A Comprehensive Survey on Hardware-Software
co-Protection against Invasive, Non-Invasive and
Interactive Security Threats

Md Habibur Rahman, Graduate Student Member, IEEE
Email: rahman.mdhabibur@ufl.edu
University of Florida
Gainesville, FL, United States

Abstract—In the face of escalating security threats in modern
computing systems, there is an urgent need for comprehensive
defense mechanisms that can effectively mitigate invasive, non-
invasive and interactive security vulnerabilities in hardware
and software domains. Individually, hardware and software
weaknesses and probable remedies have been practiced but
protecting a combined system has not yet been discussed in
detail. This survey paper provides a comprehensive overview of
the emerging field of Hardware-Software co-Protection against
Invasive and Non-Invasive Security Threats. We systematically
review state-of-the-art research and developments in hardware
and software security techniques, focusing on their integration to
create synergistic defense mechanisms. The survey covers a wide
range of security threats, including physical attacks, side-channel
attacks, and malware exploits, and explores the diverse strategies
employed to counter them. Our survey meticulously examines the
landscape of security vulnerabilities, encompassing both physical
and software-based attack vectors, and explores the intricate
interplay between hardware and software defenses in mitigating
these threats.Furthermore, we discuss the challenges and oppor-
tunities associated with Hardware-Software co-Protection and
identify future research directions to advance the field. Through
this survey, we aim to provide researchers, practitioners, and
policymakers with valuable insights into the latest advancements
and best practices for defending against complex security threats
in modern computing environments.

Index Terms—Hardware-Software co-Protection, Non-Invasive
Attacks, Invasive Attacks, Hardware-Software Interaction, IC
Security, Hardware Security

I. INTRODUCTION

In an era characterized by ubiquitous computing and in-
terconnected systems, ensuring the security and integrity
of computing environments [1], [2], [3] has emerged as a
paramount concern. The pervasive nature of modern comput-
ing infrastructures exposes them to an increasingly diverse
array of security threats [4], [5], ranging from physical attacks
[6], [7] on hardware components (e.g. Invasive and non-
Invasive attacks [8]) to sophisticated software exploits [9],
[10] targeting system vulnerabilities. In response to these
multifaceted threats, researchers and practitioners have turned
to a synergistic approach known as Hardware-Software co-
Protection [11], [12] to fortify computing systems against
both invasive and non-invasive security vulnerabilities. The

abstraction layers of hardware and software are displayed in
Figure 1

>
»

Application

Programming Language]

Software

Assembly Language I

Machine Code

Increasing order of Complexity
Increasing order of Abstraction

Hardware

Devices (Transistors)

Layers of Abstraction
Fig. 1. HW-SW Layers of a computing system. [13]

The concept of Hardware-Software co-Protection embod-
ies the integration of hardware and software-based security
mechanisms, leveraging the strengths of each domain to create
robust defenses against a broad spectrum of threats. Hardware-
based defenses provide a solid foundation by implementing
secure hardware architectures, encryption primitives [14], [15],
and tamper-resistant technologies to safeguard critical system
components against physical attacks. This security primitives
in the hardware level can be incorporated in the software
domain to facilitate risk-free execution of software programs
[16], [17] . Meanwhile, software-based defenses employ tech-
niques such as secure boot mechanisms, memory protection,
and runtime monitoring to mitigate software vulnerabilities
and thwart malware exploits. Software level techniques for
security measurement [18] can be taken to construction of
hardware to make the hardware secure.

This survey paper presents a detailed exploration of the
Hardware-Software co-Protection paradigm against Invasive
and Non-Invasive Security Threats. By systematically examin-
ing the landscape of security vulnerabilities and the interplay
between hardware and software defenses, this survey aims to
provide a thorough understanding of the latest advancements
and best practices in this topic. Through an in-depth analysis

32 €D

/_

System
Softwares
Software

Application
Softwares

\

v

'

l Operating System

J

.

v

P

Hardware

EAE S

~

<

J

Fig. 2. How Softwares and Hardwares are intertwined in a Real Computing

System.

of invasive threats targeting hardware components, including
fault injection attacks [19], [20], [21] and reverse engineering
techniques, coupled with an examination of software-based
threats such as malware infections and side-channel attacks,
this survey elucidates the diverse challenges facing modern
computing systems. A framework for HW/SW co-ordination
and probable holistic protection against attacks from either

domain are shown in Figure 4.

