
Parts of this work appear as extended abstracts in ePrint reports 2022/1593 and 2023/1406. This is the full version.

Beyond the circuit:

How to Minimize Foreign Arithmetic in ZKP Circuits

Michele Orrù George Kadianakis Mary Maller Greg Zaverucha
CNRS∗ Ethereum Foundation Ethereum Foundation, PQShield Microsoft Research

m@orru.net george.kadianakis@ethereum.org mary.maller@ethereum.org gregz@microsoft.com

Abstract

Zero-knowledge circuits are frequently required to prove gadgets that are not optimised for the constraint system
in question. A particularly daunting task is to embed foreign arithmetic such as Boolean operations, field arithmetic,
or public-key cryptography. We construct techniques for offloading foreign arithmetic from a zero-knowledge circuit
including (i) equality of discrete logarithms across different groups; (ii) scalar multiplication without requiring elliptic
curve operations; (iii) proving knowledge of an AES encryption. To achieve our goal, we employ techniques inherited
from rejection sampling and lookup protocols. We implement and provide concrete benchmarks for our protocols.

1 Introduction

Zero-knowledge proofs [GMR89] allow a prover to convince a verifier about the truth of a statement without revealing
more information than its validity. They are a core tool in complexity theory, cryptography, and security. Over the
decades, the cryptographic community has witnessed a transformative evolution of zero-knowledge proofs, from theoretical
tools to practical systems, with a focus on proving statements about NP relations. The surge of interest in real-world
applications, such as blockchain scalability [BCL+21], private payments [BCG+14], and more recently authenticity of
images and documents [KHSS22, BCG+22], has catalyzed the development of efficient zero-knowledge proof across a
variety of systems.

Most real-world proof systems today express statements in terms of arithmetic circuits over finite fields, and the
engineering effort involved is significant. For instance, programming a zero-knowledge statement in rank-1 constraint
systems [BCG+13] (R1CS) requires to formulate the statements as an arithmetic circuit where the only operations al-
lowed are additions and multiplications in the field. This process is highly inefficient, non-trivial and prone to errors.
Plonkish relations [GP20] introduced the notion of custom gates, which improve efficiency by introducing reusable gad-
gets but require careful protocol engineering and bloat the proof size. Recent works designing and relying on algebraic
hashes [AGR+16, GKR+21, GKL+22] and curve cycles [BCTV14, BCG+20b, KS23] try to reduce the burden of embed-
ding foreign field arithmetic inside the zero-knowledge statement. Additionally, mistakes in the instantiations might result
in either efficiency losses, or void the security guarantees of the proof system itself [zkb].

In practice, a large engineering effort has been put into securely programming zero-knowledge statements for computa-
tions over (i) symmetric-key operations, (ii) public-key operations, and (iii) arithmetic over a foreign finite field. All above
operations often come at a high cost: as an example, expressing a non-algebraic cipher like AES using Marlin [CHM+20]
in BLS12-377 [BLS04] costs 212848 constraints, consuming around 18s on modern hardware; alternatively, the jSNARK
library (which internally relies on [BCTV14]) implements AES in 14240 R1CS constraints.

Similarly, expressing elliptic-curve operations inside circuits is extremely expensive and error-prone.1 Specifically,
performing arithmetic on the non-native field is multiple orders of magnitude more expensive than doing native field
arithmetic due to using bit-decomposition to simulate the non-native field [azt]. For instance, to simulate a non-native
field multiplication for the BN254 curve base field using the BN254 scalar field, there is a 600x overhead.2 For this
reason, recursive protocols typically adopt elliptic curve cycles [BGH19, KS23]; however these techniques can lead to more
complicated protocols with subtle vulnerabilities [NBS23].

∗Part of this work was conducted while the author was at UC Berkeley.
1https://penumbra.zone/pdfs/zksecurity_penumbra_2023.pdf
2https://github.com/arkworks-rs/nonnative

1

https://eprint.iacr.org/2022/1593
https://eprint.iacr.org/2023/1406
https://penumbra.zone/pdfs/zksecurity_penumbra_2023.pdf
https://github.com/arkworks-rs/nonnative

In sum, the engineering effort to express zero-knowledge statements is significant, and the resulting statements are
often inefficient or insecure. In this paper we attempt to address this problem by providing a set of techniques that allow to
express zero-knowledge statements without the need for foreign arithmetic. We provide three techniques that respectively
avoid: (i) foreign group arithmetic, (ii) foreign field arithmetic, and (iii) foreign Boolean arithmetic.

1.1 Our contributions

We provide the following techniques to remove the use of foreign arithmetic in zero-knowledge circuits:

(i) Rejection sampling can be used to prove that two secrets, committed across different groups, are equal. We will use
Gp and Gq to denote groups of prime order p and q, with generators (Gp, Hp) and (Gq, Hq) and constant bx > 0
such that bx < ⌈log2(min(p, q))⌉ − 2. We prove the following theorem.

Theorem 1 (informal). If discrete logarithm is hard in Gp and Gq, and 0 ≤ x < 2bx , then Πdleq of Figure 1 is a
zero-knowledge argument of knowledge for the relation

Rdleq := {((x, rp, rq), Xp, Xq) : Xp = xGp + rpHq ∧ Xq = xGq + rqHq} .

Intuitively, we require that x is bounded (0 ≤ x < 2bx) to simplify the reasoning about the relation above, and
work with x over Z. We formalize this precondition by requiring a zero-knowledge proof be provided as input to the
protocol. This can be guaranteed via an explicit range proof either in Gp or Gq, or one of the input commitments
may already be known to satisfy the length constraint (e.g. because of an earlier range proof). Efficient range proofs
exist and for the explicit range proof we directly use prior works without modifications (see Section 3.2). Our
protocol can be extended to prove discrete log relations of vectors x⃗ using standard composition techniques.

While the above relation can always be proven with zero-knowledge proofs for arbitrary NP statements, generic
approaches must embed foreign group arithmetic in the proof statement and fail to deliver prover efficient protocols,
whereas proofs with our protocol Πdleq require on average 3–6 scalar multiplications in each of Gp and Gq (more
details in Table 2) and as little as 81 bytes.

(ii) A (perhaps surprisingly) simple Σ-protocol allows circuit designers to relocate elliptic curve group operations outside
the circuit. The approach involves performing a Σ-protocol outside the circuit and subsequently “binding” it inside
the circuit.

Modern zero-knowledge protocols encounter significant prover computational overhead due to the execution of elliptic
curve group operations within SNARK circuits. These operations are required for aggregating proofs, opening
algebraic commitments, or verifying signatures inside circuits. It is possible to perform these elliptic curve group
operations using non-native field arithmetic, but the costs in terms of field operations is multiple orders of magnitude
slower than native field operations: over a million R1CS constraints are needed for expressing a single BN254 scalar
multiplication in R1CS, and 14,000 rows are needed in Plonk using custom gates. Furthermore, implementing
these operations inside circuits is complicated resulting in code that is prone to errors and difficult to audit. By
comparison, modern algebraic hash function [AGR+16, GKR+21, BBC+22] have small circuit representations and
are two orders of magnitude faster: for instance, Poseidon requires roughly 220 constraints to be expressed in R1CS
and 240 rows to be expressed in Plonk. We prove the following theorem:

Theorem 2 (informal). Let M ∈ Gm×n
p be a matrix over some group G of polynomial size. If H is a collision-

resistant hash function and M is collision-resistant, then Πdlhash of Figure 2 is a zero-knowledge argument of knowl-
edge for the relation

Rdlhash :=
{(
x⃗, (X⃗, xh)

)
: X⃗ =Mx⃗ ∧ xh = H(x⃗)

}
.

Informally, the requirement on M of collision-resistance means that is hard to find two distinct vectors x⃗, x⃗′ such
that Mx⃗ = Mx⃗′ (cf. the Kernel-Matrix Diffie-Hellman problem [MRV16]). The Πdlhash protocol effectively avoids
non-native group operations by performing algebraic hash invocations. This results in big improvements on the
number of constraints. We provide concrete benchmarks for our protocol Πdlhash in Section 4.2.

(iii) Boolean arithmetic can be implemented efficiently with lookup protocols. To demonstrate this, we provide a protocol
to prove in zero-knowledge that the Rijndael (AES) cipher is correctly encrypting a committed value, using a single
lookup protocol. We prove the following theorem:

2

Theorem 3 (informal). If discrete logarithm is hard in G, then Πaes of Figure 3 is a zero-knowledge argument of
knowledge for the relation

Raes :=

{(
(m⃗, µ, k⃗, κ), ctx,M,K

)
:M =

∑
i

miGi + µHi ∧ K =
∑
i

kiGi + κHi ∧ ctx = AES(k⃗, m⃗)

}
.

where AES is the Rijndael block cipher, and m⃗, k⃗ are the bit-strings of (respectively) message and key. The protocol
has linear prover and verifier cost, and internally relies on a lookup protocol Πlup without requiring any range proof or
boolean arithmetic. In practice the AES circuit is small thus linear-time verification is concretely efficient and saves
the prover significant overhead. We introduce a novel lookup protocol that relies solely on Σ-protocols, implement
and benchmark the resulting protocol, providing concrete estimates and guidelines for implementors. Our code is
open-source and released under BSD license.3

The overall prover cost of our lookup techniques for AES is much lower than the application of a generic-purpose
SNARK. We provide an implementation and concrete benchmarks for Πaes in Section 5.2, for AES-128 and AES-256,
and include comparisons with state-of-the-art MPC-in-the-Head based proofs, which are generally considered to be
well-suited for Boolean computations. Our AES-128 zero-knowledge proof runs in 6 ms to reduce an encryption
proof into a single batch lookup relation of less than 2000 elements in a table of 768 elements. Benchmarks for the
entire proof creation and verification can be seen in Table 4.

1.2 Applications

We list below some applications that can benefit from our techniques.

Linking credentials and assets inside proofs. One overarching theme of our contributions is the ability to easily
and efficiently link commitments and credentials inside zero-knowledge proofs.

• Linking commitments. Consider a PKI system which stores Alice’s record (for instance, the IP file system IPFS [Ben14]).
The PKI (that is the case for IPFS) requires us to commit to Alice’s data using a Merkle-based commitment scheme
to get commitment cm. Now consider that we want to prove in zero-knowledge some property of Alice’s record (e.g.
a range check) using a proof system that expects a Pedersen commitment cp. A naive approach would involve the
prover to open cm and cp inside the circuit to prove it opens to the same witness data, however opening cp inside the
circuit is very expensive because of non-native field arithmetic. Using Πdlhash, linking cm and cp becomes efficient
by avoiding non-native field arithmetic.

• Linking Assets. Consider interaction between two blockchains that use different elliptic curves. This can happen
for example, if an L2 zkEVM needs to create a proof about data posted on an L1 (e.g. Bitcoin [Nak08], Ether-
eum [But14]). If those two systems use different elliptic curves, linking a commitment between them can be done
with Πdleq rather than a generic SNARK with non-native field arithmetic which would result in a larger set of
assumptions, attack surface, and engineering costs.

• Linking anonymous credentials. By credential, we refer to anonymous credentials defined in groups of prime order
such as CL [CL04], BBS+ [LKWL22, BBS04, ASM06], U-Prove [PZ13] and Brands [Bra94], PS signatures [PS16],
Coconut [SAB+19] and keyed-verification credentials such as those used in the Signal private groups system [CMZ14,
BBDT16, CDDH19, CPZ20]. For instance, consider a credential that contains a user’s account ID, e-mail address,
phone number, and social security number. A second credential can now be linked to the first by including the user
ID attribute in both credentials. This is possible both for credentials provided by the same issuer, as well as across
multiple issuers.

Linking credentials allows to essentially join authorization attributes via a unique linking attribute (say, a small
128-bit scalar), and giving the relying party assurance that both credentials were issued to the same user. In the
case of sharing credentials across issuers, the issuers must rely on each other’s credential security for the attributes
being issued. The second issuer may, without coordination with any other party, use a blind issuance protocol to
use a unique attribute from the first credential, as a linking attribute in the second credential and use Πdleq to prove
that the linking attribute in the second credential is the same as the linking attribute in the first credential.

3https://github.com/mmaker/tinybear

3

https://github.com/mmaker/tinybear

Concurrently-secure blind signatures. Fuchsbauer and Wolf [FW22] recently constructed an efficient blind signature
scheme that produces valid Schnorr signatures, as supported by Bitcoin [Nak08], and enables for concurrently-secure blind
coin swaps.4 Roughly speaking, in order to provide concurrent security for Schnorr blind signatures and avoid ROS
attacks [Sch91, BLL+21] the user commits and proves knowledge of the blinding factors and the message when producing
the signature. This proof requires two ingredients: proving that scalar multiplication in an elliptic curve has been done
correctly, and proving that the hash function has been correctly evaluated. Since no obvious choice of proof system can
help here, the authors of [FW22] resorted to a generic SNARK, and report a running time of more than 3 hours of proving
time using Groth16 [Gro16], or 2.5 minutes in Plonk [GWC19]. Using the techniques from Section 5, (or tweaking AES
and Πaes to be used as a collision-resistant hash function) it is possible to remove the scalar multiplication from the
zero-knowledge circuit (at the cost of a small soundness error) and rely on a zero-knowledge circuit that solely proves
knowledge of a hash pre-image and a linear relation of field elements. We estimate an overall runtime of less than a second
for proving the same relation, and a much more slim circuit to audit.

Verifiable encryption. Commit-and-Prove Zero-Knowledge Proof systems (CP-ZKPs), introduced by Kilian [Kil90],
later by Canetti et al. [CLOS02], and more recently by Benarroch et a. [BCF+21b] are a generalization of zero-knowledge
proofs in which the prover proves statements about values that are committed.

The protocol Πaes can be used to link an AES-encrypted message and an AES key to a Pedersen commitment. This
can be used to prove that a ciphertext is a valid encryption of an authenticated data structure, or prove validity of some
algebraic properties of the message, while maintaining post-quantum privacy.

Future work. We believe that some of our techniques can be extended and leave them as open problems. The protocol
Πdlhash is linear in the size of the linear map M , but we wonder if other techniques could be employed to reduce the
asymptotic proof size. Our techniques for proving Rijndael encryption are sufficiently modular and could be implemented
using a post-quantum polynomial commitment scheme such as FRI [BBHR18], or linear-evaluation proofs using MPC-in-
the-Head techniques [IKOS07]. We provide data suggesting that using lookups will lead a more efficient post-quantum
candidate than the current state-of-the-art NIST candidate based on Aurora [BCR+19].

1.3 Related work

Discrete Logarithm EQuality (DLEQ) proofs. The special case where p = q has been studied by Chaum and
Pedersen [CP93]. Benarroch et al. [BCF+21a] provide a protocol for proving equality of commitments over Z∗

N and
elliptic-curve groups. The problem of efficiently proving discrete logarithm equality across different groups can be found
in Camenisch and Lysyanskaya [CL02], who describe an efficient zero-knowledge proof of knowledge that a committed value
is in an accumulator. Values are committed in a group where the discrete logarithm (DL) is hard, while the accumulator
is constructed in an RSA group. The problem considered in this work is slightly different, because we consider two groups
where DL is hard. The problem of proving discrete logarithm equality across two generic DL groups was addressed by
Agrawal, Ganesh, and Mohassel [AGM18], who also underline the applications for extending SNARKs. A protocol directly
comparable to ours is given in [AGM18], however the protocol is more involved than ours (e.g., it requires commitments
to the bits of x in both Gp and Gq and performs a range check on each of them) and thus more expensive. zWe note
that bit decomposition and range checking can be omitted in most circumstances, as they are already performed within a
larger proof system, or the one of the commitment is already trusted (this is the case of all examples in the applications
section).

In the cryptocurrency area, the problem was already highlighted in Zerocoin [MGGR13], where they use the same
techniques of Camenisch and Lysyanskaya [CL02] to provide an anonymous cryptocurrency. Dagher et al. [DBB+15]
provide proofs of assets, solvency and non-collusion for Bitcoin, evoking the need of zkSNARKs for efficiency but the
associated cost in expressing a large circuit. Sun et al. [SSS+22] formulate the problem of proving discrete logarithm
equality across pairing-friendly and non-pairing-friendly groups.

The aborting technique we use to avoid leaking information about the secret when the prover sends a response computed
over the integers originates in [Lyu08, Lyu09], where it was used in the context of lattice-based signatures. It then was
adapted to signatures based on the short discrete log problem in Abdalla et al. [AFLT12]. The setting of this latter work
is closer to ours and we use the main lemma from it in our analysis.

Public-key operations. Ben-Sasson, Chiesa, and Tromer [BCTV14] introduced the notion of curve cycles, elliptic
curves where the scalar field of one curve is equal to the coordinate field of another. Note that the case where the scalar
field is the coordinate field is called anomalous curve and they are susceptible to attacks [Sma99, Yas12]. This approach

4https://jonasnick.github.io/blog/2018/07/31/blind-signatures-in-scriptless-scripts/

4

https://jonasnick.github.io/blog/2018/07/31/blind-signatures-in-scriptless-scripts/

has been shown itself extremely powerful, but also dangerous: little is known about, and deferred computations in recursive
settings [Val08, CT10, BGH19] have already had a history of subtle vulnerabilities arising only when the elliptic curve is
instantiated with cycles [NBS23].

GoblinPlonk5 introduces a mechanism for deferring expensive operations in SNARK circuits. For instance, when
encountering an expensive operation X = xG, the prover defers the actual computation and directly provides the final
result for X. Once multiple such operations have been deferred, a specialized circuit verifies the correctness of all deferred
operations in a single step. Πdlhash can be effectively utilized in a GoblinPlonk final circuit to expedite the verification
process. Furthermore, when integrating Πdlhash into a larger circuit, the prover can provide the final result for X and defer
its actual computation by pushing it to a Sigma protocol, following a similar approach as in GoblinPlonk.

Sun et al. [SSS+22] introduced the delegated Schnorr protocol technique enabling the efficient use of Pedersen com-
mitments on a different elliptic curve from the one employed in the SNARK. Our Πdlhash is similar to this technique, but
extends it to accommodate Pedersen commitments of vectors rather than just single elements. Additionally, we provide a
security analysis of our generic protocol.

Chase et al. [CGM16] introduced a technique that combines algebraic-based proof protocols, such as Σ-protocols, with
proofs based on garbled circuits. This integration efficiently handles algebraic operations in the former and non-algebraic
operations (e.g. hash functions) in the latter. The linkage between these proof systems relies on using a private garbling
scheme to compute a one-time MAC of the witness and then proving the correctness of the MAC using a Σ-protocol.
However, this technique requires garbled circuits with privacy properties, as the verifier learning the MAC value directly
reveals the witness. As a result, the approach is not immediately applicable to proof systems that do not employ private
garbled circuits. In contrast, Πdlhash can be utilized by any circuit-based proof system without being restricted by the
need for private garbled circuits.

LegoSNARK [CFQ19] introduced a generic framework for linking different proof systems. Using the commit-and-
prove paradigm [Kil90, CLOS02], it provides a framework and generic compiler to facilitate the generic integration of
proof systems and demonstrates its applicability across various use cases. Πdlhash can be seen as providing an efficient
specialized LegoSNARK link between Σ-protocols and generic SNARK protocols.

Symmetric-key operations. Previous efforts implementing symmetric primitives (like hash functions) within zero-
knowledge SNARKs faced significant computational overhead due to their non-algebraic nature. While advancements
have been made to accelerate these implementations (e.g., [zca]), many optimizations are tightly coupled to specific
proof systems, limiting their broader applicability across ZK frameworks. Alternative approaches to eliminating foreign
arithmetic from symmetric-key operations include:

• Algebraic Symmetric-Key Primitives. A recent research direction aims at building symmetric-key primitives that
are “algebraic” or “zk-friendly” to alleviate the burden of embedding Boolean arithmetic in zero-knowledge state-
ments [AGR+16, GKR+21, GKL+22, BBC+22]. While this avoids the foreign arithmetic challenge entirely, these
primitives received little cryptanalytic effort so far, are still evolving, and are not easily interoperable with other sys-
tems: while efficient in terms of operations over a large-characteristic field, algebraic hash functions are significantly
slower than native implementations of standard encryption and hashing primitives.

• MPC-in-the-Head approaches. A long-standing research line leveraging techniques from secure multi-party compu-
tation (MPC) has produced zero-knowledge proofs for symmetric-key operations. It’s widely acknowledged in the
cryptographic community that MPC-in-the-Head techniques offer the best performance for proving small Boolean
circuits. Proof systems tailored specifically to proving AES pre-images gained recent interest due to the NIST call
for post-quantum cryptography.6. However, these digital signatures generated using MPC/VOLE-in-the-head tech-
niques have asymptotically large proof sizes. Efficiently combining these techniques with IOP-based proof systems
like Plonk [GWC19], Halo2, STARKs, and Marlin [CHM+20] remains a challenge, as the underlying commitment
schemes of these systems are vastly different. We provide a more detailed comparison in Section 5.2.

An independent and concurrent work by Arun, Setty, and Thaler (Jolt [AST23]) underscores our same core concept
(Section 5): lookup protocols offer significant utility for performing custom gate computations and eliminating the need for
foreign arithmetic. Their approach relies internally on a generic lookup protocol implemented using Merkle Trees (requiring
proofs of knowledge for hash pre-images), permutation checks, or a novel lookup argument called Lasso [STW23]. Our
protocol, Πaes, leverages the same observation but focuses specifically on the context of an AES circuit. Lasso, introduced
concurrently by Setty, Thaler, and Wahby [STW23], inherits techniques from memory-checking [BEG+91] and multivariate
sumcheck, while our protocol draws upon logUp [Hab22]. Both approaches exploit tables with special structures to achieve

5https://hackmd.io/@aztec-network/B19AA8812
6https://csrc.nist.gov/Projects/post-quantum-cryptography

5

https://hackmd.io/@aztec-network/B19AA8812
https://csrc.nist.gov/Projects/post-quantum-cryptography

similar efficiency optimizations described in Section 5.2. Lasso operates in the preprocessing model to provide logarithmic
verifiers, whereas our proposed lookup instantiation offers a linear-time verifier without requiring an offline phase, removes
the need of shuffle proofs, and presents stronger soundness properties. Despite our approach having worse asymptotics
by requiring a linear-time verifier, we believe the concrete performances are better than what was previously known. We
delve into a more in-depth comparison of these two lookup protocols in Section 5.2.

