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Abstract—In recent years, decentralized computing has gained
popularity in various domains such as decentralized learning,
financial services and the Industrial Internet of Things. As
identity privacy becomes increasingly important in the era of
big data, safeguarding user identity privacy while ensuring
the security of decentralized computing systems has become
a critical challenge. To address this issue, we propose ADC
(Anonymous Decentralized Computing) to achieve anonymity in
decentralized computing. In ADC, the entire network of users
can vote to trace and revoke malicious nodes. Furthermore, ADC
possesses excellent Sybil-resistance and Byzantine fault tolerance,
enhancing the security of the system and increasing user trust in
the decentralized computing system. To decentralize the system,
we propose a practical blockchain-based decentralized group
signature scheme called Group Contract. We construct the entire
decentralized system based on Group Contract, which does not
require the participation of a trusted authority to guarantee
the above functions. Finally, we conduct rigorous privacy and
security analysis and performance evaluation to demonstrate the
security and practicality of ADC for decentralized computing
with only a minor additional time overhead.

Index Terms—Anonymity, decentralized computing, Byzantine
resilience, privacy-preserving smart contract.

I. INTRODUCTION

With the continuous development of information technol-
ogy, decentralized computing is gaining increasing attention as
an innovative computing paradigm. It is built on the core prin-
ciples of distribution, sharing, and autonomy, aiming to break
free from the centralized control found in traditional com-
puting models. However, nodes participating in decentralized
computing may cause problems if node identity is revealed.
For example, if a competitor knows that we are participating in
decentralized computing, they might attempt to interfere with
it, blocking decentralized computing from working properly,
reducing the effect of computing and attempting to access our
private data. Thus, protecting the identity privacy of nodes in
decentralized computing is an issue that we must take into
consideration.

To be specific, one of the initial solutions we considered
is using virtual identities, such as public key in Bitcoin, to
mask real identities. However, this approach is vulnerable
to social engineering attacks [2], where attackers can extract
clues and information about a user’s real identity by analyzing
the correlations between the user’s virtual identity and the

compute instance they have participated in (shown in Fig. 1).
LearningChain [3] protects identity privacy by changing vir-
tual identities each time a user participates in a new computing
process, or even within different iterations of the same process.
Nevertheless, the application of this anonymous scheme will
result in the lack of user management, making it impossible
to block malicious users from entering the system and trace
their activities. Due to the provision of anonymity, it is natural
to lose the ability to judge user identity. Therefore, we can
see that, like LearningChain, most anonymous schemes face
conflicts between their anonymity and the blocking and tracing
of malicious users. However, for most decentralized computing
systems, the absence of preventive and control measures
against malicious users can lead to significant security issues.
For instance, in some cases of decentralized computing, only a
limited number of male users can be tolerated, as implemented
by SPDL [4], which allows for a maximum of 33% malicious
users. Under this premise, the system should have the ability
to distinguish malicious users, such as implementing identity
authentication for users. Additionally, it should be able to trace
and revoke malicious users when they engage in wrongdoing.
Simultaneously, to ensure that the number of malicious users
does not exceed this fault tolerance limit, the system should
resist Sybil attacks [5], preventing malicious users from creat-
ing a multitude of Byzantine nodes that surpass this limit and
rendering the system ineffective. Some solutions make some
compromises to address the above issues, such as introducing
trusted authority. For example, DAFL [6] is an anonymous
scheme for decentralized computing that achieves traceability,
but requires trusted authority to trace the real identities of
malicious users. Similarly, Biscotti [7] protects against Sybil
attacks, but also needs trusted authority to facilitate and guide
the computing process. While the approach of introducing
trusted authority can solve these issues, in many cases, we
prefer peer-to-peer users to complete decentralized computing
without relying on a trusted authority. In summary, concerning
the current anonymous works, what we observe is that they
either require the support of a trusted authority or are unable
to guarantee the traceability and blocking of malicious users.

For the challenges outlined above, it is evident that we need
a reliable, anonymous, and traceable authentication scheme
for decentralized scenarios. When considering traceability and
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Decentralized Computing ADC

Alice participates in decentralized 
computing related to hospital

ADC has unknown users Alice has account
Some unknown users participate in 
decentralized computing related to hospital

Alice participates in decentralized 
computing related to New York

Some unknown users participate in 
decentralized computing related to New York

Based on the above 
information, it can be 
inferred that Alice is a 
hospital in New York

Fig. 1: Comparison Between Decentralized Computing and
ADC

anonymity, group signature technology [22] naturally comes
to mind. Nevertheless, group signatures necessitate a group
manager, which does not align with the requirements of de-
centralization. DGSS [26] and DDGSS [27] are decentralized
group signature schemes that distribute the permissions of the
group manager to other nodes, allowing them to collectively
perform the functions of the group manager. However, both
schemes suffer from a Single Point of Failure (SPOF), mean-
ing that if one of the nodes fails, the corresponding functions
cannot be achieved. This is unacceptable, especially in systems
with a large number of nodes like blockchain, where it is
not guaranteed that every node will be error-free. Cao et al.
[28] proposed using smart contracts to replace the role of
the group manager. However, this scheme makes the group
manager’s private key public, enabling any node to trace back
or revoke other nodes. To the best of our knowledge, there are
no other fully decentralized group signature schemes besides
the aforementioned three. Nevertheless, it is evident that these
three schemes are not applicable to our desired scenario.