The subsequent sections of this paper will discuss the

following topics.

o Overview of Security Threats in HW and SW Domain:

We will provide an in-depth examination of the current
landscape of hardware security threats facing computing
systems. This will include an analysis of both invasive
threats, such as physical tampering and hardware Trojans,
as well as non-invasive threats like software-based attacks
including malware, side-channel attacks [22], and cryp-
tographic vulnerabilities . By understanding the diverse
range of threats, the paper sets the stage for the necessity
of comprehensive protection mechanisms.

Threat model in SW and HW Domains Combined: When
a software runs into a hardware(e.g. RTL or gate level
design), each of the domains are not aware of others’
respective design properties or other quantities. We will
explore which vulnerabilities or threats may arise because
of lack of awareness of SW execution from hardware or
hardware execution from software.

For instance, it may happen that running a complex
design in software domain is causing excessive power
dissipation in a a particular part of the design. But
the hardware is unaware and unprotected against this.
Similarly, software is running without any awareness
from the hardware execution. These kind of security
vulnerabilities will be explored.

Insights from real-World instances and existing method-
ologies: Tt will draw insights from real-world research

{

—
| HW Attacker
L J

A SW Attacker

o Categorization of Strategies:

Access

N
77£ — - Close Proximity / Inception of 7
Direct Physical Access J __ malicious code /

/
/ \ \ HWISW Interface / @ N \
\
| ——— 1 | o
\ —
N i\ /1y
N iy Target HW | [Target SW]\ ~—= 53 7/

Fig. 3. HW-SW Attack Scenario and Possible co-Protection against them

papers to illustrate the effectiveness of hardware-software
co-protection approaches. By referencing findings and
case studies from reputable research publications, the
paper will provide concrete examples of how these ap-
proaches have been implemented and their impact on
enhancing security posture. This section will include
summaries of key findings, experimental results, and
comparative analyses from selected research papers.

e Analysis of Co-Protection Methodologies: This paper will

delve into various methodologies and techniques that
integrate both hardware and software defenses to mitigate
security threats effectively. This analysis will cover a
wide range of approaches including hardware sensor re-
sponse based compiler execution, hardware root of trust,
protection of software programs using hardware power
traces and hardware model of invasive and non-invasive
attacks, cryptographic accelerators, and software-based
intrusion detection systems. The paper will discuss the
strengths and limitations of each approach, highlighting
the need for comprehensive solutions.

We will categorize
hardware-software co-protection strategies based on
their underlying principles and deployment scenarios.
This categorization may include classifications such
as prevention techniques, detection mechanisms, and
mitigation strategies. Additionally, the paper will
categorize solutions based on the targeted threat
models, such as protecting against physical attacks,
network-based attacks, or insider threats.

o Running and Future Working Directions and Challenges:

Lastly, the paper will discuss future directions and
challenges in the development and implementation of
hardware-software co-protection mechanisms. This may
include emerging trends such as the integration of ma-
chine learning and Al-based approaches, challenges in
securing emerging technologies like IoT and cloud com-
puting, and the need for standardization and interoper-
ability of security solutions.

Physical Attacks

— S

Fault Injecticn Side-Channel
Attacks (FlAs) Attacks (SCAs)
Invasive MNon-Invasive Power (Temperature
/" \\ (/ \ Analysis Analysis
Laser Heawy-lon Clock Voltage ¢
Beam Micro-Beam Glitches Glitches | | Acoustic | | Electromagnetic
* Analysis | | Analysis (EMA)
' Focussed Electromagnetic
lon Beam Fault Injecticns | | Heating
[EMFIs) Attacks

Fig. 4. HW Physical Attack Taxonomy [23]

II. HARDWARE NON-INVASIVE AND INVASIVE SECURITY
VULNERABILITIES:

A. Hardware Non-Invasive Security Threats

Non-invasive hardware security vulnerabilities refer to
weaknesses in electronic systems that can be exploited without
physically altering the hardware [24]. These vulnerabilities
often exploit unintended behaviors or characteristics of the
hardware components themselves, such as electromagnetic
emissions, power consumption, or timing variations. Principal
types of non-Invasive attacks consist of fault injection attacks
and side channel attacks.

