
A Heuristic Proof of P ̸= NP

Ping Wang

Shenzhen University
wangping@szu.edu.cn

January 15, 2025

Abstract. The question of whether the complexity class P equals NP
is a major unsolved problem in theoretical computer science. In this
paper, we introduce a new language, the Add/XNOR problem, which
has the simplest structure and perfect randomness, by extending the
subset sum problem. We prove that P ̸= NP as it shows that the square-
root complexity is necessary to solve the Add/XNOR problem. That
is, problems that are verifiable in polynomial time are not necessarily
solvable in polynomial time.
Furthermore, by giving up commutative and associative properties, we
design a magma equipped with a permutation and successfully achieve
Conjecture 1. Based on this conjecture, we obtain the Add/XOR/XNOR
problem and one-way functions that are believed to require exhaustive
search to solve or invert.

Keywords: P, NP, subset sum problem, Add/XNOR problem, complexity
theory, polynomial time, exponential time

1 Introduction

P and NP are two central complexity classes in computational complexity theory
[4]. P contains decision problems that can be solved in polynomial time, while
NP contains problems where solutions can be verified in polynomial time. One of
the most fundamental open questions [5,6] in computer science and mathematics
is whether P = NP, that is, whether every problem that can be verified in
polynomial time can also be solved in polynomial time. Resolving this question
either way would have profound implications. Most computer scientists believe
that P ̸= NP. A key reason for this belief is that, after decades of research on
these problems, no one has been able to find a polynomial time algorithm for any
of the more than 3000 important known NP-complete problems. Furthermore,
we have the following definitions.

Definition 1 (PTIME (P)). A language L ∈ P if and only if there exists a
poly(|x|) time deterministic algorithm f, such that:

• ∀x ∈ L, f(x) = 1.
• ∀x /∈ L, f(x) = 0.

By |x|, we mean the number of bits in the binary string x. That is, P contains
all decision problems that can be solved by a deterministic Turing machine using
polynomial time.

Definition 2 (Nondeterministic Polynomial Time (NP)). A language L
∈ NP if and only if there exists a deterministic poly(|x|) time verifier V, such
that:

• ∀x ∈ L, ∃y, |y| = poly(|x|), V (x, y) = 1.
• ∀x /∈ L, ∀y, |y| = poly(|x|), V (x, y) = 0.

NP is the set of decision problems for which the problem instances, where
the answer is “yes”, have proofs verifiable in polynomial time by a deterministic
Turing machine.

Here, we introduce a new language, the Add/XNOR problem, where XNOR
(⊙) is the negation of XOR (⊕).

Definition 3 (The Add/XNOR Problem (Decision Problem)). Let m be
an integer constant (e.g., m = 1024). Given a sequence of n integers A1, A2, . . . , An,
each chosen independently and uniformly at random from {0, 1}m (i.e., each
is an m-bit number), determine whether there exists a sequence of operators
O1, O2, . . . , On−1, where each Oi ∈ {+,⊙} (addition modulo 2m or bitwise XNOR),
such that the sequential left-associative expression:

E = (((A1 O1 A2)O2 A3) . . .)On−1 An ≡ 0 (i.e., m zeros). (1)

Without loss of generality, in this paper, we will assume m := n for the
Add/XNOR problem for simplicity. Here, the expression E is evaluated sequen-
tially from left to right (i.e., left-associative evaluation), and the problem asks
whether there is a combination of operators Oi ∈ {+,⊙} that satisfies the equa-
tion. For i = 1, 2, ..., n− 1, let

xi =

{
0, if Oi = +;

1, if Oi = ⊙.

The problem is to determine whether there is an (n− 1)-bit string x = x1x2 . . .
xn−1 such that equation (1) holds.

The computational Add/XNOR problem is to recover a solution x if at least
one exists. It is clear that given access to an oracle that solves the decision prob-
lem, the computational problem can be solved by using n−1 calls to this oracle.
If a solution exists, we can determine x1 by calling oracle once. For example, we
can call oracle to determine whether the sequence A1 + A2, A3, . . . , An−1 has a
solution. If there is a solution, then x1 = 0; otherwise x1 = 1. After x1 is fixed,
we can determine x2 by calling oracle once again, and so on.

In fact, the Add/XNOR problem can be viewed as a generalized version of
the subset sum problem. Given a set of integers {A1, A2, . . . , An} and a target
T , the subset sum problem is to decide whether any subset of these integers

2

sums to T . The problem is known to be NP-complete. The subset sum problem
can be rephrased as determining whether there exist operators O1, O2, . . . , On,
where each Oi is either “multiplied by 0 then add” or “multiplied by 1 then
add”, denoted as Oi ∈ {+0,+1}, such that the following equation holds:

E = (O1A1)(O2A2) . . . (OnAn) ≡ T. (2)

In other words, the problem is to determine whether there is a not all-zero n-bit
string x = x1x2 . . . xn, such that:

∑n
i=1 xiAi = T.

Actually, only addition is used in the subset sum problem, which introduces
specific mathematical structures to the problem, making it possible to design
more efficient algorithms for solving it by exploiting the structure. For example,
modulo operations (mod) can be utilized effectively to reduce the computational
complexity of subset sum problems, allowing the complexity to break the square-
root complexity bound for the random collision problem [9,1,2].

Therefore, we need to consider more random operations to minimize the
mathematical structure or properties of the problem. As shown in the truth
table of Table 1, adding, XOR, and XNOR preserve randomness among all two
single-bit binary operations (see Theorem 3 for reference). Correspondingly, for
n-bit operations, addition modulo 2n, bitwise XOR, and bitwise XNOR preserve
randomness, since addition modulo 2n is equivalent to bitwise single-bit adding
then modulo 2n. Addition modulo 2n forms the ring Z2n , which introduces non-
linearity, in contrast to XOR and XNOR.

Table 1. Truth table of +, ⊕ and ⊙.

a b
a+ b

a⊕ b a⊙ b
carry sum

0 0 0 0 1
0 1 1 1 0
1 0 1 1 0
1 1 1 0 0 1

– If we replace the addition in the subset sum problem with bitwise XOR,
we get the subset XOR problem, where each Oi is either “multiplied by
0 then bitwise XOR” or “multiplied by 1 then bitwise XOR”. The subset
XOR problem can be formulated as a linear algebra problem over F2. Let
xi ∈ {0, 1} indicate whether Ai is included in the subset. For each bit position
j (from 1 to n), we have:

n∑
i=1

xi ·A(j)
i ≡ T (j) mod 2,

where A
(j)
i is the j-th bit of Ai and T (j) is the j-th bit of T . We have n

linear equations over F2 with n variables xi. We are looking for a non-trivial

3

solution (not all xi = 0). Solving such a system can be done in O(n3) time.
The subset XOR problem can be solved in polynomial time. The properties
of addition modulo 2 (XOR operation) and the structure of F2 allow for
efficient solutions that are not possible with integer addition (for the subset
sum problem). The situation is the same if we replace the addition in the
subset sum problem with bitwise XNOR.

– If we set Oi ∈ {+0,+1} in the subset sum problem to Oi ∈ {⊕,⊙} (bitwise
XOR or bitwise XNOR), we get the following generalized problem: Deter-
mine whether there exist operators O1, O2, . . . , On−1 with Oi ∈ {⊕,⊙}, such
that the following equation holds:

E = A1O1A2 . . . On−1An ≡ 0. (3)

The problem can also be expressed as a linear algebra problem over F2 since
XNOR is the negation of XOR. Let xi ∈ {0, 1} indicate whether Oi is ⊕
(xi = 0) or ⊙ (xi = 1). Since a⊙ b = a⊕ b = a⊕ b⊕ 1, for each bit position
j (from 1 to n), we have:

n−1∑
i=0

(xi +A
(j)
i+1) ≡ 0 mod 2,

where x0 = 0, and A
(j)
i is the j-th bit of Ai. We have n linear equations over

F2 with n− 1 variables xi. Such a system can be solved in polynomial time.
Because XOR and XNOR are complementary operations, the combination
provides perfect randomness in single-bit binary operations, but the combi-
nation has the vulnerability that the problem can be solved efficiently by a
system of linear equations.

– If we set Oi ∈ {+0,+1} in the subset sum problem to Oi ∈ {+,⊕} (addition
modulo 2n or bitwise addition modulo 2 (bitwise XOR)), we need consider
the sequential left-associative expression such as equation (1), since addition
modulo 2n and bitwise XOR do not satisfy “associative” law. The combina-
tion of addition modulo 2n and bitwise XOR makes it impossible to solve the
problem using a system of linear equations due to the existence of random
carries in addition. However, since addition can be regarded as XOR without
carry, this combination lacks randomness in single-bit operations, making it
possible to design more efficient algorithms based on this property. For ex-
ample, the lowest bit of the result calculated by the expression E in equation
(1) is completely determined by the lowest bits of A1, A2, . . . , An, regardless
of the combination of Oi. That is, if the number of 1s in the lowest bits of
A1, A2, . . . , An is even, then the lowest bit of the result is 0; otherwise, it
is 1. Similarly, for the bits in other positions, we can determine whether an
odd or even number of carries is needed in the lower position based on the
parity of the number of 1s in the current position so that the result is 0.