2 Preliminaries

We denote by (G, p,G,H) the description of a group G of prime order p, with two “nothing-up-my-sleeve” generators
G,H (that is, two generators in G such that the discrete logarithm of H to the base G is not known to anyone). We
denote group operations additively, and given a scalar x ∈ Zp we denote with xG scalar multiplication. When needing
multiple “nothing-up-my-sleeve” (NUMS) generators (that is, generators whose respective DL is not known), we will
consider G1, G2, . . . , Gn, H. We denote probabilistic algorithms in sans-serif, and by writing y ← M(x) we denote the act
of sampling the value y from the probabilistic algorithm M on input x. We assume that probabilistic algorithms run in
time polynomial in the security parameter λ (abbrev p.p.t.) and have the security parameter implicitly as input. We use
standard vector notation: by x⃗ ∈ Zn

p we refer to elements (x1, x2, . . . , xn), with ⟨x⃗, y⃗⟩ we denote the inner-product
∑

i xiyi
and by x⃗⊗ y⃗ the “vectorized” tensor product [xiyj]i·n+j .

DL assumption. The Discrete Logarithm problem asks, given a group generator GrGen, a group description (G, p,G)←
GrGen(1λ) and a uniformly-random group element X ←$ G, to find x ∈ Zp such that X = xG. The discrete logarithm
(DL) is hard for GrGen if no p.p.t. algorithm solves the discrete logarithm problem with more than negl(λ) advantage.

Pedersen commitments. Pedersen’s commitment scheme [Ped92] lets us commit to a value x ∈ Zp. To do so, sample
r ←$ Zp and set

C := xG+ rH .

We say that C is a Pedersen commitment. A pair (x, r) ∈ Z2
p is a valid opening if C = xG+ rH. Pedersen commitments

are perfectly hiding and computationally binding under the discrete logarithm assumption.
Informally, perfectly hiding means that no information about the pair (x, r) is revealed by C. Computationally

binding means that no efficient adversary can produce two different valid openings (x, r) and (x′, r′) for a commitment C.
Any adversary that given as input a group description is able to output a commitment C along with two distinct valid
openings immediately gives a solution to an instance of DL. In fact, if (x, r) and (x′, r′) are a pair of valid openings, then
logGH = (r − r′)−1(x− x′).

We will also use the well-known fact that Pedersen commitments are additively homomorphic: given commitments
C,C ′, the sum of the openings (x + x′, r + r′) is valid for the sum of the commitments Cp + C ′

p. In addition, when
committing to multiple elements x1, x2, x3, · · · , xn we will use the notation C =

∑
i xiGi + rH as the commitment to the

vector x = (x1, x2, x3, . . . , xn).

Σ-protocols. We briefly recap Σ-protocols. Our definition is a slight variation of the standard Σ-protocol definition
from Cramer [Cra97] (as described in Boneh–Shoup [BS20, §19.4]), except we make a few minor changes to model the
prover’s ability to abort the protocol. Let R be a binary relation between statements denoted by ϕ and witnesses denotes
by w. By R(ϕ) we denote the set of possible witnesses for the statement ϕ in R. A Σ-protocol for the relation R is a
three-move protocol between a prover (with inputs ϕ and w) and a verifier (with input ϕ) consisting of a triple of efficient
algorithms (Com,Ch,Resp) run as follows:

• the prover executes (a, ρ) ← Com(ϕ,w), sends a and internally stores the state ρ. Com is a randomised algorithm
and may have additional inputs such as the group description and security parameter

• the verifier sends c← Ch() to the prover; c is distributed uniformly at random from a fixed set of possible challenges

• the prover calls Resp(ϕ,w, ρ, c) which may return some value z or abort (in which case we consider z = ⊥)

• finally, the verifier calls Verify(ϕ, (a, c, z)) which returns a bit b ∈ {0, 1}. If b = 1 the verifier accepts the proof,
otherwise rejects.

The tuple of exchanged messages (a, c, z) is called transcript ; a is called commitment, c is called challenge, and z response.
An accepting transcript (a, c, z) for ϕ is a transcript for which Verify(ϕ, (a, c, z)) = 1. Σ-protocols must satisfy:

6

• Completeness: A Σ-protocol is δ-complete if honestly-generated transcripts always verify, except when the prover
aborts (with probability δ). More formally, for all honestly generated transcripts (a, c, z) and (ϕ,w) ∈ R we have
that

Pr[Verify(ϕ, a, c, z) = 1 | z ̸= ⊥] = 1 , and Pr[z = ⊥] = δ

over the choice of prover randomness.

• Special soundness: A Σ-protocol is (computationally) special sound if there exists an efficient extractor Ext such
that for any p.p.t. adversary outputting a statement ϕ and two (non-aborting) accepting transcripts (a, c, z), (a, c′, z′)
for ϕ such that c ̸= c′, Ext(ϕ, (a, c, z), (a, c′, z′)) returns a valid witness w ∈ R(ϕ) except with probability ϵ. The
probability ϵ is called the knowledge error of the protocol.

• Honest verifier zero-knowledge: A Σ-protocol is honest verifier zero-knowledge (HVZK) if there exists an efficient
simulator algorithm Sim such that for all (ϕ,w) ∈ R the distributions

{(a, z) | c← Ch(); (a, z)← Sim(ϕ, c)}, and
{(a, z) | c← Ch(); (a, ρ)← Com(ϕ,w); z ← Resp(ϕ,w, ρ, c)}

are indistinguishable. Our definition is sometimes referred to as special HVZK – special since the challenge is input
to the simulator, as opposed to being chosen by the simulator. If the two distributions are perfectly indistinguishable
(which can be the case for all our protocols), we will say the protocol enjoys perfect special HVZK since the simulated
distribution is identical to the real one.

Two example Σ-protocols relevant to our protocol are Schnorr’s protocol [Sch91], which proves knowledge of a discrete
logarithm and Okamoto’s protocol [Oka93], which proves knowledge of the opening of a Pedersen commitment. The
protocols and their knowledge extractors are well-known in the literature, see for example the description in the textbook
of Boneh and Shoup [BS20, §19.1, 19.5.1].

Subprotocols and sequential composition. We often reduce an involved relation into an easier sub-claim that is then
deferred to another proof. Instantiations of these sub-protocols as Σ-protocols is also provided, but we provide separate
proofs of security for each component.

If we consider the overall interactive protocol, the resulting proof is (2, . . . , 2)-special sound: it is possible to build
a set of accepting transcripts, arranged in a (binary) tree structure, where every branching node at layer i and index
j splits into the two transcripts demanded for the i-th layer at the j-th round, for which we provide an extractor. In
section Section 5 we slack the above notion slighly proving (3, . . . , 3, 2)-special soundness. We note that we compose at
most a constant number of special-sound protocols. Bootle’s et al. [BCC+16, Lemma 1] show that a (n1, . . . , nk)-special

sound protocol satisfies witness-extended emulation [Lin03, Def. 10] if
∏k

i ni = poly(λ). (In our case
∏

i ni < 3log p and
the logarithmic factor is involved only when calling the sumcheck protocol.) A similar approach to ours has been taken
by Attema and Cramer [AC20]. For honest-verifier zero-knowledge, it is possible to consider the transcripts generated by
each honest-verifier zero-knowledge simulator.

We expect our system to be modular and security to hold also when using different zero-knowledge proof systems.
This is particularly relevant as we expect sub-claims to be shown as a part of a larger proof being performed in an outside
protocol. In these cases it is typical to consider other notions of knowledge soundness and zero-knowledge, especially
for non-interactive protocols: knowledge soundness referring to the existence of a p.p.t. extractor that can extract a
witness from a proof using a trapdoor, and zero-knowledge referring to the existence of a simulator that can generate
a proof without knowledge of the witness [GOS06, GS08]. In these cases, we expect the overall protocol to maintain
(computational) 2-special soundness: the special-sound extractor will internally run the extractor of the non-interactive
proof, and the honest-verifier zero-knowledge its simulator to produce the simulated proof transcript for the sub-proof.

Non-interactive proofs. As is common in the the literature on Σ-protocols and identification schemes, we present and
analyze the interactive version of our protocol with the understanding that can be easily made non-interactive using the
Fiat-Shamir (FS) transform [FS87]. In the FS transform, the prover computes (a, ρ)← Com(ϕ,w) as usual, then computes
the challenge as c← H(ϕ∥a) where H is a cryptographic hash function whose image is in the codomain of Ch. The response
is computed as before, and the output is (a, c, z), which can usually be compressed to (c, z) (as in our protocol). The
resulting protocol is secure in the random oracle model, via the forking lemma [PS00]. Again, since the FS transform and
the related analysis are well-known, we refer to Boneh and Shoup [BS20] for additional details

7

Table 1: Summary of notation and variables names used throughout Section 3.

p, q Order of the groups Gp and Gq

Gp, Gq Generators of Gp and Gq

Hp, Hq Additional generators of Gp and Gq, independent of Gp, Gq

x, xp, xq The witness as an integer x, or a value mod p or q
bg bit-length of the smaller group, i.e., bg = ⌈log2(min(p, q))⌉
bc bit-length of the challenge c
bx bit-length of the witness x
bf Parameter controlling the probability of aborts

3 General discrete logarithm equality

Notation. Since we will have two groups in our protocol, we use the subscripts p and q to indicate that an element or
scalar belongs to Gp or Gq. That is, we denote by (Gp, p,Gp, Hp) the description of a group Gp of prime order p. We will
often lift scalars from Zp to Z in the canonical way, and when we say that values xp ∈ Zp and xq ∈ Zq are equal we mean
they are the same as integers. In Table 1 we summarize the variable names and notation used in this work.

Protocol. Our protocol is described in Figure 1, and is parametrized on values bx, bc, bf > 0 such that bx + bc + bf < bg
with bg := ⌈log2(min(p, q))⌉. It has a similar structure to Okamoto’s identification protocol [Oka93] and Chaum–Pedersen’s
representation proof [CP93]. The main differences are: we require a range proof to ensure that the discrete log “fits” in
both groups, and the response value is computed over the integers, so that a single value is used in both groups during
verification.

The verifier’s input to the protocol are two Pedersen commitments (Xp, Xq) ∈ Gp×Gq committing to values (xp, xq) ∈
Zp×Zq. The verifier is also given a range proof πrp that the committed value xp is in

{
0, . . . , 2bx − 1

}
. The relation being

proven can be expressed as

Rdleq := {((Xp, Xq) , (x, rp, rq)) : Xp = xGp + rpHp ∧ Xq = xGq + rqHq} (1)

(where (x, rp, rq) is the witness) and holds under the precondition that πrp is valid. Our analysis will require that the
range proof be knowledge-sound, since in our analysis we need to extract the opening of the Pedersen commitment Xp

from both πrp and from our new protocol, to ensure that both proofs are about the same opening of Xp (which holds since
Pedersen commitments are binding). In practice, πrp can be realized for example with Bulletproofs [BBB+18] when Gp is
a prime-order group (we discuss some options in Section 3.2).

We describe the protocol as an interactive Σ-protocol (with aborts) with the understanding that it can be directly made
non-interactive with the Fiat-Shamir transform [FS87] (with aborts [Lyu09]). Provers in this class will abort the protocol
with a bounded probability: intuitively, the prover will abort when providing a response would leak information about the
witness. When this occurs, the prover and verifier restart the protocol from the beginning. In the non-interactive version,
the prover repeats locally, and only outputs a non-aborting transcript.

Range proofs. In Figure 1 we require a range proof πrp, parametrized by the group description (Gp, p,Gp, Hp) and the
bound bx. It proves the relation

Rrp :=
{
((x, r), Xp, bx) : Xp = xGp + rHp ∧ 0 ≤ x < 2bx

}
.

We ask the range proof to satisfy honest verifier zero-knowledge and knowledge soundness.

Parameter selection. In Table 2 we give some possible parameters when bg = min(253, 255) = 253, where the bit-
lengths 253 and 255 correspond to the group orders of the Ristretto [HdVLA22] group and the BLS12-381 group [BLS03,
Bow17]. We must choose parameters so that bx+ bc+ bf < bg so that the response is an integer and no modular reduction
occurs in either group. We must also choose the number of parallel repetitions τ so that τ · bc ≥ 128, for non-interactive
security.

Performance. For τ repetitions, the size of the proof after applying the Fiat-Shamir transform and compressing the
transcript into π = (c, z, sp, sq) is τ(bc + bf + ⌈log2 p⌉ + ⌈log2 q⌉) bits. The prover and verifier computational costs are
2τ multi-scalar multiplications (τ in each of Gp and Gq, each with three terms) when there is no abort (in general the
expected cost depends on bf). Some proof size estimates are given in Table 2.

8

Prover((x, rp, rq), Xp, Xq) Verifier(Xp, Xq)

k ←$ {0, . . . , 2bx+bc+bf−1}
tp ←$ {0, . . . , p−1}
tq ←$ {0, . . . , q−1}
Kp := kGp + tpHp

Kq := kGq + tqHq Kp,Kq

c←$ {0, . . . , 2bc−1}c

if c ̸∈ {0, . . . , 2bc−1}
then abort

z := k + cx (in Z)
sp = tp + crp (mod p)

sq = tq + crq (mod q)

if 2bx+bc ≤ z < 2bx+bc+bf

then abort z, sp, sq

zGp + spHp
?
= Kp + cXp

zGq + sqHq
?
= Kq + cXq

if z ̸∈ {2bx+bc , . . . , 2bx+bc+bf−1}
then abort

Prover and Verifier:

Πrp : ((x, rp), Xp, bx) ∈ Rrp

Transcript: πrp # show 0 ≤ xp < 2bx

Figure 1: Protocol Πdleq, a Σ-protocol for equality of committed values across groups. The input commitments are
Xp = xGp + rpHp ∈ Gp and Xq = xGq + rqHq ∈ Gq for 0 ≤ x < 2bx , rp ∈ Zp and rq ∈ Zq.

3.1 Analysis

In this section, we prove Theorem 1 by showing that Πdleq satisfies completeness, special soundness, and honest-verifier
zero-knowledge. We introduce a lemma, which is essentially the same as [AFLT12, Lemma 1], propaedeutic for the proofs
of completeness and zero-knowledge. The protocols are different, but this lemma applies almost exactly because of the
way the response is computed over Z and the aborting condition.

Lemma 4 ([AFLT12]). In an honest execution of Πdleq the probability that the prover aborts is 1/2bf . If the prover does
not abort, the value z in the transcript is uniformly distributed in {2bx+bc , . . . , 2bx+bc+bf−1}.

Proof. In the response value z = k + cxp, since k and c are independent and k is distributed uniformly at random, the
value z is distributed uniformly at random in the set

Z0 = {cx, cx+ 1, . . . , cx+ 2bx+bc+bf−1} .

Let Z = {2bx+bc , . . . , 2bx+bc+bf−1} be the set of responses for which the prover does not abort, and note that Z is properly
contained in Z0. The probability that z ∈ Z is

|Z|/|Z0| =
2bx+bc+bf − 2bx+bc

2bx+bc+bf
= 1− 1/2bf

and hence the probability that the prover aborts is 1/2bf . Consider a fixed response z0 ∈ Z, we have

Pr[z = z0|z ∈ Z] =
Pr[z = z0]

Pr[z ∈ Z]
=

1/2bx+bc+bf

|Z|/2bx+bc+bf
=

1

|Z|

9

Table 2: Possible parameter choices for 128-bit security when Gp is Ristretto and Gq is BLS12-381. Column τ is the
number of parallel repetitions; |π| = τ(bc+bf +⌈log2 p⌉+⌈log2 q⌉) is the proof size in bytes after applying the Fiat-Shamir
transform and excluding the size of the range proof; all other columns are in bits.

bc bx bf τ |π| Notes

192 52 8 1 89
128 112 12 1 81 Ideal for the credential linking application
64 128 60 2 158 Increase bf since τ = 2 means we can reduce bc
64 180 8 2 145
32 212 8 4 274 See alternative approach for large x in Section 3.2
16 228 8 8 532 See alternative approach for large x in Section 3.2

and so the response is uniformly distributed in the set of responses that do not cause the prover to abort.

Given the above lemma, completeness is straightforward.

Theorem 5. The protocol Πdleq for the relation Rdleq is 2−bf -complete.

Proof. By Lemma 4, we have that the prover aborts with probability 2−bf . When the prover does not abort, the verification
equation is always satisfied, since 0 ≤ c < 2bc and

zGp + spHp = (k + cx)Gp + (tp + crp)Hp = (kGp + tpHp) + c (xGP + rpHp) = Kp + cXp .

Similarly, one proves that also (ii) is satisfied.

3.1.1 Soundness

Our soundness analysis reduces to the binding property of Pedersen commitments, and establishes the constraints on the
protocol parameters bx, bc, and bf .

Theorem 6. If bx + bc + bf < ⌈log2(min(p, q))⌉, the protocol Πdleq is computational special sound for the relation Rdleq

with knowledge error ϵ = 2−bc+1 + ϵrp + ϵDL, where ϵrp is the knowledge error of πrp and ϵDL = ϵDLp
+ϵDLq

is the advantage
in solving the discrete logarithm problem in Gp or Gq.

Proof. We describe an extractor algorithm Ext, that on input πrp, (Xp, Xq) ∈ Gp × Gq, and accepting transcripts
((Kp,Kq), c, z, s) and ((Kp,Kq), c

′, z′, s′p, s
′
q) with must recover x, rp, rq, such thatXp = xGp+rpHp andXq = xGq+rqHq.

Since πrp is assumed to be valid, using the knowledge extractor for that proof we can extract (x∗p, r
∗
p) such that

Xp = x∗pGp + r∗pHp and x∗p < 2bx . We denote by ϵrp the probability that the range proof extractor fails in providing
a valid witness (x∗p, r

∗
p). From special soundness, we have two pairs of accepting transcripts proving knowledge of the

opening of a Pedersen commitment (or, transcript of Okamoto’s identification protocol [Oka93]) in Gp and Gq, namely
((Kp, c, z, sp), (Kp, c

′, z′, s′p)) and ((Kq, c, z, sq), (Kq, c
′, z′, s′q)). Ext internally runs the Okamoto extractor for special

soundness using the transcripts above, which succeeds with probability 2−bc (since c ̸= c′) in producing witnesses (xp, rp)
and (xq, rq), such that Xp = xpG+ rpHp and Xq = xqG+ rqHq.

7

Then, the extractor checks that all commitment openings are consistent between each other, and that the adversary
did not manage to change the committed values in the second transcript. The extractor aborts if (xp, rp) ̸= (x∗p, r

∗
p) or

(z−cxp, sp−crp) ̸= (z′−c′xp, s′p−c′rp). Then, it makes a similar check for Gq too: if (z−cxq, sq−crq) ̸= (z′−c′xq, s′q−c′rq),
abort. This happens with negligible probability, by the binding property of Pedersen commitments Xp, Kp and Kq (that
is, hardness of DL in Gp and Gq).

Finally, the extractor returns (xp, rp, rq). We must now argue that xp = xq, when seen as integers. From the verification
checks (i) and (ii) we have that ∃ k, k′, a, a′, b, b′ ∈ Z such that

z = k + cxp + ap z = k′ + cxq + bq

z′ = k + c′xp + a′p z′ = k′ + c′xq + b′q

Note that k and k′ are well-defined, since the check above establishes a single commitment opening for Kp, Kq in each
pair of transcripts. The integers (a, a′, b, b′) are non-negative because verification checks that 2bx+bc ≤ z < 2bx+bc+bf and

7We stress here that we are proving special soundness and that therefore rewinding is not needed.

10

parameters are chosen such that bx + bc + bf < ⌈log2(min(p, q))⌉. By subtracting the responses corresponding to the mod
p and mod q equations, we have

(z − z′) = (c− c′)xp + (a− a′)p (z − z′) = (c− c′)xq + (b− b′)q,

Without loss of generality, assume that z − z′ is positive. Since πrp ensures that xp is “small” and |c− c′| is also “small”,
then (a− a′) = 0. More precisely, z − z′ has bit-length less than bg ≤ ⌈log2(p)⌉ by our choice of parameters (namely the
constraint bx + bc + bf < bg), and check (iii) during verification, which ensures that z < 2bx+bc+bf .

Equating the two representations of z − z′, and noting that (a− a′) = 0 we have (still over Z)

(c− c′)xp = (c− c′)xq + (b− b′)q
(c− c′)(xp − xq) = (b− b′)q

Since q is prime, it must divide (c − c′) or (xp − xq). But since the bit-length of q is at least bg, and bg > bc, then q is
too large to divide |c− c′|. Therefore q | (xp − xq) which means that xp = xq (mod q). Since xp and xq are equal mod q,
and the bit-length of xp is strictly less than ⌈log2(q)⌉, it must be that xp = xq over Z as well. To conclude, Ext extracts
a valid witness with error ϵ = 2−bc+1 + ϵrp + ϵDLp

+ ϵDLq
.

Parallel repetitions. The knowledge error might not be negligible depending on the choice of bc. Generically, τ
repetitions result in a knowledge error ϵτ , but in this case the extractor for the range proofs needs to be run only once
for all repetitions, and the reductions to commitment binding can be done all at once. This means that τ repetitions of
Πdleq lead to a knowledge error 2(−bc+1)τ + ϵrp + ϵDLp

+ ϵDLq
.

3.1.2 Zero-knowledge

Zero-knowledge with aborts. Identification schemes where the prover may abort [Lyu09, AFLT12] are generally
not honest-verifier zero-knowledge (HVZK). The challenge in proving HVZK is in simulating the prover’s commitment
message in aborting transcripts. However, it is often possible to prove the schemes satisfies a relaxed notion of HVZK,
sometimes called no-abort honest-verifier zero-knowledge (naHVZK) [KLS18]. In naHVZK, the simulator either returns a
valid transcript, or returns ⊥ and the verifier forgets about the incomplete session made only of commitment and challenge.
Since naHVZK is sufficient to simulate non-interactive proofs (or signatures) when the Fiat-Shamir transform is applied,
naHVZK is still a useful notion. Our protocol in Figure 1 is not affected by this limitation: intuitively, the responses sp, sq,
which are distributed uniformly at random in Zp and Zq, guarantee that the commitment message is always uniformly
random, both in aborting as well as succeeding transcripts. Thus, we prove standard honest-verifier zero-knowledge, and
our protocol may also be used interactively.

