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Abstract

Private set intersections are cryptographic protocols that compute the intersection
of multiple parties’ private sets without revealing elements that are not in the inter-
section. These protocols become less efficient when the number of parties grows, or
the size of the sets increases. For this reason, many protocols are based on Bloom fil-
ters, which speed up the protocol by approximating the intersections, introducing false
positives with a small but non-negligible probability. These false positives are caused
by hash collisions in the hash functions that parties use to encode their sets as Bloom
filters. In this work, we show that these false positives are more than an inaccuracy:
an adversary in the augmented semi-honest model can use them to learn information
about elements that are not in the intersection. First, we show that existing security
proofs for Bloom filter-based private set intersections are flawed. Second, we show that
even in the most optimistic setting, Bloom filter-based private set intersections cannot
securely realize an approximate private set intersection unless the parameters are so
large that false positives only occur with negligible probability. Third, we propose a
practical attack that allows a party to learn if an element is contained in a victim’s
private set, showing that the problem with Bloom filters is not just theoretical. We
conclude that the efficiency gain of using Bloom filters as an approximation in exist-
ing protocols vanishes when accounting for this security problem. We propose three
mitigations besides choosing larger parameters: One can use oblivious pseudo-random
functions instead of hash functions to reduce the success rate of our attack signifi-
cantly, or replace them with password-based key derivation functions to significantly
slow down attackers. A third option is to let a third party authorize the input sets
before proceeding with the protocol.

∗These authors contributed equally to this work.
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1 Introduction

Private set intersection protocols (PSI) and their multi-party equivalent are protocols for
computing the intersection between n parties’ private sets, without revealing any other in-
formation about those private sets. These protocols enable information sharing in situations
where revealing data would be undesirable, like in financial transactions, or where informa-
tion sharing must be limited, like in threat intelligence or no-fly lists. More formally, a
private set intersection protocol is a protocol between n parties Pi for i = 1, . . . , n. Each
party has a private set Xi ⊆ U of at most k elements. One party that we refer to as the
leader (denoted P1) obtains the intersection X1 ∩ · · · ∩ Xn as the protocol’s output. All
other attributes of the private sets must remain hidden.

Approximate PSI schemes allow a trade-off between the computational and communica-
tional cost of a protocol and the accuracy of the resulting intersection. A common method
for constructing efficient approximate PSI protocols is to use Bloom filters. Bloom filter-
based PSI protocols let parties first encode their sets as Bloom filters X̂i ← Encode(Xi)
using h hash functions Hj for j = 1, . . . , h. These filters start out as an indexed set of m
Boolean bins that are all set to 0. Each party Pi uses the filter’s hash functions to map each
of their elements in set Xi to h of the bins, setting them to 1. One can compute a Bloom
filter representing the intersection by combining the Bloom filters using an element-wise log-
ical AND operation. The AND operation must be performed on the Bloom filters, which must
remain private, using a secure computation technique such as homomorphic encryption.

The approximation inherent to Bloom filters is caused by the possibility of hash collisions:
a hash of any two distinct elements may map to the same bin (i.e. Hi(x) = Hj(x

′) where
x ̸= x′). As such, such a Bloom filter-based protocol will never wrongfully exclude elements
from the intersection (i.e. there are no false negatives), but the result may include false
positives with some probability. Specifically, each negative element in the leader’s set may
wrongfully appear in the intersection with probability at most p. This makes Bloom filter-
based MPSI protocols suitable for use cases, in which false positives may be permissible
with a small but non-negligible probability.

Previous work [1, 2] has shown that the Bloom filter representing the intersection might
leak information if it is revealed. This is because bins in the intersection may be set to 1,
even if the same bins are set to 0 when the Bloom filter is obtained by directly encoding
the intersection, Encode(X1 ∩ · · · ∩ Xn). Instead of revealing the combined Bloom filter
X̂∩ = X̂1 ∧ · · · ∧ X̂n, private set intersection protocols use secure computation techniques
to query the filter on every element in the leader’s set and only reveal the result:

X̂∩[H1(x)] ∧ · · · ∧ X̂∩[Hh(x)] for x ∈ X1 . (1)

One might think that this constitutes a secure Bloom filter-based private set intersection
protocol, as the leader would not be able to distinguish between false positives and actual
elements in the intersection, preventing it from exploiting X̂∩ to learn anything about the
private sets. However, this assumes that the leader has no auxiliary knowledge about the
private sets. Rindal & Rosulek [3] already showed that Bloom filters lead to problems in
security proofs in the malicious setting, and other recent work by Liu et al. [4] identifies
problems with Bloom filter-based private set unions.

In this work, we show that the above approach is not sufficient to achieve secure MPSI:
the approximate nature of Bloom filters does, in fact, allow the leader to learn information
about the private sets that it could not from the exact intersection. What is more, previous
works do not take this approximation into account in their security proofs. For example,
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several works prove security with respect to the ideal functionality of an exact PSI to model
the security of Bloom filter-based protocols, as opposed to the ideal functionality of an
approximate PSI. This gap caused by approximation can only be closed if p is negligible,
but this, in turn, causes parameters to grow significantly. In this work, we show that these
parameters are so large that they undo the performance benefit of choosing an approximate
protocol in the first place.

One might think that the gap can be easily closed by proving security with respect to
an ideal functionality for approximate set intersections. Unfortunately, we show that Bloom
filter-based PSI protocols are fundamentally flawed in this regard. Wo do so by exploiting
the fact that the actual false positive rate is not constant; it depends on the elements in the
private sets. The result is that the existence of a false positive in the final intersection may
reveal information about any of the private sets. Consider the following minimal example
(albeit slightly contrived), which demonstrates that the false positive rate of a Bloom filter
does not only affect the correctness but also the security of the protocol. In other words,
even a perfectly secure Bloom filter-based PSI leaks information about the input sets with
non-negligible probability.

Example 1. Let us analyze the situation where h = 1, n = 2, and k = 1. Assume that
we have two distinct party-specific universes, U1 = {a} and U2 = {b}, and we use a Bloom
filter-based PSI protocol in which the two parties input sets X1 and X2. Then, in the ideal
world corresponding to εfp-approximate PSI, the leader would get a non-empty intersection
with probability εfp, regardless of X2. However, in the real world, the output is non-empty
with probability 1

m if, and only if, X1 = {a} and X2 = {b}, but is always empty otherwise.
I.e. the leader learns the other party’s set with probability 1

m .

The attacks described in this work are all in the augmented semi-honest model; where
parties can freely choose their inputs, after which they do not deviate from the protocol.
This is an augmentation of the semi-honest model, in which parties that are not corrupted
do not deviate from their predetermined inputs to the protocol. It has been shown that this
property of the semi-honest model leads to counter-intuitive situations in which a protocol
that is secure in the malicious model cannot be proven to be secure in the semi-honest
model [5].

As a result of the attacks we propose, Bloom filter-based private set intersection pro-
tocols that use a non-negligible false positive probability will become slower. The easiest
mitigation is to lower the false positive probability, slowing down the protocol due to the use
of larger Bloom filters. Alternative solutions would include using oblivious pseudo-random
functions [6] such that the hash functions can remain secret, or switching to hash functions
that are very expensive to compute, such as password-based key derivation functions like
PBKDF2 [7].

The paper is organized as follows. We proceed with a description of Bloom filters in
Section 2. After that, in Section 3, we define the security model for multi-party private set
intersections that we use, including definitions for approximate MPSI. Next, we present an
abstraction of Bloom filter-based MPSI protocols in Section 4. We present our main results
in Sections 5 and 6, in which we put forward our theoretical analysis and our practical
attack. We finish by discussing mitigations in Section 7, and we conclude in Section 8.
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2 Bloom Filters

Bloom filters, first introduced by Bloom [8], are a probabilistic data structure designed to
perform set membership queries efficiently. Bloom filters exploit the uniformity of h hash
functions to each map an element x ∈ U to one of m bins. Each bin contains one bit that all
start at 0. To encode an element x, we hash x with h hash functionsHi for i ∈ {1, 2, . . . , h},
which select bins of the Bloom filters to be set to 1. We can encode a private set X by
encoding each element x ∈ X individually. We define the notation X̂ ← encode(X) to
denote the Bloom filter encoding of set X ⊆ U .

