OCash: Fully Anonymous Payments between Blockchain Light
Clients

Adam Blatchley Hansen?![0009-0003-2090-9553]% - Jogner Buus Nielsen![0000—0002—7074-0683]xx 41 q
Mark Simkin2[0000-0002—7325-5261]

L Aarhus University
2 Flashbots

Abstract. We study blockchain-based provably anonymous payment systems between light clients.
Such clients interact with the blockchain through full nodes, which can see what the light clients read
and write. The goal of our work is to enable light clients to perform anonymous payments, while
maintaining privacy even against the full nodes through which they interact with the blockchain. We
formalize the problem in the UC model and present a provably secure solution. We show that a variation
of tree ORAM gives obliviousness even when an adversary can follow how its own data elements move
in the tree. We use this for anonymity via shuffling of payments on the blockchain, while at the
same time allowing the light client to know a few positions among which to find its payment without
knowing the current state of the blockchain. In comparison to existing works, we are the first ones that
simultaneously provide strong anonymity guarantees, provable security, and anonymity with respect
to full nodes. Along the way, we make several contributions that may be of independent interest. We
define and construct anonymous-coin friendly encryption schemes and show how they can be used within
anonymous payment systems. We define and construct efficient compressible randomness beacons, which
produce unpredictable values in regular intervals and allow for storing all published values in a short
digest.

* Funded by the Concordium Blockchain Research Center, Aarhus University.
** Founded by the Danish Independent Research Council under Grant-ID DFF-3103-00077B (CryptoDigi).

Table of Contents

[Introduction].ot 3
[L.1 Our Contribution.].ot 3
[.2 Related Workl 5
[L3 Technical Overview]t e e e e 8

2 Preliminaries]o 17
2.1 Commitment Schemel. e 17
[2.2 Symmetric and Public Key Encryption| 18
2.3 3 Protocols 18
2.4 Simulation-Sound NIZK Arguments| i 19
[2.5 Simulation-Extractable NIZK Arguments| i 22

[3 Anonymous Coin Friendly Encryption (ANCOs)| oo .. 23
[3.1 Constructing Anonymous Coin Friendly Encryption| 25

{4 Compressible Randomness Beacons (CRaBs)| 26
4.1 Constructing Compressible Randomness Beacon| 28

[5 Strongly Oblivious Read-Once Maps (SOROMS)|, 30
5.1 Constructing Strongly Oblivious Read-Once Maps|. 31

[6 Ideal Functionality tor Anonymous Cryptocurrencyf............ i, 33

[7 Modelling the Blockchain World|. 39

[OCash: Anonymous Transters from Oblivious RAM| 41
8.1 Stateful Blockchains|. i 42
B.2 OVEIVIEW . ot o it e 42
8.3 Anonymous Coin-Flip on the Blockchain|...... 44
[8.4 Relations for Zero-Knowledge|. 45
85 OCash Protocoll.o 45
[8.6 Proving Security in the UC Framework| 46

9 Proof of Thearem« o o 51
0.1 Observationsot 51
D2 STMUTATOL - o et et e 57
0.3 ANalysis| . ..o e 62

[10 Adding Strong Anonymity].ot 68
[10.1 PRF Key Registration|........ e 68
[10.2 Hashed Identifier]. oo 69
[[0.3 Rerandomized TTDI.ottt e e e 69
[10.4 Pseudononymous Hashed Identifier|........ 70
[10.5 Improved Reduction to DHI|. 70
[10.6 Extending the Relations and ZK Proots|....... 70

(11T ZK Proof System Instantiations|............ i 70
[11.1 Discussion of GUC NIZK PoK Definitions|. o .. 71
[11.2 Proofs tor Group Homomorphisms| 71
[11.3 \/-Construction Maintains Strong Special Soundness|.............. 72

[11.5 Extended Proof Systems for Strong Anonymity| 75
[12 Generalised Dodis-Yampolskiy Theorem|........ 76

1 Introduction

Blockchains are structured decentralized databases, which are stored redundantly by network par-
ticipants, known as full nodes. In the context of cryptocurrencies, the databases are ledgers, which
keep track of all transactions of digital currency among all digital identities. When new transactions
are submitted, the full nodes check the validity of those transactions, e.g., whether the payer has
enough digital money, and if this is the case, the transaction is added to the ledger. Being a full
node in real-world systems such as Bitcoin or Ethereum is a daunting task, as they are required
to continuously store hundreds of gigabytes of data. Since regular users cannot be expected to run
full nodes, they can alternatively join these distributed systems as light clients, who do not need
to store all of the data, but can still perform transactions. Without direct access to the full ledger,
however, light clients communicate via full nodes.

Both Bitcoin and Ethereum are pseudonymous systems, meaning that the real identities of par-
ticipants are hidden behind pseudonymous aliases. Importantly though, since all transactions are
public on the ledger, any observer may see which pseudonyms interacted and what transactions
were sent between them. It may seem that pseudonymity can provide a “reasonable amount of
anonymity”, but it has been shown time and time again that this is not the case and that signif-
icant amounts of information about the real identities can be learned by carefully inspecting the
transactions on the ledger [RH13, MPJ™ 13| [HF16, JBWD1§].

Various cryptocurrencies, such as ZCash [BCG™14], Mina [BMRS20], Dash, and Monero have
been designed to provide some forms of anonymity for their users. The concrete guarantees that
are provided by these schemes differ in their details, but they all have the same overarching goal
of hiding which users have how much money and who interacts with whom. Unfortunately, these
solutions are all currently somewhat unsatisfactory in one way or another, because they either
require users to run full nodes, provide users with weak anonymity guarantees, or require users
to give up anonymity towards the full nodes. As both usability and privacy are important for
real-world cryptocurrencies, we ask the natural question of whether we can have the best of both
worlds:

Can we support light clients and at the same time provide strong anonymity guarantees?

Answering this question is a challenging task, since the two goals may seem to be at odds with each
other at first sight. Purely intuitively speaking, anonymity seems to require that users access large
portions of the ledger to hide which data is relevant to them specifically, but light clients require
the opposite, namely that accesses are highly localized. Nonetheless we will show in this work that,
making strong—but plausible—assumptions, the question can be answered positively.

1.1 Owur Contribution.

We introduce OCash (Oblivious RAM based Cash), a cryptocurrency that provides strong anonymity
guarantees and supports light clients. Towards the goal of constructing OCash, we develop multiple
tools that may be of independent interest. In more detail, we make the following contributions.

Formal Model of Fully Anonymous Light Payments. To set the stage for a rigorous formal
analysis of claims about anonymity, we first propose a conceptually simple model, in the universal
composability (UC) framework of Canetti [Can01], of what fully anonymous payment schemes are.
The UC framework ensures that any protocol proven secure, will remain secure when run in a larger
context, e.g., alongside other protocol executions.

We model the ledger as an append only list that can be accessed by full nodes. Light clients can
read from and write to the ledger through full nodes, but any position they access and any message
they post will be leaked to the adversary. Light clients will have accounts on the ledger that store
encrypted amounts of currency and they can perform anonymous payments between each other.
Security will mean that an adversary observing a payment on the blockchain, cannot connect the
sending and the receiving accounts, nor can they see the amount that is being transferred. A bit
more precisely, we will model payments as payers placing coins on the ledger, which can then be
collected by the payees. We distinguish between weak and strong anonymity. In weak anonymity
the payer can see when the payee claims a coin. In strong anonymity they cannot. Security notions
related to strong anonymity have been proposed before, see [CHK23|, but no formalization was
provided.

OCash. We show that efficient payment schemes supporting light clients and satisfying strong
anonymity can be constructed by using ideas from the oblivious RAM (ORAM) literature [Gol87),
Ost90] in combination with several other tricks that we introduce in this work. Placing or collecting
a payment, even as a light client, only requires writing and reading a polylogarithmic (in the total
number of performed payments in the whole system) amount of data from the ledger. We stress
that our work is the first solution that allows for strong anonymity with sublinear read and write
overhead to the ledger.

Our construction will make two assumptions that are worth discussing. The first one is the
existence of a private off-chain communication channel between the payer and the payee. As an
example, the payer should be able to obtain the recipient’s account address without needing to
ask a full node and without needing to read the whole ledger. For instance, a pizza shop accepting
cryptocurrency payments could provide a QR code with its address to hungry customers.

The second assumption is the existence of an anonymizer service associated with the ledger,
which can hold a private state and which regularly posts messages on the ledger. In the case
of proof-of-stake blockchains, one already often assumes the existence of committees that post
messages on the ledger regularly. Given such committees, one can realize the anonymizer service,
which holds a private state, via secure multiparty computation [BGG™'20, |GHK™21]. While our
second assumption is stronger than our first one, we still think that it can be reasonable in the
context of proof-of-stake blockchains.

Compressible Randomness Beacons. Part of our construction will be a randomness beacon
that regularly publishes independent, unpredictable samples. Looking ahead, payees will need to
access certain beacon outputs for collecting coins that were paid to them. For anonymity reasons,
payees will not want to reveal, which outputs are relevant to them, but if they are light clients, they
can also not afford reading all of the outputs. We show how to construct compressible randomness
beacons, which allow the payee to read the latest beacon output and from there they can derive
all previous outputs. A very similar notion was recently introduced by Beaver et al. [BCKT23|,
but in their construction the computational overhead for computing a beacon value from the past

is linear in the time between the latest and the desired beacon output. In our construction, the
computational overhead for computing any value from the past is fixed.

Anonymous Coin Friendly Encryption. The anonymizer service will move around encrypted
coins inside of some data structure. To be able to both prove efficiently that each individual move-
ment was performed correctly and to also allow for an efficient and anonymous collection, the
encryption scheme needs to satisfy certain additional properties. Additionally, it needs to be proof
friendly in the sense that associated zero-knowledge (ZK) proofs should ideally be simple and be
concretely efficient. We abstract out the properties we need from the encryption scheme into a
new notion of an anonymous coin friendly encryption (ANCO) scheme. Our actual construction is
similar to the one used in Quisquis [FMMO19], but in contrast to their work, we formalize and
prove the properties that we require from the encryption scheme.

1.2 Related Work.

We are far from the first to consider anonymous cryptocurrencies or light clients. To better under-
stand the challenges we need to overcome in our work, let us review existing anonymous cryptocur-
rencies and see what challenges they face, when trying to support light clients.

Cryptocurrencies Based on Accumulators. Anonymous electronic payments saw their birth
in 1982 with David Chaum’s eCash system [Cha82|. His construction involves a bank, a user, and
a (pizza) shop. The user picks a random transaction identifier tid and asks the bank to sign tid
blindly, i.e., without actually seeing the signed message, in exchange for one pound. The user
receives signature o = Sign(skg, tid), where skg is the signing key of the bank. To pay the shop
one pound, the user provides it with (tid, o). The shop can verify the validity of the signature o
and then collect back one pound from the bank by providing it with (tid, o). If tid was previously
collected, the bank rejects the collection. Since the bank has signed tid blindly, the original owner
of this coin is anonymous among all parties that have received a coin from the bank.

Fischlin [Fis06] then showed how to construct blind signatures from general assumptions. Com-
bined with Chaum’s eCash idea above, Fischlin’s approach would proceed as follows. The user would
pick tid and send a commitment ¢ = Commit(tid; s) to the bank, which returns o = Signg (c). Here
tid is the committed message and s is the commitment randomizer. The user would then locally
construct a non-interactive ZK proof of knowledge 7 for statement tid and witness (o, ¢, s), such
that o is a signature on ¢ and ¢ = Commit(tid; s). They could then use (tid,) to pay the shop.

Zerocoin [BCG™14], later deployed under the name ZCash, further generalizes Chaum’s original
eCash idea by replacing the centralized bank with a decentralized ledger. The user posts ¢ =
Commit(tid; s) on the ledger and pays, with the currency of the ledger, for having minted a new
coin. The presence of ¢ on the ledger is the authentication of ¢ being a coin. To collect a coin the
shop computes a ZK proof of knowledge 7 for the statement “I know (c,w,s) such that w is a
witness that ¢ is on the ledger and ¢ = Commit(tid;s)” and post (tid,7) to the ledger. If tid was
used before, the collection is rejected.

To compute the proof efficiently, the user first aggregates all coins on the ledger into an accu-
mulator value ac via a public aggregation procedure and then provides a proof 7« for the statement
“I know (¢, w, s) where w is a proof that c is in ac and where ¢ = Commit(tid; s)”. The accumulator
could, for example, be the root of a Merkle tree and w a path in it. The size of the statement

and proof would then be poly-logarithmic in size in the number of coins. How to make such proofs
concretely efficient was recently shown in a series of works |[CH22, (CFH ™22, ZBK ™22, [STW23].

Even though cryptocurrencies based on accumulators provide good anonymity guarantees, it is
unfortunately not clear how to make them compatible with light clients. To collect a coin, a light
client needs to aggregate all coins into the accumulated value ac and prove that ¢ is among them.
The light client could outsource this task to a full node, but this would reveal ¢ and thus the coin
the client aims to collect towards the full node. Alternatively, the client could also ask the full node
to not only compute the accumulator ac, but also an individual proof of membership for every single
coin aggregated into ac. The client could then use private information retrieval [CGKS95| to obtain
the one membership proof that is relevant to them. This solution would in principle work, but it
would incur a prohibitive amount of computation on the full node, which renders this approach
practically infeasible.

Cryptocurrencies Based on Mixers and Tumblers. A conceptually different approach was
suggested by cryptocurrencies like Dash and Monero, where coins get repeatedly anonymized in
small batches. In older systems like Dash this was done through the use of tumblers [Max13] that
take n coins as input, produce n coins as output, and ensure that no external observer can link
the owner of any input coin to any specific output coin. More recent systems, like Monero, rely on
linkable ring signatures [RST01,[LWWO04], which enable signers to generate signatures for arbitrarily
selected groups of n verification keys, concealing the specific secret key used, while ensuring that
the signing key belongs to one of the public keys. As all these approaches require linear in n work
for placing and collecting coins, their efficiency crucially relies on the value n being not too large. In
Moner(ﬂ for instance, the value n is chosen to be just 16 and even though each individual mixing
step only provides a small amount of anonymity, the hope behind Monero and its kind is that
eventually all coins get mixed enough to be untraceable.

While we have a reasonably good understanding of the relevant cryptographic primitives in
isolation, we are currently lacking a solid understanding of the precise anonymity guarantees that
cryptocurrencies like Dash and Monero provide, which is evidenced by the various attacks on these
systems that have been found over the past years [OMJ 13, KFTS17, YAY ™19, |[DS21} Vij23].

Intermezzo on Consensus and Long-Range Attacks. Before discussing the next approach
for constructing cryptocurrencies, we need to look a bit closer at what a decentralized ledger really
is and how it works from a consensus perspective. A ledger is, simply speaking, a growing chain
of blocks. When new transactions appear on the network, they are placed into a new block, which
is then appended to the end of the current chain. What is considered to be the true state of the
ledger is decided by a consensus mechanism among the nodes, who are identified by their public
verification keys, in the networkﬁ A popular method for incentivizing the nodes on the network
to behave honestly, is to use financial rewards and punishments. In Ethereum, for instance, nodes
that want to play a role in reaching consensus, need to deposit a fixed amount of money that may
be partially or fully slashed if they misbehave.

At some point in time, nodes that participate in the consensus may choose to get back their
deposit and leave the system. When this happens, their public and private keys become worthless to
them as they cannot be used to participate in any future consensus decision making and they are not

3 https://www.getmonero.org/resources/moneropedia/ring-size.html
4 In our discussion we focus on proof-of-stake blockchains as those are the focus of our work.

https://www.getmonero.org/resources/moneropedia/ring-size.html

tied to any financial stake any longer either. To an attacker, however, these keys may still be very
valuable as they allow for key-buying long-range attacks. To perform such an attack, an adversary
attempts to buy as many of those “worthless” keys as possible from nodes that used to participate
in the consensus. Having acquired a sufficient amount of keys, the adversary may change previous
consensus decisions, thereby forking the chain of blocks that used to be the true state of the ledger
and creating an alternate chain, which may then be falsely accepted by users. This attack is a serious
real-world problem as selling keys that are otherwise worthless is the financially rational thing to
do. A technique that aims to prevent this type of attack is checkpointing. Whereas classically a
blockchain grows from its first block, the genesis block, by following some fixed hardcoded rules, the
idea of checkpointing is to regularly accept intermediate blocks in the chain as unequivocal truths
that cannot be changed. Once a block becomes a checkpoint, no adversarial behavior can produce a
fork prior to this block, thus severely limiting the scope of possible key-buying long-range attacks.

Cryptocurrencies Based on Recursive Proofs. Armed with the above insights, the last type
of cryptocurrency we want to discuss is based on the idea of always proving the validity of the
latest block with respect to the genesis block using succinct proof systems. In other words, if ~
is the genesis block, then each new block comes along with a succinct proof, attesting that the
latest block is on a valid chain starting in . Computing such proofs can be done efficiently by
extending the proof of the previous block using incrementally verifiable computation [ValO8]. A bit
more precisely, there exists an efficiently computable predicate Ver and efficiently computable proof
7 for message m and position p, such that Ver(v,p,m,7) = T, if and only if m is in position p on
the ledger in a finalized block in a chain starting from . A prominent example that relies on such
an approach is the Coda blockchain [BMRS20], later launched as Mina.

Cryptocurrencies based on recursive proofs as described above have some advantages, when it
comes to realizing anonymous payments. To place a coin on the ledger, we again pick a uniformly
random tid, randomizer s, and compute ¢ = Commit(tid; s). Once the coin is on the ledger in
position p, the user obtains a succinct proof 7 and they can then pay the shop by providing it with
the tuple (p,c,7,s). To claim the coin, the shop simply computes a ZK proof of knowledge = for
the statement “I know (p, ¢, ,s) such that Ver(y,p,c,7) = T and ¢ = Commit(tid;s)” and posts
(tid, 7) on the ledger. Since the proof 7 hides both p and 7, the claimed coin is anonymous among
all existing unclaimed coins.

There are some challenges that would need to be overcome, if one wants to make the above
approach work for light clients. First of all, light clients need a way of efficiently making sure that
tid was not previously used. As part of our construction in this work, we show how this problem
can be overcome and we think that our solution would also be applicable here. There is, however, a
larger problem that does not have a clear solution. The approach towards anonymous payments we
are currently discussing, inherently relies on the fact that we prove statements with respect to the
genesis block -y, but if we want security against key-buying long-range attacks then we need to prove
statements with respect to the latest checkpoint. Alas, if the proof T that the user receives after
minting a coin is relative to the latest checkpoint, then claiming the coin as above would reveal the
checkpoint and thus reveal temporal information about which coin was claimed. If the shop wants to
compute a proof 7w that does not reveal the checkpoint, or which is relative to the latest checkpoint,
then it is not clear how to compute the proof. The shop would as a minimum have to download
all checkpoints, which is again a linear amount of data. The shop may again try to outsource the
proof computation to a full node, but similarly to what we have already discussed in the context of

accumulator-based cryptocurrencies, this would incur a prohibitively high computational overhead
on that full node.

1.3 Technical Overview

We will now give an overview of the architecture of OCash and an overview of how we model and
prove the protocol secure in the UC framework. Later we give details on the tools used in the
construction.

Before discussing our construction, let us recall what we aim to construct. In our setting,
we consider a ledger, modelled as an append-only list, which can be accessed by full nodes. Light
clients can access the ledger through (possibly untrusted) full nodes and may want to either perform
payments by placing coins intended for some recipient or they may want to collect coins that have
been payed to them. In terms of anonymity, we would like to ensure that no external observer, not
even a collusion of all full nodes, can determine who is paying whom. We say that a construction
satisfies strong anonymity if in addition the payer cannot see when a payee collects a coin. We
assume that light clients have an off-chain communication channel between them and we also assume
the existence of a trusted anonymizer service, which can hold a private state and can repeatedly
post messages on the ledger. As mentioned before, the anonymizer service can be implemented
via secure computation protocols, but for the sake of this work, we just assume a trusted party
performing these actions. The service never needs to interact with any of the parties directly and
merely operates on the values that are posted on the blockchain.

In terms of efficiency, we would like all parties, i.e., anonymizer service, full nodes, and light
clients, to do as little work as possible. More concretely, we would like them all to only perform
a poly-logarithmic (in the total number of coins in the system) amount of work for placing or
collecting a coin.

How to Place a Coin. Before discussing how to place a coin in OCash, we first make two
simplifying assumptions. We assume that all coins have a unit value and we only aim for weak
anonymity, where the payer can see when the payee collects the coin. We discuss how we allow
for placing arbitrary monetary values and achieve strong anonymity at the end of this technical
overview.

To pay a coin with identifier tid to a shop S, which is identified by a public encryption key eks, we
use an encryption scheme that is both rerandomizable and key-indistinguishable. By rerandomizable
we mean that ciphertexts can be rerandomized without knowing the public key under which the
encryption was performed. By key-indistinguishability, which was originally introduced by Bellare
et al. [BBDPO1|, we mean that a ciphertext cannot be linked to the public encryption key with
which it was generated or, in other words, the ciphertext does not reveal who is the intended
recipient. Concretely, the shop will have an ElGamal |[EIG85] public key (g,h = ¢%) € G? for a
group G, where the Diffie-Hellmann problem |[DH76| is hard, and the encryption of tid € G will be

Enceks (tid) = (¢”, 17, g7, h? - tid)

for uniformly random p,o € Z4. The shop can use their secret key = to determine whether a

ciphertext is for them, by checking whether (¢)* L 1P, The ciphertext can be rerandomized with
values p’ and ¢’ by computing

("), (Y (¢)7 g7, ()7 (R - tid)) = (97 07 g2 7 107+ i)

8

L]

= (12) CoLLECTED, tid
%

(M Ppay, User (2’) Full Node Full Node Shop

— c I_ed er verify 7
o ~\v\ 4 = = e g q =—Uu o ve‘rirjy c ®) .)
\ = <5 = o fresh? tid OBSERVED, tid
= o 'Y\ = nu| | oq 1 mq = "u| | o (8) - -

@ N S () < X l. | () COLLECT, tid
PAD,tid| & & =g o == \ e
< — /CF % . =N o =N @\ %

= = (| = eks o = eks a«\ 0]
A\
5 p: cd 3¢
& (1p S
N9\ Lg !) % <
S 7%
A <]

N 4 e
o\ é (S ©
5 ,) (Y 2
ERPIN Zz
SATACERE 3,
Q"’ I %
o
=)
\
LU Ls A
L = Hash(Ly, Ls) %
.. . \
Mixing Service A
2
S
%
3
e
=
\ 7

Fig. 1. An overview of ITanonpay. The user posts an encryption c (for the shop) of the transaction identifier tid along
with an encryption d (for the service) of its contribution Ly to the leaf.(?) Once ¢ and d were posted on the ledger the
SOROM smart contract places ¢ in the root of the tree and the user gets a proof 7 that (¢, d) was posted successfully
on the ledger.®® After that the user sends tid, coin ¢, opening s of ¢, 7, and Ly anonymously to the shop.® If 7
verifies, then the shop considers the payment observed.(® In parallel with this the service retrieves ¢ and d.® Tt
publishes its contribution Ls (via a CRaB).(S) The service will continually push a rerandomized version ¢ of ¢ towards
leaf L = Hash(Luy, Ls).(6'”) The shop can via a full node anonymously learn Ls and publish L. It gets back all coins
on the path to L.9 It collects the coin by posting tid and proving that it is in one of the encryptions on the path.*?

High-Level Approach. On a conceptual level, OCash uses the anonymizer service to maintain an
ORAM [Gol87,|0st90, SCSL11|, which can be accessed by light clients via full nodes for placing and
collecting coins. An ORAM can be thought of as an encrypted array stored on an untrusted server,
which can be accessed via read and write operations by a data owner holding the corresponding se-
cret key unknown to the server. The main security guarantee of an ORAM, known as obliviousness,
dictates that the server cannot see which operations are performed at which locations. To achieve
obliviousness the data owner performs dummy accesses along with the real operations and shuffles
around elements in the encrypted array. Efficiency of an ORAM is measured in terms of how many
dummy accesses are needed for each real operation and it is known that for an array of length n,
it is both necessary [LN18| and sufficient [Ost90] to perform ©(polylog n) dummy accesses. In our
context, the ledger will play the role of the server, whereas the anonymizer service will play the
role of the data owner.

There are several important differences between what an ORAM provides and what we need.
In terms of functionality, we do not strictly need an array with arbitrary read and write accesses,
but just some data structure that allows for inserting coins and then retrieving them at most once.
In terms of security, we will require a stronger notion than standard obliviousness, because payees

will be able to track coins that have been paid to them in the data structure. This means that
the adversary obtains additional leakage about the movements of some elements in the ORAM,
which is not part of the regular ORAM obliviousness definition. Intuitively, we need to ensure that
the movements of the adversarially tracked coins within the ORAM do not reveal any information
about the movements of the honest users’ coins.

We call the cryptographic primitive we require a strongly oblivious read—onceﬁ map (SOROM)
and as we show in there are existing ORAM constructions, which almost immediately
provide us with our desired primitive.

In particular, we will make use of the tree-based ORAM of Shi et al. [SCSL11|. In their con-
struction, an array of length n is represented as a binary tree with n leaves. Each node in the tree
is a bucket, which can store a fixed number of data elements. The write operation inserts the new
data elements into the root node bucket and assigns each of them a uniformly random leaf index.
A maintenance operation is performed regularly and ensures that data elements are pushed down
towards their assigned leaves, thereby making sure that no buckets overflow with elements. The
data structure obeys the invariant that each element is always in one of the buckets on the path
between root node and assigned leaf. Reading an element is done by first magically determining
the corresponding leaf indexlﬂ and then retrieving all logn buckets on the path from root to leaf.

In our context, we observe that no coin is spent twice and thus no coin is read more than once in
the ORAM. This means that the coin does not need to be moved back to the root after being read, as
is usually done, and will always be on the path that it was assigned to upon its initial insertion in the
data structure. This in turn will simplify finding the leaf index belonging to a specific data element.
Additionally, we will show that using a variation of the maintenance operation from [SCSL11|, all
elements’ movements are independent of each other and thus the adversary does not learn anything
about the positions of the honest coins by observing the movements of the adversarial coins. The
variation is that when maintaining a bucket, we push all elements in the bucket one level down,
whereas in [SCSL11] at most one element is pushed down, which would correlate the movement of
coins. We prove that this new eviction rule maintains obliviousness.

We assume a ledger with smart contracts. When posting a coin ¢ the users gives a proof of
knowledge that it is well-formed. The smart contract for the SOROM checks that the proofs are
valid and if so places ¢ in the root of the tree. The mixing server will interact with the smart
contract to update the tree. It reads up coins ¢ along with associated encryptions d of L, routes
them, rerandomizes the ¢ and writes them back in their new position in the tree via the smart
contract, along with a fresh encryption d’ of L.

How to Find a Coin. Before we can talk about how the shop can find coins they receive, we first
need to talk about how the label L is chosen when a coin is inserted into our SOROM. The payer
cannot choose it arbitrarily, as correctness properties of our SOROM rely on it being uniformly
random. The label can also not be publicly known during coin placement as the shop will later
reveal it during coin collection, which would lead to anonymity issues. Lastly, the payment process
should be non-interactive in the sense that the payer can simply post a single message on the
ledger, so the label can also not be chosen via a protocol that would require interaction between
anonymizer service and payer.

5 Spending a coin will require reading it and since no coin can be spent twice, we never need to read an element in

the map more than once.
6 We will elaborate on how this works in our context below.

10

Our idea for choosing the label L is to let the user U and the anonymizer service perform a coin
flip into the well [Blu82]. When placing the coin at time ¢, the user chooses a label Ly and provides
it to both the shop and the anonymizer service. Providing Ly to the shop happens off-chain and
providing it to the anonymizer can be done by placing an encryption thereof, under the public key
of the anonymizer service, on the ledger. The anonymizer service then publishes its label share La ;
for time ¢ and defines the coin’s label as Hash(Ly||La), where Hash is modeled as a random oracle.
This approach already gives us most of what we want. The label is uniformly random and if U was
honest, then it is also unpredictable for any outside observer who knows La ;.

There is, however, still one problem. How does the shop, which runs a light client learn La ;7
Retrieving all labels ever published by the anonymizer is not feasible for a light client and asking
a full node for the specific label would reveal the value ¢, which would in turn pose a problem for
anonymity as ¢ would leak information about the time of the coin’s placement.

To circumvent this problem, we introduce the notion of a compressible randomness beacon.
Rather than choosing the values La 1,La2,... fully at random, we will let the anonymizer have a
secret key k and let them choose La; := PRF(k,t) using a special pseudorandom function (PRF),
which is inspired by constrained PRFs [BW13, KPTZ13, BGI14]. Now rather than publishing La ;
at time step ¢, we let the anonymizer publish a short constrained key k<;, which allows anybody to
compute La p for any ¢ < ¢, but keeps any value larger than ¢ unpredictable. This allows the light
client to simply retrieve the latest k<; and recompute whatever specific label they need locally.

How to Collect a Coin. At this point, we know how the coin is placed and we know how the
shop can figure out the path in our SOROM on which the coin will be. Given the properties of
our encryption scheme, the shop can also determine which specific ciphertext in the buckets on the
path was intended for them. The last question remaining is how the shop can collect the coin. For
this, the shop posts tid on the ledger and proves in ZK that one of the ciphertexts on the path. The
obliviousness guarantees of the SOROM ensure that revealing the path does not reveal anything
about when the coin was inserted.

If tid was already posted on the ledger, then the collection of the coin is rejected. If the tid is
chosen arbitrary by the payer, then the shop has no way of verifying that the identifier was not used
before. The used tid may already appear among the published identifiers on the ledger or maybe
the same tid was used to pay another shop, who also did not yet collect the coin. To prevent these
types of double spending attacks, we endow the tid with some more structure. We will assume that
each user has a public nonce ny. Whenever the user puts a new coin on the ledger, the nonce gets
incremented. The transaction identifier chosen by U, when paying shop S the amount a is defined
as the commitment tid = Commit(U, S, ny, a). Concretely, we will use tid = gg gy g3 - g5Y - g%
as our commitment, where £ are the random coins and the values U and S are assumed to be the
involved parties’ identifiers interpreted as finite field elements. When placing an encryption of this
tid on the ledger, the user U proves in ZK that everything is well formed and that tid contains the
correct U and the correct value ny. We show that computing these ZK proofs can be done very
efficiently. All in all, the encryption of this tid has the form

¢ = Encerg(tid) = | ¢, 1, g%, h% - g5 - g - g5 - g5 - g3 | . (1)
tid

If the coin is well formed, the ledger accepts it and provides a proof 7, which attests that the coin
is on the ledger.

