
Computing the Hermite Normal Form:
A Survey

Leon Damer

leon.damer@edu.rub.de

December 2024

Abstract

The Hermite Normal Form (HNF) of a matrix is an analogue of the echolon
form over the integers. Any integer matrix can be transformed into its unique
HNF.

A common obstacle in computing the HNF is the extensive blow up of in-
termediate values. As first approach to this problem, we discuss the Modulo
Determinant Algorithm from [DKT87]. It keeps the entries bounded by
d, the determinant of the lattice, and has a time complexity of O(n3 log2 d),
where n is the dimension of the matrix. Although this algorithm is very use-
ful if the determinant is small, in the general case, the entries still become
extremely large.

Secondly, we study the Linear Space Algorithm, taken from [MW01].
It has a time complexity of O(n5polylog(M,n)), where M denotes the largest
absolute value of the input matrix. This is as fast as the best previously
known algorithms, but in contrast, it assures space complexity linear in the
input size, i.e. O(n2 logM).

As last algorithm to compute the HNF we analyze the Heuristic Algo-
rithm, also taken from [MW01], which is based on the first two algorithms.
It achieves a much faster runtime in practice, yielding a heuristic runtime of
O(n4polylog(M,n)), while keeping the linear space complexity.

Python and C++ proof of concept implementations for all of the above
algorithms are provided at

https://github.com/LDamer/HNF/.

Besides some performance speed ups, the Linear Space Algorithm and
Heuristic Algorithm are precisely the algorithms implemented by Sage-
Math.

1

mailto:leon.damer@edu.rub.de
https://github.com/LDamer/HNF/
https://doc.sagemath.org/html/en/reference/index.html
https://doc.sagemath.org/html/en/reference/index.html

Contents
1 Preliminaries 3

1.1 Matrices . 3
1.2 Lattices . 3
1.3 Number Theory . 4

2 Computing the Hermite Normal Form 5
2.1 Hermite Normal Form . 5
2.2 Basic Algorithm . 7
2.3 Modulo Determinant Algorithm . 8
2.4 Linear Space Algorithm . 11

2.4.1 Main Algorithm . 11
2.4.2 AddRow Procedure . 13
2.4.3 AddColumn Procedure . 16

2.5 Heuristic Algorithm . 23

References 26

2

1 Preliminaries

1.1 Matrices
Definition 1.1. For 1 ≤ i ≤ n, the i-th principal submatrix of a square matrix
A = (ai,j)i,j∈[n] is the i-dimensional square matrix obtained by removing the last n − i
rows and columns of A. We denote the i-th principal submatrix of A by A(i).

Example 1.2. For an exemplary 3× 3 matrix A, the principal submatrices are

A =

1 2 3
4 5 6
7 8 9

 , A(1) =
(
1
)
, A(2) =

(
1 2
4 5

)
, A(3) =

1 2 3
4 5 6
7 8 9

 .

(1.3)

Remark 1.4. Let A = (aij)i∈[m],j∈[n] be a matrix with column vectors cj = (aij)i∈[m]. To
describe A in terms of its columns we write A = [c1, ..., cn].

Definition 1.5. The i-th principal minor of a matrix is the determinant of the i-th
principal submatrix.

Definition 1.6. A square integer matrix A ∈ Zn×n is called unimodular if

|det(A)| = 1. (1.7)

We describe the set of all unimodular matrices of dimension n with GL(n,Z).

Definition 1.8. For a matrix A = (aij)i∈[m],j∈[n], we define the the maximum norm
(`∞-norm) as

‖A‖∞ = max
i∈[m],j∈[n]

|aij|. (1.9)

1.2 Lattices
In this section we revisit some definitions and theorems on lattices. Contents of this
section are partly based on [LNP22; MR09].

Proposition 1.10. Let A,B ∈ Rm×n be two integer matrices. They generate the same
lattice if and only if there exists a unimodular matrix U ∈ GL(n,Z) such that A = BU.

If B is a square matrix, it holds that det(B) = det(BT), which immediately implies
det(L(B)) = |det(B)|.

Proposition 1.11. The determinant of a lattice does not depend on the basis.

Proof. Let A,B ∈ Rm×n generate the same lattice. Due to Proposition 1.10, we know
A = BU for U ∈ GL(n,Z). Hence,√

det(ATA) =
√

det(UTBTBU) =
√

det(UT)det(BTB)det(U) =
√
det(BTB),

(1.12)
which implies det(L(A)) = det(L(B)).

3

The opposite direction does not always hold. Two matrices with equal determinant
do not generally span the same lattice. Consider the Matrix A =

[√
2 1

1
√
2

]
, which has

determinant one, but clearly does not generate the lattice Z2, as the identity matrix with
determinant one would do.

Proposition 1.13. (Hadamard bound) For A = [c1, . . . , cn] ∈ Rm×n, the lattice
determinant is bound by

det(L(A)) ≤
n∏

i=1

‖ci‖2. (1.14)

Proposition 1.15. Let A ∈ Rn×n be a square matrix with d = |det(A)|. Then dZn ⊆
L(A).

Proof. We need to show the vector vj = (0, . . . , 0, d, 0, . . . , 0)T , where d is in row j, is an
integer linear combination of columns of A for all j ∈ [n]. Therefore, let ai be the i-th
column of A. By applying Cramer’s rule we get

xi =
det(a1, . . . , ai−1,vj, ai+1, . . . , an)

det(A)

=
d · det(a1, . . . , ai−1, ej, ai+1, . . . , an)

det(A)

= ±det(a1, . . . , ai−1, ej, ai+1, . . . , an) ∈ Z,

(1.16)

which shows all coordinates xi are integers.

This is the reason why adding multiples of d to any coordinate never leaves the lat-
tice. Therefore, it is always possible to reduce an entry of a given vector modulo the
determinant, which leads to the equivalence relation v ≡ w ⇔ v − w ∈ dZn. In that
sense Λ/dZn defines a quotient module of the lattice Λ and the map f(v) = v mod d is
defined by the corresponding projection.

1.3 Number Theory
Theorem 1.17. (Prime Number Theorem) Let π(x) denote the amount of prime
numbers less or equal to x. π(x) is bounded by

π(x) = O
(

x

log x

)
. (1.18)

If pn denotes the n-th prime number, it immediately follows that pn = O(n log n), since
π(pn) = n.

4

2 Computing the Hermite Normal Form
Let us have a look at the HNF and how to efficiently compute it. We will start with the
definition and proof of existence and uniqueness of the HNF. Afterwards, we analyze the
three different algorithms.

2.1 Hermite Normal Form
This survey and the later presented algorithms are based on the following definition of
the HNF for arbitrary integer matrices.