Theorem 7. The protocol Πdleq for the relation Rdleq is perfectly honest-verifier zero-knowledge.

Proof. On input c, the simulator samples z uniformly at random from {2bx+bc , . . . , 2bx+bc+bf−1} and sp and sq uniformly
from Zp and Zq. Then the simulator solves for Kp, as Kp := (zGp + spHp) − cXp (similarly for Kq). With probability
1/2bf the simulator outputs (Kp,Kq, c,⊥) (the abort case) and otherwise outputs (Kp,Kq, c, (z, sp, sq)).

We now argue that the real and simulated transcripts are identically distributed. For the prover’s first message, since sp
was chosen uniformly by the simulator, then Kp = kGp+ tpHp = kGp+(sp− zc)Hp is distributed uniformly at random in
Gp, regardless of whether the response is ⊥ or (z, sp, sq). We note that in the abort case k will be distributed differently in
real and simulated transcripts, but because Kp and Kq are perfectly hiding commitments they are identically distributed.
In non-aborted transcripts, both real and simulated transcripts have uniform z value (in the given range), by Lemma 4
and (sp, sq) are sampled uniformly at random in both cases. The abort probability of the simulator is the same as the
honest prover, by Lemma 4 honest transcripts are aborted with probability 1/2bf exactly as in the simulated case.

3.1.3 Equality of simple discrete logarithms

Our protocol takes Pedersen commitments to (xp, xq) as input. A natural question is whether a variant of this protocol also
works when the inputs are simple discrete logarithm commitments, namely Xp = xpGp and Xq = xqGq. We investigated
this question and believe it has a positive answer, subject to some technicalities and limitations. We did not formalize this
section as our main motivation of linking credentials requires Pedersen commitments, so that they can be re-randomised by
the credential holder before each presentation proof, in order to make repeated proofs with the same credentials unlinkable.
We list some of the issues that must be addressed.

11

Concrete DL hardness. Our protocol allows x to be short (e.g., 64 or 128 bits), but solving for x given X = xG is
easier when x is short. For generic groups, the best-known attack cost (Pollard’s lambda algorithm [Pol78]) is 2(log2 x)/2.
Therefore, x must be large enough so that the DL instance is hard, and this restricts the choices available for parameter
selection (cf. Table 2): in order to keep the response size below the group order, we must use smaller challenges, and this
increases the number of parallel repetitions required, or the abort probability and consequently the proving time. With
Pedersen commitments, instead, x is unconditionally hidden.

Cross-group DL hardness. Again, when the commitments to x are simple discrete log instances, we have to make a
new hardness assumption. Namely, we must assume that given short DL instances Xp = xGp and Xq = xGq with the
same x, the advantage ϵDL of finding x is as hard as the short DL in either Gp or Gq. That is, ϵDL ≤ max(ϵDLp

, ϵDLq
).

This seems reasonable when x is large enough and the DL problem is hard in both Gp and Gq, but is not a common
cryptographic assumption as secrets are almost universally used only in one primitive, and not across groups.

Simuation of aborting transcripts. Another issue is how to (perfectly) simulate the prover’s first message in aborted
transcripts. In Section 3.1 we discuss how our protocol avoids this challenge (in short, the first message consists of Pedersen
commitments, which are always uniformly random, independent of whether the prover aborts). For a variant of our protocol
that does not use Pedersen commitments, the weaker notion of no-abort HVZK [KLS18] (discussed in Section 3.1.2)
should be achievable, and while weaker, this notion is still sufficient for non-interactive proofs, which are suitable for the
applications we consider.

3.2 Efficiency

While the asymptotic efficiency of Πdleq is trivial, in this section we discuss some of the considerations for concretely
realizing and implementing it.

Handling larger values. One limitation of the protocol presented above is that it requires that x be bx bits or fewer,
and bx cannot be as large as the group order (of the smaller group). Here we describe how to address this, by breaking
x into chunks and proving the relation on each chunk using Πdleq. Let Cp and Cq be commitments to the same value
x ∈ {0, . . . , min(p, q)−1}, and suppose bx has been chosen subject to the constraints given above. Define ℓ := ⌈(log2 x)/bx⌉.
Denote by (x(0), . . . , x(ℓ−1)) the representation of x in base 2bx that is, x =

∑ℓ−1
i=0 2

i·bxx(i). Sample random r
(i)
p such that

rp =
∑

i 2
i·bxr

(i)
p (mod p). Construct the commitments C

(0)
p , . . . , C

(ℓ−1)
p as C(i) := x(i)Gp + r

(i)
p Hp. Proceed in the same

way for Cq. They satisfy

Cp =

ℓ−1∑
i=0

2i·bxC(i)
p Cq =

ℓ−1∑
i=0

2i·bxC(i)
q (2)

The prover sends C
(0)
p , . . . C

(ℓ−1)
p and C

(0)
q , . . . , C

(ℓ−1)
q , along with ℓ range proofs,8 to prove that each x(i) ∈ {0, . . . , 2bx−1}.

Then the prover and verifier invoke the protocol in Figure 1 for each i ∈ {0, . . . , ℓ−1} to prove that C
(i)
p and C

(i)
q commit

to the same short value. The verifier additionally checks Equation (2) holds.

Range proofs. Range proofs may not be necessary if the application provides assurance that x is in the correct range.
For example, in the credential linking application, we can trust that the issuer only issues credentials with a valid x. In
systems using keyed-verification anonymous credentials [CMZ14], this is especially reasonable since the issuer and verifier
are the same party. When the credential is presented in order to produce Xp, our soundness analysis of Theorem 6 can
be modified to extract x from the presentation proof, rather than the range proof.

When a range proof is necessary, Bulletproofs [BCC+16, BBB+18] give a practical solution. For example, creating
range proofs for 64-bit values using the Rust crate bulletproofs from the Dalek project [dVYA], the prover time is about
7.3 ms, the verifier time is 1 ms and the proof size is 672 bytes. See [dVYA] for details of the benchmark platform, and
benchmarks of other libraries offering range proofs.The library does not support 128-bit ranges, but we expect prover
and verifier times to roughly double, and the range proof size to increase to 704 bytes.We also note that when using the
strategy given above that breaks x into ℓ pieces, range proofs for each of the pieces can be grouped together into a single

8It is not secure to send a single range proof for x instead of ℓ proofs for each x
(i)
p . Consider commitments Cp, Cq to different values xp < p

and xq < q, and πrp a range proof of Cp with witness xp. By the Chinese remainder theorem there exists a unique integer x < pq such that

xp = x (mod p) and xq = x (mod q). An attacker is able to freely choose ℓ values x
(0)
p , . . . x(ℓ−1) larger than bx such that

∑
i 2

ibxxi = x, and
commit to them both in Gp and Gq , passing the verification procedure.

12

proof, which will be shorter than ℓ individual proofs, for example, a proof of four 64-bit ranges is only 800 bytes (but
prover and verifier times are only slightly better than four individual proofs).

When one of the groups is a pairing-based group, one could alternatively do πrp in that group using a zkSNARK with
constant size and concretely very short proofs, e.g., [Gro16]. Since our analysis requires a range proof for x in either one
of Gp or Gq, applications can choose to implement the range proof in the group that offers better performance.

Constant-time implementation. Depending on the abort probability 1/2bf , implementations may leak the number of
times the protocol was aborted, since the prover’s time is directly proportional to the number of aborts (in a direct imple-
mentation). If the number of aborts depends on the secret, this would be sensitive information. However, from Lemma 4
we can see that the abort probability is the same for any secret, and therefore independent of the secret. Therefore, it is
not required that implementations attempt to hide the number of aborts that occur when generating a proof.

Parallel repetition. In Theorem 6 it is shown that Πdleq has knowledge error 2−bc and because of our constraints on
parameter selection, bc may not be as large as the security parameter λ, so the soundness error may be non-negligible.
In practice, assuming the hash function of the FS transform has output bit-length bcτ , the challenges are obtained by
considering each of the τ chunks of bc bits.9 The well-known approach to boost soundness of the protocol is to repeat it
τ times in parallel, so that the soundness error is 2−bcτ such that bcτ ≥ λ. Note that we exclude πrp from the parallel
repetitions, since we consider it to be part of the input statement and have negligible soundness error. We also require that
none of the τ repetitions abort, which increases the abort probability from 1/2bc to τ/2bc , so to hold the abort probability
constant bf should be increased by ⌈log2(τ)⌉. Since Πdleq is zero-knowledge, it is also witness hiding [FS90, Theorem 3]
and therefore parallel composition is also witness hiding (at least witness hiding; we expect Theorem 7 can be generalized
to handle parallel repetition).

Denote the challenge with parallel repetition as c = (c1, . . . , cτ). Special soundness provides two transcripts with c ̸= c′,
and when both transcripts are different everywhere, that is ci ̸= c′i for i ∈ [τ], we have τ transcripts where Ext succeeds
with probability 2−bc . Therefore soundness is boosted as expected to 2−τbc in this case. More generally, when c is chosen
at random (either by an honest verifier or a hash function) there may be a small loss in concrete soundness, since some ci
may be equal. While this loss is in our analysis, we do not know of an attack matching it.

When there are multiple instances of the protocol, like in the variant described above where the protocol is run ℓ times,
the witnesses are independent and protocols may be run in parallel. As a minor optimization, each of the ℓ instances may
share the same random challenge from the verifier.

Ignoring aborts safely? For some secret lengths and group sizes, it is possible to choose parameters such that the
abort probability 2−bf is statistically negligible. In such cases an implementation that ignores aborts will leak a small
amount of information occasionally. For example, suppose we have bx = 128, bc = 64, bg = 253 and bf = 60. Then
we expect one in 260 proofs to output a “leaky” response; a response that would have caused an abort, but that we
output anyway. In the case of Schnorr and ECDSA signatures slight biases in the nonce appear to be difficult to exploit,
see e.g., [ANT+20]. However, since our setting is somewhat different and we do not have a detailed analysis we do not
recommend ignoring aborts, but encourage future work on this question. Avoiding the abort path simplifies writing and
testing of implementations.

4 Trading group operations for hash evaluations

Our protocol for trading elliptic curve group operations for hash evaluations is described in Figure 2. Informally, it is
parametrized by a linear morphism M ∈ Gm×n denoting the linear relation to be proven. Valid choices include M = [G]
for discrete logarithm relations xG = X, or M = [G,H] for Pedersen commitments [G,H] · [x0, x1]t = x0G+ x1H, but at

the core it should be hard to find x⃗, x⃗′ such that Mx⃗ = Mx⃗′. The verifier’s inputs are (X⃗, xh), respectively commitment
and hash of the same value x⃗. The relation being proven can be expressed as

Rdlhash := {((x⃗), xh, X⃗) : X⃗ =Mx⃗ ∧ xh = H(x⃗)}.

which is (implicitly) parametrized on the group and the matrix distribution from which M is selected.

9In particular, we ask not to use the same hash function for each repetition to mitigate grinding attacks, also known in the literature as
precomputation attacks.

13

Prover((x⃗), X⃗, xh) Verifier(X⃗, xh)

k⃗ ←$ Zm
p

kh := H(k⃗)

K⃗ :=Mk⃗
kh, K⃗

c←$ Zpc

z⃗ := k⃗ + cx⃗ z⃗, πcrh

Mz⃗
?
= K⃗ + cX⃗

Prover and Verifier:

Πcrh : ((x⃗, k⃗), xh, kh, c, z⃗) ∈ Rcrh

Transcript: πcrh # show xh = H(x⃗),

#kh = H(k⃗), and z⃗ = k⃗ + cx⃗

Figure 2: Protocol Πdlhash, a Σ-protocol for proving knowledge of x⃗ such that X⃗ =Mx⃗ and xh = H(x⃗).

Proofs for CRH. Πdlhash requires at the end a proof for the pre-image of a collision-resistant hash function H,
parametrized by the field Zp. More precisely, we assume the existence of a proof for the relation

Rcrh := {((x⃗, k⃗), xh, kh, c, z⃗) : xh = H(x⃗) ∧ kh = H(k⃗) ∧ z⃗ = k⃗ + cx⃗}

This protocol can be instantiated (for instance) using our Πaes from Section 5, taking particular care in tweaking the block
size to be large enough in order to provide sufficient collision resistance,10 but this proof can of course be provided with
any other general-purpose proof system for collision-resistant hash functions, algebraic or boolean.

Collision resistance. Roughly speaking, a function f : X → Y is collision-resistant if no p.p.t. adversary A given
as input f can produce x⃗, x⃗′ ∈ X such that f(x⃗) = f(x⃗′). We require this property to hold both for H as well as for
the linear map associated to M . While the first is a standard notion in cryptography [KL07], in the context of linear
function this problem reduces to finding non-trivial elements of the kernel of M , which has been formulated in the past
by Morillo, Ràfols, and Villar [MRV16, Def. 13]. For the concrete examples that we gave above and we will study, the
above assumption reduces to the hardness of the DL on GrGen.

Definition 8 (Kernel-Matrix Diffie-Hellman [MRV16]). KMDH is hard for a group generator GrGen and a matrix distri-
bution D if it is infeasible, given a group description Γ := (G, p,G) ← GrGen(1λ) and a matrix M ← D(Γ) in Gn×m to
find non-trivial elements of the null space, that is, to exhibit an x⃗ ∈ Zn

p such that Mx⃗ = 0 and x⃗ ̸= 0.

We will say that KMDH is hard in G for a matrixM if we consider the distribution D to be the distribution of matrices
M parametrized solely by the group description output of GrGen. The simplest examples of the above is the group mapping
M = [G], which is into and thus perfectly collision resistant. Another valid example are Pedersen commitments, for which
M = [G,H] (m = 1, n = 2) and the binding property follows straightforwardly from hardness of DL in G.

Compatibility. In order to provide HVZK, the hash function H must be compatible with the group GrGen, in the sense
that it should be computationally hard to distinguish the pair (Mx⃗,H(x⃗)) from the pair (Mx⃗′,H(x⃗′)) for x⃗ ̸= x⃗′. We call
this notion hiding-compatibility.

Definition 9. Let f = {fλ}λ, h = {hλ}λ be two function families indexed in λ ∈ N with domain Xλ. We say that (f, h)
are hiding-compatible if for all p.p.t. (in λ) adversaries A, the distributions

{x←$ Xλ : (fλ(x), hλ(x))} and {x, s←$ Xλ : (fλ(x), hλ(s))}

are distinguishable with probability negligible in λ.

10A secure hash mode for AES, derivative of the Davies-Meyer construction, has been proposed in https://csrc.nist.rip/groups/ST/tool

kit/BCM/documents/proposedmodes/aes-hash/aeshash.pdf.

14

https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/aes-hash/aeshash.pdf
https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/aes-hash/aeshash.pdf

The above assumption can be considered valid for most practical applications when setting f to be a linear elliptic-
curve morphism, and h a one-way function, but seems hard to prove in the standard model without a joint computational
assumption. More specifically, it’s difficult to prove that for instance, given a hash function h : {0, 1}2λ 7→ {0, 1}2λ, there
does not exist an elliptic curve such that h(x) = xG = f(x) where G is the generator resulted from GrGen(1λ). Yet, the
above definition trivially holds in the generic group model, if h is a one-way hash function, and in the random oracle
model. Another valid case would be picking f(x⃗) = x0G1 + x1G2 and h(x⃗) = x0G3 + x1G4, with G1, . . . , G4 independent
(i.e., NUMS, cf. Section 2) generators where hiding-compatibility holds under the DL assumption.

Batching. When batching multiple Πdlhash instantiations, one can trivially extend the matrix relying on standard parallel
execution of Σ-protocols. A single separate proof for Rcrh may be used if the vector is the same. The proof πcrh may be
integrated within a more proof statement. For instance, when proving knowledge of a secret key x such that X = xG and
membership in a Merkle tree of the given public key, our soundness analysis of Theorem 10 can be adapted to extract the
witness x from the Merkle proof.

4.1 Analysis

In this section, we prove Theorem 2 by showing that Πdlhash satisfies completeness, special soundness, and honest-verifier
zero-knowledge. In fact, we focus on special soundness and zero-knowledge, as completeness is straightforward: the
response z⃗ = k⃗ + cx⃗ satisfies Mz⃗ = Mk⃗ + c(Mx⃗) = K⃗ + cX⃗ by linearity of M , and validity of the proof πcrh relies on
completeness of the underlying proof for the relation Rcrh. We then discuss the concrete efficiency of our protocol when
instantiated for simple discrete logarithm relations.

4.1.1 Soundness

Our soundness analysis assumes that the sub-proof πcrh is a knowledge-sound proof for the relation Rcrh, collision-resistance
of H, and that M is “binding” (i.e., KMDH is hard for M).

Theorem 10. The protocol Πdlhash is special sound for the relation Rdlhash with knowledge error ϵ = ϵcrh + ϵkmdh, where ϵcrh
is the knowledge error of the sub-proof πcrh and ϵkmdh is the hardness of KMDH in G for M .

Proof. We prove computational special soundness extracting x⃗ such that X⃗ = Mx⃗ and hx = H(x⃗). Consider a p.p.t.
adversary that outputs two valid transcripts

(K⃗, kh, c0, z⃗0, πh,0) and (K⃗, kh, c1, z⃗1, πh,1) , (3)

with c0 ̸= c1. For b = 0, 1 recover the witness (x⃗b, k⃗b) from the knowledge-sound proof πh,b. We claim that x⃗0 is the witness,

and now argue that it is indeed valid. Observe that (by definition of knowledge soundness), extracted x⃗0, x⃗1, k⃗0, k⃗1 satisfy

H(x⃗0) = H(x⃗1) = xh , k⃗0 = z⃗0 − c0x⃗0 (mod p) ,

H(k⃗0) = H(k⃗1) = kh , k⃗1 = z⃗1 − c1x⃗1 (mod p) .
(4)

The probability that the witnesses are not valid is bounded by ϵcrh, the knowledge error of πcrh. If k⃗0 ̸= k⃗1 or x⃗0 ̸= x⃗1, we
found a break for collision-resistance of H. Since the two transcripts of Equation (3) are valid, define x⃗ := (c0−c1)−1(z⃗0−z⃗1)
satisfying

K⃗ =Mz⃗0 − c0Mx⃗ =Mz⃗1 − c1Mx⃗ .

(Note c0 ̸= c1 so the inverse always exists.) Since k⃗0 = k⃗1 and x⃗0 = x⃗1, we have

z⃗0 − c0x⃗0 = z⃗1 − c1x⃗0 (mod p)

Mz⃗0 − c0Mx⃗ =Mz⃗1 − c1Mx⃗

If x⃗0 ̸= x⃗, we have a non-trivial element of the kernel of M since (c0(x⃗− x⃗0), c1(x⃗− x⃗0)) are different (c0 ̸= c1) and have
the same image under M . Therefore, x0 = x = x1 and hence Mx⃗0 = X. In addition, from Equation (4), H(x⃗0) = xh.

Thus, (x⃗0, X⃗, xh) ∈ Rdlhash with knowledge error ϵcrh + ϵkmdh.

15

Table 3: The protocol Πdlhash vs non-native scalar multiplication inside a Groth16 [Gro16] circuit (“Naive”). The hash
function used is Poseidon [GKR+21] and the proof size is in bytes after applying the Fiat-Shamir transform, for two
popular choices of elliptic curves. Benchmarks on a laptop equipped with an Intel i7-1370P CPU and 32GB of RAM
running Debian Linux.

|π| Prover time R1CS constraints
Πdlhash (BN254) 256 20ms 325
Naive (BN254) 128 10.1s 1.7 million
Πdlhash (BLS12-381) 336 21ms 325
Naive (BLS12-381) 192 17.6s 2.5 million

4.1.2 Zero-knowledge

Similarly to the case of soundness, in the statement below we assume that the proof πcrh is zero-knowledge. More infor-
mation about the zero-knowledge property of πcrh can be found in Section 2.

Theorem 11. If (M,H) are hiding-compatible, then the Πdlhash is computationally honest-verifier zero-knowledge.

Proof. The zero-knowledge simulator samples c, z⃗, k⃗∗ ←$ Zp × Zn
p × Zn

p and computes R⃗ := Mz⃗ − cX⃗, and rh := H(k⃗∗).

Then, simulates πcrh for the statement (τ, (x⃗, k⃗)) and returns the transcript (R⃗, rh, c, z⃗, πcrh) We show that it is difficult for
an adversary to distinguish simulated transcripts from genuine transcripts generated by an honest prover via a hybrid
argument on the distribution of prover transcripts:

H1 An honestly-generated prover transcript is a tuple (K⃗, kh, c, z⃗, π) where K⃗ = Mk⃗ for some k⃗ uniformly distributed

and kh := H(k⃗), z⃗ = cx⃗+ k⃗. The proof π is honestly generated for ((x⃗, k⃗), (xh, kh)) ∈ Rcrh.

H2 This game behaves identically to the previous except that πcrh is now computed using the simulator for the statement
(xh, kh, c, z⃗). The two distributions are indistinguishable by zero-knowledge of πcrh.

H3 Replace the computation of kh: instead of honestly computing it via kh := H(k⃗), sample k⃗∗ ←$ Zn
p and compute

kh := H(k⃗∗). This follows directly from hiding-compatibility of (M,H).

H4 Compute the elements (K⃗, c, z⃗) differently: instead of computing K⃗ = Mk⃗ and z⃗ := k⃗ + cx⃗ for some uniformly

distributed c ∈ Zp and k⃗, we sample c, z⃗ ←$ Zp × Zn
p and compute K⃗ = Mz⃗ + cx⃗. The two distributions are both

uniformly distributed satisfying the relation K⃗ = Mz⃗ + cx⃗ and perfectly indistinguishable. (The adversary cannot
see the order in which values are sampled).

