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Abstract

The family of Koblitz curves Eb : y2 = x3 + b/Fp over primes fields has

notable applications and is closely related to the ring Z[ω] of Eisenstein integers.

Utilizing nice facts from the theory of cubic residues, this paper derives an

efficient formula for a (complex) scalar multiplication by τ = 1−ω. This enables

us to develop a window τ -NAF method for Koblitz curves over prime fields.

This probably is the first window τ -NAF method to be designed for curves

over fields with large characteristic. Besides its theoretical interest, a higher

performance is also achieved due to the facts that (1) the operation τ2 can be

done more efficiently that makes the average cost of τ to be close to 2.5S+ 3M

( S and M denote the costs for field squaring and multiplication, respectively);

(2) the pre-computation for the window τ -NAF method is surprisingly simple

in that only about one-sixth of the coefficients need to be processed. The

overall improvement over the best current method is more than 11%. The paper

also suggests a simplified modular reduction for Eisenstein integers where the

division operations are eliminated. The efficient formula of τP can be further

used to speed up the computation of 3P , compared to 10S + 5M , our new

formula just costs 4S+6M. As a main ingredient for double base chain method

for scalar multiplication, the 3P formula will contribute to a greater efficiency.

1 Introduction

Some families of elliptic curves were proposed by Koblitz for cryptography because

of their computational efficiency [13, 14]. These curves are defined over Fq for q
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relatively small, and a subgroup of the set of rational points over Fqn is of interest.

The well-known family of Koblitz curve is given by

Ea : y2 + xy = x3 + ax2 + 1/F2m , a ∈ F2. (1)

There are four specific Koblitz curves were recommended to be used Elliptic curve

cryptography (ECC) by NIST [1].

The Frobenius map τ0 of Ea(F2m) defined by τ0(x, y) = (x2, y2) (for the point

at infinity, τ0(O) is set to be O ) is an endomorphism that only requires 2S1. The

use of this efficiently computable endomorphism was initiated in [13] for fast scalar

multiplication. Write µ = (−1)1−a, then for each point P ∈ Ea(F2m),

τ 20 (P ) + 2P = µτ0(P ).

This means that τ0 can be identified as the complex number satisfying τ 20−µτ0+2 = 0.

Working with subgroup M of Ea(F2m) that is annihilated by δ =
τm0 −1
τ0−1 (i.e., δ(P ) = O

for every P ∈M), then a rational integer k can be written as k ≡
∑l−1

i=0 εiτ
i
0 (mod δ) in

Z[τ0] with εi ∈ {0, 1}, so the scalar multiplication kP can be computed as
∑l−1

i=0 εiτ
i
0(P )

for P ∈M .

This idea was substantially developed to the celebrated width-w TNAF method

(window τ0-adic non-adjacent form of size w) by Solinas in [18]. The main ingredients

of width-w TNAF are reduction, sparse τ0-expansion and pre-computation. Solinas

also devises a reduction procedure that converts an integer k to an element k1+k2τ0 ∈
Z[τ0] such that k ≡ k1 + k2τ0 (mod δ) and the sizes of k1 and k2 are about m

2
. The

sparse τ0-expansion relies on a pre-selected set C = {c1, c3, . . . , c2w−1−1} of coefficients

with ci ≡ i (mod τw0 ), so that a reduction result has the following sparse form

k1 + k2τ0 =
l−1∑
i=0

εiuiτ
i
0,

where εi ∈ {−1, 1} and ui ∈ C∪{0} with the property that any set {uk, uk+1, . . . , uk+w−1}
contains at most one nonzero element. This implies that for P ∈M ,

kP = k1P + k2τ0(P ) =
l−1∑
i=0

εiuiτ
i
0(P ) =

l−1∑
i=0

εiτ
i
0(uiP ).

1We will use S and M to denote the costs for field squaring and multiplication, respectively.
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The pre-computation produces c1P, c3P, · · · , c2w−1−1P once the set C is given, so

uiP ’s in the above computation are already available. Several coefficient sets for

pre-computation were reported in [18, 10].

A series further study of the width-w TNAF method are given in [6, 19, 20, 22]

where a theoretical framework for (sparse) τ0-adic representation of integers in Q(τ0)

was developed. The framework directs selection of coefficient sets for a width-w T-

NAF, and the termination problem for the algorithm to produce a width-w TNAF

is resolved. Greater flexibility for choosing coefficient sets is provided in this frame-

work, several efficient pre-computations are proposed. A simplified reduction is also

reported.

In [14], Koblitz considered the following supersingular elliptic curve over finite

fields of characteristic 3,

E3,a : y2 = x3 − x− (−1)a/F3m , a ∈ {0, 1}. (2)

The Frobenius map for this case is given as τ1(x, y) = (x3, y3) (for the point at infinity,

τ1(O) is set to be O ) is also efficiently computable, with 2S + 2M. Similar to the

case for binary Koblitz curves, this τ1 is identified to be a complex number satisfying

τ 21 − 3µτ1 + 3 = 0.

The nonadjacent form of τ1-adic expansion for an integer in Z[τ1] is proved to exist

and be unique in [14]. The scalar multiplication using width-w TNAF method for

E3,a is described in [5] where a new design of reduction and a termination proof of

the width-w TNAF algorithm are obtained.

The mathematical essence of a complete treatment of both width-w TNAF meth-

ods for Koblitz curves Ea over F2m and E3,a over F3m is the representation of algebraic

integers in Euclidean imaginary quadratic number fields, with radix being some alge-

braic integers of norm bigger than 1. This was discussed in [7] as a generalization of

the ideas in [18, 6, 5].

