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Abstract. The RSA (Rivest-Shamir-Adleman) cryptosystem is a fundamen-
tal algorithm of public key cryptography and is widely used across various
information domains. For an RSA modulus represented as N = pq, with its
factorization remaining unknown, security vulnerabilities arise when attackers
exploit the key equation ed−k(p−1)(q−1) = 1. To enhance the security, Murru
and Saettone introduced cubic Pell RSA — a variant of RSA based on the cubic
Pell equation, where the key equation becomes ed−k(p2 +p+1)(q2 +q+1) = 1.
In this paper, we further investigate the security implications surrounding the
generalized key equation eu − (p2 + p + 1)(q2 + q + 1)v = w. We present a
novel attack strategy aimed at recovering the prime factors p and q under
specific conditions satisfied by u, v, and w. Our generalized attack employs
lattice-based Coppersmith’s techniques and extends several previous attack
scenarios, thus deepening the understanding of mathematical cryptanalysis.
Keywords: Cryptanalysis · Cubic Pell equation · Factorization · Lattice ·
RSA variant

1 Introduction
Background. The RSA cryptosystem [RSA78], proposed by Rivest, Shamir,
and Adleman, stands as a cornerstone in modern cryptography, serving various
applications such as data encryption and digital signature. Predicated on the
challenge of factoring large integers, RSA’s security hinges on the presumed
difficulty of this problem. Typically, RSA employs a usual modulus N = pq, where
p and q are large prime numbers of the same bit length. The public key e (i.e,
known as the encryption exponent) is chosen such that gcd(e, (p − 1)(q − 1)) = 1,
while the private key d (i.e, known as the decryption exponent) satisfies ed ≡ 1
(mod (p − 1)(q − 1)), leading to the RSA key equation ed − k(p − 1)(q − 1) = 1.
The efficiency of RSA’s encryption and decryption operations scales with the bit
length of e and d. Hence, to speed up these processes, ones sometimes opt for
smaller key sizes, inadvertently rendering RSA susceptible to potential attacks.
Consequently, many small key attacks targeting RSA have emerged.

In contrast to the small public key attack, as presented by Coppersmith [Cop97],
usually recovering a few plaintexts, the small private key attack poses a severe threat
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by compromising the entire RSA cryptosystem. Therefore, the investigation into
small private key attacks within RSA has garnered more attention. Among these,
the seminal Wiener’s attack [Wie90] demonstrated that when d < 1

3N0.25, utilizing
the continued fraction-based method leads to the polynomial-time recovery of the
complete private key d. Subsequent advancement was given by Boneh and Durfee
[BD99], using Coppersmith’s techniques based on lattice reduction algorithms to
improve the threshold to d < N0.292. Building upon both of the continued fraction-
based and lattice-based methods, Blömer and May [BM04] proposed an attack
targeting the generalized key equation ex + y = k(p − 1)(q − 1), demonstrating the
feasibility of factoring N = pq if x < 1

3N
1
4 and |y| = O(N− 3

4 ex).
To accommodate distinct application scenarios, the standard RSA scheme

has been generalized into several RSA variants. These modifications consist of
alterations to the modulus, such as N = prq [Tak98] or N = p1p2 · · · pr [CHLS98],
as well as an enhancement to the decryption process [QC82], aimed at improving
practical efficiency. Moreover, some RSA variants adopt specialized arithmetic
operations involving elliptic curves [Koy95], quadratic fields [PT00], and cubic
fields [MS18] in conjunction with the modulus N and encryption exponent e. These
tailored approaches serve to secure RSA against specific attacks, such as chosen
ciphertext attack or broadcast attack [Hås85].

Recently, Murru and Saettone [MS18] introduced a novel RSA variant based
on the cubic Pell equation x3 + ry3 + r2z3 − 3rxyz = 1. Referred to as the Murru-
Saettone cryptosystem or cubic Pell RSA variant, it relies on a key equation ed ≡ 1
(mod (p2 + p + 1)(q2 + q + 1)) with the modulus N = pq, the public key e, and the
private key d. This equation can be rewritten as

ed − k(p2 + p + 1)(q2 + q + 1) = 1. (1)

Additionally, the authors claim that traditional small private key attacks on RSA,
such as Wiener’s continued fraction-based attack, are ineffective against their
scheme.

Extensive security analysis of cubic Pell RSA has been conducted through vari-
ous studies [ST21, NAAA21, ZKY21, NAA+22, NAB22, FNP24], mainly focusing
on small private key attacks under specific circumstances. Denoting e = Nβ and
d = N δ, the attack bounds on δ are succinctly summarized in chronological order
as follows.

• ST Attack [ST21]. Susilo and Tonien utilized the continued fraction-based
method to establish that for a given RSA modulus N = pq with q < p < µq,
if

δ <
1
4 − λ,

where λ is a small positive constant related solely to µ, then the private key
d, p, and q can be efficiently recovered.

• NAAA Attack [NAAA21]. Nitaj et al. employed the continued fraction-
based method to demonstrate that if

δ <
5
4 − 1

2β for 3
2 < β <

5
2 ,
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then the RSA modulus N = pq can be efficiently factored. By employing the
lattice-based method, the bound can be improved to

δ <
7
3 − 2

3
√

3β + 1 for 1 < β <
15
4 .