11

During payment, the user sends (c, (p,0,&,U,S,a),) to the shop via their off-chain communi-
cation channel. The shop checks that the received coin ¢ was correctly constructed using the values
(p,0,€,U,S,a) and that 7 indeed attests that c is on the ledger. These checks do not require the
shop to interact with the ledger or any full node. The binding property of the commitment ensures
that two valid coins for different shops cannot have the same identifier tid. Thus the shop only
needs to make sure that it itself did not already accept tid.

How to Achieve Strong Anonymity. With the above approach, the shop needs to reveal
tid during collection, which allows the payer to see when the coin is collected. To achieve strong
anonymity, we need to hide tid during collection. For this purpose, we further extend the encryption
that defines a coin by one component. Let hid = Hash(U, ny) be the hashed identifier, where Hash
is a collision-resistant hash function and let

. hid
¢ = Enca (tid) = (97,1, g%, 0% - g5 - oY - g5 - 63" - 9§ - g5¢) .

When placing a coin, the user U proves that the ciphertext is well formed by proving in ZK that
the components gi, g3, g5 contain the correct U, ny, and hid, where hid = Hash(U, ny). Note that
(U, ny, hid) is in the instance so hid = Hash(U, ny) can be verified in the clear and we do not have to
give a ZK proof over the circuit of Hash. During collection, the shop proves that the go-component
is S. What remains to be proven is that the coin was not previously collected. For this we note that
the value (U,ny) is unique as ny is incremented for each payment of U. By the collision-resistance
of the hash function, this means that hid is also computationally unique.

The idea behind achieving strong anonymity is to extend the shop’s public key by including a
commitment to a PRF key K and then, upon collection, letting it reveal an oblivious transaction
identifier otid = PRF(K, hid) along with a proof that otid was correctly computed w.r.t. the claimed
coin. If hid is used only once, then otid is pseudorandom and leaks no information, even to the user
knowing hid. If the shop attempts to collect the same hid multiple times, then otid will repeat and
the collection will be rejected.

To make this proof efficient, we will use a slight modification of the Dodis-Yampolskiy verifiable
random function(VRF) [DYO05]. In general VRFs can be seen as commitments to random functions,
which allow the committing party to open function evaluations at arbitrary points. We extend the
shops public key by a component gg(, where K is the corresponding secret key and

PRF(K, hid) = gi/ (Khid)

During collection the shop reveals otid and proves knowledge of a vector (¢, z, K, hid, &, a,U, S, ny),
where

¢ = Enceks (tid) = (97, 1,97, 17 - g5 - g - 45 - 65" - i - gh) =t (e1, 2, ¢5,),

such that

F=coNek-g5-gV g5 giv - gf - gt = ¢4 Aotid = PRF(K, hid) .

This can be done efficiently with off-the-shelf X-protocols.

12

Implementing the Service. In this work the service is assumed to be implemented by an in-
corruptible Fsgrvice, and we leave it as future work to implement Fggryvicg in MPC. However, we
want to add a few sentences on how one could proceed. We propose to implement Fgppyicy USing
an MPC among n servers, where privacy is guaranteed if any ¢ < n servers are corrupted and
where correctness is guaranteed even if t = n servers are corrupted. This notion was dubbed Uni-
versally Verifiable Multiparty Computation (uwMPC) in [SV15]. In [DPSZ12] such a uvMPC was
constructed based on somewhat homomorphic encryption, as a modification of the SPDZ proto-
col|DPSZ12|. The SPDZ protocol has good practical efficiency. The construction in [DPSZ12] only
adds a factor 2 in overhead over SPDZ. The protocol is proven secure in the UC model, so we
can use the UC theorem to plug it in for Fggrvice. The reason for choosing [DPSZ12] is that the
computation being MPC’ed can be done modulo a prime ¢g. Furthermore, values being computed on
are committed using Pedersen commitments in a group G of order g. All that is needed is that the
discrete logarithm (DL) problem is hard in G. Concretely we can get a protocol ITggpyicy Which is
UC secure based on somewhat homomorphic encryption and DL being hard in G.[DPSZ12, (Thm.1,
Thm. 2)] If we set G to be the group of our ANCO RPKE, this will likely allow a relatively small
circuit for Fsgryice, as randomisation in RPKE can be done using “native” operations in [DPSZ12].
Developing a concretely efficient circuit for Fsgryicr is future work.

Using MPC to implement Fggryicr asks the question why we do not just let the MPC handle
everything. The reason is that then everything would also be broken if the MPC is corrupted. With
the current solution only anonymity and conciseness would be broken. Note that if ¢ = n servers
are corrupted then the MPC servers will know L and therefore anonymity is completely broken.
The protocol will, however, still be correct and live. It is correct because of public verifiability. For
liveness, the seeming problem is that with ¢ = n any server can make Ilgpgryicr deadlock. However,
the service is not needed for posting ¢ in the root of the tree, only for routing the coin. If ITgppyice
deadlocks, the coin ¢ would just keep sitting in the root of the tree, or where it ended up before the
deadlock. This means that the path sent to the shop in step? in would contain up to M
coins, where M is the total number of coins ever posted. Therefore the communication complexity
has a factor O(log M) replaced by a factor O(M). However, the shop can still collect the coin. Note
that if the service deadlocked before posting Lg, then the label L is not defined. In this case the
shop asks for a random L. This works as ¢ would be found in the root in this case.

With a centralized service (n = 1), an even simpler approach can be taken. Whenever the
service replaces coins ci, ..., ¢y by rerandomized coins dy,...,d, during operation of the SOROM
it gives a ZK proof that there exist a permutation m and pq, ..., p¢ such that

(di,...,de) = (Ran(cr1y, Pr(1)), - - - » Ran(crys pre)))

where Ran is our rerandomization of ciphertexts: Ran : C x R — C, where C = G* and R =
2% and Ran((A,B,C,D),(¢/,0") = (AP, B, A% C,B°' D). If there exist p/ and ¢’ such that
(A',B',C",D") = (A", B | A% C, B°' D), then (A, B',C", D') encrypts the same tid as (A4, B, C, D)
and decrypts under the same secret key as DLy B’ = DL B. So, if the ZK proof verifies then
the set of tid’s are preserved and can be collected by the same shops, even if the service otherwise
completely deviates from the protocol. Thus, each shop can still find its coin by worst-case down-
loading M coins when it does not find its coin on the path. To prove existence of m and py, ..., p¢
we can directly apply the ZK proof of a shuffle in [Wik09]. As discussed on page 409 in [Wik09|
the proof works for any homomorphic rerandomization map ¢ : C x R — C between groups C and
R, and clearly ¢ = Ran is a group homomorphism.

13

Modelling and Analysis. We now discuss how we define and prove security. By anonymity we
mean that after a sequence of payments and collections, an attacker gets no knowledge beyond
some unavoidable leakage. As an example of unavoidable knowledge, imagine S collects a payment
at time ¢. Then the coin was necessarily created at some earlier time ¢ < t. As another example,
consider a shop that keeps querying the ledger to check whether it received a payment. Necessarily
the shop will learn when a payment was initiated. Besides this kind of unavoidable knowledge, the
adversary should learn nothing. This should hold, even if they are given the tid’s of all payments in
the system, to ensure that we do not rely on the secrecy of the tid’s in the security or anonymity
of the system.

Defining anonymity using game-based definitions can be subtle and error prone, so we have opted
for a simulation-based definition. We require that the view of a run of the system can be simulated
given only the unavoidable knowledge. Since payment systems are designed to be potentially used
in other contexts and may possibly interact with many other systems, it is natural to require
general and concurrent composability. We thus define security in the UC framework [Can01] by
giving an ideal functionality Fanonpay, modelling an ideal payment system only leaking unavoidable
information to the simulator. Then we say that Ilayonpay iS @ secure payment system, if it UC-
securely realizes Fanonpay-

Consider the ideal functionality Fanonpay in . It can interact with several users and several
shops. Parties can have both roles, but for our explanation it is easier to think of users and shops
as separate entities. We illustrate the ideal functionality with one user and one shop, but there
can be any number of them. When Fanonpay gets a command from U to pay S, then the ideal
functionality will inform the adversary/simulatorﬂ that U initiated a payment but not to whom.
This models the fact that we allow for leaking, say via traffic analysis, that U is doing some payment,
but we do not allow leaking any information about who is being payed or what the amount is.
We let the adversary/simulator decide when the payment is completed. When this happens U is
informed and its account is deducted a monetary units. We let the adversary decide when events like
payments happened to avoid explicitly modeling time. We do not explicitly consider any liveness
guarantees and we believe it is better to analyze them separately for a concrete implementation of an
anonymous payment system. All we require from our protocols at the present level of abstraction, is
that they are non-trivial in the sense of [Can01], i.e., if all messages are delivered then the protocol
produces outputs. Implementing Fanonpay then guarantees that these are the right outputs and that
privacy is maintained.

When a payment is created then Fanonpay samples a random tid with a distribution independent
of U and S, i.e., the tids of all payments are sampled from the same distribution and hence they
leak nothing about the payment they are associated to. Then tid is output to U, but not the sim-
ulator/adversary. This means that when proving security, the simulator needs to simulate without
knowing tid towards an environment which does know tid. This might look draconian, but is needed
to ensure that tid can be used as desired in any context without hurting security of the system.
Later, the simulator/adversary can inform Fanonpay that the payment has become observable, at
which time S is informed about the transaction identifier and the amount. In some implementations,
it might be the case that the shop can observe that a payment happened, before it can actually
collect it. We have therefore introduce another state called collectable. Again the adversary decides
when a payment becomes collectable. The simulator/adversary is not informed about the identity

7 When proving security of a protocol IIaxoxpay relative to Fanonpay, then Fanonpay interacts with the simulator. When
FhanonPay is being used as an ideal functionality in a hybrid world it interacts with the adversary.

14

SIMULATOR/ADVERSARY
A g AT s
5 g ez
Zizig g 10§
g otooE R a2 B
U RS- I < = e
(ZoE 2 Q9 g og
D g a8 s
e ;g e 13 Ith
: v v 'gj ¥=3 'U
1O
WPAY, S, a ‘ N f '
Party U | @Pap, tid '9% SR ! | ©OpservED, tid, a
B g
e oy ' 1| ®COLLECTABLE, tid
2 ‘D ! e
% % ‘i
2 & R Party S
o ~ \ (g) . y
% e g’ +_ | CoLLECcT, tid
g S \
y v v |) CorLECTED, tid
U S
by bs
F ANONPAY

Fig. 2. A sketch of the ideal functionality Fanonpay for anonymous payment. When strong anonymity is modelled then
the ideal functionality does not leak tid during collection but only “S: COLLECT, 7”.

of S when making these decision. They are given a handle on the payment (U : PAY,?) and can use
this handle to say when the payment should become observable and collectableﬁ Once a payment
is collectable the shop might collect it. This will leak tid to the simulator/adversary to model the
fact that the protocol is allowed to leak tid at this point. Note that this does not violate anonymity
as tid is random and independent of U and tid has so far not been leaked. From the point of view
of the simulator/adversary tid can originate from any previous paymentﬂ[igl Again, the simula-
tor/adversary decides when the collection completes and at this point the account of the shop is
incremented. The non-triviality of I1ayonpay Will guarantee that once a payment is observable, it
will always become collectable and once it is collectable any attempt to collect it will succeed.

Note that our notion of anonymity is a relative one. We prove that the system leaks no more
information than the times at which payments are created and collected. To get a feeling for the

anonymity provided by this relative notion, consider a setting with n honest users Uy,..., U, and

n honest shops Sq,...,S,. First, all users pay one unique shop in some arbitrary order. Then each

8 This captures the fact that the timing of when a payment comes observable and collectable cannot depend on
the identity of the shop, which could otherwise have been a covert leakage channel. This is an example of the
simulation-based definition automatically capturing aspects one might not have explicitly thought about in game-

based definitions.
9 Again, it might look odd that we gave tid to the environment, but the crucial point is that we did not give it to

the simulator. Giving it to the environment only gives stronger security: the simulator must simulate without tid

and must fool even an environment who knows tid.
10 T eaking tid models weak anonymity. We can model strong anonymity by not leaking tid. Then even the user cannot

see when the shop collects its coin.

15

Anonymous Off-Ledger Communication

Q
3
> oo, =
LS N Y
: s 3w :
6) & = '
Light |9, = R 1) [Light
Client % LEDGER :ey/ Client
A : Ledger 20 C
QS
&@.’ 1: mq W)’
o
(o]
Light ° — A
1g re p:m -
Client 30'(Pl =
% —
<.’((\J/r9' o E B
/\/\/\ —

v

TSERVICE
May hold secret state

Fig. 3. Sketch of our UC model of a ledger accessed via full nodes, anonymous off-ledger communication, and a
service protocol updating the ledger. When writing m the client learns the position p and gets a proof 7 that m is
on the ledger. The same is leaked to the adversary (upward arrows). When reading a position p or using a general
read function L it is leaked who read what to the adversary.

shop collects their payment in some order. What the simulator/adversary will see is
(Ur: PAY,?),...,(Uy: PAY,?),(S1: COLLECT, tidy), ..., (Sy: COLLECT, tid,,) ,

where the tid; are uniform and independently distributed. This leaks nothing about who paid
whom. If, however, it is known that a shop always collects payments right after being paid, then
we know they U; paid S;. This means that, externally to the system, some measures need to be
taken to mitigate traffic analysis. The payment system itself, however, is compatible with any way
to mitigate the traffic analysis, thereby breaking up the system into very different problems, which
can be handled using different tools.

We then address how we model the protocol. We will model the ledger using an ideal function-
ality, see Instead of explicitly modeling both full nodes and light nodes, we have absorbed
the full nodes into the ideal functionality. All parties using the ideal functionality are consider light
clients. When a party performs a given operation, Fippcer leaks the identity of the light client
and the information the full node would have learned in the real-world setting to the adversary.
This models the worst case, where there is only a single full node, which is used by all light clients

16

in the anonymous payment scheme. The anonymous off-ledger communication is modelled using a
separate ideal functionality called Faar. Finally there might be a “service” protocol which helps
update the ledger via the same interface as light clients. We then prove our protocol secure by
proving that it implements Fanonpay in the hybrid model with Fipperr and Faar. We will give a
sketch of the proof after presenting details of our tools.

Paper Outline The details follow the above technical overview closely. In we give
technical preliminaries. We define and construct an anonymous coin friendly encryption scheme
in we define and construct compressible randomness beacons in and we define
and construct SOROMs in [Section 5| In [Sections 6| and m we then give the UC model of Fanonpay
and Jigperr. In we give pseudocode of the OCash protocol with weak anonymity, and in
we give the UC proof of security. In we discuss how to add strong anonymity.
In we give the details of some of the proof systems that we use. Finally in
we give a slightly generalised proof of the security of the Dodis-Yampolskiy VRF which we use for
strong anonymity.

2 Preliminaries

We use A to denote the security parameter. When we work with lists, for instance a list Ledger to
represent the ledger, we index from 1. We use Ledger[k] to denote position k and use Ledger[k] = L
to denote that it is not the case that 1 < k < |Ledger|.

We prove security in the UC framework [Can20]. We assume the reader is familiar with the
UC framework. When we specify ideal functionalities all inputs will start with a command name,
CMDNAME. A canonical implementation of a command on an ideal functionality will be off the
form. “On input (CMDNAME, z) from P do the following ...”” Such a command later gives an
output y by outputting (CMDNAME, z,y) to P. We output the command name and input = again
to link (CMDNAME, z, y) uniquely to (CMDNAME, z). This allows us to use the following short hand
notion for parties interacting with ideal functionalities: F.CMDNAME(z) — y. It expands to mean
“Input (CMDNAME, z) to F, wait for F to return the first value of the form (CMDNAME, z, z),
assign z to y and then proceed.”

We use Pr[F|E] to denote conditional probability, i.e., the probability of event F' given event
E occured. When A is an algorithm or process and F an event defined in that process we use
Pr[A : E] and Pr[A| E] to denote the probability that E occurs when executing experiment A.

2.1 Commitment Scheme

Definition 1 (Commitment Scheme). A commitment scheme is a tuple of PPT algorithms
Com = (Gen, Commit), which are defined as follows:

ck < Gen(1Y): The key generation algorithm takes security parameter X as input and outputs com-
mitment key ck.

com <+ Commit(ck,m): The randomized commitment algorithm takes commitment key ck and mes-
sage m as input and outputs commitment com.

Definition 2 (Perfect Hiding). We say that Com = (Gen, Commit) is a perfectly hiding, if for
all X € N, all correctly generated ck <— Gen(1*) and all messages mo and my of the same length, it
holds that Commit(ck, mg) and Commit(ck, m1) have the same distribution.

17

Definition 3 (Computational Binding). We say that Com = (Gen, Commit) is computationally
hiding, if for all A € N and all PPT adversaries A, it holds that

ck « Gen(1%)
(mo, m1, po, p1) < A(ck)

Pr < negl(A).

’Commit(ck, mo; po) = Commit(ck, mq; p1)

A mg # my

Construction. Our commitment scheme for constructing transaction identifiers and accounts
is a Pedersen commitment [Ped92] in a group G of prime order ¢ where the discrete logarithm
problem is hard. Specifically we assume that five uniformly random, independent generators ck =
(90,91, 92,93, 94) have been chosen. We assume that ¢ has been chosen large enough that account
names, nonces and amounts can be represented bijectively in Z,. To commit to (A, B, nonce, a) € Z,
using randomness s € Z, we compute

tid = Commity (A, B, nonce, a; s) = g5g7 95 g5 g4 .
This scheme is perfectly hiding and is computationally binding is the DL problem is hard in
G [Ped92|. When using the commitment scheme to commit to account balances we let Commit(a) =
Commite(0,0,0,a;s) = g5g5-

2.2 Symmetric and Public Key Encryption

A symmetric-key encryption scheme is a tuple of PPT algorithms SKE = (Gen, Enc, Dec). We use
the notion of IND-P2-C2 from [KY00] and will just denote it as IND-CCA. We also use an INC-CCA
secure public key encryption scheme PKE = (Gen, Enc, Dec) see, e.g., [BDPRYS].

2.3 X -Protocols

We will make use of several zero-knowledge proofs of knowledge and membership in our protocols.
They will all be based on Y-protocols |Cra97|, which are three-move proof systems.

Definition 4 (X-Protocols). A Y -protocol with challenge space € for a relation R C {0,1}* x
{0,1}* is a tuple of PPT algorithms (A, Z, V'), which are defined as follows:

a < A(x,w;p): The algorithm takes statement x, witness w with (x,w) € R and random coins p
as input and generates the prover’s first round message a.

2z« Z(x,w, e, p): The algorithm takes statement x, witness w with (x,w) € R, challenge e € &,
and auxiliary input p as input and generates the prover’s third round message z.

b« V(zx,a,e,z): The verification algorithm takes statement x, prover’s messages (a,z), and chal-
lenge e € € as input and outputs a bit b.

that are defined by tuples (R, A, &, Z, V, Ext, Sim, T'), where R C {0,1}* x {0,1}* is a poly-time
binary relation, A, Z, V, Ext, Sim are poly-time algorithms, £ is the finite challenge space, and 7T is
a unary predicate used to recognize trapdoors when defining strong special soundness as explained
below.

X -protocols are expected to be complete, special sound, and honest-verifier zero-knowledge as
defined below.

18

Definition 5 (Completeness). A X-protocol (A, Z, V') with challenge space & for relation R is
said to be complete, if for any (x,w) € R, it holds that

a < A(z,w; p)
Pr e+ || V(x,a,e,2)=T| =1,
z<—Z(x,w,e,p)

where the probability is taken over the random coins of all involved algorithms.

Definition 6 (Special Soundness). A Y-protocol (A, Z,V') with challenge space E for relation
R is said to be special sound, if there exists a PPT algorithm Ext, such that for any (x,a, e, z, €', 2")
with e # €', it holds that

V(z,a,e,2) = TAV(z,a,¢,2) =T = (2,Ext(z,a,e,2,¢,2")) € R.

Definition 7 (Honest-Verifier Zero-Knowledge). A Y-protocol (A, Z, V') with challenge space
E for relation R is said to be honest-verifier zero-knowledge, if there exists a PPT algorithm Sim,
such that for any (x,w) € R, it holds that

a <+ Az, w;

(z, ,pg) £
€ <—

=« (a,z) < Sim(z, e)
2z Z(xz,w,e,p)
return (z,a,e, 2)
return (z,a,e,2)
We will also require a notion of strong special soundness, as introduced by Kondi and She-
lat [KS22|, which asks for extraction to work even in the case where ¢/ = e, but 2/ # z. Most
JY)-protocols have this stronger property or can be massaged into having it. If extraction fails, the
extractor is allowed to instead recover a “system parameter trapdoor”. We define PPT algorithm
T, which recognizes system parameter trapdoors, i.e., we call ¢ a system parameter trapdoor if and

only if 7(t) =T.

Definition 8 (Strong Special Soundness). A Y-protocol (A, Z, V') with challenge space € for
relation R is said to be strong special sound with respect to trapdoor predicate T, if there exists a
PPT algorithm Ext, such that for any (z,a,e, z,€e',2") with z # 2', it holds that

V(z,a,e,2) =T AV(z,a,¢,2") =T
= (z,Ext(z,a,e,2,¢,2)) € RV T (Ext(z,a,e,z,¢,2)) =1.

The idea is of course that when used in a protocol, it should be computationally hard to obtain
a system parameter trapdoor. In that case, the extractor will return a witness for x except with
negligible probability.
2.4 Simulation-Sound NIZK Arguments

In our constructions we will need universally composable zero-knowledge proofs of membership (UC
ZKM). For a PPT relation R, the corresponding language is defined as

Lr ={z|3w(z,w) € R}.

19

A proof of membership for x is a proof that x € ERH Both Camenisch, Krenn, and Shoup [CKS11|
as well as Nielsen [Niel7] present (equivalent) definitions of UC ZKMs. An ideal functionality Fzn,
which is parameterized by a PPT relation R, for ZKMs is specified. An honest prover P can prove
statements z in front of a verifier V by providing (z,w) as input to the functionality. If (z,w) € R,
then the functionality outputs (z, T) to V, signaling that z is in the language. When a corrupt
prover P wants to prove a statement x in front of verifier V, then the simulator/adversary only
provides x to the ideal functionality, which will just output (x, T) to V. Importantly, the corrupt
prover does not have to present a witness w. At this point the two models of Camenisch, Krenn,
and Shoup |[CKS11| and Nielsen |[Niel7] differ slightly.

In |CKS11] the ideal functionality is called “gullibly” as it accepts = without a witness, so it
could be the case that x ¢ Lr. However, UC ZKM of a protocol is then defined as implementing
Fzxm using a simulator which only inputs = ¢ L with negligible probability. This means that if the
real protocol accepts x ¢ Lr with non-negligible probability then the simulator cannot simulate,
which guarantees soundness.

In [Niel7], when the simulator/adversary inputs z, the ideal functionality will check that = € L.
If this is not the case, it outputs FAIL to the environment. Call this ideal functionality fgf&l. A
protocol is called a UC ZKM, if it implements fgf‘&l, and now there is no explicit restriction on the
simulatorE However, since FAIL is never output in the real protocol, it follows that the simulation
fails, if it happens that x ¢ Lx with non-negligible probability. This means that the simulator only
inputs = ¢ Lz with negligible probability. Therefore the simulator is an admissible simulator for
the definition in [CKS11|. The definitions are therefore equivalent.

Nielsen [Niel7] furthermore shows that a protocol is UC ZKM, if it is complete, zero-knowledge
and weak simulation-sound against a PPT adversary running multiple sessions as defined below.
Below we give the definitions specifically for NIZK proofs.

Definition 9 (Non-Interactive Zero-Knowledge). A NIZK is a tuple of PPT algorithms NIZK =
(Gen, Prv, Ver), which are defined as follow:

crs + Gen(l)‘): The public parameter generation algorithm takes security parameter A as input and
returns common reference string crs.

7 < Prv(crs, x,w): The prover algorithm takes common reference string crs, statement x, and wit-
ness w as input and returns a proof m.

b < Ver(crs,z,m): The verification algorithm takes common reference string crs, statement x, and
proof ™ as input and returns bit b.

Definition 10 (Completeness). A non-interactive zero-knowledge proof NIZK = (Gen, Prv, Ver)
for relation R is said to be complete, if for any PPT adversary A, it holds that

crs Gen(11)
Pr| (z,w) <+ Alcrs) || (z,w) € R AVer(crs,z,m) # T| < negl(\),

7 < Prv(crs, z, w)

where the probability is taken over the random coins of the adversary and all involved algorithms.

11 We stress, however, that the verifier is not guaranteed that the prover knows a witness w, such that (z,w) € R.
12 Note that Fasay, is not PPT as the check x € L is not necessarily poly-time. However, it is shown in [Niel7] that
composition still works: in any PPT protocol using Fyxy; as a blackbox we can securely replace Firy; with a UC

ZKM. After this the overall protocol is PPT.

20

Definition 11 (Zero-Knowledge). A non-interactive zero-knowledge proof NIZK = (Gen, Prv, Ver)
for relation R is said to be zero-knowledge, if there exists a pair of PPT algorithms (SimGen, Sim),
such that for any PPT adversary A, it holds that

(crs, tSim) < SimGen(1%)

Pr b {0,1}||g =b| < = + negl()),

DN |

OSIM()RREAL .

g < A7tsimb ’)(crs)

where the probability is taken over the random coins of the adversary and all involved algorithms and
where the oracle O%?&?E?REAL(-, -) takes as input pairs (z,w). If (z,w) € R, then the oracle returns

L. Otherwise, if b =0, it returns w < Sim(tSim,) and if b = 1, it returns © < Prv(crs, z,w).

Definition 12 (Weak Simulation-Soundness). A non-interactive zero-knowledge proof NIZK =
(Gen, Prv, Ver) for relation R is said to be weak simulation-sound, if there exists a pair of PPT al-
gorithms (SimGen, Sim), such that for any PPT adversary A, it holds that

(crs, tSim) « SimGen(1%)

Sim

Pr
(x,m) « AOtSim(”')(crs)

x & Lr AVer(crs,z,m) =T | < negl(A),

where the probability is taken over the random coins of the adversary and all involved algorithms
and where the oracle Otssff”r’n(, -) takes as input pairs (x,w). If (x,w) € R, then the oracle outputs

L and otherwise it computes m <— Sim(tSim, z) and returns .

Definition 13 (UC NIZK). A non-interactive zero-knowledge proof NIZK = (Gen, Prv, Ver) for
relation R with an associated pair of simulation algorithms (SimGen,Sim) is said to be UC NIZK
proof of membership, if it simultaneously satisfies completeness, zero-knowledge, and weak simulation-

soundness as defined in Definitions and [13 respectively.

Lindell [Lin15] presents a generic compiler that transforms X-protocols into NIZK proofs in the
CRS model in the presence of a non-programmable random oracle. The transformation is proven
to have the three properties defined above and therefore it actually produces a UC NIZK. Since
the random oracle is only used for soundness, we can apply the Fiat-Shamir heuristic and replace
it by a real life hash function and get a UC NIZK in the random oracle devoid model. We use this
to compile X-protocols into UC NIZKs in the CRS model without a random oracle.

We will not go into the details of how Lindell’s transformation works, but we want to highlight
one of its main ideas, which will be relevant to our work. To show that their UC NIZK is sound,
Lindell argues that one could hypothetically extract a witness from an adversarially generated, but
accepting, proof by rewinding an entire UC execution, including the environment itself. Now clearly
one is usually not allowed to rewind the entire UC execution, but the fact that one can in principle
extract a witness means that it must exist, which is enough to show soundness. We refer to this
proof strategy as global extraction.

Attema, Fehr, Kloo |AFK22| show that the Fiat-Shamir transformation applied to multi-
round X-protocols results in proofs of knowledge. Since a witness can be extracted from a proof of
knowledge, it must logically exist. This means that using Lindell’s approach in combination with
global extraction, one can show that multi-round X-protocols can be transformed into UC NIZKs
of membership as well. Note, however, that since extracting the witness can only happen using
extraction, the resulting proof system is not a UC proof of knowledge, as the UC simulator cannot
rewind its environment.

21

2.5 Simulation-Extractable NIZK Arguments

In some cases we will not just need non-interactive proofs of membership, but rather proofs of knowl-
edge. Turning X'-protocols into non-interactive proofs of knowledge via the Fiat-Shamir transfor-
mation [F'S87] requires rewinding for extracting the witness and for this reason this transformation
does not give us proofs of knowledge in the UC setting. Fischlin |[Fis05] presents an alternative
transformation, which has an online extractor, thus also works in the UC setting, but requires the
JY)-protocols to have unique responses z. Unfortunately, this property is not satisfied by some of the
protocols we would like to use in our work.

Kondi and Shelat [KS22] present a randomized version of Fischlin’s transformation, which allows
for online extraction and only requires the starting X-protocol to satisfy strong special soundness.
Lysyanskaya and Rosenbloom |[LR22] show that Kondi and Shelat’s transformation can transform
J)-protocols into non-interactive proofs of knowledge in the UC model with a so-called restricted,
programmable, observable, random oracle Groro- We point to the work of Lysyanskaya and Rosen-
bloom for a formalization of Groro. For our purposes it suffices to know that Groro is one of the
possible formalizations of the usual random oracle lifted to the UC model. The only technicality
needed, is that the simulator is allowed to observe the queries made by the environment, but we do
not allow the environment to observe queries made by the simulator, which would make it trivial
for it to know that it is in the simulation. For more details on this, we refer the reader to the work
of Lysyanskaya and Rosenbloom. In the descriptions below we will denote the random oracle by O.

In our work, we will use a definition of GUC NIZK PoKs that is equivalent to the definition
given by Lysyanskaya and Rosenbloom |[LR22, Definition 11], but is more convenient to work with.
We will state our definition here and defer the discussion of why the two definitions are equivalent

to supplementary material

Definition 14 (Non-Interactive Zero-Knowledge Proof of Knowledge). A NIZK is a tuple
of PPT algorithms NIZKPoK = (Gen, Prv, Ver), all with access to oracle O, which are defined as
follow:

crs + Gen(l)‘): The public parameter generation algorithm takes security parameter A as input and
returns common reference string crs.