The simulated transcript is exactly the distribution output of the simulator. Therefore, the protocol Πdlhash is honest-
verifier zero-knowledge.

4.2 Efficiency

Let |H| denote the size of the output of the hash function H and |πcrh| the size of the proof πcrh. Then, for a linear relation
M ∈ Gn×m, the prover time and proof size of Πdlhash will scale linearly with the size of the witness: the proof size will be
|π| = (n + 1)|F| + |H| + |πcrh| after applying the Fiat-Shamir transform, in short form (as challenge, response pair), and
the prover time will be dominated by m multi-scalar multiplications of size n (that can be optimized depending on the
structure and sparsity of the matrix M), plus the cost for computing the sub-proof πcrh.

Concrete efficiency. We instantiated the proof system for simple DL relations, using M = [G], Poseidon [GKR+21]
as the CRH function H, and πcrh using R1CS and Groth16 [Gro16]. In Table 3 we benchmark the performance of Πdlhash

against the naive approach of performing a non-native scalar multiplication xG using the double-and-add algorithm inside
a SNARK circuit, for an x ∈ Zp of 255 bits. Roughly speaking, for R1CS-based proof systems we note that deferring the
scalar multiplication outside the circuit drastically reduces the number of constraints of about 4 orders of magnitude (We
expect proof systems based on custom gates such as Plonk to have a lower gap.). The proof size overhead of Πdlhash is due
to the size of the additional Sigma transcript, which is large compared to the constant-sized Groth16 proof; the overhead
ratio would be smaller if a less succinct proof system was used (e.g. Plonk or a log-sized proof system).

16

5 Rijndael via one lookup

The Rijndael cryptosystem [DR91] is a symmetric encryption algorithm, established as Advanced Encryption Standard
(AES) by the U.S. National Institute of Standards and Technology (NIST) in 2001 [AES01], which has become a widely-
used standard for securing electronic data globally.

Notation. The Rijndael cipher uses the following low-level operations: (1) the XOR operation, denoted with in-
fix notation as the map ⊕ : F8

2 × F8
2 → F8

2 : (a, b) 7→ a + b ; (2) multiplication by {2} in Rijndael’s Galois field
rj2 : F8

2 → F8
2 : a 7→ α · a, where α2 = 1 is a non-trivial 2-root of unity the field F8

2; (3) the S-Box operation, de-
noted sbox : F8

2 → F8
2 : a 7→ a−1 if a ̸= 0 otherwise 0. In the following we will sometimes consider component-wise

applications of the above functions. In those cases, we will write st′ := sbox(st) to denote the application of the S-Box
operation to each element of the state st. The AES algorithm (denoted AES) consists of two parts: the key schedule
(denoted AES.Ksch) and cipher (denoted AES.Cphr).

We denote by (G, p, G⃗,H) the description of a group G of order p, with independent (NUMS, cf. Section 2) generators

G⃗ = (G1, . . . , Gn) and H (used to indicate the zero-knowledge elements). Pedersen commitments are denoted in upper-
case, with randomness usually denoted in the respective greek letter, that is: X =

∑
i xiG + χH is a commitment to

x⃗ ∈ Zn
p with opening information χ ∈ Zp.

Our protocol reduces to so-called lookup arguments. A lookup argument takes as input a fixed table t⃗ of precomputed
values. A prover can demonstrate to a verifier that a committed vector f⃗ contains only values in t⃗. In the remainder of

this work, we will abuse notation and write f⃗ ⊂ t⃗ to indicate ∀i ∈ [1, n], fi ∈ {tj}|⃗t|j=1. Informally, we will call f⃗ the needles

and t⃗ the haystack.

3-Special soundness. In this section we will consider a (common) relaxation of special soundness, called 3-special
soundness. Differently from classical special soundness used in Σ-protocols (cf. Section 2), in a k-special-sound protocol
the extractor receives 3 transcripts, with the same commitment, but with all different challenges. Additionally, when the
proof πlup is instantiated using Πtsp from Appendix B, the overall protocol will be (3, . . . , 3, 2)-special sound (see Section 2)
for an additional discussion about the soundness of composed protocols.

Lookups over structured tables. Boolean functions B : Fn
2 → Fn

2 where each component is evaluated independently,
i.e. B(v⃗) = (b(v0), . . . , b(vn)) for b : F2 → F2 can (näıvely) be seen as a lookup table of size N := 2n. To optimize the
concrete efficiency of our protocol, for such functions we instead perform c lookups over tables of size c

√
N . This comes

at the cost of committing to a larger vector of size c · N . We delve into the concrete efficiency trade-offs in Section 5.2.
Similar techniques have been already used by zCash [zca] and in Lasso [STW23].

Witness generation. Prover and verifier see the AES encryption as a circuit of three low level functions: ⊕, rj2, sbox.
The witness generation step, preceding the actual proof, consists into generating a vector w⃗ containing the concatenation
of all intermediate computation on the AES state, grouped in bit-segments (in the implementation it will be grouped as
4-bit segments, but in Appendix C we study them over 8-bit segments for simplicity). Permutations of the state are not

needed as they will be performed by the (linear-time) verifier. We denote with (t⃗r, ⃗ksch) := AesTrace(m⃗, k⃗) running the
algorithms in Appendix C, then returning them as a pair. The prover computes the witness vector by constructing a
vector w⃗ = (t⃗r∥ ⃗ksch) that contains the concatenation of all intermediate computations. The final state is omitted from t⃗r
as it’s equal to the ciphertext ctx, which can be added by the verifier itself.

Let us consider, as an example, the witness generation phase for the AES-128 cipher. The cipher takes as input the
message m⃗ and the round keys r⃗k, incrementally defines the intermediate state values sti,j over i = 0, . . . , 10 rounds, and
returns their concatenation as the execution trace t⃗r. In each round, the state is altered across (some of the) sub-procedures
SubBytes, ShiftRows, MixColumns, and AddRoundKey: SubBytes consists solely of one application of sbox, ShiftRows is a
permutation, MixColumns is a linear transformation over F28 and as such can be written as ⊕ and rj2 applications, and
AddRoundKey is a simple XOR operation. In other words, the cipher circuit induces the following matrices and equations
that hold for a valid cipher trace t⃗r:

• Sxor,L, Sxor,R, Sxor,O: select of the left inputs, right inputs, and outputs of XOR. We have that

Sxor,L · t⃗r ⊕ Sxor,R · t⃗r = Sxor,O · t⃗r (5)

if and only if all ⊕ operations over the AES trace are computed correctly.

17

• Srj2,I, Srj2,O: select the inputs and outputs of multiplication by {2} in Rijndael’s field. We have that

rj2
(
Srj2,I · t⃗r

)
= Srj2,O · t⃗r (6)

if and only if all rj2 operations over the AES trace are computed correctly.

• Ssbox,I, Ssbox,O: Matrices chosen by the verifier to select the inputs and outputs of the S-Box. We have that

sbox
(
Ssbox,I · t⃗r

)
= Ssbox,O · t⃗r (7)

if and only if all sbox operations over the AES trace are computed correctly.

For instance, consider the example trace t⃗r = (3, . . . , 3, . . . , 0, . . .) displaying the first element of the message, the first
element of the state, and the first element of the AES key. The first row of the matrices Sxor,L, Sxor,R, Sxor,O, enforcing the
0-th AES round, will be all zeros except for the displayed positions, which will be respectively 1 for the left, right, and
output XOR gates.

Protocol. The protocol is illustrated in Figure 3 and is similar to a batch lookup protocol. All core AES operations
displayed can be treated as lookup evaluations: instead of checking Equations (5) to (7) directly, the verifier sends
challenges cxor, crj2, csbox and we check that:

• the XOR constraints are all valid, with

Sxor,L · t⃗r+ cxorSxor,R · t⃗r+ c2xorSxor,O · t⃗r ⊂ t⃗xor :=
{
i+ cxorj + c2xor · (i⊕ j)

}
i

(8)

• the multiplications by {2} in Rijndael’s field are all valid, with

Srj2,I · t⃗r+ crj2Srj2,O · t⃗r ⊂ t⃗rj2 := {i+ crj2 · rj2(i)}i (9)

• the S-Box is applied correctly, with

Ssbox,I · t⃗r+ csboxSsbox,O ⊂ t⃗sbox := {i+ csbox · sbox(i)}i (10)

In other words, upon receiving a challenge csbox, the prover computes x + csboxy and proves that it is contained in
i+ csbox · sbox(i) (for all possible i’s). We proceed similarly for the other operations, and perform a single check across all
tables by concatenating needles and haystack.

The main differences are that lookup tables for boolean operations (e.g. the XOR operations) have a particular
structure that allows the splitting of the table into smaller ones (in the case of 8-bit XOR, we can for instance consider
two lookups of size 28 instead of a single one of size 216). Range-checks and shuffles are implicitly done within the lookup
protocol, leveraging the small table size: overall, in the case of AES, we have a single table of size 3 · 28 = 768 elements.
The relation being proven can be expressed as

Raes :=

{(
(m⃗, µ, k⃗, κ), ctx,M,K

)
: M =

∑
i

miGi + µHi ∧ K =
∑
i

kiGi + κHi ∧ ctx = AES(k⃗, m⃗)

}
,

where m⃗, k⃗ are the bit-strings of (respectively) message and key for the AES block cipher, seen as small integers that are
easier to store in lookup tables. For instance, in our implementation, for AES-128 and AES-256 we represent the key
and the message split into 4-bit segments, i.e. m⃗ = (m0, . . . ,m31) with 0 ≤ mi < 16 for all i’s. If values are too large
then decomposition will fail.11 Overall, the protocol simply boils down to generating a witness vector of all intermediate
computation results and looking up the elements of the computation trace in a table of 768 elements. In AES-128 the
computation trace consists of 1232 elements and looks up 1808 elements in a table of 768; in AES-256 the computation
trace consists of 1744 elements and 2576 elements to look up in a table of 768.

11From a practical perspective, this representation of the message does not change end-user applications: proving equality of messages
represented differently boils doing to proving a simple Σ-protocol for proofs of representation. For instance, the linear map I16 ⊗ (1, 24) maps
the 4-bit message encoding into the 8-bit message encoding (In is the n× n identity matrix).

18

Prover((m⃗, µ, k⃗, κ),M,K, ctx) Verifier(M,K, ctx)

(t⃗r, ⃗ksch) := AesTrace(m⃗, k⃗)

ω ←$ Zp

W :=
∑

wi∈t⃗r∥ ⃗ksch wiGi + ωH
W

c←$ Zp

c

(cm, ck) := (c, c2)

f⃗ := (m⃗ ∥ k⃗ ∥ t⃗r) (csbox, crj2, cxor) := (c3, c4, c5) G⃗′ := S · (cmG⃗0..|m⃗| ∥ ckG⃗0..|k⃗| ∥ G⃗)

ϕ := cmµ+ ckκ+ ω t⃗sbox := [i+ csbox · sbox(i)]255i F :=W + cmM + ckK

t⃗rj2 := [i+ crj2 · rj2(i)]255i

t⃗xor :=
[
i+ cxorj + c2xor(i⊕ j)

]127
i,j

t⃗ := (⃗tsbox∥t⃗rj2∥t⃗xor)

Prover and Verifier:

Πlup : ((f⃗ , ϕ), |f |, t⃗, F) ∈ Rlup

Transcript: πlup # show f⃗ ⊂ t⃗

Figure 3: Πaes for proving that ctx is the correct AES-encryption of message m⃗ with key k⃗ committed as M , K; the
matrix S is defined in Equation (11).

Lookup protocol. In Figure 3 we require a lookup proof πlup, parametrized by the group description (G, p, G⃗). It proves
the relation

Rlup :=
{(

(f⃗ , ϕ), F, t⃗
)
: F =

∑
i fiGi + ϕH ∧ f⃗ ⊂ t⃗

}
In Appendix A we provide a lookup argument which internally relies solely on Σ-protocols or compressed Σ-protocols, but
any other lookup protocol may be used. Note that the commitment F to f⃗ is not sent throughout Πaes of Figure 3. This
is because it can be obtained via a linear transformations of the generators used. Consider the matrix S parametrized by
the challenges crj2, csbox, cxor

S :=

 Ssbox,I + csbox Ssbox,O

Srj2,I + crj2 Srj2,O

Sxor,L + cxor Sxor,R + c2xor Sxor,O

 (11)

and note that f⃗ = Sw⃗, and thus F = ⟨w⃗, S · G⃗⟩+ ωH.

Modularity. In the actual implementation we split the relation Raes into two relations Raes.ksch and Raes.cphr. This allows
the prover to provide two separate zero-knowledge proofs for the key schedule and the cipher. In cases where the key
schedule has already been expanded, or provided by a trusted third party, then one only needs to prove the cipher, reducing
costs. Let

Raes.ksch :=
{(

(k⃗, κ),K
)
: K =

∑
i rkiGi + κH ∧ r⃗k = AES.Ksch(k⃗)

}
be the relation identifying a correct commitment to the AES key schedule (using the same bit-string encoding above) and

Raes.cphr :=
{(

(m⃗, µ, r⃗k, κ), ctx,K,M
)
: K =

∑
i rkiGi + κH ∧ M =

∑
imiGi + µH ∧ ctx = AES.Cphr(r⃗k, m⃗)

}
be the relation identifying a correct AES encryption. The core of the two proofs is essentially the same: the prover sends
a commitment to the computation trace of a circuit whose gates are XOR, field multiplication by {2} in Rijndael’s field,
and S-Box operations. Then, the prover engages in a (batch) lookup protocol with the verifier for each operation, across
each round, to show that the computation trace is correct.

19

Extensions. Minor modifications of the relation Raes.cphr (adding one XOR constraint), will allow to prove correct
evaluation of AES in same-key Even-Mansour mode (AES-EM) as described by Dunkelman, Keller, and Shamir [DKS12,

Definition 4.1]. Informally, the statement of Raes.cphr would have to change so that the round keys r⃗k are public and the

prover shows ctx = x⃗⊕ AES.Cphr(r⃗k, x⃗). AES-EM has been used in the context of signatures based on MPC-in-the-Head
approaches [DKR+22, BBdSG+23], and we expect similar results to apply here. The proof system requires only minor
modifications, so that the prover can provide a proof for the additional XOR constraint and the overall efficiency should
remain roughly the same to Table 4 (protocol Πaec.cphr).

Trivially repeating the proof will lead to a proof for the AES cipher in electronic-codebook (AES-ECB) mode. With
the addition of one XOR constraint per block, also other modes such as AES-CBC, AES-CTR, AES-GCM are possible.

5.1 Analysis

In this section, we prove Theorem 3 showing that it satisfies completeness, special soundness, and honest-verifier zero-
knowledge. The analysis is fairly simple as the core of the protocol boils down to one batch lookup invocation. We present
a security analysis of our example lookup protocol in Appendix A.

Showing completeness is fairly straightforward: the verifier of Πaes internally computes the vector t⃗ := (⃗tsbox∥t⃗rj2∥t⃗xor),
sees F as a Pedersen commitment under generators S ·G⃗, and internally invokes the lookup protocol verifier. Completeness
of the whole protocol immediately follows from completeness of the lookup protocol verifier.

Zero-knowledge is guaranteed by the (perfect) hiding property of Pedersen commitment, and hinges on the underlying
lookup argument’s security. Specifically, the zero-knowledge simulator samples a random element W ←$ G and internally
runs the simulator for πlup. The result follows by a simple union bound.

Theorem 12. The protocol Πaes for the relation Raes is honest-verifier zero-knowledge.

We are left with soundness, which we prove below.

Theorem 13. The protocol Πaes for the relation Raes is 3-special sound with knowledge error ϵ = ϵdl + 3ϵlup + 10/p, where
ϵlup is the knowledge error of πlup and ϵdl is the advantage in solving the discrete logarithm problem in G.

Proof Sketch. Consider an adversary that outputs valid transcripts (W, c0, πlup,0), (W, c1, πlup,1), and (W, c2, πlup,2), with

c0 ̸= c1, c1 ̸= c2, and c0 ̸= c2. For i = 0, 1, 2 recover the witness f⃗i, ϕi from the knowledge-sound proof πlup,i. Let J1 and

J2 denote the indices of f⃗ encoding the XOR constraints of the initial state and the state at the end of the 0-th round.
(Recall that the first round consists solely of AddRoundKey and the 0-th key is the AES key itself.) Consider the linear
system in unknowns x, y, z ∈ Zp: b0b1

b2

 =

1 c50 c100
1 c51 c101
1 c52 c102

xy
z

 (12)

where bi ∈ {fi,j}j∈J1
∪ {fi,j}j∈J2

∪ {ϕj} which admits one solution since c0 ̸= c1 ̸= c2 and the thus the matrix is

Vandermonde. (We assume p much larger than 5.) The extractor checks x, y, z ∈ {0, . . . , 24−1} and z = x⊕ y. If found,
the extractor outputs the recovered values as the witness for the relation Raes. The extractor outputs ⊥ if no such values
exist.

If the extractor outputs ⊥, by soundness of πlup,i it follows that exists (different) xj , yj , zj ∈ {0, . . . , 24−1} such that
xj ⊕ yj = zj and xj + yjc

5
j + zjc

10
j = fj,0. (If that was not the case, then extraction failed for πlup,i, as no valid witness was

found.) However, this means that the adversary has found two different openings for the commitment F =W+cmM+ckK,
which is a contradiction to the binding property of Pedersen commitment, which itself happens only with probability ϵdl.
We are left with arguing that the values extracted are indeed from the commitments M and K (which follows from
the Schwartz-Zippel lemma), and that the witness is indeed valid (which follows from the soundness of πlup). Thus, the
knowledge error of the extractor is at most ϵdl + 3ϵlup + 10/p.

5.2 Efficiency

Asymptotic complexity. Πaes is essentially a thin wrapper on top of the lookup protocol Πlup. We denote the witness
length (the number of XOR, S-Box, and {2}-mult. gates in the AES circuit) as n, and recall that the repeated structure
of computation allows us to split the (large) XOR lookup table by a factor c ∈ {1, 2, 4} with optimal value c = 2.

The overall prover’s time cost consists of the cost of running the lookup protocol over |f⃗ | needles into a haystack vector
|⃗t| of 28+28+216/c elements (in our implementation, 768), plus a multi-scalar multiplication of size c ·n for small elements
(of size 28/c) and one scalar multiplication (for zero-knowledge). When instantiated with Πlup from Appendix A the prover

20

Table 4: Comparison between zero-knowledge AES-128 schemes and our protocol Πaes. Proof size |π| is in bytes. “Proof
Type” indicates the techniques used among MPC-in-the-Head [IKOS07], FRI-based [BBHR18], or DL-based, and between
parenthesis we indicate if they are plausibly post-quantum for the zero-knowledge property. Benchmarks on a laptop
equipped with an Intel i7-1370P CPU and 32GB of RAM running Debian Linux.

Proof type (PQ-ZK) |π| Prover time Verifier time
PICNIC1-L3 [CDG+17] MPCitH (✓) 74134 3.2ms 2.5ms
PICNIC2-L3 [CDG+17] MPCitH (✓) 27173 123ms 41ms
FAEST [BBdSG+23] MPCitH (✓) 6336 14ms 13ms
Preon128A [CCC+23] FRI (✓) 139000 64s 414ms
Preon128B [CCC+23] FRI (✓) 372000 65s 576ms
Lambdaclass [lam] DL (✓) 855 34s ?
Ours (Σ-protocols) DL (✓) 80864 37ms 13ms
Ours (compressed-Σ) DL (✓) 2848 180ms 16ms

verifier time complexity are dominated by a linear number of group and field operations. Being based on Σ-protocols,
the proof size is linear in the size of the witness. Additionally, we highlight that in the Σ-protocol Πlin (Figure 7), the
commitment operation (which is the most expensive of the whole protocol) is independent of the witness and can be
precomputed in an offline phase.

Concrete efficiency. Concretely, the prover’s computational cost is dominated by a multi-scalar multiplication (MSM)

of size n over Zp to commit to q⃗ (see Figure 5), and an MSM of size max(m, c · n) for the commitment of k⃗ in the linear
evaluation protocol in Figure 7 (providing zero-knowledge). The verifier’s computational cost is dominated by an MSM
of size max(m, c ·n) when verifying the linear evaluation proof. In practice, for the AES-128 cipher with c = 2, the prover
has to do two MSMs, one of 1808 Zp elements and one of 3616 elements (for zero-knowledge), and the verifier one MSM
of 3616 elements; for the AES-256 cipher with c = 2, the prover has to do two MSMs, one of 2576 Zp elements and one of
3488 elements. Enabling an offline phase, the prover’s larger MSM can be precomputed and is not part of the final cost.

We implemented and made available Πaes as an open-source library with tests and benchmarks, in Rust using the
arkworks library,12 and made it openly available under the BSD license.13 As part of our implementation, we revisited
arkworks’ implementation of Pippenger’s algorithm and optimized it for small scalars: in order to perform an MSM of the
form

∑
i xiGi, we consider buckets B1, . . . , B8 and add Gi to the bucket Bi if the i-th bit of xi is set. Finally, we return∑

i 2
iBi. We also employ a batch version of the sumcheck protocol which is described in Appendix A. A summary of our

results is shown in Table 4, where we benchmark Πaes with curve25519 [Ber06] along with alternative approaches. The
table is indicative: the statements proven and the cryptographic assumptions used are different: FRI- and MPCitH-based
proofs are for digital signatures and are thus proving equality of secret keys; Lambdaclass’s implementation also considers
the keyschedule (whereas we do consider only the cipher).Additional results are available along with the code source. All
in all, we measure 32ms for proving relation Raes.cphr on a Macboock M1 Pro when enabling multi-threading.