– If we set Oi ∈ {+0,+1} in the subset sum problem to Oi ∈ {+,⊙} (addition
modulo 2n or bitwise XNOR), then we get the Add/XNOR problem as
defined in Definition 3. The Add/XNOR problem can not be expressed as a

4

system of linear equations over the finite field F2 because addition modulo
2n brings non-linearity, in contrast to the case where Oi ∈ {⊕,⊙}. On the
other hand, addition modulo 2n without carry is equivalent to XOR, which
is the negation of XNOR. Thus, the combination of addition modulo 2n

and XNOR provides perfect randomness in single-bit binary operations, in
contrast to the case where Oi ∈ {+,⊕}.

The key to proving that P ̸= NP is to show that there is no efficient (poly-
nomial time) algorithm for a language in NP. For a language in NP, it is usually
impossible to prove that it is not in P, because we can only claim that no better
algorithm has been found so far, and there is no way to guarantee (or prove)
that a more efficient algorithm does not exist. In this sense, it seems impossible
to prove that P ̸= NP. However, in all attempts to prove P ̸= NP, we can still
distinguish whether it is a better proof or not. For example, a problem that
claims to be solvable only by the square root algorithm is better for proving P
̸= NP if the structure of the problem itself is simpler than a problem with the
same computational complexity. On the other hand, a problem that claims to be
solvable only by exhaustive search has more potential and is more convincing to
prove P ̸= NP than a problem that claims that the best algorithm is the square
root algorithm.

Problems in general have some mathematical structure, we cannot guarantee
(or prove) that a more efficient (i.e., polynomial time) algorithm that makes
effective use of such mathematical structure does not exist. The Add/XNOR
problem we present, on the other hand, has the simplest structure among the
currently known NP-complete problems. Furthermore, the nature of addition
modulo 2n and XNOR operations provides perfect randomness, which implies
that the Add/XNOR problem has essentially no effective mathematical struc-
ture, making it possible for us to prove P ̸= NP.

Here, we outline our contributions as follows:

– Take the elliptic curve discrete logarithm problem (ECDLP) as an example.
For a long time and so far, the best algorithm for solving it has been the
square-root algorithm (Pollard rho algorithm [10,11,3]). However, we cannot
claim that the square-root algorithm is the optimal algorithm for ECDLP,
because it is almost impossible to prove that a more efficient algorithm does
not exist based on the rich structure of elliptic curves over finite fields. For
this reason, to make it possible for us to prove that P ̸= NP, we propose to
find the computationally difficult problem with the simplest mathematical
structure, and create new ones if necessary. The Add/XNOR problem we
propose is a computationally difficult problem with minimal structure among
the known NP-complete problems. Due to the simple structure or the lack
of effective structure, the methods for solving these problems are extremely
limited.

– We claim that the square-root algorithm is optimal for the Add/XNOR
problem because it essentially has no valid mathematical structure, making
it surpass the subset sum problem, which has algorithms that break the
square-root complexity bound.

5

– By combining Boolean algebra and integer arithmetic, we define two new ele-
gant operations +⊕⊙ and +⊙⊕, and get two commutative quasigroups. Based
on these two commutative quasigroups, by giving up the commutative prop-
erty, we design and obtain an algebraic structure: a magma (or groupoid)
equipped with a permutation. For the first time, we combine the concepts
of quasigroup, magma, and left-associative evaluation to design irreversible
functions and one-way functions, and give a new direction for designing irre-
versible transformations and one-way functions. We achieve a pretty result:
Conjecture 1, which is the first problem with exponential complexity that is
claimed to require an exhaustive search to solve.

– We claim that an exhaustive search is required to solve the Add/XOR/XNOR
problem under Conjecture 1, because the problem also has no effective struc-
ture and is resistant to meet-in-the-middle (MITM) attacks. This is also a
computationally difficult problem with exponential complexity, which can
only be solved by exhaustive search.

– Based on Conjecture 1 and the Add/XOR/XNOR problem, we designed two
one-way functions that can resist the meet-in-the-middle attack. Under Con-
jecture 1, the computational complexity of inverting both one-way functions
is O(2n).

For the language L (Add/XNOR problem) defined by Definition 3, we will
show that L ∈ NP and L /∈ P. Therefore, P ̸= NP. It is trivial to prove that
L ∈ NP. For any Yes-instance of L, given the corresponding proof, i.e., x =
x1x2 . . . xn−1, we can verify the instance in polynomial time using a deterministic
Turing machine by checking if the equation (1) holds. Hence, L ∈ NP.

Without loss of generality, in this paper, we will assume that m := n for the
Add/XNOR problem, and suppose that no x or only one x exists such that the
equation (1) holds for simplicity. In section 2, we will prove that the Add/XNOR
problem is NP-complete. In section 3, we will show that L /∈ P. In section 4, we
will introduce a new language, the Add/XOR/XNOR problem, which requires an
exhaustive search to solve. In section 5, we will present the construction of one-
way functions from the Add/XOR/XNOR problem, and give an open problem
as a challenge.

2 The Add/XNOR problem is NP-complete

Theorem 1. The Add/XNOR problem is NP-complete.

Proof:

The Problem is in NP: Given a certificate (a sequence of operators), we
can verify in polynomial time whether the expression evaluates to zero.

Given a sequence of operators O1, O2, . . . , On−1 ∈ {+,⊙}, we can compute
the expression E as:

E = (((A1 O1 A2)O2 A3) . . .)On−1 An.

6

Each operation involves two n-bit numbers. Both addition modulo 2n and
bitwise XNOR can be computed in O(n) time. There are n − 1 operations to
perform. Hence, the total time complexity is O(n2). Verification can be done in
polynomial time. Therefore, the Add/XNOR problem is in NP.

The Problem is NP-Hard: We will reduce the subset sum problem, which
is known to be NP-complete, to this problem in polynomial time.

The definition of subset sum problem: Given a set of integers S = {s1, s2, . . . ,
sm} (each representable by n-bit numbers) and a target integer T (also an n-bit
integer), determine if there is a subset S′ ⊆ S such that:∑

si∈S′

si = T.

Without loss of generality, we assume that all integers and the target are
n-bit integers and that addition is taken modulo 2n.

We will construct an instance of the Add/XNOR problem from a given subset
sum instance such that: There exists a subset S′ summing to T if and only if
there exists a sequence of operators Oi such that E = 0. We have the following
construction steps.

1. Initialize E:
We start by setting

E0 = A0 := 2n − 2T mod 2n.

This will represent our initial value of E.
2. Gadget for each si:
For each element si of the subset sum instance, we introduce four additional

integers:

A4i−3 = si, A4i−2 = 2n−1, A4i−1 = si, A4i = 2n−1,

where i runs from 1 to m. To clarify the indexing explicitly, for i = 1:

A1 = s1, A2 = 2n−1, A3 = s1, A4 = 2n−1.

For i = 2:

A5 = s2, A6 = 2n−1, A7 = s2, A8 = 2n−1,

and so forth, appending four integers per element.
These four integers form a “gadget” that can be operated in two different

ways:

– Include si (add 2 · si to Ei−1), apply:

Ei = (((Ei−1 +A4i−3)⊙A4i−2) +A4i−1)⊙A4i

= (((Ei−1 + si)⊙ 2n−1) + si)⊙ 2n−1

= Ei−1 + 2si.

7

– Exclude si (do not change Ei−1), apply:

Ei = (((Ei−1 ⊙A4i−3)⊙A4i−2)⊙A4i−1)⊙A4i

= (((Ei−1 ⊙ si)⊙ 2n−1)⊙ si)⊙ 2n−1

= Ei−1.

3. Final sequence A0, A1, A2, . . .:
Putting it all together, the full sequence of integers for the Add/XNOR

instance is:

A0 = 2n − 2T, A1 = s1, A2 = 2n−1, A3 = s1, A4 = 2n−1, A5 = s2, . . .

Hence, we have one initial integer A0, and for each si, we add four integers.
If a Subset S′ with

∑
si∈S′ si = T Exists:

For each si ∈ S′, choose the “include” pattern of operations to add 2si to
Ei−1. For each si /∈ S′, choose the “exclude” pattern to leave Ei−1 unchanged.

Initially:
E0 = A0 = 2n − 2T.

After including all si ∈ S′:

E := Em = (2n − 2T) + 2
∑
si∈S′

si = (2n − 2T) + 2T = 2n.