Definition 2.19. A matrix A ∈ Zm×n is in Hermite Normal Form if

1. There exists a sequence of integers 1 ≤ i1 < . . . < in such that hij = 0 for all i < ij
(strictly decreasing column height)

2. 0 ≤ hij ,k < hij ,j for all 0 ≤ k < j ≤ n (the top non-zero element of each column is
the greatest element in its row)

In the above definition, ij indicates the row of the pivot element of column j. Meaning
i1 indicates the first non-zero entry of column 1, i2 of column 2 and so on. From the
second point we observe, the linearly independent rows of a matrix in HNF do not contain
negative entries and the pivot elements of are even strictly greater than zero.

Example 2.20. Let us have a look at some matrices in HNF to get familiar with the
definition.

H1 =

12 0 0
0 1 0
15 3 644

 , H2 =

 2 0
76 89
−5352 −9

 , H3 =

 1 0 0
0 1 0
155 35654 543644


(2.21)

Note that H2 does not have full row rank. Consequently it is in HNF although the last
row contains negative values.

Theorem 2.22. For a matrix A ∈ Zm×n with full row rank, there exists a unique matrix
H ∈ Zm×n in HNF that satisfies L(A) = L(H). We call H the Hermite Normal Form of
A

Proof. The existence follows by the algorithm discussed in Section 2.4. To show the
uniqueness we revisit the proof from [Sch86].
Suppose for A ∈ Zm×n with full row rank, the matrices H = (hij) and H′ = (h′

ij) are in
HNF and they all generate the same lattice Λ. We assume H 6= H′.
Since removing zero columns in H and H′ does not alter the lattice, we assume without
loss of generality they are both m×m square nonsingular matrices in HNF.
Because H 6= H′, there are two elements hij 6= h′

ij where i is as small as possible. Again
without loss of generality, assume hii ≥ h′

ii. Let hj and h′
j denote the j-th column of H

and H′ respectively. As both matrices generate the same lattice, hj and h′
j are contained

in Λ and therefore hj − h′
j ∈ Λ. This means, we can express hj − h′

j as integer linear

5

combination of the columns of H. Because we chose i as small as possible, the first i− 1
elements of hj−h′

j are all zero. And since H is lower triangular, hj−h′
j can be expressed

as integer linear combination of only the columns hi, . . . , hm of H. But of these columns,
only column hi has a non-zero entry at row i. This leads to hij − h′

ij = zhii for some
z ∈ Z\{0}.
Due to the properties of the HNF and the assumption hii ≥ h′

ii, we know 0 ≤ hij < hii

and 0 < h′
ij < h′

ii ≤ hii if j < i. But then 0 ≤ |hij − h′
ij| < hii. This implies z = 0, which

is a contradiction. In the case i = j we have hij − h′
ij = hii − h′

ii. Since hii ≥ h′
ii > 0

we have hii > hii − h′
ii = hij − h′

ij > 0, which also leads to the contradiction z = 0. It
follows, H = H′.

6

2.2 Basic Algorithm
There exist multiple different algorithms to compute the HNF [Fru77; KB79a; Ili88]. The
most basic one is a straight forward approach that utilizes just basic column operations.
Let A = (aij)i,j∈[n] be the input matrix, a very basic algorithm consists of the following
two parts.

1. Transform A into a lower triangular matrix (point 1 of Definition 2.19)

2. Perform appropriate column operations such that every off-diagonal element is non-
negative and smaller than the diagonal element of its row (point 2 of Definition 2.19)

Regarding the first point, to produce zeros to the right of the diagonal elements, we define
a unimodular transformation Urc = (uij)i,j∈[n] that produces a zero at arc (c > r) and
sets arr to gcd(arr, arc), after applying it from the right to the matrix A.

Example 2.23. The following example demonstrates how Urc works for r = 1 and c = n.

AU1n =

a11 . . . a1,n−1 a1n
... ...

an1 ann

 ·U1n =

gcd(a11, a1n) . . . a1,n−1 0
... ...

ãn1 ãnn

 (2.24)

Note, this matrix multiplication only changes column r and c. Urc is defined as the
identity matrix with the modifications

urr = k, ucr = l, urc = −
arc
g
, ucc =

arr
g
, (2.25)

where k, l and g are computed with the EEA to fulfill g = gcd(arr, arc) = karr + larc.
Thus, Urc looks like this

Urc =



1 . . . 0
. . .

k . . . −arc
g

1
...

1
l . . . arr

g
. . .

0 . . . 1


. (2.26)

row r

row c

column r column c

Urc is indeed a unimodular transform, not altering the lattice, as the following Laplace
expansion along column r shows.

det(Urc) = k det(Ur,r
rc) + l det(Ur,c

rc) = k
arr
g

+ l
arc
g

= 1 (2.27)

7

To see that det(Ur,c
rc) =

arc
g

, note that the diagonal element of Ur,c
rc in row r is zero and

the only other nonzero element in the row is −arc
g

. After changing those two columns,
the diagonal element in row r is −arc

g
and the sign of the determinant flips. Lastly, rows

r + 1, . . . , c − 1 have a zero on their diagonal. By adding the neighboring column, the
determinant does not change and we get a lower triangular matrix where every diagonal
element is one, except in row r it is −arc

g
. Hence, because of the previous sign flip, the

determinant is arc
g

.
After applying Urc for all elements to the right of the diagonal element in row r, the

diagonal element is arr = gcd(arr, ar,r+1, . . . , arn). By repeating this procedure for all
rows, we transform A into lower triangular form.

For the second part, to reduce the elements to be smaller than the diagonal element,
we proceed as follows. To reduce an element aij (j < i), we subtract a proper multiple
of column i from column j such that 0 ≤ aij < aii. Since the first i rows are lower
triangular, subtracting column i does not alter the entries of the rows 1, . . . , i− 1. This
way, we reduce the lower triangular part of the matrix row by row, starting with the first
and ending with the last. This does not alter the lattice, because we only add multiples
of the columns.

Unfortunately, the intermediate values during this algorithm become extremely large,
which makes it infeasible on big matrices. The space complexity is tremendous and on
actual computers huge numbers also imply slow practical runtime. In [FH97], the in-
termediate values were proven to grow exponentially for a specific procedure based on
Gaussian elimination.

2.3 Modulo Determinant Algorithm
The algorithm presented in [DKT87] works on square nonsingular matrices and uses the
same two steps as described above. The key enhancement is that it works modulo the
determinant. To see why this is a reasonable idea, observe that the HNF H of a matrix
A is lower triangular and has the same determinant as A in terms of the absolute value.
Thus, the product of diagonal elements of H equals the determinant. And since H is in
HNF, the diagonal elements are the largest in each row, which implies the determinant of
A is a tight upper bound on the entries of H. This upper bound reaches equality if and
only if every diagonal element except one is equal to 1. The left over diagonal element is
then equal to the determinant.