Other lookup protocols? Besides the protocol Πlup of Appendix A, other lookup protocols may be used without
harming soundness. The literature on the subject is quite large, and given the small table sizes of AES it is difficult to
examine the most efficient protocol without looking at the fine-grained efficiency. At a high-level, if our protocol relates
to the log-derivates approach of Habock [Hab22] in logUp, other approaches might be valid such as the memory-checking
techniques [BEG+91, Set20, STW23], Merkle trees and accumulator-based techniques, or polynomial techniques [GW20].
The Merkle tree approach seems unpractical from a performance perspective since, in order to provide zero-knowledge, it
requires an expensive sub-proof for knowledge of the pre-image of a hash function. The memory-checking techniques (used
in e.g. [Set20, STW23]) and polynomial techniques (used in [GW20, BCHO22]) both internally rely on a sub-protocol
called grand-product argument, respectively invoked 4 and 3 times.14 Roughly speaking, a grand-product argument is a
zero-knowledge proof that a vector f⃗ ∈ Zn

p satisfies y =
∏

i fi. To do so, generally the prover commits to an auxiliary vector
g embedding the partial products, and then proves that all partial products are computed correctly. We are not aware of
any zero-knowledge grand-product argument for vectors of size n that does not rely on O(n) multi-scalar multiplications
of Zp elements, and for this reason we think it’s unlikely that other approaches will be more efficient than the one we

12https://arkworks.rs
13https://github.com/mmaker/tinybear
14The two techniques both present other important differences. For instance, the memory-checking techniques allow for a offline/preprocessing

phase. Here, we focus on the prover’s online time.

21

https://arkworks.rs
https://github.com/mmaker/tinybear

presented here with requires one single multi-scalar multiplication of Zp elements of same size as the needles vector. We
do believe however this to be an interesting avenue for future research.

6 Acknowledgements

The authors thank Trevor Perrin (Independent) and Melissa Chase (Microsoft Research), who took part to the initial
writeup for Πdleq. The authors would also like to express their gratitute towards Andrija Novakovic (Geometry), who was
part of the initial writeup for Πdlhash. Stephan Krenn (AIT) provided initial inputs and suggestions. arnaucube (0xPARC)
authored the code used for benchmarking Πdlhash.

References

[AC20] Thomas Attema and Ronald Cramer. Compressed Σ-protocol theory and practical application to plug &
play secure algorithmics. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III,
volume 12172 of LNCS, pages 513–543. Springer, Heidelberg, August 2020.

[AES01] Advanced Encryption Standard (AES). National Institute of Standards and Technology, NIST FIPS PUB
197, U.S. Department of Commerce, November 2001.

[AFLT12] Michel Abdalla, Pierre-Alain Fouque, Vadim Lyubashevsky, and Mehdi Tibouchi. Tightly-secure signatures
from lossy identification schemes. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 572–590. Springer, Heidelberg, April 2012.

[AGM18] Shashank Agrawal, Chaya Ganesh, and Payman Mohassel. Non-interactive zero-knowledge proofs for com-
posite statements. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume
10993 of LNCS, pages 643–673. Springer, Heidelberg, August 2018.

[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge Tiessen. MiMC: Efficient
encryption and cryptographic hashing with minimal multiplicative complexity. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 191–219. Springer,
Heidelberg, December 2016.

[ANT+20] Diego F. Aranha, Felipe Rodrigues Novaes, Akira Takahashi, Mehdi Tibouchi, and Yuval Yarom. Ladder-
Leak: Breaking ECDSA with less than one bit of nonce leakage. In Jay Ligatti, Xinming Ou, Jonathan
Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 225–242. ACM Press, November 2020.

[ASM06] Man Ho Au, Willy Susilo, and Yi Mu. Constant-size dynamic k-TAA. In Roberto De Prisco and Moti Yung,
editors, SCN 06, volume 4116 of LNCS, pages 111–125. Springer, Heidelberg, September 2006.

[AST23] Arasu Arun, Srinath Setty, and Justin Thaler. Jolt: Snarks for virtual machines via lookups. Cryptology
ePrint Archive, Paper 2023/1217, 2023. https://eprint.iacr.org/2023/1217.

[azt] Aztec emulated field and group operations. https://hackmd.io/@arielg/B13JoihA8.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell. Bul-
letproofs: Short proofs for confidential transactions and more. In 2018 IEEE Symposium on Security and
Privacy, pages 315–334. IEEE Computer Society Press, May 2018.

[BBC+22] Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, and Vesselin Velichkov. Anemoi: Exploit-
ing the link between arithmetization-orientation and CCZ-equivalence. Cryptology ePrint Archive, Report
2022/840, 2022. https://eprint.iacr.org/2022/840.

[BBdSG+23] Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß, Emmanuela Orsini,
Lawrence Roy, and Peter Scholl. Publicly verifiable zero-knowledge and post-quantum signatures from
vole-in-the-head. Cryptology ePrint Archive, Paper 2023/996, 2023. https://eprint.iacr.org/2023/996.

[BBDT16] Amira Barki, Solenn Brunet, Nicolas Desmoulins, and Jacques Traoré. Improved algebraic MACs and
practical keyed-verification anonymous credentials. In Roberto Avanzi and Howard M. Heys, editors, SAC
2016, volume 10532 of LNCS, pages 360–380. Springer, Heidelberg, August 2016.

22

https://eprint.iacr.org/2023/1217
https://hackmd.io/@arielg/B13JoihA8
https://eprint.iacr.org/2022/840
https://eprint.iacr.org/2023/996

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-solomon interactive oracle
proofs of proximity. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella,
editors, ICALP 2018, volume 107 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl, July 2018.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, Heidelberg, August 2004.

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. Efficient zero-
knowledge arguments for arithmetic circuits in the discrete log setting. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 327–357. Springer, Heidelberg,
May 2016.

[BCF+21a] Daniel Benarroch, Matteo Campanelli, Dario Fiore, Kobi Gurkan, and Dimitris Kolonelos. Zero-knowledge
proofs for set membership: Efficient, succinct, modular. In Nikita Borisov and Claudia Diaz, editors, Finan-
cial Cryptography and Data Security, pages 393–414, Berlin, Heidelberg, 2021. Springer Berlin Heidelberg.

[BCF+21b] Daniel Benarroch, Matteo Campanelli, Dario Fiore, Jihye Kim, Jiwon Lee, Hyunok Oh, and Anäıs Querol.
Proposal: commit-and-prove zero-knowledge proof systems and extensions. In 4th ZKProof Workshop, 2021.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs for C:
Verifying program executions succinctly and in zero knowledge. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 90–108. Springer, Heidelberg, August 2013.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and Madars
Virza. Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE Symposium on Security
and Privacy, pages 459–474. IEEE Computer Society Press, May 2014.

[BCG20a] Jonathan Bootle, Alessandro Chiesa, and Jens Groth. Linear-time arguments with sublinear verification
from tensor codes. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part II, volume 12551 of
LNCS, pages 19–46. Springer, Heidelberg, November 2020.

[BCG+20b] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard Wu. ZEXE:
Enabling decentralized private computation. In 2020 IEEE Symposium on Security and Privacy, pages
947–964. IEEE Computer Society Press, May 2020.

[BCG+22] Kenneth A Bamberger, Ran Canetti, Shafi Goldwasser, Rebecca Wexler, and Evan J Zimmerman. Verifica-
tion dilemmas in law and the promise of zero-knowledge proofs. Berkeley Tech. LJ, 37:1, 2022.

[BCHO22] Jonathan Bootle, Alessandro Chiesa, Yuncong Hu, and Michele Orrù. Gemini: Elastic SNARKs for diverse
environments. In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part II, volume
13276 of LNCS, pages 427–457. Springer, Heidelberg, May / June 2022.

[BCL+21] Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and Nicholas Spooner. Proof-carrying
data without succinct arguments. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I, volume
12825 of LNCS, pages 681–710, Virtual Event, August 2021. Springer, Heidelberg.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and Nicholas P.
Ward. Aurora: Transparent succinct arguments for R1CS. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 103–128. Springer, Heidelberg, May 2019.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge via cycles of
elliptic curves. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of
LNCS, pages 276–294. Springer, Heidelberg, August 2014.

[BEG+91] Manuel Blum, William S. Evans, Peter Gemmell, Sampath Kannan, and Moni Naor. Checking the correct-
ness of memories. In 32nd FOCS, pages 90–99. IEEE Computer Society Press, October 1991.

[Ben14] Juan Benet. Ipfs-content addressed, versioned, p2p file system. arXiv preprint arXiv:1407.3561, 2014.

[Ber06] Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Moti Yung, Yevgeniy Dodis, Aggelos
Kiayias, and Tal Malkin, editors, PKC 2006, volume 3958 of LNCS, pages 207–228. Springer, Heidelberg,
April 2006.

23

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive proof composition without a trusted setup.
Cryptology ePrint Archive, Report 2019/1021, 2019. https://eprint.iacr.org/2019/1021.

[BLL+21] Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and Mariana Raykova. On the
(in)security of ROS. In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021, Part I,
volume 12696 of LNCS, pages 33–53. Springer, Heidelberg, October 2021.

[BLS03] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. Constructing elliptic curves with prescribed embedding
degrees. In Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano, editors, SCN 02, volume 2576 of LNCS,
pages 257–267. Springer, Heidelberg, September 2003.

[BLS04] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. On the selection of pairing-friendly groups. In
Mitsuru Matsui and Robert J. Zuccherato, editors, SAC 2003, volume 3006 of LNCS, pages 17–25. Springer,
Heidelberg, August 2004.

[BMM+21] Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi Vesely. Proofs for inner pairing
products and applications. In Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part III,
volume 13092 of LNCS, pages 65–97. Springer, Heidelberg, December 2021.

[Bow17] Sean Bowe. BLS12-381: New zk-SNARK elliptic curve construction, 2017. https://electriccoin.co/bl
og/new-snark-curve/.

[Bra94] Stefan Brands. Untraceable off-line cash in wallets with observers (extended abstract). In Douglas R.
Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 302–318. Springer, Heidelberg, August 1994.

[BS20] Dan Boneh and Victor Shoup. A graduate course in applied cryptography, 2020. Available online https:

//toc.cryptobook.us/book.pdf.

[But14] Vitalik Buterin. Ethereum: A Next-Generation Smart Contract and Decentralized Application Platform,
2014. Available at https://ethereum.org/en/whitepaper/.

[CCC+23] Ming-Shing Chen, Yu-Shian Chen, Chen-Mou Cheng, Shiuan Fu, Wei-Chih Hong, Jen-Hsuan Hsiang, Sheng-
Te Hu, Po-Chun Kuo, Wei-Bin Lee, Feng-Hao Liu, and Justin Thaler. Preon: zk-snark based signature
scheme, 2023. https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spe

c-files/Preon-spec-web.pdf.

[CDDH19] Jan Camenisch, Manu Drijvers, Petr Dzurenda, and Jan Hajny. Fast keyed-verification anonymous creden-
tials on standard smart cards. In ICT Systems Security and Privacy Protection, pages 286–298, 2019.

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Christian Rechberger,
Daniel Slamanig, and Greg Zaverucha. Post-quantum zero-knowledge and signatures from symmetric-key
primitives. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS
2017, pages 1825–1842. ACM Press, October / November 2017.

[CFQ19] Matteo Campanelli, Dario Fiore, and Anäıs Querol. LegoSNARK: Modular design and composition of
succinct zero-knowledge proofs. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, ACM CCS 2019, pages 2075–2092. ACM Press, November 2019.

[CGM16] Melissa Chase, Chaya Ganesh, and Payman Mohassel. Efficient zero-knowledge proof of algebraic and non-
algebraic statements with applications to privacy preserving credentials. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 499–530. Springer, Heidelberg, August
2016.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and Nicholas P. Ward. Marlin:
Preprocessing zkSNARKs with universal and updatable SRS. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 738–768. Springer, Heidelberg, May 2020.

[CL02] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to efficient revocation of
anonymous credentials. In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 61–76. Springer,
Heidelberg, August 2002.

24

https://eprint.iacr.org/2019/1021
https://electriccoin.co/blog/new-snark-curve/
https://electriccoin.co/blog/new-snark-curve/
https://toc.cryptobook.us/book.pdf
https://toc.cryptobook.us/book.pdf
https://ethereum.org/en/whitepaper/
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/Preon-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/Preon-spec-web.pdf

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from bilinear maps.
In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 56–72. Springer, Heidelberg,
August 2004.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party and
multi-party secure computation. In 34th ACM STOC, pages 494–503. ACM Press, May 2002.

[CMZ14] Melissa Chase, Sarah Meiklejohn, and Greg Zaverucha. Algebraic MACs and keyed-verification anonymous
credentials. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 2014, pages 1205–1216. ACM
Press, November 2014.

[CP93] David Chaum and Torben P. Pedersen. Wallet databases with observers. In Ernest F. Brickell, editor,
CRYPTO’92, volume 740 of LNCS, pages 89–105. Springer, Heidelberg, August 1993.

[CPZ20] Melissa Chase, Trevor Perrin, and Greg Zaverucha. The signal private group system and anonymous creden-
tials supporting efficient verifiable encryption. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni
Vigna, editors, ACM CCS 2020, pages 1445–1459. ACM Press, November 2020.

[Cra97] Ronald Cramer. Modular Design of Secure yet Practical Cryptographic Protocols. PhD thesis, CWI Ams-
terdam, The Netherlands, 1997.

[CT10] Alessandro Chiesa and Eran Tromer. Proof-carrying data and hearsay arguments from signature cards. In
ICS, volume 10, pages 310–331, 2010.

[DBB+15] Gaby G. Dagher, Benedikt Bünz, Joseph Bonneau, Jeremy Clark, and Dan Boneh. Provisions: Privacy-
preserving proofs of solvency for bitcoin exchanges. In Indrajit Ray, Ninghui Li, and Christopher Kruegel,
editors, ACM CCS 2015, pages 720–731. ACM Press, October 2015.

[DKR+22] Christoph Dobraunig, Daniel Kales, Christian Rechberger, Markus Schofnegger, and Greg Zaverucha.
Shorter signatures based on tailor-made minimalist symmetric-key crypto. pages 843–857. ACM Press,
2022.

[DKS12] Orr Dunkelman, Nathan Keller, and Adi Shamir. Minimalism in cryptography: The Even-Mansour scheme
revisited. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS,
pages 336–354. Springer, Heidelberg, April 2012.

[DLO+18] Ivan Damg̊ard, Ji Luo, Sabine Oechsner, Peter Scholl, and Mark Simkin. Compact zero-knowledge proofs of
small Hamming weight. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part II, volume 10770
of LNCS, pages 530–560. Springer, Heidelberg, March 2018.

[DR91] Joan Daemen and Vincent Rijmen. The design of {Rijndael}:{AES}. Journal of Cryptology, 4(1):3–72, 1991.

[DRZ20] Vanesa Daza, Carla Ràfols, and Alexandros Zacharakis. Updateable inner product argument with logarithmic
verifier and applications. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors,
PKC 2020, Part I, volume 12110 of LNCS, pages 527–557. Springer, Heidelberg, May 2020.

[dVYA] Henry de Valence, Cathie Yun, , and Oleg Andreev. Rust bulletproofs crate. Accessed October 2022 (HEAD
at 6fb4135).

[Eag22] Liam Eagen. Bulletproofs++. Cryptology ePrint Archive, Report 2022/510, 2022. https://eprint.iacr.
org/2022/510.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer,
Heidelberg, August 1987.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols. In 22nd ACM STOC,
pages 416–426. ACM Press, May 1990.

[FW22] Georg Fuchsbauer and Mathias Wolf. Concurrently secure blind schnorr signatures. Cryptology ePrint
Archive, Paper 2022/1676, 2022. https://eprint.iacr.org/2022/1676.

25

https://eprint.iacr.org/2022/510
https://eprint.iacr.org/2022/510
https://eprint.iacr.org/2022/1676

[GHL22] Craig Gentry, Shai Halevi, and Vadim Lyubashevsky. Practical non-interactive publicly verifiable secret
sharing with thousands of parties. In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022,
Part I, volume 13275 of LNCS, pages 458–487. Springer, Heidelberg, May / June 2022.

[GKL+22] Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüftenegger, Christian Rechberger, Markus Schofnegger,
and Roman Walch. Reinforced concrete: A fast hash function for verifiable computation. pages 1323–1335.
ACM Press, 2022.

[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus Schofnegger. Poseidon:
A new hash function for zero-knowledge proof systems. In Michael Bailey and Rachel Greenstadt, editors,
USENIX Security 2021, pages 519–535. USENIX Association, August 2021.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof systems.
SIAM Journal on Computing, 18(1):186–208, 1989.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for NP. In Serge Vau-
denay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 339–358. Springer, Heidelberg, May / June
2006.

[GP20] Ariel Gabizon and Zachary J. Williamson (Aztec Protocol). Proposal: The turbo-plonk program syntax for
specifying snark programs. ZKProof3, 2020.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326. Springer, Heidelberg,
May 2016.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In Nigel P. Smart,
editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer, Heidelberg, April 2008.

[GW20] Ariel Gabizon and Zachary J. Williamson. plookup: A simplified polynomial protocol for lookup tables.
Cryptology ePrint Archive, Paper 2020/315, 2020. https://eprint.iacr.org/2020/315.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over lagrange-bases for
oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953, 2019.
https://eprint.iacr.org/2019/953.

[Hab22] Ulrich Haböck. Multivariate lookups based on logarithmic derivatives. Cryptology ePrint Archive, Paper
2022/1530, 2022. https://eprint.iacr.org/2022/1530.

[HdVLA22] Mike Hamburg, Henry de Valence, Isis Lovecruft, and Tony Arcieri. The Ristretto group, 2022. https:

//ristretto.group/.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multiparty
computation. In David S. Johnson and Uriel Feige, editors, 39th ACM STOC, pages 21–30. ACM Press,
June 2007.

[KHSS22] Daniel Kang, Tatsunori Hashimoto, Ion Stoica, and Yi Sun. Zk-img: Attested images via zero-knowledge
proofs to fight disinformation, 2022.

[Kil90] Joe Kilian. Uses of Randomness in Algorithms and Protocols. MIT Press, Cambridge, MA, USA, 1990.

[KL07] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography: principles and protocols. Chapman
and hall/CRC, 2007.

[KLS18] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treatment of Fiat-Shamir signa-
tures in the quantum random-oracle model. In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part III, volume 10822 of LNCS, pages 552–586. Springer, Heidelberg, April / May 2018.

[KS23] Abhiram Kothapalli and Srinath Setty. Cyclefold: Folding-scheme-based recursive arguments over a cycle of
elliptic curves. Cryptology ePrint Archive, Paper 2023/1192, 2023. https://eprint.iacr.org/2023/1192.

[lam] Lambdaclass aes encryption circuit. https://github.com/lambdaclass/AES_zero_knowledge_proof_ci
rcuit.

26

https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2022/1530
https://ristretto.group/
https://ristretto.group/
https://eprint.iacr.org/2023/1192
https://github.com/lambdaclass/AES_zero_knowledge_proof_circuit
https://github.com/lambdaclass/AES_zero_knowledge_proof_circuit

[Lee21] Jonathan Lee. Dory: Efficient, transparent arguments for generalised inner products and polynomial com-
mitments. In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part II, volume 13043 of LNCS, pages
1–34. Springer, Heidelberg, November 2021.

[LFKN90] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for interactive proof
systems. In 31st FOCS, pages 2–10. IEEE Computer Society Press, October 1990.

[Lin03] Yehuda Lindell. Parallel coin-tossing and constant-round secure two-party computation. Journal of Cryp-
tology, 16(3):143–184, June 2003.

[LKWL22] T. Looker, V. Kalos, A. Whitehead, and M. Lodder. The BBS signature scheme, October 2022. IRTF CFRG
working group draft.

[Lyu08] Vadim Lyubashevsky. Lattice-based identification schemes secure under active attacks. In Ronald Cramer,
editor, PKC 2008, volume 4939 of LNCS, pages 162–179. Springer, Heidelberg, March 2008.

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures. In
Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 598–616. Springer, Heidelberg,
December 2009.

[Mau09] Ueli Maurer. Unifying zero-knowledge proofs of knowledge. In B. Preneel, editor, Advances in Cryptology -
AfricaCrypt 2009, Lecture Notes in Computer Science. Springer-Verlag, 6 2009.

[MGGR13] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zerocoin: Anonymous distributed
E-cash from Bitcoin. In 2013 IEEE Symposium on Security and Privacy, pages 397–411. IEEE Computer
Society Press, May 2013.

[MRV16] Paz Morillo, Carla Ràfols, and Jorge Luis Villar. The kernel matrix Diffie-Hellman assumption. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 729–758.
Springer, Heidelberg, December 2016.

[Nak08] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008. Available at http://bitcoin.
org/bitcoin.pdf.

[NBS23] Wilson Nguyen, Dan Boneh, and Srinath Setty. Revisiting the nova proof system on a cycle of curves.
Cryptology ePrint Archive, Paper 2023/969, 2023. https://eprint.iacr.org/2023/969.

[Oka93] Tatsuaki Okamoto. Provably secure and practical identification schemes and corresponding signature
schemes. In Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 31–53. Springer, Hei-
delberg, August 1993.

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Joan
Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129–140. Springer, Heidelberg, August 1992.

[Pol78] John M. Pollard. Monte carlo methods for index computation (mod p). Mathematics of computation,
32(143):918–924, 1978.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind signatures. Journal
of Cryptology, 13(3):361–396, June 2000.

[PS16] David Pointcheval and Olivier Sanders. Short randomizable signatures. In CT-RSA 2016, pages 111–126,
2016.

[PZ13] C. Paquin and G. Zaverucha. U-prove cryptographic specification v1.1 (revision 2), 2013. Available online:
www.microsoft.com/uprove.

[SAB+19] Alberto Sonnino, Mustafa Al-Bassam, Shehar Bano, Sarah Meiklejohn, and George Danezis. Coconut:
Threshold issuance selective disclosure credentials with applications to distributed ledgers. In NDSS 2019.
The Internet Society, February 2019.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–174,
January 1991.

27

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://eprint.iacr.org/2023/969
www.microsoft.com/uprove

[Set20] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup. In Daniele Mic-
ciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages 704–737.
Springer, Heidelberg, August 2020.

[Sma99] Nigel P. Smart. The discrete logarithm problem on elliptic curves of trace one. Journal of Cryptology,
12(3):193–196, June 1999.