• ZKY Attack [ZKY21]. Zheng et al. reformulated the key equation into
a modular equation xh(y) + c ≡ 0 (mod e), where h(y) is a polynomial of
order 2 with integer coefficients. They employed the lattice-based method
along with the technique in [Kun12], further refining the bound to

δ <


2 −

√
β, 1 ≤ β <

9
4 ,

5
4 − β

3 ,
9
4 ≤ β <

15
4 .

• NAALC Attack [NAA+22]. Nitaj et al. investigated small decryption
exponent attacks under small prime factor difference |p − q| = Nα and
introduced two distinct attacks. One uses the continued fraction-based
method, recovering the private key d and factoring the modulus N if

δ <
7
4 − 1

2β − α for 1
2 + 2α < β <

7
2 − 2α.

Another one uses the lattice-based method, improving the attack bound to

δ <
5
3 + 4

3α − 2
3

√
(4α − 1)(3β + 4α − 1) for β > 2α.

• NAB Attack [NAB22]. Nassr et al. explored three types of attacks based
on the continued fraction-based method in specific scenarios concerning prime
factors p and q. They showed that these attacks are effective if

δ ≤ 3
4 − α or δ ≤ 3

4 − ζ or δ <
1 − η

2 ,

where assuming |p − q| = Nα, |2q − p| = N ζ , and an approximation p0 for p
such that |p − p0| ≤ Nη with η ≤ 1/2.

• FNP Attack [FNP24]. Feng et al. used Kunihiro’s technique [Kun12]
to solve the modular equation in the form of xh(y) + 1 ≡ 0 (mod e). They
applied it to the private key attacks under the condition that the most
significant bits of p are known, enhancing the bound of Nassr et al.’s third
attack [NAB22]. Specifically, if

δ <


2 −

√
2βξ, 2ξ < β <

9
2ξ,

2 − 1
3β − 3

2ξ,
9
2ξ ≤ β < 6 − 9

2ξ,

where |p − p0| = N ξ and p0 is an approximation of p, then N can be factored
in polynomial time.
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Our Contribution. We notice that the majority of existing attacks deal with the
security issue from the perspective of solving the key equation ed−k(p2 +p+1)(q2 +
q + 1) = 1. Additionally, there have been works like [NAA+22, NAB22, FNP24]
extending cryptanalysis into specialized scenarios with side channel information.
For example, one previous attack [NAA+22] exploited the small difference in prime
factors. Their result is identical to that presented in [NAAA21] for α = 1/2.

In this paper, from the perspective of mathematical cryptanalysis and theoretical
interest like [BNST17, NPT18], we delve deeper into the examination of the security
of cubic Pell RSA variant by investigating the generalized key equation

eu − (p2 + p + 1)(q2 + q + 1)v = w. (2)

This equation is reformulated into a modular form as follows:

v(p + q)2 + (N + 1)(p + q)v + (N2 − N + 1)v + w ≡ 0 (mod e).

Considering e = Nβ, u = N δ, and |w| = Nγ , we demonstrate that if

δ <
7
3 − γ − 2

3
√

1 + 3β − 3γ − ε, (3)

where ε is a negligible positive real, the lattice-based method can be employed to
solve the modular equation efficiently, thereby obtaining the prime factors p and q.
Moreover, the original (1) becomes as a special case of (2) when w = 1 and hence
γ = 0. The condition (3) then reduces to

δ <
7
3 − 2

3
√

1 + 3β − ε,

which is identical to the result given in Nital et al.’s attack [NAAA21].

Organization. The rest of this paper is organized as follows. In Section 2, we
provide an overview of the cubic Pell RSA variant, characterized by the key
equation ed − k(p2 + p + 1)(q2 + q + 1) = 1, and revisit basic concepts related to
the lattice-based method. Section 3 elaborates on the generalized cryptanalysis of
the cubic Pell RSA variant. Section 4 provides a detailed numerical example to
validate the correctness and effectiveness of our attack. Finally, Section 5 concludes
our findings based on this investigation.

2 Preliminaries

We first introduce the cubic Pell RSA variant that satisfies the key equation
ed − k(p2 + p + 1)(q2 + q + 1) = 1. Then we present some basic concepts related to
the lattice-based method, including lattice reduction and Coppersmith’s techniques.
Moreover, we summarize the specific flow of the lattice-based method and mention
an important heuristic assumption.
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2.1 Cubic Pell RSA Variant

Let F be a field with (t3 − r) being an irreducible polynomial in F[t]. We introduce
the quotient field

A = F[t]/(t3 − r) =
{

x + yt + zt2 : x, y, z ∈ F
}

.

Within A, a product • is induced between two triples, denoted as (x1, y1, z1) and
(x2, y2, z2) ∈ F3. This product, denoted by (x1, y1, z1) • (x2, y2, z2), is computed as

(x1x2 + (y2z1 + y1z2)r, x2y1 + x1y2 + rz1z2, y1y2 + x2z1 + x1z2).