Furthermore, assume we know a diagonal element of H, e.g. h11, this implies that all
other diagonal elements cannot be larger than | det(A)|

h11
, because their product must be

equal to the determinant.
In [DKT87], the runtime for this Modulo Determinant Algorithm was proven

to be O(n3 log2 d), where d is the determinant of the input matrix. If M is the largest
absolute value of the input matrix, we bound d by O(Mn), which leads to an overall
runtime of O(n3 log2Mn) = O(n5 log2M).

If we used the basic algorithm and just inserted the modulo reductions in every op-
eration, this would not yield the correct result. To understand how reducing modulo

8

the determinant during the basic algorithm changes the result we have the following
proposition.

Proposition 2.28. Let H = (hij) be the HNF of A ∈ Zn×n and d = det(A). We define
d1 = d and di+1 = di

hii
for 1 ≤ i < n. If the matrix B = (bij) results from the basic

algorithm, but reducing every element modulo d during the process, then hii = gcd(di, bii).

Proof. A detailed proof is given in [DKT87].

Now, let us have a look on how the Modulo Determinant Algorithm works.
Given an input matrix A′ = (a′ij)i,j∈[n], we compute the HNF of the modified matrix

A = (aij)i∈[n],j∈[2n] =

a′11 . . . a′1n d1 . . . 0
...

a′n1 . . . a′nn 0 . . . dn

 , (2.29)

where the di are defined as in Proposition 2.28. According to Proposition 1.15, L(A) =
L(A′). To compute the HNF of A, we use the basic algorithm with two slight modifica-
tions.

Firstly, we perform the two steps from the basic algorithm for every row, starting with
the first and terminating with the last row. This means, for every row, we first want to
produce zeros to the right of the diagonal element and then already reduce the elements
to the left of the diagonal element to be smaller than the diagonal elements.

The second difference is, we reduce every element modulo the corresponding determi-
nant, after transforming each row. This means, at the start we reduce everything modulo
d1 = d. But for the second row, since we already know h11, we want to reduce modulo
the smallest possible value, which is d2 =

d1
h11

. Thus, with every iteration we learn a new
diagonal element and reduce modulo the smallest possible principal minor. At the start
of the algorithm we do not know the di for i > 1, which means the values are computed
on the fly. After every row we learn hii and thus we compute di+1 = di

hii
for the next

iteration.
Lastly, as shown in Equation 2.29, the last nonzero element in row i is ai,n+i = di. If

we have set all aij = 0 for i < j < n + i by using Uij and computing modulo di, the
elements aii and ai,n+i = di are the only nonzero elements in row i. At this point, aii
is the result of the basic algorithm, but all steps were performed modulo di. Hence, if
we now produce the last zero at ai,n+i = di, according to the definition of Ui,n+i, aii will
become gcd(aii, di). Due to Proposition 2.28, this is the correct diagonal element of the
HNF. This is the exact reason, why we operate on the modified matrix A instead of the
input matrix A′.

If we perform those procedures for every row, without altering the lattice, we will
receive the HNF of the input matrix. This follows by induction over the principal subma-
trices, because after applying the above procedure to row j, the j-th principal submatrix
is in HNF.
The above procedures for the Modulo Determinant Algorithm are shown in Algo-
rithm 1.

9

Algorithm 1: Modulo Determinant Algorithm
Data: A′ ∈ Zn×n, where det(A′) 6= 0
Result: The HNF H ∈ Zn×n of A′

1 d1 ← |det(A′)|

2 A←

a′11 . . . a′1n d1 . . . 0
...

a′n1 . . . a′nn 0 . . . d1


3 for r ← 1 to n do
4 for c← r + 1 to n+ r do
5 A.generateZero(r, c)

6 for c← r to n+ r do
7 for t← r to n do
8 atc ← atc mod dr

9 if arr = 0 then
10 arr = dr

11 for j ← 1 to r − 1 do
12 for t← j + 1 to r + 1 do
13 q ← atj

att

14 for k ← t to n do
15 ak,j+1 ← ak,j+1 − q · att
16 ak,j+1 ← ak,j+1 mod dr

17 dr+1 ← dr
arr

18 ar+1,n+r ← dr+1

19 return H

In line 5, the method generateZero(r,c) implements the matrix multiplication with Urc.

To conclude, computing the HNF modulo the determinant at least gives an upper
bound on the size of the entries. Compared to the most basic algorithm, this is already
a useful improvement. Since the Hadamard inequality implies super exponential growth
of the determinant, this algorithm still has huge space complexity. Hence, the Linear
Space Algorithm, discussed in Section 2.4, provides further improvements. But most
importantly, if the determinant is known to be small, this algorithm accomplishes a
tremendously fast runtime of O(n3 log2 d). How to construct such matrices and use them
to compute the HNF of arbitrary matrices will be discussed in Section 2.5.

10

2.4 Linear Space Algorithm
In this section we discuss the algorithm for computing the HNF of square matrices pre-
sented in [MW01]. Throughout this chapter we assume the input matrix to be of size
O(n2 logM), where M is the maximal absolute value of the elements of the input matrix.
The presented algorithm provably uses a linear amount of space in the input size, i.e.
O(n2 logM), and further achieves a runtime of O(n5polylog(M,n)).

2.4.1 Main Algorithm

The main part of the Linear Space Algorithm takes as input a nonsingular square
matrix, where all principal minors are nonzero. In theory, this is not a restriction to the
input, because for every nonsingular matrix, there exists a permutation of columns so
that all principal minors are nonzero. In the appendix of [KB79b] an explicit method
to compute this permutation is provided. Because during that method the principal mi-
nors need to be checked O(n2) times, it has an overall runtime of O(n5). Permuting
the columns does not alter the lattice and due to Theorem 2.22 the HNF of a lattice is
unique. Therefore, the HNF is invariant under column permutation.

The algorithm relies on the two procedures AddColumn and AddRow.

• AddColumn takes as input a matrix A in HNF and a column vector b. It returns
the HNF of the matrix [A|b].

• AddRow works slightly different. It takes as input two square matrices A,HA

and a row vector aT , where HA is the HNF of A and aT is the row we want to add.
It returns the row vector xT such that

[
HA

xT

]
is the HNF of

[
A
aT

]
.

Based on these two procedures, the idea is to call AddRow and AddColumn until we
added all desired rows and columns so that the final call of AddColumn returns the
correct HNF of the input matrix. In that sense, we consecutively compute the HNF of
the principal submatrices.