[SSS+22] Huachuang Sun, Haifeng Sun, Kevin Singh, Akhil Sai Peddireddy, Harshad Patil, Jianwei Liu, and Weikeng
Chen. The inspection model for zero-knowledge proofs and efficient zerocash with secp256k1 keys. Cryptology
ePrint Archive, Report 2022/1079, 2022. https://eprint.iacr.org/2022/1079.

[STW23] Srinath Setty, Justin Thaler, and Riad Wahby. Unlocking the lookup singularity with lasso. Cryptology
ePrint Archive, 2023.

[Tha13] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In Ran Canetti and Juan A. Garay,
editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 71–89. Springer, Heidelberg, August 2013.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space efficiency. In
Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 1–18. Springer, Heidelberg, March 2008.

[XZZ+19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and Dawn Song. Libra: Succinct
zero-knowledge proofs with optimal prover computation. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 733–764. Springer, Heidelberg, August 2019.

[Yas12] Masaya Yasuda. A generalization of the anomalous attack for the ecdlp over qp. International Journal of
Pure and Applied Mathematics, 77(1):1–9, 2012.

[zca] Halo2 sha256. https://zcash.github.io/halo2/design/gadgets/sha256.html.

[zkb] ZK Bug Tracker. https://github.com/0xPARC/zk-bug-tracker/.

A A simple lookup for small tables

Our lookup argument, illustrated in in Figure 4, proves in zero-knowledge statements for the relation

Rlup :=
{
((f⃗ , ϕ), F, t⃗) : F =

∑n
i=1 fiGi + ϕH ∧ ∀i ∈ [1, n], fi ∈ {tj}|⃗t|j=1

}
Note that the table to be queried, t⃗, is part of the instance and known to the verifier.

Inner-product proofs. We make use of two sub-protocols that are fairly standard in the literature:

• Πtsp for proving in zero-knowledge statements for the inner product relation

Rtsp :=

{
((f⃗ , ϕ, e⃗, ε, y, ψ), v⃗, F, E, Y) :

F =
∑n

i=1 fiGi + ϕH ∧ E =
∑n

i=1 eiGi + εH ∧ Y = yG+ ψH

⟨f⃗ , v⃗ ◦ e⃗⟩ = y

}
;

• Πlin for proving in zero-knowledge statements for the linear evaluation relation

Rlin :=
{
((f⃗ , ϕ, y, ψ), (F, e⃗, Y)) : F =

∑
i fiGi + ϕH ∧ Y = yG+ ψH ∧ ⟨f⃗ , e⃗⟩ = y

}
.

It is possible to instantiate Πlin using Πtsp setting v⃗ = 1⃗, ε = 0, and E =
∑

i eiGi. For inner-products of size n = |v⃗|, the
best asymptotics for Πtsp to this day are dominated by O(n) group operations, with O(n) group operations for the verifier
as well (in the pairing-free setting).15 We describe an inner-product argument based on Σ-protocols in Appendix B for
completeness.

15In the pairing setting, Dory [Lee21] achieves sublinear time, but requires O(logn) pairings; in the trusted-setup setting, it is possible to
achieve constant-time verification using Lagrange interpolation and univariate sumcheck [CHM+20], at the cost of a quasilinear prover.

28

https://eprint.iacr.org/2022/1079
https://zcash.github.io/halo2/design/gadgets/sha256.html
https://github.com/0xPARC/zk-bug-tracker/

Lookup Πlup

f⃗ ⊂ t⃗

Twisted Scalar Product Πtsp

y = ⟨f⃗ , e⃗ ◦ v⃗⟩

Mul Πmul

y = a · b

Habock [Hab22]∑
i 1/(X + fi) =

∑
imi/(X + ti) ⇐⇒ f⃗ ⊂ t⃗

Sumcheck∑
i F̃ (x1, . . . , xn) = y

Linear Evaluation Πlin

⟨f⃗ , e⃗⟩ = y

Figure 4: Structure of our zero-knowledge lookup argument using a result by [Hab22] and a linear evaluation argument
and an inner product argument as sub-protocols. The inner product argument internally uses a sumcheck result by
[BCHO22] (not zero-knowledge), combined with Πlin and Πmul.

Protocol. A formal description of the lookup argument is given in Figure 5. Given input ((f⃗ , ϕ), F, t⃗) the prover
computes and sends a commitment to the frequency vector

m⃗ :=
[∑n

j=1(ti = fj)
]|t|
i

,

that is, m⃗ the vector of Lemma 14 that at the i-th position holds the number of times ti appears in f⃗ . The verifier samples
and sends c ←$ Zp. The value c will be a random evaluation point for the rational polynomial given in Lemma 14, used
to check that the equation holds for the claimed fi with high probability. Note that once X = c, Equation (16) simplifies
to q =

∑
mihi where q and mi are values known to the prover, and hi is public. The prover and verifier both compute

h⃗ :=
[
(ti + c)−1

]|t|
i

.

The prover also computes and sends a commitment to

q⃗ :=
[
(fi + c)−1

]|f |
i=1

.

We are left with showing that

⟨m⃗, h⃗⟩ = ⟨q⃗, 1⃗⟩ , and (13)

q⃗ ◦ (f⃗ + c · 1⃗) = 1⃗ , (14)

to check that Lemma 14 holds and, respectively, that the prover computed q⃗ correctly (“◦′′ denotes component-wise –
Hadamard – product). Left- and right-hand side of Equation (13) are linear evaluation claims that can be shown with
Πlin. To show Equation (14), we use a common approach for reducing Hadamard products to inner-products [BCHO22]:
the verifier samples a random vector v⃗ and prover and verifier check that

⟨q⃗, v⃗ ◦ (f⃗ + c · 1⃗)⟩ =
n∑

i=1

vi . (15)

If above relation, called twisted inner-product, holds, then Equation (14) holds except with negligible probability |f⃗ |/|Zp|.
The latter is easier than the former as the component-wise product is with a public vector. It is possible to instantiate
twisted scalar product from inner-product arguments.16 When v⃗ is set to be consecutive powers (1, v, v2, . . .), the right-
hand side can be computed in O(log |v⃗|) field operations.

16Split-and-fold arguments with independent generators can generally use the “generator-swapping” trick [BBB+18]: the commiter key of the

right-hand side is considered to be v⃗ ◦ G⃗ instead of G⃗. For sumcheck-based techniques, it is possible to embed the “twist” within the sumcheck
messages.

29

Prover((f⃗ , ϕ), F, t⃗) Verifier(F, t⃗)

m⃗ :=
[∑n

j=1(ti = fj)
]|⃗t|
i

µ←$ Zp

M :=
∑n

i=1miGi + µH M

c←$ Zpc

q⃗ :=
[
(fi + c)−1]|f |

i

y := ⟨q⃗, 1⃗⟩
ψ, θ ←$ Zp

Q =
∑n

i=1 qiGi + θH

Y := yG+ ψH

Q, Y v ←$ Zp

v

h⃗ :=
[
(ti + c)−1]|t|

i
h⃗ :=

[
(ti + c)−1]|t|

i

E := F + c
∑n

i=1Gi E := F + c
∑n

i=1Gi

s :=
∑n

i=1 v
i s :=

∑n
i=1 v

i

v⃗ :=
[
vi
]n
i=1

v⃗ :=
[
vi
]n
i=1

Prover and Verifier:

Πlin : ((m⃗, µ, y, ψ), h⃗,M, Y) ∈ Rlin

Transcript: πlin,h # show ⟨⃗h, m⃗⟩ = y

Πlin : ((q⃗, θ, y, ψ), 1⃗, Q, Y) ∈ Rlin

Transcript: πlin,q # show ⟨⃗1, q⃗⟩ = y

Πtsp : ((q⃗, θ, f⃗ + c⃗1, ϕ, s, 0), v⃗, Q,E, sG) ∈ Rtsp

Transcript: πtsp # show ⟨q⃗, v⃗ ◦ (f⃗ + c⃗1)⟩ =
∑

vi

Figure 5: The lookup protocol Πlup for checking that f⃗ ⊂ t⃗ and F =
∑

i fiGi + ϕH.

A.1 Analysis

In this section, we prove the security of our lookup argument by showing that Πlup satisfies completeness, knowledge sound-
ness, and honest-verifier zero-knowledge. At the core of our protocol is the following observation from Haböck [Hab22].

Lemma 14 ([Hab22, Lemma 5]). Let f⃗ , t⃗ be vectors over Zp of dimension less than p. Then, {fi}i ⊂ {ti}i if and only if
there exists a sequence of integers m⃗ (all less than p) such that

|f⃗ |∑
i=1

1

X + fi
=

|⃗t|∑
i=1

mi

X + ti
(16)

holds in the function field Zp[X].

Informally, the vector m⃗ accounts for the multiplicity of each element fi in t⃗. For example, if f⃗ := (1, 1, 1, 2, 3) and
t⃗ := (1, 2, 3, 4), then m⃗ = (3, 1, 1, 0). Looking ahead, the equality will be checked on a random challenge point sent by the
verifier, and soundness will be guaranteed by Schwartz-Zippel Lemma over the above identity. First, assuming that the
underlying Πtsp and Πlin are complete, we note that the protocol Πlup is complete.

Theorem 15. The protocol Πlup for the relation Rlup is complete with error |⃗t|/|Zp|+ 2δlin + δtsp.

30

Proof. The protocol aborts if the sub-protocols Πtsp and Πlin do not complete successfully, or if the field inversion fails for

generating the elements q⃗ and h⃗. As f⃗ ⊂ t⃗ and c ∈ Zp is sampled uniformly at random, it follows that the protocol aborts
with probability at most |⃗t|/|Zp|+ 2δlin + δtsp.

Theorem 16. Suppose Πlup from Figure 5 is instantiated with a knowledge-sound Πlin protocol and a knowledge-sound
Πtsp for the relations Rlin and Rtsp respectively. Then Πlup is knowledge-sound if the discrete logarithm problem is hard.

Proof. We consider the extractor that internally runs the extractor of Πtsp on the proof πtsp for (v⃗, Q,E, sG) to extract
some (q⃗, θ, e⃗, ϵ, y, ψ) such that Q =

∑
qiGi + θH, E =

∑
eiGi + ϵH and sG = yG+ψH with y = ⟨q⃗, v⃗ ◦ e⃗⟩. The extractor

returns (f⃗ := e⃗ − c⃗1, ϕ := ϵ). We must show that it is a valid witness for the relation Rtsp, and we do sia via a hybrid
argument.

H1 This game behaves identically to the original knowledge soundness game for Πlup except that if Πtsp.Ext on the proof
πtsp for (v⃗, Q,E, sG) fails extract some (q⃗, θ, e⃗, ε, y, ψ) such that ((q⃗, θ, e⃗, ε, y, ψ), v⃗, Q,E, sG) ∈ Rtsp then the game
aborts. This game is indistinguishable by the knowledge soundness of Πtsp.

H2 Run the extractor of Πlin on the proof πlin, h for (⃗h,M, Y) fails extract some (m⃗, µ, y′, ψ′) such that ((m⃗, µ, y′, ψ′),

h⃗,M, Y) ∈ Rlin then the game aborts. This game is indistinguishable by the knowledge soundness of Πlin.

H3 Run the extractor of Πlin on the proof πlin, q for (⃗1, Q, Y) fails extract some (q⃗′′, θ′′, y′′, ψ′′) such that ((q⃗′′, θ′′, y′′, ψ′′), 1⃗,
Q, Y) ∈ Rlin then the game aborts. This game is indistinguishable by the knowledge soundness of Πlin.

H4 If q⃗ ̸= q⃗′′ and θ ̸= θ′′ then the game aborts. Indeed if this game aborts when the previous one doesn’t then

Q =

n∑
i=1

qiGi + θH =

n∑
i=1

q′′i Gi + θ′′H

and we can build a reduction against the discrete logarithm problem.

H5 If s ̸= y or s ̸= y′ or s ̸= y′′ then the game aborts. Indeed if this game aborts when the previous one doesn’t then

sG = yG+ ψH = y′G+ ψ′H = y′′G+ ψ′′H

and we can build a reduction against the discrete logarithm problem.

H6 If there exists i ∈ [1, n] such that qi ̸= fi + c then the game aborts. If this game aborts when the previous one
doesn’t then

q⃗ ◦ (f⃗ + c⃗1) ̸= 1⃗

We design a reduction against the discrete logarithm problem. The reduction runs the adversary on the same random
coins initially, but in the third move sends a different random v∗ ̸= v. The reduction continues trying v∗ values until
the adversary terminates with a valid proof.

The reduction runs the Πtsp.Ext with respect to the proof πtsp for (v⃗
∗, Q,E, s∗G) to extract some (q⃗∗, θ∗, e⃗∗, ε∗, y∗, ψ∗)

such that ((q⃗∗, θ∗, e⃗∗, ε∗, y∗, ψ∗), v⃗∗, Q,E, s∗G) ∈ Rtsp. By the knowledge soundness of Πtsp this succeeds with
overwhelming probability.

If q⃗ ̸= q⃗∗ and θ ̸= θ∗ then

Q =

n∑
i=1

qiGi + θH =

n∑
i=1

q∗iGi + θ∗H

and the reduction can solve the discrete logarithm problem. Similarly if e⃗ ̸= e⃗∗ and ε ̸= ε∗ then the reduction can
solve the discrete logarithm problem. If y∗ ̸= s∗ then the reduction can solve the discrete logarithm problem. Else

⟨q⃗∗, v⃗∗ ◦ e⃗∗⟩ =
∑

v∗i ⇐ ⟨q⃗, v⃗∗ ◦ e⃗⟩ =
∑

v∗i

⇐ ⟨q⃗, v⃗∗ ◦ (f⃗ + c⃗1)⟩ =
∑

v∗i∑
(v∗)iqi(fi + c) =

∑
(v∗)i

The probability of the latter occurring is 1
p because q⃗ and f⃗ are independent from v∗ and q⃗ ◦ (f⃗ + c⃗1) ̸= 1⃗.

31

Theorem 17. Suppose Πlup from Figure 5 is instantiated with honest-verifier zero-knowledge Πlin and Πtsp protocols for
the relations Rlin and Rtsp respectively. Then Πlup is honest-verifier zero-knowledge.

Proof. Consider the simulator that, given as input F, t⃗, chooses c, v ←$ Zp, then M,Q, Y ←$ G, and then, for the final
round messages:

• compute h⃗ = [(ti + c)−1]
|t|
i , then E = F + c

∑n
i=1Gi;

• compute πlin,h ← Πlin.Sim(⃗h,M, Y), πlin,q ← Πlin.Sim(⃗1, Q, Y), πtsp ← Πtsp.Sim(v⃗, Q,E, sG).

Finally, return the transcript
(F, t⃗),M, c, (Q,Y), v, (πlin,h, πlin,q, πtsp) .

H1 This game behaves identically to the original zero-knowledge game for Πlup except that when the honest prover is

run, the proof πlin,h is computed as πlin,h ← Πlin.Sim(⃗h,M, Y). Since the honest prover knows a witness for h⃗,M, Y ,
we can build a reduction against the zero-knowledge of Πlin should this change be distinguishable.

H2 The proof πlin,q is computed as πlin,q ← Πlin.Sim(⃗1, Q, Y). Since the honest prover knows a witness for (⃗1, Q, Y), we
can build a reduction against the zero-knowledge of Πlin should this change be distinguishable.

H3 The proof πtsp is computed as πtsp ← Πtsp.Sim(v⃗, Q,E, sG). Since the honest prover knows a witness for (v⃗, Q,E, sG),
we can build a reduction against the zero-knowledge of Πtsp should this change be distinguishable.

We now see that the final hybrid is statistically impossible. Indeed, the only proof elements that are non-identical are
M , Q and Y . However these elements are computed uniformly at random both by the honest prover (due to the blinders
µ, θ, ψ) and the simulator.

A.2 Efficiency

A discussion about asymptotic and concrete efficiency is already present in Section 5.2. Informally, the prover and
verifier complexity is linear in the size of |⃗t|, and requires performing two linear-size group operation: one multi-scalar

multiplication of Zp-elements of size |f⃗ | (to commit to q⃗) and one of small integers of size |⃗t| (recall that
∑

imi = |f⃗ |).
Finally, prover and verifier must account for the inner-product and linear evaluation protocols.

Concrete efficiency. When instantiated with Πtsp, some optimizations are possible to lower the concrete running-time

of the prover’s algorithm. instead of running all linear evaluation claims (concerning: ⟨q⃗, 1⃗⟩, ⟨m⃗, h⃗⟩, ⟨q⃗,⊗j(1, cj)⟩, ⟨f⃗+ c⃗1⟩)
separately, the verifier sends a single challenge cbatch and the prover and verifier engage into a sumcheck protocol reducing
the above into a single claim about a linear evaluation of q⃗ + cbatchm⃗ + c2batch(f⃗ + c⃗1), which is proven with a single Πlin

invocation.17 This is a standard technique in the literature for batching Schnorr proofs and polynomial commitment
evaluations, and in this case it concretely it allows to trade off the prover’s time from 4 Πlin’invocations to 1. In practice,
also the proof size of Πaes decreases from roughly 122K to 80K when using Πlin of Figure 7.

If Πlin is instantiated with standard Σ-protocols, the overall lookup protocol’s complexity is dominated by two MSM
of Zp-elements of size |f⃗ | and max(|f⃗ |, |⃗t|). If the protocol Πlin is instantiated with compressed Σ-protocols, the overall

lookup protocol’s complexity is dominated by max(|f⃗ |, |⃗t|) scalar multiplication and additions in G (the generator’s split
and fold sub-procedure). If the protocol Πlin is instantiated with log-size arguments, the overall lookup protocol’s proof
transcipt becomes logarithmic while slightly increasing the overall (concrete) cost (maintaining the same asymptotic): the

proving time is dominated by the split-and-fold procedure of the basis, which requires max(|f⃗ |, |⃗t|) scalar multiplication
and additions in G. The overall proof size for Πaes goes down to less than 3K as seen in Table 4.

Function evaluation via lookup. Let ϕ be a function with a short (polynomial in λ) table representation. Let

f⃗in, f⃗out ∈ Zn
p be vectors. A standard technique for proving correct function evaluation ϕ(f⃗in) = f⃗out is to use a lookup

protocol.18 To do so, the verifier sends a random challenge c and the prover, verifier engage in a lookup protocol for
f⃗ = f⃗in+cf⃗out inside t⃗ = [⃗a+c ·ϕ(⃗a)]a∈Dom(φ). This technique, which (to our knowledge) first appears in plookup [GW20],
is used in Section 5 to check the correct evaluation of the boolean functions composing AES.

17By “batch sumcheck” here we mean running the sumcheck protocol over the random linear combination of the sumcheck polynomials
associated to the inner-product claims as described in Appendix B.

18The notation above is imprecise. By ϕ(f⃗) we actually mean the element-wise application of the map ϕ.

32

Prover((f⃗ , ϕ, e⃗, ε, y, ψ), v⃗, F, E, Y) Verifier(v⃗, F, E, Y)

f⃗ (0) := f⃗ ; e⃗(0) := e⃗

e⃗ := v⃗ ◦ e⃗
Y0 := Y

for j = 1, . . . , logn :

n := n/2

aj :=
∑n

i f2ie2i

bj :=
∑n

i f2ie2i+1 + e2if2i+1

αj , βj ←$ Zp

Aj := ajG+ αjH

Bj := bjG+ βjH Aj , Bj

cj ←$ Zp

Yj := Aj + cjBj + c2j (Yj−1 −Aj) cj Yj := Aj + cjBj + c2j (Yj−1 −Aj)

f⃗ := [f2i + cj · f2i+1]
n
i

e⃗ := [e2i + cj · e2i+1]
n
i

ψ := αj + cjβj + c2j (ψ − αj)

after j = logn :

u1 := f0; u2 := e0

ψ1, ψ2 ←$ Zp;

U1 := u1G+ ψ1H

U2 := u2G+ ψ2H

c⃗ := ⊗j(1, cj) c⃗ := ⊗j(1, cj)U1, U2

Prover and Verifier:

Πlin : ((f⃗ (0), ϕ, u1, ψ1), c⃗, F, U1) ∈ Rlin

Transcript: πlin,f # show ⟨f⃗ ,⊗j(1, cj)⟩ = u1

Πlin : ((e⃗(0), ε, u2, ψ2), v⃗ ◦ c⃗, E, U2) ∈ Rlin

Transcript: πlin,e # show ⟨v⃗ ◦ e⃗,⊗j(1, cj)⟩ = u2

Πmul : ((u1, ψ, u2, ψ2, y, ψ), U1, U2, Ylogn) ∈ Rmul

Transcript: πmul # show u1u2 = y

Figure 6: The inner-product protocol Πtsp for showing that F,E, Y contain f⃗ , e⃗, y such that ⟨f⃗ , v⃗ ◦ e⃗⟩ = y. The protocol
uses a sumcheck argument with zero-knowledge obtained by committing to each round message. The protocol is used
during Πlup

Batching function evaluation. When proving correct function evaluation of ϕ1, ϕ2, . . . , ϕ2, the verifier can send
challenges ci for i = 1, . . . ,m, so that the prover can construct f⃗i and t⃗i as above using ci. Then, prover and verifier
engage in a single lookup for (f⃗1∥f⃗2∥ · · · ∥f⃗m) ⊂ (⃗t1, ∥t⃗2∥ · · · ∥t⃗m).

B An inner-product argument from Σ-protocols

We describe an inner-product proof Πtsp in Figure 6. The relation proven is actually a slight generalization of it, that allows
for a public “twist”in the inner-product relation. Informally, the protocol performs a multivariate sumcheck protocol (in
zero-knowledge) that reduces the inner-product claim to two tensorcheck claims [BCHO22], which are then proven using
the linear evaluation protocol Πlin. The literature presents a vast amount of inner-product protocols [BCC+16, BMM+21,
BBB+18, Eag22, DRZ20, BGH19], which we believe are all valid and can be adapted to accomodated for the public
“twist”. The particularity the one we describe is that it is tailored to rely solely on Σ-protocols and that, in terms of
concrete optimizations, uses the least number of group operations possible (cf. Appendix A.2). More formally, we provide
a protocol for the relation

Rtsp :=

{
((f⃗ , ψ, e⃗, ε, y, ψ), v⃗, F, E, Y) :

F =
∑n

i=1 fiGi + ϕH ∧ E =
∑n

i=1 eiGi + εH ∧ Y = yG+ ψH

y = ⟨f⃗ , v⃗ ◦ e⃗⟩

}
.