One can test whether an element y is contained in the Bloom filter X̂ by computing all
bins corresponding to y and checking if indeed all bits are 1.False negatives cannot occur,
but when all of the bins of element y are set to 1, it is not sure that the element was indeed
encoded in the Bloom filter, or that the bins were set to 1 by encoding other elements. I.e.
false positives can occur. We use p to denote an upper bound on the probability of a Bloom
filter encoding k distinct elements returning a false positive. The probability p depends on
the number k of elements inserted, the size of the Bloom filter m and the number h of hash
functions used. An upper bound was derived by Goel and Gupta [9].

p ≤
(
1− e−

h(N+0.5)
m−1

)h

. (2)

Given a desired false positive probability εfp and maximum set size k, we can calculate
the corresponding required number of hash functions h and the minimal number of bins
mopt as follows:

h = − log2(εfp) , (3)

mopt ≥
−h (k + 0.5)

ln
(
1− h
√
p
) + 1 . (4)

The protocols discussed in this work use Bloom filters to compute intersections. One
way in which Bloom filters are convenient for this purpose, is that different Bloom filters
can be combined to generate a filter representing the intersection. Specifically, two Bloom
filters X̂1 and X̂2 can be combined using a bin-wise AND operation to generate a Bloom filter
X̂∩ representing the intersection. Bloom filters do not allow for efficient extraction of the
original elements, however, they do allow for efficient testing of the inclusion of a specified
value x ∈ U , so one can extract the intersection by querying the elements from one of the
original sets.

3 Definition of MPSI security

The results in our work contradict the security proofs in previous work [10, 11]: we show that
Bloom filter-based private set intersections with non-negligible false positive probabilities
cannot securely realize private set intersections, whereas previous work contains security
proofs for the opposite. In this section, we first discuss how the security definitions and
analyses of previous work and show how these are flawed. One of these flaws is that the
security proofs attempt to show that Bloom filter-based PSI realizes exact PSI, but this is
clearly not true when false positives occur. In the second part of this section, we propose
new definitions for approximate PSI. In Section 5, we show that Bloom filter-based PSI also
does not realize these weaker functionalities.
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3.1 Definitions & flaws in existing security proofs

We now inspect the security proofs of Bloom filter-based PSI protocols more closely. We
specifically focus on works that use the approximation of a Bloom filter to speed up the
protocol. In other words; works that set the false positive probability p to be non-negligible.

In their proof (Theorem 4.2), Debnath et al. [10] assume that the output is the exact
intersection, claiming that the protocol only fails with the false positive probability p. How-
ever, in reality, the security proof does not hold the moment that any false positive occurs.
This can happen with probability 1− (1− p)k. Bay et al. [11] also assume that the output
is the exact intersection, so the proof does not hold with probability this probability, but
their proof is slightly different. They simulate the inputs of uncorrupted parties by choosing
random input sets that conform to the intersection. Given that the combined Bloom filter
highly depends on the input sets, this potentially skews the advantage even more.

Other works, like that by Vos et al. [12] only prove that the aggregation is secure, so
the security proof does not extend to the final computation of the intersection. The same
goes for the work by Miyaji et al. [13], which only considers security for the protocol before
decryption.

To summarize, all these proofs either use the MPSI functionality, thereby failing to
consider false positives, or the proofs are incomplete (because they do not consider Bloom
filters). There is an option for remedying these proofs, namely including the approximate
behaviour of the underlying protocol and showing that false positives occur with a negligible
probability, e.g. p ≤ 2−40. However, for the addressed schemes, this results in a significant
decrease in performance. There are already other works that take this approach, such as the
work by Ben Efraim et al. [14]. If false positives practically never occur, then the protocol
behaves as an exact intersection.

3.2 An exact ideal functionality

To treat two-party private set intersections and multi-party private set intersections in
general, we define an exact ideal functionality FMPSI for MPSI that roughly follows the
universal composability model, see Figure 1. In this functionality, S is essentially an external
adversary that controls the communication channels. In this work, it is sufficient to think
of the S as an external influence that decides when the protocol finishes.

3.3 An approximate ideal functionality

As mentioned before, the exact ideal functionality is unsuitable for proving the security
of Bloom filter-based MPSI when the false positive probability is not negligible. After
all, any false positive would allow a distinguisher to tell it apart from the exact MPSI
ideal functionality. Instead, we define an approximate MPSI ideal functionality FaMPSI

that returns an intersection based on the leader’s set with a constant probability of false
positives εfp and false negatives εfn, see Figure 2. In the rest of our paper, εfn = 0. We refer
to an approximate MPSI protocol with false positive probability εfp as εfp-approximate.

3.4 A weaker ideal functionality

In Section 5, we show that Bloom filters with a non-negligible false positive probability also
cannot securely realize FaMPSI. One might argue that the only reason why Bloom filters are
not approximate MPSIs is that their false positive probability varies, but that this variance
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FMPSI

Let X∩ ← U and P = ∅.

On (inp, Xi) from Pi:

• Assert that this is the first input of Pi

• Assert that Xi ⊆ U
• Assert that |Xi| ≤ k

• Store X∩ ← X∩ ∩Xi

• Store P ← P ∪ {Pi}
• Send (inp,Pi) to S

On (finish) from S:

• Assert that this is the first finish
request

• Assert that Pi ∈ P for all i ∈ [1, n]

• Send (X∩) to P1

Figure 1: The ideal functionality FMPSI.

FaMPSI

Let X∩ ← U and P = ∅.

On (inp, Xi) from Pi:

• Assert that this is the first input of Pi

• Assert that Xi ⊆ U

• Assert that |Xi| ≤ k

• Store X∩ ← X∩ ∩Xi

• Store P ← P ∪ {Pi}

• Send (inp,Pi) to S

On (finish) from S:
• Assert that this is the first finish

request

• Assert that Pi ∈ P for all i ∈ [1, n]

• Initialize R← ∅
• For x ∈ X∩: add x to R with

probability 1− εfn

• For x ∈ X1/X∩: add x to R with
probability εfp

• Send (R) to P1

Figure 2: The ideal functionality FaMPSI.
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FwaMPSI

Let X∩ ← U and P = ∅.

On (inp, Xi) from Pi:

• Assert that this is the first input of Pi

• Assert that Xi ⊆ U

• Assert that |Xi| ≤ k

• Store X∩ ← X∩ ∩Xi

• Store P ← P ∪ {Pi}

• Send (inp,Pi) to S

On (finish) from S:
• Assert that this is the first finish

request

• Assert that Pi ∈ P for all i ∈ [1, n]

• Initialize R← ∅
• εfn ← ffn(|X1|, . . . , |Xn|, |X1∩· · ·∩Xn|)
• εfp ← ffp(|X1|, . . . , |Xn|, |X1∩· · ·∩Xn|)
• For x ∈ X∩: add x to R with

probability 1− εfn

• For x ∈ X1/X∩: add x to R with
probability εfp

• Send (R) to P1

Figure 3: The ideal functionality FwaMPSI.

is only induced by some values that can be permitted to be leaked. E.g. one might argue
that the size of the input sets and the size of the exact intersection is not secret. As such,
we define a weaker functionality in which εfp and εfn are indeed functions over the sizes of
the sets: |Xi| for i = 1, . . . , n and |X∩|. We denote these functions by ffp and ffn. We
present the resulting ideal functionality FwaMPSI in Figure 3.

4 An abstraction of Bloom filter-based PSI

In this work, we set out to show that Bloom filters are fundamentally flawed. Instead of
going through each Bloom filter-based protocol individually and showing that they suffer
from security problems, we present an idealized abstraction of Bloom filter-based PSI. After
that, we discuss previously proposed protocols and how each inherits the security problems
from our idealized abstraction.

4.1 Our idealized abstraction

The idea of our idealized abstraction is to model the behavior of Bloom filters in isolation;
without communication between individual parties or use of cryptographic primitives. We
present this abstraction ΠBF in such a way that it has the same interface as the ideal func-
tionalities defined in the previous section. ΠBF is conceptually simple: instead of combining
the private sets using an actual intersection, it encodes sets as Bloom filters and combines
those instead. It returns the intersection to the leader by returning the leader’s elements
that are contained in the resulting Bloom filter.
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ΠBF

Let X̂∩ ← 1m and P = ∅.

On (inp, Xi) from Pi:

• Assert that this is the first input of Pi

• Assert that Xi ⊆ U
• Assert that |Xi| ≤ k

• Store X̂∩ ← X̂∩ ∧ encode(Xi)

• Store P ← P ∪ {Pi}
• Send (inp,Pi) to S

On (finish) from S:
• Assert that this is the first finish

request

• Assert that Pi ∈ P for all i ∈ [1, n]

• Initialize R← ∅
• For x ∈ X1: Add x to R if

contains(X̂∩, x)

• Send (R) to P1

4.2 Two-party private set intersections

We first consider two-party protocols, explaining the general workings of these protocols
and how it might be possible to create a simulator for them around ΠBF. The idea is that
any problems inherent to ΠBF are inherited by the protocols below.