In this paper, we integrate private smart contracts [12]
with group signatures [10] to develop a practical decentral-
ized group signature scheme for blockchain, named Group
Contract. This scheme offers anonymous identity verifica-
tion while ensuring traceability and revocability without the
need for a trusted authority. Building upon Group Contract,
we introduce ADC, an anonymous decentralized computing
system. ADC safeguards user identity privacy and enables
the tracking and blocking of malicious users, eliminating the
necessity for a trusted authority by employing blockchain as
group managers. Additionally, ADC achieves Byzantine fault
tolerance and Sybil-resistance through a self-designed group
membership validation algorithm. This algorithm adopts the
Practical Byzantine Fault Tolerant (PBFT) protocol [13] as
the backbone, allowing nodes to reach consensus, establish
decentralized trust, and maintain comprehensive, immutable,
and traceable records of the entire framework.

The contributions of our work could be summarized as
follows:

1) We present ADC, an anonymous decentralized comput-
ing system that incorporates anonymity and traceability
mechanisms. In contrast to centralized approaches, ADC
is not reliant on a trusted third party. The system ensures
strong Byzantine fault tolerance and Sybil-resistance
while preserving anonymity.

2) We propose Group Contract, a decentralized group
signature scheme for ADC, which fully combines pri-
vate smart contract and group signature. This scheme
replaces the trusted authority required in the group
signature with the entire blockchain, and utilizes private
smart contract to prevent from privacy leakage.

3) We conduct a rigorous analysis of the security of ADC
and design a series of experiments to demonstrate the
security and practicality of ADC.

II. RELATED WORK

A. Decentralized Computing

Decentralized computing refers to a model of computing
where the processing power, data storage, and decision-making
capabilities are distributed across a network of nodes, rather
than being concentrated in a single server.

CoopEdge [30] is a novel blockchain-based decentralized
platform used to drive and support cooperative edge comput-
ing. Warnat-Herresthal et al. [17] proposed swarm learning,
where each node can participate in the computing process
managed by Ethereum and smart contract. Biscotti [7] uses
a commitment scheme to protect data privacy and employs a
novel federated proof-based blockchain to improve the secu-
rity in decentralized computing. SPDL [4] is a decentralized
computing system that simultaneously ensures strong security
using blockchain, Byzantine Fault Tolerant consensus, and
BFT GAR, and preserves data privacy utilizing local gradient
computation and differential privacy. TBAC [8] proposes a
Tokoin-Based Access Control model utilizing blockchain and
Trusted Execution Environment (TEE) technologies to combat
the overprivilege attack phenomenon in IoT, offering fine-
grained access control and strong auditability. TEMS [9]
extends blockchain trust from on-chain to off-chain environ-
ments, exemplified by a trustworthy vaccine tracing scheme
integrating a TEE-enabled monitoring system and a consis-
tency protocol for real-time, fault-tolerant data transmission.

B. Anonymity in Decentralized Computing

Anonymity plays a crucial role in decentralized computing
by safeguarding privacy and enhancing user security. There are
some anonymous schemes that are suitable for decentralized
computing scenario. DAFL [6] presents an anonymous authen-
tication scheme in a decentralized scenario, achieved by com-
bining directed acyclic graph blockchain and an accumulator.
Nevertheless, it overlooks defense against Sybil attacks and
depends on a trusted authority for tracing malicious nodes.
LearningChain [3] safeguards identity privacy through the
continual alteration of virtual identities. However, this method
lacks traceability and security. Biscotti [7] employs a novel
federated proof-based blockchain to improve the security in
decentralized computing. It achieves Byzantine fault tolerance
and Sybil-resistance, but lacks traceability and requires a
trusted authority.

To address above challenges, this paper proposes an anony-
mous decentralized computing system, called ADC. ADC pro-
vides anonymity for decentralized computing while enabling
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the tracing and revocation of malicious nodes without relying
on trusted authority. Additionally, we also achieve Byzantine
fault tolerance and Sybil-resistance, which greatly enhances
the security and credibility of ADC.

III. MODELS AND DESIGN GOALS

A. System Model

In ADC, there are two types of nodes: users and workers.
Users are participants in the entire decentralized computing
system, while workers are enablers of this system, assisting in
the operation of system functions.

• Users collectively execute the group initialization, and
subsequently gain entry to the decentralized computing
system upon successful registration and acquisition of
their respective group member private key (gsk). In the
context of a decentralized computing task, each user
generates a temporary virtual identity. For instance, user
Xi owns the identity (i, Ai), which cannot be linked to
their signature unless it is traced.

• Workers (as special miners) are responsible for executing
private smart contracts in Trusted Execution Environment
(TEE) as required by the protocol of private smart con-
tract. In this paper, we take ShadowEth [11] as an exam-
ple of private smart contract. The privacy of contracts,
including code, data, and private keys, is protected by
TEE. Workers form a distributed storage network TEE-
DS (implemented in ShadowEth [11]) to store private
smart contract efficiently. Due to the nature of private
smart contract, workers do not have access to the user’s
private data and code.

B. Threat Model

Regarding system security threats, we would introduce
several attack methods that can pose a threat to the security
of our system:

• Forgery of Identity: Maliciou user attempts to interfere
with the normal operation of the system by forging the
identity of users.

• Byzantine Attacks: Byzantine user does not adhere to
the designed protocol and engage in arbitrary behavior,
attempting to disrupt the normal operation of the system.

• Sybil Attacks: Malicious user tries to create multiple fake
identities to gain control or influence over the operation
of system.