7w < Prv(crs, x,w): The prover algorithm takes common reference string crs, statement x, and wit-
ness w as input and returns a proof m.

b < Ver(crs,z,m): The verification algorithm takes common reference string crs, statement x, and
proof ™ as input and returns bit b.

In all of the following security definitions related to NIZKPoK, we will assume that the extractor
Ext and simulator Sim can observe all queries made to the O by the adversary but not vice versa.

Definition 15 (Completeness). A non-interactive zero-knowledge proof of knowledge NIZKPoK =
(Gen, Prv, Ver) for relation R is said to be complete, if for any PPT adversary A, it holds that

crs « Gen(1%)
Pr | (z,w) + A% (crs) || (z,w) € R A Ver(crs,z,m) # T | < negl()),

7 < Prv(crs, z,w)

22

Definition 16 (Zero-Knowledge). A non-interactive zero-knowledge proof of knowledge NIZKPoK =
(Gen, Prv, Ver) for relation R is said to be zero-knowledge, if there exists a pair of PPT algorithms
(SimGen, Sim, Ext), such that for any PPT adversary A, it holds that

(crs, tSim, tExt) < SimGen (1)
Pr b+ 1{0,1} |lg =b| < = + negl()),

g — AO?SI:\;-.(,){;REAL(7)’055);’{(7)»0() (

N | =

crs)

where the probability is taken over the random coins of the adversary and all involved algorithms
and where the oracles are defined as follows:

T OtS'S‘f:OTReal(-): The oracle takes pairs (z,w) as input and if (r,w) ¢ R, then it returns L.
Otherwzse, if b= 0, it returns ™ < Sim(tSim, z) and if b = 1, it returns w < Prv(crs,z,w). It
adds (z,m) to Q.

T/L < OFt(x,7): The oracle takes (x,m) as input and checks whether Ver®(crs,x,w) = T. If
not, it returns L. Otherwise, it proceeds as follows. If (z,7) € Q, it returns T or if (x,7) & Q,
it computes w < Ext® (tExt, z, 7). If (x,w) € R it returns T, otherwise it returns FAIL.

Definition 17 (Weak Simulation-Extractability). A non-interactive zero-knowledge proof of
knowledge NIZKPoK = (Gen, Prv,Ver) for relation R is said to be weak simulation-extractable, if
there exists a pair of PPT algorithms (SimGen,Sim, Ext), such that for any PPT adversary A, it
holds that

(crs, tSim, tExt) < SimGen (1)

Sm

P ExT _ |
r Aot&m .) Ofé};é()O(')(Crs) OtEXt — FAIL neg ()\)’

where the probability is taken over the random coins of the adversary and all involved algorithms
and where the oracles are defined as follows:

7+ OFM (3 w): The oracle takes pairs (v,w) as input and if (z,w) ¢ R, then it returns L.
Otherwise, it computes © < Sim® (tSim,), adds (z,7) to Q, and returns .

T/L < OFX(z,7): The oracle is as defined in Definition . We write OFXT — FAIL to denote
the event that OFXT on some activation returned FAIL.

Definition 18 (GUC NIZK PoK). 4 non-interactive zero-knowledge proof of knowledge NIZKPoK =
(Gen, Prv, Ver) for relation R with an associated pair of simulation algorithms (SimGen, Sim) and ez-
tractor Ext is said to be UC NIZK PoK, if it simultaneously satisfies completeness, zero-knowledge,
and weak simulation-extractability as defined in Definitions and [17 respectively.

3 Anonymous Coin Friendly Encryption (ANCOs)

The first tool we need for building OCash is anonymous coin friendly encryption.

Definition 19 (Rerandomizable Public Key Encryption). A rerandomizable public key en-
cryption (RPKE) scheme is a tuple of PPT algorithms RPKE = (Params, Gen, Enc, Dec, Ran), which

are defined as follows:

pp < Params(1*): The parameter generation algorithm takes security parameter X as input and
outputs public parameters pp.

23

(ek,dk) < Gen(pp): The key generation algorithm takes public parameters pp as input and returns
encryption key ek and corresponding decryption key dk.

ct « Ence(ms; p): The encryption algorithm takes encryption key ek, message m € M, and ran-
domizer p as input and returns ciphertezt ct € C.

m < Decgx(ct): The decryption algorithm takes decryption key dk and ciphertext ct € C as input
and returns plaintext m € M.

ct’ « Ran(pp, ct): The rerandomization algorithm takes public parameter pp and ciphertext ct as
input and returns ciphertext ct’.

For an integer k € N, we write Rank(pp, ct) to denote the k-fold application of the rerandomization
procedure to ciphertext ct.

We consider encryption schemes in the presence of a relation Ry for statements x = (pp, ct, m)
and witnesses w = p. The pair (x,w) is in Rpxc if and only if there exists a key pair (ek,dk) in the
support of Gen(pp), such that ct = Encex(m; p). We require the relation to be efficiently checkable,
when given only x and w, meaning that one can efficiently check whether a ciphertext is indeed
a valid encryption without knowing the public key. This is crucial as anonymous payments will
contain such an encryption for the receiver. We require our encryption scheme to satisfy several
other properties stated in the following.

We require honestly generated ciphertexts to decrypt to the correct plaintext.

Definition 20 (Correctness). We say an encryption scheme RPKE = (Params, Gen, Enc, Dec,
Ran) is correct, if for all X\ € N, all k € N and all m € M:

1)
pp) || Decgk(ct) =m| =1,

pp < Params(
Pr| (ek,dk) <+ Gen(

ct < Ran®(Encex(m))

where the probability is taken over the random coins of all involved algorithms.

The next property, called key-indistinguishability under rerandomization, requires that no adversary
can determine under which key a given ciphertext was encrypted. Our notion is stronger than the
classical notion of key-indistinguishability as originally formalized by Bellare et al. [BBDPO01], since
we allow the adversary to rerandomize the ciphertext an adversarially chosen amount of times.

Definition 21 (Key-Indistinguishability Under Rerandomization). We say encryption
scheme RPKE = (Params, Gen, Enc, Dec, Ran) is key-indistinguishable under rerandomization, if for
any PPT adversary A = (A1, As) and any A € N:

pp < Params(l)‘)

(eko, -) + Gen(pp); (eky, -) < Gen(pp)

- (mo,m1, ko > 1,k1 > 1,st) < A1 (pp, eko, eky) vl — 1 + negl(),
b+ {0,1} 2

cty, = Rankb(Encekb(mb))

v+ As(st,ctp)

where the probability is taken over the random coins of the involved algorithms and the adversary.

24

We require that any ciphertext can decrypt to at most one message, no matter which decryption
key is used.

Definition 22 (Strong Message Binding). We say an encryption scheme RPKE = (Params,
Gen, Enc, Dec, Ran) with associated relation Rpnc is strongly message binding, if for any PPT ad-
versary A and any A € N:

pp Params(1%)

o l(c,m,w) «— A(pp) = Dec.(ct) & {m. 1}|

, Ct,) €ER
‘((PP C m) w) ENc 1 negl()\) '

Definition 23 (Anonymous Coin Friendly Encryption Schemes). We say a rerandomizable
encryption scheme (Params, Gen, Enc, Dec, Ran) is an anonymous coin friendly encryption scheme
(ANCO), if it simultaneously satisfies correctness, key-indistinguishability under rerandomization,
and strong message binding as defined in Definitions and [23.

3.1 Constructing Anonymous Coin Friendly Encryption

We give our instantiation of a rerandomisable public key encryption scheme RPKE and prove that
it is an ANCO. Let G be a group of prime order ¢ where the DDH problem is hard. The public
parameters will be of the form gy € G, where gg is a generator. A public key will be of the form
(90, h = g§) where x € Z, is the secret key. A ciphertext will be of the form ct = (A, B, C, D) where
A # 1 and B = A* for the unique secret key x for which the ciphertext is intended and m = DC™"
is the message. Note that the part (A, B) of ciphertext uniquely fixes the secret key = and the part
(C, D) is a normal ElGamal encryption for that secret key. The reason why we carry (A, B) along
is to be able to rerandomise a ciphertext without knowing the public key: (C, D’) = (A”'C, B” D).
The part (A, B) will simply be a rerandomized version of the receiver’s public key and will be
rerandomized as (A’, B') = (A?, B?). To decrypt (A, B, C, D) using = we define the output to be L
if B # A*. If B = A” the output is m = DC™". The scheme is summarised in The ciphertext
space is the set of all ct = (A4, B,C, D) € G* where A # 1. Note that this implies that A has order
q and therefore the discrete logarithm DL, : G — Z, is well-defined. We call x = DL 4 B the secret
key of the ciphertext. This defines the keyless decryption RPKE.Dec.(ct) as follows. Let x = DL 4 B
and then return RPKE.Dec,(ct). Note that RPKE.Dec.(ct) is well defined but not poly-time.

Theorem 1. RPKE in is an ANCO if DDH is hard in G.

Proof. We have to prove that (z,w) is in Rpyc if and only if there exists a key pair (ek,dk)
in the support of Gen(pp), such that ct = Encec(m;w). This is easy to see, as (A, B,C,D) =
Encex(m; (p, p')) implies that (4, B) = (g5, h?), so ek = (4°~ , B).

It is clear that if ct is in the ciphertext space then Ranpp(ct) is also in the ciphertext space
as p # 0 so A? # 1. Finally, it follows that Dec.(Ran(ct)) = Dec.(ct) as DL4» B? = DLy B and
B D(AP'C)~* = DC~* when B = A®. From this it also follows that Dec,(Ran(ct)) = Dec,(ct),
and we get correctness.

To show strong message binding we have to assume that ((pp,ct,m),w) € RExc and show that
Dec.(ct) = m. This is clear as ((pp,ct,m), w) € Rexc implies that ct = Encex(m; (p, p)) so we can
appeal to correctness.

Finally we have to prove that key-indistinguishability under rerandomization. We are given any
PPT adversary A; and run (mg,my,79 > 1,71 > 1,st) « A;(pp,eko, eki) for uniformly random

25

Params(1%) Decak(ct)

1. Sample (G, go, q), where DDH is hard in the 1. Input: pp = (go, q),dk = z,ct = (4, B,C, D)
group G generated by go, and G has prime 2. If B = A® let m = DC ™%, otherwise let m = L.
order q. 3. Output m

2. Output pp = (9o,)

Ran(ct)
Gen(pp) 1. Input: pp = (g0, q),ct = (4, B,C, D)
1. Input pp = (go,q) 2. p+Z;
2. T ZLq 3. p 2y
3. h=g§ 4. Output ct’ = (A?, B, A” C, B D)

4. Output (ek = (go, h),dk = z)
Rexc(z = (pp,ct,m), w = (p, p))

E el
Encuc(m) 1. (A,B,C,D) « ct
1. Input: pp = (go,q),ek = (g, h), m 2. (g,h) = ek « (Ap*17Bp*1)
2. p<Z 2 7
3. o Z: 3. Output g = go A ct = Encex(m; (p, p))

4. Output ct = (g5, hpvgé)/7 hplm)

Fig. 4. The ANCO RPKE

public keys ekg and ek;. Then we compute ctyg = Ran"(Encek,(m0)) and ct; = Ran" (Encek, (m1))
and have to argue that A; cannot guess b given ¢,. We have that the distributions of ctg =
Encek, (mo) and ct; = Encek, (m1) are given by

PO 1 i

ctp = (980; hgov 9007 hpom())
o1 p

cty = (gfl) hgl) 9117 h’plml)

for uniformly random pg, p1 € Z; and P06, PL € Zg. It is easy to see that because rerandomization
uses a uniformly random p € Z; and uniformly random p € Z; the exact same distributions
describe Ran™ (ctp) and Ran"!(cty). It is therefore sufficient to prove that ctp & ct;, where ~ denotes
computational indistinguishability. This clearly holds under the DDH assumption in G, and follows
using essentially the same proof as the proof of IND-CPA of ElGamal encryption. Namely, assume
we get (A, B,C, D) € G* which in case A are four independent uniformly random elements and
which in case B are three independent uniformly random elements A, B, C and D = CPY4 B, These
two distributions are by definition computationally indistinguishable under the DDH assumption.
Now input ct = (A, B,C,Dmy) to A in the game instead of ct,. In case A this information-
theoretically hides b, so the adversary guesses b with probability exactly % In case B this gives
ct exactly the same distribution as ctp. Since cases A and B are indistinguishable it follows that
the adversary guesses b with probability negligibly close to % Otherwise we could use g ® b to
distinguish case A or case B. a

4 Compressible Randomness Beacons (CRaBs)

In this section, we formilize the notion of compressible randomness beacons. We refer the reader to
the technical overview in Section for a discussion of what this primitive is and why we need it.

Definition 24. A compressible randomness beacon (CRaB) with input domain [T] and range Y is
defined by a tuple of PPT algorithms CRaB = (Gen, Eval, Prefix), which are defined as follows:

26

k < Gen(1*): The key generation algorithm takes the security parameter X as input and returns a
key k.

v < Eval(k,i): The evaluation algorithm takes the key k and index i € [T] as input and returns an
evaluation v € Y.

k* < Prefix(k,1%): The prefiz algorithm takes a key k and index 1° € [T] in unary as input and
returns a key k*.

Remark 1. We note that our prefix algorithm takes the index as a unary input, which may seem
odd at first. This is done for technical reasons. In our main protocol, the polynomially bounded
parties will only run for a polynomial number of time steps and therefore only input a polynomially
large index, thus the provided interface of the prefix algorithm is sufficient. Looking ahead, in the
proof of our compressible randomness beacon construction, we will need to guess the largest index
provided by the adversary, but because there are only polynomially many that the adversary could
query, we will be able to do this with a polynomial loss, instead of a super-polynomial loss. o

We would like our randomness beacon to be correct in the sense that the prefix keys produce
evaluations that are consistent with the master secret key.

Definition 25 (Correctness). We say CRaB = (Gen, Eval, Prefix) with input domain [T] is cor-
rect, if for all i,7 € [T] with i < j it holds that
[k + Gen(1)
r

k* < Prefix(k,17)

’Eval(k,i) = Eval(k*,d)| =1,

where the probability is taken over the algorithm’s random coins.

From a security perspective, we want keys for prefixes to not reveal anything about outputs on
indices outside that prefix. Given keys for prefixes up to index j, the adversary should not be able
to predict any value at any index ¢ with ¢ > j. Conceptually, our notion is reminiscent of notions
for constrained PRFs [BW13, [KPTZ13, BGI14].

Definition 26 (Unpredictability). We say CRaB = (Gen, Eval, Prefix) with input domain [T
and output domain [N] is unpredictable, if for any PPT adversary A it holds that

. k < Gen(1*) Eval(kéz) — 2 PR o)
.) maxQp <1 S -7 + neg)
.7 - AEvaI(k7~),Pref|x(k,~) 1)\) N
(i,v) (%) i ¢ Qp

where the randomness is taken over the coins of all algorithms and the adversary, Q is the set

of inputs queried by the adversary to the oracle Eval(k,-), and Qp is the set of inputs to oracle
Prefix(k, -).

The property that makes CRaBs non-trivial to construct and interesting for our application is
the d-compressibility requirement, which states that prefix keys should be of size at most §.

Definition 27 (Compressibility). We say CRaB = (Gen, Eval, Prefix) with input domain [T
and range Y is 6-compressing for some § = §(T), if for all k < Gen(1*) and i € [T] it holds that
|Prefix(k,i)| < 0.

Constructing CRaBs that are (5(T)—compressing is trivial, but also not particularly interesting,
so our focus lies on building CRaBs that are o(1")-compressing.

27

4.1 Constructing Compressible Randomness Beacon

Our construction of a compressible randomness beacon is a conceptually simple adaptation of
existing approaches that construct puncturable PRFs [BW13|, [KPTZ13, BGI14] from the PRF
construction of Goldreich, Goldwasser, and Micali (GGM) |[GGMS84].

Before explaining our construction, let us first recall the GGM construction, which constructs
a PRF F : {0,1}* — {0,1}* from a PRG G : {0,1} — {0,1}?*. For notational convenience, let
us define Gy and G to be functions that output the first and second half of the output of G, i.e.
G(s) = Go(s)||G1(s). On input & = 21| ... ||z, € {0,1}, the output of F with key & is defined to be
Gz, (... Gy (G (k) ...). Pictorially, one can view the evaluation of F' as traversing a binary tree of
depth ¢ from top to bottom via a route that is determined by input x and then returning the value
of the leaf node that is reached. The root node’s value is k and for any (non-leaf) node with value v,
the left child’s value is G(v) and the right child’s value is G1(v). On input = = z1]| ... ||z, € {0,1}¥,
one traverses the tree by iterating over the bits and going left if the current bit is zero and right if
the current bit is one.

Our construction of a compressible randomness beacon will be based on the above construc-
tion and will make use of the following simple, but very powerful observation, which was already
exploited in works that constructed puncturable PRFs [BW13, KPTZ13| |BGI14]: one can take the
PRF key k and produce a key, which only allows evaluating the PRF on a subset of inputs. Note
that computing a certain leaf’s value, i.e., a PRF output, requires knowing the value of at least
one node between that leaf and the root node and if no such value is known, then the leaf’s value
is computationally hidden. As an example, one could provide the left child of the root node as a
constrained key, which would allow for evaluating the PRF on all inputs starting with a zero bit,
but prevent anybody from predicting the output values for any inputs that start with a one bit.

The idea behind our compressible randomness beacon is to view the i-th leaf (counted from
the left) as the i-th random beacon output. Along with the random output, we will provide a
small constrained key, which will allow for computing all previous outputs, but not any future
ones. In the setting of puncturable PRFs based on the GGM construction, one can generally not
reveal multiple arbitrary constrained keys as this would allow the adversary more outputs than
they should. However, when the sequence of revealed keys is fixed to be the sequence which allows
for evaluating growing prefixes of leafs, this is not a problem.

To formally present our construction, let us introduce some notation. We assume all nodes in
the binary tree can be addressed by bit-strings, where the string z1]| ... ||zx would point to the
node that is reached by starting at the root node and going left or right depending on zi, then
making the same decision based on x2 and so on. The root node has address L. For a node with
address v, we refer to the node’s value by Value(v). The parent of that node is Parent(v), the left
child is Left(v), and the right child is Right(v). Let Pred(v) be the set of predecessors (along with
their values) of v, i.e., the parent of v and the parent of the parent of v and so on. Let Span(v) be
the set of all node addresses (and their values) that has v as a predecessor. For a given node v and
a leaf index ¢ € Span, let Compute(v, i) be the function that computes the value of node 7 according
to the GGM construction by appropriately cutting off the prefix bits of ¢ that would be “above”
node v.

Theorem 2. Let A\, £ € N with £ = poly()\). Let G : {0,1}» — {0,1}** with Gy : {0,1}* — {0,1}*
and Gy : {0,1}* — {0,1}*, such that for all s € {0,1}, it holds that G(s) = Go(s)||G1(s) is a
secure pseudorandom generator. Then the construction in is a correct, unpredictable and
O(L - X)-compressing randomness beacon.

28

Gen(1*) Prefix(k, 1%)
Lk« {0,1}} LIfi=2'—1
2. Return k 9 Return k
. 3. cur:= L
Eval(k, i) 4 S=1{3)
1. If i € Span(k) 5. While cur # ¢
2. Return L 6. If Left(cur) € Pred()
3. Else 7 cur := Left(cur)
4. Parse i as i1 ... ||i 8. If Right(cur) € Pred(7)
5. Let v € kN Pred(:) 98 S:=5 U {Left(cur)}
6. Return Compute(v, 1) 10. cur := Right(cur)
11. Return S

Fig. 5. Compressible randomness beacon construction.

Proof (Sketch). Let us start with observing that our construction is correct. Let k be an arbitrary
key, let i € [2¢ — 1], and let S := Prefix(k, 1%). If i = 2¢ — 1, then the algorithm just returns the root
and from there clearly any leaf can be computed. So assume i < 2¢ — 1 and let j < 4 as the i-th
leaf is always included in S by construction. Let v be the lowest common ancestor of node ¢ and j.
Since ¢ > j, we know that reaching i requires going down the right and reaching j requires going
down the left path. This means that during the computation of Prefix(k,7), the left child of v was
included in S from which one can compute the value of node j.

To see that the construction is O(¢ - A)-compressing, we observe that at each layer, we include
at most one A-bit long string into S. Since the depth of the tree is £, the compression follows.

To argue unpredictability, we would like to follow the proof strategy of [GGM84], which reduces
the security of their PRF to the security of a PRG, but we face an additional challenge. The
adversary against the randomness beacon’s unpredictability is additionally allowed to query the
Prefix(k, -) oracle and we thus may need to provide internal nodes of the tree, which allow for
computing certain evaluations of the beacon. This means that during the proof, we cannot just
simulate leafs by random values as this may then end up being inconsistent with the internal nodes
we would need to provide.

Let A be a polynomial time adversary that runs in time ¢(A). By the bound on the runtime
on A, we know that any index queried to the prefix oracle is of size at most g(\). We consider
a modified unpredictability experiment, where the challenger initially guesses the largest index
i* € [¢(A\)], which the adversary A against the unpredictability will query to the prefix oracle.
Since A is PPT, it means that the guess will be correct with an inverse polynomial probability.
The challenger honestly picks uniformly random node values for the nodes in the set that would
be returned by Prefix(k,:*). Note that for any ¢ < i* this allows consistently answering any query
Prefix(k,i) or Eval(k,i*) as both responses can be computed from the output of Prefix(k,:*). For
any ¢ > ¢, any query to the Eval oracle with index i, we let the challenger pick a fresh uniformly
random value (unless it was previously already picked in which case we use the already selected
value) and return that value. Finally, at some point the adversary A will output a pair (i,v). If our
guess for ¢* was incorrect, then the challenger in our hybrid simply aborts and makes a random
guess. If the challenger’s guess was correct, then clearly the adversary can do no more than guess
an output, since they are all uniformly random and independently chosen values.

What remains to show is that this modified experiment and the original experiment are indis-
tinguishable from A’s perspective. This is done by an argument essentially identical to the one of

29

the GGM PRF, just applied to a part of the tree and not the full tree itself. Due to the guessing,
our proof incurs an additional polynomial security loss. Since the proofs from this point on are
virtually identical, we refer the interested reader to the original proof |[GGM84]. O

5 Strongly Oblivious Read-Once Maps (SOROMs)

In this section, we formally introduce the notion of strongly oblivious read-once maps (SOROMs),
which are defined by a tuple of PPT algorithms SOROM = (Pos, Route, Read). For a high-level
discussion of what this primitive is and how it will be used in our context, we refer the reader to
the technical overview in Section [L.3

We model SOROMs as encrypted memory arrays. When inserting an element into the data
structure, a random label L is chosen and assigned to the element. The element along with the
label are encrypted and are always initially placed into position 0 of the memory.

To make sure that we can always insert new elements into position 0 , we need to route elements
around in the memory after each insertion. For each i € N, after the i-th insertion operation, the
memory positions indicated by Pos(7) will be the ones that are touched for routing purposes. Data
in these positions may be moved around and data outside these positions stays where it is for
the moment. The positions returned by Pos(i) and the labels of elements in those positions are
given as input to Route, which determines how these elements should be moved around. More
precisely, Route outputs a permutation 7 on [|Pos()|] specifying how data elements are permuted
within the positions from Pos(7). Since the actual data elements are just dragged along with their
corresponding labels and not important for the routing we leave them out of the definition. Only
labels are routed around. The function Read(L) returns a set of memory positions, ensuring that
one of those positions stores label L.

Informally, we define strong obliviousness to mean that L leaks nothing about when the data
was inserted, even if the adversary gets to see the movements of a set of adversarially corrupted
labels. Thus one can retrieve data by reading at locations Read(L) without leaking which was the
corresponding write operation.

Definition 28. A read-one map with label space L and memory size N is a tuple of PPT algorithms
(Pos, Route, Read), which are defined as follows:

S <= Pos(i): The positions algorithm takes an insertion counter i € N as input and returns a set of
memory positions S C [N].

7 Route(j1,...,je, L1, ..., Lg): The routing algorithm takes memory indices j1,...,j5¢ € [N] and
labels Ly, ..., Ly € L as input and returns a permutation m : [{] — [{].

S < Read(L): The read algorithm takes a label L € L as input and returns a set of memory locations
S C [N].

In the following security definitions, we view the memory M as a function mapping indices to
labels, i.e., M: [N] — L. For notational convenience for a set S C [N], we write M(S) :={L | Ji €
S M(i) =L},

Definition 29 (Correctness). We say a read-one map (Pos, Route, Read) with label space L and
memory size N is correct, if at the end of an execution of running ExecSOROM with final
insertion counter i € N, it holds that

Pr [Vi/ <1 (LZ'/ S M[Read(Li/)})] >1-— negl(/\) .

30

Game ExecSOROMSPROM(1%).

1. Initialise an insertion counter ¢ = 0, a set of corrupt insertions C and a set of honest insertions H. Let M
be the initial memory with M[j] = 0 for all j. Sample a uniformly random challenge bit b.

2. Run A to get an output o where o € {HONEST, CORRUPT} or o = (DONE, g € {0, 1}).

3. If o € {HONEST, CORRUPT}, proceed as follows:

(a) Sample uniformly random L; < £. If L; = L;s for any i' < 4 then stop the game with output 0
(meaning that the adversary Wins)
(b) If o = CORRUPT then add i to C and give L; to A.
¢) If o = HONEST then add i to H. Furthermore, if b = 0 give L; to A. If b = 1 sample uniformly random
L; < L and give L to A.
d) Update M[0] = L.
)

—

) Compute the positions to route among (j1, ..., je¢) = Pos(7).
) For h=1,...,¢1et L, = M[j].
Sample 7 < Route(j1,...,je, L1, ..., Le).
)
)

SN~ o~

Forh=1,...,0 let M[]}L] = Lﬂ.(h).
For all j € C tell A the new position of Lj;.
(j) Leti=14+1 and go to step
4. If o = (DONE, g) then terminate with output g ® bEl

e
f
g
h
(i

% This is a technicality allowing us to proceed below under the assumption that all labels are unique.
® Note that output 0 means that the adversary guessed b correctly.

Fig. 6. Security game for SOROMs.

We define the strong obliviousness property that we require from our data structure through
the game depicted in In this game, the adversary is allowed to adaptively insert honest or
corrupted data elements. The movements of the corrupt ones they can track, those of the honest
ones they cannot. For the honest ones, the adversary either always gets the real corresponding labels
or independent random labels. By just seeing the movements of the corrupt labels, the adversary
then needs to decide in which of those two worlds it lives.

Definition 30 (Strong Obliviousness). We say a read-once map (Pos, Route, Read) with label
space L and memory size N is strongly oblivious, if for any adversary A, it holds that

1
Pr [ExecSOROM4(1%) = 1] < 5 +Hegl(Y) |

where ExecSOROM 4(1*) is defined in and the probability is taken over the random coins of
the experiment and the adversary.

5.1 Constructing Strongly Oblivious Read-Once Maps

Our construction of a strongly oblivious read-once map closely follows the ORAM construction of
Shi et al. [SCSL11|. They arrange their memory of size N = 2P into a full binary tree of depth
D, where each leaf and internal node is a bucket which can store up to B data elements. For an
overview of the binary construction see Section 3 in [SCSL11|. Elements are inserted in the root
bucket with an associated label L pointing to a uniformly random leaf of the tree. To get a SOROM
we let the data element be L.

After each insertion an eviction algorithm Evict(v) is run, see Fig. 5 in [SCSL11]. From root to
leaf, in each layer v buckets b are chosen and from each b one data element L is pushed one level

31

down towards leaf L. To the other child bucket a dummy element is pushed for obliviousness. For
their asymptotical analysis they use v = 2, and we do the same. We will use the same construction
but using instead an eviction rule EvictAll(v) which from each b pushes all elements in b one level
down. Le., EvictAll(rv) simply runs Evict(v) B times on the bucket b. We use D = X and thus
N = 2*. We use bucket size B = o(logs A)(logs logy A) for a statistical security parameter o, which
can be set at will under the restrictions that 277 = negl(\).

Note that [SCSL11] also has protocols for handling what happens when an element is read (it
is reinserted at the root). We do not use this. We only insert L in the root and then run EvictAll(v)
once after each insert. The set Pos(i) is thus the positions in the buckets b selected for eviction in
the ¢-th run of EvictAll(r) and Route(7) is given by the pushing down in the tree. The set Read(L)
is the set of buckets from the root to L. We now proceed to analyse the construction. A bucket is
said to overflow if we try to store more than B elements in it.

Lemma 1. For the basic ORAM in [SCSL11] with the above parameters and using EvictAll(v) and
under an access pattern which does a polynomial M < N number of inserts to unique addresses
0,...,M — 1, the probability that any bucket overflows is at most 27°.

Proof. Consider polynomial M = A\™ inserts to unique addresses, for m € N. Assume for now
that we use Evict(v) and that we use bucket size B = 20. Let Dy; = logy M = mlogy A. Change
the eviction rule to not moving any elements out of buckets at depth Djs or deeper. Clearly the
probability of overflowing any bucket only increases. Furthermore, the ORAM behaves exactly as
the basic ORAM from [SCSL11] with ORAM capacity Np = 2P = M. Note that the address
space is {0,...,Np — 1} and M = Np, so we can still inserts to the M distinct addresses. The
significance of writing to distinct addresses is that then there will never be an overwrite of an
address. Since there are no reads either, it follows that |[SCSL11| like our SOROM just forever
evicts elements towards leafs. So, by Lemma 2 on page 210 in [SCSL11] we have for the eviction
rule Evict(rv) with v = 2 that the probability that any given bucket at any given time overflows
is at most § = 27 5. Taking a union bound over Np = 2P buckets and M operations this gives
us an upper bound of v = MNp2~8 = 22Pu—B — 92m{logz =B From 277 = negl(\) we have
that 2mlogy A < o, where we use < to mean eventually < for large enough A. So, v < 277. Since
277 matches the conclusion of the lemma, let us assume for the rest of the proof that no bucket
overflows. Then no bucket ever has more than B elements. As we do not push below depth Djy, it
follows that no path ever has more than Dj;B elements. This clearly also holds if we increase the
size of buckets to oo, as Evict(r) does not depend on bucket size when there is no overflow.