1) Fault Injection Attacks:: These attacks involve inducing
faults or errors in a device’s operation to compromise its
security. Through the exploitation of weaknesses within hard-
ware design or the manufacturing process, attackers can inject
faults such as voltage spikes, clock glitches, or electromagnetic
interference. These flaws may result in unforeseen system
behaviors, crashes, or breaches in security, posing a potential
threat to the confidentiality, integrity, and availability of the
system.

Voltage
A

Tglitch/Attack Window
< >

Vdd

Vglitch

: : > Time

P> C>
Falling Glitch Rising
Time Width Time

Fig. 5. Representation of negative voltage glitch [25]

o Voltage glitch attack: One major fault injection attack
is Voltage glitching meaning manipulating the device’s
power supply to induce faults and trigger unexpected
behaviors [26], [27]. By manipulating the voltage levels
supplied to the device during its operation(please refer to
Figure 5), attackers can induce glitches or faults in the
system, causing it to malfunction or execute unintended
commands. These attacks are often meticulously timed to

occur during critical moments, such as cryptographic op-
erations or authentication processes, enabling attackers to
bypass security measures or extract sensitive information.

Taiiteh T-Tailitch
«—>c—>

Faulty
Clock
Signal
Inner : Correct / . \/Incorrect Incorrect
State ' Staten-1 \state n+1 State n+2

«—— > Fault Propagation———>»

Normal Timi

iming
CIO_CK Violation
Period

Fig. 6. Representation of clock glitch and fault-injection [28]

e Clock glitch attack: Clock glitching means introducing
glitches into the device’s clock signal (please refer to
Figure 6) to disrupt its normal operation [29], [30] and
potentially exploit vulnerabilities. By manipulating the
clock signals that govern the device’s operations, attack-
ers can introduce glitches or disturbances in the timing
sequence, causing the device to behave unpredictably or
execute unintended instructions(please refer to Figure 6).

e Optical fault Injection: Using laser or light pulses to
induce faults in the device’s components [31] leading to
security compromises. In this type of attack, a focused
laser beam is precisely targeted at specific components
within the device, such as integrated circuits or memory
cells. By introducing localized heat or inducing electro-
magnetic interference, the laser can disrupt the normal
operation of the targeted components [32], causing faults
or errors in their behavior. These faults can be exploited
by attackers to manipulate the device’s operation, extract
confidential data, or bypass security measures.

Transient Fault

in ‘0’

due to Photocurrent

. w

n-welf

Out ‘1’: \/'0’

photocurrent’

p-well

Jasol

p substrate

Fig. 7. Generation of photocurrent through the back-side due to LASER
attack. [33]

2) Side Channel Attacks:: These attacks exploit informa-
tion leaked by a device during its normal operation [34], such
as power consumption, electromagnetic radiation, or timing
variations. Common types include:

o Power Analysis Attacks: A Power Analysis Side-Channel

Attack involves exploiting fluctuations in the power usage

of electronic devices during their functioning to deduce
confidential information, like cryptographic keys or pro-
cessed data [35], [36], [37]. By monitoring and analyzing
these power consumption patterns, attackers can infer
details about the device’s internal operations, such as
executed instructions or variable values. This type of
attack is especially concerning for embedded systems
and cryptographic devices due to its potential for remote
execution without physical access.

o FElectromagnetic (EM) Side-Channel Attacks: An Elec-
tromagnetic (EM) side-channel attack is a sophisticated
method used to exploit unintentional emissions of elec-
tromagnetic radiation or electrical signals from electronic
devices during their operation. By analyzing these emis-
sions, attackers can glean sensitive information [38], [39],
[40] such as cryptographic keys or data being processed
by the device, without directly accessing the device
itself. EM side-channel attacks pose a significant threat
to the security of embedded systems, particularly those
handling confidential or sensitive information, and require
specialized equipment and expertise to execute.

o Timing Attacks: Timing variations in a device’s operations
can be exploited to deduce information about crypto-
graphic computations or sensitive processes [41], [42].