The norm of an element (x, y, z) is defined as N(x, y, z) = x3 + ry3 + r2z3 − 3rxyz.
By considering the unitary elements, we arrive at the cubic Pell curve

C =
{

(x, y, z) ∈ F3 : x3 + ry3 + r2z3 − 3rxyz = 1
}

,

where x3 + ry3 + r2z3 − 3rxyz = 1 represents the more natural cubic Pell equation
for a non-cubic integer r.

Beginning with A, we examine the quotient group B = A∗/F∗ equipped with a
non-standard product ⊙. This group B can be represented as

B =
{

[m + nt + t2] : m, n ∈ F} ∪ {[m + t] : m ∈ F} ∪ {[1F∗ ]
}

,

where [·] denotes the equivalence set. By fixing an element θ /∈ F, the elements
of B can be interpreted as (m, n) with m, n ∈ F, or (m, θ) with m ∈ F, or (θ, θ).
Consequently, the group B is expressed as

B = (F × F) ∪ (F × {θ}) ∪ ({θ} × {θ}).

The rules for computing the commutative product ⊙ in B are defined as follows,
with (θ, θ) representing the identity.

• (m, θ) ⊙ (k, θ) = (mk, m + k);

• (m, n) ⊙ (k, θ) =

(
mk + r

n + k
,
m + nk

n + k

)
, n + k ̸= 0,(

mk + r

m − n2 , θ

)
, n + k = 0, m − n2 ̸= 0,

(θ, θ), otherwise;

• (m, n) ⊙ (k, l) =

(
mk + (n + l)r

m + k + nl
,
nk + ml + r

m + k + nl

)
, m + k + nl ̸= 0,(

mk + (n + l)r
nk + ml + r

, θ

)
, m + k + nl = 0, nk + ml + r ̸= 0,

(θ, θ), otherwise.
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The cubic Pell RSA variant scheme relies on several key principles. By setting
F = Zp and fixing θ = ∞, we establish A = GF(p3) in this scenario. Consequently,
B becomes a cyclic group of order (p3 − 1)/(p − 1) = p2 + p + 1, with a well-defined
product ⊙. An analog of Fermat’s little theorem emerges, expressed as

(m, n)⊙p2+p+1 ≡ (∞, ∞) (mod p),

for any m ∈ Zp and n ∈ Zp ∪ {∞}. Furthermore, we can evaluate powers using
the ⊙ product through a generalization of Rédei rational functions. When N = pq,
with p and q being prime numbers of the same bit length, the power computation
yields

(m, n)⊙(p2+p+1)(q2+q+1) ≡ (∞, ∞) (mod N),

which resembles Euler’s theorem. The public key cryptosystem proposed in [MS18]
utilizing the ⊙ product is outlined as follows.

Key Generation. To generate public and private keys, select two prime numbers p
and q of the same bit length, and compute the modulus N = pq. Randomly
choose an integer e such that gcd(e, (p2 + p + 1)(q2 + q + 1)) = 1, and
select a non-cubic integer r from Zp, Zq, and ZN . Compute d satisfying
ed ≡ 1 (mod (p2 + p + 1)(q2 + q + 1)). The public key is (N, e, r), while the
corresponding private key is (p, q, d).

Encryption. To encrypt plaintexts m1 and m2 in ZN , use the encryption calculation

(c1, c2) ≡ (m1, m2)⊙e (mod N).

Decryption. For ciphertexts c1 and c2 in ZN , decrypt them by evaluating

(m?
1, m?

2) ≡ (c1, c2)⊙d (mod N).

In summary, this RSA variant scheme, employing cubic Pell equation, uses a
novel group with a non-standard product. Its powers are evaluated using generalized
Rédei functions.

2.2 Lattice-Based Method
Let n and ω denote two positive integers. Suppose we have ω linearly independent
vectors b⃗1, . . . , b⃗ω ∈ Rn. The lattice L, spanned by the above vectors, is a set of all
possible integer linear combinations of b⃗1, . . . , b⃗ω, expressed as

L
(⃗
b1, . . . , b⃗ω

)
=
{

ω∑
i=1

ai⃗bi ∈ Rn : ai ∈ Z
}

.

Furthermore, b⃗1, . . . , b⃗ω form a lattice basis for the lattice L. Treating each b⃗i as a
row/column vector, they collectively constitute a lattice matrix B. The lattice L
can thus be represented by the lattice matrix B. The lattice determinant is defined
as det(L) =

√
det (BBT), where BT denotes the transpose of B. The dimension

and rank of L are denoted by n and ω, respectively. In the case when the lattice L
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attains full rank, i.e., n = ω, the lattice matrix B becomes a square matrix, and
hence det(L) = | det(B)|.

The LLL lattice reduction algorithm [LLL82], introduced by Lenstra, Lenstra,
and Lovász, serves the purpose of discovering a high-quality reduced basis for
lattices, finding useful applications in cryptanalysis. Below, we present the result
established in [May03].

Lemma 1. Let L be a lattice consisting of input basis vectors (⃗b1, . . . , b⃗ω). After
applying the LLL lattice reduction algorithm, reduced basis vectors (v⃗1, . . . , v⃗ω) is
obtained, satisfying

∥v⃗i∥ ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i ,

where i = 1, . . . , ω. The running time is a polynomial related to ω and the maximal
norm length of the input lattice basis vectors.