4.2.1 Debnath and Dutta

Debnath & Dutta [15] propose a PSI protocol using Goldwasser-Micali encryption and
inverted Bloom filters. The client P1 and server P2 agree on k hash functions to make the
Bloom filter, and the client generates an inverted and encrypted Bloom filter and sends it
to the server. For each of its elements, the server selects the bins that the element maps
to and homomorphically XORs a hash of the element onto these bins. So, if an element is
contained in the inverted Bloom filter of P1, the result is an encryption of a hash of the
element. If the element is not contained in it, the result is a distorted hash. The client can
extract the intersection by checking which elements match the hashes it receives.

We can simulate this protocol using ΠBF with high probability. Notice that while ΠBF

outputs {x ∈ X1 | contains(X̂1 ∧ X̂2, x)}, the protocol by Debnath & Dutta outputs {x ∈
X2 | contains(X̂1, x)} with high probability. However, these are the same because Bloom
filters do not cause false negatives, so x ∈ X2 =⇒ contains(X̂2, x). Besides this, the
simulator must still simulate the encryptions that are sent from the client to the server and
back.

4.2.2 Davidson and Cid

Davidson and Cid [16] also propose a private set intersection protocol based on encrypted
and inverted Bloom filters, which was reformulated by Bay et al. [11]. We discuss this
reformulation. 1 The client P1 encodes their elements X1 in a Bloom filter as usual and
inverts it (i.e. flipping all bits of the filter) before encrypting it. It then sends this filter to the
server P2. For each element y ∈ X2 of the servers set, the server calculates the corresponding

1There seems to be a mistake in the original work because when an element is in the Bloom filter, the
sum of the selected bins is 0, so the client would not learn the values that are in the intersection.
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bins in the encrypted inverted Bloom filter and sums the values in these bins with outcome
S. It then adds S to the encrypted value of y. It returns the pair (S, S + enc(y)) to the
client who computes the intersection. For an element y ∈ X2, all its corresponding bins in
the inverted Bloom filter have value 0, and thus S is the encryption of 0. If this encrypted
value of 0 is added to the encrypted value of y the decryption gives 0 + y. For any element
not in the intersection, the decryption reveals nothing about y. 2 For each pair, the client
checks whether the decryption of S equals 0; if so, it decrypts the second value of the pair
and assumes it to be in the intersection.

One would roughly simulate this protocol using ΠBF as follows. The encrypted inverted
Bloom filter would be made up of m random encryptions, and the server returns k pairs
of specific encryptions to the client. The elements in the pair are encryptions of 0 if the
element is in the intersection returned by ΠBF, and random otherwise.

4.3 Multi-party private set intersections

Next, we discuss several Bloom filter-based multi-party private set intersection protocols
and how they relate to ΠBF.

4.3.1 Bay, Erkin, Hoepman, Samardjiska, and Vos

The protocol proposed by Bay et al. [11] is an extension of [16] in the multi-party vari-
ant. The difference is that the server learns the intersection instead of the clients. The
adjustments of the protocol are minor. All clients have a private secret key, but the public
key corresponding to all private keys is shared. All clients calculate the encrypted inverted
Bloom filter with the public key. The server combines the Bloom filters to calculate the sum
S for all elements x in its set. Here S is the same as defined in Section 4.2.2. The clients
jointly decrypt the encrypted value so that the server can learn if x is in the intersection.
This protocol can be simulated using ΠBF in a similar way as in Section 4.2.2. A similar
protocol was presented by Debnath et al. [10].

4.3.2 Vos, Conti, and Erkin

Vos et al. [12] propose a similar MPSI protocol for large universes using ElGamal encryption.
Each of the parties starts by computing a Bloom filter for their input. Then they invert
this Bloom filter so that an element xi is in set Xi if all its corresponding bins have value
0. Then, the protocol securely performs an OR operation on all inverted Bloom filters. The
resulting Bloom filter is inverted again, and then an element is in the intersection if all
its corresponding bins have value 1. This is equivalent to performing an AND operation on
regular Bloom filters. Vos et al. already show how to simulate the OR protocol, so the
simulation around ΠBF is straightforward.

4.3.3 Ruan, Yan, Zhou, and Ai

Ruan et al. [17] present an MPSI protocol for unbalanced scenarios where the server P1

has a significantly larger set. Each of the clients P2, ...,Pn computes a Bloom filter for their
input set Xi. The bins of the Bloom filter that contain 0 are randomized to any number but
zero and one. This is needed to apply an ElGamal encryption scheme that cannot encrypt

2That said, both versions of this protocol seemingly reveal the number of bins that were set in the Bloom
filter.
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0. A trusted third-party generates an ElGamal public-private key pair (pk, sk) and divides
the secret key over the clients ski. Each client Pi for i ≥ 2 generates a Bloom filter on their
input set Xi, randomizes the bins of value 0, and encrypts the filter with the public key.
The resulting filter is sent to the server P1. The server then selects the bins of the Bloom
filter X̂i pertaining to its elements for each i ≥ 2, homomorphically aggregates them, and
sends the results back to the clients. The clients each perform a computation on the received
Bloom filter such that the server is able to combine all filters to decrypt the intersection.
Simulation using ΠBF would be a multi-party extension of the simulation described for the
protocol by Debnath et al. [15].

4.3.4 Ruan and Ai

Ruan and Ai [18] made an MPSI protocol for the balanced scenario that is much like the
unbalanced scenario. All clients compute the encrypted Bloom filter in the same manner
as in [17]. The server does the exact same computation as the clients. All these encrypted
Bloom filters are sent to the server, which combines them and sends the combined filter back
to the clients. All clients decrypt this Bloom filter using their own private key and send the
result to the server. The server then can combine all Bloom filters to find the decrypted
Bloom filter of the intersection X̂∩. The server then performs the normal contains(X̂∩, x)
function for all its elements x ∈ X1.

4.4 Outsourced private set intersections

Since the ideal functionalities nor the idealized abstraction ΠBF describe who computes
something, they also apply to the outsourced computation case, in which most of the com-
putations are performed by a server that does not take part in the protocol. We cover two
Bloom filter-based outsourced private set intersection protocols.

4.4.1 Qiu, Zhang, Liu, Yan, and Cheng

Qiu et al. [19] propose a PSI protocol where both clients P1 and P2 learn the intersection,
and the computation is done by a computational powerful server S. Both clients compute a
Bloom filter and encrypt this filter with a shared secret key. They permute the filter with a
secret shared permutation π and forward it to the server. The server then computes which
indices of the received filters are equal and forwards this set of indices to the clients. Both
clients perform an inverted permutation on this set of indices to obtain the indices of the
original Bloom filter. For each element x in the set X1, P1 checks whether all bins in the
Bloom filter are set to 1 and indicated by the server. If so, the element x is considered to be
in the intersection. P2 does the same computation. Due to the fact that the parties undo
the permutation, the resulting behavior is exactly the same as that in ΠBF. One would still
have to simulate the communication between the parties and the server.

4.4.2 Miyaji and Nishida

Miyaji and Nishida [20] propose a multiparty private set intersection based on Bloom filters
and a distributed ex-El Gamal encryption. For this protocol, they use a dealer D who does
not participate in the intersection and only helps reduce the computational power for the
clients. Each client Pi generates a secret key xi and a public key gxi . The jointly public key
of the clients is constructed as pk =

∏n
i=1 g

xi . Each of the clients computes their Bloom
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filter, encrypts it with the public key pk, and sends it to the dealer. The dealer aggregates
the Bloom filters by homomorphically adding them. To compute the Bloom filter of the
intersection, the dealer subtracts n (the number of clients) from each entry of the Bloom
filter. It then sends the resulting Bloom filter to all the clients for joint decryption. If, for an
element, all its corresponding bins have the value 0, the element is considered to be in the
intersection. This is functionally the same as the protocol by Bay et al. [11], but without
inverting the Bloom filters.