C. Design Goals

In the context of ADC, it is imperative to safeguard the
privacy of node identities while simultaneously enabling the
tracing and revocation of malicious nodes to uphold system
credibility. Additionally, the system must satisfy certain se-
curity prerequisites, such as unforgeability, Byzantine fault
tolerance, and Sybil-resistance, to ensure stable operation. Fur-
thermore, it is essential to maintain decentralization and avoid
the introduction of trusted authorities. The design goals of
Anonymous Decentralized Computing (ADC) are enumerated
below for reference:

TABLE I: Summary of Important Notations

Sign Description
gpk the group public key
gmsk the group manager private key
gsk the group member private key
σG the group signature
(i, Ai) the group member identity information
GR the label of group
DL the label of computing instance
R a temporary identification of user
(pkc, skc) signature key pair of Group Contract
P a temporary identity prove of R
B

(t)
u ,BC

(t)
u t-th block and blockchain in DLu

• Anonymity: User identities may be traced via a Trace
function, which is leveraged for identifying malicious
users. However, barring the Trace function, the user’s
authentic identity remains undisclosed.

• Unforgeability: An attacker cannot forge a legitimate user
identity to pass verification.

• Byzantine Fault Tolerance: The system can tolerate up to
f < N

3 Byzantine nodes without affecting its operation.
• Sybil-resistance: The system is impervious to the creation

of multiple fake identities by an attacker and precludes
their unjust acquisition of control or influence over the
network.

• Decentralization: The system maintains a decentralized
architecture without relying on any trusted authority.

D. Notations

A summary of important notations is provided in TABLE I.
We use subscripts i, v, f and V to denote the index of
users. For example, in the group member identity information
(i, Ai), where i is the index of user Xi, and Ai is an identity
parameter corresponding to user Xi during the trace phase in
the group signature protocol. Subscript k is used to represent
the index for group, for example, a group with index k is
represented as GRk. Subscript u is used to represent the
index for decentralized computing, for example, decentralized
computing with index u is represented as DLu. The remaining
subscripts represent special meanings; for instance, c in pkc
represents the public key of the Group Contract, distinguishing
it from a regular public key pk. We use the notation ⟨mes⟩σG

to represent the information mes and the group signature σG

on mes. For other notions, we will indicate their meaning at
the point of their first appearance in this paper.

IV. CONSTRUCTION OF ADC

A. Group Contract

The proposed solution, named “Group Contract”, is a decen-
tralized group signature scheme to provide support for group
formation and group signature functionality in decentralized
computing. This is achieved through the use of private smart
contract to assist with group signature. In Group Contract,
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public InitializeGroup
Input: 1λ, PubKeyDS

Output: gpk, pkc, Enc gmsk and Enc skc
1. gpk, gmsk← GroupSig.Setup(1λ)
2. generate contract signature key pair (pkc, skc)
3. Enc gmsk← Encrypt(PubKeyDS , gmsk)
4. Enc skc ← Encrypt(PubKeyDS , skc)

public RegisterUser
Input: credi and PubKeyUseri
Output:

• Enc gski and (i, Ai) if verification of cred passes
• ⊥ if verification of cred fail

1. if the verification of cred fail then
output ⊥

2. else
1) gski, (i, Ai)← GroupSig.Join(gmsk)

// gmsk is in the form of constant
2) Enc gski ← Encrypt(PubKeyUser, gski)
3) output Enc gski and (i, Ai)

internal CountVote
Input: ⟨vote1⟩σG , ⟨vote2⟩σG , · · · , ⟨voten⟩σG

Output: count
1. for i from 1 to n do

1) Ai ← GroupSig.Open(gmsk, σG)
// gmsk is in the form of constant

2. count← 0
3. for non-duplicate Ai do

count← count+ 1

public Trace
Input:

• ⟨vote1⟩σG , ⟨vote2⟩σG , · · · , ⟨voten⟩σG

• σ′
G

Output:
• Ai if the number of valid votes exceeds threshold h
• ⊥ if the number of valid votes less than h

1. count← Vote Count(⟨vote1⟩σG , ⟨vote2⟩σG , · · · , ⟨voten⟩σG)
2. if count > h then

1) Ai ← GroupSig.Open(gmsk, σ′
G)

// gmsk is in the form of constant
2) output Ai

3. else
output ⊥

public Revoke
Input:

• ⟨vote1⟩σG , ⟨vote2⟩σG , · · · , ⟨voten⟩σG

• i

Output:
• Acc if the number of valid votes exceeds threshold h
• ⊥ if the number of valid votes less than h

1. count← Vote Count(⟨vote1⟩σG , ⟨vote2⟩σG , · · · , ⟨voten⟩σG)
2. if count > h then

1) Acc← GroupSig.Revoke(gmsk, i,Acc)
// gmsk is in the form of constant

2) output Acc
3. else

output ⊥

Fig. 2: Group Contract. Note that, the symbols σG and σ′
G both represent group signatures. To facilitate the description of the

protocol, we use σG to denote group signatures of honest users and σ′
G to represent group signatures of malicious users.

we use private smart contracts to replace the group manager
role and leverage its features to protect group manager private
key and group member private key. Through Group Contract,
users can sign and verify messages using the original group
signature algorithm, while tracing and revoking malicious
users by invoking private smart contract.

Specifically, we represent the group signature functions used
in our work using a tuple of polynomial-time algorithms
denoted by GroupSig

def
= (Setup (for initialization), Join (for

group member registration), Sign (for outputting a signature),
Verify (for verifying a signature), Open (for tracing which
group member the signature comes from), and Revoke (for
revoking a group member)) [10]. To further ensure privacy
within the Group Contract, we employ contracts with the
help of private smart contract [11]. This allows us to protects
both the private key of group managers and group members.
Additionally, input and output parameters are encrypted in
TEE. Some parameters, such as the group public key, need
to be publicly accessible in the realm of group signatures.

The Group Contract consists of five functions (detailed in
Fig. 2): InitializeGroup, RegisterUser, CountVote, Trace
and Revoke.