Since we work modulo 2n, therefore E = 0.
If We Achieve E = 0:
Recall we started with

E0 = 2n − 2T (mod 2n).

After processing all m gadgets, we want

Em = 0 (mod 2n).

But each gadget for si contributes either + 2si or + 0. Hence:

Em =
(
2n − 2T

)
+ 2

∑
si∈S′

si (mod 2n),

where S′ ⊆ {s1, . . . , sm} is the set of elements chosen by the “include” gadgets.
We want Em = 0 (mod 2n). This is equivalent to

E := Em = (2n − 2T) + 2
∑
si∈S′

si ≡ 0 (mod 2n).

Since 2n is the modulus, and 0 ≤ 2n − 2T + 2
∑

si∈S′ si < 2n+1, the only way
for this congruence to hold true is if:

(2n − 2T) + 2
∑
si∈S′

si = 2n.

8

This simplifies to:

2
∑
si∈S′

si = 2T =⇒
∑
si∈S′

si = T.

Hence, a solution to the Add/XNOR instance corresponds to a solution of
the subset sum instance.

Therefore, if there is a subset S′ that sums to T , we can choose the gadgets’
operators so that each si ∈ S′ is “included” (adding 2si) and each si ̸∈ S′ is
“excluded,” yielding Em = 0. Conversely, if there is a sequence of operators
making Em = 0, then exactly the subset of gadgets chosen in the “inclusion”
mode determines a subset S′ whose sum is T . Hence, the subset sum instance is
solvable if and only if the constructed Add/XNOR instance is solvable.

By starting with A0 = 2n − 2T and encoding each element si into a small
sequence of integers (si, 2

n−1, si, 2
n−1), we have constructed a polynomial-time

reduction from the subset sum problem to the Add/XNOR Problem. Since the
subset sum problem is NP-complete, this implies that the Add/XNOR problem
is NP-hard. Combined with the fact that the problem is in NP, we conclude that
the Add/XNOR problem is NP-complete. ⊓⊔

The construction leverages the similarity in selecting operators (addition or
XNOR) to include or exclude numbers in a cumulative operation aiming for
a specific result (zero). In the complexity-theoretic, the decision version of an
NP-complete problem and the corresponding functional version are considered
polynomial-time equivalent. This is clearly true for the Add/XNOR Problem.

3 L /∈ P

For the problem p of language L defined by Definition 3 with m := n, we have
the following theorems.

Theorem 2. The problem p corresponds to a non-linear system, and solving
this system is equivalent to an exhaustive search.

Proof:
The problem p is to determine whether there exists a sequence of operators

O1, O2, . . . , On−1, where each Oi is either addition modulo 2n (denoted by +)
or bitwise XNOR (denoted by ⊙), such that when these operators are applied
left-associatively to a sequence of n-bit integers A1, A2, . . . , An, the final result
E is the zero vector:

E = (((A1 O1 A2)O2 A3) . . .)On−1 An ≡ 0.

The Non-Linear Nature of the Operations:
Consider addition modulo 2n as a function:

fadd : {0, 1}n × {0, 1}n → {0, 1}n, fadd(x, y) = x+ y (mod 2n).

Over the field F2, bitwise XOR is linear. However, addition mod 2n involves
carrying bits, which cannot be expressed as a simple linear or even affine transfor-
mation over F2. The carry operation introduces a dependency between bits that

9

is inherently non-linear. More formally, the presence of carries means the output
bit depends on combinations of input bits in a way that is not representable by
a system of linear equations over F2.

The XNOR operation ⊙ between two n-bit numbers a and b is defined as:

a⊙ b = a⊕ b,

where ⊕ is bitwise XOR and¯is bitwise NOT.
XOR: a ⊕ b is linear over F2 because ⊕ is just addition mod 2 bit-by-bit.

NOT: c = c⊕ (2n − 1). While a NOT operation on its own can be seen as affine
(a linear operation plus a constant vector), when combined with addition, it does
not preserve linearity in the system as a whole. Overall, XNOR can be viewed as
a composition of linear (XOR) and affine (NOT) operations. This composition
yields a non-linear transformation in the context where these operations are
mixed with addition mod 2n.

Therefore, when we chain these operations—Add/XNOR—in a sequence:

En−1 = (((A1 O1 A2) O2 A3) · · ·)On−1An,

each intermediate step can be seen as applying a non-linear transformation to
an n-bit integer. The mixture of addition with carries and the XNOR’s NOT
operation ensures the result is a non-linear mapping from the original sequence
(A1, . . . , An) and the choice of operations (O1, . . . , On−1) to the final En−1.

Thus, the system of constraints:

(((A1 O1 A2) O2 A3) · · ·)On−1An = 0,

is a non-linear system. It cannot be expressed as a set of linear equations over
any simple algebraic structure like Fn

2 .
Next, we will show that problem p is identical to a non-linear system of

equations over finite fields F2. Then, we will show that solving this non-linear
system is equivalent to an exhaustive search over all possible operator sequences.

Formalizing the Problem as a System of Equations:
We define the variables and notations as follows.
Ai ∈ {0, 1}n for i = 1, 2, . . . , n. EachAi is represented by its bits (ai,1, ai,2, . . . ,

ai,n), where ai,j ∈ {0, 1} denotes the j-th bit.
xi ∈ {0, 1} for i = 1, 2, . . . , n − 1, where xi = 0 corresponds to addition

modulo 2n (i.e., Oi = +), and xi = 1 corresponds to bitwise XNOR (i.e., Oi =
⊙).

Ei ∈ {0, 1}n denotes the intermediate result after the i-th operation, with
bits (ei,1, ei,2, . . . , ei,n) for i = 0, 1, . . . , n − 1. ei,j represents the j-th bit of the
intermediate result after the i-th operation with e0,j = a1,j , for j = 1, 2, . . . , n.
ci,j represents the carry into bit j during the i-th addition operation with ci,0 =
0, for i = 1, 2, . . . , n− 1.

Then, we define the equations as follows. At each step i = 1, 2, . . . , n− 1, the
operation depends on xi.

10

If xi = 0, then sum bits:

e+i,j = ei−1,j ⊕ ai+1,j ⊕ ci,j−1, for j = 1, . . . , n;

and carry bits:

ci,j = ei−1,j · ai+1,j + ei−1,j · ci,j−1 + ai+1,j · ci,j−1, for j = 1, . . . , n.

If xi = 1, then result bits:

e⊙i,j = 1− (ei−1,j ⊕ ai+1,j), for j = 1, . . . , n.

We combine the two operations into a single equation:

ei,j = (1− xi) · e+i,j + xi · e⊙i,j , for i = 1, . . . , n− 1; j = 1, . . . , n.

Substituting e+i,j and e⊙i,j :

ei,j = (1− xi) · (ei−1,j ⊕ ai+1,j ⊕ ci,j−1) + xi · (1− (ei−1,j ⊕ ai+1,j)) .

Similarly, we express the carry bits:

ci,j = (1− xi) · (ei−1,j · ai+1,j + ei−1,j · ci,j−1 + ai+1,j · ci,j−1) .

Finally, we get n equations with n− 1 unknowns x1, x2, . . . , xn−1:

en−1,j = 0, for j = 1, . . . , n. (4)

From the construction of the non-linear system, we have established the
degree di of the equations ei,j in terms of the operator variables xi. The degree
grows according to the recurrence relation:

di = 2× di−1 + 1,

with the initial condition d0 = 0. Unrolling the recurrence in the equations, we
can get the degree of the final equations en−1,j as a polynomial in x1, x2, . . . , xn−1

is 2n−1 − 1.
Solving the Non-Linear System is Equivalent to an Exhaustive

Search:
For a system of equations, the essence of all equation-solving algorithms is

to reduce the degree and eliminate variables. The equations involve products of
variables xi, leading to terms of high degree (up to 2n−1 − 1). The exponential
degree makes the equations highly complex and non-linear. Each xi determines
the operation at step i and is involved multiplicatively in the equations. The
equations are recursive, with each ei,j depending on ei−1,j , xi, and other vari-
ables. The high-degree terms involving products of xi cannot be simplified or
linearized without assigning values to xi. Due to the multiplicative and recur-
sive nature of the equations, isolating xi or expressing them in terms of other
variables is not feasible.

11

Algebraic methods such as substituting expressions may rearrange the terms
but do not eliminate the high-degree monomials involving xi. Due to the bi-
nary nature of variables and operations, the highest-degree terms cannot can-
cel out through algebraic manipulation. The recursive structure and carry-over
computations create interdependencies that prevent isolating or simplifying the
equations to reduce the degree.