5 Analysis of Bloom filter-based PSI

In this section we show that there are fundamental limitations to the security of Bloom
filter-based private set intersections. We do so by showing that a certain indistinguishability
notion cannot be met when the false positive probability is not negligible. These problems
are caused by the fact that a Bloom filter becomes deterministic when its hash functions
are fixed. We first discuss the indistinguishability game that we use to define security, after
which we present a distinguisher that reliably tells apart FwaMPSI from ΠBF when false
positives occur with non-negligible probability. Based on these results we conclude that the
upper bound on the false positive probability p of a Bloom filter must be less than 0.5

|U|−k

in practice. After that, we discuss how one can choose concrete Bloom filter parameters to
securely realize FwaMPSI or FaMPSI for small values of εfp.

5.1 The indistinguishability game

In the universal composability (UC) framework [21], the security of a protocol is defined by
the advantage with which a distinguisher can tell it apart from the ideal functionality that
it is designed to realize. In this section, we present lower bounds for this advantage, which
allows us to show that there are many choices of parameters for which Bloom filter-based
private set intersection protocols cannot be UC-secure (or the security guarantees would
be broken with high probability). To do so, we consider the advantage of a distinguisher
D in distinguishing the abstract Bloom filter-based MPSI protocol ΠBF from some ideal
functionality F :

AdvΠBF

ind (D) = 2

∣∣∣∣Pr[D(Π) = Π |Π ∈R {F ,ΠBF}]−
1

2

∣∣∣∣ (5)

Specifically, we are interested in analyzing the minimal advantage when distinguishing ΠBF

from the weakest ideal functionality FwaMPSI, which would allow us to draw the strongest
conclusions. In the remainder of this section, we propose such a strong distinguisher, and
we show that it only fails with low probability for any value of εfp.

5.2 A reliable distinguisher

In this section, we show that the false positive probability of a Bloom filter denoted by p
must be negligible for such a Bloom filter-based private set intersection protocol to realize
a (weakly-)approximate private set intersection. We do so by showing that the idealized
Bloom filter-based PSI ΠBF can be distinguished with relative ease from FwaMPSI by a
distinguisher that learns the result (so P1 is corrupted). Let εfp = ffp(k, k, 0). We propose
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the following distinguisher:

D(Π)←

{
DFPs(Π) If p(|U| − k) ≥ εfpk

DTNs(Π) Otherwise
(6)

Note that this distinguisher would also apply to FaMPSI.
Depending on the parameters k, p, |U|, and εfp, this distinguisher calls DFPs or DTNs.

We define DFPs as follows:

1. DFPs chooses random X2 ⊂ U such that |X2| = k, and computes X̂2 ← encode(X2).

2. DFPs chooses X1 ⊆ U/X2 such that |X1| = k, maximizing the number of elements
x ∈ X1 for which it holds that contains(x, X̂2); false positives.

3. DFPs lets parties P1 and P2 input X1 and X2, respectively. It waits for S to send
(finish).

4. P1 is corrupted, so D receives (R). If R matches the expected output of ΠBF, DFPs

guesses that Π = ΠBF. Otherwise, it guesses that Π = FwaMPSI.

The other distinguisher, DTNs, follows DFPs but it maximizes the number of true negatives,
so step 2 is different:

2. DTNs chooses X1 ⊆ U/X2 such that |X1| = k, maximizing the number of elements
x ∈ X1 for which contains(x, X̂2) is false; true negatives.

It is easy to extend the distinguisher to more than two parties. The following two lemmas
express the probability with which these distinguishers fail. We use these results to derive
AdvΠBF

ind (D), see (5).

Lemma 1. DFPs always correctly identifies ΠBF, but it sometimes misclassifies FwaMPSI.
It does so with the following probability:

Pr[DFPs(FwaMPSI) = ΠBF] =

k−1∑
i=0

Pr[FPs = i]εifp(1− εfp)
k−i + Pr[FPs ≥ k]εkfp

Proof. DFPs maximizes the number of false positives in X1, but it is not guaranteed to find
such elements in U/X2. We use Pr[FPs = i] to denote the probability with which DFPs

finds i false positives. The final probability is:

Pr[DFPs(FwaMPSI) = ΠBF] =

k−1∑
i=0

Pr[FPs = i] · Pr[DFPs(FwaMPSI) = ΠBF | FPs = i]

+ Pr[FPs ≥ k] · Pr[DFPs(FwaMPSI) = ΠBF | FPs ≥ k]

The probability that DFPs misclassifies FwaMPSI is the probability that ΠBF would return
R on inputs X1 and X2. So, each false positive in X1 is included in R, which happens
with probability εifp. Moreover, each true negative should not be in R, which happens with

probability (1− εfp)
k−i. In other words:

Pr[DFPs(FwaMPSI) = ΠBF | FPs ≥ k] = εifp(1− εfp)
k−i

Notice that when FPs ≥ k, the distinguisher simply chooses k false positives. As a result:
Pr[DFPs(FwaMPSI) = ΠBF | FPs = j] = εkfp for all j ≥ k. This proves our lemma.
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Lemma 2. DTNs always correctly identifies ΠBF, but it sometimes misclassifies FwaMPSI.
It does so with the following probability:

Pr[DTNs(FwaMPSI) = ΠBF] =

k−1∑
i=0

Pr[TNs = i](1− εfp)
iεk−i

fp + Pr[TNs ≥ k](1− εfp)
k.

Proof. This proof follows similarly to that of Lemma 1.

The condition p(|U| − k) ≥ εfpk marks the point beyond which one expects to find more
false positives in U/X2 than the number of false positives that one expects ΠBF to output.

In the remainder of this section, we define three different scenarios based on two condi-
tions, depending on the median of the binomial distribution of Pr[FPs]. These conditions
are as follows (see Appendix A for more details):

• When p < 1
|U|−k , the median is at or below Pr[FPs = 0], so Pr[FPs = 0] ≥ 1

2 . See

Lemma 7.

• When p > k−1
|U|−k , the median is at or above Pr[FPs = k], so Pr[FPs = k] ≥ 1

2 . See

Lemma 8.

5.3 Upper bounds on the failure probability

We want to obtain upper bounds on the failure probability independent of εfp. This allows
us to make statements about the security gap that arises when trying to realize FwaMPSI

using a Bloom filter-based protocol regardless of the choice of εfp in the ideal functionality.
Our main result is an upper bound on the failure probability of our distinguisher for all
values of p, which we present in Theorem 6. We provide a summary in Figure 4, showing
among others, that the attack succeeds with high probability when 1

|U|−k ≤ p ≤ k−1
|U|−k , or

when p > k−1
|U|−k and k is large.

Pr[D(FwaMPSI) = ΠBF] ≤

p

1
|U|−k

k−1
|U|−k

62.5%

Pr[FPs = 0] if p ≥ εfpk

|U|−k(
1− p(|U|−k)

k

)k
otherwise 2−k

Lem. 3 Lem. 4 Lem. 5

Figure 4: Upper bounds on the distinguisher’s failure probability for different values of the
false positive probability p. The bounds depend on the size of the input sets k, the size of
the universe |U|, and the false positive probability εfp ← ffp(k, k, 0) of FwaMPSI. The attack
success probability cannot be made negligible in the shaded area.

Our first lemma considers the case where p is so small that Pr[FPs = 0] is the most likely
(and the same holds for Pr[TNs ≥ k]). We obtain different bounds depending on whether
D = DFPs or D = DTNs. For the proofs we often use the fact that εfp ≤ (1−εfp) for εfp ≤ 1

2 .
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Lemma 3. If p < 1
|U|−k , k ≥ 2, |U| ≥ 2k, and εfp ≤ 1

2 , we can bound the failure probability

of D from above:

Pr[D(FwaMPSI) = ΠBF] ≤

Pr[FPs = 0] If p ≥ εfpk
|U|−k(

1− p(|U|−k)
k

)k

otherwise.

Proof. If p ≥ εfpk
|U|−k , then D = DFPs (see (6)). By Lemma 7, we have that Pr[FPs = 0] ≥

Pr[FPs = i] for i = 1, 2, . . . , so (see Lemma 1):

Pr[D(FwaMPSI) = ΠBF] ≤
k−1∑
i=0

Pr[FPs = 0] · εifp(1− εfp)
k−i + Pr[FPs = 0] · εk

= Pr[FPs = 0] ·
k∑

i=0

εifp(1− εfp)
k−i.

Claim: the term
∑k−1

i=0 εifp(1 − εfp)
k−i is at most 1, which it achieves when εfp = 0. This

proves the first part of the lemma. To prove this claim, notice that this term effectively
models a sum of sequences of k Bernoulli trials. Specifically, the sum of probabilities that the
first i trials succeed with probability εfp each, and the next k− i trials fail with probability
1 − εfp (ignoring the cases where trials succeed and fail in a different pattern). This is a
well-defined probability distribution, so the term does not exceed 1.