Now switch from Evict(v) to EvictAll(v) and keep everything else the same, i.e., B = oo and we
make the same random choices for which buckets to evict. Notice that EvictAll(v) always produces
paths with less elements than Evict(r). To see this consider a bucket b on path (towards) L. If we
use Evict(v) then one element is pushed from b and down L or it is pushed off L. The remaining
elements from b stay on L, as b is on L. If we run EvictAll(v) then the remaining elements in b are all
pushed down L or off L. This at most decreases the number of elements on L. What makes this work
is that elements are never pushed unto a new path, as we work with a tree and always push down.
Ergo, with EvictAll(v) no path will have more than DjysB elements. So, clearly no bucket will have
more than Dy, B elements either. We have that Dy B = 2omlogy A < o(logy M) (log, logy \) = B,
where the inequality uses that 2m is a constant and thus 2m < (logylogy A). So no bucket ever
has more than B elements. Now change the eviction rule to push beyond level D), again and use
bucket size B. After these changes we are exactly running the ORAM in the premise of the lemma.

32

Pushing beyond level Dy, clearly only decreases the probability that a bucket overflows. This proves
the lemma. 0

Theorem 3. The construction described above with label space £ = {0,1}* and bucket size of
B = (logy \)3(logy logy A) is a SOROM and for any polynomial number of operations is correct
with probability 1 — negl(\). Furthermore, each invocation of Route needs to touch an expected

O(logy(N) - B) labels.

Proof. Setting o = (logy \)? we get bucket size B = (logy A\)3(log, logy A) and error probability
A71o822 — negl()\). Correctness follows from as any adversary against the SOROM is
polynomial and therefore does at most polynomially many inserts. When there are no overflows,
correctness is straight forward. Strong obliviousness follows from the fact that elements move in-
dependently of each other: if an element is in a bucket chosen for eviction, then it will move one
step down the treeE Furthermore, the element moves towards its uniformly random L which is
independent of other labels. As for complexity note that touching a path potentially touched A\B
labels as there are)\ levels and buckets have size B. Note, however, that we only need to touch
buckets which were activated in the following sense. To begin with say only the root is activated.
Inductively say that if an activated bucket b is chosen for eviction by EvictAll(v), then its two
children become activated. After M operations the were at most 2M distinct buckets chosen for
eviction at each level d — 1 as v = 2. So, at most 4M distinct buckets were activated at level d.
So, since level d has width 2%, when accessing all buckets on the part to a random label L there
it probability < 4M2~% of touching an activated bucket at level d. For d < logy(M) + 2 this gives
the uninteresting bound < 1. For d > logy(M) + 2 + £ it gives < 27¢. So, the expected number of
active buckets touched is at most logy (M) 4+ 3 = O(logy A). O

6 Ideal Functionality for Anonymous Cryptocurrency

We start by giving a security definition for anonymous cryptocurrency by an ideal functionality
FanonPay- The model is very idealised and is not an attempt to model all aspects which would be
relevant to a real-life implementation. The model is meant to capture the fundamental security
properties that we want the system to have by giving an ideal functionality with these properties
and then defining security via the UC framework.

We consider an account based setting as it makes our definitions of anonymity more intuitive.
We assume accounts might have a known association with real world identities and that transactions
are between accounts. The motivation for the first assumption is that once an account was used to
pay for a good at an online shop and the shop shipped the good to the user, the shop will know who
owns the account. Our constructions can be applied to a UTXO setting too, but would require a
somewhat more involved modelling, so we pick an account based model for simplicity. To mitigate
that the owner of accounts might not be fully anonymous we will require that the sending account
and receiving account of a transfer cannot be linked. The only thing which leaks about an account
is how many sends and receives it made. So anonymity is required at the level of transfers. We
consider two levels of anonymity. When the flavour is weak then the sender of a transfer may learn
when the receiver collects the transfer. When the flavour is strong then the sender is oblivious of
when the receiver collects the transfer.

13 Note that this would not be true for Evict(v).

33

We use Accounts to denote the set of accounts. For concreteness think of the set of accounts
as being the set of public keys for a signature scheme. We generally denote an account by A. For
concreteness think of each account having an associated key pair (pk,sk) and A = pk being the
name of the account. In the discussion below, when using A to name the account we use ska to
name the secret key. The part of Fanonpay related to account creation is given in Fig. m

Parameters The ideal functionality is parameterised by a flavour of anonymity fla € {STRONG, WEAK} and
an initial amount ap € N. On the first activation it asks the adversary S for a TID distribution Tid which
is used for sampling transfer identifiers. The adversary must give a distribution Tid back with exponential
collision-entropy, i.e., if S is a set of payment identifiers, then Prftid € S| tid < Tid] < |S|2*. This is to
ensure that we can ignore the event that a randomly sampled transfer identifier will hit an already used
one.

Init When activated for the first time, proceed as follows. Let Accounts = {} be the initial set of accounts.
Initialise a map Balance : Accounts — N with Balance[A] = 0 for all A. Initialise the abstract transfer
identifier atid = 0.

Create Account On input (CREATEACCOUNT) from a party P, leak (CREATEACCOUNT, P) to S.
Callback Account Observable On a subsequent input (MAKEACCOUNTOBSERVABLE, P, A) from S,

where A ¢ Accounts, add A to Accounts and output (CREATEACCOUNT, A) to P. From now on let Pa
denote P and if we say that A does something, we mean that Pa does that thing.
If this was the first account created, i.e., |Accounts| = 1, then let FA = A and let Balance[FA] = aq.

Fig. 7. Functionality f:i(’;gay. Events related to creation.

Remark 2 (Where is the secret key?). When an account is created by party P the name A of the
account is returned by the command, as opposed to letting P input the account name to the
command. Another design choice is that only the account name is output, not any secret key
material used for controlling the account. In terms of an implementation, think of the key material
(pk, sk) as being generated as part of the account creation command. After the account was created
the command returns A = pk to the user on its API and the corresponding secret key sk is securely
stored locally. When the party Pa, having created A, wants to use the account A = pk then the
secret key skp is recovered from storage. This prevents that we give ska as output and have to
give it as input. Since it is the environment which sees outputs and gives inputs in the UC model
and the environment talks to the adversary, having made the secret key sk an output would have
created problems.

One might then be worried about how to authenticate access to ska. Since A = pk is public
knowledge and one identifies the payer in a payment (PAY, A, B, a) just by naming A, cannot anyone
walk up and ask to transfer in the name of A? The answer is no and is guaranteed by the party
identifier logistics of the UC framework. In the UC framework, it is only the party with party
identifier pid who can give inputs in the name of pid to an ideal functionality. In our case we call
parties P which technically just means that the party identifier is pid = P. The ideal functionality
therefore by UC design remembers which P received A, call it P, and then only takes commands
to control A from Pa. In terms of an implementation, think of it as follows. Anyone can run the
command (CREATEACCOUNT, P). During this a key pair (pk,sk) is generated. By doing this the
party having run (CREATEACCOUNT, P) learns (pk, sk). It outputs A = pk on the API so it can be
used by outer protocols, but it stores ska = sk locally. This is what implements that only P can

34

control sk. Since the standard corruption behaviour of the UC model is so-called pid-wise corruption
it holds that the party Pa in an implementation of Fanonpay is corrupted if and only if the party
calling party Pa on Fanonpay is corrupted. Therefore ska becomes known to the adversary if and
only if the party with party identifier Pp is corrupted in the surrounding protocol. o

Remark 3 (Why does the adversary pick the account name?). We discuss a final subtlety of the
model of account creation. In the ideal functionality we let the adversary pick the name A of the
account. This might look weird, but it just models that the name of the account can be anything.
In a proof of security it is the simulator which is the adversary towards Fanonpay and the simulator
will just set A to be the public key that identifies the account in the implementation. If we did not
allow the adversary to pick A then the simulator could not do this alignment of account names in
the implementation and the ideal functionality. In terms of using Fanonpay as an ideal functionality
in a larger construction the design choice means that an outer protocol should not rely on the
account names having a particular form or distribution, which seems as a healthy design principle
independently of the subtleties of UC modeling. o

Remark 4 (Could not the adversary steal the founding account?). Yes! Note that we simply say that
the first account created is the funding account and it gets the initial amount ag. This in principle
allows a corrupted party to open the funding account. We picked this model for simplicity. Who is
allowed to open the funding account is decided non-algorithmically and will in practice typically
be decided even before the blockchain exists. We see no advantage in attempting a detailed model
of this genesis ceremony. When using Fanonpay in some larger context one can simply assume that
the environment only allows the intended party P to open the funding account.

We now describe and discuss how we model anonymous transfer. A transfer consists of a payment
and a collection.

Transfer Anonymity. We assume that accounts can be associated to users, or rather, we do not
assume that the user-account association can be reliably hidden from the adversary. It is therefore a
conservative model to just assume that the adversary knows who owns which accounts. Anonymity
will therefore be implemented by ensuring that if a payment is made from account A to account
B, then A and B cannot be linked. When the amount is deducted from A the identity of B is
hidden. When the amount is added to B the identity of A is hidden. We require a strong notion
of anonymity which ensures that if an amount is deposited on B then this could be from any
previous outgoing payment from any other account in the system. The adversary might have prior
knowledge on who pays who, but observing the communication of the payment system should give
it no additional knowledge. More concretely we want to require the following. First of all, we assume
that the receiver of a payment is hidden for anyone but the sender and the receiver. We require
that transferred amounts are hidden from anyone but the sender and receiver: this prevents linking
outgoing and ingoing payments using the amounts. We allow that the receiver learns which account
sent the payment and that the payer learns who is being payed.

Collection. In any anonymous payment system there will be some notion of the receiver “col-
lecting” the payment later than when it is being made@ We cannot have that the account of

14 In a UTXO system this would correspond to when a UTXO is being spent in the future.

35

the receiver is updated at the same time as the payment is being made. This would allow trivial
traffic analysis attacks. Hence the “collection” must happen later. We do not want to add to the
ideal functionality how long a collection is delayed. We consider this an external choice. What the
ideal functionality allows is to completely decouple the deduction and collection events. The only
information any party, not being sender or receiver, may learn is that the collection was after the
deduction, which is an a priori fact.

Strong versus Weak Anonymity. We consider two flavours of anonymity, WEAK and STRONG.
With weak anonymity the payer can see when its own payment is being “collected”. This might
not be tolerable in all cases as it allows timing attacks. Maybe the payer knows that the receiver
collects coins only when at a specific location. With strong anonymity we also hide the time of
collection from the payer.

Observability. The ideal functionality also has a notion of observability. Consider a customer
paying anonymously in a pizza shop. There is a point where the customer initiates the payment,
for instance by holding a smart phone next to a device in the shop and approving the amount.
At some point the shop will learn that the payment went through. This might be well before it is
collected, as discussed above. We therefore want to model explicitly this property that a payment
has been observed to be “collectable”. At this point the shop can safely hand out the pizza. It then
chooses to collect the coins later to preserve the anonymity of the payer.

Transfer Identifiers. Once a payment has been initiated it gets a transfer identifier (TID) tid.
This is just a common name the payer and collector can use to refer to the payment. If the same
payer pays the same receiver the same amount twice about the same time, it is often necessary to
have a way to distinguish the payments externally to the payment service. This is the role of tid.
Since tid is the same for the sender A and the payer B it could be used to break anonymity. Therefore
we do not leak tid. When considering only weak security we leak tid during collection. This will
allow the sender to learn when the transfer was collected. Third parties learn nothing as we do not
leak tid at the time of payment. To make it safe to use tid externally to the ideal functionality we
want that tid in and of itself leaks nothing about the transfer, like the identifier of the parties, the
amount, or time of payment or collection. A simple way to do this is to require that each tid is
sampled from the same distribution Tid. This is the design choice we took. To ensure that the tid’s
are unique (except with negligible probability) we require that Tid has collision entropy A, where
A is the security parameter. Under these restrictions we let the adversary pick the distribution. If
the sender is corrupted we allow it to pick the payment identifier in a non-random manner. We
enforce, however, that it cannot reuse a payment identifier, as this could lead to confusion and
subtle attacks. We therefore make Fanonpay enforce that payment identifiers are unique even when
picked by a corrupt sender. Note that this puts the same requirement on an implementation.

Discussion of Commands. The part of Fanonpay related to payment and collection is given in
Fig. |8l We discuss some technicalities of how the ideal functionality is specified. We let S denote the
adversary. The value atid is an abstract transfer identifier which is internal to the ideal functionality
for book keeping only. This is just a way in which the adversary can denote a given payment for
which it does not known the sender, receiver or amount. The value tid is a transfer identifier used

36

Initiate Pay On input (PAY,A,B,a) from Pa where B € Accounts and a < Balance[A], let atid = atid + 1
and leak (PAY, A, atid) to S. Here A is the sender, B the receiver, a is the amount, and atid is an abstract
transfer identifier used to refer to the transfer internally. If Pa or Pg is corrupted then instead leak
(PAY, A, B, a, atid). If Pa or Pg is corrupted, then ask S for a transfer identifier tid; It must specify a tid
not used between A and B before, i.e., (A, B, tid) must be unique. When Pa is corrupted, then & knows
the previous tid’s used, so it can pick a unique one. If S specified a tid used before, then Fanonpay ignores
it and samples a random identifier tid <— Tid. Add (PAy, atid, tid, A, B, a) to BeingDeducted. If Pa or Pg
is corrupt, then leak (Pay, A, B, tid,a) to S.

Callback Deduct On input (MAKEDEDUCTED, atid) from S, where some (PAv,atid,tid,A,B,a) €
BeingDeducted, remove (PAy,atid, tid,A,B,a) from BeingDeducted. If Balance[A] > a, then let
Balance[A] = Balance[A] — a and add (PAv,atid, tid, A, B, a) to Deducted. Output (PAY,A,B,tid,a)
to Pa.

Callback Observable On input (MAKEOBSERVABLE, atid) from S, where some (Pav, atid, tid, A, B, a) €
Deducted, add (Pav, atid, tid, A, B, a) to Observable.

Callback Collectable On input (MAKECOLLECTABLE, atid) from S where some
(Pay, atid, tid, A, B, a) € Observable, add (PAy, atid, tid, A, B, a) to Collectable.

Observe On input (OBSERVE,tid, A, B,a) from Pg, let J = T if some (PAy,atid, tid, A, B,a) € Observable
and J = L otherwise, and return (PAy,tid, A, B, a, J) to Pg.

Collect On input (COLLECT, tid, A, B, a) from Pg proceed as follows.

— If (PAv, atid, tid, A, B, a) & Observable ignore and return.

— If (PAv, atid, tid, A, B, @) € Observable \ Collectable, leak (CoLLECT, B, Too EARLY) to the adversary
S and return.

— If (PAv,atid, tid, A, B,a) € Collectable, let atid = atid 4 1, leak (COLLECT, B, atid) to S (in case of
fla = WEAK leak (COLLECT, B, atid, tid) to S), and add (PAy, atid, tid, A, B, a) to BeingCollected.

Callback Collected On input (MAKECOLLECTED, atid) from S, where some (PAY,atid, tid, A, B,a) €
BeingCollected and (PAvY,tid, A, B,a) ¢ Collected remove (PAY, atid, tid, A, B,a) from BeingCollected
and add (PAv,tid,A,B,a) to Collected and let Balance[B] = Balance[B] + a. Then output
(CoLLECT, tid, A, B, a) to Pg.

Fig. 8. Functionality f,ﬂi;‘,ﬁ%ay‘ Events related to payment and collection.

37

by the sender and receiver to refer to the transfer. It will identify the transfer, so it must be hidden
from & and cannot be used as a pointer for book keeping. We add a delay to some events to get
a more realistic model. We let the adversary determine when events happen by giving a callback
when the event should take place.

We now go over the commands and explain how they may relate to a real-life implementation.
On input (CREATEACCOUNT) party P would start making the key material for an account and post
it on the blockchain. Once the account has been posted it would be observable by other parties.
This corresponds to the (MAKEACCOUNTOBSERVABLE, A) event.

On input (PAY,A,B,a) party P starts interacting with the blockchain to create the payment.
The value atid does not appear in the implementation, it is only a pointer used for bookkeeping in
the ideal functionality. Since P might have its secret key stored in several places and accidentally
have different sites act at the same time, we do not assume that Pa knows that it did not try
to spend more than Balance[A]. We assume that it checks that for a given transfer of a it holds
that a > Balance[A], but we allow that it might happen that several such payments are initiated
concurrently and would create a negative balance if all were executed. We consider this possible
honest behaviour and will not punish it. It seems a crucial security requirement that an honest
party does not lose safety just because it accidentally attempts a “double spend”.

At some point the payment might get so far underway (if there are sufficient funds) that the
account A is deducted the amount a. This is the callback event MAKEDEDUCTED. Here we will
do the check that the balance will not get negative, and reject deductions that would cause this.
Further down the road the payment will reach a state where B can observe that the payment was
made and can be sure that it will eventually be able to collect it. This might happen before it is
actually collectable, and it is an interesting event as it would allow the receiver to safely hand out
goods or service. Therefore we make this a separate callback event MAKEOBSERVABLE. At the end
of the payment process the transfer reaches a state where it can be collected at the discretion of
the receiver. This is the callback event MAKECOLLECTABLE.

Finally, once a coin is collectable, the receiver might chose to collect it. This is done using the
command (COLLECT, tid, A, B, a) from Pg. It is leaked to the adversary when this happens and who
B is. In case of weak anonymity we also leak the transfer identifier tid. But the connection to the
payment is not revealed, as we did not leak tid during payment. We also use independent values
of atid during payment and collection so the adversary cannot link payment and collection via the
interaction with Fanonpay. Once collection has begun it will eventually terminate. We say that the
collection terminated when the funds become available to the receiver. This is modelled using the
callback event MAKECOLLECTED.

Remark 5 (Why does the adversary specify the distribution of transfer identifiers?). We want that
the distribution of transfer identifiers can depend on the implementation. Allowing the adversary
to specify it will allow the simulator to simply set it to be the one of the implementation. o

Remark 6 (How does the receiver learn about the payment?). Note that to collect a payment the
receiver has to input (COLLECT, tid, A, B, a). This might raise the question of how it learns tid and
a, and maybe even how it learns that Po wants to pay Pg at all? Why not let Fanonpay signal
these values to Pg when the payment takes place? We have chosen not to do this to not enforce
implementations where Pg is online during payment or where P knows how to contact Pg. It
could be that Po wants to pay an anonymous account B and does not know who the owner Pg is.
It could also be that Pa wants to use a particular channel to inform Pg of the payment that we

38

do not model in our setting. This could for instance be a text message or a channel not leaking
the physical identity of Pa to Pg. We therefore assume that there is some out-of-band way that Pa
learns that a payment took place, and the workflow of the payment on Fanonpay resumes when Pg
learned about the payment and inputs (COLLECT, tid, A, B, a). o

7 Modelling the Blockchain World

We now describe how to model the setting in which we want to implement the anonymous cryp-
tocurrency. We will call this the blockchain world. The blockchain world will contain a public ledger
Freocer and an authenticated anonymous channel Fa a1, both modelled as ideal functionalities.

The public ledger is an authenticated append-only ledger. We also assume it can do so-called
filtering, i.e., a message can be posted along with a claim of having some given property ¢. The
property might depend on the current state, Ledger, of the ledger. Technically we will append (m, ¢)
and we only add this message to Ledger if ¢(Ledger,m) = T. We add ¢ to the ledger to model that
it is known how a given m was filtered. An example of a property could be that m specifies a
payment for which there currently is enough balance on Ledger.

The ideal functionality Faar models an authenticated anonymous channel between payers and
receivers. This is a means by which a payer can send a message to the receiver without this event
becoming visible on the public ledger, or to other senders or receivers.

The blockchain world will always contain a protocol I1axonpay for payment. This is a protocol
using Fiepcer and Faar. The blockchain world might also contain a protocol Ilsggyicy Which has
access to Frppeer and might do off-ledger computations and post messages to the ledger to aid the
execution of the anonymous payment service. Concretely, in our implementation, they will perform
the mixing of the coins. We can model this setting in the UC framework by letting Fizpeer be a
global sub-routine of both Tggpyicr and the protocol ITayonpay (cf. [BCHT20]). We now describe
Faar and then Frppapr.

Anonymous, Authenticated Channels. We formalise a notion of anonymous, authenticated
channels where the sender can send a message to a receiver without anyone else being aware that
a message is being sent.

What we mainly want to model is that there is an off-chain way to deliver a message between
Sender and Receiver without the parties running the blockchain learning about the communication.
This is a tricky notion to formalise, so for simplicity we assume the anonymity is perfect, i.e., no
one learns anything about the transfer. In practice this is rarely possible to implement. Imagine
for instance a setting where you are in a shop and bring your credit card close to a reader using
Near Field Communication to read a message from the card. Or consider a situation where you
send an e-mail to the address of the Receiver using a Tor like solution. In both these situation
there are parties which learn some leakage. Another customer in the shop might know that the
shop uses a blockchain based payment system and inspect the blockchain to see which payments
were made at the particular point in time of your purchase. This might allow them to link the
purchase to a particular account on the blockchain and thereby you. You do not necessarily want
other customers to learn your identity. The Tor servers at the edge do learn some information on
when certain entities were active and hence also learn some, possibly vague, information about the
communication. But in both cases we can allow ourselves to ignore the leakage of the off-chain
channel with open eyes and keep in mind that a scheme proven secure in our model would therefore

39

have to be analysed for traffic analysis attacks when implemented in practice and using concrete
real-world channels.

Init Let did = 0 be a delivery id.
Drop Off On input (DROPOFF, P, Q, mid, m) from P, let did = did 4 1, and send (DROPOFF, did) to S.

Callback DropOff On input (DROPOFF, did) from S add (DROPOFF, A, B, mid, m) to Dropped.

Collect On input (COLLECT, P,Q, mid) from Q, where some (DROPOFF,P,Q, mid,m) € Dropped, return
(DrOPOFF, P, Q, mid, m) to Q.

Fig. 9. Functionality Faar.

We believe that a very precise and detailed model of these settings which would allow to catch
and quantify the above problems would hide the big picture of our model which is meant to be
simple and foundational. We therefore went for the very abstract models of the off-chain channels.
The model is given in Fig. [0

Ledger. At the most abstract level a blockchain is an append-only ledger with no associated secret
state beyond the list of messages. It just allows several parties to broadcast messages and creates
an agreed upon total order on the messages. This is also called total-ordered broadcast and atomic
broadcast. We model this as an ideal functionality Figpger in Fig. where one can broadcast
messages and lookup information on the ledger.

Any party can broadcast a message. A very unrealistic aspect of our model is that all parties
see the same ledger at all times. This is physically impossible. There will always be some difference
in the exact physical time at which two parties receiver the message making them update their
view. We have for simplicity chosen to not model time and liveness in detail. However, for our
construction one can see by inspection that there is no use of this perfect synchronisation feature.
Our protocols can also be proven secure in more realistic models of time.

When posting a message m we also assume that a filtering/validity predicate ¢ is posted. It
is used to reject invalid messages from being posted. When ¢(Ledger,m) = T then we say that
m is valid to be appended to Ledger, otherwise it is invalid. We assume that the ledger only post
message in valid positions, i.e., for all ways to write the ledger as Ledger = Ledger’||(m, ¢)||Ledger”
it holds that ¢(Ledger’,m) = T. If we post a message without mentioning ¢, then we are tacitly
using the constantly true ¢ = T. We note that not all blockchains allow filtering. However, most
modern blockchain allows some notion of smart contract. One can implement filtering by inputting
the message to a smart contract which accept the message only if it is valid. The filtering functions
we use are relatively simple, so it could be practical on most blockchains.

We have a read command, where an account holder can choose to read only part of the
blockchain. This is done by submitting a function R and getting back R(Ledger). The function
R will be leaked to the adversary. In practice this could be implemented by the account holder
submitting R to one or more reader nodes of the blockchain and getting back (an authenti-
cated version of) R(Ledger). For this implementation to be secure it is important that we let
Freocer leak R. We require that R is monotone in the following sense. The output of R is L or
a bit-string. If R(Ledger) # L then for all Ledger’ which are extensions of Ledger it holds that

40

R(Ledger') = R(Ledger). Think of L as having tried to read a part of the blockchain that did not
exist yet. We call such R lookup functions.

The ledger Frepcer interacts with parties P and the adversary A.

Init (Internal Command) Initialize an empty list Ledger and empty sets InTransit, Proven.

Broadcast On input (BROADCAST, m,¢) from P, where m € {0,1}" is the message and ¢ : ({0,1}*)" —
{T, L} is a PPT filtering predicate, leak (BROADCAST, P, m, ¢) to the adversary and add (P,m,¢) to
InTransit. We assume ¢ is given in some representation ensuring that it is PPT.

Callback Broadcast On input (BROADCAST,P,m,¢) from A, where (P,m,¢) € InTransit and
¢(Ledger,m) = T and (P, m, ¢) & Ledger, append (m, ¢) to Ledger.

Read On input (READ, R) from P, where R is a lookup function, leak (READ, P, R) to the adversary and
return (READ, R, R(Ledger)) to P.

Prove Valid On input (PROVEVALID, p) from P, where Ledger[p] # L, send (PROVEVALID, P,p) to A and
get back TxProof € {0,1}*. Add (p, Ledger[p], TxProof) to Proven and return (PROVEVALID, p, TxProof)
to P.

Verify Valid On input (VERVALID, p, (m,), TxProof) from P return (VERVALID, p, (m,),J € {T,L}) to
P where J = T if and only if (p, (m, ¢), TxProof) € ProvenEl

¢ This command by design does not leak information to the adversary.

Fig. 10. Blackbox Ledger Firepcer

Main Theorem Statement. With the model in place we are ready to state or main theorem.
Our protocol IIayonpay follows the technical overview in the introduction. It uses several standard
primitives formalised in for completeness, including commitments, encryption, and zero-
knowledge. It also uses several new primitives, namely a strongly oblivious read-once memory
(SOROM), a compressible random beacon (CRaB), and an anonymous coin-friendly encryption
scheme (ANCO).

Theorem 4 (informal). Under the security of the primitives SOROM SOROM, UC ZK proof
of knowledge NIZKPoK, UC ZK proof of membership NIZK, perfectly hiding commitment scheme
Com, IND-CCA secure public-key encryption scheme PKE, IND-CCA secure secret-key encryption
scheme SKE, ANCO RPKE, CRaB CRaB the protocol Il oxonpay UC-securely implements Fanonpay
in the hybrid world with ideal functionalities Figpeer, FAAT, 0Nd FSprvice-

Unfortunately the page limit does not allow us to formalise all the new primitives nor their
implementations. Their formalisations are given in the supplementary material. Here we formalise
only the notion of SOROM which is central for giving anonymity against an adversary who can
follow its own elements in an oblivious data structure and ANCO which specifies the encryption
scheme for encrypting coins.

8 OCash: Anonymous Transfers from Oblivious RAM

We are now finally ready to present OCash. We describe a version of our construction that satisfies
weak anonymity here and discuss how to achieve strong anonymity in

41

8.1 Stateful Blockchains

We model a blockchain as an append-only datastructure, which in the following descriptions is a
bit cumbersome. We note that we can talk about a blockchain containing a state or datastructure
as follows. Consider a datastructure with dataspace D and initial state dy € D, and update space
U, and read space R. For a datastructure d and an update u € U we let d = Update(d,u) be
the datastructure obtained from d by applying u. For a datastructure d and a read » € R we
let v = Read(d,r) be the value obtained by performing read operation r on d. For a sequence
u = (uy,...,un,) we let d = Update(u) be d = d,,, where d; = Update(d;_1,u;) fori =1,...,m.

To put a datastructure d on the blockchain we simply post the updates u1, ..., u,, as they are
made, with appropriate meta data to signal which data structure they are updating. To perform
read r € R, read the blockchain with operation (READ, L) where L is the following lookup function:
Retrieve from the blockchain the sequence of updates u = (uq,...,u,) performed. Compute d =
Update(u). Return Read(d,r). In practice one would of course not recompute d on each read. If
many reads are performed by the same full node on the network it can maintain d. One can also
imagine reading through a reader node which keeps d and returns r, possibly along with a proof that
r is the correct value relative to some block on the blockchain. This could significantly reduce the
communication complexity of the receiver. This would also be a secure implementation if the reader
node is semi-honest, as a read operation (READ, L) leaks L and the identity of the reader to the
adversary. It is therefore simulatable to tell the reader node what read operation is being performed
on which datastructure. To implement this efficiently will vary between concrete blockchains and
is not in scope for present paper.

8.2 Overview

We run in a hybrid model with a ledger Jigpcer and anonymous, authenticated transfer Faar. For
now Ilgppvice 18 implemented as an ideal functionality Fgpryics- We later discuss how to implement
it using an MPC protocol. We also assume a random oracle O = Ggoro as formalised in [LR22.

Transfer will be done by sending coins (which are just commitments) containing amounts. When
a coin of amount « is created the sender A deducts a from its account. When a coin of amount a
is collected the receiver B adds a to its account.

Accounts will be of the form (A, ca,eka,noncea), where the account holder knows the corre-
sponding secret key (ba, pa,dka). The value A is the public identifier of the account and ca =
Com.Commitck(ba; pa) is a perfectly hiding commitment to account balance ba using randomness
pa and commitment key ck. The value ekp is the encryption key of an ANCO scheme RPKE
, dka is the corresponding decryption key, and noncea is a nonce incremented for each
payment done from account A.

Transfer identifiers will be of the form

tid = Commite ((A, B, a, noncep); s),

where A is the account of the payer, B is the account of the receiver, ck is the global commitment
key, a is the amount, noncep is the unique nonce of the sender incremented whenever A does a
payment, and s is a randomiser for the commitment algorithm.

Recall that we want tid’s to be unique, which we ensure by enforcing that noncep is fresh in
each payment from A and that A actually knows an opening of tid. So, if A manages to use the

42

same tid twice, then it must be the case that
Commit ((A, B, a,noncea), s) = Commite ((A, B, a’, noncel), s')

for noncea # noncey and thus A would have broken the commitment’s binding property. Similarly,
if two different parties used the same tid, a collision must have been found as the account identifiers
are in the commitment.

A coin will be an encryption of the tid under the receiver’s public key. Each receiver B has an
encryption key ekg on the ledger. A coin is of the form

coin <— RPKE.Enc(ekg, tid).

The payer will put coin on the ledger and deduct its account by a. It proves in ZK that coin contains
a tid which opens to a vector of the form (A’,B’, a’, nonce) where o’ is the amount it deducted from
its account and where A’ = A, and nonce = noncea. It then increments noncep on the ledger. Since
the commitment is perfectly hiding the proof that it contains consistent values need to be a proof
of knowledge. A proof of membership for the statement would be trivial, as tid can in principle be
opened to any value.

