
566. IEEE Computer Society, New York, NY (1999)

31

30. Yao, A.C.C.: How to generate and exchange secrets. In: Proceedings of the 27th
Annual Symposium on Foundations of Computer Science. pp. 162�167. SFCS
'86, IEEE Computer Society, USA (1986). https://doi.org/10.1109/SFCS.1986.25,
https://doi.org/10.1109/SFCS.1986.25

A Basic SWHAE Scheme

In this section we present a somewhat homomorphic additive encryption scheme:
the basic SWHAE scheme. This scheme is secret key rather than public key. We
then show that it is not possible to obtain perfect security with this scheme.

A.1 Additive Homomorphic Scheme

De�nition 4. Basic Somewhat Homomorphic Additive Encryption (Ba-
sic SWHAE) Given a server circuit with a addition gates.

Key Generation: Select positive prime integer m and uniform random pos-
itive integer b, the base, where b < m. The secret key is (b,m). The key is used
to encrypt only one plaintext vector. A new key must be selected for each new
plaintext vector.

Encryption: N is a positive integer which is a power of 2. Given plaintext
vector (r1, . . . , rc) where 0 ≤ ri < N, 1 ≤ i ≤ c. The ri are integers; for the rest
of this paper we will consider N = 2 and the ri as bits. For all i, ei = aiN + ri
where ai is random uniform, and ei ≤ m

a+1 , 1 ≤ i ≤ c.
The client ciphertext vector is obtained by selecting an integer representative

vi, 1 ≤ i ≤ c, where vi ≡ bei mod m. Then Q(I) = (v1, . . . , vc) is the client
ciphertext vector.

Decryption: The client decryptor receives an evaluated ciphertext x from the
server which consists of at most a additions of the ciphertexts in the ciphertext
vector. Thus the client may obtain

b−1x mod m = e

where e is the sum of at most a+1 of the e′is. Since ei ≤ m/(a+1) for 1 ≤ i ≤ c,
it follows that e is the integer sum of the e′is. In other words,

e ≤ (a+ 1) max ei ≤
(a+ 1)m

(a+ 1)
= m

so the residue modulo m is the number itself.
Thus the parity of the integer e is the modulo 2 sum of the r′is.

Evaluate: Evaluate takes the ciphertext tuple from Encrypt and the circuit
and outputs another vector of ciphertexts corresponding to the circuit evaluation.
Each XOR gate is processed by adding the two inputs as integers.

32

The client sends the client ciphertext request to the server which uses the
input elements as inputs to the circuit. The server returns the output elements
to the client.

We will not prove any security properties for the basic scheme; we will take
the basic scheme and add conditions to obtain the scheme in Theorem 1 and
De�nition 3 for which we will prove security properties.

We now give an example to show there are some permutation tables that
have limited entropy as m grows for a �xed c.

Proposition 2. Given any m ≥ 7 where m − 1 is divisible by 5 in the basic
SWHAE scheme described above. Given a circuit with a addition gates. Given
the permutation table T that has 1, 4, and 5 in the same row. Then the set of
associated binary vectors for T is missing at least 2c−2 of the possible 2c binary
vectors.

Proof. We �rst consider the c = 3 case. Consider the order for T where the row
with 1, 4, and 5 is the start row (T has the same vectors regardless of which vector
is the start vector in the table.) Before the 5 column 1st �ip, we have 2 associated
binary strings. We may gain at most 2 more distinct binary strings after the 5
�ip, before the 4 �ip. Then we can pick up 2 more binary strings after the 4 �ip
prior to the next 5 �ip, for a total of 6. When we come to the 2nd 5 �ip, we are at
row 2(m−1)/5+1. 2(m−1)/5+1 > 3/8(m−1)+1 = (m−1)/4+(m−1)/8+1.
Thus we are more than half way through the 2nd permutation run for the 4
column and the elements are too large to be less than α = (m−1)/(a+1). After
the next 4 �ip, we are at row (m−1)/2+1 > α. Thus no more associated binary
vectors can occur. The general c case follows except that the number of missing
binary vectors is at least 2c−2.

The upshot of the proposition is that it is possible in the basic SWHAE
scheme to have less than perfect security.

B Integrating a Veri�er

A veri�er without access to the client secret key and parities of the client, server
inputs but with access to the rest of the server's data and calculations, client's
protocol messages, and circuit speci�cation can verify that the server's compu-
tations are correct:

Theorem 9. A veri�er with access to a run of the 2-party protocol of Algorithms
4, 5, and 6 can verify that the server's computations are correct. Access to the
run is de�ned as:

1. access to the server's internal data and computations other than the server
input parity information,

2. access to the client's protocol record of messages sent and received by the
client, and

33

3. access to the circuit speci�cation.

If the veri�er does not have access to additional data (client secret key, input
parities, and server's input parities), then client and server privacy is protected
information-theoretically from a computationally unbounded veri�er. If the veri-
�er is correct then a malicious unbounded server that deviates from the protocol
will be detected with high probability assuming the client is semi-honest.

Proof. Based on the server encrypted input elements and client encrypted input
elements, the veri�er can calculate an expected encrypted output element vout,
where vout + subsumfinal = out where out is the encrypted output element sent
to the client. At every multiplication gate, the server shows v1 + subsum1 = c1
and v2 + subsum2 = c2 where ci are from the client transcript, subsumi are
veri�able subset sums and vi are the expected encrypted inputs for the gate,
i = 1, 2. Thus veri�er is able to select the correct response from the 4 elements
in the client transcript. To verify successfully, the �nal server encrypted element
s satis�es s = vout and vout + subsumfinal = out where subsumfinal has even
parity.

34