The curves over prime fields Fp with large p and with a restricted set of coefficients

are now of practical interest. This paper will discuss the family of curves over a prime

field Fp that take the form of

Eb : y2 = x3 + b/Fp, (3)
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where the prime p ≡ 1 (mod 3) 2 and b ∈ F∗p. This family of curves is referred to as

Koblitz curves because it is a special case of CM curves with simple expression. One

of such Koblitz curves described in the Standards for Efficient Cryptography Group

(SECG)[3] is

secp256k1: y2 = x3 + 7/Fp

where p = 2256 − 232 − 977 is a prime of 256 bits. This curve has been chosen by

some applications (e.g., digital signatures for blockchain platforms such as Bitcoin)

and is an allowed curve by the NIST Recommendations for Discrete Logarithm-based

Cryptography [2].

It seems that the Koblitz curves Eb over prime fields and the Koblitz curves Ea (or

E3,a) over extension fields with characteristic 2 (or 3) are quite different in nature, but

they appear to have some similarities. Of course, they are all CM curves. Recently,

another interesting observation on the similarities is made in [21]. For a rational

prime p ≡ 1 (mod 3), there are integers c, d such that p = c2 − cd + d2. In other

words, p = N(π), the norm of prime π = c+dω in the ring Z[ω] of Eisenstein integers

(we may further require π to be primary in the sense that c ≡ 2 (mod 3) and d ≡ 0

(mod 3) ). Based on a point counting formula of Rajwade for Eb/Fp [17] and some

calculations of cubic residues, the following form is given in [21]

#Eb(Fp) = N(π − u), #Fp = N(π). (4)

where u is a unit in Z[ω]. We put the trivial fact #Fp = N(π) here is for relating the

number of points and the cardinality of the underlying field, as well as for comparing

with the binary case below. The Koblitz curve Ea/F2m has coefficients in the subfield

F2. This allows efficient point counting via the zeta function (e.g. [15]). More

precisely, write q = 2m, α = τm0 , then we see that

#Ea(Fq) = N(α− 1), #Fq = N(α). (5)

It is remarked that the forms (4) and (5) are similar, and both of them indicate

a nice relation between the cardinalities of the rational points of the curve and the

underlying field. However, (4) and (5) are obtained with completely unrelated process

of derivations.

2We note that when p ≡ 2 (mod 3), Eb/Fp is known to be a supersingular curve and the group
Eb(Fp) is a cyclic group of order p+ 1.
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For arithmetic of curves over prime fields, we do not know whether powerful

methods like width-w TNAF are available. But for the Koblitz curve Eb over a prime

field Fp with p ≡ 1 (mod 3), GLV method [12] can be used to speed up its scalar

multiplication. To give an account of this, let us write n = #Eb(Fp) and assume

that n is prime (by choosing b and p properly if necessary). In this case, n ≡ 1

(mod 3) holds. There exist cubic roots of unity β ∈ Fp and λ ∈ Fn such that for each

P = (x, y) ∈ Eb(Fp)
λP = (βx, y). (6)

This means that λP (with λ being treated as a scalar) can be computed efficiently

with a cost of field multiplication. Utilizing (6), the GLV method works as follows.

To compute kP , a reduction is performed to get integers k1, k2 of size about
√
n, such

that

k ≡ k1 + k2λ (mod n). (7)

Then, kP can be obtained by computing k1P + k2Q by using simultaneous multiple

scalar multiplication or interleaving [10], where Q = λP .

This paper makes a further study of efficient computations for Koblitz curves Eb
over prime fields. Identifying the scalar λ with complex number ω = −1+

√
−3

2
, we may

work with the ring of Eisenstein integers Z[ω] and utilize many nice mathematical

results of the subject. Among the results obtained in this paper, we are able to

create a width-w TNAF method for Koblitz curves Eb over prime fields where the

operation τ is given by τ = 1 − ω. Even though using different approaches, it does

share similarities with the cases for Koblitz curves Ea (or E3,a) over extension fields

with characteristic 2 (or 3). To be more specific, our main results include

1. Creating an simple reduction procedure for (7).

2. Designing an efficient formula for τP , it costs 3M + 3S under the Jacobian

projective coordinate. Based on the formula for τP , a more efficient way of

computing τ 2P is suggested, and its cost is 6M + 5S. An efficient formula

for 3P is also obtained with a cost of 6M + 4S under the Jacobian projective

coordinate.

3. Developing a width-w window τ -NAF (width-w TNAF) method for Koblitz

curves Eb over prime field Fp with p ≡ 1 (mod 3). A pre-computation is care-

fully chosen and six units of Z[ω] are better used to significantly reduce the

cost.
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We would like to make some remarks.

• Our simple reduction procedure is based on an idea we used in 2002 for imple-

menting binary Koblitz curves Eb(F2m) that simplifies Solinas’ reduction [18]

whose efficiency has also been validated in [19]. For using the GLV method

in the Koblitz curves over prime field, Brown, Myers and Solinas suggested a

reduction [8] with an approach simiar to that in [18] (see also [11]). Our simple

reduction procedure is applicable with GLV as well.

• The fact that operation τP has a low cost implies that an efficient window τ -

NAF can be created. For the case of window τ -NAF, we can frequently use τ 2

that reduces the average cost of τ to close to 3M + 2.5S. This is comparable to

the Frobenius map for subfield curves over fields of characteristic 5, even though

τ does not have a meaningful algebraic property as that of the Frobenius maps

τ0, τ1.