Eliminating xi means assigning it a specific value (0 or 1), thereby removing it
as a variable from the equations. The degree of en−1,j is fundamentally dependent
on the number of xi variables due to the recursive multiplication. Since the
degree is tied directly to the presence of xi, any reduction in degree must involve
eliminating xi.

The ultimate goal of any method for solving this nonlinear system of equa-
tions is to eliminate the variables. We will show that solving the non-linear
system using elimination is equivalent to an exhaustive search.

Solving the non-linear system using elimination involves systematically re-
ducing the system of equations by eliminating variables to solve for the un-
knowns. We have the following steps:

Step 1: Assign Values to Operator Variables xi

Each xi can be either 0 or 1. For n − 1 operator variables, there are 2n−1

possible combinations.

To eliminate xi from the equations, we need to assign it a specific value (0 or
1). This transforms the equations into a system where xi is no longer a variable.

Step 2: Simplify the Equations Based on xi Values

When xi = 0, the operation is addition modulo 2n. The equations simplify
to:

ei,j = ei−1,j ⊕ ai+1,j ⊕ ci,j−1,

ci,j = ei−1,j · ai+1,j + ei−1,j · ci,j−1 + ai+1,j · ci,j−1.

When xi = 1, the operation is bitwise XNOR. The equations simplify to:

ei,j = 1− (ei−1,j ⊕ ai+1,j), ci,j = 0.

Step 3: Solve the Simplified Equations

Starting from i = 1 and e0,j = a1,j , compute ei,j for all j. Use the simplified
equations based on the assigned xi values. For addition operations, compute
carry bits ci,j recursively. Finally, check whether the final result en−1,j = 0 for
all j.

If eliminating xi yields a simplified system of equations that is still not solv-
able, we can repeat the above process from Step 1 to further simplify the system
of equations by eliminating more operating variables.

Since eliminating xi effectively requires testing both possible values, it does
not simplify the problem but rather shifts the complexity. Each variable elim-
inated halves the number of combinations and reduces the degree accordingly.
That is eliminating one operator variable xi from the non-linear system derived
from the problem p is equivalent to reducing the degree of the system from

12

2n−1 − 1 to 2n−2 − 1. This equivalence arises because each xi contributes ex-
ponentially to the degree of the system due to the recursive doubling in the
recurrence relation di = 2 × di−1 + 1; eliminating xi removes one level of com-
plexity, halving the degree contribution and the number of possible combinations
to consider. Furthermore, reducing the degree by one exponent implies that one
xi is no longer present, as the system’s complexity is directly tied to the number
of operator variables.

This relationship emphasizes that variables and degree are intrinsically linked
in this non-linear system, and attempts to simplify the system by reducing the
degree are essentially equivalent to eliminating variables, which requires con-
sidering all possible values of xi. Therefore, solving the system or reducing its
complexity inherently involves an exhaustive search over all possible operator
sequences. ⊓⊔

As a variant of the subset sum problem, it is not a surprise that the Add/XNOR
problem does not have any efficient algebraic algorithm. Search algorithms are
another type of algorithm that solves subset sum problems and are also the
most efficient. We will explore the lower bound of the computational complexity
required to solve p through search.

Theorem 3. The Adding, XOR and XNOR operations preserve randomness.

Proof:
The truth table for Adding, XOR and XNOR operations is shown in Table 1.

In terms of two single-bit binary operations, XOR can be viewed as an addition
without carry, and XNOR is the negation of XOR. Therefore, we will prove below
that XOR preserves randomness, and the randomness of Adding and XNOR can
be derived similarly.

Consider two binary variables a and b. If both a and b are independently
random (each has a 1/2 chance of being 0 or 1), the result c = a ⊕ b will also
be random. This is because: If a = 0, then c = b, so c is equally likely to be 0
or 1, depending on b. If a = 1, then c = b, which is also equally likely to be 0 or
1 because b is random. In both cases, c has a 1/2 chance of being 0 or 1, which
means c is uniformly random.

Now, let us consider the case where a is random, but b is fixed (either 0 or
1). If b = 0, then c = a⊕ 0 = a, so the output is exactly the same as a, which is
random. If b = 1, then c = a⊕ 1 = a, which means that the result is simply the
inversion of a, but since a is random, a is also random. In both cases, the result
remains random, showing that a random bit XORed with a non-random bit will
result in a random bit.

Hence, if both input variables are random, the output is random; if one input
is random and the other is fixed, the output remains random. This shows that
XOR preserves the random characteristics of its input. ⊓⊔

As a corollary, for n-bit operations, addition modulo 2n, bitwise XOR, and
bitwise XNOR maintain randomness, since addition modulo 2n is equivalent to
bitwise single-bit adding then modulo 2n. For example, the result of adding a
random n-bit number to a fixed n-bit integer modulo 2n will have the same
probability of being any element in {0, 1}n.

13

Theorem 4. For all 2n−1 possible combinations of the operator variables xi in
problem p, each combination has the same probability of being a solution to the
problem instance randomly sampled from the space.

Proof:
Let + denote addition modulo 2n: a+ b mod 2n, ⊙ denote bitwise XNOR:

a⊙ b = a⊕ b, where ⊕ denotes bitwise XOR.
Let Ei denote intermediate results with E0 = A1. For i = 1, 2, . . . , n− 1:

Ei =

{
(Ei−1 +Ai+1) mod 2n, if xi = 0;

Ei−1 ⊙Ai+1, if xi = 1.

The final result is E = En−1. A combination of xi is a solution if E = 0.
1. Both Operations Preserve Uniform Distribution
1.1. Addition Modulo 2n

Let X and Y are independent and uniformly distributed over {0, 1}n, Z =
X + Y mod 2n. For any fixed z ∈ {0, 1}n:

Pr(Z = z) = Pr(X + Y mod 2n = z) =
1

2n
,

because for each possible value of X, Y can be any value such that X + Y
mod 2n = z, and since X and Y are independent and uniform, then Z = X + Y
mod 2n is also uniformly distributed over {0, 1}n.

1.2. Bitwise XNOR
Let X and Y are independent and uniformly distributed over {0, 1}n, Z =

X ⊙ Y . The bitwise XNOR operation can be thought of as: Z = X ⊕ Y . Since
X and Y are independent and uniform, for each bit position j, Xj and Yj are
independent and uniformly random bits. According to Theorem 3, the XOR of
two independent random bits is also a uniformly random bit. The complement
(NOT) of a uniformly random bit is also uniformly random. Therefore, each bit
of Z is independent and uniformly random, so Z is uniformly distributed over
{0, 1}n.

2. The Intermediate Results Ei Are Uniformly Distributed
We will show by induction that for any fixed operator sequence x1, x2, . . . , xn−1,

and for randomly chosen Ai, each Ei is uniformly distributed over {0, 1}n.
Base Case (i = 0):
E0 = A1. Since A1 is uniformly random over {0, 1}n, E0 is uniformly random.
Inductive Step:
Assume that Ei−1 is uniformly distributed over {0, 1}n for some i ≥ 1.
Case 1: xi = 0 (Addition Modulo 2n)
Ei = Ei−1 + Ai+1 mod 2n. Since Ei−1 and Ai+1 are independent and uni-

formly random, Ei is uniformly random by the property of addition modulo
2n.

Case 2: xi = 1 (Bitwise XNOR)
Ei = Ei−1 ⊙ Ai+1. Since Ei−1 and Ai+1 are independent and uniformly

random, Ei is uniformly random by the property of bitwise XNOR.

14

In both cases, Ei is uniformly distributed over {0, 1}n. By induction, En−1 =
E is uniformly distributed over {0, 1}n regardless of the operator sequence
x1, x2, . . . , xn−1.

3. Probability That E = 0 Is 1
2n for Any Operator Sequence

Since E is uniformly distributed over {0, 1}n, the probability that E = 0
(the all-zero vector) is:

Pr(E = 0) =
1

2n
.

This probability is the same for any fixed operator sequence.

4. All Operator Combinations Have the Same Probability of Being a Solution

There are 2n−1 possible combinations of the operator variables xi. For each
combination, the probability that E = 0 is 1

2n .

Therefore, for all 2n−1 possible combinations of the operator variables xi in
problem p, each combination has the same probability of being a solution to the
problem. ⊓⊔

The birthday paradox is a core theory of random search. The problem of
determining whether there is a person with a particular birthday in a set of
people is equivalent to the problem of searching for a particular value among
N random values. The problem of finding whether there are two people with
the same birthday in a set of people is equivalent to the problem of finding
collisions among random values. It is clear that the lower bound of the complexity
of finding a particular value among N unordered independent random values
is O(N), and the lower bound of the complexity of the corresponding finding
collisions is O(

√
N).

In cryptography, an attack based on the birthday paradox is called a birthday
attack, which uses this probabilistic model to convert the problems of searching
for a particular value into collision-finding problems, to reduce the algorithm
complexity from O(N) to O(

√
N). In fact, the square-root algorithm based on

the birthday paradox is optimal for finding collisions among independent random
numbers drawn uniformly from a finite set.