In the other case, when p <
εfpk
|U|−k , D = DTNs. By εfp ≤ (1 − εfp), we have that

(1− εfp)
k−iεifp ≤ (1− εfp)

k for i = 0, 1, . . . , k − 1, so (see Lemma 2):

Pr[D(FwaMPSI) = ΠBF] ≤
k−1∑
i=0

Pr[TNs = i] · (1− εfp)
k + Pr[TNs ≥ k] · (1− εfp)

k

= (1− εfp)
k.

Recall that p <
εfpk
|U|−k , so εfp is bounded from below:

εfp >
p(|U| − k)

k
.

The largest value that Pr[D(FwaMPSI) = ΠBF] can take occurs when εfp is as small as
possible. This proves the second part of the lemma.

In the first case, when p ≥ εfpk
|U|−k , the attack’s failure rate is bounded by the probability

that the distinguisher cannot find any false positives in U/X2. This is the same probability
with which a distinguisher could tell apart ΠBF from an exact MPSI FMPSI. In other words,
in this scenario, Bloom filters are not suitable when they approximate the intersection. In
the other case, notice that:(

1− p(|U| − k)

k

)k

≈ e−p(|U|−k) ≤ 2−p(|U|−k) . (7)

So, for the attack to succeed with negligible probability (i.e., the attack to fail with high
probability), the exponent −p(|U|− k) must remain a small negative number. For example,
for the attack to fail with overwhelming probability, we must have that p≪ (|U| − k)−1.
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Our second lemma considers the case where p is neither very large nor small. In this
case, the attack succeeds with high probability.

Lemma 4. If 1
|U|−k ≤ p ≤ k−1

|U|−k , k ≥ 2, |U| ≥ 2k, and εfp ≤ 1
2 , we can bound the failure

probability of D from above:

Pr[D(FwaMPSI) = ΠBF] ≤ 62.5% .

Proof. If p ≥ εfpk
|U|−k , then D = DFPs (see (6)). Since 0 ≤ εfp ≤ 0.5, we have that εfp(1 −

εfp)
k−1 ≥ εifp(1− εfp)

k−i for i = 1, 2, . . . , k, so (see Lemma 1):

Pr[D(FwaMPSI) = ΠBF] ≤ Pr[FPs = 0] + (1− Pr[FPs = 0]) · εfp(1− εfp)
k−1 .

Next, we show that the supremum of εfp(1 − εfp)
k−1 occurs when εfp = k−1, by checking

when its derivative equals 0:

0 = (1− εfp)
k−1 − (k − 1)εfp(1− εfp)

k−2 ,

= (1− εfp)
k−2((1− εfp)− (k − 1)εfp) ,

= (1− εfp)
k−2(1− kεfp) .

The only valid root occurs when the rightmost term is 0; i.e., εfp = k−1. We ignore the

bound p ≥ εfpk
|U|−k , making our final upper bound looser. We get that:

Pr[D(FwaMPSI) = ΠBF] ≤ Pr[FPs = 0] + (1− Pr[FPs = 0])
1

k

(
1− 1

k

)k−1

≤ 0.5 + 0.5 · 1
k

(
1− 1

k

)k−1

≤ 0.5 + 0.5 · 0.5(0.5)1 = 62.5% .

This works because Pr[FPs = 0] < 0.5 due to Lemma 7, and that k−1(1 − k−1)k−1 is
monotonically decreasing for k = 2, 3, . . . (we do not prove this), so we fill in k = 2. This
concludes the proof for D = DFPs.

In the other case, when p <
εfpk
|U|−k , D = DTNs. We get a similar situation:

Pr[D(FwaMPSI) = ΠBF] ≤ (1− Pr[TNs ≥ k])(1− εfp)
k−1εfp + Pr[TNs ≥ k],

where Pr[TNs ≥ k] < 0.5 due to Lemma 8, so we obtain the same bound.

Our final lemma relating to these upper bounds is for the case where p is large, such
that Pr[FPs ≥ k] is the most likely (and the same holds for Pr[TNs = 0]). In this case, we
do not obtain different bounds depending on D; the only possible case is D = DFPs.

Lemma 5. If p > k−1
|U|−k , k ≥ 2, |U| ≥ 2k, and εfp ≤ 1

2 , we can bound the failure probability

of D from above:
Pr[D(FwaMPSI) = ΠBF] ≤ 2−k .

Proof. If p(|U| − k) < εfpk, then D = DTNs (see (6)). However, we have that:

p <
εfpk

|U| − k
≤ k − 1

|U| − k
< p ,
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which is a contradiction, so D = DFPs.
When D = DFPs we claim that an upper bound is 2−k thus we will show that

k−1∑
i=0

Pr[FPs = i]εifp(1− εfp)
k−i + Pr[FPs ≥ k] · εkfp ≤ 2−k.

Note that εfp ≤ 1
2 , thus the LHS is smaller than

∑k−1
i=0 Pr[FPs = i]εifp(1−εfp)

k−i+Pr[FPs ≥
k]2−k, which gives us the following equation:

k−1∑
i=0

Pr[FPs = i]εifp(1− εfp)
k−i ≤ 2−k(1− Pr[FPs ≥ k])

≤ 2−k Pr[FPs < k].

By Lemma 9, the LHS is a monotonic increasing function, so it reaches its maximum at the
edge of the domain (εfp = 1

2 ). The maximum is given by:

k−1∑
i=0

Pr[FPs = i]εifp(1− εfp)
k−i =

k−1∑
i=0

Pr[FPs = i]

(
1

2

)k

= 2−k
k−1∑
i=0

Pr[FPs = i]

= 2−k Pr[FPs < k].

This is equal to the upper bound we proposed, so 2−k is indeed an upper bound.

Our main result is the following theorem, which combines the above lemmas.

Theorem 6. Given k ≥ 2, |U| ≥ 2k, and 0 ≤ εfp ≤ 1
2 , we have the following upper bounds

for Pr[D(FwaMPSI) = ΠBF], as summarized in Figure 4:

• Pr[D(FwaMPSI) = ΠBF] ≤ 2−k if p > k−1
|U|−k .

• Pr[D(FwaMPSI) = ΠBF] ≤ 62.5% if 1
|U|−k ≤ p ≤ k−1

|U|−k .

• Otherwise, Pr[D(FwaMPSI) = ΠBF] ≤ Pr[FPs = 0] if p ≥ εfpk
|U|−k .

• Otherwise, Pr[D(FwaMPSI) = ΠBF] ≤
(
1− p(|U|−k)

k

)k

.

Proof. We refer the reader to the following lemmas:

• If p > k−1
|U|−k , then this holds by Lemma 5.

• If 1
|U|−k ≤ p ≤ k−1

|U|−k , then this holds by Lemma 4.

• If p < 1
|U|−k and p ≥ εfpk

|U|−k , then this holds by Lemma 3.

• If p < 1
|U|−k and p <

εfpk
|U|−k , this holds by Lemma 3.
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5.4 Obtaining secure parameters

While the bounds we derive above provide lower bounds for the success probability of the
attack, they may underestimate it. Moreover, they quantify over all values of εfp, while in
practice, one may wish to only choose small values (or there would be many false positives).
We now consider how to choose the smallest Bloom filter for which our attack does not
work. We formulate this as the following constrained optimization problem, in which we
want to realize FwaMPSI with at most false positive probability ε∗fp:

max p s.t. AdvΠBF

ind (D) ≤ 2−λ

0 ≤ εfp ≤ ε∗fp
p < 1

|U|−k

(8)

After all, the larger the false positive probability p, the smaller the Bloom filter can be.
Note that the last constraint is implied by the first constraint when k > λ. We assume this
to be the case because λ, the statistical security parameter that decides the chance of the
attack succeeding, is typically a value such as 40 or 128, whereas the number of elements in
a set k can be orders of magnitude higher. We note that the constraints imply that ε∗fp ≤ 1

k .

Since we only look for p < 1
|U|−k , and since D only misclassifies FwaMPSI, we get that:

AdvΠBF

ind (D) =
∣∣∣∣1− 1

2

∣∣∣∣+ ∣∣∣∣1− Pr[D(FwaMPSI) = ΠBF]−
1

2

∣∣∣∣
= 1− Pr[D(FwaMPSI) = ΠBF] .