• Pre-computation is surprisingly efficient because multiplications by units of Z[ω]

saves about five-sixth of the cost.

• The overall improvement over the best current method is more than 11%.

The rest of our paper is arranged into four sections. Section 2 provides some

preliminaries and develops some tools. The main Algorithms and some discussions

are given in the section 3. We conclude the paper in section 4.

2 Preliminaries and Tools

The curves we discuss in the paper are of the form (3):

Eb : y2 = x3 + b/Fp,

where the prime p ≡ 1 (mod 3) and b ∈ F∗p. Modulo such a prime p, there is a

primitive cubic unity β, i.e., β3 ≡ 1 (mod p).

Denote n = #Eb(Fp). In this paper, we just consider the case that n is prime. It

can be seen that n ≡ 1 (mod 3) (e.g., from (4)), so there is a primitive cubic unity λ

modulo n. We can choose λ such that

λ(x, y) = (βx, y)
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for all points (x, y) ∈ Eb(Fp) \ {O}. From this, it is immediate that

λ2(x, y) = (β2x, y).

For such a prime n, and a primitive cubic unity λ, we form the lattice

Λ(λ, n) := {(x, y) ∈ Z× Z | λx+ y ≡ 0 (mod n)},

and find a non-zero shortest vector v = (c, d) ∈ Λ(λ, n) using the Lagrange-Gauss

algorithm for two dimensional lattice [9], one gets

n = c2 − cd+ d2, (8)

in other words, n = N(c+ dω).

Jacobian Projective Coordinates: For every (X, Y, Z) ∈ F3
p, Jacobian projec-

tive coordinate (X : Y : Z) is the following equivalent class defined over F3
p

(X : Y : Z) = {(λ2X,λ3Y, λZ) : λ ∈ F∗p}.

If Z 6= 0, Jacobian projective coordinate (X : Y : Z) corresponds to the affine

coordinate ( X
Z2 ,

Y
Z3 ). The equation of Eb/Fp under the Jacobian projective coordinate

becomes

Eb : Y 2 = X3 + bZ6, (9)

with (1 : 1 : 0) being the point of infinity.

Under projective coordinate, if two non-trivial point of E(Fp)

P = (XP : YP : ZP ), Q = (XQ : Yq : ZQ)

satisfy P 6= −Q and if their sum is R = (XR : YR : ZR), then putting

(
XP

Z2
P

,
YP
Z3
P

), (
XQ

Z2
Q

,
YQ
Z3
Q

)

in the addition formula in affine coordinate,
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1. if P 6= ±Q, we have



XR = (YQZ
3
P − YPZ3

Q)2

−(XQZ
2
P −XPZ

2
Q)2(XPZ

2
Q +XQZ

2
P ),

YR = (YQZ
3
P − YPZ3

Q)
(
XPZ

2
Q(XQZ

2
P −XPZ

2
Q)2 −XR

)
−YPZ3

Q(XQZ
2
P −XPZ

2
Q)3,

ZR = (XQZ
2
P −XPZ

2
Q)ZPZQ.

2. if P = Q, we have


XR = 9X4

P − 8XPY
2
P ,

YR = 3X2
P (4XPY

2
P −XR)− 8Y 4

P ,

ZR = 2YPZP .

In Jacobian projective coordinates, point addition and doubling for Koblitz curves

over prime fields can be performed by using the procedures in [10]. So the cost for

addition in Jacobian coordinates is 4S + 12M , and the cost for doubling is 4S + 3M.

In [16], point addition is improved by trading a multiplication with a squaring. The

costs for point addition and point doubling for Koblitz curves over prime fields, as

described in table 1, are

1ADD = 5S + 11M, 1DBL = 4S + 3M.

Table 1: Point Addition and Doubling (y2 = x3 + b, Jacobian coordinates)
Addition Procedure of E Doubling Procedure of E
R = P +Q (P 6= ±Q) R = 2P
A = XPZ

2
Q −XQZ

2
P ; A = 3X2

P ;
B = YPZ

3
Q − YQZ3

Q; B = 2YP ;
C = 2XQZ

2
PA

2; C = B2;
D = 4YQZ

3
PA

3 D = CXP ;
XR = 4(B2 − A3 − C); XR = A2 − 2D;

YR = 2(B(2C −XR)−D); YR = (D −XR)A− C2

2
;

ZR = ((A+ZQ)2−A2−Z2
Q)ZP ; ZR = BZP ;

In this paper, we shall adopt the conversion 1S = 0.8M suggested in [4]3. This

means that

1ADD ≈ 15M, 1DBL ≈ 6.2M.

3It is remarked that for the purpose of countering side-channel attack, 1S = 1M should be
enforced in the implementation. In this case, our method could show more improvement.
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2.1 Reduction for Decomposing a Scalar

Recall that we use n to denote the number of points of Eb/Fp. We know that λ is a

primitive cubic root of unity of n. In this subsection, we explain a procedure that,

for each integer k < n, generates integers k1, k2 about size
√
n such that

k ≡ k1 + λk2 (mod n).

We have from (8) that

n = c2 − cd+ d2

Note that 1 + λ+ λ2 = 0 (mod n), we see that

(c+ dλ)(c+ λ2d) = c2 + (λ+ λ2)cd+ λ3d2

≡ c2 − cd+ d2 (mod n) ≡ 0 (mod n).

We may assume that

c+ dλ ≡ 0 (mod n).