Among these five functions, CountVote is an internal func-
tion, which can only be invoked by Group Contract internally,

and the other four functions are public, which can be invoked
by external users. The code of these functions is protected by
TEE-DS [11] in encryption form, and workers need to interact
with it securely to get the encrypted code and decrypt it in
TEE. It is important to note that the remaining four functions
will only be generated after InitializeGroup is executed. Some
parameters are stored in those functions in the form of
constant. Next, we would describe each function in detail.

• InitializeGroup: The InitializeGroup function initializes
a group and generates key parameters used for the re-
maining functions. It takes 1λ and PubKeyDS as input,
where PubKeyDS is the public key used by TEE-DS
for encryption and 1λ is the security parameter. First,
InitializeGroup calls GroupSig.Setup, which takes 1λ

as inputs to generate a group public key gpk and a
group manager private key gmsk. Then, it generates
signature key (pkc, skc) for the Group Contract, and then
encrypts gmsk and skc using PubKeyDS . Finally, Ini-
tializeGroup outputs gpk, pkc, Enc gmsk and Enc skc.
After InitializeGroup is executed, Enc gmsk and Enc skc
will be decrypted in TEE-DS. Subsequently, these two
parameters will be used to generate the remaining four
functions, in which these two parameters are in constant
form. Because the code is protected by TEE-DS, these
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two parameters will not be leaked.
• RegisterUser: The RegisterUser function is used for user

registration. It takes cred and PubKeyUser, where cred
is the credential of a user and PubKeyUser is the user’s
public key. For a user Xi, this function first validates the
user’s credi, and then uses GroupSig.Join algorithm to
generate the group member private key gski and the group
member identity (i, Ai) for Xi. Finally, the function
outputs Enc gski, which is encrypted using PubKeyUseri
so that no one can access it except for the owner Xi.
Additionally, (i, Ai) is stored locally by a group manager
but in this scheme, the centralized group manager is
removed and it is stored on the blockchain for future
traceability purposes. (i, Ai) is merely a notation and
is not directly linked to the signature, thus it does not
disclose any private identity information about user Xi.

• CountVote: The CountVote function is designed as an
internal mechanism restricted to use solely within the
Trace and Revoke functions. Its primary function is to
scrutinize and enumerate non-duplicate votes. To ac-
complish this, the function leverages the GroupSig.Open
algorithm to authenticate the identities of signatories. The
anonymous nature of group signature necessitates this
approach to avoid double-counting from a single entity.
Upon successful verification, the function tallies the votes
and returns the count as count.

• Trace: The primary purpose of this function is to trace
malicious users. Firstly, the Trace function calls upon the
CountVote function to enumerate the votes of other users.
If the vote count count surpasses the predefined threshold
h, then it utilizes GroupSig.Open to produce the identity
parameter Ai of the malicious user X ′

i based on the group
manager’s private key gmsk and the group signature σ′

G

(generated by the malevolent user). The blockchain en-
ables all users to obtain the label i that corresponds to Ai,
which signifies the successful association of signatures
with user identity. In the subsequent Revoke function,
revocation of the malicious user can be accomplished by
providing the label i.

• Revoke: The purpose of this procedure is to invalidate a
user with the identifier i who is acting maliciously. Fol-
lowing the invocation of the CountVote procedure to tally
the votes of the remaining users, the Revoke procedure
updates the Acc parameter of the dynamic accumulator
with the aid of the GroupSig.Revoke algorithm if the
specified threshold h is surpassed, thereby signifying that
the user Xi is now invalidated.

Based on the above design, Group Contract can provide
basic technical support for our scheme ADC and contributes
to properties including anonymity, traceability, and decentral-
ization.

B. The Protocol of ADC

Based on the technical support of Group Contract, ADC can
be divided into four phases: Initialization, User Registration,

Decentralized Computing, and Trace&Revoke, as illustrated in
Fig. 3.

participate 
computing

Initialization User Registration Decentralized Computing Trace & Revoke

Trace Revoke
Give Identity 

Proof
Register

User
Initialize 
Group

Group Contract

trace revokeregister
request 
identity 
prove malicious 

user 
identity

User Users on Blockchain

identity 
prove

Group

broadcast 
malicious users

generate
group

group
public

key

Count Vote

Users on Computing

member
private

key

on blockchain 

count count

Fig. 3: Overview of ADC

1) Initialization: We set up an interactive scene, where
users X1, X2, · · · , Xt construct a group GRk. They invoke
the InitializeGroup function of Group Contract with a secu-
rity parameter 1λ and the TEE-DS’s public encryption key
PubKeyDS as inputs. The function outputs multiple param-
eters for the next phases, such as the group public key
gpk, the contract signature public key pkc, the encrypted
group manager private key Enc gmsk and encrypted contract
signature private key Enc sk.

2) User Registration: During the user registration, users
obtain their member private key gsk and join ADC system.
User Registration consists of the following steps:

Step 1: User Xi invokes the RegisterUser function of
Group Contract with credi and PubKeyUseri as input, in which
credi is credential of user and PubKeyUseri is the user’s
public encryption key. The RegisterUser function outputs the
encrypted group member private key Enc gski, which can
be decrypted by the corresponding user Xi. Additionally,
the RegisterUser function also outputs user’s group member
identity information (i, Ai), which will be recorded on the
blockchain for subsequent tracing. Since (i, Ai) is purely a
notation, and as long as it is not associated with the signature,
it does not reveal any private information.

Step 2: User Xi decrypts Enc gski, obtaining its group
signature private key gski. With this signature private key, user
Xi can participate in the decentralized computing process.