However, not all problems that search for a particular value among ran-
dom values can be converted into collision-finding problems. For example, the
unstructured data search problem cannot be converted into a collision-finding
problem. It is trivial to show that solving the unstructured data search prob-
lem requires an exhaustive search and its query complexity is O(N) for Turing
machines (Note that this is not an exponential time algorithm.), although its
quantum algorithm (Grover’s algorithm [7]) complexity is O(

√
N). Fortunately,

the Add/XNOR problem can be reduced to a collision-finding problem from a
problem that searches for a particular combination among all possible combi-
nations that produce random results, reducing its computational complexity to
O(

√
N).

Without loss of generality, in this paper, we assume that the Add/XNOR
problem either has exactly one solution or no solution for simplicity. We have
the following theorem.

15

Theorem 5. For the problem p, the lower bound of the complexity of the search
algorithm is Ω(2n/2).

Proof:
Since there are n−1 operations Oi, i.e., 2

n−1 possible combinations, the time
complexity of an exhaustive search is O(2n−1).

However, for all combinations, we can check (exclude) two combinations by
judging whether En−2 is equal to 2n −An, or whether it is equal to the bitwise
inversion (complement) of An. Specifically, we have the following observations.

We can compute En−1 based on En−2 and xn−1:

En−1 =

{
(En−2 +An) mod 2n, if xn−1 = 0;

En−2 ⊙An, if xn−1 = 1.

For case 1: En−2 = 2n −An, then:

En−1 = (En−2 +An) mod 2n = (2n −An +An) mod 2n = 2n mod 2n = 0.

Hence, if En−2 = 2n −An, then En−1 = 0 when xn−1 = 0.
For case 2: En−2 = An (bitwise complement of An), then:

En−1 = En−2 ⊙An = An ⊙An = 0.

Because bitwise XNOR of a number with its complement yields zero.
Hence, if En−2 equals either 2n − An or An, then En−1 = 0 for xn−1 = 0

or xn−1 = 1, respectively. Therefore, for each En−2, we can quickly determine
whether En−1 = 0 for either value of xn−1. If En−2 does not equal 2n −An nor
An, then En−1 ̸= 0 for both values of xn−1.

That is, we can determineOn−1 (i.e., xn−1) without having to calculate En−1.
This principle effectively halves the number of full evaluations, reducing the
complexity from O(2n−1) to O(2n−2). This principle indicates that the structure
of the Add/XNOR problem allows for meet-in-the-middle attacks. Specifically,
the recursive application of operations can be split at the midpoint, enabling
attackers to precompute partial results and significantly reduce the complexity
of finding collisions.

Consider the following transformations:

(((A1 O1 A2)O2 A3) . . .)On−1 An = 0,

(((A1 O1 A2)O2 A3) . . .)On−2 An−1 = 0 Rn−1 An,

(((A1 O1 A2)O2 A3) . . .)On−3 An−2 = (0 Rn−1 An)Rn−2 An−1,

...

(((A1 O1 A2)O2 A3) . . .)On
2 −2 An

2 −1 = (((0 Rn−1 An)Rn−2 An−1) . . .)Rn
2 −1 An

2
,

where a Ri b := (a− b) mod 2n, if Oi = +; a Ri b := ā⊕ b, if Oi = ⊙.
These observations suggest that an attacker can split the sequence of op-

erations into two halves, precompute all possible intermediate states for each

16

half, and then match these intermediate states to find collisions. This approach
reduces the time complexity from O(2n−1) to O(2n/2), effectively halving the
computational complexity in terms of bits, at the cost of O(2n/2) space com-
plexity requirement.

Furthermore, because the order of addition modulo 2n and XNOR operations
cannot be exchanged, and they do not satisfy the “associative” law, the expres-
sion E of the equation (1) needs to be calculated sequentially and serially, and
cannot be calculated in parallel. Therefore, the square-root complexity achieved
by the strategy of meet-in-the-middle based on the birthday paradox is optimum
for the Add/XNOR problem under the sequential serial calculation constraint.
This yields a fundamental exponential lower bound of Ω(2n/2). ⊓⊔

The Add/XNOR problem is a variant of the subset sum (or knapsack) prob-
lem, and it is necessary to consider whether the most efficient algorithms for the
subset sum problem apply to the Add/XNOR problem. First, the above meet-
in-the-middle algorithm is equivalent to the algorithm proposed by Horowitz
and Sahni [8] based on the birthday paradox to solve the knapsack problem.
Later, Schroeppel and Shamir [12,13] proposed it is not necessary to store the
full two sets of size O(2n/2), they introduced 4-way merge algorithm to gen-
erate them on the fly using priority queues, reducing memory requirement to
O(2n/4). It should be noted that the 4-way merge algorithm does not apply to
the Add/XNOR problem because the expressions on both sides of the final equa-
tion in the meet-in-the-middle algorithm need to be computed sequentially and
cannot be further split into two halves. Furthermore, because the Add/XNOR
problem uses a combination of addition mod 2n and XNOR operations, it makes
modulo operations inapplicable to the expression E of equation (1), making
the algorithms [9,1,2] that utilize modulo operations to reduce the computa-
tional complexity of subset sum problems, allowing the complexity to break the
square-root complexity bound for the random collision problem does not apply
to the Add/XNOR problem.

In summary, by utilizing the meet-in-the-middle strategy, the bound of the
complexity of the search algorithm for the Add/XNOR problem is reduced from
O(2n−1) to Ω(2n/2). For language L defined by Definition 3, we show that the
lower bound of the complexity of the search algorithm is Ω(2n/2). Therefore,
L /∈ P.

4 The Add/XOR/XNOR Problem

Based on the analysis in Theorem 5, it is clear that the key to enabling the
meet-in-the-middle attack to work on the Add/XNOR problem is that addition
mod 2n and XNOR operations can be inverted, which allows us to move half
of the Ai’s and operations to the right-hand side of the equation to achieve a
square-root speedup.

Here, we consider improving the operations while maintaining perfect ran-
domness by making one of them irreversible. First of all, we have the following
definition:

17

Definition 4 (The Operations of +⊕⊙ and +⊙⊕). For a, b ∈ {0, 1}n, we
define +⊕⊙ and +⊙⊕ as follows:

a+⊕⊙ b = a+ b+ (a⊕ b)− (a⊙ b) mod 2n

= a+ b+ 1 + 2(a⊕ b) mod 2n.

a+⊙⊕ b = a+ b+ (a⊙ b)− (a⊕ b) mod 2n

= a+ b− 1− 2(a⊕ b) mod 2n.

Table 2. Truth table of +, ⊕, ⊙, +⊕⊙ and +⊙⊕.

a b
a+ b

a⊕ b a⊙ b
a+⊕⊙ b a+⊙⊕ b

carry sum borrow carry sum carry sum

0 0 0 0 1 1 1 1
0 1 1 1 0 1 0 0
1 0 1 1 0 1 0 0
1 1 1 0 0 1 1 1 1

As shown in Table 2, the operations +, ⊕, ⊙, +⊕⊙ and +⊙⊕ preserve ran-
domness as single-bit binary operations. It should be noted that, for n-bit a and
b, a +⊕⊙ b is not equivalent to bitwise (a +⊕⊙ b) mod 2, and a +⊙⊕ b is not
equivalent to bitwise (a+⊙⊕ b) mod 2, contrary to the fact that (a+ b) mod 2n

is equivalent to bitwise (a+ b) mod 2. In fact, for n-bit a and b, bitwise (a +⊙⊕
b) mod 2 is equivalent to bitwise a ⊙ b. For fixed b, a +⊕⊙ b and a +⊙⊕ b are
both permutations on {0, . . . , 2n − 1}. More important, we have the following
theorem.

Theorem 6. The operations +⊕⊙ and +⊙⊕ preserve randomness.

Proof:
Given two n-bit numbers a and b, the operation +⊕⊙ is defined as:

c = a+⊕⊙ b = a+ b+ 1 + 2 (a⊕ b) mod 2n,

where a⊕ b is the bitwise XOR of a and b.
We will prove that the operation +⊕⊙ preserves randomness in the following

two senses. First, if a and b are chosen independently and uniformly at random in
{0, . . . , 2n − 1}, then c = a+⊕⊙ b is also uniformly distributed in {0, . . . , 2n −
1}. Second, for each fixed b, the map fb(a) = a +⊕⊙ b is a permutation on
{0, . . . , 2n−1}. Consequently, if a is uniformly distributed, then c = fb(a) is also
uniform.