Otherwise if c+ λ2d ≡ 0 (mod n), then c− d− dλ ≡ 0 (mod n). We may substitute

(c− d,−d) by (c, d).

Let q1, q2 be integers and set

α1 =
k(c− d)

n
− q1, α2 =

−kd
n
− q2.

Write

k1 + k2ω = (α1 + α2ω)(c+ dω),

then we have

k =
k

c+ dω
(c+ dω) =

k(c+ dω)

n
(c+ dω)

=
k(c− d)− kdω

n
(c+ dω) = ((q1 + q2ω) + (α1 + α2ω)) (c+ dω)

= (q1 + q2ω)(c+ dω) + (k1 + k2ω).

This implies that k1, k2 are integers and

k ≡ k1 + λk2 (mod n).
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It can be seen that

k1 = k − q1c+ q2d,

k2 = q2d− q1d− q2c (10)

Since k1 + k2ω = (α1 + α2ω)(c+ dω), to make k1 + k2ω small, the Eisenstein integer

quotient (q1+q2ω) should be obtained by rounding the rational coefficients k(c−d)
n

and
−kd
n

to the nearest integers with respect to some appropriate distance. For Koblitz

curves over prime fields, a method proposed in [8] (see also [11]) is similar to that in

[18] by using Voronoi cell, but the latter is for the case of Koblitz curves over binary

fields.

It should be noted that this Voronoi

cell is with respect to norm N in the sense

that for an point (x, y) in the interior of

a Voronoi cell U ,

N(x+ yω) < N((x+ s) + (y + t)ω)

for all pairs of integers (s, t) 6= (0, 0). The

Voronoi cell for the origin is given on the

right. It is bounded by lines x + y = ±1

(in red), 2y − x = ±1 (in blue) and

2x− y = ±1 (in green).

−1 −0.5 0.5 1

−1

−0.5

0.5

1

−ω2ω

ω2 −ω

Now, denoting x = k(c−d)
n

and y = −kd
n

, then the precise values of q1, q2 given in

[8] are

q1 =

⌊
bx+ yc+ b2x− yc+ 2

3

⌋
, q2 =

⌊
bx+ yc+ b2y − xc+ 2

3

⌋
. (11)

Since c, d and n are fixed, the main calculation of q1 and q2 requires 2 integer multi-

plication and 2 divisions, and the integers involved in the division are large.

We propose a simplification of the calculation by using a one-time pre-computations
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(once for the curve) so that the divisions can be removed. To this end, we first let

s = dlog2 ne, t = dlog2 2(|c|+ |d|)e,

and pre-compute

η1 =

⌊
(c− 2d)2s+t

n

⌋
, η2 =

⌊
(2c− d)2s+t

n

⌋
, η3 =

⌊
(−c− d)2s+t

n

⌋
.

Then for a given 0 ≤ k < n, we compute

fj =

⌊
kηj
2s+t

⌋
, j = 1, 2, 3.

and finally get q1, q2.

q1 =

⌊
f1 + f2 + 2

3

⌋
, q2 =

⌊
f1 + f3 + 2

3

⌋
. (12)

We make some remarks on the simplified procedure.

Remarks

1. It is seen that we need to compute two 3 multiplications kη1, kη2, kη3. The

division by 2s+t is trivial.

2. The integers q1, q2 are close to x, y respectively. For example, it is easy to verify

that

3x− 1

2t−1
≤ f1 + f2 + 2 < 3x+ 2.

3. For binary Koblitz curves, it has been pointed out in [19] that in practice one

can simply using the floors of the rational coefficients in the reduction, without

affecting efficiency. In our case, we can take the following

q1 =

⌊
k(c− d)

n

⌋
, q2 =

⌊
−kd
n

⌋
. (13)

Our experiment shows that the performance is the same as that of using (11)

or (12). It is remarked that (13) can be also refined by using pre-computation

approach .

11



2.2 Efficient Formulas for τP, τ 2P and 3P

In the ring of Eisenstein integers, the number 3 is of special interest. It is associated

to the square of the prime τ = 1−ω, i.e., 3 = −ω2τ 2. As mentioned earlier, for scalar

multiplication ωP of a point P by ω is meaningful which is identified as λP . In this

subsection, we derive three efficient formulas for scalar multiplication by τ, τ 2 and by

3. To be more specific, we have

Proposition 2.1. Let P = (x, y) ∈ Eb(Fp).

1. The affine coordinates of τP = (1− λ)P are{
x′ = x3+4b

(1−β)2x2

y′ = y x3−8b
(1−β)3x3 .

2. In Jacobian projective coordinates, τP can be computed using 3M + 3S;

3. In Jacobian projective coordinates, τ 2P can be computed using 6M + 5S;

4. In Jacobian projective coordinates, 3P can be computed using 6M + 4S.

Proof. 1. For P = (x, y), we have λP = (βx, y). Write Pτ = P −λP = (x′, y′). To

compute (x′, y′), we first see that the slope is

` =
2y

(1− β)x
.

Now notice that (1− β)2 = −3β, we have

x′ = `2 − (1 + β)x = − 4y2

3βx2
− (1 + β)x

= −
(
4 + 3β(1 + β)

)
x3 + 4b

3βx2
=

x3 + 4b

(1− β)2x2
.
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y′ = `(x− x′)− y =
2y

(1− β)x

(
3βx3

3βx2
+
x3 + 4b

3βx2

)
− y

= y
2(3β + 1)x3 − 3β(1− β)x3 + 8b

3β(1− β)x3

= −y x3 − 8b

3β(1− β)x3
= y

x3 − 8b

(1− β)3x3
.