The lattice-based method (also known as Coppersmith’s techniques), introduced
by Coppersmith [Cop96a, Cop96b], initially addressed solving small roots of uni-
variate modular polynomial equations and bivariate integer polynomial equations
efficiently within polynomial time. Since then, the lattice-based method develops
heuristic extensions to handle multivariate polynomial equations [May10]. For an
n-variate polynomial

h(x1, . . . , xn) =
∑

i1,...,in

ai1,...,inxi1
1 · · · xin

n ,

where ai1,...,in ∈ Z, the Euclidean norm is defined as

∥h (x1, . . . , xn)∥ =
√∑

a2
i1,...,in

.

Howgrave-Graham’s reformulation [How97] is an improvement of Coppersmith’s
original approach. The result is described as follows.

Lemma 2. Let h (x1, . . . , xn) ∈ Z [x1, . . . , xn] be an integer polynomial with at
most ω monomials and let e and m be two positive integers. If the following two
conditions hold:

1. h (x′
1, . . . , x′

n) ≡ 0 (mod em), where |x′
1| ≤ X1, . . . , |x′

n| ≤ Xn,

2. ∥h (x1X1, . . . , xnXn)∥ < em/
√

ω.

Then (x′
1, . . . , x′

n) is a solution satisfying h (x′
1, . . . , x′

n) = 0 over the integers.

Using the lattice-based method, we aim to discover the root (x′, y′, z′) of the
target modular polynomial equation f(x, y, z) = xy2 + axy + bx + z ≡ 0 (mod e)
according to the above two lemmas. Here, a, b, and e are predetermined integers.
First, we build upon f(x, y, z) to derive a set of shift polynomials including G(x, y, z)
and H(x, y, z), where the roots of these polynomials modulo em correspond to
(x′, y′, z′), with m being a well-chosen positive integer. Subsequently, we construct
a lattice L of dimension ω, with each row vector of the lattice basis matrix
representing the coefficient vector of the shift polynomials G(xX, yY, zZ) and
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H(xX, yY, zZ). Employing the LLL lattice reduction algorithm on L yields several
reduced basis vectors. These vectors contribute to reproducing newly derived
polynomials h(x, y, z) satisfying h(x, y, z) ≡ 0 (mod em).

Combining Lemma 1 and Lemma 2, we know that if the following inequality is
satisfied:

2
ω(ω−1)
4(ω−2) det(L)

1
ω−2 <

em

√
ω

,

then the conditions of the Howgrave-Graham’s reformulation are met, enabling the
satisfaction of h (x, y, z)) = 0 over the integers for the root (x′, y′, z′). Furthermore,
the solution can be recovered through trivial methods such as Gröbner basis
computation [BWK93] or resultant elimination.

It is notable that the lattice-based method for multivariate polynomial equations
is heuristic, with its effectiveness reliant on the following assumption. The integer
equations obtained from the lattice-based method are algebraically independent.
Thus, the common root of these derived equations can be efficiently recovered by
the Gröbner basis computation or the resultant elimination.

3 Generalized Cryptanalysis
We apply the lattice-based method to analyze the cubic Pell RSA variant with the
generalized key equation eu − (p2 + p + 1)(q2 + q + 1)v = w with a given modulus
N = pq and a given public key e. The generalized cryptanalysis result is stated
below.

Proposition 1. Let N = pq be the product of two unknown prime numbers
with q < p < 2q. Suppose that e = Nβ satisfying the generalized key equation
eu − (p2 + p + 1)(q2 + q + 1)v = w, where u = N δ and |w| = Nγ. Then one can
factor N in polynomial time if

δ <
7
3 − γ − 2

3
√

1 + 3β − 3γ − ε, (4)

provided that γ ≤ β − 1.

Proof. Assume that the public key e = Nβ satisfies eu−(p2 +p+1)(q2 +q+1)v = w
with u = N δ and |w| = Nγ . We have

v = eu − w

(p2 + p + 1)(q2 + q + 1) <
eu + |w|

(p2 + p + 1)(q2 + q + 1) < 2Nβ+δ−2

since (p2 +p+1)(q2 +q+1) > N2 and assuming |w| < eu. Therefore, the bounds on
the solution (u, v, w) of the generalized key equation eu−(p2+p+1)(q2+q+1)v = w
are

u = N δ, v < 2Nβ+δ−2, |w| = Nγ .

Moreover, the generalized key equation eu − (p2 + p + 1)(q2 + q + 1)v = w can
be transformed into the modular form

v((p + q)2 + (N + 1)(p + q) + N2 − N + 1) + w ≡ 0 (mod e).
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It can be rewritten as

v(p + q)2 + (N + 1)(p + q)v + (N2 − N + 1)v + w ≡ 0 (mod e).

Consider the following trivariate polynomial

f(x, y, z) = xy2 + axy + bx + z, (5)

where known parameters are a = N + 1 and b = N2 − N + 1. Thus, (x′, y′, z′) =
(v, p + q, w) is the root of the modular polynomial equation f(x, y, z) ≡ 0 (mod e).
In order to recover its small solution, we further use Jochemsz-May’s extension
strategy [JM06]. Because p and q are of the same bit length, we have p + q < 3N

1
2 .