This uses that Pr[D(FwaMPSI) = ΠBF] ≤ 1
2 .

Instead of using the bounds described in Figure 4, we will use the equations from Lem-
mas 1 & 2 as not to underestimate the distinguisher. That said, we use a heuristic to decide
for which εfp we have that Pr[D(FwaMPSI) = ΠBF] is maximal. Specifically, when D = DFPs

and p tends to 0, most of the probability mass occurs at Pr[FPs = 0] (see Lemma 7). It is
easy to see that εfp = 0 maximizes the failure probability. For the case when D = DTNs,
most of the probability mass occurs at Pr[TNs ≥ k], so we also want to minimize εfp.
However, when εfp = 0, we always get that D = DFPs. We get that:

AdvΠBF

ind (D) ≈ 1− Pr[FPs = 0] = 1− (1− p)|U|−k . (9)

This corresponds to the same scenario as exact MPSI (FMPSI), in which any false positive
occurring is enough for the distinguisher to succeed. Notice that it is not enough for the
probability of a false positive to occur in a set of k elements to be negligible; this would
only defend against semi-honest parties. In the augmented semi-honest model and beyond,
in which corrupt parties can choose their own inputs, the false positive probability must
decrease when the gap between |U| and k increases.

Finally, given the largest p, we can generate Bloom filter parametersm and h as described
in Section 2. We provide examples of these parameters in Table 1 corresponding to |U| = 232,
and compare them against old parameters, as used by previous work. We generate these
parameters by iterating over p = 2−1, 2−2, . . . until the constraints from (8) hold, using
the approximation from (9). For the old parameters we use p = 1

k , because this would
be expected to realize FwaMPSI with εfp = 1

k . Note that the parameters we propose only
protect against this distinguisher, but stronger attacks may exist.
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Table 1: Parameters for FwaMPSI with εfp ≤ k−1 and |U| = 232. Secure parameters are
larger by an order of magnitude.

Setting Old parameters FwaMPSI parameters

λ k p h m p h m Factor

40
256 2−6 6 2,962 2−72 72 26,645 9×
4096 2−8 8 70,922 2−72 72 425,522 6×

65536 2−12 12 1,512,788 2−72 72 6,807,543 4.5×

80
256 2−6 6 2,962 2−112 112 41,447 13×
4096 2−8 8 70,922 2−112 112 661,922 9.33×

65536 2−12 12 1,512,788 2−112 112 10,589,510 7×

128
256 2−6 6 2,962 2−160 160 59,210 20×
4096 2−8 8 70,922 2−160 160 945,602 13.33×

65536 2−12 12 1,512,788 2−160 160 15,127,871 10×

5.5 A note on PSI-cardinality

While the distinguisher D examines the set output by the protocol Π to determine if it
is interacting with FwaMPSI or ΠBF, we note that it is also possible to base this choice
solely on the cardinality of the output. As such, this slightly weaker distinguisher D′ would
also apply to PSI-cardinality that protocols, which only output the size of the resulting set
|R|. The condition at which D′ classifies Π as ΠBF is when |R| ≠ FPs. If εfp ≈ 0, then

AdvΠBF

ind (D′) ≈ AdvΠBF

ind (D). Since the weakness originates in the Bloom filter, this security
problem also affects quantum PSI-cardinality protocols based on Bloom filters [22].

6 Practical attack on Bloom filter-based PSI

In this section, we study membership inference attacks performed by a corrupted leader in
the augmented semi-honest model. We present a practical attack on the parameters used
by many works [11, 12, 10] discussed in Section 4.

6.1 Security game

An intuitive definition of a private set intersection’s security property is that a leader should
only learn about another party’s elements when they appear in the intersection. In other
words, a leader cannot infer information about the elements that do not appear in the
intersection. We formalize this using the concept of membership inference attacks, in which
the corrupted leader (the adversary) must guess an element in the other party’s set. For
simplicity, we only consider two parties, but the concept extends beyond the two-party
setting.

To incorporate the fact that the leader learns the result of the protocol, we model
membership inference against PSI as an adaptive security game in which the adversary
consists of two algorithms: Apre and Apost. The first algorithm inputs U2, which is a
superset of the victim’s set X2, for which it holds that |X2| = k. Apre outputs the leaders
input to the protocol Π and an element t ∈ U2. The second algorithm Apost inputs the

18



element t and the result of the protocol, and outputs the guess of the adversary. We assume
the adversary already has access to all public parameters (for us, this includes the Bloom
filter’s hash functions). We define an adversary’s probability of beating the membership
inference security game against a PSI protocol Π as follows:

Pr[A succeeds | u] = Pr


(inp,X1)−−−−−→

Π

(inp,X2)←−−−−−
(R)←−−
Apost(t, R) = b

∣∣∣∣∣∣∣∣∣∣∣∣

U2 ⊆R U s.t. |U2| = u
(X1, t)← Apre(U2)
s.t. (t ∈ U2) ∧ (t /∈ X1)

b ∈R {0, 1}
X2 ⊆R U2 s.t. (|X2| = k)∧
(t ∈ X2 ⇐⇒ b = 1)

 (10)

The advantage of an adversary A = (Apre,Apost) over random guessing is:

AdvΠmemb(A, |U2|) = 2

∣∣∣∣Pr[A succeeds | u = |U2|]−
1

2

∣∣∣∣ (11)

If one can show that the advantage is negligible for all adversaries, then the protocol is
secure against membership inference attacks. In the next subsections, we present attacks in
which the advantage is non-negligible when the false positive probability is non-negligible.

6.2 Proposed attack

The foundation of our proposed attack lies in two key observations: First, when a Bloom
filter’s hash functions are known, we may determine which elements in U have overlapping
bins when encoded in a Bloom filter. Second, for Bloom filter encodings of most subsets of
U , there are bins that are set only by a single element of this subset. We first expand on
both observations.

We use the first observation to find probabilities of Bloom filter false positives. Given a
set X, and its Bloom filter encoding, X̂, we observe that knowledge of the hash functions
collapses the false positive probability. Let us denote contains(X̂, x) by x ∈ X̂. For any
y /∈ X, we verify whether y is a false positive in X̂ by calculating Hi(y), for i ∈ 1, . . . , h,
and verifying that each bin is set. If we know X, the conditional probabilities Pr[y ∈ X̂ |X]
become deterministic. If we do not know X, yet instead, we know the distribution of X
sampled from U , we find Pr[y ∈ X̂] =

∑
X,y∈X̂ Pr[X].

The second observation helps detect the target’s presence in the Bloom filter encoding.
Some bins may uniquely identify an element x amongst a subset U2 of the total universe.
In other words, a bin b may exist such that only one element x ∈ U2 maps to this bin with
any hash function. From Section 2, recall that one chooses the parameters of a Bloom filter
such that, for k elements, the probability of any element having no unique bin is at most p.
However, an element y not present in U2 may hash to this bin. When y is a false positive
in a Bloom filter encoding of a subset of U2, we know that this subset contained x. The
probability of finding any element with a uniquely identifying bin depends on both U2 and
k.

We define the adversary’s universe as U1 = U \ U2. We realize Apre by means of the
following steps:

1. We find an optimal target t ∈ U2 which can be uniquely identified amongst the other
elements of U2,
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2. we reduce U1 to C, leaving only elements that hash to the bins that are unique to t
and which have a non-zero probability of occurring as a false positive,

3. we rank all elements y ∈ C based on the probability of appearing in the Bloom filter
encoding of X2,

4. we return t and the top k elements of C.

To determine the bit b, by testing the result of the protocol execution R. If R is non-empty,
we successfully identified t and Apost returns 1. Otherwise, Apost guesses that t is not part
of X2 and returns 0.

6.2.1 Choosing the target

As the target t, we select an element from U2 with the least overlap with other bins of other
elements in U2. Bins that are unique to the target t can be used to conclusively decide
whether the target is included in the input set X2 of the victim P2. We find an optimal
target t ∈ U2 using an exhaustive search:

t = min
x∈U2

|{x′ ∈ U2 \ {x} | ∃(i, j) : Hi(x) = Hj(x
′)}|. (12)

6.2.2 Filtering the attack universe

Given a target t the adversary P1 searches for an attack input set X1 that maximizes the
detection rate of the target element t. We can filter any element from U1, which does not
contribute to detecting t. We use the following two criteria to narrow down U1 to the
candidate subset C: First, for any candidate y ∈ C, at least one hash function must exist
such that y is mapped to a bin that uniquely identifies t from the other elements in U2.
Second, for each hash function H, H maps y to a bin that at least one element in U2 hashes
to.