2. To derive a formula in Jacobian coordinates, write P = ( X
Z2 : Y

Z3 : 1). Then

X ′ =
( X
Z2 )3 + 4b

(1− β)2( X
Z2 )2

=
X3 + 4bZ6

((1− β)XZ)2
,

Y ′ =
Y

Z3

( X
Z2 )3 − 8b

(1− β)3( X
Z2 )3

=
Y (X3 − 8bZ6)

((1− β)XZ)3
,

So a Jacobian coordinates (Xτ , Yτ , Zτ ) for (1− λ)P can be

Xτ = X3 + 4bZ6

Yτ = Y (X3 − 8bZ6)

Zτ = (1− β)XZ

Using bZ6 = Y 2 −X3 and (1− β)2 = −3β, this is further reduced to

Xτ = 4Y 2 − 3X3

Yτ = Y (9X3 − 8Y 2)

Zτ = (1− β)XZ = Z
(1− β +X)2 −X2 + 3β

2

(14)

ComputingXτ requires 2S+1M, computing Yτ needs 1M, and Zτ needs 1S+1M

with the square computation of (1− β +X).

3. Let (Xτ2 : Yτ2 : Zτ2) be the Jacobian projective coordinates of τ 2P = τ(τP ).

Similar to the above, we have

Xτ2 = 4Y 2
τ − 3X3

τ

Yτ2 = Yτ (9X
3
τ − 8Y 2

τ )

Zτ2 = (1− β)XτZτ
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We first compute Xτ , Yτ as in (14), 2S + 2M is needed. Then the computation

of Xτ2 , Yτ2 , in the same manner as (14), also requires 2S + 2M.

For Zτ2 , we note that

Zτ2 = (1− β)XτZτ = (1− β)2XτXZ = −3βXτXZ

= 3
(Xτ − β)2 −X2

τ + β + 1

2
·X · Z.

This means that, without computing Zτ , we can get Zτ2 by using 1S+2M (note

that the element X2
τ is already calculated).

Therefore, the cost for τ 2P is 5S + 6M

4. By the fact that

3 ≡ (1− λ)(1− λ2) (mod n),

3P = (1 − λ2)Pτ . Let (X3 : Y3 : Z3) be the Jacobian projective coordinates of

3P computed from (1− λ2)Pτ , similar to the above, we have

X3 = 4Y 2
τ − 3X3

τ

Y3 = Yτ (9X
3
τ − 8Y 2

τ )

Z3 = (1− β2)XτZτ

We assume the result of Xτ , Yτ . Then the computation of X3, Y3, as in (14),

requires 2S + 2M. We can do better for Z3 here. Notice that

Z3 = (1− β2)XτZτ = (1− β2)Xτ (1− β)XZ = 3Xτ (XZ),

so without actually computing Zτ , the calculation of Z3 costs 2M.

Plus the computation of Xτ , Yτ , we need 4S + 6M to get 3P from P .

Remarks

1. In Jacobian projective coordinates for a general Weierstrass form, a previously

known cost for calculating 3P for general curves over prime is given in [16].

When it is restricted to the case of Koblitz curves, the cost is 10S + 5M. Our

specific formula for Koblitz curves over prime fields has achieved a lower cost

of 4S + 6M.
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2. The efficient formula for 3P can be used to do scalar multiplication where

double-base chain method is applicable.

3. It is also interesting to note that the computation of 2P = (X2 : Y2 : Z2) is very

close to that of τP in (14), in fact, one has

X2 = X(9X3 − 8Y 2)

Y2 = 9X3(4Y 2 − 3X3)− 8Y 4

Z2 = 2Y Z.

It is noted that the optimal cost for 2P is 4S + 3M [10].

4. Several facts about τ suggest a possibility of developing window τ -NAF method,

which has been very successful for the family of Koblitz curves over binary fields,

for the scalar multiplication of Koblitz curves over prime fields. These facts

include (1). N(τ) > 1; (2). τP can be done efficiently; and (3). any integer

k < n has an efficient reduction of a compact form of a+ bτ .

Previous work of window τ -NAF is mainly with respect to Frobenius maps of

certain curves over extension fields of small characteristics, see [13, 14, 18, 5,

6, 7]. For these cases, Frobenius maps can be implemented efficiently. If the

characteristic is 2, the Frobenius map requires 2S; for characteristics being 3 and

5, corresponding Frobenius maps require 2S + 2M and 4S + 2M respectively.

In our case, τP is of a comparable cost of 3S + 3M. When it is used in

window τ -NAF, we can see a better result as τ 2 can be used for most cases

to replace two applications of τ . The average cost of τ in this case is close to
1
2
(5S + 6M) = 2.5S + 3M.

We shall propose a window τ -NAF method for the scalar multiplication of

Koblitz curves over prime fields in the next section. We will see that due to

some nice properties of the Eisenstein integers, a very efficient pre-computation

can be constructed.

3 Window Base-τ NAF Method

First we note that since τ = 1−ω, the ring of Eisenstein ring Z[ω] can be also written

as

Z[τ ] = {x+ yτ : x, y ∈ Z}.
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Given a natural number w, the idea of the width w window τ NAF method is to

seek the following expansion (window τ -NAF) of an element a+ bτ ∈ Z[ω]:

a+ bτ =
N∑
j=0

εjujτ
j (15)

with the property that each nonzero uj is taken from a suitable set called the pre-

computation set and each segment {uj, uj+1, . . . , uj+w−1} contains at most one nonze-

ro element, εj ∈ {−1, 1}.
To compute (a+ bτ)P , one first sets up a pre-computation: perform uP for each

u in some pre-computation set, and compute
N∑
j=0

τ j(εjujP ).