33

Sub-protocols. The protocol internally relies on two sub-protocols:

• Πlin, illustrated in Figure 7, for proving in zero-knowledge statements for the linear evaluation relation

Rlin :=
{
((f⃗ , ϕ, y, ψ), (F, e⃗, Y)) : F =

∑
i fiGi + ϕH ∧ Y = yG+ ψH ∧ ⟨f⃗ , e⃗⟩ = y

}
.

In the language of Maurer proofs [Mau09], the protocol proves knowledge of the opening of two Pedersen commitments
F, Y satisfying the linear relation[

F
Y

]
=

[
G1 · · · Gn H 0
e1G · · · enG 0 H

]
·
[
f1 · · · fn ϕ ψ

]t
Πlin be found in schoolbook literature Boneh–Shoup [BS20], but more recent works instantiate it with log-size proof
size, see e.g. the work of Gentry, Halevi, and Lyubashevsky [GHL22, Section E] and the work of Cramer and
Attema [AC20, Protocol 2].19

• Πmul, illustrated in Figure 8, for proving in zero-knowledge statements for the multiplication relation

Rmul :=

{
((a, α, b, β, y, ψ), A,B, Y) :

A = aG+ αH ∧ B = bG+ βH ∧ Y = yG+ ψH
y = ab

}
.

Πmul is found in the work of Maurer [Mau09, Sec. 6.7], and reformulated also afterwards e.g. by Damg̊ard et
al. [DLO+18], with a minor change to allow for knowledge soundness.The extractor of Maurer’s protocol, in fact,
only allows to extract one of the two multipliands (which is sufficient for proving the relation is sound). To prove that
Y commits to the product of the values committed to as A,B, the prover shows knowledge of a, α s.t. A = aG+αH
and that Y − aB is a commitment to zero. To extract an opening for Y and B, in Figure 8 we perform paralle AND
composition with representation proof for B.

The sumcheck protocol. Lund et al. [LFKN90] provide an interactive sumcheck protocol for proving Rtsp with
soundness error is O(log n/|F|); round complexity is O(log n); prover time O(n); and verifier time O(log n). It can be
made non-interactive with some loss in tightness by applying the Fiat-Shamir transform. After log n rounds of interaction
the verifier is convinced provided that

⟨f⃗ ,⊗j(1, cj)⟩ = u1

⟨e⃗,⊗j(1, cj)⟩ = u2
(17)

which can be proven using Πlin described in Figure 7.20 In this section we describe some background behind the knowledge-
sound protocol, before providing a zero-knowledge variant in Appendix B.

Consider two vectors f⃗ , e⃗ ∈ Fn with ⟨f⃗ , e⃗⟩ = y. Denote with pf the (monomial) multilinear encoding of f⃗

pf(X1, . . . , Xlogn) :=
∑

b⃗∈{0,1}log n

f∑log n
j=0 bj2j

Xb1
1 X

b2
2 · · ·X

blog n

logn (18)

In other words, the element in the (
∑

j 2
jbj)-th position in f⃗ is the coefficient of Xb1

1 · · ·X
blog n

logn in pf . Note that pf is of
degree at most one in each of Xi for i = 1, . . . , log n. Prior work remarked that:

Lemma 18 ([Tha13, XZZ+19, BCG20a]). Let f⃗ , e⃗ ∈ Fn be vectors of length n. Denote with pf, pe the polynomials

encoding f⃗ , e⃗ respectively. Then ∑
w∈{−1,1}log n

pf(w) · pe(w) · w1 · · ·wlogn = 2logn · ⟨f⃗ , e⃗⟩ (19)

One can use the sumcheck protocol for Equation (19). The sumcheck protocol is inductive and proceeds over log n
rounds. In the first round the prover sends the coefficients of degree-2 polynomials

P1(X) :=
∑

w⃗∈{−1,1}log n−1

p1,w⃗(w1, . . . , wlogn−1, X) · w1 · · ·wlogn−1X

19To use Protocol 2 from Cramer and Attema [AC20], one would prove that F +Y commits to a vector such whose inner-product with (e⃗,−1)
is zero. In order to properly extract the opening information of F, Y one would also have to send a representation proof of Y .

20As an example: ⊗2
j=0(1, cj) = (1, c0, c1, c1c0, c2, c2c0, c2c1, c2c1c0)

34

In the first round p1,w⃗ are the coefficients of the polynomial defined in Equation (18). The verifier checks that P1(1) +

P1(−1) = 2logn · ⟨f⃗ , e⃗⟩ is equal to the claimed sum. It then suffices to show that P1(X) is computed correctly. To do the
verifier sends a random challenge c1 ←$ F and is satisfied if

P1(c1) =
∑

w⃗∈{−1,1}log n−1

p1,w⃗(w1, . . . , wlogn−1, c1) · w1 · · ·wlogn−1c1

Rather than check this statement directly, the verifier proceeds with further rounds of interaction. More generally, denote

Pi(X) =
∑

w⃗∈{−1,1}log n−i

pi,w⃗(w1, . . . , wlogn−i, X, ci−1, . . . , c1) · w1 · · ·wlogn−iXci−1 · · · c1

where pi,w⃗ are the coefficients corresponding to the partial evaluation of pf in c⃗, i.e.: ppi,w⃗ = pf(w⃗, c⃗) · pe(w⃗, c⃗). At this
point, the verifier sends a random challenge ci ←$ F and the prover considers (recursively) the sumcheck claim∑

w⃗∈{−1,1}i−1

pi+1,w⃗(w1, . . . , wi−1, ci, . . . , clogn) = Pi(ci)

After log n rounds, the prover is left with two constant terms u1 := pf(c1, . . . , clogn), u2 := pe(c1, . . . , clogn) that are
sent to the verifier, which checks that u1 · u2 = Plogn(clogn). We are left with proving that u1, u2 are indeed correct, i.e.
with the so-called tensorcheck claim [BCHO22]

⟨f⃗ ,⊗j(1, cj)⟩ = u1

⟨e⃗,⊗j(1, cj)⟩ = u2
(20)

where
⟨f⃗ ,⊗j(1, cj)⟩ =

∑
b⃗∈{0,1}log n

f∑log n
j=0 bj2j

cb11 c
b2
2 · · · c

blog n

logn (21)

A zero-knowledge sumcheck. The protocol of Lund et al. [LFKN90] described in is an interactive protocol that by
itself does not achieve zero-knowledge. The prover leaks at a logarithmic number of linear evaluations of the witness. We
describe a zero-knowledge sumcheck argument for Rtsp in Figure 6 and prove security in Theorem 19 and Theorem 20.

To achieve zero-knowledge we employ a commitment scheme to commit each sumcheck message, leveraging the hiding
property. In order to preserve soundness, the prover must also prove knowledge of a valid opening for which sumcheck
verification holds in the final step of the protocol. Additionally, we extend the inner-product relation with a twist, to
prove that

y = ⟨f⃗ , v⃗ ◦ e⃗⟩

with respect to public v⃗ as opposed to just checking that y = ⟨f⃗ , e⃗⟩. This is done by incorporating v⃗ into the final check

⟨e⃗, v⃗ ◦ (⊗j(1, cj))⟩ = u2

B.1 Analysis

Theorem 19. Suppose that Πtsp is instantiated with knowledge-sound protocols Πlin and Πmul. Then Πtsp is knowledge-
sound if the discrete logarithm assumption is hard.

Proof. Consider an extractor Ext that behaves as follows.

• Run the extractor of Πlin on the proof for (⊗j(1, cj), F, U1) to extract some (f⃗ (0), ϕ, u1, ψ1) such that F =
∑
fiGi+ϕH

and U1 = u1G+ ψ1H and u1 = ⟨⊗j(1, cj), f⃗⟩.

• Run the extractor of Πlin on the proof for (v⃗ ◦ (⊗j(1, cj)), E, U2) to extract some (e⃗(0), ϵ, u2, ψ2) such that E =∑
eiGi + ϵH and U2 = u2G+ ψ2H and u2 = ⟨v⃗ ◦ ⊗j(1, cj), e⃗⟩.

• Run the extractor of Πmul on the proof for (U1, U2, Y) to extract some (u′1, ψ
′
1, u

′
2, ψ

′
2, y, ψ) such that U1 = u′1G+ψ′

1H,
U2 = u′2G+ ψ′

2H and Y = yG+ ψH.

35

• Runs the following extractor Ext∗ to get representations {(aj , bj , αj , βj , yj , γj)}logn
j=1 such that Aj = ajG+ αjH and

Bj = bjG+ βjH and Yj = yjG+ γjH .

Initially let Extlogn be the extractor that runs the extractor of Πmul to get (y, ψ) such that Ylogn = yG + ψH and
returns (∅, (y, ψ)).

Let Exti be an extractor that returns representations
(
{(aj , bj , αj , βj)}logn

j=i , (y, ψ)
)
. Then by running the adversary

3 times Exti−1 learns

Yi = Ai−1 + ci−1Bi−1 + c2i−1(Yi−1 −Ai−1)

Y ′
i = Ai−1 + c′i−1Bi−1 + (c′i−1)

2(Yi−1 −Ai−1)

Y ′′
i = Ai−1 + c′′i−1Bi−1 + (c′′i−1)

2(Yi−1 −Ai−1)

Then Exti−1 runs Exti with respect to Yi, Y
′
i , Y

′′
i and backwards solves to compute (yi, ψi, y

′
i, ψ

′
i, y

′′
i , ψ

′′
i) such that

yiG+ ψiH = Ai−1 + ci−1Bi−1 + c2i−1(Yi−1 −Ai−1)

y′iG+ ψ′
iH = Ai−1 + c′i−1Bi−1 + (c′i−1)

2(Yi−1 −Ai−1)

y′′i G+ ψ′′
i H = Ai−1 + c′′i−1Bi−1 + (c′′i−1)

2(Yi−1 −Ai−1)

Indeed, starting with ylogn = y we have that

for log n ≥ k ≥ i :

yk−1 =
1

ck−1
(yk + ck−1ak−1 − ak−1 − ck−1bk−1)

ψk−1 =
1

ck−1
(ψk + ck−1αk−1 − αk−1 − ck−1βk−1)

Then using Gaussian elimination Exti−1 computes (ai−1, bi−1, αi−1, βi−1). Thus Ext1 is considered the full extractor
that returns the full set of representations.

• Return (f⃗ , ϕ, e⃗, ε, y1, ψ1)

We must show that Ext returns a valid witness for the relation Rtsp.

H1 This game behaves identically to the original knowledge soundness game for Πtsp except that if the extractor of Πlin

for (⊗j(1, cj), F, U1) fails extract some (f⃗ (0), ϕ, u1, ψ1) with ((f⃗ (0), ϕ, u1, ψ1),⊗j(1, cj), F, U1) ∈ Πlin then the game
aborts. This game is indistinguishable by the knowledge soundness of Πlin.

H2 This game behaves identically to the previous except that if the extractor of Πlin for (v⃗ ◦ ⊗j(1, cj), E, U2) fails
extract some (e⃗(0), ϵ, u2, ψ2) with ((e⃗(0), ϵ, u2, ψ2), v⃗ ◦ (⊗j(1, cj)), E, U2) ∈ Πlin then the game aborts. This game is
indistinguishable by the knowledge soundness of Πlin.

H3 If the extractor of Πmul for (U1, U2, Y) fails extract some (u′1, ψ
′
1, u

′
2, ψ

′
2, y, ψ) with ((u′1, ψ

′
1, u

′
2, ψ

′
2, y, ψ), U1, U2, Y) ∈

Πmul then the game aborts. This game is indistinguishable by the knowledge soundness of Πmul.

H4 If (u′1, ψ
′
1) ̸= (u1, ψ1) or (u′2, ψ

′
2) ̸= (u2, ψ2) then the game aborts. This game is indistinguishable if the discrete

logarithm problem is hard. Indeed if this game aborts when the previous one doesn’t then

U1 = u1G+ ψ1H = u′1G+ ψ′
1H and U2 = u2G+ ψ2H = u′2G+ ψ′

2H

Hence a reduction that gets given then challenge discrete logarithm (G,H) can run the adversary A and then the
extractor of Πtsp to get (u′1, ψ

′
1, u1, ψ1, u

′
2, ψ

′
2, u2, ψ2). The reduction then returns either

x =
u1 − u′1
ψ′
1 − ψ1

or x =
u2 − u′2
ψ′
2 − ψ2

such that H = xG.

36

H5 This game aborts if Ext∗ fails. The extractor succeeds at Gaussian elimination provided that 1− c2i−1 ci−1 c2i−1

1− (c′i−1)
2 ci−1 (c′i−1)

2

1− (c′′i−1)
2 ci−1 (c′′i−1)

2


is invertible for 1 ≤ i ≤ log n. By the Schwartz-Zippel Lemma this is true in each round except with probability 8

|F| .

By the Forking Lemma [BCC+16] this extractor runs in polynomial time.

Finally one must argue that it is statistically unlikely that

⟨⊗j(1, cj), f⃗⟩⟨v⃗ ◦ (⊗j(1, cj)), e⃗⟩ = ylogn

unless y0 = ⟨f⃗ , v⃗ ◦ e⃗⟩. We proceed via induction.

First observe that for any vector d⃗, e⃗, v⃗

⟨v⃗ ◦ d⃗, e⃗⟩ =
∑
j

vjdjej = ⟨d⃗, v⃗ ◦ e⃗⟩

Thus it suffices to show that
⟨⊗j(1, cj), f⃗⟩⟨(⊗j(1, cj)), s⃗⟩ = ylogn ⇒ ⟨f⃗ , s⃗⟩ = y

for s⃗ = v⃗ ◦ e⃗.

Base case. The alogn, blogn, ylogn satisfy

alogn + blognX + (ylogn − alogn)X
2

= ⟨⊗logn−1
j=1 (1, cj), (f0,γ)γ∈{0,1}log n−1⟩⟨⊗logn−1

j=1 (1, cj), (s0,γ)γ∈{0,1}log n−1⟩+ blognX

+X2
∑

β∈{0,1}log(n)−1

⟨⊗i−1
j=1(1, cj), (f1,γ)γ∈{0,1}log n−1⟩⟨⊗logn−1

j=1 (1, cj), (s1,γ)γ∈{0,1}log n−1⟩

except with negligible probability.

Base case proof. Where the verifier is satisfied we have that for i = log n

alogn + blognclogn + (ylogn − alogn)c
2
logn = ⟨⊗logn

j=1 (1, cj), (fγ)γ∈{0,1}log n⟩⟨⊗logn
j=1 (1, cj), (sγ)γ∈{0,1}log n⟩

which we can rearrange to equal

=⟨⊗logn−1
j=1 (1, cj), (f0,γ)γ∈{0,1}log n−1⟩⟨⊗logn−1

j=1 (1, cj), (s0,γ)γ∈{0,1}log n−1⟩+ dlognclogn

+ c2logn⟨⊗
logn−1
j=1 (1, cj), (f1,γ)γ∈{0,1}log n−1⟩⟨⊗logn−1

j=1 (1, cj), (s1,γ)γ∈{0,1}log n−1⟩

Here dlogn is independent from clogn. Where alogn, blogn, ylogn are independent from clogn, the probability of this occur-
ring is 2

p unless the base claim holds.

Induction claim. Suppose for i ∈ [1, log n] we have that ai + bici + (yi−1 − ai)c2i = yi for ci sampled only after ai, bi
are determined. The probability that ai, bi, yi−1 satisfy

ai + biX + (yi−1 − ai)X2 =
∑

β∈{0,1}log(n)−i

⟨⊗i−1
j=1(1, cj), (fβ,0,γ)γ∈{0,1}i−1⟩⟨⊗i−1

j=1(1, cj), (sβ,0,γ)γ∈{0,1}i−1⟩+ biX

+X2
∑

β∈{0,1}log(n)−i

⟨⊗i−1
j=1(1, cj), (fβ,1,γ)γ∈{0,1}i−1⟩⟨⊗i−1

j=1(1, cj), (sβ,1,γ)γ∈{0,1}i−1⟩ (22)

is negligible unless ai−1, bi−1, yi−2 also satisfy.

ai−1 + bi−1X + (yi−2 − ai−1)X
2

=
∑

β∈{0,1}log(n)−(i−1)

⟨⊗i−2
j=1(1, cj), (fβ,0,γ)γ∈{0,1}i−2⟩⟨⊗i−2

j=1(1, cj), (sβ,0,γ)γ∈{0,1}i−2⟩+ bi−1X

+X2
∑

β∈{0,1}log(n)−(i−1)

⟨⊗i−2
j=1(1, cj), (fβ,1,γ)γ∈{0,1}i−2⟩⟨⊗i−2

j=1(1, cj), (sβ,1,γ)γ∈{0,1}i−2⟩

37

Induction claim proof. If Equation (22) holds then

ai =
∑

β∈{0,1}log(n)−i

⟨⊗i
j=1(1, cj), (fβ,0,γ)γ∈{0,1}i−1⟩⟨⊗i

j=1(1, cj), (sβ,0,γ)γ∈{0,1}i−1⟩

and hence

yi−1 =
∑

β∈{0,1}log(n)−i

⟨⊗i
j=1(1, cj), (fβ,0,γ)γ∈{0,1}i−1⟩⟨⊗i

j=1(1, cj), (sβ,0,γ)γ∈{0,1}i−1⟩

+
∑

β∈{0,1}log(n)−i

⟨⊗i
j=1(1, cj), (fβ,1,γ)γ∈{0,1}i−1⟩⟨⊗i

j=1(1, cj), (sβ,1,γ)γ∈{0,1}i−1⟩

=
∑

β∈{0,1}log(n)−(i−1)

⟨⊗i
j=1(1, cj), (fβ,γ)γ∈{0,1}i−1⟩⟨⊗i

j=1(1, cj), (sβ,γ)γ∈{0,1}i−1⟩

Now we can rewrite this expression for yi−1 as

yi−1 =
∑

β∈{0,1}log(n)−(i−1)

⟨⊗i−1
j=1(1, cj), (fβ,0,γ)γ∈{0,1}i−2⟩⟨⊗i−1

j=1(1, cj), (sβ,0,γ)γ∈{0,1}i−2⟩

+ cidi−1 + c2i
∑

β∈{0,1}log(n)−(i−1)

⟨⊗i−1
j=1(1, cj), (fβ,1,γ)γ∈{0,1}i−2⟩⟨⊗i−1

j=1(1, cj), (sβ,1,γ)γ∈{0,1}i−2⟩

where di−1 is some value not depending on ci. Hence

ai−1 + bi−1ci + (yi−2 − ai−1)(ci)
2

=
∑

β∈{0,1}log(n)−(i−1)

⟨⊗i−1
j=1(1, cj), (fβ,0,γ)γ∈{0,1}i−2⟩⟨⊗i−1

j=1(1, cj), (sβ,0,γ)γ∈{0,1}i−2⟩

+ cidi−1 + c2i
∑

β∈{0,1}log(n)−(i−1)

⟨⊗i−1
j=1(1, cj), (fβ,1,γ)γ∈{0,1}i−2⟩⟨⊗i−1

j=1(1, cj), (sβ,1,γ)γ∈{0,1}i−2⟩

The probability of this occurring for ci sampled at random is 2
p unless the induction claim holds.

Summary Putting everything together, we see that except with negligible probability

y = y0 =
∑

β∈{0,1}log(n)−1

fβsβ =
∑

β∈{0,1}log(n)−1

vβfβeβ

as required.

Theorem 20. Suppose Πtsp from Figure 5 is instantiated with honest-verifier zero-knowledge Πlin and Πmul protocols for
the relations Rlin and Rmul respectively. Then Πtsp is honest-verifier zero-knowledge.

Proof. Consider the simulator that behaves as follows

1. Take as input (v⃗, F, E, Y).

2. For j ∈ [1, log n] sample Aj , Bj ←$ G and cj ←$ Zp.

3. Set Y0 = Y . For j ∈ [1, log n] set Yj+1 = Aj + cjBj + c2j (Yj−1 −Aj)

4. For the final round messages

(a) Set c⃗ = ⊗j(1, cj)

(b) Choose U1, U2 ←$ G randomly

(c) Compute πlin,hf ← Πlin.Sim(c⃗, F, U1)

(d) Compute πlin,e ← Πlin.Sim(c⃗, E, U2)

(e) Compute πmul ← Πmul.Sim(U1, U2, Ylogn)

38

Prover(f⃗ , ϕ, y, ψ), F, e⃗, Y) Verifier(F, e⃗, Y)

k⃗ ←$ Zn
p

κ1, κ2 ←$ Zp

s := ⟨e⃗, k⃗⟩
K1 :=

∑
i kiGi + κ1H

K2 := sG+ κ2H K1,K2

c←$ Zpc

z⃗ := k⃗ + cf⃗

ζ1 := κ1 + cϕ

ζ2 := κ2 + cψ z⃗, ζ1, ζ2

t := ⟨e⃗, z⃗⟩∑
i ziGi + ζ1H

?
= K1 + cF

tG+ ζ2H
?
= K2 + cY

Figure 7: Protocol Πlin for proving linear eval.: knowledge of f⃗ , y (committed in F, Y) such that ⟨f⃗ , e⃗⟩ = y. The protocol
is used both during Πlup and during Πtsp.

5. Return the transcript
(v⃗, F, E, Y), {(Aj , Bj), cj}logn

j=1 , (U1, U2, πlin,f, πlin,e, πmul)

We argue that this simulated transcript is indistinguishable a transcript produced by an honest prover and verifier in the
zero-knowledge game via a series of Hybrids.

H1 This game behaves identically to the original zero-knowledge game for Πlup except that when the honest prover is
run, the proof πlin,f is computed as πlin,f ← Πlin.Sim(c⃗, F, U1). Since the honest prover knows a witness for c⃗, F, U1, we
can build a reduction against the zero-knowledge of Πlin should this change be distinguishable.