6.2.3 Selecting the attack set

If for the number of candidates C it holds that |C| ≤ k |C|, we set X1 = C. Otherwise, we
aim to find the input set X1 ⊂ C with |X1| = k that is most likely to successfully identify
t. Calculating this ‘effectiveness’ of an input set X1 requires that we assume knowledge of
the distribution of X2 ⊆ U2. For any X1, the probability that at least one of the elements
exists in the Bloom filter encoding is equal to:

Pr[∃y ∈ X1 | y ∈ X̂2] =

|X1|∑
i=1

Pr[yi ∈ X̂2 | yj /∈ X̂2∀j < i].

For the sake of reducing the computational cost of finding an attack set, we disregard the
probabilistic dependency of the elements of C on one another. This gives us the following
approximation:

Pr[∃y ∈ X1 | y ∈ X̂2] ≈
∑
y∈X1

Pr[y ∈ X̂2]. (13)

For the remaining part of this section, we assume that P2 uniformly samples its private input
set X2 from U2. This aligns with our definition of AdvΠBF

memb. The probability Pr[y ∈ X̂2]
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equals the number of private input sets X2 that activate all bins of y, divided by the number
of different input sets. We rank all elements in C based on the number of X2 for which
y ∈ X̂2. Afterward, we select the k elements with the highest probability of appearing in
the Bloom filter as the attack set.

6.2.4 Finding the number of X2 for which y ∈ X̂2

To find the number of X2 for which y ∈ X̂2 holds, we focus on finding a formula for the
number of possible input sets X2 that activate the bins of y. We can construct lists b1, .., bh,
where each list bi contains the elements of U2 that hashes to bin Hi(y), i.e.

bi = {x ∈ U2 | ∃j ∈ 1..hHj(x) = Hi(y)}.

We distinguish two cases: In the first case, all elements from all these lists bi are distinct.
In the second case, one or more elements appear in at least two bins. We focus on the first
case and later show how the second case can be reduced to the first.

All elements are distinct. For the first case, we emulate picking elements from U2 to create
X2. Let U ′ denote the universe we are picking from, and |U ′| the number of elements in this
universe. The goal is to fill the k′ spots of the private input set with elements from U ′ with
the following restrictions:

• None of the elements can appear more than once.

• The order of the elements does not matter, i.e. “1 2” and “2 1” are considered the
same.

• There are r lists b1, .., br each consisting of a number of elements. These lists are all
pairwise distinct, i.e., for each i, j ≤ r holds that bi ∩ bj = ∅. From each of these lists,
at least one element should be taken.

Example 2. Take U ′ = {1..6}, b1 = {1, 2}, b3 = {3} and k′ = 3. The order does not
matter. Therefore, we choose to first write the element of bin 1, then the element of bin 2,
and then fill the last spot.

1 3 2 2 3 1

1 3 4 2 3 4

1 3 5 2 3 5

1 3 6 2 3 6

See that 1 3 2 is equivalent to 2 3 1 and should not be counted. There are thus 7 options.

Example 2 shows that the elements we can choose for the last bin must not occur in the
sequence yet, and neither must create a sequence that has already been counted. We solve
this by creating r + 1 different lists. We use b0 to denote U ′ \ (b1 ∪ b2 ∪ · · · ∪ br); The list
that contains all elements that occur in no other. This simplifies the problem to dividing
k′ choices over r + 1 lists, where for bi i = 1 . . . r at least one element must be chosen.
We calculate the answer to this problem by expressing it as a product of the generating
function, and then finding the coefficient of the term with degree k′.

For each list bi we find a corresponding generating function that expresses in how many
ways we can choose elements from that list. The exponent of the variable z denotes the

21



number of elements chosen from the list bi. The coefficient of zj tells us in how many ways
j elements can be chosen from bi. Since we pick without replacement, choosing j elements
from bi can be done in

(|bi|
j

)
ways. Given that we may pick no elements from b0, we find

the following functions for b0 and bi with i ̸= 0 respectively:

f(|b0|, z) =
|b0|∑
j=0

(
|b0|
j

)
zj , g(|bi|, z) =

|bi|∑
j=1

(
|bi|
j

)
zj .

The combined formula allows us to determine the number of ways to pick k′ elements for
X2 such that y ∈ X̂2, by calculating the coefficient of the term zk

′
. The formula for the

number of combinations is as follows:

[zk
′
] : f (|b0|, z) ·

r∏
i=1

g (|bi|, z) . (14)

Not all elements are distinct. If an element x ∈ U2 activates two bins of the Bloom filter that
the element y hashes to, we lose the independence requirement and, as such, Eq. (14) does
not hold. We observe that given U ′, k′, {b1, . . . , br}, the number of valid combinations is equal
to the number of valid combinations with x ∈ U ′ plus the number of valid combinations
without x. We can define the number of valid combinations with x as the number of
combinations of universe U ′ \ {x}, spots k′ − 1, and {bi | x /∈ bi}. Likewise the number of
valid combinations where x is not included is the number of combinations of universe U ′\{x},
spots k′, and {b1 \ {x}, . . . , br \ {x}}. By reducing U2, k, and the lists to a summation of
Eq. (14) with different arguments, we find an exact expression of the number of X2 for
which y ∈ X̂2 holds.

6.3 Results

To evaluate our attack, we implement it in Rust.3 We use constants hash seeds for each
experiment and search an attack input set X1 and target t once. Afterward, we determine
the advantage by uniformly sampling X2 ⊂ U2 1 million times with t ∈ X2 and 1 million
times with t /∈ X2. We limit the time for searching an attack input set to two hours.
The results are shown in Table 2. We indicate executions of our attack that did not finish
computing with ‘-’.

7 Mitigations

Our theoretical analysis and practical attack require protocol designers to choose Bloom
filter parameters that can easily be an order of magnitude larger, as shown in Table 1. This
may be acceptable in protocols that use oblivious transfers [14], but this may significantly
decrease the efficiency of protocols based on homomorphic encryption [11, 12, 10]. Fortu-
nately, one may still design Bloom filter-based protocols that prevent these attacks in other
ways, without having to increase the size of the Bloom filter significantly. In this section,
we provide suggestions as to such mitigations.

3The source code is available at: https://github.com/seratym/Bloom-filter-PSI-attack
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Table 2: Overview of the results of our practical attack applied to different false positive
rates p and set sizes k. We evaluate the attack for |U2| = 2k, 3k, 4k. The attack succeeds
with non-negligible probability, even for p = 2−20.

Setting Parameters Results

p k h mopt AdvΠmemb(A, 2k) AdvΠmemb(A, 3k) AdvΠmemb(A, 4k)
2−5 256 5 1,852 1.00 1.00 1.00

2−10
256 10 3,702 1.00 0.82 0.61

4,096 10 59,102 1.00 - -
65,536 10 945,493 1.00 - -

2−20
256 20 7,403 0.15 0.01 2−8.9

4,096 20 118,202 0.98 - -
65,536 20 1,890,985 0.68 - -

2−30
256 30 11,103 0.03 2−15 -

4,096 30 177,302 0.02 - -
65,536 30 2,836,477 2−10 - -

7.1 Replacing hash functions with OPRFs

In all protocols discussed in Section 4, the parties have access to the hash functions of
the Bloom filter. However, this also allows corrupted parties to identify elements they can
exploit in an attack, as shown in Section 6. Instead, one could replace the hash functions
with oblivious pseudo-random functions (OPRFs) [6] with a secret seed. This would limit
the parties in the number of queries they can make to the hash functions. Specifically, we
can limit each party to k calls to each OPRF, which may be significantly smaller than the
number of calls |U| − k that we use in our attack.

Designing a protocol around OPRFs requires answering the question of which parties can
know the secret seed. We suggest to assign t parties who choose their own secret seed. Each
party then engages in an OPRF protocol with each of these t parties to generate t pseudo-
random values, from which one can derive a single pseudo-random value for which one can
only find the preimage if the t parties collude. This approach would add two rounds to the
total protocol’s execution because each party must first run kt parallel OPRF evaluations
before they can construct their Bloom filter.

7.2 Replacing hash functions with PBKDFs

Another approach is to replace the hash functions with extremely slow hash functions, such
as password-based key derivation functions [7]. We note that this approach does not prevent
polynomial-time attackers because the evaluation of the hash functions only increases with
a polynomial factor. However, in practice, it would be infeasible (or at least extremely
expensive) for an attacker to make |U| − k queries to the PBKDF.