Therefore, we set the upper bounds on (x′, y′, z′) to be

X = 2Nβ+δ−2, Y = 3N
1
2 , Z = Nγ .

Generating Shift Polynomials. Let m be a positive integer and t be a non-negative
integer to be optimized later. For 0 ≤ k ≤ m, we define the following monomial set

Mk =
⋃

0≤j≤2+t

{
xi1yi2+jzi3 : xi1yi2zi3 is a monomial of f(x, y, z)m

and xi1yi2zi3

(xy2)k
is a monomial of f(x, y, z)m−k

}
.

We calculate f(x, y, z)m = (xy2 + axy + bx + z)m as

m∑
i1=0

i1∑
j1=0

i1−j1∑
j2=0

(
m

i1

)(
i1
j1

)(
i1 − j1

j2

)
xi1y2j1(ay)j2bi1−j1−j2zm−i1 ,

which further leads to
m∑

i1=0

i1∑
j1=0

i1−j1∑
j2=0

(
m

i1

)(
i1
j1

)(
i1 − j1

j2

)
aj2bi1−j1−j2xi1y2j1+j2zm−i1 .

So, we observe that xi1yi2zi3 is a monomial of f(x, y, z)m if

i1 = 0, . . . , m, i2 = 0, . . . , 2i1, i3 = m − i1.

Similarly, xi1yi2zi3 is a monomial of f(x, y, z)m−k if

i1 = 0, . . . , m − k, i2 = 0, . . . , 2i1, i3 = m − k − i1.

For 0 ≤ k ≤ m, if xi1yi2zi3 is a monomial of f(x, y, z)m, then xi1yi2zi3/(xy2)k is a
monomial of f(x, y, z)m−k if

i1 = k, . . . , m, i2 = 2k, . . . , 2i1, i3 = m − i1.

Therefore, we obtain an accurate description of i1, i2, i3 for each xi1yi2zi3 ∈ Mk,
that is

i1 = k, . . . , m, i2 = 2k, . . . , 2i1 + 2 + t, i3 = m − i1.
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Similarly, we have xi1yi2zi3 ∈ Mk+1 if

i1 = k + 1, . . . , m, i2 = 2k + 2, . . . , 2i1 + 2 + t, i3 = m − i1.

Thus, we define the following shift polynomials for xi1yi2zi3 ∈ Mk \ Mk+1:

gk,i1,i2,i3(x, y, z) = xi1yi2zi3

(xy2)k
f(x, y, z)kem−k.

Analyzing it in depth for t ≥ 0, we can see that xi1yi2zi3 ∈ Mk \ Mk+1 implies
either

i1 = k, . . . , m, i2 = 2k, 2k + 1, i3 = m − i1,

or
i1 = k, i2 = 2k + 2, . . . , 2i1 + 2 + t, i3 = m − i1.

Therefore, the shift polynomials gk,i1,i2,i3(x, y, z) can be further divided into two
polynomial sets:

Gk,i1,i2,i3(x, y, z) = xi1−kyi2−2kzi3f(x, y, z)kem−k,

k = 0, . . . m, i1 = k, . . . , m, i2 = 2k, 2k + 1, i3 = m − i1,

Hk,i1,i2,i3(x, y, z) = yi2−2kzi3f(x, y, z)kem−k,

k = 0, . . . m, i1 = k, i2 = 2k + 2, . . . , 2i1 + 2 + t, i3 = m − i1.

Since f(x, y, z) ≡ 0 (mod e), the constructed shift polynomials satisfy

Gk,i1,i2,i3(x, y, z) ≡ Hk,i1,i2,i3(x, y, z) ≡ 0 (mod em).

Generating Integer Lattice. Let L represent a lattice, where the row vectors
of its lattice basis matrix correspond to the coefficient vectors of shift polynomi-
als Gk,i1,i2,i3(xX, yY, zZ) and Hk,i1,i2,i3(xX, yY, zZ), with X, Y , and Z denoting
the upper bounds on the root (x′, y′, z′). In terms of row order, precedence is
given to any Gk,i1,i2,i3(xX, yY, zZ) over any Hk,i1,i2,i3(xX, yY, zZ). Moreover, the
polynomial order ≺p is established as (k, i1, i2, i3) ≺p (k′, i′

1, i′
2, i′

3) if

• k < k′; or

• k = k′ and i1 < i′
1; or

• k = k′, i1 = i′
1 and i2 < i′

2; or

• k = k′, i1 = i′
1, i2 = i′

2 and i3 < i′
3.

Similarly, the monomial order ≺m is defined as xi1yi2zi3 ≺m xi′
1yi′

2zi′
3 if

• i1 < i′
1; or

• i1 = i′
1 and i2 < i′

2; or

• i1 = i′
1, i2 = i′

2 and i3 < i′
3.
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We know that each polynomial in Gk,i1,i2,i3(x, y, z) introduces a monomial
xi1yi2zi3em−k for k = 0, . . . m, i1 = k, . . . , m, i2 = 2k, 2k + 1, i3 = m − i1,
and each polynomial in Hk,i1,i2,i3(x, y, z) introduces a monomial xi1yi2zi3em−k for
k = 0, . . . m, i1 = k, i2 = 2k+2, . . . , 2i1 +2+t, i3 = m−i1. The above polynomial
and monomial orders shall lead to the construction of a lower triangular basis
matrix. In Table 1, we provide a toy example of the lattice basis matrix for m = 2
and t = 0, where the symbol ‘–’ denotes a non-zero off-diagonal element.