Remark 2.30. By utilizing AddRow and AddColumn we are able to compute the HNF
of arbitrary (singular) matrices. We do so by first removing the linearly dependent columns
and rows and then computing the HNF on this nonsingular square matrix. Afterwards we
add the removed cloumns and rows back using the above methods.

Recall that A(i) denotes the i-th principal submatrix of A = (aij)i,j∈[n]. Let aT (i) =
(ai+1,1, ai+1,2, . . . , ai+1,i) be the row vector, obtained by truncating the (i + 1)-th row to
its first i entries. Let b(i) = (a1,i, a2,i, . . . , ai,i) denote the the first i elements of column
i. Using this notation, the Linear Space Algorithm is shown in Algorithm 2.

Observe if A is of dimension n = 1, the for loop in line 5 never gets executed and
H = A(1) is returned. Since all diagonal elements must be strictly greater than zero
in the HNF, we must ensure A(1) > 0. This is the reason for lines 1 to 3, which just
multiply the first column with −1 if necessary. Obviously, this does not alter the lattice.

11

Algorithm 2: Linear Space Algorithm
Data: A ∈ Zn×n, where det(A(i)) 6= 0 ∀i ∈ [n]
Result: The HNF H ∈ Zn×n of A

1 if A1,1 < 0 then
2 for i← 1 to n do
3 Ai,1 ← −Ai,1

4 H← A(1)
5 for i← 2 to n do
6 xT ← AddRow(A(i− 1), H, aT (i− 1))

7 H ← AddColumn(
[

H
xT

]
,b(i))

8 return H

Lines 1 to 3 are not included in [MW01], which makes their code only work for true
matrices of dimension n > 1. Furthermore, their proof of correctness is technically wrong,
because the base case for the induction does not hold if A(1) < 0. Even considering n = 2
the base case, AddRow would receive an incorrect input, because H = A(1) would not
be a correct HNF. Although H has the correct value after calling AddColumn, it is not
obvious why this works.

Summing up, lines 1 to 3 ensure the formal and practical correctness for all matrices
in Zn×n with n ≥ 1.

Theorem 2.31. Let A ∈ Zn×n be a matrix where all principal minors are nonzero.
Assuming AddRow and AddColumn work correctly, the Linear Space Algorithm
returns the correct HNF of A.

Proof. For i ∈ [n], let Hi denote the value of the variable H after i− 1 iterations of the
for loop in line 5 of Algorithm 2. This implies H1 = A(1). We now prove by induction
that Hi is the HNF of A(i) for all i. Since A(n) = A, this includes Hn is the correct
HNF of A.
The base case n = 1 is true, because lines 1 to 3 ensure A(1) > 0 and therefore all
requirements to be in HNF are true and because multiplying the column with −1 does
not change the lattice, H1 is the correct HNF of A(1).
For the inductive step we assume Hi−1 is the correct HNF of A(i−1). In line 6, AddRow
returns xT such that (

Hi−1

xT

)
(2.32)

is the correct HNf of (
A(i− 1)
aT (i− 1)

)
. (2.33)

12

In line 7 AddColumn returns Hi, which is by correctness of AddColumn the HNF of(
A(i− 1)

b(i− 1)
aT (i− 1)

)
= A(i) (2.34)

It follows, the return value Hn of Algorithm 2 is the correct HNF of A(n) = A.

2.4.2 AddRow Procedure

The AddRow procedure takes as is input two nonsingular square matrices A,HA ∈ Zn×n

and a row vector aT ∈ Zn. HA is the HNF of A and aT is the row we want to add. The
procedure returns a row vector xT such that

[
HA

xT

]
is the HNF of

[
A
aT

]
.

A and HA generate the same lattice, which implies there exists a unimodular matrix
U ∈ Zn×n satisfying HA = AU. U is the solution of a system of linear equations defined
by the entries of A and HA. As A and HA are nonsingular, this system of linear equations
has full rank and exactly one solution. Therefore, U is unique.

Observe, the return value xT has to fulfill xT = aTU. By substituting U with A−1HA,
we compute the result as xT = aTA−1HA. Unfortunately, the entries of U = A−1HA are
potentially of the same magnitude as det(A), which would require an extensive amount
of memory space to store all at the same time. To tackle this problem, we compute xT

directly using the CRT as explained in the following four steps.

1. choose primes p1. . . . , pk such that
∏k

i=1 pi > 2 · nn+1M2n+1 and |det(A)| 6= 0
mod pi ∀i ∈ [k], where M = max(‖A‖∞, ‖aT‖∞).

Before we continue with the next step, let us briefly discuss why this bound is correct.
We want to compute xT with the CRT. Therefore, we need to bound the absolute values
of the elements of xT . The starting point is xT = aTA−1HA. First, we want to bound
the elements of the product P = A−1HA = (pij)i,j∈[n]. For M = max(‖A‖∞, ‖aT‖∞),
we bound the absolute value of the elements of A−1 = (a

(−1)
ij)i,j∈[n] by L = (

√
nM)n.

Additionally, without loss of generality we assume
∑n

i=1 hii ≤
∏n

i=1 hii. The only way for
this equation not to hold, is when hii = 1. But in this case we just leave that column
out and insert it later into our final result. We now bound the absolute value of pij by
bounding the matrix product as

|pij| = |
n∑

l=1

a
(−1)
il hlj| ≤

n∑
l=1

|a(−1)
il | · |hlj| ≤

n∑
l=1

Lhlj = L

n∑
l=1

hll ≤ L

n∏
i=1

hll ≤ L2. (2.35)

We use the above result to bound the absolute entries of xT = (xT
i)i∈[n] = aTP by

|xT
i | = |

n∑
l=1

aTl pil| ≤
n∑

l=1

|aTl | · |pil| ≤
n∑

l=1

M · L2 = nML2 = nn+1M2n+1. (2.36)

Because we want to compute xT in the range −nn+1M2n+1 ≤ xT
i ≤ nn+1M2n+1, we need

to choose the primes to exceed 2 · nn+1M2n+1 as explained in Section ??. Lastly, we

13

require |det(A)| 6= 0 mod pi to ensure that A stays nonsingular (e.g.
[
2 0
0 2

]
has full rank

over Q but is singular over F2).

2. for every pi compute the solution yi to ATyi = a mod pi.

3. for every prime pi and solutions yi compute xi = HT
Ayi mod pi.

To see this method yields the correct result, rewrite the equation from point 2 as yT
i =

aTA−1 mod pi. By rewriting the equation from point 3 we get xT
i = yT

i HA = aTA−1HA

mod pi as desired.