To prove both statements, it suffices to show that for every fixed b, the
function

fb(x) =
(
x+ b+ 1

)
+ 2

(
x⊕ b

)
mod 2n,

18

is a bijection, the key step is to show surjectivity. Then fb is a permutation of
the n-bit values. This immediately proves:

1) For each fixed b, c = fb(a) is a permutation of all n-bit values a. Hence if
a is uniformly random, so is c.

2) If a and b are both uniform and independent, then for each fixed b, the
image of a 7→ c is uniform. Since b was uniform and independent to begin with,
c remains uniform overall.

We will prove surjectivity by explicitly constructing for each “target” a a
unique solution x such that

x+⊕⊙ b = a.

Fix a, b ∈ {0, 1}n. We want to solve

fb(x) = a ⇐⇒ (x+ b+ 1 + 2(x⊕ b)) mod 2n = a.

Equivalently (working in integers mod 2n),

x+ 2(x⊕ b) ≡ a− (b+ 1) (mod 2n).

Set
s := a− (b+ 1) mod 2n.

Hence the task is to solve

x + 2
(
x⊕ b

)
≡ s (mod 2n). (5)

Write each element of {0, 1}n in binary:

x = (xn−1xn−2 . . . x1x0)2, b = (bn−1bn−2 . . . b1b0)2, s = (sn−1sn−2 . . . s1s0)2.

Define the bits ci := xi ⊕ bi for i = 0, . . . , n− 1. Then

x⊕ b = (cn−1cn−2 . . . c1c0)2,

and multiplying by 2 (mod 2n) corresponds to a “left shift by 1 bit” (with
wrap-around ignored since we are mod 2n). In other words,

2
(
x⊕ b

)
= (cn−2cn−3 . . . c1c00)2 (mod 2n),

i.e., the least significant bit becomes 0, and each ci moves up one position.
We now analyze

x + 2
(
x⊕ b

)
= (xn−1 . . . x0)2 + (cn−2 . . . c00)2 (mod 2n).

We want this sum to equal s = (sn−1 . . . s0)2 bit by bit.
We will show that there is a unique way to choose the bits x0, x1, . . . , xn−1

so that equation (5) holds. We do this iteratively from least significant bit to
most significant bit, keeping track of any carry that arises from lower bits.

1) Initialization. Let carry-in to bit 0 be cin(0) = 0. We must make the 0th
bit of x + 2(x ⊕ b) equal s0. But in the sum, the contribution to the 0th bit is

19

x0+0+cin(0) (since the 0th bit of 2(x⊕b) is 0). Exactly one choice of x0 ∈ {0, 1}
will make that sum’s 0th bit be s0. Let that choice be the actual x0. Define the
resulting carry-out from bit 0 to bit 1, call it cin(1).

2) Inductive step i ≥ 1. Suppose we have chosen x0, . . . , xi−1 uniquely so
that bits 0, . . . , i − 1 of the sum x + 2(x ⊕ b) match those of s. Now, to match
the i-th bit of s, we look at:

(bit i of x) + (bit i of 2(x⊕ b)) + (carry-in from bit i− 1).

The i-th bit of x is xi. The i-th bit of 2(x⊕b) is ci−1 = (xi−1⊕bi−1). We already
know xi−1, bi−1 from the previous step, so we know the value of ci−1. We know
the carry-in from the previous bit, cin(i). Exactly one choice of xi ∈ {0, 1} will
make the i-th bit of that sum equal to si. We pick that xi. This also determines
the carry-out to the next bit cin(i+ 1).

By continuing this process up through i = n − 1, we obtain a unique n-bit
number x. By construction, it satisfies

x+ 2(x⊕ b) ≡ s (mod 2n),

i.e. it solves equation (5). Therefore, for each a ∈ {0, 1}n, there is exactly one
x ∈ {0, 1}n such that x+⊕⊙ b = a.

Hence, for each fixed b, fb(x) = x+⊕⊙ b is surjective (and therefore bijective)
on {0, 1}n, and a 7→ fb(a) is a permutation. A permutation of a uniformly
random variable is still uniformly distributed. Hence if a is uniformly random,
c = fb(a) is also uniformly random.

If a and b are both uniform and independent, then conditioning on any fixed
b, we get a uniform c. Since b itself was uniform over {0, . . . , 2n − 1}, the joint
distribution of (c, b) is uniform in c and b. Marginalizing over b leaves c uniform.

Therefore, in both senses, the operation +⊕⊙ (or equivalently fb(a)) preserves
randomness.

Note that the operation +⊙⊕ preserving randomness can be proved equally
well, since for each fixed b, the map fb(a) = a+⊙⊕ b is also a permutation on
{0, . . . , 2n−1}. Consequently, if a is uniformly distributed, then c = fb(a) is also
uniform. ⊓⊔

It is clear that, if a +⊕⊙ b = c (or a +⊙⊕ b = c) for n-bit a, b and c, there
is no way to write a as a function of b and c, i.e., a = f(b, c). We cannot isolate
a in a simple, unique algebraic form purely in terms of b and c because of the
XOR (a⊕ b) in the expression.

However, taking the operation +⊙⊕ as an example, we can convert the prob-
lem of computing the inverse of the following function to the problem of finding
the inverse of an element in a group:

fb(x) =
(
x+ b− 1

)
− 2

(
x⊕ b

)
mod 2n,

for fixed b.
Let N denote the set of all n-bit numbers. Since there is no identity element,

it is clear that ⟨N,+⊙⊕⟩ does not form a group. However, G = ⟨N,+⊙⊕⟩ forms a

20

cyclic group, where the operation +⊙⊕ is bitwise NOT (or bitwise complement)
of the result of +⊙⊕. More importantly, the inverse of the function fb with
respect to x is equivalent to finding the inverse of b in the group G:

c = x+⊙⊕ b ⇐⇒ c = x+⊙⊕ b

⇐⇒ c+⊙⊕ b′ = x+⊙⊕ b+⊙⊕ b′ = x,

where b′ is the inverse of b in G with respect to the operation +⊙⊕.
Similarly, for operation +⊕⊙, the problem of computing the inverse of the

function can be converted to finding the inverse of an element in the cyclic group
⟨N,+⊕⊙ + 1⟩, where a +⊕⊙ + 1 b := (a+⊕⊙ b+ 1) mod 2n = NOT((a+⊕⊙ b+
1) mod 2n). There exist polynomial-time algorithms to compute the inverse of
elements in these groups.

Consider the algebraic structure ⟨N, +⊕⊙⟩ (and ⟨N, +⊙⊕⟩ as well), it is
trivial to check that it has the following properties:

– Closed.
– Commutative (the formula is symmetric in a and b).
– Not associative.
– No identity element.

Consequently, it is not a group (no identity, no inverses in the group sense).
A binary operation ⋆ on a finite set Q makes ⟨Q, ⋆⟩ a quasigroup if and only if,
for every fixed b ∈ Q, the map

x 7−→ x ⋆ b

is a bijection (permutation) of Q. Equivalently, each row of the Cayley table is
a rearrangement of Q (no repeats). By symmetry, each column is also a permu-
tation, so the table is a Latin square.

Therefore, to prove quasigroup property for ⟨N, +⊕⊙⟩, it suffices to fix b ∈ N
and show that the function

fb(x) := x+⊕⊙ b =
(
x+ b+ 1 + 2(x⊕ b)

)
mod 2n,

is a bijection N → N . This is exactly what we proved in Theorem 6. Hence, let
N denote the set of all n-bit numbers, we have the following theorem.

Theorem 7. ⟨N, +⊕⊙⟩ (and ⟨N, +⊙⊕⟩ as well) forms a commutative quasi-
group.

As analyzed above, the inverse of an operation on a quasigroup can be eas-
ily converted into a problem of finding the inverse of an element of a group.
Therefore, we need to consider or design a more fundamental algebraic struc-
ture, one that is simpler than the requirements of a quasigroup. We consider
giving up the commutative and partial permutation properties while keeping no
associative property. Hence, we have the following design.

21

Definition 5 (The Operation of +⊕⊙). For a, b ∈ N , let a = a1a2 . . . an be
the binary representation of a. We define +⊕⊙ by the following left-associative
expression:

a+⊕⊙ b := (((b Oa1a) Oa2a) . . .) Oana,

where each Oai
∈ {+⊕⊙,+⊙⊕} with O0 = +⊕⊙ and O1 = +⊙⊕.

Note that it is also appropriate to setOai
∈ {+⊕⊙ + 1,+⊙⊕}, {+⊕⊙ + 1,+⊙⊕}

or {+⊕⊙,+⊙⊕}, where a +⊕⊙ + 1 b := (a+⊕⊙ b+ 1) mod 2n, to define opera-
tion +⊕⊙. The definition is certainly well-defined as we always get exactly one
outcome for each a, b ∈ N . The operation +⊕⊙ is explicitly a function from
N × N to N . Consider the algebraic structure ⟨N, +⊕⊙⟩, it is easy to verify
that it has the following properties:

– Closed.
– Not commutative.
– Not associative.
– No identity element.