While this approach offers a simple patch to existing Bloom filter-based PSI protocols,
it is in stark contrast with the common choice of choosing extremely fast statistical hash
functions without cryptographic guarantees. As a result, the protocol is also significantly
slower to execute for honest parties. Depending on the number of elements each party
encodes in their Bloom filter, choosing larger Bloom filter parameters may be cheaper.
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Next to that, it may be hard to parameterize the PBKDF because one would have to
estimate the concrete cost of the PBKDF and the computational abilities of an attacker.
One solution may be to balance the cost of the hash function evaluation with larger Bloom
filter parameters to find a set of parameters that punish attackers without significantly
slowing down the protocol for honest parties.

7.3 Authorized private set intersections

If the parties running a Bloom filter-based PSI protocol trust a semi-honest third party,
this party may authorize their sets, preventing the elements in these sets from being se-
lected maliciously. An example of such a protocol is by Kerschbaum [23], who designed an
authorized PSI protocol based on Bloom filters, in which a judge prevents the client from
picking elements that are likely to cause a false positive in the Bloom filter of the server.
To prevent a client from doing so, the elements of the server X2 are encrypted before they
are added to the Bloom filter. This encryption ensures that the client does not have prior
knowledge of the server’s Bloom filter. In order to perform the intersection, however, the
client’s elements should be encrypted with the same key.

In practice, the judge takes the elements of the client P1 and raises them to some secret
power e. These elements are then stored in a Bloom filter by the judge. The Bloom filter
is encrypted using a public key and signed, after which the encryption and signature are
returned to the client. The client forwards the Bloom filter and the signed Bloom filter to the
server, which then can verify that the judge signed this Bloom filter. Only the non-signed
filter is used for the remainder of the protocol.

Applying authorization to the sets may not be possible in practice because the parties
may not have a semi-honest third party they trust. Additionally, a judge that inspects (a
subset of) the private input sets also learns private elements from the honest parties’ sets.
In any case, it adds at least two rounds to the execution of the protocol, as the clients have
to submit their sets, and the judge has to approve them.

8 Conclusion

In this work, we propose both theoretical and practical attacks against Bloom filter-based
private set intersection protocols. We show that secure parameters must be an order of
magnitude larger than parameters where the false positive probability is not negligible. As
a result, Bloom filter-based PSI cannot use the approximation provided by Bloom filters
to speed up the protocol. Alternatively, one might consider consider replacing the hash
functions with OPRFs or PBKDFs, but both approaches cause the protocol to become
slower.

With these results, we are not aware of any approximate (M)PSI protocols that out-
perform exact (M)PSI protocols. As such, an open question is whether there are efficient
alternatives for Bloom filter-based approximate (M)PSI protocols. Other future work may
look at the following questions:

• Is it possible to extend our attack to protocols like that by Zhu et al. [24] and those
based on garbled Bloom filters that go beyond regular Bloom filters?

• How are other deterministic approximate data structures such as approximate mem-
bership query filters affected by these results?
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On a positive note, we notice that Bloom filters still offer useful characteristics for
designing (M)PSI protocols, even when their parameters must be large. Specifically, it
is still convenient to compute a Bloom filter representing the intersection. For example,
the work by Ben Efraim et al. [14] uses parameters that are significantly larger than the
parameters suggested in our work (our work considers the augmented semi-honest model
while theirs considers the malicious model), but it is still concretely efficient.
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A Conditions on the false positive probability

Lemma 7. Pr[FPs = 0] ≥ 1
2 if and only if p < 1

|U|−k .

Proof. First, consider that the distribution of the number of false positives is binomial
Pr[FPs] ∼ B(|U| − k, p), because |U/X2| = |U| − k and p is the false positive probability.
The median is given by ⌊(|U| − k)p⌋ or ⌈(|U| − k)p⌉.

Our lemma holds when the median M is at or below FPs = 0. Since ⌊(|U| − k)p⌋ ≤
⌈(|U| − k)p⌉, we get that:

M ≤ 0 (15)

⌊(|U| − k)p⌋ ≤ 0 (16)

(|U| − k)p < 1 (17)

p <
1

|U| − k

Lemma 8. Pr[FPs = k] ≥ 1
2 if and only if p > k−1

|U|−k .

Proof. Like in Lemma 7, the distribution of the number of false positives is binomial
Pr[FPs] ∼ B(|U| − k, p), and the median is given by ⌊(|U| − k)p⌋ or ⌈(|U| − k)p⌉.

Our lemma holds when the median M is at or above FPs = k. Since ⌊(|U| − k)p⌋ ≤
⌈(|U| − k)p⌉, we get that:

M ≥ k (18)

⌈(|U| − k)p⌉ ≥ k (19)

(|U| − k)p > k − 1 (20)

p >
k − 1

|U| − k

B Additional lemmas for proving upper bounds

Lemma 9. Given p > k−1
|U|−k and 0 ≤ εfp ≤ 1

2 , the following is monotonically increasing

with εfp:
k−1∑
i=0

Pr[FPs = i]εifp(1− εfp)
k−i
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Proof. To show that the function is monotonically increasing on the interval [0, 1
2 ], we use

the derivative.

δ

δεfp

k−1∑
i=0

Pr[FPs = i]εifp(1− εfp)
k−i

=

k−1∑
i=0

Pr[FPs = i]

(
iεi−1

fp (1− εfp)
k−i + εifp(i− k)(1− εfp)

k−i−1

)

=

k−1∑
i=0

Pr[FPs = i]εi−1
fp (1− εfp)

k−i−1

(
i(1− εfp) + εfp(i− k)

)

=

k−1∑
i=0

Pr[FPs = i]εi−1
fp (1− εfp)

k−i−1(i− kεfp)

Note that the derivative for εfp = 0 is not defined because 0i−1 is not defined for i = 0. We
thus take the limit:

lim
εfp→0+

k−1∑
i=0

Pr[FPs = i]εi−1
fp (1− εfp)

k−i−1(i− kεfp)

=

k−1∑
i=0

Pr[FPs = i]( lim
εfp→0+

εi−1
fp )( lim

εfp→0+
(1− εfp)

k−i−1)( lim
εfp→0+

(i− kεfp))

=

k−1∑
i=0

Pr[FPs = i] · ∞ · 1 · i =∞.

The derivative is thus positive for εfp = 0, and it might be clear that for small εfp, the
value will also be positive. For 0 < εfp ≤ 1

2 , we must show that the derivative is also
positive. To show that the derivative is always positive at the given interval, we will find
the minimum and show that the minimum is indeed positive. We claim that the derivative is
monotonically decreasing with εfp, so we will evaluate it on the edge of the domain: εfp = 1

2 .
We do not give a detailed proof of the claim that the sum reaches its minimum value

when most negative terms occur. However, we will give the intuition behind this claim. The
intuition is that when i grows, the sum terms get larger (or more negative). The value of
the terms does not depend as much on the value of εfp, and thus, the minimum is reached
when most terms are negative.

To see that εfp does not contribute much to the value of the terms, we use the following
intuition. The false positive rate p expects more than k false positives, thus Pr[FPs = i] ≤
Pr[FPs = i+ 1] holds for all i < k. The factor εi−1

fp (1− εfp)
k−i−1 is negligible compared to

Pr[FPs = i].
The sum thus reaches the minimum value when most negative terms occur. The factor

Pr[FPs = i]εi−1
fp (1− εfp)

k−i−1 is always positive. The factor (i− kεfp), however, is negative

for i ≤ kεfp. This factor reaches its largest value at εfp = 1
2 . Filling this in, we get that the

sum terms are negative for all i ≤ k
2 . For this value, the sum has the most negative terms

The least outcome the sum can have is thus for εfp = 1
2 . However, even in this case, the
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sum has a positive outcome, as can be seen in the following calculation

k−1∑
i=0

Pr[FPs = i]

(
1

2

)i−1 (
1− 1

2

)k−i−1

(i− kεfp)

=

k−1∑
i=0

Pr[FPs = i]

(
1

2

)k−2

(i− kεfp)

=

(
1

2

)k−2 k−1∑
i=0

Pr[FPs = i](i− kεfp).

For i ≤ k
2 , the terms are negative, and the other terms are positive. The positive terms

contribute the most to the sum and thus the sum is positive. In conclusion, the derivative
is always positive on the interval [0, 1

2 ] and thus is the original function monotonically
increasing on the interval [0, 1

2 ] as desired.
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