4. use the CRT on the xi to compute x and return xT .

An upper bound on the entries of xT was already computed in Equation 2.36 to be
nn+1M2n+1. Thus, the bit size of the entire vector xT and the overall memory space
required by AddRow is

n((n+ 1) log n+ (2n+ 1) logM) = O(n2 logM), (2.37)

which is linear in the input size, if we assume M > n.
For V = O(nn+1M2n+1), we choose our primes such that

∏k
i=1 pi > 2V . If pmax denotes

the biggest chosen prime number, we get (pmax)
k > 2V . This implies a rough estimate for

the number of primes needed as k = O(log V). Applying the Prime Number Theorem, the
largest prime is of order O(log V log log V). The runtime time mostly relies on solving the
system of linear equations, which is done is O(n3 log2 pi) by using Gaussian elimination
modulo pi. Including the above results of the Prime Number Theorem, we get a time
complexity of O(log V)O(n3 log2(log V log log V)) = O(n4polylog(M,n)) after expanding
V .

The AddRow procedure is shown in Algorithm 3. In line 14, the method linearSolve-
Mod returns the solution y of ATy = a mod pi.

We continue with an example computation of the AddRow procedure.

Example 2.38. The procedure is called with the parameters

A =

(
512 142
12 420

)
, HA =

(
2 0

49584 106668

)
and aT = (983, 45). (2.39)

We compute d = |det(A)| = 213336 and M = max(‖A‖∞, ‖aT‖∞) = 983. Therefore we
need to find primes p1, . . . , pk such that their product exceeds 2nn+1M2n+1 = 2 ·23 ·9835 =
7342730289481144 and every prime must not divide d. Hence, suitable primes for example
are

1031, 1033, 1039, 1049, 1051, 1061 (2.40)

Continuing with the next step, we start with the prime p1 = 1031 and solve the system of
equations (

512 12
142 420

)(
y1
y2

)
≡
(
983
45

)
mod 1031 (2.41)

14

Algorithm 3: AddRow
Data: A,HA ∈ Zn×n and a row vector aT ∈ Zn, where HA is the HNF of A
Result: xT s.t.

[
HA

xT

]
is the HNF of

[
A
aT

]
1 d← |det(A)|
2 M ← max(‖A‖∞, ‖aT‖∞)
3 b← nn+1M2n+1

4 product← 1
5 p← 230

6 k ← 1
7 while product ≤ 2b do
8 p←nextPrime(p)
9 if d 6≡ 0 mod p then

10 pi ← p
11 product← product · p
12 k ← k + 1

13 x_vectors← []
14 for i← 1 to k do
15 y←linearSolveMod(AT , a, pi)
16 x← HT

A · y mod pi
17 x_vectors.append(x)
18 x← []
19 for i← 0 to n− 1 do
20 values← []
21 for j ← 0 to k − 1 do
22 values.append(x_vectors[j][i])

23 result← CRT(values, p1, . . . pk)

24 if result > bprodcut
2
c then

25 result← result− product

26 x.append(result)

27 return xT

We compute the solution y1 = 141 and y2 = 166 mod 1031 and set y1 = (141, 166)T .
With that solution we compute x1 as

x1 =

(
2 49584
0 106668

)(
141
166

)
≡
(
2 96
0 475

)(
141
166

)
≡
(
753
494

)
mod 1031. (2.42)

After repeating this procedure for all other primes, we get the results depicted in Table 1.

15

pi 1031 1033 1039 1049 1051 1061
yT
i (141, 166) (920, 513) (615, 423) (615, 504) (228, 426) (617, 370)

xT
i (753, 494) (807, 608) (969, 950) (190, 471) (242, 583) (502, 82)

Table 1: Values for yi and xi for 1 ≤ i ≤ k = 6

To conclude, we use the CRT to compute the entries of x. For the first entry we supply
the values (753, 807, 969, 190, 242, 502) and the corresponding primes. The CRT yields
1294398862103975699. Because we expect a value centered around zero and the returned
value is greater than

⌊
1
2

∏n
i=1 pi

⌋
= 647199431052001391, we subtract the product and get

x1 = −27084.
For the second entry we supply the values (494, 608, 950, 471, 583, 82) together with the
corresponding primes. The CRT yields 1294398862103944510 and after subtracting the
product we get x2 = −58273.
To sum up, the AddRow procedure returns the value xT = (−27084,−58273), such that 2 0

49584 106668
−27084 −58273

 (2.43)

is the HNF of 512 142
12 420
983 45

 . (2.44)

We verify the result by computing xT = aTA−1HA directly. This yields

xT =
(
983 45

)
420

213336
− 12

213336

− 142

213336

512

213336

(2 0

49584 106668

)
=
(
−27084 −58273

)
(2.45)

as expected.

Looking ahead on potential enhancements, there are more efficient approaches to solve
systems of linear equations based on fast matrix multiplication or p-adic expansions as
proposed in [Dix82; MS99]. It is reasonable that these techniques are applicable in
the context of AddRow as well, which would reduce the runtime by a factor of n to
O(n3polylog(M,n)).

2.4.3 AddColumn Procedure

Throughout this section, we will revisit techniques applied in Section 2.3. The AddCol-
umn procedure takes as input a matrix A ∈ Zn×n−1 in HNF and a column vector b ∈ Zn.
It returns the HNF H ∈ Zn×n of [A|b].

16

Proposition 1.15 implies c = (0, . . . , 0, d)T ∈ L([A|b]), where d = |det([A|b])|. First,
we extend A to H0 = [A|c], which is a lower triangular matrix in HNF. Based on this
fact, AddColumn operates on the matrix [H0|b] ∈ Zn×n+1, which still generates the
same lattice as [A|b]. It continues to generate pairs Hj,bj for j ∈ {0, . . . , n} satisfying

• H0 = [A|c] and b0 = b

• Hj is in HNF

• L([Hj|bj]) = L([Hj+1|bj+1])

• the first j entries of bj are zero.

By induction it follows, the matrix [Hn|bn] generates the same lattice as [A|b]. Further,
because bn = 0 and Hn is in HNF, Hn is the HNF of [A|b].

The procedure starts with the matrix [H0|b0]. Let us have a look on how to get from
Hj−1 to Hj, for every j ∈ [n]. We first apply the unimodular transform Uj,n+1 ∈ Zn+1×n+1

(see Section 2.26) from the right to [Hj−1|bj−1] that modifies column j and the last column
bj−1. Since during this procedure we only generate zeros in the last column, we denote
Uj,n+1 as Uj for a better readability. After this transformation, the j-th entry of bj−1 is
zero. If the j-th entry of bj−1 was already zero beforehand, we would not apply Uj, and
continue with the reduction phase explained below.