The key-indistinguishability property of the ANCO scheme RPKE ensures that encryptions
under different encryption keys have indistinguishable distributions, thereby ensuring that coin
does not leak B. Note that during payment, the payer does not prove that it used the correct key
ekg as this is not needed. If a malicious payer uses the incorrect key, then it simply burned a
units. The amount will be deducted from the payer’s account, but the receiver will not accept the
payment.

To collect a payment the receiver B will put tid on the ledger and prove that some coin on
the chain contains tid. This proof only needs to be a proof of membership, as the encryptions are
perfectly binding. It adds a to its own account and then it shows in zero-knowledge that tid opens
to a vector of the form (A’,;B’,a’,nonce) where @’ is the amount a they just added to its account
and where B’ = B. Showing that some coin contains tid, shows that at some previous point in time
that amount a was paid by some other account. To prevent double spending we post tid during
collections and only allow a given tid to be collected once. Since tid’s are computationally unique,
an honest receiver cannot be prevented from collecting a coin by some other parties using the same
tid.

Up to this point, our design does not deviate that much from existing constructions like Zero-
Cash [BCG™14]. The big deviation is in how one proves that some coin on the chain contains tid,
which is a priori a complicated statement that may naively involve all existing coins. As already
outlined in we rely on techniques from oblivious data structures literature to reduce
the statement size. In OCash, a service will regularly mix coins by moving them around inside
a SOROM. The service will regularly taking small sets of coins from the ledger, permuting them
according to the SOROM, randomizing their encryptions, and writing them back to the ledger.
When collecting a coin, we will only touch a small set of coins, instead of touching all of them, as
is done by currencies like ZerOCash. The receiver will use their knowledge of a label associated to
the coin they are looking for to determine the positions specified by SOROM.Read and collect the
rerandomized coin coin’ by revealing the identifier tid inside coin’. The collector then proves that tid
is inside one of the coins specified by the label. The receiver now just has to prove in zero-knowledge
that tid contains B and that the amount in the coin matches the amount added to the receiver’s
account. This last proof needs to be a proof of knowledge as tid is perfectly hiding.

43

8.3 Anonymous Coin-Flip on the Blockchain

Using an SOROM for shuffling, leaves a technical issue to be solved. For the security of a SOROM,
it is important that the labels are chosen at random, meaning that we cannot let any one single
party pick these labels. In fact, we cannot even let the sender and receiver pick the label jointly as
they might both be corrupted. We therefore need that Ilgppyicg is involved in picking the label. At
the same time, we would like to avoid that the payer A needs to wait for the service to come online
and act to be able to pay. Ideally, payments should be as quick as posting a single message to the
blockchain. Additionally, we ideally would also like a passive receiver. If Alice pays Bob, then Bob
need not be online while Alice is. This is important for applications like anonymously paying to a
smart contract. We also want Bob to be anonymous in the sense that one cannot link A and B by
observing the ledger. Finally, we also do not want Bob to run a full node to receive a payment. Bob
should be able to learn the label associated to the coin it receives by reading as little as possible
from the blockchain. Let us now sketch the protocol flow of the coin flip protocol that we will use.

1. Initially service samples and stores k ¢+ CRaB.Gen(1"). It also samples (ek,dk) for a PKE
scheme and makes ek public on the ledger.

2. To initiate a coin-flip Alice samples La < {0,1}* and broadcasts d «— PKE.Enc(ek, (A, La); p4).
Alice waits for d to appear in some position p on the ledger and anonymously sends (d, La, p4)
along with a proof that d was posted in position p to Bob.

3. Bob rejects Alice’s message, if d # PKE.Encex((A, La); p4) or if the proof that d is in position p
is not valid. Note that Bob does not need to access the ledger for this.

4. Once d appears on the ledger in position p, the service broadcasts k, < CRaB.Prefix(k,p) on
the ledger.

5. The service computes Ls = CRaB.Eval(k, p), decrypts (A,La) = PKE.Decgk(d), and determines
the label L = Lp & Ls.

6. Alice waits for kj to appear on the ledger and computes Ls = CRaB.Eval(k,,p). Since Alice also
knows Lp, she can also determine L = Ly & Ls.

7. When Bob wants to learn some value L, he retrieves the latest k;, with p’ > p posted on the
ledger. Bob can then compute Lg = CRaB.EvaI(k:;,,p) and since he received Lp from Alice, he
can also compute L = La @ Ls. Note that Bob reads the latest k;, and not kj, thereby ensuring
that the position p cannot be linked to Bob.

The above protocol has all the properties we need. Alice, Bob, and the service learn L, whereas
any external observer does not. The coin-flip is random, even when both Alice and Bob are corrupt.
Bob does not need to be active while Alice and the service are. Bob can learn the desired label L
by reading the latest succinct prefix key from the ledger.

We note that in our formal description, we do not prove any properties of the above protocol in
isolation, but rather as part of the overall security proof of OCash. We also note that the parties
cannot learn a coin, until the service was active. In our payment application, this means Bob cannot
collect a coin, until the service was active. This might seem disappointing, since we wanted to avoid
that the service was active before the payment was done. There is, however, no avoiding this, as
we want the outcome to be random, even if Alice and Bob are corrupt. It is therefore optimal to
only have collection and not payment be blocked by a slow service. This is particularly the case,
because anonymity requires that Bob waits some time before picking up the coin.

44

8.4 Relations for Zero-Knowledge

Our construction will make use of zero-knowledge proofs for several distinct relations. In the follow-
ing, let us formally define those relations. The relation Riszpro is for proving that a commitment
indeed commits to 0, i.e.,

(x = (ck,c),w = p) € Riszero <= ¢ = Com.Commitc (0, p)

and the relation Rispunp is a generalization thereof that allows for proving that a commitment
commits to a specific (non-zero) amount ag, i.e.,

(x = (ck,¢),w = p) € Rispunp <= ¢ = Com.Commite(ao, p)-

The relation Rogrprc is for showing that one out of several ciphertexts contains a given plaintext:

l
(z = (pp, ek, {cj}fel,m),w =dk) € Rorpec <= \/ RPKE.Decgk(cj) =m .
j=1

The relation Roorieer is for proving that the receiver updated their account correctly during col-
lection. This is done by showing that a commitment cg is a valid commitment to the sum of the
previous account balance committed in cg and the amount of money committed in transaction tid,
i.e.,

($ = (Ck7 CB, Bv tid7 C(B)7w = (b87 ; (A7 @, NONCEA, p1)7 PB; p,B)) S RCOLLECT
<= cg = Com.Commit(bg, p) A
tid = Com.Commitck (A, B, a, noncea, p1) A
cg = Com.Commitey (bg + a, pg) -

Lastly, the relation Rp,y allows for proving correctness of a payment by showing that the payer’s
account balance ca is being correctly updated to ¢, with respect to the amount of money a tied
up in the generated coin coin, i.e.,

(x = (A, noncep,ck, ca, coin, i), w = ((ba, pa), (B, a, p1, p2), pa)) € Rpay =
ca = Com.Commitck(ba, pa) A
((coin,Com.Commitc (A, B, a, noncep; p1)), p2) € REnc A
cp = Com.Commite (ba — a, pa) A ba >a >0 .

We provide concretely efficient proof systems, satisfying the properties we need, for all these rela-
tions in

8.5 OCash Protocol

We now proceed to provide pseudocode for the OCash protocol. In our pseudocode we will assume
that one can see who posts which messages on the ledger. In practice this would involve putting
a public key of a signature scheme in each account and signing messages from the account using
the corresponding secret key. For the sake of clarity, we do not deal with this explicitly in our
pseudocode. We will use both a GUC proof of knowledge NIZKPoK and a UC proof of membership

45

NIZK. We have a single crs which is the pair of CRSs implicitly. We let both schemes use crs and
tacitly assume they pick the part they need.

In we show how the initialization part of the anonymizer service is done. In we
provide the pseudocode for creating accounts. Initially, there are no accounts and there is no money
on the blockchain. For the sake of simplicity, we simply provide the first party that generates an
account with an initial account balance of ag. Once this account is created, all other parties can
only create accounts that have an account balance of 0 initially. How money is bootstrapped into a
blockchain in the real world is a non-cryptographic process and using our formal modeling outlined
above, we have abstracted this process away in our work.

In we give the pseudocode for initiating a payment by putting a coin on the ledger. In
we give the pseudocode for the part of the service doing the mixing of the coins. Finally, in
we give the code for observing and collecting a payment.

Init When activated the first time do the following:
1. Let crs™°" <~ NIZKPoK.Gen(1%), crs™™® < NIZK.Gen(1%), and crs = (crs°%, crs'™®),
This is the setup for proving statements to the ledger in ZK.
2. ck « Com.Gen(1%). This is the key for creating transfer IDs and committing to balances.
(ek,dk) < PKE.Gen(1*) and save dk. This is the key for sending secret messages to the committee.
4. pp RPKE.Params(lk) This is the public parameters for the randomisable public-key encryption used
for encrypting coins.
5. Initialise an empty set Spent on Frepcer. This is the set of spent transaction identifiers.
6. Set up the key material for anonymous coin-flip on the blockchain.
(a) k < CRaB.Gen(1*) and save k.
(b) k™ < Prefix(k,0).
(¢) Let purparen = 0 be the last updated position.
7. Post (crs, ck, ek, pp, k™, Pupparen) O FLepcsr-
8. Set up the key material for running the SOROM on the blockchain.
(a) t=0.
(b) K <+ SKE.Gen(1*) and save K. This is the key under which the service encrypt labels for the
SOROM.
(c) Let N = 2* and initialise on the blockchain an oblivious map OM where for each i € [N] the
service store OM[i] = (lab;, coin;) where lab; is an encryption under K or L and coin; is a coin
or L. Initially let OM[{] = (L, L) for all i.

ge

Fig. 11. Ideal Functionality Fsgrvice.

8.6 Proving Security in the UC Framework
We will prove the following statement:

Theorem 5. Under the security of the primitives SOROM, NIZKPoK, NIZK, Com, PKE, RPKE,
CRaB, and SKE the protocol Il xyonpay UC-securely implements Fanonpay With weak anonymity
against static adversaries in the hybrid world with ideal functionalities Frppcer, FAAT, and FSeryvice-

The design rational for the protocol has already been discussed above. The proof of security
follows the intuition fairly closely, but via an intricate sequence of hybrids. As TID distribution
the simulator uses random commitments to 0, i.e., Tid <— Commitc(0). This will give honest tid

46

Create Account On input (CREATEACCOUNT) from P, where there are already other accounts on the ledger,
it proceeds as follows.

1. Wait until ck, crs and pp appear on Frepcer-
2. ca + Com.Commitck(0; p).
3. 7 < NIZKPoK.Prvers(Riszero, (ck, ca), pa)-
4. (eka,dka) < RPKE.Gen(pp).
5. Let noncea = 0.
6. Run Frepcer- BROADCAST(TX, ¢prx) with Tx = (ca, eka, noncea, 7) and
Filtering Function ¢rx(Ledger, Tx) = Parse (ca,eka, noncea,m) = Tx, fetch (crs,ck) from Ledger
and check that NIZKPoK.Vers(Risziro, (ck,ca), m) = T, that noncea = 0, and that some other
account already appears in Ledger.
7. When Tx = (ca,eka,noncea,) appears on JFrepees D some position p, compute
Frepcer- PROVEVALID(p) — TxProof and let A = (eka, Pacc,p, TXProof). Then output
(CREATEACCOUNT, A) to P and save (A,ba = 0,ca,pa,eka,dka,noncea). This is the initial se-

cret state of the account. This establishes the invariant that for the current balance ba of account A
party P knows pa such that ca = Com.Commite (ba, pa)-
Store the updated account (A, ca, eka, noncea,) on fLEDGERﬂ
Create Account (Initial Funding Account) On input (CREATEACCOUNT) from P, where so far there
are no other accounts on the ledger, it proceeds as above with the following changes.

2. ca + Com.Commite(ao; p)-
3. 7 < NIZKPoK.Prvers(Risrunn, (ck, ca), pa)-
6. Use
Filtering Function ¢1«(Ledger, Tx) = Parse (ca,eka, noncea,7) = Tx, fetch (crs,ck) from Ledger
and check that NIZKPoK.Vercs(Risrunn, (ck,ca),) = T, that noncea = 0, and that until now no
other account appears in Ledger.
7. Save (A, ba = ao, ca, pa,eka, dka, noncea).

“ When we say that we store a value which can already be computed from the values on the ledger, we mean
that we use the “stateful ledger” abstraction from to define and later fetch the value.

Fig. 12. Pseudocode of creator P. Part of ITaxoxpay-

47

Initiate Pay On input (PAY,A B, a) to Pa proceeds as follows.

1.

£o

© e e e

10.

11.
12.
13.

14.

Fetch (A, ba,ca, pa,eka,dka,noncea) from local storage and terminate if a > ba. Get

(A, ba, ca, pa, eka, dka, noncey) from Frepeer and terminate if nonce) # noncen. Check that there

is balance and that the local information is up to date. This can happen not to be the case if two

payments were started in parallel.

Get the public values (crs, ek, ck, k™) of the service from Frepcer-

Parse (ekg, ¢ace, p, TxProofg) = B and run Frepcer. VERVALID(p, (ekg, ¢acc), TxProofg) — J. If J = L,

then abort. Check B’s account exists.

Compute the transfer identifier tid = Com.Commit((A, B, a, noncea); p1).

Compute the coin coin = RPKE.Enceig (tid; p2).

Let by = ba — a, compute cy = Com.Commitc(ba, P4)-

m 4 NIZKPoK.Prves(Rpay, (ca, coin, car, A, noncea), ((ba, pa), (B, a, p1,p2), pa))-

Sample La < {0,1}* | compute d < PKE.Ence((A, La); p1).

Run Frepeer- BROADCAST(Tx, ¢hpay) with Tx = (A, ¢y, coin, 7, d) and

Filtering Function ¢p.y(Ledger, Tx) = Parse (A, ch, coin, 7, d) = Tx,
fetch (crs, ek, k™) and (A, ca, eka, noncen) from Ledger and check that
NIZKPoK.Vercs(Rpay, (ca, coin, car, A, noncea),) = T.

Wait for (Tx, ¢pay) to appear on Frepcer in some position p. When this happens the blockchain stateful

abstraction layer replaces (A, ca,eka, noncea) by (A, ci,eka, noncey = noncea + 1). Note that if Tx is

rejected or never posted, the transaction deadlocks here.

The first time when P, is activated again, store (A, by, Ca, pa, €ka, dka, noncey = noncea + 1).

Run Frepcer-PROVEVALID(p) — TxProof.

Run Faar.DROPOFF(Pa, P, tid, m) where

m= ((TX,p, TxProof, (nonceA7 P1, pz))7 (LA7 P4)) .

Output (PAY, A, B, a,tid) to Pa.

Fig. 13. Pseudocode of payer A. Part of I1axoxpay-

48

Receive Coin Whenever a new payment (Tx, ¢pay) appears in some position p, proceed as follows. Trans-
actions must be consumed in order of increasing p.
1. Parse (A, cy,coin, m,d) + Tx.
Keep track of the number of payments so far: ¢ = ¢ + 1.
Compute Pa’s contribution to the coinflip: (C,La) = PKE.Decgx(d). If C # A then terminate.
Service’s contribution to the coinflip: Ls = CRaB.Eval(k,p), where p is the position of Tx on the
ledger.
5. Coinflip: L = Hash(La & Ls).
6. Encrypted coinflip: lab = SKE.Enck (L).
7. Updated CRaB key: k* < CRaB.Prefix(k, p) and purparsn = p-
8
9

ECORtS

. Update k¥, pueparen, and OM[0] = (lab, coin) on Fiepcer-
. Go to Route

1. Compute (j1,...,jr) = SOROM.Pos(¢).

2. For k=1,...,¢ read (labg, coing) +— OM[ji] from Frepcer-

3. Fork=1,...,0 let L, = SKE.Deck (laby).

4. Compute the routing permutation: 7 = SOROM.Route(¢, L1, ..., L¢).
5. For k=1,...,4 let laby, < SKE.Enck (L (x))-

6. For k=1,...,¢ let coin}, <— RPKE.Ran(coin(x)).

7. For k =1,...,¢ update OM[jx] + (lab}, coin}) on Frepces-

% This prevents replay attacks with the d’s.

Fig. 14. Pseudocode of service Fsgryice

the same distribution as in the protocol. During the simulation the simulator will simulate the
proofs that the honest tid contain the right values. For corrupted parties the simulator uses the tid
produced in the simulated protocol. The use of binding commitments to compute tid ensures that
tid’s cannot be reused. This in turn ensures that if B observes a payment it will also eventually
be able to pick it up. The correctness of SOROM ensures that no encryptions of new tid’s can be
introduced. Therefore each tid collected can be linked to a unique payment. The proofs ensure that
it is of the same amount a. We can use extractability of the proofs to extract the link between
payments and let the simulator input these to Fanonpay in the simulation to make it do the same
transfers as the simulated protocol. The fact that tid is perfectly hiding ensures that tid cannot
be linked to A or a. The security of the coin-flip into the well ensures that the labels are random,
which ensures the correctness and strong obliviousness of the SOROM. In proving the coin-flipping
secure it is crucial that the PKE is IND-CPA and that the encryption contains the name of A as
it ensures that A’s contribution L is independent of the contribution of other parties. Therefore
the label are random and independent. In doing the reduction to the strong obliviousness of the
SOROM we model Hash as a random oracle in L = Hash(La & Ls), which allows us to embed
the label we get from to SOROM game into the simulation by programming Hash. The strong
obliviousness of the SOROM ensures that the label L posted in collection does not leak anything
about when the collected coin was added to the SOROM. In the simulation we can therefore for
transfers between honest parties make dummy payments and collections of 0 and randomly map
collections to payments. This will have the same distribution in the view of the environment. We

defer the full proof to

49

Observe On input (OBSERVE, tid, A, B,a) to Pg it proceeds as follows. Fetch (B, bg, cg, pg, €ks, dkg, nonceg)
from local storage. Run Faar.COLLECT(Pa, Pg, tid) — m. If

m = ((TX = (A7 -, coin, -,d),p7 TXPI’OOf, (noncempl,pg)), (LA7p4))

where
Frevcer- VERVALID((TX, p, ¢pay), TxProof) — T

tid = Com.Commitc((A, B, a, noncea), p1)
coin = RPKE.Enceg (tid, p2)
d= PKE.EnCek((A, LA), p4)

then return (OBSERVE, tid, A, B, a, T).
Collect On input (COLLECT, tid, A, B, a) to Pg it proceeds as follows.
1. First run (OBSERVE, tid, A, B, a) if this was not already done. If the result is (OBSERVE, tid, A, B, T),
then proceed as below, using the values defined while running (OBSERVE, tid, A, B, a). E|
Fetch the La where d = PKE.Ence((A, La), p4) and the position p.
From Frepeer fetch the most recent CRaB key k™ and position pupparen. If pupparen < P terminate.EI
Let Ls = CRaB.Eval(k*, p).
Let L = Hash(La @ Ls).
Compute pos = SOROM.Pos(L).
Fetch the data at positions j € pos in OM from Fiepeer and for j € pos let OM[j] = (-, coin;). Let
Jjo € pos be the position where OM[jo] = (-, coin’) and RPKE.Decgxg (coin’) = tid.
8. m — NlZK.PI’Vch(RORDEC, (Ck7 {coinj}jepos,tid), dkB)
9. Let bg = bg + a, compute cg = Com.Commit(bg, pg)-
10. 73 < NIZKPoK.Prves(Rcorror, (ck, g, B, tid, cg), (b, p8), (A, a, noncea, p1), ps))-
11. Run Frepcer-BROADCAST(TX, @cormor) With Tx = (B, L, tid, 1, m2) and
Filtering Function ¢courcr(Ledger, Tx) = Parse (B,L,tid,m,m) = Tx, fetch Spent, OM,
(crs,ek,ck,k*) and (B,cg,eks,nonceg) from Ledger along with {coinj}jcpos for pos =
SOROM.Pos(L) and check that

IR RCIN g Ot

NIZK.Veras(Rorbec, (ck, {coin; }jepos, tid), m1) = T
NIZKPoK.Vers (RCOLLECT7 (Ck7 cg, B, tid, 0:3)7 7T2) =T
(B, tid) & Spent
12. When the transaction is posted the blockchain stateful abstraction layer replaces (B, cg, ekgs, nonceg)

by (B, cg, ekg, nonceg) and Spent = Spent U {tid}.
13. Store (B, by, cg, pi, eks, dkg, nonceg) on local storage.

@ If the result (OBSERVE, tid, A, B, T) is not returned it corresponds to the case where Fanonpay aborts the
collection.
® This corresponds to the case where Fanonpay returns Too EARLY.

Fig. 15. Pseudocode of receiver B. Part of ITaxoxpay-

50

9 Proof of Theorem 5

In this section, we provide the full proof of Theorem [5| We only give full simulation-based security
proofs for the core features and weak anonymity. We separately discuss how to extend the analysis
to cover strong anonymity and some other extensions. Recall that to prove security in the UC
framework we need to construct a simulator § such that for all environments £ it holds that

A\~ A
E)XQCJ:AnonPaya‘Svg(1) ~ ExeCHANONPAY7]:LEDGER7~FAAT7~FSERVICE78(1) ° (2)

Note that we prove security for the dummy adversary and therefore leave it out of the notation.
In Exec fAmnPay,&g(l/\) it is the environment which gives inputs to Fanonpay and receives outputs
from FanonPay- In EX@CHANONPAY,J-'LEDGERfAATfsEmcp,,E(1)\) the inputs from £ goes to Ilanonpay and
the outputs of the parties go back to &. In Execrr, . o . Fioe. Faar Feemene (1)) the leakage of
FrLepcer, FAAT, and Fsprvice goes to £ and it is £ giving commands to these ideal functionalities as
adversary. In Exec]:AnonPayvsvg(]')\) it is simulator S which gets the leakage from Fanonpay and which
gives adversarial commands to Fanonpay- The simulator & also interacts with £ and presents £ with
the same adversarial interface as JF1pparr, FAAT, and Fsprvicr have. It tries to convince £ that £
is observing a run of Execz, s, £(1?). Tt must produce the same leakage to &

FLepGER T AAT »F SERVICE 5
as the fLEDGER? fAAT, and ‘FSERVICE WOuld iIl

A
ExeCHANONPAY7~FLEDGER?FAAT7FSEIKV'ICE7£ (1)

and it must receive adversarial commands from &£ to Frgpeer, FAAT, and Fsgrvice and translate
these into adversarial commands to Fanonpay With the same effects. It must in particular make
FanonPay give the same outputs as the protocol IIayonpay. The main challenge in constructing S is
that in Exec]’Anonpay,&g(l/\) it does not receive the inputs of honest parties, only the limited leakage
provided by Fanonpay-

We only prove static security, i.e., it is decided before the execution which parties are corrupted.

In the simulation there are two types of differences from the protocol to handle. First of all, there
is structural simulation, i.e., we construct the simulator to send values which are structured as in the
protocol and are sent at the same time as the protocol, and construct it to give appropriate inputs
to FanonPay to make it give the same outputs as the protocol at the same times. There is also content
simulation, i.e., some of the values sent at the correct times during the simulation might have a
different distribution than in the protocol, for instance an encryption of a dummy label instead
of the correct label. We prove indistinguisability of structure and contents slight differently. We
argue during the presentation of the simulator, inside the pseudo-code, that the simulation has the
correct temporal structure, as we think this helps to understand why the simulator is constructed
as it is and therefore makes it easier to read. After that we then argue that the messages sent in
the simulation are also indistinguishable from those of the protocol using a hybrids argument.

9.1 Observations

We first make some observations about the protocol which help better understand the structure of
the simulator and prove it secure.

In the below we will change to a hybrid where the CRS crs*¥°V for the proof of knowledge is
generated by Fsprvice as follows:

(crs™OW tSim, tExt) < NIZKPoK.SimGen(1%) .

o1

By Zero-Knowledge in it follows that this change will be indistinguishable to the
adversary and environment. Furthermore, by Weak Simulation Extractability in it
follows that we can use tExt to extract accepting proofs given by the adversary, and this will yield
a witness except with negligible probability. This is because we are not using tSim to simulate any
proofs and therefore in particular are simulating no false statements. The reason why we need to

extract some proofs from the adversary will become apparent by [Definition 31| below.
Lemma 2 (No Account Collisions). If Frppeer accepts two accounts Ay and Ag then Ay # Asg.
Proof. The position p; at which A; appears in Ledger is part of A; and p; # po.

Recall that we model Hash as a random oracle.

Lemma 3 (Hidden Query Point). For all executions it holds except with negligible probability
that whenever Step [Receive Coin in is executed, then Hash has not yet been queried on
L = La @ Ls. Furthermore, if both A and B in a payment (PAY,A,B,---) are honest, then Hash has
not yet been queried on L = Lo ®Ls by the adversary when Step[5 in Collect in[Fig. 15 is ezecuted.

Proof. We can set up the execution such that we only use the CRaB key k via blackbox access
to Eval(k,-) and Prefix(k,-). At a given point let pg be the maximal value we queried Eval(k,)
or Prefix(k,-) on. Let p be the position of (Tx, ¢7y) in It is not hard to see that just
before we execute Step |5| in we have that p > pp. So if we can compute (p,Ls) such that
CRaB.Eval(k,p) = Lg with probability non-negligibly better than 2~ then we can win
which we have assumed that we cannot. Note that before Step [5] in we can compute the,
possibly corrupted, Pa’s contribution to the coinflip as (A, La) = PKE.Decgk(d). Keep track of the
points @ on which Hash was queried and compute Q@ La = {x ® Lalz € Q}. Assume for the sake of
contradiction that Hash was queried on L = La @ Ls. This is the same as La @ CRaB.Eval(k,p) € @
which is equivalent to CRaB.Eval(k,p) € Q @ La. This allows us to guess CRaB.Eval(k,p) with
noticeable probability |Q|~! by outputting a uniformly random point from @ @ La. But we have
argued that this cannot be the case. Then note that the adversary gets no additional information
on L until Step [5]in Collect in when both the sender and receiver are honest. 0

When describing the simulator, and in the proofs, we will assume that whenever Step [5] in
Receive Coin in [Fig. 14]is executed then Hash has not been queried on L = Lp @ Lg. Similarly for
Step [p] in Collect in when both the sender and receiver are honest. We can without loss of
generality ignore the negligible probability that this is not the case.

We then prove a lemma about when an honest payment can fail. Let us first see that there is
something to do. Note that in Step [1] in the payer checks that a < ba. However, when the
transaction is sent in Step [0 then the control goes back to the environment which may now initiate
a new payment for the same A. This payment would be made with the same noncep so it will be
in contradiction to the previous payment. Assume for sake of argument that both payments are of
the amount a = ba and that a > 0. Then clearly it is a feature that at most one should go through.
We could change the code to avoid that such parallel payments are done. The honest user could
set a local bit indicating that a payment is in process. This is, however, not a practical solution.
In practice keys often exist in several places, say in a mobile wallet and a desktop wallet, so it is
hard to implement such a semaphore. Users also often make multiple retries on purpose. It can for
instance happen that a user makes a payment, but during the payment the payment app crashes

52

and/or the payment takes a very long time to arrive on the blockchain. The user in these cases
often will try to make the payment again until it goes through. We therefore want to allow multiple
conflicting payments being in progress as a feature. The first to arrive on the chain will be the one
accepted.

Notice that the payment transaction (Tx, ¢7y) contains noncea. Call this value nonce(Tx, ¢y).

Lemma 4 (Unique NONCE). IfA is honest then for each noncea at most one payment (Tx, 1)
with nonce(Tx, ¢1) = noncea is posted. Furthermore, for each noncea it is always possible that
some payment will go through for noncea, at least as long as ba > 0 and a covered payment is
made (i.e., one where a < bp) while noncep is the value stored on Frppeer- Furthermore, the
(Tx, ¢1x) to go through for noncea is the first covered one to be scheduled by the adversary for which
nonce(Tx, ¢1x) = noncea.

Proof. We first prove that at most one transaction is posted for each noncea. Note that if any
(Tx, ¢1«) initiated with noncea = nonce is posted on Fpgpcer, then nonce is part of (Tx, ¢ry). Let
us write nonce(Tx, ¢1x) = nonce. Assume (Tx, ¢1x) is posted on Frgpeer. Let noncea be the value
on Frepcer When (Tx, ¢7y) is posted. It is easy to see that by construction of ¢y and soundness of
NIZKPoK it holds that nonce(Tx, ¢1x) = noncea when (Tx, ¢1x) is posted. And by construction it
will hold that noncea = nonce(Tx, ¢1x) + 1 right after. So for each A and each noncea at most one
(Tx, ¢1«) with nonce(Tx, ¢1%) = noncep is posted.

We then prove that for each noncea it is always possible that some covered payment will go
through for noncea and that it is the first one scheduled by the adversary for which nonce(Tx, ¢1y) =
noncea. Say that A is locally consistent when the values stored locally by A match the values on the
ledger, i.e., ca = Commitek(ba; pa) and the value of noncep in local storage is the same as the one on
FLepcer- LThere is only one period of time where A is not locally consistent and that is from when
Tx is posted on Fiepger in Step [10] and A updates its state in Step In Step [10] the blockchain
stateful layer updates to nonce), = noncep + 1 and this is only done by A in Step We show
that if a covered payment is made for noncea then one will eventually go through. Assume first the
payment is made when A is not locally consistent. Note that any payment initiated when A is not
locally consistent will terminate already in Step [1] as the check noncea # nonce), will be true. This
can only happen if already some other payment with noncea was initiated. And this payment will
terminate when A is again scheduled to run from Step[l1jand then a payment was made for noncea.
Assume then the payment is made when A is locally consistent. Then by construction (Tx, ¢1y)
with nonce(Tx, ¢1x) = noncep is posted. Furthermore, when the first such (Tx, ¢1x) is scheduled,
then the ledger updates noncel, = noncea + 1 and no other such payment can now get posted. Once
A is scheduled again it will execute from Step [11| and the payment has gone through. O

We now define the “information inside a transfer”, which is not a straight-forward notion as the
commitments are information theoretically hiding. We instead use extraction of the proof system
to get the information. This is the first place where we use that we set up crs®¥°V with known tExt.