3) Decentralized Computing: The decentralized computing
in ADC is divided into two parts: group membership vali-
dation and computing. Group membership validation is used
to confirm the qualifications of users and in the computing
part, users validated by group membership validation undergo
computing.

a) Group Membership Validation: Here, we add a public
function to the original Group Contract called GiveIdenti-
tyProof, which is presented in Fig. 4. This function is used to
verify a user’s temporary identification R and issue an identity
proof P . This function first uses GroupSig.Verify to verify the
correctness of signature based on the group public key gpk and
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public GiveIdentityProof
Input:

• R
• DL

Output:
• P if verification of σG passes
• ⊥ if verification of σG fail

1. get σG from R
2. if GroupSig.Verify(gpk, σG) == 0 then

output ⊥
3. Ai ← GroupSig.Open(gmsk, σG)
// gmsk is in the form of constant
4. P ← ⟨DL,R,Hash(DL,Ai)⟩σcontract

// σcontract is signature using contract signature private key
skc that is in the form of constant
5. output P

Fig. 4: GiveIdentityProof

group signature σG. And then the GroupSig.Open algorithm
is executed to obtain the member identity parameter Ai of
the user. Then, the hash value of the label of decentralized
computing DL and the member identity parameter Ai is
computed. This method ensures that different decentralized
computing would yield different hash values but, within a
specific decentralized computing, signatures from the same
users would result in the same hash value. ADC can effectively
resist Sybil attacks through this method.

During the group membership validation phase, our main
objective is to authenticate the users participating in the
computing, exclude ineligible users, and prevent Sybil at-
tacks. Ultimately, the users reach a consensus and form a
computing users list U . We adopt the Practical Byzantine
Fault Tolerant (PBFT) [13] protocol as the backbone for
achieving consensus, which operates independently from the
digital currency system and demonstrates high efficiency. The
group membership validation phase comprises four phases:
PRE-PREPARE, PREPARE, COMMIT, and ACCOMPLISH.
We show it in Algorithm 1.

In the PRE-PREPARE phase, each user participating in
decentralized computing DLu generates a one-time and non-
repeating public and private key pair (pki, ski) using the
Elliptic Curve Digital Signature Algorithm (ECDSA) [25].
We denote the signature using ECDSA as σ, and the group
signature as σG. Each user Xi generates a temporary identi-
fication Ri = ⟨IDi, GRk, pki⟩σ,σG

, where IDi is a randomly
generated number and GRk represents the group label to
which the group signature obtained in the previous User
Registration phase belongs. Subsequently, Xi invokes the
GiveIdentityProof function of the Group Contract using Ri

and the label of decentralized computing DLu and receives the
output Pi, which serves as a temporary identity proof. Here
it can be understood that Xi requests from the blockchain
a temporary identity that would be valid for this particular
decentralized computing process. Next, Xi broadcasts Pi to
its peers and receives Pv from them.

Algorithm 1: Group Membership Validation

1 PRE-PREPARE
2 Ri ← ⟨IDi, GRk, gpkk, pki⟩σ,σG

3 Pi ← GiveIdentityProof(Ri, DLu)
4 broadcast Pi and receive Pv from peers
5 PREPARE
6 while receive Pv do
7 if Verify(Pv) == 1 then
8 get Hash(DLu, Av) from Pv

9 M SET← Hash(DLu, Av)

10 for non-repeating Hash(DLu, Av) ∈ M SET do
11 get Rv from corresponding Pv

12 SETR ← Rv

13 for Rv ∈ SETR do
14 broadcast ⟨PREPARE, Ri, Rv⟩σ
15 COMMIT
16 while receive 2f + 1 of ⟨PREPARE, Ri′ , Rv⟩σ do
17 broadcast ⟨COMMIT, Ri, Rv⟩σ
18 ACCOMPLISH
19 while receive 2f + 1 of ⟨COMMIT, Ri′ , Rv⟩σ do
20 U ← U ∪Rv

21 B
(0)
u ← (DLu, U)

22 append (BC
(0)
u , B

(0)
u )

In the PREPARE phase, we embed the determination of
Sybil attacks to ensure that the computing user list does
not contain users pretending to be multiple users by sending
multiple identity information R. We will discuss in Section
V why this phase can resist the Sybil attacks. First, user Xi

verifies Pv (denoted as Verify(Pv)) received from user Xv .
If the embedded information is duplicated or the signature
is invalid, Pv is discarded. And the Hash(DLu, Av) in the
remaining verified Pv is deposited into M SET, which is used
to judge and defend against Sybil Attacks by checking for
duplicate content. Then, Xi stores R corresponding to the non-
repeating Hash(DLu, Av) in SETR. For each Rv ∈ SETR,
user Xi signs it and broadcasts ⟨PREPARE, Ri, Rv⟩σ to the
other users. Here, the size of SETR is denoted as n. And the
maximum allowable number of Byzantine users f = n

3 .
It’s important to emphasize that we only utilize group sig-

natures in the PRE-PREPARE and PREPARE phases. Group
signatures are not required in the subsequent processes since
the group signature is already bound to the ECDSA signature.
This optimization significantly reduces the signature overhead
of the system. Moreover, the temporary nature of the ECDSA
keys in this system ensures the preservation of identity privacy
as they will be changed in the next decentralized computing
process.

In the COMMIT phase, if user Xi receives
⟨PREPARE, Rj , Rv⟩σ from at least 2f + 1 different
users for any Rv , it broadcasts ⟨COMMIT, Ri, Rv⟩σ .

In the ACCOMPLISH phase, for any Rv , if user Xi receives
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⟨COMMIT, Rj , Rv⟩σ from at least 2f + 1 different users, it
adds Rv to its computing users list U . Finally, user Xi sets its
broadcast list to the users in U . A new block B

(0)
u is generated,

which records U and DLu, and is appended to the blockchain
BC

(0)
u .
b) Computing: We will not delve into the detailed al-

gorithm flow of computing, as our focus is on verifying the
messages sent by each user during the computing process,
which we describe in detail below. In this context, we represent
the message sent by user Xi in round t of computing as
(t,mesi).