Similar to Section 2.3, in this case the unimodular transformation is defined as

Uj,n+1 = Uj =



1 0 . . . 0

0
.
. . . 1 0

0 k 0 . . . 0 −b
(j)
j−1

g
... 0 1 0 . . . 0

...
0

. . . 1 0

0 . . . 0 l 0 . . . 0
hjj

g


, (2.46)

row j

column j

where b
(j)
j−1 denotes the j-th element of bj−1 and hjj is the diagonal element of Hj−1

in row j. Moreover, k, l, g are computed with the EEA to satisfy

g = gcd(hjj,b
(j)
j−1) = khjj + lb

(j)
j−1. (2.47)

To see this transformation indeed vanishes the j-th entry of bj−1 consider the equation
from the matrix multiplication for the resulting element b

(j)
j .

b
(j)
j = −

b
(j)
j−1

g
hjj + b

(j)
j−1

hjj

g
= 0. (2.48)

17

Moreover, in the actual implementation we do not need to store the whole matrix Uj

and neither do we need to compute the whole product [Hj−1|bj−1] · Uj. Because the
unimodular transformation only alters column j and the last column bj−1, it suffices to
implement the formulae for those two columns, given the four values from Uj that differ
from the identity matrix.

Let mk denote the determinant of the submatrix defined by the last n−k+1 rows and
columns of Hj for k > j. This means for example

mn = det(hn,n) = hn,n = d and mn−1 = det

(
hn−1,n−1 0
hn,n−1 hn,n

)
. (2.49)

Because Hj−1 is lower triangular, |mk| is the determinant of the lattice, generated by the
last n− k + 1 columns. Due to Proposition 1.15, we reduce the entries of Hj−1 in row k
modulo |mk|. This corresponds to subtracting a suitable multiple of the last n − k + 1
columns. We use this fact during the matrix multiplication with Uj by computing every
element of row k in the result modulo |mk|.

The last part of this step from Hj−1 to Hj is the reduction phase. Since we modified
column j, we probably violated the condition of the HNF that every diagonal element is
the largest in its row. To restore the HNF of Hj−1 we reduce certain elements modulo the
diagonal element of the corresponding row without altering the lattice in the following
way. Since we only altered column j there are two cases. First, the diagonal element
hjj of column j itself became smaller than the elements hji in row j (i < j). Thus, for
every column i we subtract an appropriate multiple of column j to get 0 ≤ hji < hjj.
Because Hj−1 is lower triangular, this does not alter the entries of the rows 1, . . . , j − 1.
Secondly, the entries hij (i > j) became larger than the diagonal elements hii to the right.
We carry on like in the first case and subtract an appropriate multiple of column i from
column j such that 0 ≤ hij < hii. Again, because Hj−1 is lower triangular, subtracting
column i does not alter the previously calculated values in the rows less than i. During
this procedure, we additionally reduce the elements modulo the corresponding mk to
bound the memory space. Therefore, we have restored the HNF condition of Hj−1 and
successfully computed Hj ← Hj−1 for the next iteration.

Unfortunately, this reduction phase is stated incorrectly in [MW01], where the Linear
Space Algorithm was originally proposed. In their paper, the reduction phase only
works on the columns j, . . . , n. It is only considered, that after modifying column j, the
entries of column j might be bigger than the diagonal element to the right of column j.
But it also happens that the diagonal element in column j itself became smaller than the
elements to the left of column j. Hence, we also need to reduce the columns 1, . . . , j − 1.
The procedure for the reduction phase in [MW01] was taken from [Sto98], where the
diagonal elements never change. But in our case, the diagonal elements do change during
the process, such that the reduction phase from [Sto98] is not entirely applicable and
needs some further enhancement as explained in the paragraph above.

The AddColumn procedure is shown in Algorithm 4.
Unfortunately, the code of the AddColumn method presented in [MW01] is not entirely
correct, although the ideas are. Consequently, a corrected, but more complex version is
depicted in Algorithm 4.

18

As first difference to the code in [MW01], observe in line 1 we define c with the absolute
value of the determinant. If we did not use the absolute value, the computations of the
mk in line 5 would be wrong.

The second difference to the original code is line 8 to 13, because we compute x and y
outside the for-loop. If we computed them inside the loop, as stated in [MW01], in the
case i = j, we override bi = bj in line 12, but this bj is encoded in x. This would cause
wrong results in the following iterations. Therefore, we must compute x and y outside
the loop with the original value of bj.

Furthermore, in line 11 we store the value of bi, because we override it in line 12, but
must use it in line 13.

Moreover, in line 14, the if statement is added for the following reasons. If bj = 0, the
EEA returns g = hjj, r = 1 and s = 0, which leads to x = 0 and y = 1. Therefore, if
j = n we reduce hnn mod (mn = hnn) in line 13, which sets hnn = 0. This would cause
an error in line 17, because we try to divide by hnn. Secondly, if [A|b] is unimodular, we
set mn = 1 in line 3. Hence, in line 13 if i = j = n we compute hnn mod (mn = 1) = 0,
which violates the HNF. This generally happens if hjj ← gcd(hjj, bj) is a multiple of
mj. In that case we do not want to reduce hjj mod mj = 0, but reduce to the smallest
nonzero representative, which is mj.

As last difference, lines 16 to 19 are added to reduce the columns left to column j, which
is is missing in the reduction phase in [MW01] as explained in the paragraph above.

We continue with the analysis of the AddColumn procedure. First, let us have look
at the space complexity. During each iteration of the for-loop in line 6, only column j of
H and the vector b are modified. Both are reduced modulo the mk. Hence, the required
space is

O
(n∑

k=1

logmk

)
= O(n logm1) (2.50)

since m1 = maxk mk. Because m1 = det(H) we have

O(n logm1) = O(n log det(H)) = O(n logMn) = O(n2 logM). (2.51)

Because in the reduction phase in lines 16 to 23, we reduce the newly computed value
modulo the diagonal elements from the input matrix, it follows the matrix needs overall
memory space of O(n2 logM) again. Therefore, the space complexity of AddColumn is
O(n2 logM).

Since the Linear Space Algorithm only uses AddRow and AddColumn as sub-
procedures, we already state at this point the whole algorithm uses O(n2 logM) space.
This is the same as the input size, which makes it a linear space algorithm.