Definition 31 (Transfer Information). In the protocol we can inspect Fsgpyice to learn tExt.
This allows us to define what information is in the coin of a payment as follows. When during
a payment a (Tx,dpay) appears on the ledger in position p, get the proof w from Tx. By con-
struction of ¢ppyy we know that NIZKPoK.Verqs(Rpay, (ca, coin, car, A, noncep), m) = T. By defini-
tion of Rpay we can therefore use tExt to compute a witness w = ((ba, pa), (B, a, p1, p2), p) such
that cpa = Com.Commitc(ba, pa) and ((coin, Com.Commite (A, B, a, noncea; p1)), p2) € Rene and

53

cp = Com.Commitek (ba — a, piy), and ba > a > 0. We say that coin is a payment from A to B of
amount a with transfer identifier tid = Com.Commitc (A, B, a, noncea; p1), nonce noncea and ap-
pearing in position p. We write Paylnfog,.(Tx) = (A, B, tid, a, noncea, p). Similarly for a collection
(TX, ¢corLeer) in position p. By construction of ¢coriper we have that

NIZKPOK.Verch(RCOLLECT, (Ck, CB, B, t|d, C,B), 7T2) == —I— 5

so we can use tExt to compute an opening tid = Com.Commitck(A, B, a,noncea, p1). We write
ColInfogx (Tx) = (A, B, tid, a, noncep, p).

Note that the extractions needed in the above definition will indeed succeed by weak simulation
extraction. Since we do not simulate any false statements or extract any simulated proofs, the
failure of an extraction would allow us to win the game in Weak Simulation Extraction in
[Definition 17

Note that Paylnfo.g,.(Tx) can be computed in PPT given tExt. We can assume without loss
of generality that NIZKPoK.Extract® is deterministic, making Paylnfo,g,.(Tx) a function. Even if
NIZKPoK.Extract® was randomised it is easy to see that if different computations of Paylnfo,g,,(Tx)
would lead to different information, then we would have broken computational binding of Com.Commitcy.
Similarly for Collnfo.

Lemma 5 (Correct Nonce). Let (Tx, ¢pay) be a payment on Frppeer- Let Paylnfog,.(Tx) =
(A, B, tid, a,noncea, p). Then except with negligible probability noncea is the value of noncea from
A’s account on Frgpeer just before (Tx, ¢pay) was posted.

Proof. This follows by the fact that NIZKPoK.Vercs(Rpay, (ca, coin, car, A, noncea), m) = T, sound-
ness of NIZKPoK and construction of Rp,y. O

Lemma 6 (Unique Coins and Identifiers). The following holds in all executions except
with negligible probability. Let (Tx', ¢L,,) and (Tx2,¢%3AY) be two payments on Frppeer contain-
ing coins coin' and coin? respectively. Then coin' # coin?. Furthermore, if we let PaylnfotExt(Txl) =
(-, tid',---) and Paylnfo,g (Tx?) = (-, -, tid?, - -), then tid® # tid.

Proof. Let RPKE.Dec.(coin?) = tid® define the transfer identifier tid’ inside coin’. Note that if coin® =
coin? then tid! = tid?, so it is enough to prove that tid! # tid?. Assume for the sake of contradiction
that tid' = tid> =: tid. As in we can use tExt to open coin from the proofs posted
on Frepeer in PPT. This allows us to compute tid in PPT and by definition of Rgye we get
that tid = Com.Commite (A, B, a, noncea; p1). So Paylnfo,g,,(Tx') = (A, B, tid, a, noncen,---) and
Paylnfo,g,.(Tx?) = (A, B, tid, a,noncea, - --). This, however, cannot be the case. One of the two
payments were posted first, say Tx'. When this happened noncea was the value of noncea from A’s
account on Fepaer just before Tx! was posted (by. By inspection of it can be seen
that when Tx! was posted F1gperr the value of noncea from A’s account on Figpepr Was incremented
to noncea + 1. And this value never decreases. Therefore PayInfo,g, . (Tx?) = (A, B, tid, a, noncea) is

in contradiction with [Lemma bl

From we get that if there is a coin coin appearing in a payment then except with
negligible probability it appears in a unique Tx. We can therefore make the definition

Paylnfo(coin) = (A, B, tid, a) ,

54

where Paylnfo,g,(Tx) = (A, B, tid, a,noncea) and Tx is the unique Tx in which coin appears. This
definition is well-formed except with negligible probability. We will tacitly ignore the executions
where this definition is not well-defined.

Lemma 7 (TID Distribution). Consider the distribution Tid obtained by sampling tid <
Com.Commitek(0). All tid produced by honest parties have this distribution. Furthermore, for all
transfers Tx produced by corrupted parties and Paylnfo,g,.(Tx) = (A, B, tid,---) it holds that tid is
different from all other tid used by honest or corrupt parties, except with negligible probability.

Proof. The transfer identifier used by an honest party is computed as
tid = Com.Commit ((A, B, a, noncea); p1)

for a uniformly random p;. It follows from perfect hiding that this has the same distribution as
Tid. The second part of the lemma follows from

Definition 32 (Account Information). For an account Account = (A, ca,eka,noncep) on
Frepaer we let AccountInfo(Account) = (A, ba, pa) where ca = Com.Commitcy(ba; pa). Note that
if A is honest then AccountInfo(Account) can be read from the local storage of Pa. In the protocol
we can inspect Fspryicr to learn tExt. This allows us to compute Accountinfo(Account) for corrupt
A in PPT as follows. In Create Account use tExt to extract the proof m for Riszero to learn
ba = 0 and pa such that cax = Com.Commitek(ba; pa). Similarly if the account is the funding ac-
count. In Initiate Pay use tExt to extract the proof m for Rpay to learn by and pj such that
cp = Com.Commitey (by; p). In Collect use tExt to extract the proof ™ for Rcoprer to learn by

and pj such that ¢ = Com.Commitey(ba; pa). All these proofs can be extracted as they were given
using NIZKPoK.

Since A is unique for the accounts, as the position p is part of A, we have a well-defined map
from A to Account = (A, ca,eka,noncea) on Fippger- We therefore also have a well-defined map
from to A to the balance ba, computed as follows. Given A, find Account = (A, ca, eka, noncea),
compute Accountlnfo(Account) = (A, ba, pa), and output ba. We call this map Balance™™*" below.

Lemma 8 (Coin Matching). Any collection can be matched to a unique, earlier payment
with the same transfer information about parties, amount and nonce. In a bit more detail, let
P be the set of payments, i.e., all transactions Tx which appear as part of some (Tx,ppay) on
Ledger. Similarly let C' be the set of collections, i.e., transactions Tx appearing as part of some
(TX, dcorLecr) on Ledger. Then except with negligible probability we can use tExt to efficiently
compute a map CoinMap : C — P such that CoinMap is injective and for all Tx = (-,-,tid,-,)
and CoinMap(Tx) = Tx' = (-,-,coin,-,-) it holds that RPKE.Decgx(coin) = tid. Furthermore, if
ColInforex (Tx) = (A, B, tid, a, noncea, p) and Paylnfo,g, (Tx') = (A, B',tid’, a’, nonce)y, p’) thenp’ < p
and (A',B',tid’, a’, nonce)y) = (A, B, tid, a, noncea).

Proof. Let Tx = (B, L, tid, 71, m2) be any collection. By construction of ¢coprrer if we fetch the coins
{coin;}jepos for pos = SOROM.Pos(L) then

NIZK Vercs(RorDrc, (ck, {coin;}jepos, tid), m1) = T
NIZKPoK.Verqs(Rcorieer, (ck, e, B, tid, cg), m) = T
tid & Spent .

95

From NIZK.Vercs(RorDrc, (ck, {coin; }jepos, tid), m1) = T and simulation soundness of NIZK we get
that for some j it holds that tid = RPKE.Decgy(coin;). By inspection of Fggryicr it can be seen that
each coin; is either a coin posted in a payment transaction or such a coin rerandomized some number
of times using RPKE.Ran. By correctness of RPKE this means that we can find an earlier payment
Tx' = (A, cjy, coin, 7, d) such that RPKE.Decgi(coin) = RPKE.Decgx(coin;) = tid. By Unique Coins
and Identifiers there is in fact a unique such Tx’, but this is not central to the proof. We can pick
any such Tx" and let CoinMap(Tx) = Tx'. Then we have that RPKE.Decg(coin) = tid as desired.
That the map is injective except with negligible probability follows from the fact that ¢corirer
checks that tid ¢ Spent, so for each collection Tx the value Tx.tid is unique. Therefore two differ-
ent collections Tx; and Txs will also map to different payments Tx]; = CoinMap(Tx;) and Tx), =
CoinMap(Txz) as RPKE.Decgx(Tx}.coin) = Txj.tid # Txo.tid = RPKE.Decyy(Tx5.coin). Now let
ColInfoex (Tx) = (A, B, tid, a, noncea, p) and Paylnfo,g,(Tx') = (A’, B/, tid’, a’, noncel,p’). The fact
that p’ < p follows from coin; being a coin already on the ledger when Tx was posted, so it is a reran-
domization of an earlier payment. Finally, (A", B’, tid’, a’, noncely) = (A, B, tid, a, noncea) follows from
tid' = RPKE.Decgx(Tx'.coin) = tid, computational binding of Commite and the fact that we can
compute openings tid = Commitc (A, B, tid, a, noncea; p1) and tid" = Commitg (A’, B', tid’, @', noncel; p}),
cf. the definition of Transfer Information. O

Since each collection Tx has a unique tid we can define a function CoinMap(tid) = CoinMap,g(Tx)
giving for each tid in a collection the corresponding payment.

Lemma 9 (Balance Correctness). FEzxcept with negligible probability balances, as defined by
Accountinfo(A), are updated according to the logic of FanonPay a5 if Tun on the payment information
Paylnfo(coin) in the protocol. In a bit more detail, consider a run of the protocol IT oxoxpay and keep
a copy for Fanonpay synchronised with it as follows. Whenever there is an account A created in the
protocol by P ask P to create an account on Fanonpay and reply on behalf of S with the account
name A. Whenever there is a payment Tx in II oxonpay with Paylnfo(Tx) = (A, B, tid,a,---) ask Pa
on FanonPay to do the same payment using input (PAY,A,B,a) and make the payment deducted.
Then remember that this is the payment corresponding to tid. Note that it might get some other
tid’ on FanonpPay, which does not matter. Whenever there is a collection Tx in the protocol with
transfer identifier tid let Tx' = CoinMap(tid) be the corresponding payment. Find the corresponding
payment in FanonPay, make it observable, let pid’ be the payment identifier it has in FanonpPay, input
(CorLEcT, tid', A, B, a) to Pg and then use the callback MAKECOLLECTED to make the call collected.
For all accounts A let Fanonpay-Balance[A] be the balance in Fanonpay- Recall that we defined the map
ba = Balance™**(A) above giving the balance in the protocol via the account information function
AccountiInfo. Except with negligible probability it holds for all points of time in the execution and all
A that Balance™"(A) = Fanonpay-Balance[A].

Proof. Tt can be seen that in both Fanonpay and IIanonpay the first account will have balance ag
and all other accounts will have balance 0. We then show that payments and collections move
the balances in synchrony. This follows by the fact that NIZKPoK is simulation extractable, Coin
Matching, the proofs for Roopieer and Rpay, and the binding of Com.Commitc,. We give a bit more
details for payment and collection separately.

During payment, in the proof of Rp,y we get a witness opening the old cp to some bp. This must
be the by = Balance®™™*"(A) or we broke binding of the commitment scheme. By induction we can
assume that ba = FanonPay-Balance[A]. Furthermore, the coin is opened to the a in Paylnfo(coin), or
we broke binding of the commitment scheme. This is the a that we use when doing the corresponding

56

payment (PAY, A, B, a) on Fanonpay- The relation Rp,y then ensures that the balance b in the new
¢y will be by = ba — a, or we broke binding of the commitment scheme. Le., in the new state of
IT Anonpay We have that Balance™*"(A) = ba—a. The same update will happen to Fanonpay-Balance[A]
when we make the payment deducted.

During collection, in the proof of Rcoriger We get a witness opening the old ca to some ba. This
must be the by = Balance®™*"(A) or we broke binding of the commitment scheme. By induction we
can assume that by = fAnonpay.BaIance[A]. Furthermore, the transfer identifier tid is opened to the
a in Collnfo(tid), or we broke binding of the commitment scheme. This is also the a that we used
when doing the corresponding payment on Fanonpay by Coin Matching. The relation Rcopiecr then
ensures that the balance by in the new ¢, will be b, = ba + q, i.e., in the new state of ITayoxpay We
have that Balance®™*"(A) = ba + a, or we broke the binding of the commitment scheme. The same
update will happen to Fanonpay-Balance[A] when we make the payment collected, as it uses the a
from the corresponding payment (PAy,A, B, a). O

The following lemma follows form Coin Matching.

Lemma 10 (UCHP). Let I be the number of payments initiated from an honest A to an honest
B and let C' be the number of payments collected from an honest A to an honest B. Then it is always
that case that C' < I.

Finally we prove a helping lemma about when a coin is collectable. First a definition.

Definition 33 (Observable, Collectable). If B is honest and there is a coin in position p on
Frepcer with Paylnfo(coin) = (A, B, tid, a) then we call it observable if a call to (OBSERVE, tid, A, B)
would make B return (OBSERVE, tid, A, B, T). We call it collected if Frppaer contains (Tx, ¢corrper)
with tid in Tx. We call it collectable if it is collected or a call to (COLLECT,tid, A, B) would make
B post (Tx, dcorreer) with tid in Tx and which would be accepted by Frppeer if scheduled by the
adversary.

Lemma 11 (Observable implies Collectable). If B is honest and there is a coin in position p
on Frepcer with Paylnfo(coin) = (A, B, tid,a) and the current value of pypparep 0N FLepeer S such
that pupparep = P, then coin is collectable whenever it is observable.

Proof. If pypparep = p then coin has been added to OM so by completeness it can be found at one
of the positions SOROM.Pos(L). And if Observe returns T then B can learn all the values needed
to construct the proofs for Tx. O

Note that the above lemma shows that if a coin is observable, then it eventually becomes
collectable as the service will eventually ensure that pypparep = p-

9.2 Simulator
We first construct S and then analyse it to prove . Our strategy will be to run a copy of

A
ExeCHANONPA\Iv]:LEDGER +FAAT »F SERVICE* (1)

inside S and present the adversarial interface of Figpcrr, FAAT, FService t0 €. We call this the
dummy execution. Note that since it is S running Fiepger, FAAT, FService it Will see all inputs

57

to these and may run them in deviation from their real code, as long as this it not noticed by
€. Note that O is a global ideal functionality, as formalised in [LR22|, so it is not the simulator
running it. However, the simulator has access to programming it and seeing all queries made by the
environment so it can extract all the proofs made by the environment (by definition of the proof
being a GUC NIZK PoK).

When an honest party does a transfer to an honest party we will not learn the amount nor the
receiver. We will therefore run on dummy inputs and use the ZK simulator to cheat with the proofs.
The simulator S runs Fsgryvice.Init as in the protocol and saves all values, with the one difference
that it computes crs®¥°% as (crs*~°W tSim, tExt) <~ NIZKPoK.SimGen(1%). Note in particular that
S learns the simulation trapdoor tSim of crs*N°V along with the extraction trapdoor tExt. Note also
that this allows us to apply the observations in the previous section to the simulation.

Init The simulator runs a copy of Frepcer, Faar and Fservice- Lhese ideal functionalities are mostly run
honestly with some deviations described below. Notice that hereby the simulator knows all secret keys
generated by the service. It also runs a simulated version of IZanonpay With many deviations described
below. When Fanonpay asks for a distribution Tid on transaction identifiers return the following distribution:
tid +— Com.Commitc (0).

Create Account On input (CREATEACCOUNT, P) from Fanonpay for an honest P run ITayonpay.CreateAccount
honestly. This is possible as there are no secret inputs to P. Store all secrets generated in
ITaxoxpay-CreateAccount for later use in the simulation. Let A be the generated account name. When
(A, ...) appears on the simulated Frepcer input (MAKEACCOUNTOBSERVABLE, P, A) to Fanonpay. This will
be a perfect simulation unless A € Accounts already, but this cannot happen by

Honest/Corrupt Payment We call a payment honest when both the sender and receiver are honest. We

call it corrupt if either the sender or the receiver is corrupt. Note that if the payment is corrupt then the
ideal functionality leaks some (PAY, A, B, atid, a). We therefore know all inputs and can run the honest
party (if there is any) according to the protocol. We will do this. We therefore only specify how to simulate
honest parties in honest payments and corrupted parties in corrupted payments.
We let UCHP be the set of uncollected, collectible honest payments, initially empty. These will be used
for simulating collection of honest payments, where we do not know the sender. We learn in the ideal
functionality that some collectible payment was collected by B, but not which one. We will therefore in
the simulation let B collect some payment from UCHP.

Service Simulate Fsprvice by running it honestly as in

Fig. 16. Simulator S (Init, Creation, Service)

The simulation of initialisation, account creation and the service is given in The sim-
ulation of payment by an honest sender is given in If the receiver is corrupt we learn the
information to do the payment honestly. If the receiver is honest we do not learn the payment infor-
mation, so we use ZK to just do a dummy payment of 0. The simulation of observation of a payment
is given in but there is not really anything to simulate as the protocol does not generate
communication during observation. The simulation of collection between honest sender and honest
receiver is given in |Fig. 19| This is the interesting case as it is not known to the simulator which
payment is collected. We simply collect some previously uncollected and currently collectible pay-
ment by some honest party. The simulation of a corrupted payment is given in Here we
use extraction to find the payment information and ask Fanonpay do the same payment on behalf of
the corrupt sender. The collection of a corrupt payment by an honest receiver is given in by
just following the protocol. Finally, collection by a corrupt party is simulated in We just

58

Initiate Pay (Honest Sender, Corrupt Receiver) On leakage (PAY,A,B,a,atid) from Fanonpay, i.e.,
where B is corrupted, simulate by running A according to the protocol in Once tid has been
computed, specify this tid to Fanonpay as the one to use for atid.

Initiate Pay (Honest Sender, Honest Receiver) On input (PAY, A atid) from Fanonpay proceed as be-
low. In this case both A and the unknown B are honest. We know that some (PAY, A, B, a) was input to
Pa on Fanonpay but we do not get a nor B. Simulate as follows.

1. Fetch (A, ba, ca, pa, eka, dka, noncea) from local storageEl

2. Get the public values (crs, ek, ck, k*) of the service from Fipcer-

3. If not done before generate (eks,dks) <~ RPKE.Gen(pp) and let ek = eks/’|

4. Let @’ =0 and B’ = A and let tid" = Com.Commitc((A, B’, a’, noncea); p1).

5. Compute the coin coin = RPKE.Encek/B (tid’; p2).

6. Let by = ba — a’, compute cy = Com.Commitc(ba, P4)-

7. 7 < NIZKPoK.Sim&, (Rpay, (ca, coin, car, A, noncea).

8. Sample La + {0,1}*, compute d <+ PKE.Encek((A, La); pa)-

9. Run Frepcer- BROADCAST(TX, ¢pay) with Tx = (A, cp, coin, 7, d) and the same ¢p,y as the protocol.
10. Wait for (Tx, ¢pay) to appear on Frepeer in some position p. When this happens the blockchain stateful

abstraction layer replaces (A, ca, eka, noncea) by (A, cy,eka, noncejy = noncea + 1).
11. Store (A, by, Ca, Pa, eka, dka, noncej = noncea + 1).
12. Run Frepcer-PROVEVALID(p) — TxProof.
13. Run Faar.DROPOFF(Pa, Pg/, tid, m), where m = ((Tx, p, TxProof, (noncea, p1, p2)), (La, p4)).
14. Input (MAKEDEDUCTED, atid) to fAnonpayﬂ
Callback Observe (Honest Sender, Honest Receiver) When the m sent via Faar.DROPOFF gets de-
livered by the adversary input (MAKEOBSERVABLE, atid) t0 FanonPay-
Callback Collect (Honest Sender, Honest Receiver) When it happens on Frepeer that pueparen > p
input (MAKECOLLECTABLE, atid) to Fanonpay and add atid to UCHPﬂ

% Note that at this step the protocol terminates if a > ba. In the simulation we would never make it here
when a > ba as we only get (PAY, A, atid) from Fanonpay if a < ba. So the protocol and simulation check
a < bp at the same time and behave the same when a > ba.

b In this step the protocol retrieves ekg and we know this would work as the ideal functionality checked
B € Accounts. However, we do not know ekg in the simulation. To mitigate this we generate a set of keys
for the simulator and use the simulators key for all unknown receivers.

¢ Here the protocol computes tid. Instead now tid is generated by Fanonpay using the distribution Tid that we
gave. We do not learn tid, so we use a dummy transfer identifier tid’ committing to dummy values.

¢ Here the protocol outputs (PAY, A, B, a,tid) to Pa if the payment was accepted by the blockchain and in
the simulation we only reach this step if (Tx, ¢pay) appeared on Firepcer. Inputting (MAKEDEDUCTED, atid)
t0 Fanonpay makes it also output (PAY, A, B, a, tid) to Pa.

¢ This is a perfect simulation as in the protocol when the m is delivered for an honest-honest payment then a
call to OBSERVE on the receiver will return (OBSERVE, tid, A, B, a, T). Inputting (MAKEOBSERVABLE, atid)
to Fanonpay makes it behave the same.

f This is a perfect simulation as in the protocol the party B rejects if and only if pupparsn < p, cf. m

Fig. 17. Simulator S (Pay, Honest Sender)

Observe (Honest Receiver) Here there is nothing to simulate. The cases Callback Observable (Honest
Sender, Honest Receiver) and Callback Observable (Corrupt Sender, Honest Receiver) are
constructed to make the protocol and Fanonpay give the same replies.

Observe (Corrupt Receiver) Here there is nothing to simulate. In the simulation the command does not
affect the state of Fanonpay and in the (simulated) protocol there is no notion of the adversary having
carried out this command. It can do this simply by looking at Ledger.

Fig. 18. Simulator S (Observe)

59

Collect (Honest Sender, Honest Receiver, Too Early) On input (COLLECT, B, atid, ToO EARLY) sim-
ulate as follows.

1. Simulate the run of OBSERVE by doing nothing. This is a perfect simulation as Faar does not leak

anything on collection["]

2. Simulate the fetching of the unknown La and p by doing nothing.

3. From Fippaer fetch the most recent CRaB key k™ and position pypparen- Then simulate that we learned

that pueparen < p by terminating, as would the protocol.
Collect (Honest Sender, Honest Receiver, Timely) On input (COLLECT, B, atid, tid) simulate as fol-
lows.

1. If UCHP is empty then terminate the simulation. By this happens with negligible proba-
bility, so we can ignore it. Otherwise, pick the lexicographically smallest atid’ € UCHP and remove
it from UCHP[!| Let (Pay,A’,atid’) be the input from Fanenpay that made S add atid’ to UCHP and
m' = ((Tx = (A’,-,coin,-,d"),p’, TxProof’, (noncey, p1, p3)), (Lar, p4)) be the message sent in that
payment.

Fetch the Lj, where d’ = PKE.Encek((A’,La’), p4) and the position p’ from m/'.

From Fispcer fetch the most recent CRaB key k™ and position pupparen. Since atid” € UCHP we have
that PuPDATED > p,~

4. Let Lg = CRaB.Eval(k*,p’).

5. Let L’ = Hash(Ly, ® LY%).

6. Compute pos = SOROM.Pos(L’).

7

8

9

go o

. Fetch the data at positions j € pos in OM from Frepeer and for j € pos let OM[j] = (-, coiny).
. T NlZK.SimtSim(RQRDEc, (Ck7 {coinj}jgpos,tid)).
. Let a’ =0 and let by = bg + a’, compute cg = Com.Commit(bg, pg)
10. o + NIZKPoK.Sim&;.,(Rcowwscr, (ck, cg, B, tid, cg)).
11. Run Frepeer-BROADCAST(TX, pcoreer) with Tx = (B, L', tid, w1, 72) and the same ¢coiror as in the
protocol.
12. When the transaction is posted the blockchain stateful abstraction layer replaces (B, cg, ekg, nonceg)
by (B, cg,ekg, nonceg) and lets Spent = Spent U {tid}.
13. Store (B, bg, cg, pi, eks, dkg, nonceg) on local storage.

% Since we get input (COLLECT,B,To0 EARLY) we know that we are in the case where
(PAY, atid, tid, A, B, a) € Observable \ Collectable. Note that by construction of Callback Collect we have
that (PAv, atid, tid, A, B, a) € Collectable if and only if (PAY, atid, tid, A, B, a) € Observable and pyeparen > P,
where p is the position of the payment on Figpeer. S0 we conclude that pypparer < p. But we do not know
p nor which simulated payment is being collected.

b Since we get input (COLLECT, B, atid, tid) (as opposed to (COLLECT, B, Too EARLY)) we know that we are
in the case where (PAY,atid,tid, A, B,a) € Collectable. Note that by construction of Callback Collect
we have that (PAY,atid,tid, A, B,a) € Collectable if and only if (PAv,atid, tid, A, B,a) € Observable and
Purpaten > P. By inspection of Steps in Collect in we see that the protocol will proceed to
collect a coin in this case. The simulation should do the same, but we do not know A or which simulated
payment corresponds to tid. So we collect some other collectible coin instead.

Fig. 19. Simulator S (Collect, Honest Sender / Honest Receiver)

60

Initiate Pay (Corrupt Sender) If in the simulation (Tx, ¢pay) appears on Frepcer i some position p where
Tx = (A, cp, coin, m,d) and where Pa is corrupted, then proceed as follows.
1. Use the extraction trapdoor tExt for NIZKPoK to compute a witness w = ((ba, pa), (B, a, p1, p2), pa)
such that ((ca, coin, cas, A, noncea), w) € Rpay. This is possible by construction of ¢pay and simulation
extraction of NIZKPoK. Note that this in particular means that

ca = Com.Commitek (ba, pa) A
((coin,Com.Commitc (A, B, a, noncea; p1)), p2) € Renc A
ch = Com.Commite (ba — a, p;) Abr>a>0

2. Input (PAY, A, B, a) to Pa on Fanonpay and get back (PAY, A, atid). In response to this Fanonray will ask
S for a transfer identifier. Use

tid = Com.Commitc (A, B, a, noncea; p1) -

If Fanonpay rejects tid because tid was not fresh, then abort the simulation. By [Lemma 7] we can ignore
this event.
3. Input (MAKEDEDUCTED, atid) to Fanonpay to add (PAy, atid, tid, A, B, a) to Deducted.

Callback Observable (Corrupt Sender, Honest Receiver) If Initiate Pay (Corrupt Sender) was
executed and B is honest and the adversary delivers on Faar to B a message m with message identifier
tid such that the check in Observe inwould go through, then input (MAKEOBSERVABLE, atid) to
-FAnonPay- H

Callback Collectable (Corrupt Sender, Honest Reiver) If Initiate Pay (Corrupt Sender) and
Callback Observable (Corrupt Sender, Honest Receiver) was executed and Tx appears in po-
sition p and it happens that pupparen > p then input (MAKECOLLECTABLE, atid) to Fanonpay-

“ This is a perfect simulation as Fanonpay and the protocol would now respond identical.
® This is a perfect simulation as Fanonpay and the protocol would now respond identical, cf. M

Fig. 20. Simulator § (Pay, Corrupt Sender).

Collect (Corrupt Sender, Honest Receiver, Too Early) As in the protocol.
Collect (Corrupt Sender, Honest Receiver, Timely) As in the protocol. This will be a perfect simu-
lation by

Fig. 21. Simulator S (Collect, Corrupt Sender / Honest Receiver)

61

Collect (Corrupt Receiver) If (Tx, ¢pcorisor) appears on Frepeer with Tx = (B, L, tid, 771, 72) then simulate
as follows.

1. Use the extraction trapdoor tExt to extract witnesses such that

((Ck7 CB, Ba tid7 Cé)v ((bBy pB)7 (A7 a, noncea, 91)7 Pé)) S RCOLLEC']‘

and tid ¢ Spent.

2. Abort the simulation if the following happens: 1) A is corrupt and there was no previous execution
of Initiate Pay (Corrupt Sender) where S input (PAY,A,B,a) to Fanonpay got back some atid
and then specified the transfer identifier tid to be used by Fanonpay Or 2) A is honest and there was
no previous execution of Initiate Pay (Honest Sender, Corrupt Receiver) where S got input
(PAY, A, B, a, atid) from Fanonpay and then specified tid. This happens with negligible probability by
Lemma 9

3. Input (MAKEOBSERVABLE, atid) followed by (MAKECOLLECTABLE, atid) to Fanonpay, and then input
(CoLLECT, tid, A, B, a) to Fanonpay on behalf of Pg. This is allowed as B is corrupted.

This maintains the amount invariant if (PAyY, -, tid, A, B, a) ¢ Collected. This is the case as tid & Spent.

Fig. 22. Simulator S (Collect, Corrupt Receiver).

run the protocol honestly, but introduce a few cases where we abort the simulation for use in the
following hybrid arguments. All these cases occur with negligible probability.

9.3 Analysis

We now prove . We do the proof by a hybrid argument where we define distributions Hy, ..., Hiy
and prove that

EXGC}—AnonPay:S»g(]‘)\) ~ Hl (3)

and H; ~ H;y; fori=1,...,10, and
~ A
Hll ~ EXGCHANONPAY7-7:LEDGER’-FAAT’fSER\’ICEyo’g(]') * (4)
: _ A _ A
Lettlng Hl -]Exe(:]:AnonPay7378(1) a‘nd Hll - EXGCHANONPAYaj:LEDGER7]:AAT7]:SERVICF_7075(1) makes the
end cases trivial. We now look at the steps.

Hybrid 2 Let Hy be defined as the simulation Execz, . .s.(1") except that:

Change 2.1. In Step [2| in Collect (Honest Sender, Honest Receiver, Timely) in
instead of getting L), from d’ we use the atid’ from UCHP to find the matching execution of
Initiate Pay (Honest Sender, Honest Receiver) in and then we fetch L), from
Step [§ in that execution.

Change 2.2. Run the]—"éi)RVICE in [Fig. 23| instead of Fsgrvice-

Lemma 12. Hy =~ H;.

Proof. This follows from correctness of PKE. Whether we decrypt the ciphertexts d’ and d or recall
what plaintext we have put inside them does not matter. O

62

Receive Coin Whenever a new payment (Tx, ¢pay) appears in position p, proceed as follows. Transactions
must be consumed in increasing order.

1.
2o
3.

Same: Parse (A, ch, coin, 7, d) + Tx.