During computing, each user maintains an array C[|U |] to
keep track of the number of times it receives information
from a particular user, thereby preventing replay attacks. Each
message to be transmitted is packaged as ⟨IDi, (t,mesi)⟩σ ,
where σ denotes the ECDSA signature. Group signature is
not required here because it is already bound to the ECDSA
signature during group membership validation. Additionally,
since the ECDSA signature is temporary and disposable and
will be changed in the next decentralized computing process,
it does not disclose any identity privacy. We solely utilize it to
verify that the message originates from user Xi. Subsequently,
for each received ⟨IDv, (t,mesv)⟩σ , user Xi searches for the
corresponding Rv associated with IDv . If Rv in U cannot
be found or if the round is not the current round t, user
Xi disregards ⟨IDv, (t,mesv)⟩σ . User Xi then verifies the
signature using the corresponding public key pkv . If the
signature is valid and the message is received, it is utilized
for computing.

At each round, a new block B
(t+1)
u is appended to the

blockchain BC
(t+1)
u . This block records the pertinent com-

puting information for round t+ 1. Through the combination
of group membership validation and message verification, as
discussed in the preceding paragraph, user Xi ensures that
it only interacts with users from its computing users list
U . Consequently, an adversary cannot create more Byzantine
users than the number of users it controls to disrupt the com-
puting process. Throughout this process, users communicate
anonymously and securely, without revealing their identity
privacy.

4) Trace & Revoke: In ADC, users have the ability to
vote on the identification Rv of user Xv for tracing purposes.
Once a series of votes ⟨vote1⟩σG

, ⟨vote2⟩σG
, · · · , ⟨voten⟩σG

is collected, users invoke the Trace function of the Group
Contract. If the number of valid votes exceeds the threshold
h, the Trace function outputs the group member identity
parameter Ai. Subsequently, users can retrieve the label i
associated with Ai from the blockchain, indicating that the
signature of the malicious user has been successfully traced.

The process of revoking users follows a similar ap-
proach to tracing users. After collecting a series of votes
⟨vote1⟩σG

, ⟨vote2⟩σG
, · · · , ⟨voten⟩σG

, users invoke the Re-
voke function of the Group Contract, providing the label i
of the malicious user as input. If the number of valid votes
exceeds the threshold h, the malicious user is revoked by
updating the new dynamic accumulator parameter Acc.

V. SECURITY ANALYSIS

Here we will analyze the security of the system, mainly in-
cluding its anonymity, unforgeability and Sybil-resistance. As
for traceability, Byzantine fault tolerance and decentralization,
which we mentioned in our design goal, they are designed into
the system itself and do not need to be analyzed.

Theorem 1 (Anonymity): ADC does not reveal any private
identity information about users.

Proof : In each decentralized computing instance, the user
Xi identifies itself with a temporary identity prove Pi. If the
adversary V cannot associate two temporary identity prove Pi

and P
′

i of user Xi in two decentralized computing instances,
it means that ADC does not reveal any private identity
information about users. Note that the group is not considered
private because it needs to be published to verify the signature
using the group public key. The following game can be used to
model this scenario, where the challenger C acts as the ADC
system and the adversary V attempts to break the system:

1) C sends identity prove Pi of user Xi in one decentralized
computing instance to V .

2) Then C selects a decentralized computing instance DLu

where user Xi participates.
3) V performs arbitrary behavior on DLu. After finishing,
V notifies C.

4) C selects P ′
i of user Xi and P ′

j of user Xj on decentral-
ized computing DLu. Xi and Xj both come from group
GRk. Then C randomly chooses one of P and sends it
to V . We define B = 1 if P comes from Xi and B = 0
if P comes from Xj .

5) V predicts its guess B′ and wins the game if B′ = B.
In this game, we define the advantage that the guess is right
as AdV = 2×

(
Pr [B′ = B]− 1

2

)
.

Next, we follow this game to prove the anonymity of ADC.
First, V obtains identity prove Pi of user Xi. Then we assume
decentralized computing DLu runs normally. We recall the
composition of Ri, Ri = ⟨IDi, GRk, pki⟩σ,σG

. We recall the
composition of Pi, Pi = ⟨DLu, Ri,Hash(DLu, Ai)⟩σcontract ,
in which Ri = ⟨IDi, GRk, pki⟩σ,σG

. We can see that Ri

has five components, of which GRk is public information,
not considered private information. The IDi and pki are
random and one-time numbers, from which V does not get
any information. The ECDSA signature is different in every
decentralized computing instance. As for the group signature,
according to the anonymity of group signature, V has no way
to know exactly who signed it. Therefore, V cannot obtain
any private information directly from the components of Ri.
As for other components of Pi, they include the label of decen-
tralized computing DLu, hash values for the label of decen-
tralized computing and identity information Hash(DLu, Ai)
and σcontract, where DL and σcontract do not contain any
privacy. For Hash(DLu, Ai), since DL is different for each
decentralized computing instance, according to randomness
of hash function, Hash(DLu, Ai) and Hash(DLu′ , Ai) are
unrelated, so the hash value of (DLu, Ai) can be regarded
as a kind of random number. In summary, the guess of V
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for B can only pick a random value, i.e., Pr [B′ = B] = 1
2 .

According to the formula of AdV , the advantage of V in this
game is zero. Therefore, we can conclude that ADC does not
reveal any private identity information about users.

Theorem 2 (Unforgeability): An adversary V without a
signature private key cannot masquerade as other users.