Therefore, ⟨N,+⊕⊙⟩ is just a magma. A magma is a fundamental type of
algebraic structure, consisting of a set with a single binary operation that, by
definition, needs closure. No other properties are imposed. It does not satisfy
the usual higher-level algebraic axioms that would make it a quasigroup.

Theorem 8. The operation +⊕⊙ preserves randomness.

Proof:
We will show that for each fixed a, the map

b 7−→ a +⊕⊙ b,

is a permutation of the n-bit space N = {0, 1, . . . , 2n − 1}. Once we establish
that it is a permutation for each a, it follows immediately that:

If b is drawn uniformly at random from N , then a +⊕⊙ b is also uniformly
distributed in N . This completes the proof of the operation +⊕⊙ “preserves
randomness”.

We have N = the set of all n-bit unsigned integers (|N | = 2n), and two
“sub-operations” given by:

x+⊕⊙ y :=
(
x+ y + 1 + 2(x⊕ y)

)
mod 2n.

This is known to be a quasigroup operation—indeed, for each fixed y, the map
x 7→ x+⊕⊙ y is a permutation of N .

x+⊙⊕ y :=
(
x+ y − 1 − 2(x⊕ y)

)
mod 2n.

By a very similar “bitwise” argument, for each fixed y, the map x 7→ x+⊙⊕ y is
likewise a permutation of N .

22

Furthermore, we define

x+⊙⊕ y := (2n − 1) −
[(
x+ y − 1− 2(x⊕ y)

)
mod 2n

]
.

Notice that u 7→ (2n − 1)− u is also a simple “bitwise complement” bijection on
N . Hence, for each fixed y,

x 7−→ x+⊙⊕ y

is a composition of two permutations—so it, too, is a permutation in the variable
x.

Finally, the operation +⊕⊙ on a, b ∈ N is defined in a left-associative man-
ner, depending on the binary bits of a. Namely, if

a = a1a2 . . . an (each ai ∈ {0, 1}),

then
a +⊕⊙ b :=

(
((b Oa1 a) Oa2 a) . . .

)
Oan a,

where
O0 = +⊕⊙, O1 = +⊙⊕.

In words, we start with the value b on the left, and repeatedly apply either +⊕⊙
or +⊙⊕ with a on the right, exactly n times, depending on whether each bit ai
of a is 0 or 1.

Given a fixed a, define the function

Fa : N −→ N, Fa(b) := a +⊕⊙ b.

Expanding the definition, we see

Fa(b) =
(((

b Oa1
a
)
Oa2

a
)
. . .

)
︸ ︷︷ ︸
an iterated application of Oai

Oan
a.

But each sub-operation x 7→ x Oai
a is, as argued above, a permutation of N

in the variable x.
Indeed, if ai = 0, then x 7→ x +⊕⊙ a is a permutation in x. If ai = 1, then

x 7→ x+⊙⊕ a is also a permutation in x.
Therefore, each step of the iteration is a permutation of N in the variable

“running total.” A finite composition of permutations is still a permutation.
Concretely: 1) Start with the identity map x 7→ x. 2) Compose it with the

map x 7→ x Oa1 a. (A permutation.) 3) Compose the result with x 7→ x Oa2 a.
(Another permutation, so overall still a permutation.) 4) Continue through all
bits a1, . . . , an.

Hence the final map Fa(b) is a permutation on b. That is, for each fixed
a ∈ N , the function b 7→ a+⊕⊙ b is a bijection N → N .

It is clear that if X is a random variable taking values in a finite set S, and
f : S → S is a bijection, then f(X) has the same distribution as X. In particular,

23

if X is uniformly distributed over S, then f(X) remains uniformly distributed
over S.

Applying this to our case: if b is a random variable uniformly distributed over
N , then for each fixed a, the map

b 7−→ a +⊕⊙ b

is a bijection N → N . Therefore, a +⊕⊙ b is also uniform on N .

That is precisely the statement that +⊕⊙ preserves randomness in its right
operand: “If b is uniform, then a+⊕⊙ b is uniform.”

We summarize the structure of the proof as follows:

1) Each sub-operation is a permutation (in the left variable for fixed right
operand). x 7→ x +⊕⊙ a is a known quasigroup translation. x 7→ x +⊙⊕ a is
similarly invertible. x 7→ 2n−1−x is obviously invertible. Therefore x 7→ x+⊙⊕ a
is also a permutation.

2) The left-associative chaining is a composition of permutations. For a fixed
a, the bits a1, . . . , an dictate which permutation we compose at each step. A
finite composition of permutations is itself a permutation. Hence b 7→ a +⊕⊙ b
is bijective.

3) Bijections preserve uniform distributions. If b is uniform on {0, . . . , 2n−1},
then so is the image Fa(b).

Therefore, for each fixed a, b 7→ a +⊕⊙ b acts as a randomness-preserving
transformation of b. ⊓⊔

According to Theorem 8, we have the following result.

Theorem 9. ⟨N, +⊕⊙⟩ forms a magma equipped with a permutation in the
sense that for each fixed a, the map fa(b) = a +⊕⊙ b is a permutation on
{0, . . . , 2n − 1}.

Recall that ⟨N, +⊕⊙⟩ forms a quasigroup. For each fixed b, the map fb(a) =
a+⊕⊙ b is a permutation on {0, . . . , 2n − 1}; for each fixed a, the map fa(b) =
a +⊕⊙ b is also a permutation on {0, . . . , 2n − 1}. Furthermore, computing the
inverse of +⊕⊙ can be transformed into computing the inverse of an element in
the group G.

By contrast, ⟨N, +⊕⊙⟩ does not form a quasigroup. For each fixed a, the
map fa(b) = a +⊕⊙ b is a permutation on {0, . . . , 2n − 1}, which ensures that
it preserves randomness; while for each fixed b, the map fb(a) = a +⊕⊙ b is
not a permutation on {0, . . . , 2n − 1}, which makes it hard to find the reverse.
Computing the inverse of +⊕⊙ can not be transformed into computing the
inverse of an element in a group.

Definition 6 (The Inverse of +⊕⊙ (Decision Problem)). Given b, c ∈ N ,
determine whether there is an a such that c = a+⊕⊙ b.

Definition 7 (The Inverse of +⊕⊙ (Computational Problem)). Given
b, c ∈ N , find an a such that c = a+⊕⊙ b if such an a exists.

24

⟨N, +⊕⊙⟩ is a simpler structure than the quasigroup. It is a magma equipped
with a permutation that makes the operation +⊕⊙ both preserving randomness
and ensuring computational difficulty for the inverse. Unlike the inverse of the
operation +⊕⊙, which has exactly one solution, the inverse of +⊕⊙ may have
no solution or multiple solutions. This property is exactly what we need, and it
is particularly suitable for designing irreversible functions or one-way functions.

Since operation +⊕⊙ is composed of addition modulo 2n, bitwise ⊕, +⊕⊙
and +⊙⊕, there is no effective algebraic method to find the inverse of it. In the
presence of bitwise logical operators (like XOR, XNOR) mixed with integer ad-
dition, standard algebraic tools do not help: the problem lives partly in Boolean
algebra (XOR/XNOR) and partly in modular integer arithmetic (carries).

In summary, the difficulty of its inversion is reflected in the following aspects:
on the one hand, because it involves Boolean algebra and integer arithmetic,
there may not exist an algebraic method to find the inverse; on the other hand,
its inverse may not exist, may have one solution, or may have multiple solutions;
finally, the left-associative property of the expression makes it impossible to use
the meet-in-the-middle strategy to find the inverse. Currently, the inverse of
the operation requires an exhaustive search. Therefore, we have the following
computational complexity conjecture.

Conjecture 1 Solving the problem of the inverse of +⊕⊙ requires an exhaustive
search.

Finally, take advantages of the perfect randomness of operations ⊕, ⊙ and
+⊕⊙, as well as the non-linearity and irreversibility introduced by +⊕⊙, we get
the following new language.

Definition 8 (The Add/XOR/XNOR Problem (Decision Problem)).
Let m be an integer constant (e.g., m = 1024). Given a sequence of n inte-
gers A1, A2, . . . , An, each chosen independently and uniformly at random from
{0, 1}m (i.e., each is an m-bit number), determine whether there exists a se-
quence of operators Ox1 , Ox2 , . . . , Oxn−1 , where each Oxi ∈ {⊕,+⊕⊙}, such that
the sequential left-associative expression:

E = (((A1 Ox1 A2)Ox2 A3) . . .)Oxn−1 An ≡ 0. (5)

Without loss of generality, in this paper, we will assume m := n for the
Add/XOR/XNOR problem for simplicity. Each bit xi determines which opera-
tion is chosen at step i: if xi = 0, then the i-th operation Oxi

is bitwise ⊕; if
xi = 1, then the i-th operation Oxi

is +⊕⊙.
Under Conjecture 1, for the Add/XOR/XNOR problem, the meet-in-the-

middle attack does not apply, and solving the problem requires an exhaustive
search due to the fact that expression E needs to be computed serially as well
as the operation +⊕⊙ is irreversible. Therefore, the lower bound on the compu-
tational complexity of the problem is Ω(2n−1).