Same: Let ¢ = ¢+ 1.

If d comes from an execution of Initiate Pay (Honest Sender, Honest Receiver) then inspect
that execution and find the identity C of the sender and the label L¢ encrypted in d. If C # A then
terminate. Otherwise let La = L¢. If d does not come from an execution of Initiate Pay (Honest
Sender, Honest Receiver) then let (C,La) = PKE.Deca(d). If C # A then terminate.

All other steps are as in Fsgrvice-

Fig. 23. The 7.2

Somvion Used in Ha.

Receive Coin Whenever a new payment (Tx, ¢pay) appears in position p, proceed as follows. Transactions
must be consumed in increasing order.

1.
2.
3.

P e N e

Route

RGN A S

Parse (A, cp,coin, 7, d) < Tx.

Let e = ¢+ 1.

If d comes from an execution of Initiate Pay (Honest Sender, Honest Receiver) with sender
C where d was supposed to contain (C,Lc), then proceed as follows. If C # A then terminate. This
prevents replay attacks if and when that protocols does the same. If C = A then let Lo = L¢. When
d does not come from an execution of Initiate Pay (Honest Sender, Honest Receiver) then let
(C,La) = PKE.Decgk(d). If C # A then terminate.

Let Ls = CRaB.Eval(k, p), where p is the position of Tx on the ledger.

Let L = Hash(Lj & Ls).

Let lab = SKE.Enck (0*) and recall that lab was supposed to encrypt using a map Plain(lab) = L.
Update CRaB key: k* + CRaB.Prefix(k,p) and pyrparen = -

Update k™, pupparen, and OM[0] = (lab, coin) on Frences-

Go to Route

Compute (j1,-..,5¢) = SOROM.Pos(¢).

For k=1,...,¢ read (labg, coing) < OM[jx] from Frepces.

For k=1,...,¢ let Ly = Plain(laby).

Compute the routing permutation 7 = SOROM.Route(¢, L1, ..., L¢).
For k =1,...,¢ let lab}, - SKE.Enck (0*) and Plain(lab},) = L).
For k=1,...,£ let coin;, < RPKE.Ran(coin,).

For k =1,...,¢ update OM[j] + (lab}, coin}) on Frupce-

Fig. 24. The F¥

SERVICE

used in Hs and Hy.

63

Hybrid 3 Let H3 be defined as Hy except that:

Change 3.1. In Step [§] in Initiate Pay (Honest Sender, Honest Receiver) in we
let d be an encryption of L instead of (A, La). However, recall that d was supposed to contain
(A7 LA)

Change 3.2. In Step [5| in Initiate Pay (Honest Sender, Honest Receiver) in we
encrypt L instead of tid’.

Change 3.3. We replace the run of F& by F& in m

SERVICE SERVICE

Lemma 13. H; ~ Hs.

Proof. Change 3.1 does not matter by IND-CCA security of PKE. We no longer decrypt the d’s
from Step [§|in Initiate Pay (Honest Sender, Honest Receiver) anywhere in the simulation.
So we could get them from an IND-CCA oracle encrypting either L or (A, La) and embed them in
the simulation.

Change 3.2 does not matter by IND-CPA of RPKE as we do not decrypt coin anywhere.
Whereever coin is used, we give simulated proofs. We could therefore get encryptions of either
tid’ or 1 and embed them in the simulation.

After the above two changes Change 3.3 does not matter by correctness of SKE and IND-CPA
of SKE. Whether we decrypt a ciphertext or recall what is it in does not matter by correcteness.
And after that we can change what it encrypts to 0* by IND-CPA. O

Hybrid 4 Let Hy be defined as H3 except that:

Change 4.1. In Step @ in |[Fig. 24| we do the following instead. Let lab = SKE.Encg (0*). Then if
the payment is from honest A to some (unknown) honest B sample a uniformly random L* < L
and let Plain(lab) = L*. Otherwise let Plain(lab) = L.

Note that this just means that for honest-honest payments we route a fresh uniformly random
label and not the one returned by Hash.

Lemma 14. H, =~ Hj.

Proof. We can prove this via an easy reduction to the SOROM game. We play the role of adversary
in the SOROM game. We then produce a version of the simulation via our blackbox access to the
SOROM game. When b = 0 in the SOROM game we produce Hs. When b = 1 in the SOROM
game we produce Hy. So, if Hs and Hy4 could be distinguished we could use this to win the SOROM
game. This shows that Hy =~ H3 when the SOROM construction is secure.

Let lab = SKE.Enck (0*) and update the map Plain as follows. If the payment is honest-honest
then let Plain(lab) = L. Otherwise let Plain(lab) = L. The reason for this definition is that for
the corrupt lab we know the corresponding label L being routed by the SOROM game. But for
honest-honest labels we do not know the label being routed. If b = 0 it is the L we were returned
above. But if b = 1 it is another independent and uniformly random label. So, read Plain(lab) = L
as “label unknown”.)

Then replace the Route part of]:Siawcx«: by the following.

1. Compute (j1,...,75¢) = SOROM.Pos(¢). These will be the same as the positions used by the
SOROM game as Pos is deterministic.

64

2. For k=1,...,¢ read (labg, coing) <= OM[ji] from Fippger-

For k=1,...,¢ let L; = Plain(laby).

4. The routing permutation 7 = SOROM.Route(¢, L1, ..., L) is computed by the SOROM game.
For the corrupted labels Ly, it tells us where they are routed to, and we can compute 7’ moving
the corrupted label correctly. It can move the honest labels in any way, say fill up empty slots
in lexicographic order.

5. For k=1,...,¢ let labj, < SKE.Encg (0*) and Plain(lab},) = L.

6. For k= 1,...,/ let coin} < RPKE.Ran(coin /().

7. For k =1,...,¢ update OM[j] « (lab}, coin}) on FLepcer-

b

Notice that we can indeed run the above process in poly-time as to produce H4 we never used the
value of Plain(lab) anywhere except in Route, so the fact that we do not know the value in the
above will not become a problem. Note, in particular, that in Step [f] in when we simulate
picking up a coin we get the label from Hash and not from the SOROM.

It is easy to see that when b = 0 we produce exactly Hs and when b = 1 we produce exactly
Hy. O

Hybrid 5 Let Hs be defined as H, except that:

Change 5.1. In Step (1] in Collect (Honest Sender, Honest Receiver, Timely) in
we pick atid’ from UCHP differently. We inspect Fanonpay to learn which payment (PAyY, A, B, a)
created tid and then we find the atid in Fanonpay corresponding to this payment, i.e., the atid
such that (PAY, atid, tid, A, B, a) € Collectable. Then we let atid’ = atid. Note that this atid is in
fact in UCHP by as it cannot have been collected by another party and still has not
been collected by B. a

Lemma 15. Hs =~ Hy.

Proof. This holds information theoretically. At this point in the hybrids all uncollected honest-
honest payments look exactly the same to the adversary. The SOROM are routing uniformly random
labels independent of the labels Hash(La @ Lg) used by the transfers and these labels are not leaked
anywhere else until used for collection. In more detail, after Change 3.1 where in Step[§|in Initiate
Pay (Honest Sender, Honest Receiver) in we let d be an encryption of | instead of
(A,La) we can defer even defining La until the payment is picked up. So as part of initiating the
payment we do not sample La. Only when we do the collection do we sample Lp and then we define
Hash(La @ Ls) = L. This is possible by To do this we do not even have to decide on
which corresponding payment La was made. Therefore the only thing connecting a collection to the
corresponding payment is the point p that we use to compute Lg. But information of p only goes
into Ls and even if we gave La @ Ls to the adversary, this would be a one-time encryption of Ls.
Hence p is information theoretically hidden from the adversary. O

Hybrid 6 In Hg we reverse all changes again, except that we keep the change from Hj, i.e., we
now have the following situation.

Change 6.1. Everything is run as in Hy = Execr, .. .s.e(1%), except that:

65

Change 6.2. In Step [l in Collect (Honest Sender, Honest Receiver, Timely) in
we pick atid’ from UCHP differently. We inspect Fanonpay to learn which payment (PAY, A, B, a)
created tid and then we find the atid in Fanonpay corresponding to this payment, i.e., the atid
such that (PAvY, atid, tid, A, B, a) € Collectable. Then we let atid’ = atid. Note that this atid is in
fact in UCHP by as it cannot have been collected by another party and still have not
been collected by B.

The following holds by using the same arguments as when we introduced the changes that we
now reversed.

Lemma 16. Hg =~ H;.

Hybrid 7 Let H7 be defined as Hg except that:

Change 7.1. In[Fig. 17 Initiate Pay (Honest Sender, Honest Receiver) inspect the copy of
FAnonPay to find the correct value of the receiver B and amount a. Note that the UC simulator
is not allowed to do this, but we are describing a hybrid and is free to do as we please for sake
of argument. Then in Step |3| use eky = ekg instead of ek = eks. And in Step [3| we use a’ = a
and B’ = B instead of a’ = 0 and B’ = A.

Lemma 17. H; ~ Hg.

Proof. The change is indistinguishable to the adversary by hiding of Com and key anonymity of
RPKE. O

The reason why we do not yet replace the second simulated proof is that the instance might
not be true yet. We are still not updating accounts correctly when picking up payments, so the
accounts might not have sufficient balance. We fix this in the next two hybrids.

Hybrid 8 Let Hg be defined as H; except that:

Change 8.1. We change Fanonpay such that when it picks tid for an honest-honest payment then it
uses tid = tid’ for the tid" = Com.Commitc((A, B’,d’, noncea); p1) computed in Step 4] in [Fig. 17

Lemma 18. Hg ~ H5.

Proof. This follows from hiding of Com. We could simply get tid or tid’ from an oracle at this point.
We do not use the opening of the transfer identifier anywhere, as collection is still simulated.

Hybrid 9 Let Hg be defined as Hg except that:

Change 9.1. In in Step [§] compute
71 < NIZK.Prvers(RorDrcs (ck, {coin;}jcpos, tid), dkg)

instead of
T < NIZK-SimtSim<RORDEC7 (Ck, {COinj}jepos,tid)) .

This is possible as now the instance is true and we know the witness.

66

Change 9.2. In Step [0 use replace a’ = 0 by a’ = a where a is the correct value being transferred.
We can learn this value by inspecting Fanonpay and it is by the changes in Hybrid 7 also the
value inside the coin we are picking up.

Change 9.3. In in Step [L0] compute
o+ NIZKPoK.PE (Reowweer, (ck, eg, B, tid, ¢g), ((bg, pB), (A, a’, noncea, p1), o))

instead of
Ty + NIZKPoK.Sim&%,,, (Rcoviscr, (ck, cg, B, tid, ¢g)) .

Note that by now the tid given as input is the tid’ produced in Step 4 in so we indeed

know an opening of tid to a’ = a, so we have a true instance and we know the witness.
Lemma 19. Hg ~ Hg.

Proof. The second change is indistinguishable to the adversary by hiding of Com. The two other
changes are indistinguishable to the adversary using zero-knowledge of NIZKPoK. O

Hybrid 10 Finally let Hig be like Hg except that

Change 10.1. In Step [l in Initiate Pay (Honest Sender, Honest Receiver) in [Fig. 17| we
inspect FanonPay and learn the amount a being transferred. If a > b then we stop the simulation.

Change 10.2. In Step [7| in Initiate Pay (Honest Sender, Honest Receiver) in [Fig. 17| we
compute

T NIZKPOK'Prvch(RPAY7 (CA7 COin7 CA/, A7 nOﬂCEA), ((bA7 pA)7 (87 a’lv P1, 02)7 pfA))

instead of
7 < NIZKPoK.Simsim (Rpay, (ca, coin, car, A, noncep) .

Lemma 20. Hiy ~ Hy.

Proof. After Hg all commitments to account values are updated as in the protocol. Therefore, by
the balances committed to for honest parties is the same as the balances held by Fanonpay-
And Fanonpay would only have given the simulator input (PAy, A, atid) if a < ba in Fanonpay- Hence
the check a < bp only fails with negligible probability in the (simulated) protocol. The second
change is indistinguishable to the adversary by zero-knowledge of NIZKPoK, as we now know a
correct witness. We clearly know the witnesses needed and they satisfy Rp,y as a < ba, so we can
do a reduction to zero-knowledge. a

For clarity we did the changes in Hybrids 9 and 10 in two steps, but note that technically we
need to give a single reduction to the ZK of the GUC NIZK PoK proof system, as the ZK notion
does not allow to replace some simulated proofs with real proofs and some not. We can do this as
follows. First we do the changes in Change 9.1, Change 9.2 and Change 10.1 and then we do
the changes in Change 9.3 and Change 10.2 and prove indistinguishability of this step using a
single reduction.

67

Hybrid 10 Finally let H11 = EXeCr1, o Froom. Fasr Famne.£ (1) be the execution of the protocol.
Lemma 21. Hy; =~ Hqy.

Proof. By Hjg the honest parties are being run according to the protocol except for syntactical
difference which do not matter. Furthermore, Fanonpay and the simulated protocol have been aligned.
We argued that structurally Fanonpay and the protocol gives the same types of outputs at the same
time. Collections are mapped to the correct payments. Furthermore, by the balances in
FanonPay and in the protocol are now the same except with negligible probability. And the protocol
now uses the same tid’s as the ideal functionality. Therefore the protocol and the ideal functionality
gives exactly the same outputs at exactly the same times, except with negligible probability. The
only difference is that in Hyp we compute crs®N°% using NIZKPoK.SimGen and in Hy; we use
NIZKPoK.Gen, but this is indistinguishable by Zero Knowledge of NIZKPoK. a

10 Adding Strong Anonymity

In this section, we sketch how to extend our OCash construction to satisfy strong anonymity.
OCash, as described in Section |8 currently leaks tid during payment. This allows the user, who
knows tid, to learn when the shop collected its coin. To mitigate this we will instead let the shop
post what is essentially PRF g (tid) for a key K bound to the shop. When K is fixed then PRFx(tid)
repeats whenever tid repeats. Furthermore, if the shop is honest then K is random and unknown
and therefore PRF g (tid) leaks nothing about tid.

10.1 PRF Key Registration

To make this proof concretely efficient, we use a PRF which is a slightly modified version of the
Dodis-Yampolskiy VRF [DY05]. We extend the public parameters of the commitmnent scheme with
an independent generator gs. Each shop commits to a key K = s by putting

vk = g? (5)

in its account information. Then, during Create Account they give a proof using NIZKPoK for the
relation Rypy(vk, K) = vk = gi. Clearly ¢(K) = g is a group homomorphism, so we can use the
proofs described in Section [I1.2]to make this proof efficient. During simulation, the simulator will for
honest parties not learn K, but instead use g£ for uniformly random p. This will be indistinguishable
by the DDH assumption. It then uses the NIZKPoK simulator to simulate the proof for vk, which
will again be indistinguishable. For the corrupted parties, it will use the NIZKPoK extractor to
learn K.
The key K defines a pseudorandom function

PRFy : Zy — G, y = PRFg(x) = g/) (6)

Using the Diffie-Hellman inversion (DHI) assumption, one can show that the function is a PRF,
even if one is given vk. This was proven by Dodis and Yampolskiy [DYO05], but their reduction runs
in exponential time. The specific reduction in [DY05] runs in time 2'%° and asymptotically runs
in time 2*, where \ is the output length of a collision resistant hash functio To withstand an

15 Observe that a(k) in Theorem 1 in [DY05] needs to be A and also see also Remark 1 [DY05).

68

adversary running in time 2" we must have A > 27 because of the birthday bound. In our setting
this is not satisfactory, as it would force us to use a group G of size 227, where in practice one
would hope to get by using a group of size about 27. In we give a more fine grained
reduction allowing us to do a poly-time reduction for our use of DY. The reduction is not novel,
but formalizes what seem to be folklore in the way DY is used in the literature.

10.2 Hashed Identifier

We furthermore add a new component hid = Hash(my,ny), called the hashed identifier, to the
commitment tid. Here my is the user number of U. Each registration appears on the total ordered
ledger, so we can order the users as 1,2, ... according to when their registration appears. We need
that Hash maps two polynomially large m and n collision resistantly into Z,. In fact, since ¢ is
exponential the map is easy to make injective. When the coin is posted it has the form

c=(G=g"H=0,G" H -g5-g" g5 g5 - g5 g2 . (7)

The user will prove that hid was computed as hid = Hash(my, ny). This can be done basically by
opening the g5 component and checking. We discuss how to extend Rp,y in Section [I1.5] This is
then maintained during re-randomizations and therefore does not have to be reproven when the
coin is collected. The current proof already proves that when a coin is collected, then the committed
values are the same as in some coin constructed during a payment, cf. Therefore, when
the coin is collected a rerandomized version is posted of the following form:

where hid = Hash(my, ny).

10.3 Rerandomized TID
The next modification we make is that the shop will put
tid' = tid - gf
and
h=g{

on the ledger instead of tid, as tid is known by the user. Here p is uniform in Z,. Therefore, by DDH,
(tid’, h) is indistinguishable from (tid’, k') for uniformly random A’ € G. And in this distribution tid’
is uniform in G and independent of tid and h’, which can essily be seen to give strong anonymity.
Note that after this

tid = g5 - gV - g5 - ghv - g4 - ghid

for s = s+ p mod q.

69

10.4 Pseudononymous Hashed Identifier

What remains is to prove that the coin was not collected before. Note that the value (my,ny) is
unique as ny is incremented for each payment by U. It is therefore sufficient to check that (my,ny)
was not used before by the shop. By collision resistance of Hash and the fact that hid was computed
correctly, this is the same as checking that hid was not used before. Let vk be the public key of the
shop and let K be its key such that vk = gf. Since PRF : Zq — G is an injective function and
K is bound to the shop is it therefore enough to check that the pseudononymous hashed identifier
otid = PRF (hid) was not used before. We check this simply by letting the shop post

otid — g;/(K—i—hid)
and prove that this values was constructed correctly. The collection is ignored if this proof fails or
otid was used before.

10.5 Improved Reduction to DHI

Let us return to the security loss in the reduction to DHI. In we provide an improved
analysis for the PRF, using a reduction to DHI with running time |X|poly(\), where X is a set
which can be computed before the PRF key K is sampled and where it is guaranteed that all
queries to PRF g will be from X. The reduction essentially does |X| group operations in G.

Note that in our construction we only need PRFx to be a PRF when the collector is honest.
Furthermore, in this case we apply it to Hash(m,n) where m € [U] and n € [P], where U is a upper
bound on the maximal number of users in the lifetime of the system and P an upper bound on the
number of payments per user. So we set X = Hash([U],[P]). These bounds are both polynomial
and we do not need to estimate them for the construction, only the reduction. In the reduction we
can set U = P to be the running time of the environment. A poly-time environment can start at
most poly-many collections, so the reduction is asymptotically poly-time.

Our construction seems to be the first to use the DY PRF for strong anonymity while applying
it only to a polynomial domain. For instance [CHK23| applies the PRF to the coins ¢, which are
harder to control as they can be constructed by the adversary. Constructions, like [CHK23| apply
it to an exponential domain and therefore a priori suffer the exponential security loss. We note,
however, that the complexity of the reduction seems to be controllable using a programmable
random oracle. In [CHK23|, the PRF is applied to Hash(c), where Hash could be modelled as a
programable random oracle. Before the reduction is run one could then sample a large set X of
uniformly random values and then when the random oracle is queried by the adversary return
a fresh value from X. Now it is known that the PRF will only be applied to elements from X.
However, at the time of writing the SHA256 hash function is being computed about 27 times per
second by the Bitcoin network. Over a ten year period this is more than 2!%° hashes. This approach
therefore still gives a substantial security loss, though still asymptotically polynomial.

10.6 Extending the Relations and ZK Proofs

We show how to extend our proof systems to the new coin format in Section [11.5

11 ZK Proof System Instantiations

In this section, we show how to instantiate the proof systems that are needed for our OCash
construction with weak and strong anonymity.

70

11.1 Discussion of GUC NIZK PoK Definitions

In we gave a slight reformulation of the notion of GUC NIZK Proof of Knowledge in
[LR22]. We here sketch why it is equivalent to Definition 11 in [LR22].

In [LR22| the definition of GUC NIZK PoK is given indirectly by letting the NIZK PoK Ideal
Functionality from their Definition 8 generate simulated proofs for honest parties and generate a
failure event observable by the environment if it cannot at the same time extract all accepting proofs
(which are not among the simulated ones). In their Definition 11 it is then required that this ideal
functionality is indistinguishable from the real protocol, where the honest proofs are generated
correctly and there are no attempts at extracting accepting proofs and therefore no observable
failure events. This implies that the failure event must be negligible. Namely, it never occurs in
the real world, so if it occurred in the simulation with non-negligible probability simulation would
be impossible. This gives what is normally called simulation extractability. At the same time, in
the real world real proofs are given and in the simulation the proofs are simulated (see Prove in
their Definition 8). This means that it follows from their Definition 8 in conjunction with their
Definition 11 that real proofs must be indistinguishable from simulated proofs. This gives what is
normally called zero-knowledge. Finally, Prove in their Definition 8 creates an observable failure if
a simulated proof does not verify. Since no such failure event is possible in the real world it follows
from their Definition 8 in conjunction with their Definition 11 that simulated proofs verify except
with negligible probability. Since simulated proofs are indistinguishable from real proofs, it follows
that real proofs verify except with negligible probability, which is normally called completeness.

In we explicitly state these three properties. They are equivalent to Definition 11 in
[LR22] qua the above discussion.

11.2 Proofs for Group Homomorphisms

We will need several Y-protocols with strong special soundness for relations defined via collision
resistant group homomorphisms, and we describe the general theory here. We first present the
canonical X-protocol for group homomorphisms. Let (G, +) and (H,) be Abelian groups, we write
G additively and H multiplicatively. Assume G has a known prime order q. For g,h € G and e € Z
let eg and h¢ denote the usual group actions of adding/multiplying the element with itself e times.

The relation is given by R C H x G with = &(w). The first message is computed as a = ()
for uniformly random r € G. The challenge is space is £ = Z,. The reply is computed as z = ew -+,
and the verification is @(z) = z°a. Completeness is clear: @(ew + 1) = &(w)°P(r) = x°a. To prove
SHVZK we pick z € G uniformly at random and let @ = x7°®(z). This has a distribution identical
to the basic run, as z is uniform in both distributions and a = 7 °®(z) in both distributions.

For special soundness note that if #(z) = z¢a and &(2') = 2 a, then &(z — 2/) = &(2)/D(2) =
2¢7¢". Therefore, if we let d = (e — ¢/)~! mod ¢ and w = d(z — 2'), then ®(w) = z¥—¢) = .

Now let a system parameter trapdoor be any element z € G\ {0} such that #(z) =1 € H.
Formally, T(t) = t € & !(1) \ {0}. We can then argue strong special soundness. Assume that
(¢,2') # (e,2) and (z) = z°a and (') = 2 a. If €’ # e then we get w such that (z,w) € R from
special soundness. If e = ¢/, then 2’ # z and therefore &(2' —z) = (z¢a)(x°a) "' = (z°a)(xfa)"' =1
is a system parameter trapdoor.

To illustrate the definition, we consider Pedersen vector commitments. The system parameters
are uniform and independent generators gi,...,ge of a group H of order q. We let G = (Zq)ﬁ and
D(wi, ..., wp) = Hle g;". Clearly G has order ¢ and & is a group homomorphism G — H. A system

71

parameter trapdoor is a non-zero element (wi, ..., wy) € Zf; such that []; g;"* = 1. It is well-known
and straight-forward to verify that finding such a non-trivial representation of 1 is equivalent to
the discrete logarithm problem in H under poly-time reduction.

Consider then a Pedersen vector commitment ¢ =]_[le g;"*, where for instance wy is the ran-
domizer. Proving knowledge of an opening of ¢ is the same as proving knowledge of w € G such
that @(w) = c. By the above discussion, we have a strong special sound X-protocol for this with a
system parameter trapdoor which is computationally hard to find under the DL protocol in H.

In we formalise the relations for which we need ZK proof in our construction. In
we give instantiations of strong simulation sound X-protocols for these relations.

11.3 \/-Construction Maintains Strong Special Soundness

We now recall that the OR construction of X-protocols is strong special sound. This is proven in
[KS22 LR22| and we recall it here for completeness.
Consider two X protocols

EO - (RO,AO,S, Z(]v ‘/b? WO) SOaTO)

and
21 = (RlaAlagvzla‘/l?WlaSlaTl)

with the same challenge space, which is also an Abelian group. Here W; is the witness extractor, S;
the simulator, and 7; the system trapdoor predicate. We can define the disjunction between these
tobe (Ry, Ay, &, Zy, Wy, V5, Sy, T\), where the relation ((zg, 1), w) € Ry is given by (xg,w) € Ro
or (r1,w) € Ry and T\, () = To(t) V T1(1).

1. The input to the prover is ((zg,x1),w) € Ry, i.e., (xg,w) € Ry or (x1,w) € Ry. The input to
the verifier is (z¢, z1). Below we proceed for the case (zg,w) € Rg. The other case is symmetric.
Let ag < Ao(zo,w;r), sample e; € £ uniformly at random, and let (a1, z1) < Si(z1,€1).

The verifier samples and sends a uniformly random challenge e € £.

The prover computes ey = e—ey, computes zg < Zo(xo, w, €g, r) and sends z = ((eq, e1), (20, 21))
The verifier checks that ep + e; = e and Vi(xo, ag, €p, 20) = Va(z1,a1,€1,21) = T.

U N

Completeness is straight-forward and SHVZK follows from just simulating both tracks, so we
focus on strong special soundness. Consider two transcripts ((ao, a1), e, 2) = ((eo, €1), (20, 21)), where
ep + e1 = e and Vi(zo, a0, €0, 20) = Va(x1,a1,€1,21) = T, and ((ag,a1),€’,2") = ((ep, €}), (20, 21)),
where e + €] = €’ and Vi(zo, ap,), () = Va(x1,a1,€},21) = T.

We can assume that (¢/,2') # (e,z) and has to compute a witness or a system parameter
trapdoor. We prove in two cases ¢/ # e and ¢/ = e. If ¢/ # e then ej # ey or €] # e;. This gives
us that (ep, z() # (eo, z0) or (€},2]) # (e1,21). This either allows to use Wy to compute wp such
that (zg,wg) € Ro or To(wy) = T or allows to use Wy to compute wy such that (x1,w1) € Ry or
Ti(wy) = T. This gives use a witness w € {wp, w1} for Ry or ¢t such that T'(t) = T. If e = ¢’ then it
follows from (€', 2") # (e, z) that 2’ # z, i.e., ((e),€}), (20, 21)) # ((eo,e1), (z0,21)). If € # ep then
we are done by the above reasoning. If e, = ¢g then ¢’ = e implies that e} = e;. We must therefore
have that (z(,2]) # (20,21). So for some b we have that z, # z, and then we are done by strong
special soundness of X} as above.

72

11.4 3-Protocols for Relations

We now give the X-protocols for the relations used in OCash. Note that for the relations where we
give proof of knowledge (using NIZKPoK) we need the protocols to have strong special soundness
(cf. . This is all relation but RorDrc-

We first consider the relation (x = (ck,c¢),w = p) € Riszgro <= ¢ = Com.Commit(0, p). Let
¥ (p) = Commite(0; p). This is clearly a group homomorphism ¥ (p; + p2) = ¥(p1)¥(p2), so we can
use the X-protocol from which has strong special soundness.

Consider then the relation (x = (ck,c),w = p) € Risruxp <= ¢ = Com.Commitck(ag, p). We
have that ¢ = Commite (ag, p) <= Com.Commit (0, p) = ¢+ g, “°, so we can use the X-protocol
for Riszero-

We then consider (x = (pp, ek, {¢; feb m),w = dk) € RogrDec <= \/5:1 RPKE.Decgk(c;) = m.
Note that here we do not need a proof of knowledge, just a proof of membership. We have that
ek = g5k and for ¢ = (A, B,C, D) we have that RPKE.Decgy(c) = L if B # A%, and otherwise
RPKE.Decgy(c) = DC~%*. Therefore RPKE.Decqy(c) = m is equivalent to the existence of z such
that ek = g§ and B = A% and Dm~! = C®. Consider the group G = G*® and for fixed g =
(90, 4,C) € G consider the group homomorphism ¥ : Z, — G given by ¥(w) = g* = (g¥, A%, C").
Let h = (ek, B, Dm™!). Then RPKE.Decyx(c) = m is equivalent to Jw¥(w) = h. So we can use
the X-protocol from We could then use the \/-construction from to get
a X-protocol for Rorpre, but the communication would be linear in £. We can do better than this
using [GK15] as discussed now. For j = 1,...,¢ let ¢; = (4;,B;,C;,D;), g; = (90,4;,C;) € G,
and []j = (ek, Bj,Djmfl) € G. Then

l

(:E = (ppvek7 {Cj}gebm)aw = dk) € RorbDec < \/ hj = g;u .
j=1

We can therefore directly use the one-out-of-many DL X-protocol in |[GK15]. The communication
complexity is in the order of log ¢ times that of a single proof for ¥.
Consider then

(z = (ck, cg, B, tid, cg), w = ((bg, pB), (A, a,noncea, p1), pg)) € RcoLLecr
<= cg = Com.Commit(bg, pg) A

tid = Com.Commit (A, B, a, noncea, p1) A

cg = Com.Commit,(bg + a, pg)-

This is equivalent to

b . —noncea —B A / Pl bg+a
B = g6°9,° A tidg, """ go " = g0'9195 N cg = go°94° " .

Let h = (cg, tidg, """ g5 B, ¢g) and consider the group homomorphism ¥ : ZS — G3 given by

b & b
W(PB7587P1,A76L, P/B) = (9539437 9319?957 98594B+a) .

Let w = (pg, b, p1, A, a, pg). Then Roopeer is equivalent to #(w) = b, so we can use the X-protocol

from [Section 11.2] which has strong special soundness.

73

We finally consider

(x = (A, noncep, ck, ca, coin, cp), w = ((ba, pa), (B, a, p1,02), pa)) € Rpay
<= cp = Com.Commitek(ba, pa) A

((coin, Com.Commitc (A, B, a, noncep; p1)), p2) € Rinc A

cp = Com.Commitey (ba — a, pp) A ba >a >0 .