Proof : Adversary V may try to disguise itself as other users.
This can be modeled by the following game:

1) C selects a decentralized computing DLu where user Xi

participates.
2) V performs arbitrary behavior on DLu.
3) V gives a forged message ⟨IDf , (t,mesf )⟩σ that is not

sent by a user.
4) If the message passes validation, V wins this game.
If V wants to masquerade as a user Xf that does not

participate in this decentralized computing instance, it needs
to construct the corresponding Rf in the group membership
validation phase. However, Rf requires a group signature
using gskf , which V does not have. If V wants to masquerade
as a user Xj that participates in this decentralized computing
instance, it will not work if it tries to construct Rj , as we
discussed above, so it can only do so in the next computing
phase. In the computing phase, V wants to give a forged
message ⟨IDf , (t,mesf )⟩σ . For IDf , because every time
users receive a message, they need to verify whether Rf

corresponding to IDf is in the computing users list U , V
can only use IDf sent by Xf in the group membership
validation phase. However, the signature σ in message is
the EDCSA signature, and V cannot give the corresponding
signature because it does not have the corresponding signature
private key skf . Here, we explain why group signatures are
not used in this phase. Now, let’s assume that if the signature
σ is a group signature, and V and Xf belong to the same
group. Due to the properties of group signatures, V can use
its group signature private key gskV to construct a signature
that can pass verification of the group signature. This is why
we need to introduce a one-time EDCSA signature in ADC.
In summary, V cannot win this game.

Theorem 3 (Sybil-resistance): ADC is secure against Sybil
attacks.

Proof : In decentralized computing, ADC has Sybil-
resistance if the adversary V cannot construct two different
messages to be accepted by other users during a single
message interaction. It can be modeled by the following game:

1) C selects a decentralized computing instance DLu.
2) V performs arbitrary behavior on DLu.
3) V sends two different messages ⟨IDV , (t,mes)⟩σ and
⟨ID′

V , (t,mes′)⟩σ that are not sent by users during a
single message interaction.

4) If these two messages pass validation, V wins this game.
In group membership validation phase, if the adver-

sary V wants to create two identifications R and R′, ac-
cording to Theorem 2, V cannot masquerade as another
user. Therefore, V can only use its own group signature
private key gskV to construct R and R′. In the PRE-

PREPARE phase of group membership validation, users in-
teract with the Give Identity Prove function and get the
return value P = ⟨DL,R,Hash(DL,A)⟩σcontract . V will get
PV and P ′

V . Here, AV = GroupSig.Open(σ
(V)
G ) and AV′ =

GroupSig.Open(σ
(V′)
G ). Since R and R′ use the same group

signature private key gskV , AV = AV′ . So hash(DL,AV) =
Hash(DL,AV′). In PREPARE phase, R and R′ will not
be added to the set SETR by other users because their
Hash(DL,A) is equal. Note that if V wants to forge another
GRk′ , the Give Identity Prove function will verify the group
signature of V with the corresponding gpkk′ . Since the group
signature of V will not pass the verification, V can not get
identity prove P . In computing phase, if V constructs two
messages ⟨ID, (t,mes)⟩σ and ⟨ID′, (t,mes′)⟩σ , the identi-
fication R and R′ corresponding to ID and ID′ are not
all created by V according to the above. Hence, if ID and
ID′ are both constructed from V , then there must be a
corresponding identification R that is not in the computing
users list U , and one of these two messages will be rejected by
the user that receives them. If V wants to use IDj of another
user Xj , according to Theorem 2, V cannot masquerade as
another user. If V constructs two messages ⟨IDV , (t,mes)⟩σ
and ⟨IDV , (t,mes′)⟩σ using the same ID, other users receive
the first message and execute C[V] = C[V] + 1. At this point,
C[V] = 1. Upon receiving the second message, users check
and find that C[V] = 1, so the second message is dropped, and
it is still not possible to construct two messages successfully.
In summary, V cannot win this game.

VI. EVALUATION

A. Configuration

In evaluation section, we take decentralized learning as the
application scenario of ADC. This system is built upon a
blockchain employing the PBFT consensus algorithm. We em-
ploy gRPC framework as the module for users communication.
The ECDSA signature uses Python’s ecdsa library, while the
BBS04 group signature scheme is implemented using Java’s
Jpbc library. We utilize the open-source code of SPDL1 for
computing part. Our smart contract is implemented using
Remix2, and the code is written in Solidity3.

We conduct experiments on a Aliyun server that has a vCPU
(Intel Xeon Platinum 8269) with 24 cores (2.5GHz) and 48 GB
of RAM. We test the performance of ADC using the MNIST
dataset for image classification. This dataset comprises 70,000
28 × 28 images of handwritten digits, which is distributed
across 10 different classes. The dataset is divided into N
pieces, with each assigned to one user.

B. Performance

Latency of ADC: In this experiment, we denote N as the
number of participating users. We evaluate the latency required
for group membership validation in decentralized learning

1Available: https://github.com/isSPDL/SPDL
2Available: http://remix.ethereum.org
3Available: https://docs.soliditylang.org/en/v0.8.20/
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(the additional latency brought by ADC compared to SPDL)
and the model training latency for each round. As depicted
in Fig. 5, the computation latency spent on group member-
ship validation is relatively small compared to the latency
consumed by each round of model training. Because the
computing process of decentralized computing often requires
many rounds, but in ADC, group membership validation only
needs to be done once, so this time overhead is acceptable. In
Fig. 6, we present the computation latency of the other parts,
i.e. Initialization, User Registration, Trace and Revoke. From
this figure, we can see that the computation latency of other
parts is very small. Additionally, these parts are not executed
frequently in the entire system. The Initialization is performed
only once per group, User Registration is executed only once
per user, and the Trace and Revoke are executed only once
for malicious users. Therefore, these computation latencys are
perfectly acceptable for the overall system.
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Fig. 5: Computation Latency of Decentralized Learning
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Fig. 6: Computation Latency of Other Parts