H2 The proof πlin,e is computed as πlin,q ← Πlin.Sim(c⃗, E, U2). Since the honest prover knows a witness for (c⃗, E, U2), we
can build a reduction against the zero-knowledge of Πlin should this change be distinguishable.

H3 The proof πmul is computed as πmul ← Πmul.Sim(U1, U2, Ylogn). Since the honest prover knows a witness for (U1, U2, Ylogn),
we can build a reduction against the zero-knowledge of Πtsp should this change be distinguishable.

We now see that the final hybrid is statistically impossible. Indeed, the only proof elements that are non-identical are
(Aj , Bj)

logn
j=1 , U1 and U2. However these elements are computed uniformly at random both by the honest prover (due to

the blinders αj , βj , ψ1, ψ2) and the simulator.

Informally the protocol behaves as follows. First the prover chooses random R = rG + ρH used to mask A, and
S = sG+σH used to mask B, and T = −rbG+ τH where r is the same value as in R and where b is the value committed
in B. It sends these values to the verifier receiving back random c as a response.

Then the prover sends u = r + ca and µ = ρ + cα. The verifier checks correctness i.e. that R + cA = (rG + ρH) +
c(aG+αH) = uG+ µH, thus convincing itself that u = r+ ca. The prover proves knowledge of the discrete logarithm of
B with S = sG+ σH, v = s+ cb, and ν = σ + cβ.

The prover also sends ω = uβ + τ − cψ and the verifier checks that

uB + T − cY = u(bG+ βH) + (−rbG+ τH)− c(yG+ ψH) = (ub− rb− cy)G+ (uβ + τ − cψ) ?
= ωH

thus getting convinced that (ub− rb− cy) = 0. Substituting u = r + ca we see

(r + ca)b− rb− cy = c(ab− y) = 0

as required. Note that if the prover chooses T ̸= −rbG + τH then with high probability verification will not pass for
random c.

39

Prover((a, α, b, β, y, ψ), A,B, Y) Verifier(A,B, Y)

r, s, ρ, σ, τ ←$ Zp

R := rG+ ρH

S := sG+ σH

T := −rbG+ τH R, S, T

c←$ Zpc

u := r + ca

v := s+ cb

µ := ρ+ cα

ν := σ + cβ

ω := uβ + τ − cψ u, v, µ, ν, ω

R+ cA
?
= uG+ µH

S + cB
?
= vG+ νH

uB + T − cY ?
= ωH

Figure 8: The zero-knowledge protocol Πmul for proving that A = aG+αH, B = bG+βH, Y = abG+ψH. This protocol
is used during Πtsp.

C AES witness generation

C.1 Key schedule

Rijndael is a block cipher that operates on a fixed block that we denote st and a key size of ksz over a number of rounds
rnds. Key expansion is given as input the key k ∈ {0, 1}ksz and outputs the rounds keys rk0, . . . , rkrnds ∈ (F8

2)
16.

In AES we have that key sizes have either 128, 192 or 256 bits: ksz ∈ {128, 192, 256} and k ∈ {0, 1}ksz. For simplicity,
in this description we shall assume a key size of ksz = 128 bits. The number of rounds is either 10, 12, or 14: rnds ∈
{10, 12, 14}. We split the trace into bytes. In our implementation these bytes are further reduced into two 4 bit segments.
These segments always appear together thus we here ignore this detail.

Format of the key expansion trace. The key scheduling execution trace contains 2 intermediary states over all
rounds rnds.

⃗keytr =
(
1, ⃗ksch0,0, ⃗ksch0,1, . . . , ⃗kschrnds,0, ⃗kschrnds,1

)
The 16 byte rounds keys are determined by rki = ⃗kschi,0. The states ⃗kschi,1 contain auxiliary information useful for

checking the correctness of the expansion algorithm. Each intermediary state ⃗kschi,j contains 16 bytes arranged in a 4x4
grid of bytes

⃗kschi,j =


⃗kschi,j,0,0 ⃗kschi,j,0,1 ⃗kschi,j,0,2 ⃗kschi,j,0,3
⃗kschi,j,1,0 ⃗kschi,j,1,1 ⃗kschi,j,1,2 ⃗kschi,j,1,3
⃗kschi,j,2,0 ⃗kschi,j,2,1 ⃗kschi,j,2,2 ⃗kschi,j,2,3
⃗kschi,j,3,0 ⃗kschi,j,3,1 ⃗kschi,j,3,2 ⃗kschi,j,3,3


where ⃗kschi,j,k,ℓ ∈ {0, 1}8. We can interpret ⃗kschi,j,k,ℓ ∈ F8

2 because {0, 1}8 and F8
2 are bijective.

The key expansion protocol. The key schedule is generated over 32 bit words with

kwordi,j,ℓ = (⃗kschi,j,0,ℓ ∥ ⃗kschi,j,1,ℓ ∥ ⃗kschi,j,2,ℓ ∥ ⃗kschi,j,3,ℓ)

Then we have that

• ⃗ksch0,0,k,ℓ = k4k+ℓ. Namely the first ksz bits of the keys are copied in the key schedule state. We do not have to

prove this equality, we simply define the k to be the concatenation of ⃗ksch0,0,k,ℓ.

40

• kwordi,0,0 = kwordi−1,0,0 ⊕ sbox(RotWord(kwordi−1,0,3))⊕ rconi if i ≥ 1

• kwordi,0,ℓ = kwordi−1,0,ℓ ⊕ kwordi,0,ℓ−1 if i ≥ 1 and ℓ ̸= 0.

Here RotWord([b0, b1, b2, b3]) = [b1, b2, b3, b0] is a one byte left circular shift. The constant words rconi are known to the
verifier.

We can directly lookup whether kwordi,0,ℓ = kwordi−1,0,ℓ ⊕ kwordi,0,ℓ−1. However, checking whether kwordi,0,0 =
kwordi−1,0,0 ⊕ sbox(RotWord(kwordi−1,0,3))⊕ rconi requires multiple steps. The prover thus sets

• kwordi,1,0 = sbox(RotWord(kwordi−1,0,3))

• kwordi,1,1 = kwordi,1,0 ⊕ rconi

• kwordi,0,0 = kwordi−1,0,0 ⊕ kwordi,1,1 if i > 0.

The ⃗kschi,j,k,ℓ are chosen such that the key words kwordi,ℓ satisfy the above constraints. We are now ready to define our
selection matrices for the key expansion algorithm.

Selection matrices for key expansion. To generate the Sxor,O, Sxor,L, and Sxor,R matrices do the following.

• Initialise n = 0

• For 1 ≤ i ≤ rnds, 0 ≤ k < 4, 1 ≤ ℓ < 4 then:

– Sxor,O[n, 1 + 32i+ 4k + ℓ] = 1; Sxor,L[n, 1 + 32(i− 1) + 4k + ℓ] = 1; Sxor,R[n, 1 + 32i+ 4k + (ℓ− 1)] = 1;

– Increment n = n+ 1. # To show kwordi,0,ℓ = kwordi−1,0,ℓ ⊕ kwordi,0,ℓ−1 for i ≥ 1 and ℓ ̸= 0

• For 1 ≤ i ≤ rnds, 0 ≤ k < 4 then:

– Sxor,O[n, 1 + 32i+ 16 + 4k + 1] = 1; Sxor,L[n, 1 + 32i+ 16 + 4k] = 1; Sxor,R[n, 1] = rconi;

– Increment n = n+ 1. # To show kwordi,1,1 = kwordi,1,0 ⊕ rconi

• For 1 ≤ i ≤ rnds, 0 ≤ k < 4 then:

– Sxor,O[n, 1 + 32i+ 4k] = 1; Sxor,L[n, 1 + 32(i− 1) + 4k] = 1; Sxor,R[n, 1 + 32i+ 16 + 4k + 1] = rconi;

– Increment n = n+ 1. # To show kwordi,0,0 = kwordi−1,0,0 ⊕ kwordi,1,1 if i > 0

• Set all other entries to 0

To generate the Ssbox,O, Ssbox,I matrices do the following.

• Initialise n = 0

• For 0 ≤ i ≤ rnds, 0 ≤ k < 4, 1 ≤ ℓ < 4 then:

– Ssbox,O[n, 1 + 32i+ 16 + 4k′] = 1 for k′ = (k + 1) mod 4;

– Ssbox,I[n, 1 + 32(i− 1) + 4k′ + ℓ] = 1 for k′ = (k + 1) mod 4;

– Increment n = n+ 1. # To show kwordi,1,0 = sbox(RotWord(kwordi−1,0,3))

• Set all other entries to 0

C.2 Cipher

The AES cipher is given as input the 128 bit rounds keys rk0, . . . , rkrnds ∈ (F8
2)

16 and a 128 bit message m⃗. The cipher
outputs a ciphertext ctx. Similar to the key expansion, blocks have 128 bits: st ∈ {0, 1}128 and we split the trace into
bytes. Additionally rnds ∈ {10, 12, 14}. In our implementation these bytes are further reduced into two 4 bit segments.
These segments always appear together thus we here ignore this detail.

41

Format of the cipher trace. The AES execution trace contains 8 intermediary states over all rounds rnds. This has
some redundancy and unused states are set to 0.

t⃗r = (1, st0,0, . . . , st0,7, . . . , strnds,0, . . . , strnds,7)

Each intermediary state sti,j of t⃗r contains 16 bytes arranged in a 4x4 grid of bytes

sti,j =


sti,j,0,0 sti,j,0,1 sti,j,0,2 sti,j,0,3
sti,j,1,0 sti,j,1,1 sti,j,1,2 sti,j,1,3
sti,j,2,0 sti,j,2,1 sti,j,2,2 sti,j,2,3
sti,j,3,0 sti,j,3,1 sti,j,3,2 sti,j,3,3


where sti,j,k,ℓ ∈ {0, 1}8. We can interpret sti,j,k,ℓ ∈ F8

2 because {0, 1}8 and F8
2 are bijective.

We set that sti,7 = rki.

The cipher protocol. The cipher works as follows for rnds is the number of rounds:

• Initial round (i = 0),

– AddRoundKey: add the first round key to the state, i.e. we set st1,0 = st0,0 ⊕ rk0 = st0,0 ⊕ st0,7

• Middle rounds (i ∈ {1, . . . , rnds−1})

– SubBytes: applies the S-Box operation to each byte of the state, i.e. we set sti,1 := sbox(sti,0)

– ShiftRows: permutes the state, by performing a cyclic rotation of the state sti,1. Define by σ : F4×F4 7→ F4×F4

the permutation 
σ(0, 0) σ(0, 1) σ(0, 2) σ(0, 3)
σ(1, 0) σ(1, 1) σ(1, 2) σ(1, 3)
σ(2, 0) σ(2, 1) σ(2, 2) σ(2, 3)
σ(3, 0) σ(3, 1) σ(3, 2) σ(3, 3)

 =


(0, 0) (0, 1) (0, 2) (0, 3)
(1, 1) (1, 2) (1, 3) (1, 0)
(2, 2) (2, 3) (2, 0) (2, 1)
(3, 3) (3, 0) (3, 1) (3, 2)


Then ShiftRows(sti,j) maps each sti,j,k,ℓ to sti,j,σ(k,ℓ). Rather than append a state to the transcript at this
stage in the computation we instead an application of ShiftRows inside the next operations. This is because we
are only permute the state and do not perform any operations.

– MixColumns: performs a linear transformation on the state. Specifically MixColumns applies the matrix
2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


to each column of the state over the Galois field. We can represent this transform using rj2 and ⊕ operations
(that are compatible with lookup tables) as follows.

∗ sti,2 = rj2(ShiftRows(sti,1))

∗ for k ∈ [0, 3)

· sti,3,k,0 = sti,1,σ(k,1) ⊕ sti,1,σ(k,2) ⊕ sti,1,σ(k,3) ⊕ sti,2,k,0 ⊕ sti,2,k,1

· sti,3,k,1 = sti,1,σ(k,0) ⊕ sti,1,σ(k,2) ⊕ sti,1,σ(k,3) ⊕ sti,2,k,1 ⊕ sti,2,k,2

· sti,3,k,2 = sti,1,σ(k,0) ⊕ sti,1,σ(k,1) ⊕ sti,1,σ(k,3) ⊕ sti,2,k,2 ⊕ sti,2,k,3

· sti,3,k,3 = sti,1,σ(k,0) ⊕ sti,1,σ(k,1) ⊕ sti,1,σ(k,2) ⊕ sti,2,k,0 ⊕ sti,2,k,3

– AddRoundKey: adds the current round key to the state, i.e. sti+1,0 := sti,3 ⊕ rki = sti,3 ⊕ sti,7

• Final round (i = rnds);

– SubBytes: applies the S-Box operation to each byte of the state, i.e. we set strnds,1 = sbox(strnds,0)

– ctx = strnds,2 = ShiftRows(strnds,1)⊕ strnds,7

42

We can directly many of these operations with our lookup tables. However, checking whether sti,3,k,ℓ has been computed
in MixColumns requires multiple steps. The prover thus sets for k ∈ [0, 3)

sti,4,k,0 = sti,1,σ(k,0) ⊕ sti,1,σ(k,1) sti,5,k,0 = sti,1,σ(k,3) ⊕ sti,4,k,0 sti,6,k,0 = sti,5,k,0 ⊕ sti,2,k,2

sti,4,k,1 = sti,1,σ(k,2) ⊕ sti,1,σ(k,3) sti,5,k,1 = sti,1,σ(k,2) ⊕ sti,4,k,0 sti,6,k,1 = sti,5,k,1 ⊕ sti,2,k,3

sti,4,k,2 = sti,1,σ(k,1) ⊕ sti,4,k,0 sti,5,k,2 = sti,4,k,2 ⊕ sti,2,k,0

sti,4,k,3 = sti,1,σ(k,0) ⊕ sti,4,k,1 sti,5,k,3 = sti,4,k,3 ⊕ sti,2,k,1

such that

sti,3,k,0 = sti,5,k,2 ⊕ sti,2,k,1 sti,3,k,1 = sti,5,k,3 ⊕ sti,2,k,2

sti,3,k,2 = sti,6,k,0 ⊕ sti,2,k,3 sti,3,k,3 = sti,6,k,1 ⊕ sti,2,k,3

The sti,j,k,ℓ are chosen such that the key words sti,ℓ satisfy the above constraints. We are now ready to define our selection
matrices for the cipher algorithm.

Selection matrices for the cipher. The concrete details of our selection matrices Sxor,O, Sxor,L, Sxor,R, Ssbox,I, Ssbox,O,
Srj2,O, Srj2,I are mechanical deferred to Appendix D. The general idea is that whenever, e.g.,

stiO,jO,kO,ℓO = stiL,jL,kL,ℓL ⊕ stiR,jR,kR,ℓR

then a new row is added to Sxor,O, Sxor,L, Sxor,R. In this new row, indexed n, all entries are 0 apart from

Sxor,O[n, 1 + 128iO + 16jO + 4kO + ℓO] = 1

Sxor,L[n, 1 + 128iL + 16jL + 4kL + ℓL] = 1

Sxor,R[n, 1 + 128iR + 16jR + 4kR + ℓR] = 1

D Selection Matrices for AES key expansion and cipher

To generate the Sxor,O, Sxor,L, and Sxor,R matrices do the following.

• Initialise n = 0

• For i = 0, k, ℓ ∈ [0, 4) then:

– Sxor,O[n, 1 + 128 + 4k + ℓ] = 1; Sxor,L[n, 1 + 4k + ℓ] = 1; Sxor,R[n, 1 + 16 · 7 + 4k + ℓ] = 1

– Increment n = n+ 1. # To show st1,0 = st0,0 ⊕ st0,7

• For i ∈ [1, rnds), k, ℓ ∈ [0, 4) then:

– Sxor,O[n, 1+128(i+1)+4k+ ℓ] = 1; Sxor,L[n, 1+128i+16 ·3+4k+ ℓ] = 1; Sxor,R[n, 1+128i+16 ·7+4k+ ℓ] = 1

– Increment n = n+ 1. # To show sti+1,0 := sti,3 ⊕ rki = sti,3 ⊕ sti,7

• For i ∈ [1, rnds), k ∈ [0, 4) the following entries are set to 1. Let η(k, ℓ) : F4 × F4 7→ F4 × F4 be the operation that
applies (k′, ℓ′) = σ(k, ℓ) and returns 4k′+ ℓ′. Here σ is the permutation defined by ShiftRows. After each assignment

43

of Sxor,O, Sxor,L and Sxor,R we increment n = n+ 1:

Sxor,O[n, 1 + 128i+ 16 · 4 + 4k + 0] Sxor,L[n, 1 + 128i+ 16 · 1 + η(k, 0)] Sxor,R[n, 1 + 128i+ 16 · 1 + η(k, 1)]

Sxor,O[n, 1 + 128i+ 16 · 4 + 4k + 1] Sxor,L[n, 1 + 128i+ 16 · 1 + η(k, 2)] Sxor,R[n, 1 + 128i+ 16 · 1 + η(k, 3)]

Sxor,O[n, 1 + 128i+ 16 · 4 + 4k + 2] Sxor,L[n, 1 + 128i+ 16 · 1 + η(k, 1)] Sxor,R[n, 1 + 128i+ 16 · 4 + 4k + 0]

Sxor,O[n, 1 + 128i+ 16 · 4 + 4k + 3] Sxor,L[n, 1 + 128i+ 16 · 1 + η(k, 0)] Sxor,R[n, 1 + 128i+ 16 · 4 + 4k + 1]

Sxor,O[n, 1 + 128i+ 16 · 5 + 4k + 0] Sxor,L[n, 1 + 128i+ 16 · 1 + η(k, 3)] Sxor,R[n, 1 + 128i+ 16 · 4 + 4k + 0]

Sxor,O[n, 1 + 128i+ 16 · 5 + 4k + 1] Sxor,L[n, 1 + 128i+ 16 · 1 + η(k, 2)] Sxor,R[n, 1 + 128i+ 16 · 4 + 4k + 0]

Sxor,O[n, 1 + 128i+ 16 · 5 + 4k + 2] Sxor,L[n, 1 + 128i+ 16 · 4 + 4k + 2] Sxor,R[n, 1 + 128i+ 16 · 2 + 4k + 0]

Sxor,O[n, 1 + 128i+ 16 · 5 + 4k + 3] Sxor,L[n, 1 + 128i+ 16 · 4 + 4k + 3] Sxor,R[n, 1 + 128i+ 16 · 2 + 4k + 1]

Sxor,O[n, 1 + 128i+ 16 · 6 + 4k + 0] Sxor,L[n, 1 + 128i+ 16 · 5 + 4k + 0] Sxor,R[n, 1 + 128i+ 16 · 2 + 4k + 2]

Sxor,O[n, 1 + 128i+ 16 · 6 + 4k + 1] Sxor,L[n, 1 + 128i+ 16 · 5 + 4k + 1] Sxor,R[n, 1 + 128i+ 16 · 2 + 4k + 3]

Sxor,O[n, 1 + 128i+ 16 · 3 + 4k + 0] Sxor,L[n, 1 + 128i+ 16 · 5 + 4k + 2] Sxor,R[n, 1 + 128i+ 16 · 2 + 4k + 1]

Sxor,O[n, 1 + 128i+ 16 · 3 + 4k + 1] Sxor,L[n, 1 + 128i+ 16 · 5 + 4k + 3] Sxor,R[n, 1 + 128i+ 16 · 2 + 4k + 2]

Sxor,O[n, 1 + 128i+ 16 · 3 + 4k + 2] Sxor,L[n, 1 + 128i+ 16 · 6 + 4k + 0] Sxor,R[n, 1 + 128i+ 16 · 2 + 4k + 3]

Sxor,O[n, 1 + 128i+ 16 · 3 + 4k + 3] Sxor,L[n, 1 + 128i+ 16 · 6 + 4k + 1] Sxor,R[n, 1 + 128i+ 16 · 2 + 4k + 3]

To show the Mix Columns ⊕ operations

• For i = rnds, k, ℓ ∈ [0, 4) then:

– Sxor,O[n, 1 + 128rnds+ 16 · 2 + 4k + ℓ] = 1; Sxor,L[n, 1 + 128rnds+ 16 · 1 + 4k + ℓ′] = 1; Sxor,R[n, 1 + 128rnds+
16 · 7 + 4k + ℓ] = 1 where ℓ′ = (ℓ+ k) mod 4.

– Increment n = n+ 1. # To show strnds,2 = ShiftRows(strnds,1)⊕ strnds,7

• Set all other entries to 0

To generate the Ssbox,O, Ssbox,I matrices do the following.

• Initialise n = 0

• For i ∈ [1, rnds], k, ℓ ∈ [0, 4) then:

– Ssbox,O[n, 1 + 128i+ 16 · 1 + 4k + ℓ] = 1; Ssbox,I[n, 1 + 128i+ 16 · 0 + 4k + ℓ] = 1

– Increment n = n+ 1. # To show sti,1 = sbox(sti,0)

• Set all other entries to 0

To generate the Srj2,O, Srj2,I matrices do the following.

• Initialise n = 0

• For i ∈ [1, rnds], k, ℓ ∈ [0, 4) then:

– Srj2,O[n, 1 + 128i+ 16 · 2 + 4k + ℓ] = 1; Srj2,I[n, 1 + 128i+ 16 · 1 + 4k + ℓ′] = 1 where ℓ′ = (ℓ+ k) mod 4

– Increment n = n+ 1. # To show sti,1 = sbox(sti,0)

• Set all other entries to 0

44

	Introduction
	Our contributions
	Applications
	Related work

	Preliminaries
	General discrete logarithm equality
	Analysis
	Soundness
	Zero-knowledge
	Equality of simple discrete logarithms

	Efficiency

	Trading group operations for hash evaluations
	Analysis
	Soundness
	Zero-knowledge

	Efficiency

	Rijndael via one lookup
	Analysis
	Efficiency

	Acknowledgements
	A simple lookup for small tables
	Analysis
	Efficiency

	An inner-product argument from -protocols
	Analysis

	AES witness generation
	Key schedule
	Cipher

	Selection Matrices for AES key expansion and cipher