Let coin = (A, B,C, D) and tid = Com.Commitc (A, B, a,noncep; p1). As part of the proof we want

to show that ((coin,tid), p2) € Rexc. We use that the sender knows r such that C' = A" and

D = Brid, (cf. [Fig. 4) and let po = r. Then ((coin, tid),r) € Rpxc is equivalent to C = A" A D =
nonce

Brgl' g gBgdgi° A, What we want to prove is therefore knowledge of ((ba,pa), (B, a,p1,7), o)
such that

ca=g6rg N C=A"AD=Bgf' P g5 595N N ch =g g Aba=a>0. (9)
Let b = (ca,C, Dgy Aggnonce“,) and define the group homomorphism

b A ba—
U (pasba, 7, p1.B.a, ph) = (96294, A™, B' 9595, 90" 94" ")

then ignoring the condition ba > a > 0 what we have to prove is knowledge of (pa, ba, 7, p1, B, a, piy)

such that ¥(pa,ba,r, p1,B,a,p) = bh. We do this using the X-protocol from [Section 11.2) which
has strong special soundness.

We then focus on bp > a > 0. This is the same as showing knowledge of
w' = (b, a, pa, PA)

such that oy .
Ah =909 N calch =90 g8 Abp=0Aa>0. (10)

It is sufficient to give a separate proof for this fact. I.e., we give one proof of knowledge of w =
(pa,ba, T, p1,B, a, piy) such that ¥(pa,ba,r, p1,B,a,ps) = b and at the same time we give a proof
of knowledge for v’ such satisfying [Eq. (10)| without, e.g., trying to prove that b, = ba. However,
collision resistance will ensure that the shared values between w and w’ will be identical. Assume
namely that we have a witness w’ for [Eq. (10)| and a witness (pa,ba,r, p1,B,a,ph) such that
(pp,ba, 7, p1,B,a,ps) = bh. Under the DL assumption this implies that ba > a > 0. To see
this, note that from (pa,ba,, p1, B, a, pi) such that ¥(pa,ba,r, p1,B,a, ph) = b we can compute a
potential witness

_ - _ _, _
W = (ba, @, pp, PA) = (DA — a, a, pp, pa/PA) -

It follows from [Eq. (9)| that ¢ = ggA gZA and ¢y = ggA gZA_a which implies that

/ P 5;; / Ph @
ca = 90"94" N ceafen = 95" gf -

From the DL assumption it then follows that w = w’. Therefore it follows from w’ being a witness

for [Eq. (9)[that

ba>0AaT>0.

74

By construction 5;\ = bp — a and @ = a which gives us that
br—a>0ANa>0,

which gives the desired conclusion that ba > a > 0.

Then note that since a witness w’ for [Eq. (10)[can be computed from we do not need
that the proof for can be extracted using tExt. If we can use tExt to extract a witness

(pa,ba, 7, p1,B,a, pl) such that ¥(pa,ba,r, p1,B,a, p)) = bh. From this it can compute w as above

with ¢ = ggi‘ gZA and ca/cp = ggng. If in addition 5; > 0 and @ > 0 then we have a witness for
Rpsy and is done. If it is not the case that EIA > 0 and a > 0 then we can break DL as follows. We
can rewind the entire UC experiment to compute another witness w’ for "% Since by, >0
and a > 0 except with negligible probability by soundness of the proof it follows that w’ # w.
But then we broke DL, a contradiction. We therefore except with negligible probability also get a
witness for Rp,y when we extract the witness for

To recap, we give the proof for Rp,y by giving a proof for

(z = (A, noncen, ck, ca, coin, i), w = ((ba, pa), (B, a, p1, p2), Pa)) € Rbyy
<= cp = Com.Commite(ba, pa) A

((coin, Com.Commitk (A, B, a, noncea; p1)), p2) € RExc A

cp = Com.Commit (ba — a, ph)

using NIZKPoK and giving a separate proof for

(372 = (ck, C/_\,CZA),U}I = (banP/Aﬂvﬂx)) S R%AY
<=) = Com.Commitey (b, pa) A
ca/ch = Com.Commitey(a, pa) A by >0 Aa>0.

using NIZK, letting the honest prover use p§ = pa — pjy. Furthermore, a witness for R}, will also
be a witness for Rp,y by global extractability of the proof for R%AY and the DL assumption.

We then turn to how we make a proof for R%,, for NIZK with global extraction. We will use
that ag > b, > 0, where ag is the initial amount. This is maintained by invariant in the protocol.
For the same reason on ag > a > 0 makes sense. We can therefore pick the order ¢ of G such that
q > 2%ap. Tt is then sufficient to give a proof that by, ag € [0, 22ay — 1] where the honest prover
always has by, ag € [0, ag]. We can therefore in principle use any off-the-shelf range proof. However,
using the range proof from [AC20] we can get a X-protocol secure under the DL assumption. We

can then apply to get a UC NIZK PoM NIZK for this X-protocol.

11.5 Extended Proof Systems for Strong Anonymity

We now discuss how to extend the relations Rpay, ROrDrcs; Rconiser, and their proofs to the case
with strong anonymity.
We first look at payment. In the proof for Ri,, we simply use the target value

I —A _—nonces —Hash(ma,noncep)
b - (CA707D91 g4 g5 ’CA)

16 Of course the UC simulator cannot rewind the UC execution, but we as the provers of security is allowed to do
this as a Gedankenspiel.

75

instead of
b = (CA7 Ca Dgl_AgzznonceAa C,A) .

This ensures that the correct hid was used. We then extrend Rogrprc. Note that the p used in
tid = tid - g used is fixed by g1 and h = g¢7. Therefore tid is fixed by g1 and h and tid’. What
remains is to prove that this well-defined tid is in one of the encryptions. We can prove this with a
proof for the relation

J4
(x = (pp, ek, {cj}ﬁel,m),w = (dk, p)) € Rorpec < h =g/ A \/ (RPKE.Decqk(c;)) gh = m ,
j=1

by using m = tid’ and p being the witness that m = tidgjj. Note that here we do not need a proof
of knowledge, just a proof of membership.

We have that ek = g8 so for a ciphertext ¢ = (A, B, C, D) we have that RPKE.Decgx(c) = L
if B # A%, and otherwise RPKE.Decgy(c) = DC ™. Therefore RPKE.Decyy(c)g? = m is equivalent
to the existence of p and z such that h = g7 and ek = g§ and B = A* and DC~* = mg, ", where
the last equaiton can be rewritten as Dm~! = gp "C*. Consider the group G = G* and the group
homomorphism ¥ : Z, x Z, — G given by ¥ (w, p) = (g{, g%, A¥, g5 "C%). Let b = (h,ek, B, Dm™1).
Then RPKE.Decyk(c)CP = m is equivalent to Jw¥(w) = h. So we can use the X-protocol from
and the one-out-of-many DL X-protocol in |[GK15] to get communication complexity
is in the order of log ¢ times that of a single proof for ¥.

We finally look at collection. During payment the shop posts

y = PRF g (hid) = g3/ M) (11)

where 1/(K +hid) denotes multiplicative inverse modulo the order of G. It then shows that it knows
(s',U,S,ny,a, hid, K) such that

hid 1/(K+hid)

tid = g5 - gY 95 95" g5 gh Avk=gE Ny =gs (12)

We do not know a X-protocol with strong special soundness for this relation, so we will use the
same trick as for Rpyy where we gave a proof for Rb,, using NIZKPoK and gave a proof of R3,,
with global extraction using NIZK. In the present case we will give a proof for

tid = g5 g7 - 95 95Y - g - N A vk = gIf (13)

using NIZKPoK by using a straight-forward group homomorphism proof. In parallel we give a
proof for [Eq. (12)[using a NIZK proof with global extraction. This proof is about a multiplicative
relation in the exponent and can therefore be constructed using [AFK22]. If the witness extracted

from NIZKPoK for [Eq. (13)| by the UC simulator does not fulfill [Eq. (12)} then we can use global

extraction of NIZK to get another witness which does fulfill [Eq. (12) and therefore also [Eq. (13)]
But clearly, computing two different openings of in poly-time breaks DL using a stand

poly-time reduction.

12 Generalised Dodis-Yampolskiy Theorem

In this section we give a generalised proof of the security of the Dodis-Yampolskiy VRF without
using a random oracle. In our work, we only treat it as a PRF as this is all we need from it. Dodis and

76

Yampolskiy [DY05] prove their VRF construction secure under the Diffie-Hellman inversion (DHI)
problem, but their reduction has an exponential security loss, meaning that the DHI assumption
needs to hold with exponential security. More concretely this means that the DHI problem needs
to be secure against an adversary making 2* queries, where \ is the output length of a collision-
resistant hash function. The reduction at some point iterates over all possible output of the hash
function used.

At the time of writing, most groups used in practice for DHI are shorter than the length of
hash functions that are considered collision resistance. Because of the birthday paradox this would
appear to be a staying situation. Here we do a more fine grained version of the DY reduction which
allows us to avoid the exponential security assumption on DHI. We emphasize that we are not
adding anything fundamentally different, we merely squeeze concretely better parameters out of
the existing proof technique by iterating only over some controlled subsets of the outputs of the
hash function.

Definition 34 (DHI). We say that G is (¢,¢)-DHI against A if AdvﬂHI <€, where

g+ G

B Zg

AdvRHT = Py Gomg” ™0 L

’ G+ G 2

b+ {0,1}

¢+ A(g,gﬁ,...,gﬁé,Gb)
We make a definition which is equivalent to the DY VRF being adaptive secure.

Definition 35 (DY). We say that G is e-DY secure against A if AdeY <€, where

[h+ G
4 ZLg
G « h®

(x+a)~! mod ¢q

add x to initially empty Q
Oo(x =
return h

z* — A% (h,G)

AdvPY = Pr X1 Glle=b g%inegl()\) .
X1 ifx* e qQ
Xo + W o
0 {h(x +e)"tmodq orhenyise
1 ifx=2z*
O1(x) = _
1) {h(x+a) tmodq otherwise
b+ {0,1}

¢+ A% (h,G, Xp)

Our goal is to reduce DY to DHI. As a stepping stone we use another assumption which we call

DYZ (Dodis-Yampolskiy with Zero challenge). It is equivalent to the DY VRF being secure if the
adversary is always challenging on m* =0

77

Definition 36 (DY zero). We say that G is e-DYZ against A if Advﬂyz < €, where

h+ G

B Zq

H+ h?

HO < hﬁ71 mod ¢

AdVRYZ = Pr e Glo=b =5
L ifX = O

O(X) — {h(X-l-ﬂ)l mod ¢ ,theryise

b+ {0,1}

g < Ao(h,H7Hb>

Let X be a set such that we are guaranteed that Q C X. Ultimatly we could set X = Z, but
we might be in a setting where we can limit the query set further. Let Y be a set such that it is
guaranteed that * € Y in the DY game. We call A for the DY game (¢x, {y)-limited it it starts
by outputting (X,Y") which limits it as above and where |X| < ¢x and |Y| < fy. We call A for the
DYZ game (x-limited it it starters by outputting X with |X| < ¢x.

Theorem 6. For all ({x,ly)-limited adversary A for the DY game there exists an adversary B for
the &-DHI game, with £ = {x + 1, which runs A once plus some O({x) operations in the group G,
and such that

AdvY < by - Advgd!

Lemma 22. For all (¢x,{ly)-limited adversary A for the DY game there exists an {x-limited ad-
versary B for the DYZ game, which runs A once and such that

AdvRY < ly-AdvR¥Z .

Proof. Assume we have an adversary A for the DY game. We construct B for the DYZ game. First
run A to get (X,Y). Sample a uniformly random zy < Y. This is our guess at what x* will be.
Output X’ = {z — 29|z € X}. Now we receive (h, H, Hy) from the DYZ game where H = hP,
Hy + h#7'moda and Hy + G. Define

o= —x9 mod ¢
such that § = g + @ mod ¢. Compute
G« h™" = hPp=%0 = pf=o0 = po .

Let
Ov(x) = O(x — xp) .

Note that if x € X then z — 29 € X', so B is also fx-limited. Note also that
Op(z) = O(x — a0) = h(F—20)+H) " modq _ plata)™ modg
Run
z* < A%(h, Q) .

78

If * # xo then output a random guess ¢ < {0, 1}. Otherwise, proceed as follows. Below we assume
x* is fresh, ie., * ¢ Q. This is without loss of generality. Let O1(x) = L if x = 2z* and let
O1(x) = O(x — o) otherwise. For d = 0,1 define

Xy =H, .

Note that we know X; and that

Xy = hﬂ_l mod g __ h(x0+a)_1 mod g __ h(x*+a)_1 mod ¢

X1:H1<—G.

By construction, when z* = zy then the values shown to A are exactly as in the DY game. Since
x* € Y we have that xg = 2™ correctly with probability 1/¢y. Therefore

AdvBY? = Adv)Y /ey .

Lemma 23. For all {x-limiled adversary A for the DYZ game there exists an adversary B for the
&-DHI game, with & = {x + 1, which runs A once plus some O({x) operations in the group G and
such that

AdvY7 < Advgi! .

Proof. We are given A for the DYZ game and describe B for the DHI game. Run A to get X such
|X| < ¢x and such that all queries to O are in X and 0 ¢ X. Let £ = ¢x + 1 and be given

B 8

13
9.0=9"0=9",...0:=9",Gy,

where Gy = ¢® ™44 and G4 « G. Define

Compute coefficients cg, c1,. .., ¢y such that

Ix
f(x)= Z cix'
=0

Define
x "
h = l_[gfI = gZi:OCiﬁz = gf(ﬂ) .
=0
Note that

£ i)
hﬁ = g(zzio “h)6 = ngio et .

So, we can compute H as in the DYZ game as follows:
£x
H = H gicil =’
i=0

79

This is the place where we use £ = ¢x + 1. To answer O(z) as in the DYZ game we proceed as
follows. Define the polynomial

fox) = I x+2)=f®)/x+a).

zeX\{z}
Compute coefficients do, d1, ..., d¢—1 such that
Ix—1
fa(x) = Z d;x"
i=0

As above we can compute

Zx—l Oy —1 i —
O@) = [g = gxido 48" = g=(8) = gl (B (+a) — p(F+e) = mod g
=0

Finally we address how to compute the challenges. Define

fo(x) = f(x)/x .
We have that ,
fo®) =co/x+ > ex' ™,
i=1

fo(B) mod ¢ = f(8)B~" mod q .

Compute
5
Hy+ G o5
i=1
Note that
ZX . 1871 ZZX ,I@ifl —1 d
Hy =G Hgicz_l — geoP T - gfo(ﬁ) — gf(ﬁ)/ﬁ = pf~ modg
i=1

as in the DY game. Since z ¢ X we have that ¢y # 0. Therefore it follows from G being uniform
that

Ix
— (¢ Ci
Hy =Gy H 9i-1
i=1

is uniform, as desired. We compute ¢ = Ao(h, H, Hp) and return c. It is easy to see that all values

by construction are as in the DY game, so Advg}gI = AdvE‘YZ. a
References
AC20. Thomas Attema and Ronald Cramer. Compressed Y-protocol theory and practical application to plug &

play secure algorithmics. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III,
volume 12172 of LNCS, pages 513-543. Springer, Heidelberg, August 2020.

80

AFK22.

BBDPOL1.

BCGT14.

BCH™20.

BCK™23.

BDPRYS.

BGGT20.

BGI14.

Blu&2.

BMRS20.

BW13.

Can01.

Can20.

CFH™*22.

CGKS95.

CH22.

Chag&2.

CHK23.

CKS11.

Thomas Attema, Serge Fehr, and Michael Kloof. Fiat-shamir transformation of multi-round interactive
proofs. In Eike Kiltz and Vinod Vaikuntanathan, editors, Theory of Cryptography - 20th International
Conference, TCC 2022, Chicago, IL, USA, November 7-10, 2022, Proceedings, Part I, volume 13747 of
Lecture Notes in Computer Science, pages 113-142. Springer, 2022.

Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy in public-key
encryption. In Colin Boyd, editor, ASTACRYPT 2001, volume 2248 of LNCS, pages 566-582. Springer,
Heidelberg, December 2001.

Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and
Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE Symposium on
Security and Privacy, pages 459-474. IEEE Computer Society Press, May 2014.

Christian Badertscher, Ran Canetti, Julia Hesse, Bjorn Tackmann, and Vassilis Zikas. Universal com-
position with global subroutines: Capturing global setup within plain UC. In Rafael Pass and Krzysztof
Pietrzak, editors, Theory of Cryptography - 18th International Conference, TCC 2020, Durham, NC,
USA, November 16-19, 2020, Proceedings, Part III, volume 12552 of Lecture Notes in Computer Science,
pages 1-30. Springer, 2020.

Donald Beaver, Konstantinos Chalkias, Mahimna Kelkar, Lefteris Kokoris-Kogias, Kevin Lewi, Ladi
de Naurois, Valeria Nikolaenko, Arnab Roy, and Alberto Sonnino. STROBE: streaming threshold ran-
dom beacons. In Joseph Bonneau and S. Matthew Weinberg, editors, 5th Conference on Advances in
Financial Technologies, AFT 2023, October 23-25, 2023, Princeton, NJ, USA, LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik, 2023.

Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations among notions of security
for public-key encryption schemes. In Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages
26—45. Springer, Heidelberg, August 1998.

Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo Krawczyk, Chengyu Lin, Tal
Rabin, and Leonid Reyzin. Can a public blockchain keep a secret? In Rafael Pass and Krzysztof Pietrzak,
editors, TCC 2020, Part I, volume 12550 of LNCS, pages 260—290. Springer, Heidelberg, November 2020.
Elette Boyle, Shafi Goldwasser, and loana Ivan. Functional signatures and pseudorandom functions. In
Hugo Krawczyk, editor, PKC 201/, volume 8383 of LNCS, pages 501-519. Springer, Heidelberg, March
2014.

Manuel Blum. Coin flipping by telephone. In Proc. IEEE Spring COMPCOM, pages 133-137, 1982.
Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. Coda: Decentralized cryptocurrency
at scale. Cryptology ePrint Archive, Report 2020/352, 2020. https://eprint.iacr.org/2020/352.

Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In Kazue
Sako and Palash Sarkar, editors, ASTACRYPT 2013, Part II, volume 8270 of LNCS, pages 280-300.
Springer, Heidelberg, December 2013.

Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
FOCS, pages 136-145. IEEE Computer Society Press, October 2001.

Ran Canetti. Universally composable security. J. ACM, 67(5):28:1-28:94, 2020.

Matteo Campanelli, Dario Fiore, Semin Han, Jihye Kim, Dimitris Kolonelos, and Hyunok Oh. Succinct
zero-knowledge batch proofs for set accumulators. In Heng Yin, Angelos Stavrou, Cas Cremers, and
Elaine Shi, editors, ACM CCS 2022, pages 455-469. ACM Press, November 2022.

Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information retrieval. In 36th
FOCS, pages 41-50. IEEE Computer Society Press, October 1995.

Matteo Campanelli and Mathias Hall-Andersen. Veksel: Simple, efficient, anonymous payments with
large anonymity sets from well-studied assumptions. In Yuji Suga, Kouichi Sakurai, Xuhua Ding, and
Kazue Sako, editors, ASIA CCS ’22: ACM Asia Conference on Computer and Communications Security,
Nagasaki, Japan, 30 May 2022 - 3 June 2022, pages 652—666. ACM, 2022.

David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L. Rivest, and
Alan T. Sherman, editors, CRYPTO’82, pages 199-203. Plenum Press, New York, USA, 1982.

Matteo Campanelli, Mathias Hall-Andersen, and Simon Holmgaard Kamp. Curve trees: Practical and
transparent zero-knowledge accumulators. In Joseph A. Calandrino and Carmela Troncoso, editors, 32nd
USENIX Security Symposium, USENIX Security 2023, Anaheim, CA, USA, August 9-11, 2023. USENIX
Association, 2023.

Jan Camenisch, Stephan Krenn, and Victor Shoup. A framework for practical universally composable
zero-knowledge protocols. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology -
ASIACRYPT 2011 - 17th International Conference on the Theory and Application of Cryptology and

81

https://eprint.iacr.org/2020/352

Cra97.
DHT76.

DPSZ12.

DS21.

DYO05.

EIGS85.

Fis05.

Fis06.

FMMO19.

FS87.

GGMS84.

GHK™21.

GK15.

Gol87.

HF16.

JBWD18.

KFTS17.

KPTZ13.

KS22.

Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings, volume 7073 of Lecture Notes
in Computer Science, pages 449-467. Springer, 2011.

Ronald Cramer. Modular Design of Secure yet Practical Cryptographic Protocols. PhD thesis, January
1997.

Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions on Infor-
mation Theory, 22(6):644-654, 1976.

Ivan Damgéard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from some-
what homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 643-662. Springer, Heidelberg, August 2012.

Dominic Deuber and Dominique Schréoder. CoinJoin in the wild - an empirical analysis in dash. In Elisa
Bertino, Haya Shulman, and Michael Waidner, editors, ESORICS 2021, Part II, volume 12973 of LNCS,
pages 461-480. Springer, Heidelberg, October 2021.

Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs and keys. In
Serge Vaudenay, editor, PKC' 2005, volume 3386 of LNCS, pages 416—431. Springer, Heidelberg, January
2005.

Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory, 31(4):469-472, 1985.

Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with online extractors. In
Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 152—-168. Springer, Heidelberg, August
2005.

Marc Fischlin. Round-optimal composable blind signatures in the common reference string model. In
Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 60—77. Springer, Heidelberg, August
2006.

Prastudy Fauzi, Sarah Meiklejohn, Rebekah Mercer, and Claudio Orlandi. Quisquis: A new design for
anonymous cryptocurrencies. In Steven D. Galbraith and Shiho Moriai, editors, ASTACRYPT 2019,
Part I, volume 11921 of LNCS, pages 649-678. Springer, Heidelberg, December 2019.

Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In Andrew M. Odlyzko, editor, CRYPTQO’86, volume 263 of LNCS, pages 186—-194. Springer,
Heidelberg, August 1987.

Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions (extended
abstract). In 25th FOCS, pages 464-479. IEEE Computer Society Press, October 1984.

Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus Nielsen, Tal Rabin, and Sophia
Yakoubov. YOSO: You only speak once - secure MPC with stateless ephemeral roles. In Tal Malkin
and Chris Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages 64-93, Virtual Event,
August 2021. Springer, Heidelberg.

Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how to leak a secret and spend a coin. In
Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages
253-280. Springer, Heidelberg, April 2015.

Oded Goldreich. Towards a theory of software protection and simulation by oblivious RAMs. In Alfred
Aho, editor, 19th ACM STOC, pages 182-194. ACM Press, May 1987.

Martin Harrigan and Christoph Fretter. The unreasonable effectiveness of address clustering. In 2016 intl
ieee conferences on ubiquitous intelligence € computing, advanced and trusted computing, scalable com-
puting and communications, cloud and big data computing, internet of people, and smart world congress
(uic/atc/scalcom/cbdcom /iop/smartworld), pages 368-373. IEEE, 2016.

Marc Jourdan, Sebastien Blandin, Laura Wynter, and Pralhad Deshpande. Characterizing entities in the
bitcoin blockchain. In 2018 IEEE international conference on data mining workshops (ICDMW), pages
55-62. IEEE, 2018.

Amrit Kumar, Clément Fischer, Shruti Tople, and Prateek Saxena. A traceability analysis of monero’s
blockchain. In Simon N. Foley, Dieter Gollmann, and Einar Snekkenes, editors, ESORICS 2017, Part 11,
volume 10493 of LNCS, pages 153—173. Springer, Heidelberg, September 2017.

Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegatable pseu-
dorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors,
ACM CCS 2013, pages 669—684. ACM Press, November 2013.

Yashvanth Kondi and Abhi Shelat. Improved straight-line extraction in the random oracle model with
applications to signature aggregation. In Shweta Agrawal and Dongdai Lin, editors, Advances in Cryp-
tology - ASIACRYPT 2022 - 28th International Conference on the Theory and Application of Cryptology

82

KYO00.

Lin15.

LN18.

LR22.

LWWO04.

Max13.

MPJ*13.

Niel7.

OMJ*13.

Ost90.

Ped92.

RH13.
RSTO1.

SCSL11.

STW23.

SV15.

Val08.

Vij23.

Wik09.

YAY*19.

and Information Security, Taipei, Taiwan, December 5-9, 2022, Proceedings, Part II, volume 13792 of
Lecture Notes in Computer Science, pages 279-309. Springer, 2022.

Jonathan Katz and Moti Yung. Complete characterization of security notions for probabilistic private-key
encryption. In 32nd ACM STOC, pages 245-254. ACM Press, May 2000.

Yehuda Lindell. An efficient transform from sigma protocols to NIZK with a CRS and non-programmable
random oracle. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part I, volume 9014 of
LNCS, pages 93-109. Springer, Heidelberg, March 2015.

Kasper Green Larsen and Jesper Buus Nielsen. Yes, there is an oblivious RAM lower bound! In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 523~
542. Springer, Heidelberg, August 2018.

Anna Lysyanskaya and Leah Namisa Rosenbloom. Universally composable $\varsigma $-protocols in the
global random-oracle model. In Eike Kiltz and Vinod Vaikuntanathan, editors, Theory of Cryptography
- 20th International Conference, TCC 2022, Chicago, IL, USA, November 7-10, 2022, Proceedings, Part
I, volume 13747 of Lecture Notes in Computer Science, pages 203-233. Springer, 2022.

Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. Linkable spontaneous anonymous group signature
for ad hoc groups (extended abstract). In Huaxiong Wang, Josef Pieprzyk, and Vijay Varadharajan,
editors, ACISP 04, volume 3108 of LNCS, pages 325-335. Springer, Heidelberg, July 2004.

Greg Maxwell. Coinjoin: Bitcoin privacy for the real world. Post on Bitcoin Forum, 2013.

Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon McCoy, Geoffrey M Voelker,
and Stefan Savage. A fistful of bitcoins: characterizing payments among men with no names. In Proceedings
of the 2013 conference on Internet measurement conference, pages 127-140, 2013.

Jesper Buus Nielsen. Universally composable zero-knowledge proof of membership. Cryptology ePrint
Archive, Paper 2017/362, 2017. https://eprint.iacr.org/2017/362.

Damien Octeau, Patrick D. McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden, Jacques Klein, and
Yves Le Traon. Effective inter-component communication mapping in android: An essential step towards
holistic security analysis. In Samuel T. King, editor, USENIX Security 2013, pages 543-558. USENIX
Association, August 2013.

Rafail Ostrovsky. An efficient software protection scheme (rump session). In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 610-611. Springer, Heidelberg, August 1990.

Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Joan
Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129-140. Springer, Heidelberg, August
1992.

Fergal Reid and Martin Harrigan. An analysis of anonymity in the bitcoin system. In Security and
Privacy in Social Networks, 2013.

Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Colin Boyd, editor, ASI-
ACRYPT 2001, volume 2248 of LNCS, pages 552-565. Springer, Heidelberg, December 2001.

Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM with O((log N)?) worst-
case cost. In Dong Hoon Lee and Xiaoyun Wang, editors, ASTACRYPT 2011, volume 7073 of LNCS,
pages 197-214. Springer, Heidelberg, December 2011.

Srinath T. V. Setty, Justin Thaler, and Riad S. Wahby. Unlocking the lookup singularity with lasso.
IACR Cryptol. ePrint Arch., page 1216, 2023.

Berry Schoenmakers and Meilof Veeningen. Universally verifiable multiparty computation from threshold
homomorphic cryptosystems. In Tal Malkin, Vladimir Kolesnikov, Allison Bishop Lewko, and Michalis
Polychronakis, editors, ACNS 15, volume 9092 of LNCS, pages 3—22. Springer, Heidelberg, June 2015.
Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space efficiency.
In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 1-18. Springer, Heidelberg, March 2008.
Saravanan Vijayakumaran. Analysis of cryptonote transaction graphs using the dulmage-mendelsohn
decomposition. In 5th Conference on Advances in Financial Technologies, AFT 2023, October 23-25,
2023, Princeton, NJ, USA, volume 282 of LIPIcs, pages 28:1-28:22. Schloss Dagstuhl - Leibniz-Zentrum
fir Informatik, 2023.

Douglas Wikstrom. A commitment-consistent proof of a shuffle. In Colin Boyd and Juan Manuel Gonzalez
Nieto, editors, Information Security and Privacy, 14th Australasian Conference, ACISP 2009, Brisbane,
Australia, July 1-3, 2009, Proceedings, volume 5594 of Lecture Notes in Computer Science, pages 407—-421.
Springer, 2009.

Zuoxia Yu, Man Ho Au, Jiangshan Yu, Rupeng Yang, Qiuliang Xu, and Wang Fat Lau. New empirical
traceability analysis of CryptoNote-style blockchains. In Ian Goldberg and Tyler Moore, editors, FC 2019,
volume 11598 of LNCS, pages 133—149. Springer, Heidelberg, February 2019.

83

https://eprint.iacr.org/2017/362

ZBKT22. Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller, Anca Nitulescu, and Mark Simkin.
Caulk: Lookup arguments in sublinear time. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine
Shi, editors, ACM CCS 2022, pages 3121-3134. ACM Press, November 2022.

84

	 OCash: Fully Anonymous Payments between Blockchain Light Clients
	Introduction
	Our Contribution.
	Related Work.
	Technical Overview

	Preliminaries
	Commitment Scheme
	Symmetric and Public Key Encryption
	-Protocols
	Simulation-Sound NIZK Arguments
	Simulation-Extractable NIZK Arguments

	Anonymous Coin Friendly Encryption (ANCOs)
	Constructing Anonymous Coin Friendly Encryption

	Compressible Randomness Beacons (CRaBs)
	Constructing Compressible Randomness Beacon

	Strongly Oblivious Read-Once Maps (SOROMs)
	Constructing Strongly Oblivious Read-Once Maps

	Ideal Functionality for Anonymous Cryptocurrency
	Modelling the Blockchain World
	OCash: Anonymous Transfers from Oblivious RAM
	Stateful Blockchains
	Overview
	Anonymous Coin-Flip on the Blockchain
	Relations for Zero-Knowledge
	OCash Protocol
	Proving Security in the UC Framework

	Proof of Theorem 5
	Observations
	Simulator
	Analysis

	Adding Strong Anonymity
	PRF Key Registration
	Hashed Identifier
	Rerandomized TID
	Pseudononymous Hashed Identifier
	Improved Reduction to DHI
	Extending the Relations and ZK Proofs

	ZK Proof System Instantiations
	Discussion of GUC NIZK PoK Definitions
	Proofs for Group Homomorphisms
	-Construction Maintains Strong Special Soundness
	-Protocols for Relations
	Extended Proof Systems for Strong Anonymity

	Generalised Dodis-Yampolskiy Theorem