Considering that a lower triangular matrix only requires multiplication of the
diagonal terms for computing the determinant, we derive the lattice determinant
in relation to e, X, Y , and Z as

det(L) = eneXnX Y nY ZnZ . (6)

According to the introduced monomials xi1yi2zi3em−k in Gk,i1,i2,i3(x, y, z) and
Hk,i1,i2,i3(x, y, z), the exponents ne, nX , nY , nZ and the lattice dimension ω are
calculated as follows.

ne =
m∑

k=0

m∑
i1=k

2k+1∑
i2=2k

m−i1∑
i3=m−i1

(m − k) +
m∑

k=0

k∑
i1=k

2i1+2+t∑
i2=2k+2

m−i1∑
i3=m−i1

(m − k)

=
m∑

k=0

m∑
i1=k

2(m − k) +
m∑

k=0

2i1+2+t∑
i2=2k+2

(m − k)

= 1
6m(m + 1)(4m + 3t + 11),

nX =
m∑

k=0

m∑
i1=k

2k+1∑
i2=2k

m−i1∑
i3=m−i1

i1 +
m∑

k=0

k∑
i1=k

2i1+2+t∑
i2=2k+2

m−i1∑
i3=m−i1

i1

=
m∑

k=0

m∑
i1=k

2i1 +
m∑

k=0

2i1+2+t∑
i2=2k+2

k

= 1
6m(m + 1)(4m + 3t + 11),

nY =
m∑

k=0

m∑
i1=k

2k+1∑
i2=2k

m−i1∑
i3=m−i1

i2 +
m∑

k=0

k∑
i1=k

2i1+2+t∑
i2=2k+2

m−i1∑
i3=m−i1

i2

=
m∑

k=0

m∑
i1=k

(4k + 1) +
m∑

k=0

2i1+2+t∑
i2=2k+2

i2

= 1
6(m + 1)

(
4m2 + 6mt + 3t2 + 17m + 15t + 18

)
,

nZ =
m∑

k=0

m∑
i1=k

2k+1∑
i2=2k

m−i1∑
i3=m−i1

i3 +
m∑

k=0

k∑
i1=k

2i1+2+t∑
i2=2k+2

m−i1∑
i3=m−i1

i3

=
m∑

k=0

m∑
i1=k

2(m − i1) +
m∑

k=0

2i1+2+t∑
i2=2k+2

(m − k)

= 1
6m(m + 1)(2m + 3t + 7),
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ω =
m∑

k=0

m∑
i1=k

2k+1∑
i2=2k

m−i1∑
i3=m−i1

1 +
m∑

k=0

k∑
i1=k

2i1+2+t∑
i2=2k+2

m−i1∑
i3=m−i1

1

=
m∑

k=0

m∑
i1=k

2 +
m∑

k=0

2i1+2+t∑
i2=2k+2

1

= (m + 1)(m + t + 3).

Letting t = τm with a real τ ≥ 0 for simplicity, we obtain the following results
by calculating the main term concerning m3 of ne, nX , nY , nZ and m2 of ω,
respectively.

ne = 1
6(3τ + 4)m3 + o(m3),

nX = 1
6(3τ + 4)m3 + o(m3),

nY = 1
6
(
3τ2 + 6τ + 4

)
m3 + o(m3),

nZ = 1
6(3τ + 2)m3 + o(m3),

ω = (τ + 1)m2 + o(m2).

(7)

Generating Reduced Vectors. After applying the lattice-based method, we derive
reduced basis vectors v⃗i associated with hi(x, y, z) for i ≤ 3 satisfying

∥hi(Xx, Y y, Zz)∥ ≤ 2
ω(ω−1)
4(ω−2) det(L)

1
ω−2 .

Furthermore, we should ensure ∥hi(Xx, Y y, Zz)∥ < em/
√

ω to employ Howgrave-
Graham’s reformulation. Therefore, we get

2
ω(ω−1)
4(ω−2) det(L)

1
ω−2 <

em

√
ω

,

which can be reduced to

det(L) <
2− ω(ω−1)

4

(
√

ω)ω−2 em(ω−2).

Combining it with (6), we deduce that

ene−mωXnX Y nY ZnZ < 2− ω(ω−1)
4 ω− ω−2

2 e−2m.

Substituting e = Nβ, X = 2Nβ+δ−2, Y = 3N
1
2 , Z = Nγ results in

Nβ(ne−mω)+(β+δ−2)nX+ 1
2 nY +γnZ < 2− ω(ω−1)

4 −nX 3−nY ω− ω−2
2 e−2m.

We put ne, nX , nY , nZ , ω from (7) and derive the following inequality when
dealing with the exponents over N and omitting negligible terms:

β ·
(1

2τ + 2
3 − τ − 1

)
+ (β + δ − 2) ·

(1
2τ + 2

3

)
+ 1

2 ·
(1

2τ2 + τ + 2
3

)
+ γ ·

(1
2τ + 1

3

)
< −ε0,

(8)
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where ε0 is a negligible positive real. Then, we simplify this inequality (8) and
obtain (1

2τ + 2
3

)
δ + 1

4τ2 +
(1

2γ − 1
2

)
τ + 1

3β + 1
3γ − 1 < −ε0.