Regarding the time complexity, the for-loop in line 20 is the triangulation procedure
from [Sto98], which was proven to run in O(n log2 d), where d = |det(A)|. In our case,
we bound det(A) = O(Mn). Thus, lines 20 to 23 are in O(n log2Mn). Lines 16 to 19 are
essentially the same modulo operation, hence they are also in O(n log2Mn). The for-loop
in line 10 adds a runtime of O(n2 log2M). Hence, we get a total runtime of

n(2 · O(n log2Mn) +O(n2 log2M)) = O(n4 log2M). (2.52)

19

Algorithm 4: AddColumn
Data: A ∈ Zn×n−1 in HNF, b ∈ Zn

Result: The HNF H ∈ Zn×n of [A|b]

1 c← (0, . . . , 0, |det([A|b]|)T
2 H = [A|c]
3 mn ← hnn

4 for i← n− 1 to 1 do
5 mi ← mi+1 · hi,i

6 for j ← 1 to n do
7 g, r, s = EEA(hj,j, bj)

8 x← − bj
g

9 y =
hjj

g

10 for i← j to n do
11 t← bi
12 bi ← xhij + ybi mod mi

13 hij ← rhij + st mod mi

14 if hjj = 0 then
15 hjj ← mj

16 for c← 1 to j do
17 q ← hjc div hjj

18 for r ← j to n do
19 hrc ← hrc − qhrj mod mr

20 for k ← j + 1 to n do
21 q ← hkj div hkk

22 for l← k to n do
23 hlj ← hlj − qhlk mod ml

24 return H

We conclude this chapter with an example computation of the AddColumn procedure.

Example 2.53. We compute the starting parameters for Example 2.38. Therefore, we
call AddColumn with

A =

(
512
12

)
and b =

(
142
420

)
. (2.54)

We first compute |det([A|b])| = 512 · 420− 142 · 12 = 213336. Therefore, we set

c =

(
0

213336

)
and H0 = [A|c] =

(
512 0
12 213336

)
. (2.55)

20

We continue by computing the mk as m2 = 213336 and m1 = 213336 · 512 = 109228032.
We now start our iterations with j = 1 and operate on the matrix

[H0|b0] =

(
512 0 142
12 213336 420

)
. (2.56)

Because b
(1)
0 = 142 6= 0 we do not skip this step and compute

g, k, l = EEA(hjj,b
(j)
j−1) = EEA(512, 142). (2.57)

This returns g = 2, k = −33, l = 119. With those values we define U1 as

U1 =

k 0 −b
(j)
j−1

g

0 1 0

l 0
hjj

g

 =

−33 0 −71
0 1 0
119 0 256

 . (2.58)

Next, we compute the product [H0|b0] · U1 and reduce row k modulo mk in the result.
This yields

[H0|b0] ·U1 =

(
512 0 142
12 213336 420

)−33 0 −71
0 1 0
119 0 256

 =

(
2 0 0

49584 213336 106668

)
(2.59)

Since the result is already in HNF, we do not need to reduce any entries and set

[H1|b1] =

(
2 0 0

49584 213336 106668

)
. (2.60)

We continue with the last iteration j = 2. Again, because b
(2)
1 = 106668 6= 0, we do not

skip this iteration and continue with computing g = 106668, k = 0 and l = 1 by executing
EEA(213336, 106668). Therefore, U2 is defined as

U2 =

1 0 0
0 0 −1
0 1 2

 . (2.61)

Computing the product [H1|b1] ·U2 and reducing modulo mk yields

(
2 0 0

49584 213336 106668

)1 0 0
0 0 −1
0 1 2

 =

(
2 0 0

49584 106668 0

)
. (2.62)

Since this is already in HNF, there is no further modulo reduction necessary. Hence, we
conclude that (

2 0
49584 106668

)
(2.63)

21

is the HNF of (
512 142
12 420

)
. (2.64)

22

2.5 Heuristic Algorithm
In the Linear Space Algorithm, the hidden constants become quite large, which gets
noticeable in practical implementations. Therefore, in [MW01] the Linear Space Al-
gorithm and Modular Determinant Algorithm are combined, based on heurisitc
measurements. As result, the authors keep the linear space complexity and achieve a
speed up by a factor of n or potentially even n2, outperforming all previously discussed
algorithms.

The main idea is to execute the Modulo Determinant Algorithm on a matrix
with a heuristically small determinant and then use the algorithms AddRow and Add-
Column to compute the HNF. The heuristic algorithm is depicted in Algorithm 5.

Algorithm 5: Heuristic Algorithm
Data: A ∈ Zn×n

Result: The HNF H ∈ Zn×n of A

1 decomposeA into

[
B c d

bT an,n−1 ann

]
2 d1 ← det([B|c])
3 d2 ← det([B|d])
4 g, k, l ← EEA(d1, d2)

5 H′ ← HNFModD([B|kc+ ld])

6 xT ← AddRow([B|kc+ ld],H′, [bT |kan,n−1 + lann])

7 H←

[
H′

xT

]

8 H← AddColumn(H,

[
c

an,n−1

]
)

9 H← AddColumn(H,

[
d

ann

]
)

10 return H

We start by decomposing the input matrix and computing d1 and d2. It is important
to note that in this case, d1 and d2 must be the matrix determinants and not the lat-
tice determinants, i.e. keeping the sign and not taking the absolute value. Because the
determinant of a matrix is multilinear, in line 4 we get

det([B|kc+ ld]) = det([B|kc]) + det([B|ld]) = kd1 + ld2 = g = gcd(d1, d2), (2.65)

which is usually very small as depicted in Figure ??. That is why in line 5 we compute
the HNF H′ of that matrix with the Modulo Determinant Algorithm. We con-

23

tinue with adding the similarly modified last row of the input matrix and terminate the
algorithm after adding the last two columns.

This procedure yields the correct result since we computed the HNF of[
B kc+ ld c d
bT kan,n−1 + lann an,n−1 ann

]
, (2.66)

which generates the same lattice as the original matrix.
Based on heuristics, one may reasonably assume that g = det([B|kc+ ld]) only needs

one computer word of storage. In that case, by using the Modulo Determinant
Algorithm in line 5, the space complexity has a tiny upper bound and is by far still
linear. The runtime of O(n3 log2 g) also gets really close to O(n3). Even if g cannot be
stored in one computer word, one simply applies the Heuristic Algorithm recursively.
Hence, using this modified matrix as input to the Modulo Determinant Algorithm
is the key component of this Heuristic Algorithm.

The main computational part consists of calling AddRow and AddColumn. But in
the case where g is very small, AddColumn usually performs much better than its worst
case runtime of O(n4 log2M). Since g is small, the corresponding HNF in line 5 also has
a small determinant. Thus, the diagonal elements are small and the vast majority must
be equal to 1. After calling AddRow this still holds for all rows, but the last one. There,
the entries might be as big as the determinant of the original input matrix A, while the
(n−1)-th principal submatrix remains just slightly different from the identity matrix. In
this case, the reduction phase in lines 16 to 23 of AddColumn is much faster. Reducing
the first n − 1 rows of one column only takes O(n) additions of small numbers that fit
in one computer word, i.e. it takes constant time for one addition. For the last row,
which was appended with AddRow, it takes O(n) additions of values with a bit size
up to O(log det(A)) = O(n logM). All in all reducing n columns, and thus the entire
AddColumn procedure, takes n(O(n) +O(n2polylog M)) = O(n3polylog M).