3.1 Criterion of Divisibility by τw

To derive (15), a criterion of the divisibility of elements in Z[τ ] by τw is useful. The

next lemma is from [5, 7] where a proof was outlined. Since it is crucial in our

discussion, we provide a more detailed proof.

Lemma 3.1. Let k be a positive integer, then

1.

τ k = (−3ω)b
k
2
cτ d

k
2
e−b k

2
c

2. For x+ yτ ∈ Z[τ ],

τ k|x+ yτ ⇐⇒ 3d
k
2
e|x and 3b

k
2
c|y.

Proof. 1. Notice that τ 2 = −3ω. The argument follows from induction.

2. Let δ = dk
2
e − bk

2
c, i.e. δ =

{
0 if k is even

1 if k is odd .

Now

τ k = 3b
k
2
c(−ω)b

k
2
cτ δ

If τ k|x+ yτ , since (−ω)b
k
2
c is a unit, 3b

k
2
cτ δ|x+ yτ . Thus, there exists α+ βτ ∈

Z[τ ], such that

x+ yτ = 3b
k
2
c(ατ δ + βτ 1+δ).
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If k is even, then δ = 0. Hence x = 3b
k
2
cα = 3d

k
2
eα, y = 3b

k
2
cβ.

If k is odd, then δ = 1. Since τ 2 = −3 + 3τ , we get

x = −3b
k
2
c+1β = −3d

k
2
eβ, y = 3b

k
2
c(α + 3β).

Therefore, in either case

3d
k
2
e|x and 3b

k
2
c|y.

Conversely, if x = 3d
k
2
ef, y = 3b

k
2
cg in Z, then

x+ yτ = 3b
k
2
c(3δf + gτ) = 3b

k
2
c(−ω)b

k
2
cτ δ

3δf + gτ

τ δ
(−ω)−b

k
2
c

= τ k
3δf + gτ

τ δ
(−ω)−b

k
2
c.

The result is proved as 3δf+gτ
τδ

(−ω)−b
k
2
c ∈ Z[τ ] due to the fact that τ |3.

3.2 Pre-computation

We need to decide a set for the coefficients of the representation (15).

Consider the set of all elements of Z[τ ] which are not divisible by τ . By lemma 3.1,

a set of representatives of congruence classes of such elements modulo τw is

R = {x+ yτ : 0 ≤ x ≤ 3d
w
2
e − 1, 0 ≤ y ≤ 3b

w
2
c − 1, and 3 - x}.

For each x+ yτ ∈ R, let

Cx,y = {g + hτ ∈ Z[τ ] : g ≡ x (mod 3d
w
2
e), h ≡ y (mod 3b

w
2
c), N(g + hτ) < 3w}.

Since Z[τ ] is a Euclidean ring, Cx,y is nonempty. In fact, Cx,y usually contains several

elements. This is a useful property as one has a flexibility in selecting an element in

Cx,y that contributes to a better pre-computation to serve as a coefficient of expansion

(15).

We choose one element x̃+ỹτ from each Cx,y, then a pre-computation set (nonzero

coefficients of expression (15)) can be formed as follows:

Prew = {x̃+ ỹτ : 0 ≤ x ≤ 3d
w
2
e − 1, 0 ≤ y ≤ 3b

w
2
c − 1, and 3 - x}. (16)
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In [5], Blake, Murty and Xu design a window base-τ1 NAF method for Koblitz

curves over fields of characteristic three, where τ1 is the Frobenius map. Even though

as endomorphisms of elliptic curves, τ1 and τ are different, but they are the same as

complex numbers. So the window NAF expansion based on them are the same as

well. We can use Algorithm 3.1 of [5] to produce (15). We include this algorithm

below.

Algorithm 1 Width w window τ -NAF Method

Require: an element ρ = a+ bτ of Z[τ ]
Ensure: S, the array of coefficients of window τ -NAF of ρ

1: function Gen-NAF(a, b)
2: S ← <>
3: while a 6= 0 or b 6= 0 do
4: if 3 6 |a then
5: x ← a (mod 3d

w
2
e)

6: y ← b (mod 3b
w
2
c)

7: a ← a− x̃
8: b ← b− ỹ
9: prepend x̃+ ỹτ to S

10: else
11: prepend 0 to S
12: end if
13: t ← a
14: a ← a+ b
15: b ← −t

3

16: end while
17: return S
18: end function

The correctness of this algorithm is carefully discussed in [5] (Theorem3.1): be-

cause Z[ω] is Euclidean and imaginary quadratic, the width w window τ -NAF method

terminates.

3.2.1 A pre-computation for w = 4

We now describe an explicit efficient pre-computation for w = 4.

Let w = 4. In this case, we need to find easily computable coefficients x̃ + ỹτ

from each Cx,y for x = 1, 2, 4, 5, 7, 8 and y ∈ {0, 1, 2, · · · , 8}. It is noted that only
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x = 1, 2, 4 should be considered, as

−(x+ yτ) ≡ (9− x) + (9− y)τ (mod τ 4).

The part for x = 5, 7, 8 is obtained by negation. This means that we only need to

determine 27 coefficients and a half of the pre-computations is saved. As it can be

seen later, there are actually 9 pre-computations need to be taken care of, the rest 18

can be obtained easily.