We further have

δ <
−3τ2 + (6 − 6γ)τ + 12 − 4β − 4γ

6τ + 8 − ε, (9)

where ε is a negligible positive real. By setting τ0 = (2
√

1 + 3β − 3γ − 4)/3, the
right side of inequality (9) can be maximized to

δ <
7
3 − γ − 2

3
√

1 + 3β − 3γ − ε.

Note that we need τ0 ≥ 0, which implies 2
√

1 + 3β − 3γ − 4 ≥ 0 and hence
γ ≤ β − 1. Moreover, we should ensure 1 + 3β − 3γ ≥ 0 and fortunately γ ≤ β − 1
is sufficient for this constraint.

On the other hand, we should set τ0 = 0 if γ > β − 1. Then the inequality (9)
turns to

δ <
3
2 − 1

2β − 1
2γ − ε.

However, we let X = 2Nβ+δ−2 and hence we have β + δ ≥ 2. Combining together
(and omitting negligible ε) leads to

2 − β ≤ δ <
3
2 − 1

2β − 1
2γ.

This reduces to γ < β − 1 that is contradictory to the prerequisite γ > β − 1. Thus,
we conclude that the proposed generalized attack is available for γ ≤ β − 1 if

δ <
7
3 − γ − 2

3
√

1 + 3β − 3γ − ε. (10)

Under the attack condition (10), we apply the proposed attack strategy and
finally obtain three integer polynomials h1(x, y, z), h2(x, y, z), h3(x, y, z). These
polynomials share the common root (x′, y′, z′) = (v, p + q, w). Therefore, y′ =
p + q can be extracted by using the Gröbner basis computation or the resultant
elimination methods. Combining p + q with given modulus N = pq, N can be
factored in polynomial time, thus terminating the proof.

Comparison and Discussion. The detailed comparison of our generalized attack
with existing ones against the cubic Pell RSA variant with N = pq, e = Nβ,
d = N δ, and φ(N) = (p2 + p + 1)(q2 + q + 1) is given in Table 2.

Our generalized attack is a natural extension of previous small private key
attack for w = 1 with γ = 0. We show more comparative results for w = 1. In this
case, our bound (4) in Proposition 1 results in

δ <
7
3 − 2

3
√

1 + 3β − ε,



Hao Kang and Mengce Zheng 15

Table 2: The comparison of known attacks against the cubic Pell RSA variant.

Attack Key Equation Insecure Bound †Method

ST [ST21] ed − kφ(N) = 1 ⋆δ <
1
4 − λ CF

NAAA [NAAA21] ed − kφ(N) = 1
δ <

5
4 − 1

2β CF

δ <
7
3 − 2

3
√

3β + 1 LM

ZKY [ZKY21] ed − kφ(N) = 1 δ <

2 −
√

β, 1 ≤ β <
9
4

5
4 − β

3 ,
9
4 ≤ β <

15
4

LM

NAALC [NAA+22] ed − kφ(N) = 1
δ <

7
4 − 1

2β − α CF

δ <
5
3 + 4

3α − 2
3
√

(4α − 1)(3β + 4α − 1) LM

NAB [NAB22] ed − kφ(N) = 1 ∗δ ≤ max
{3

4 − α,
3
4 − ζ,

1 − η

2

}
CF

FNP [FNP24] ed − kφ(N) = 1 ⋄δ <

2 −
√

2βξ, 2ξ < β <
9
2ξ

2 − 1
3β − 3

2ξ,
9
2ξ ≤ β < 6 − 9

2ξ
LM

Ours ‡eu − vφ(N) = w δ <
7
3 − γ − 2

3
√

1 + 3β − 3γ LM

† Abbreviations CF and LM stand for the continued fraction-based and lattice-based methods
respectively.

⋆ λ is a small positive constant related to µ for q < p < µq.
∗ α, ζ denote the prime differences in |p − q| = Nα and |2q − p| = Nζ , and η comes from

|p − p0| ≤ Nη with a known approximation p0.
⋄ ξ denotes the prime leakage in |p − p0| = Nξ with a known approximation p0.
‡ δ, γ denote the upper bounds on u and w with u = Nδ and |w| = Nγ .
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which outperforms the bounds given in [ST21, NAB22]. For |p−q| = N
1
2 , implying

that p differs from q concerning the most significant bits. Our bound (4) in
Proposition 1 is identical to the ones in [NAAA21, NAA+22]. Besides, Zheng et
al. [ZKY21] proposed an improved bound with δ < 2 −

√
β for 1 < β < 9/4, and

δ < 5/4 − β/3 for 9/4 ≤ β < 15/4. More concretely, for 1 < β < 9/4, we have

δ1 = 2 −
√

β −
(7

3 − 2
3
√

1 + 3β

)
= 2(

√
1 + 3β) − (3

√
β + 1)

3

=
(√

β − 1
)2

2
√

1 + 3β + 3
√

β + 1
> 0.