Gas Cost of Group Contract: It is important to note that the
smart contract deployed on Ethereum is a bounty contract (in-
spired by ShadowEth [11]), and its gas cost depends primarily
on the input and output of the function. In this experiment, we
set the number of participating users to N = 20, which has

an impact on the gas cost of the Trace and Revoke functions.
The gas cost for executing each public function is presented
in TABLE II. We can see that Trace function costs 10.09
USD and Revoke function costs 9.71 USD. Although these
costs may seem high, they only need to be executed once
against malicious user. If we include a deposit mechanism
in practical business applications, where after the Trace and
Revoke function is executed on the malicious user Xi, the
deposit of Xi is used to compensate the invoking user of these
functions, then this cost can be offset by this compensation.
For other functions, these costs are acceptable compared to
the overhead of decentralized computing itself.

TABLE II: Gas Cost of Smart Contract

Function Gas Cost ETH Cost USD
InitializeGroup 237689 0.00024 0.46
RegisterUser 184986 0.00018 0.34

Trace 5293656 0.0053 10.09
Revoke 5068370 0.0051 9.71

GiveIdentityProof 617333 0.00062 1.18

1 Gas = 1 Gwei, 1 ETH = 1903.79 USD

Storage: In this experiment, we present the storage costs for
each component in different phases of decentralized learning
in ADC. In group membership validation, we set the size of
the ECDSA public key to 96 bytes, considering it to be a
reasonably secure size. The ECDSA signature size is 96 bytes,
while the BBS04 [23] signature size is 191 bytes. The size of
GR is set to 1 byte, accommodating 256 groups. Both ID and
DL are set to 8 bytes. In summary, the total size of R is 392
bytes, and the total size of P is 528 bytes. In computing, we
assume that the label of each round occupies 2 bytes, allowing
support for up to 65536 rounds. Additionally, we denote the
number of users in decentralized learning as N , and the size of
mes as |mes|. We calculate the storage costs and present them
in TABLE III. From this table, we observe that the storage cost
in group membership validation is approximately 392N bytes,
and the additional message size is around 106 bytes. These
storage sizes are relatively small and acceptable for large-scale
decentralized computing.

TABLE III: Storage Cost

Components Storage cost

Group Membership
Validation

R 392 bytes
P 528 bytes
U 392N bytes

Computing
U 392N bytes
C N bits

sent message 106 + |mes| bytes

Byzantine Fault Tolerance: We test the Byzantine fault
tolerance of ADC by training the model with different Byzan-
tine Ratios (BR), which represents the ratio of the number
of Byzantine users to the total number of users. In this
experiment, Byzantine users attempt to interfere with training
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Fig. 7: Byzantine Fault Tolerance

effect by sending extremely large gradients, and interfere with
consensus process by not sending any messages after the
PREPARE phase in the PBFT algorithm of “ADC”. We set
the total number of users to 20, and the BR values were 0%,
10%, 20%, and 30%, considering f = 33%×N , which is the
upper limit of the PBFT algorithm. We show the test error (the
proportion of incorrect predictions made on the test dataset
out of the total number of predictions made) of the model
training on Fig. 7. In this figure, we denote “PURE” as the
system with all Byzantine fault tolerance related components
removed, including group membership validation in ADC,
BFT GARs, PBFT algorithm for model training, and the
blockchain system. From the figure, we can observe that
the “PURE” system is directly disrupted in the presence of
Byzantine users within the system, leading to the inability of
the test error to converge. In contrast, our “ADC” system,
which incorporates Byzantine fault tolerance, demonstrates the
ability to achieve convergence to a favorable test error value
even when the number of Byzantine users is below 30%. So,
one can get that ADC has good Byzantine fault tolerance.
Sybil Attacks Resistance: We extend the Byzantine fault-
tolerance experiment to test the Sybil attacks resistance of
ADC. We make each Byzantine user launch Sybil attacks and
they both create two additional Byzantine users to join ADC.
Byzantine users behave in this experiment as in the Byzantine
fault tolerance experiment. In Fig. 8, we show the test error
for different Byzantine Ratio (BR) in this scenario, where we
denote “BFT” as the system that removes ADC’s procedures
for handling Sybil attacks. In this figure, “BFT” in the case of
BR=20% and BR=30%, their test error is in a straight line at
a higher position. This is because Byzantine user percentage
has exceeded 33% at this case due to Sybil attacks, and “BFT”
cannot be trained properly (It exceeds the upper limit of the
PBFT algorithm, making it impossible to reach consensus
among users because Byzantine users interfere with consensus
process by not sending any messages after the PREPARE
phase). However, comparing with the Byzantine fault tolerance
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Fig. 8: Sybil Attacks Resistance

experiments above, we can see that “BFT” can get good
training results at this byzantine ratio without the presence of
Sybil attacks. This underscores the significance of addressing
Sybil attacks in our system.

VII. CONCLUSION

In this paper, we propose ADC, an anonymous system for
decentralized computing. It provides anonymity while also
ensuring traceability and revocability, as well as maintaining
good Sybil-resistance and Byzantine fault tolerance. Further-
more, ADC can achieve the above functions without the need
for trusted authority. Finally, the analysis and evaluation show
that ADC has strong security and practicality with only a
minor additional time overhead.

In our future research, we will explore how the private
smart contract in ADC can be simplified to a regular smart
contract as a way to increase the scalability. Additionally, we
also intend to explore blockchain consensus algorithms for
decentralized learning, one idea is to utilize zero-knowledge
machine learning to use the computation in machine learning
as a proof of work for users.
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