First, there are three trivial coefficients in terms of pre-computations: 1, 1−τ, 2−τ ,

since for point P = (r, s),

(1− τ)P = (βr, s), and (2− τ)P = (β2r,−s).

For each of the rest 24 representatives x+yτ , we choose a suitable element x̃+ ỹτ

from Cx,y in a manner to reduce the cost of pre-computation. In table 2, the first,

third and fifth row are all x+ yτ ’s for x = 1, 2, 4 and 0 ≤ y < 9, except for the trivial

ones 1, 1 − τ and 2 − τ . These x + yτ ’s serve as indexes for pre-computation. The

second row lists the selected x̃+ ỹτ from Cx,y corresponding to the (index) x+ yτ in

the first row. The pre-computation is then Qx+yτ = (x̃+ ỹτ)P .

The third to sixth rows are carefully arranged in the way for better efficiency. We

start with the fourth row: an element x̃ + ỹτ is obtained by multiplying ω to the

corresponding (column) element in the second row if x̃ + ỹτ ∈ Cx,y with 1 ≤ x ≤
4, otherwise, x̃ + ỹτ is obtained by multiplying −ω to the corresponding (column)

element in the second row. The corresponding representative x+yτ is put in the third

row as its index. We form the sixth row and fifth row in a similar way by multiplying

ω2 or −ω2 to the corresponding (column) element in the second row.

Table 2: Pre-Computation for w = 4
x+ yτ 2 4 1 + τ 2 + 2τ 1 + 2τ 2 + 4τ 2 + τ 1 + 7τ
x̃+ ỹτ 2 4 1 + τ 2 + 2τ 1 + 2τ 2 + 4τ 2 + τ 1− 2τ
x+ yτ 2 + 7τ 4 + 5τ 4 + 6τ 1 + 6τ 2 + 5τ 4 + τ 4 + 4τ 4 + 3τ
x̃+ ỹτ 2(1− τ) 4(1− τ) 4− 3τ −8 + 6τ −7 + 5τ −14 + 10τ −5 + 4τ −5 + 3τ
x+ yτ 4 + 7τ 1 + 4τ 4 + 2τ 1 + 5τ 1 + 3τ 2 + 6τ 2 + 3τ 4 + 8τ
x̃+ ỹτ 4− 2τ −8 + 4τ −5 + 2τ 10− 4τ −8 + 3τ −16 + 6τ −7 + 3τ 4− τ

We explain why this set of coefficients achieves efficiency. It can be checked that
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x̃+ ỹτ ’s in the fourth row in table 2 are obtained as

2(1− τ) = 2ω, 4(1− τ) = 4ω, 4− 3τ = ω(1 + τ)

−8 + 6τ = −ω(2 + 2τ), −7 + 5τ = ω(1 + 2τ), −14 + 10τ = −ω(2 + 4τ)

−5 + 4τ = −ω(2 + τ) −5 + 3τ = ω(1− 2τ)

Similarly, x̃+ ỹτ ’s in the sixth row in table 2 are obtained as

4− 2τ = 2(−ω2), −8 + 4τ = 4ω2, −5 + 2τ = ω2(1 + τ)

10− 4τ = −ω2(2 + 2τ), −8 + 3τ = ω2(1 + 2τ), −16 + 6τ = ω2(2 + 4τ)

−7 + 3τ = ω2(2 + τ), 4− τ = ω2(1− 2τ).

This implies that if we have computed a point Q = (x̃ + ỹτ)P for the second

row, then the corresponding pre-computation in the fourth row and sixth row can

be simply computed as λQ (or −λQ) and λ2Q (or −λ2Q) , respectively. Note that

computing λQ is easy: if Q = (r, s), then λQ = (βr, s); computing λ2Q can even be

neglected in the sense that

λ2Q = (β2r, s) = (−βr − r, s),

since the multiplication βr has been computed in λQ.
We compute all Qx+yτ = (x̃+ ỹτ)P for the second row one by one in the following

order:

Q = τP, Q2 = 2P, Q4 = 4P = 2Q2

Q1+τ = (1 + τ)P = P +Q, Q2+2τ = (2 + 2τ)P = 2Q1+τ , Q2+τ = (2 + τ)P = Q2 +Q

Q1+2τ = (1 + 2τ)P = Q2+2τ − P Q1+7τ = (1− 2τ)P = Q2 −Q1+2τ Q2+4τ = (2 + 4τ)P = 2Q1+2τ

This requires 1operation τ + 4DBL + 4ADD. The computation for the fourth row

needs 8 field multiplications. Plus the scalar multiplications by 1−τ = ω, 2−τ = −ω2,

which costs 2M, the pre-computation cost is

5.4M + 8M + 4 · 6.2M + 4 · 15M + 2M = 100.2M.

3.3 Width-4 window τ-NAF Method for Scalar Multiplica-

tion

In coordination with the pre-computation designed above, we choose window size
w = 4 for scalar multiplication. This is an appropriate size one because it also
helps to maximize the benefit brought by the more efficient τ 2P formula. We have
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determined the coefficients in section 3.2.1 for pre-computation. The selected set of
coefficients is C ∪ (−C) ∪ {0} if we write

C = {1, 1− τ, 2− τ, 2, 4, 1 + τ, 2 + 2τ, 1 + 2τ, 2 + 4τ, 2 + τ, 1− 2τ, 2(1− τ)} ∪
{4(1− τ), 4− 3τ,−8 + 6τ,−7 + 5τ,−14 + 10τ,−5 + 4τ,−5 + 3τ, } ∪ (17)

{4− 2τ,−8 + 4τ,−5 + 2τ, 10− 4τ,−8 + 3τ,−16 + 6τ,−7 + 3τ, 4− τ}

The pre-computation with respect to a point P ∈ Eb(Fp) is to compute uP for every

u ∈ C. The scalar multiplication with negative part of C is trivial.