For 9/4 ≤ β < 15/4, we have

δ2 = 5
4 − β

3 −
(7

3 − 2
3
√

1 + 3β

)
= 8

√
1 + 3β − (4β + 13)

12

= −(4β − 7)(4β − 15)
12
(
8
√

1 + 3β + 4β + 13
) > 0.

Therefore, our generalized attack is weaker than Zheng et al.’s attack (and Feng
et al.’s attack [FNP24] as well). Differences between their lattice constructions
and ours may lead to an additional advantage of their attacks. Nevertheless, our
advantage is that the target attack scenario is more general and not limited to
w = 1.

4 A Numerical Example
We verify the correctness and effectiveness of our generalized attack on the cubic
Pell RSA variant through several numerical experiments. The attack experiments
run on SageMath [The23] under Windows 11 equipped with AMD R55600H. An
open source implementation of the proposed attack is provided and the source
code is available at https://github.com/MengceZheng/GCPRSA.

Let us now consider a cubic Pell RSA instance with the following public
parameters:

N = 550366209463983254224851898151920438687572141757121552287270257
270437967965957081683577937037276073506051924501113396260170171,

e = 105780038841461326969939303457959082126100882124434431161313220
833348352208545725929308416527451849499110920166620300675203145
604503217161286306343402252260955069289256115476386148498871187
3034869148741612190479043963664788377209.

Therefore, we have β ≈ 1.813 for e = Nβ. For the generalized key equation
eu − (p2 + p + 1)(q2 + q + 1)v = w, there exist infinitely many solutions (u, v, w)
with positive integers u, v and a non-zero integer w. Our purpose is to extract
one root by solving the modular equation xy2 + axy + bx + z ≡ 0 (mod e), where
a = N + 1 and b = N2 − N + 1. To be concrete, we want to find the solution
(x′, y′, z′) = (v, p + q, w) satisfying Proposition 1 through our generalized attack.

https://github.com/MengceZheng/GCPRSA
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For |w| = Nγ with an unknown γ, we may try to reasonably select γ in a
certain range, such as γ = 0.1, 0.2, . . . and so on. In this numerical example, we
set γ = 0.5, the attack bound then becomes δ < 7

3 − γ − 2
3
√

1 + 3β − 3γ ≈ 0.352.
Using δ = 0.352, we set

X = 2Nβ+δ−2 = 2
⌊
N0.165

⌋
= 1253639937596726444032,

Y = 3N
1
2 = 3

⌊
N0.5

⌋
= 2225600117985225440615720320616338202961035108909070402770173952,

Z = Nγ =
⌊
N0.5

⌋
= 741866705995075177319857551265923530230445717892253043755319296.

Next, we choose m = 4 and t = 1 to construct a lattice L with dimension
ω = 40. The LLL lattice reduction algorithm is executed to output a newly
reduced basis and we obtain three integer polynomials. Through the Gröbner basis
computation, we obtain the root1

x′ = 1148264901826,

y′ = 1536354991455741707742478245964252188726053897292803038487782580,

z′ = 640938456769247372267247687491800648303566489807825552592834254.

After that, using p + q = y′ and pq = N , we extract

p = 967502495361032247552444598347042412041475154993790090306919213,

q = 568852496094709460190033647617209776684578742299012948180863367.

Additionally, we can check why our proposed attack applies to this numerical
example. We calculate u using v = x′, w = z′ as follows.

u =
(
p2 + p + 1

) (
q2 + q + 1

)
v + w

e
= 328807633865937507652479780321671340.

We compute δ ≈ 0.282 for u = N δ and γ ≈ 0.499 for w = Nγ . hence δ, β, γ
satisfy the attack condition (4) of Proposition 1. Finally, we compute d as

d = e−1 (mod (p2 + p + 1)(q2 + q + 1))
= 291299318111792954743124699306973300942774595686767508222770981

035449126643240795725693062666535871022576676383598809755517829
339073489412206120878267982273702937142406526252935267790785313
588516464756006431937128237268745477048505085271366967838413040.

Note that ρ ≈ 1.999 for d = Nρ, which cannot be achieved by all the existing
attacks on the cubic Pell RSA variant. Therefore, when (N, e) satisfies the certain
condition, our generalized attack works even if the private key d is extremely large.

1We always first recover y′ and then x′ and z′ in our validating experiments.
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5 Concluding Remarks
In this paper, we propose a generalized lattice-based attack on the cubic Pell
RSA variant, which bases on the key equation ed − k(p2 + p + 1)(q2 + q + 1) =
1 with N = pq. We further extend the key equation to its generalized form
eu − v(p2 + p + 1)(q2 + q + 1) = w. We demonstrate that when

δ <
7
3 − γ − 2

3
√

1 + 3β − 3γ − ε,

N can be efficiently factored and hence this RSA variant is insecure. Moreover,
we achieve superior attack effect even if the private key d is much larger, our
generalized attack is still possible to successfully extract the prime factors of N .

The major limitation of our proposed attack on the cubic Pell RSA variant
is that it does not reach the best existing attack results [ZKY21, FNP24]. Thus,
future research should be undertaken to explore how to incorporate a similar
technique used in [ZKY21, FNP24] into our generalized lattice-based attack.
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