Combining this with the runtime of O(n4polylog(M,n)) for AddRow, the entire
Heuristic Algorithm has a time complexity of O(n4polylog(M,n)). Interestingly,
this demonstrates the bottleneck of the Heuristic Algorithm to be the AddRow
procedure and not the HNF computation of the n− 1× n− 1 submatrix.

If the methods to reduce the runtime of AddRow as proposed in Section 2.4.2 are
applicable, the entire Heuristic Algorithm will have a linear space complexity of
O(n2 logM) and a heuristic runtime of O(n3polylog(M,n)). This would be the best
known result till today.

24

References
[Fru77] M. A. Frumkin. “Polynomial time algorithms in the theory of linear dio-

phantine equations”. In: Fundamentals of Computation Theory. Ed. by Marek
Karpiński. Berlin, Heidelberg: Springer Berlin Heidelberg, 1977, pp. 386–392.
isbn: 978-3-540-37084-0.

[KB79a] Ravindran Kannan and Achim Bachem. “Polynomial Algorithms for Comput-
ing the Smith and Hermite Normal Forms of an Integer Matrix”. In: SIAM
Journal on Computing 8.4 (1979), pp. 499–507. doi: 10.1137/0208040. eprint:
https://doi.org/10.1137/0208040. url: https://doi.org/10.1137/
0208040.

[KB79b] Ravindran Kannan and Achim Bachem. “Polynomial Algorithms for Comput-
ing the Smith and Hermite Normal Forms of an Integer Matrix”. In: SIAM
Journal on Computing 8.4 (1979), pp. 499–507. doi: 10.1137/0208040. eprint:
https://doi.org/10.1137/0208040. url: https://doi.org/10.1137/
0208040.

[Dix82] J.D. Dixon. “Exact Solution of Linear Equations Using P-Adic Expansions”.
In: Numerische Mathematik 40 (1982), pp. 137–142. url: http://eudml.
org/doc/132821.

[Sch86] A. Schrijver. Theory of Linear and Integer programming. Wiley-Interscience,
1986.

[DKT87] P. D. Domich, R. Kannan, and L. E. Trotter. “Hermite Normal Form Com-
putation Using Modulo Determinant Arithmetic”. In: Mathematics of Opera-
tions Research 12.1 (1987), pp. 50–59. issn: 0364765X, 15265471. url: http:
//www.jstor.org/stable/3689672 (visited on 08/15/2023).

[Ili88] Costas S. Iliopoulos. “Worst-case complexity bounds on algorithms for com-
puting the structure of finite abelian groups and Hermite and Smith normal
forms of an integer matrix”. In: SIAM Journal Computing 18 (1988), pp. 131–
141.

[FH97] Xin Gui Fang and George Havas. “On the Worst-Case Complexity of Inte-
ger Gaussian Elimination”. In: Proceedings of the 1997 International Sym-
posium on Symbolic and Algebraic Computation. ISSAC ’97. Kihei, Maui,
Hawaii, USA: Association for Computing Machinery, 1997, pp. 28–31. isbn:
0897918754. doi: 10.1145/258726.258740. url: https://doi.org/10.
1145/258726.258740.

[Sto98] Arne Storjohann. “Computing Hermite and Smith normal forms of triangular
integer matrices”. In: Linear Algebra and its Applications 282 (1998), pp. 25–
45. issn: 0024–3795. url: http://dx.doi.org/10.1016/S0024-3795(98)
10012-5.

25

https://doi.org/10.1137/0208040
https://doi.org/10.1137/0208040
https://doi.org/10.1137/0208040
https://doi.org/10.1137/0208040
https://doi.org/10.1137/0208040
https://doi.org/10.1137/0208040
https://doi.org/10.1137/0208040
https://doi.org/10.1137/0208040
http://eudml.org/doc/132821
http://eudml.org/doc/132821
http://www.jstor.org/stable/3689672
http://www.jstor.org/stable/3689672
https://doi.org/10.1145/258726.258740
https://doi.org/10.1145/258726.258740
https://doi.org/10.1145/258726.258740
http://dx.doi.org/10.1016/S0024-3795(98)10012-5
http://dx.doi.org/10.1016/S0024-3795(98)10012-5

[MS99] Thom Mulders and Arne Storjohann. “Diophantine Linear System Solving”.
In: Proceedings of the 1999 International Symposium on Symbolic and Alge-
braic Computation. ISSAC ’99. Vancouver, British Columbia, Canada: Asso-
ciation for Computing Machinery, 1999, pp. 181–188. isbn: 1581130732. doi:
10.1145/309831.309905. url: https://doi.org/10.1145/309831.309905.

[MW01] Daniele Micciancio and Bogdan Warinschi. “A Linear Space Algorithm for
Computing the Hermite Normal Form”. In: Proceedings of the 2001 Interna-
tional Symposium on Symbolic and Algebraic Computation. ISSAC ’01. Lon-
don, Ontario, Canada: Association for Computing Machinery, 2001, pp. 231–
236. isbn: 1581134177. doi: 10.1145/384101.384133. url: https://doi.
org/10.1145/384101.384133.

[MR09] Daniele Micciancio and Oded Regev. “Lattice-based cryptography”. English
(US). In: Post-quantum cryptography. Ed. by D.J. Bernstein and J. Buchmann.
Springer, 2009.

[LNP22] Yang Li, Kee Siong Ng, and Michael Purcell. A Tutorial Introduction to
Lattice-based Cryptography and Homomorphic Encryption. 2022. arXiv: 2208.
08125 [cs.CR].

26

https://doi.org/10.1145/309831.309905
https://doi.org/10.1145/309831.309905
https://doi.org/10.1145/384101.384133
https://doi.org/10.1145/384101.384133
https://doi.org/10.1145/384101.384133
https://arxiv.org/abs/2208.08125
https://arxiv.org/abs/2208.08125

	Preliminaries
	Matrices
	Lattices
	Number Theory

	Computing the Hermite Normal Form
	Hermite Normal Form
	Basic Algorithm
	Modulo Determinant Algorithm
	Linear Space Algorithm
	Main Algorithm
	AddRow Procedure
	AddColumn Procedure

	Heuristic Algorithm

	References