The following is our scalar multiplication algorithm for Koblitz curves over prime

fields. We rewrite the expression (15) for a+ bτ to explicitly mark it lowest term:

a+ bτ =
N∑
j=`

εjujτ
j (18)

where uj ∈ C ∪ {0}, εj ∈ {−1, 1}, u` 6= 0, uN 6= 0. Note that every non-zero term

(except for the last one) is followed by at least 4 terms with zero coefficient, so we

can perform at least two τ 2-operations by the formula in proposition 2.1.

Algorithm 2 Window τ -NAF Method for Scalar Multiplication

Require: a positive integer k < n and a point P ∈ Eb(Fp)
Ensure: the scalar multiplication kP

1: function SCAL-MUL(k, P )
2: Pre-Computation: uP for each u ∈ C.
3: Use Section 2.1 to get reduction k = k1 + k2λ (mod n)
4: a← k1 + k2, b← −k2
5: Use Algorithm 1 to get the expression (18)
6: Q ← O
7: j ← N
8: while j ≥ ` do
9: if uj 6= 0 then

10: Q ← Q+ εjPuj
11: if j = ` then
12: for i from 0 to b `

2
c do

13: Q ← τ 2Q
14: if ` is odd then
15: Q ← τQ
16: end if
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17: end for
18: return Q
19: end if
20: Q← τ 2Q, Q← τ 2Q
21: j ← j − 4
22: while uj = 0 do
23: Q ← τQ
24: j ← j − 1
25: end while
26: end if
27: end while
28: return Q
29: end function

3.3.1 Estimation of the cost for width-4 window τ-NAF

In the process of calculating kP for k < n, one reduces k to k1 + k2λ such that

k ≡ k1 + k2λ (mod n) with |k1|, |k2| <
√
n. Set a = k1 + k2, b = −k2, we have

k ≡ a+ bτ (mod n).

Note that N(τ) = 3, the window τ -NAF for a+ bτ should be of length log3 n. In

the expansion (15) for a+bτ , after each nonzero coefficient, there will be w consecutive

zeros, beyond that, asymptotic expectation of zeros followed is 1
3

+ 1
32

+ · · · = 1
2
. So

the average number of nonzero terms is

log3 n

w + 1
2

.

With w = 4, this means that, given a pre-computation, algorithm 2 requires 2 log3 n
4.5

operation τ 2,

(log3 n− 4 log3 n
4.5

) operation τ , and
log3 n

4.5
ADD.

Recall that operation τ ≈ 5.4M, operation τ 2 ≈ 10M, and ADD ≈ 15M, so

the overall cost for the computation of kP in terms of the number of field multipli-

cations is (
2

4.5
· 10 +(1− 4

4.5
) · 5.4 + 1

4.5
· 15

)
log3 nM + 100.2M

≈ (5.29 log2 n+ 100.2)M. (19)
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Currently, the best method for scalar multiplication for Koblitz curves over primes

fields is the GLV method. According to our experiments, the version of interleaving

with 4-NAF performs the best for Koblitz curve SECP256K1. For Koblitz curves over

prime fields, the interleaving with w-NAF is to compute k1P + k2Q where Q = λP

using w-NAF to k1 and k2. The pre-computation can be done essentially just for P :

pre-compute jP for j = 3, 5, · · · , 2w−1−1. The Q part of pre-computation is obtained

simply by jQ = λ(jP ) by using 4 field multiplications for j = 1, 3, 5, 7. The rest of

the cost of interleaving with 4-NAF is
log2 n

2
DBL+

log2 n

5
ADD. Converting to field

multiplications, the cost becomes(
log2 n

2
+ 1

)
· 6.2M +

(
log2 n

5
+ 3

)
· 15M + 4M ≈ (6.1 log2 n+ 55.2)M. (20)

Comparing (19) with (20), we see that the width-4 window τ -NAF method achieves

more than 11% and 12.5% of improvements over the GLV method, when log2 n = 256

and 384 respectively.

4 Conclusion

This paper discussed Koblitz curves over primes fields by utilizing several nice prop-

erties of the Eisenstein integers. An efficient formula for a (complex) scalar multi-

plication by τ = 1 − ω is derived. Based on it, further optimzed fast formulas for

τ 2P and 3P are obtained. The cost of τP becomes 3S + 3M in Jacobian coordi-

nates (for the situations where τ 2P can be used, the average cost can be reduced to

close to 2.5S + 3M ). This cost is comparable to that for the Frobenius map over

extension fields of characteristic 5 and suggests a possibility of creating a window

τ -NAF method for the family of Koblitz curves over prime fields. This is achieved in

the paper by developing some mathematical tools and by designing a very efficient

pre-computation. This method gains more than 11% of improvement over the GLV

method. The paper also proposed a simplified modular reduction for Eisenstein in-

tegers where the division operations are eliminated. This modular reduction can be

used in the GLV method for this class of curves as well. Another efficient formula

developed in this paper is the computation of 3P , compared to 10S + 5M, our new

formula just costs 4S + 6M. As a main ingredient for double base chain method for

scalar multiplication, the formula will contribute to a greater efficiency.
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