Note that, we can also define the Add/XOR/XNOR problem by setting Oxi
∈

{⊙,+⊕⊙}.

25

5 One-Way Functions (OWFs)

According to Definition 7 and Conjecture 1, based on the difficulty of inverting
the operation

x 7→ x +⊕⊙ b,

for a fixed b, we immediately get a one-way function.

Definition 9. Let n ∈ N. Let N = {0, 1, . . . , 2n−1} be the set of n-bit numbers.
Given a fixed b ∈ N , define function fb as:

fb : {0, 1}n −→ {0, 1}n,
x 7−→ x +⊕⊙ b.

The function fb is efficient to compute. Computing x +⊕⊙ b takes n steps
(one for each bit of x), where each step involves simple integer addition mod
2n, XOR, and/or a bitwise complement. So Time(fb) = O(n). It is conjectured
hard to invert. Inversion means: given y ∈ N , find x such that y = x +⊕⊙ b.
Because the specific sub-operation in each of the n left-associative steps depends
on whether the corresponding bit in x is 0 or 1, naive “backtracking” requires
trying 2n possibilities. No known better-than-exponential algorithm solves this
in the general case. Hence, under the complexity assumption, fb serves as a
candidate one-way function.

On the other hand, it is clear that there is currently no known NP-hard
problem that has been proven to be solvable only by brute-force search. The
problem of the inverse of +⊕⊙ and the Add/XOR/XNOR problem are sup-
posed to be the computationally difficult problems that can only be solved by
brute-force search. We can also design efficient one-way functions based the
Add/XOR/XNOR problem since it is also resistant to square-root attacks. Ac-
cording to the Add/XOR/XNOR problem, we can get a one-way function with
n bits of input and n bits of output as follows.

Definition 10. Let x = x1x2 · · ·xn ∈ {0, 1}n. For a fixed sequence of n-bit
integers A0, A1, . . . , An, we define function f as:

f : {0, 1}n −→ {0, 1}n,
x 7−→ (((A0 Ox1

A1)Ox2
A2) · · ·)Oxn

An.

where Oxi
is bitwise ⊕ if xi = 0 and +⊕⊙ if xi = 1.

This function is considered one-way under the hardness of the Add/XOR/XNOR
problem, meaning it is easy to compute y given x, but hard to invert f to find
x given y and the Ai’s.

The computational difficulty of inverting this one-way function is equiva-
lent to solving the Add/XOR/XNOR problem. More concretely: Given a fixed
sequence of n-bit integers A0, A1, . . . , An, and a target n-bit value y, deter-
mine whether there exists an n-bit sequence x ∈ {0, 1}n (defining a pattern of
Add/XOR/XNOR operations) such that the following equation holds:

E = ((((A0 Ox1
A1)Ox2

A2) · · ·)Oxn
An) ⊕ y = 0.

26

Here, inverting the function f means finding x (if it exists) that satisfies
the above equation for the given y. Computing the inverse of the given one-
way function is computationally equivalent to solving the Add/XOR/XNOR
problems. Hence, f serves as a candidate one-way function. Furthermore, it is
also possible to design hash functions from the proposed one-way functions based
on the Merkle–Damg̊ard construction.

In practice, we can consider the binary representations of the mathemat-
ical constants such as π and e as pseudo-random numbers to generate Ai’s.
Mathematically, they’re like every other irrational number — infinite strings
of 0s and 1s (with no discernible pattern). Naturally, we have n-bit π or e
Add/XOR/XNOR problem. Consider the infinite binary expansion of π. Let
π be represented in base 2 as a (non-terminating) bit string:

π = b1b2.b3 · · · ,

where each bi ∈ {0, 1}.
For a given positive integer n, extract the first n2 bits of π. That is, consider

the substring b1b2 · · · bn2 from the binary expansion of π. Partition these n2 bits
into n consecutive n-bit integers. Formally, let:

A1 = (b1b2 · · · bn)2, A2 = (bn+1bn+2 · · · b2n)2, . . . ,

An = (b(n−1)n+1b(n−1)n+2 · · · bn2)2.

Here, (bjbj+1 · · · bj+n−1)2 denotes the integer formed by interpreting the n-bit
sequence as a binary number.

Definition 11 (The n-bit π Add/XOR/XNOR problem). Given the se-
quence of n-bit integers A1, A2, . . . , An constructed as above from the first n2 bits
of π, determine if there exists a sequence of n−1 operations Ox1

, Ox2
, . . . , Oxn−1

with each Oxi ∈ {⊕,+⊕⊙}, such that when applied in a left-associative manner:

E = (((A1 Ox1
A2) Ox2

A3) · · ·) Oxn−1
An = 0.

In other words, the n-bit π Add/XOR/XNOR problem is the decision prob-
lem of whether a particular sequence of n-bit integers derived directly from the
binary expansion of π can be transformed into the all-zero n-bit vector by some
combination of n − 1 Add/XOR/XNOR operations. The corresponding com-
putational problem is to recover a solution if at least one exists. Similarly, we
can construct one-way functions and hash functions based on the n-bit π or e
Add/XOR/XNOR problems, which have the advantage that π and e are public
constants and can resist meet-in-the-middle attacks.

Finally, we leave an open question as a challenge: find a solution for the n-bit
π Add/XOR/XNOR problem with n ≥ 1024.

6 Conclusion

We introduce the Add/XNOR problem, which has the simplest structure and
perfect randomness. Choosing addition modulo 2n and XNOR makes us give

27

up the “associativity” property, but allows us to reap the benefits of the limi-
tations of sequential computation, making the square-root algorithm based on
the birthday paradox the optimal algorithm. We show that the new language of
the Add/XNOR problem is in NP, but not in P. Therefore, it is proved that P
̸= NP.

Furthermore, by giving up the commutative property, we design a magma
equipped with a permutation from two commutative quasigroups and left-associative
evaluation, and achieve Conjecture 1. Based on this conjecture, we obtain the
Add/XOR/XNOR problem and one-way functions, which are believed to require
exhaustive search to solve or invert.

Acknowledgements

I would like to thank Prof. Antoine Joux for pointing out a mistake in the earlier
version of the paper.

References

1. A. Becker, J.-S. Coron, and A. Joux. Improved generic algorithms for hard knap-
sacks. In Advances in Cryptology – EUROCRYPT 2011, pages 364–385. Springer
Berlin Heidelberg, 2011.

2. X. Bonnetain, R. Bricout, A. Schrottenloher, and Y. Shen. Improved classical and
quantum algorithms for subset-sum. In Advances in Cryptology – ASIACRYPT
2020, pages 633–666. Springer International Publishing, 2020.

3. R. P. Brent. An improved monte carlo factorization algorithm. BIT, 20(2):176–184,
1980.

4. S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the
Third Annual ACM Symposium on Theory of Computing, pages 151–158, 1971.

5. L. Fortnow. The status of the p versus np problem. Communications of the ACM,
52(9):78–86, 2009.

6. L. Fortnow. The Golden Ticket: P, NP, and the Search for the Impossible. Prince-
ton University Press, 2013.

7. L. K. Grover. A fast quantum mechanical for database search. In Proceedings of
the Annual ACM Symposium on Theory of Computing, pages 212–219, 1996.

8. E. Horowitz and S. Sahni. Computing partitions with applications to the knapsack
problem. Journal of the Association for Computing Machinery, 21(2):277–292,
1974.

9. N. Howgrave-Graham and A. Joux. New generic algorithms for hard knapsacks.
In Advances in Cryptology – EUROCRYPT 2010, pages 235–256. Springer Berlin
Heidelberg, 2010.

10. J. M. Pollard. A monte carlo method for factorization. BIT, 15(3):331–335, 1975.
11. J. M. Pollard. Monte carlo methods for index computation mod p. Mathematics

of Computation, 32:918–924, 1978.
12. R. Schroeppel and A. Shamir. A ts2 = o(2n) time/space tradeoff for certain

np-complete problems. In 20th Annual Symposium on Foundations of Computer
Science, pages 328–336, 1979.

13. R. Schroeppel and A. Shamir. A t = o(2n/2), s = o(2n/4) algorithm for certain
np-complete problems. SIAM Journal on Computing, 10(3):456–464, 1981.

28

	A Heuristic Proof of P = NP