B. Hardware Invasive Security Threats

Invasive hardware attacks involve physically tampering with
electronic devices to exploit vulnerabilities or compromise
their security [43]. Unlike non-invasive attacks that rely on
analyzing the device’s behavior or emissions without altering
its physical structure, invasive attacks directly manipulate the
hardware components. These attacks typically require physical
access to the device, allowing attackers to directly interact with
its internal circuitry.

Hardware Trojan attacks [44], [45], [46] involve the clan-
destine insertion of malicious circuitry, known as Trojans, into
integrated circuits (ICs) during the design or manufacturing
stages. These Trojans are designed to remain dormant under
normal operating conditions but can be triggered remotely or
under specific circumstances to perform malicious activities,
such as leaking sensitive information [47], causing system
malfunctions, or providing unauthorized access. Hardware
Trojans pose significant challenges to the integrity and se-
curity of electronic systems [48], as they can evade tradi-
tional software-based security measures and remain undetected
during functional testing. Detecting and mitigating hardware
Trojans [49] require specialized techniques, including physical
inspection, side-channel analysis, and formal verification, to
ensure the trustworthiness of hardware components and pre-
vent potential exploitation.

Attackers physically modify the device’s circuitry at the chip
level to introduce backdoors, modify functionality, or bypass
security mechanisms. This can involve techniques such as laser
cutting, wire bonding, or focused ion beam (FIB) milling.

&)

Extema]: ———————————————— ===s=ss=ca
sgnals Hardware Trojan :
]
Trigger o-» Payload
1
Circuit signals

Fig. 8. Hardware Trojan [50]

Injecting Malicious

code into software E

Writing Code 010111
Il

|
11011 |
101011010

(o][0]}
|
|

Attacker Malicious Code Vulnerable Software

o~ Malicious code may get
~
executed

loT device

Fig. 9. Bad code injection process [51]

ITI. SOFTWARE EXECUTION VULNERABILITIES

Software program security threats encompass a broad spec-
trum of risks and vulnerabilities that can compromise the con-
fidentiality, integrity, and availability of software systems [52].
These threats can originate from various sources, including
malicious actors, software bugs, design flaws, and insecure
coding practices. Understanding and mitigating these threats
are essential for ensuring the trustworthiness and reliability
of software applications. Below are some common types of
software program security threats:

-

@ Exploit memory-corruption
vulnerability

@ Hijack control-flow

@ Inject new
‘malicious code

ADVERSARY

Control-flow Graph (CFG) of
a benign program

Fig. 10. Example of code-injection attack. The CFG represents the accurate
execution flows of a harmless software, where the graph nodes(1-5) indicate a
software instruction. A code-injection attacker performs the actions 1-3. [53]

e Malware: Malicious software, such as viruses, worms,
Trojans, and ransomware, pose significant threats to
software security [54]. Malware can infiltrate systems
through various vectors, including email attachments, ma-
licious websites, and infected software downloads. Once
installed, malware can steal sensitive information, disrupt
system operations, and provide unauthorized access to

sw
Vulnerabilities

{

Data Flow Violations

' } .

Control Flow
Violations

| !] !

Injection Buffer Format String Integer oot Injection Backdoor/Trojan 0 "
[Attacks ‘ \ GCrai ‘ . over flo Code Injection Attacks e Denial of Service
I
¥ v 1] Y ¥ ¥
SQL Injection Command Injection Cros_s -_Slte LDf\PI%(ML Remote ?ode Arbitrary Fode
Scripting Injection Execution Execution

Fig. 11. SW Vulnerabilities and Attacks for data and control flow violations.

attackers [55]. A malicious code injection process can be
seen in Figure 9.

Code Injection Attacks: Injection attacks like SQL in-
jection and cross-site scripting (XSS), can probe for
vulnerabilities in software input validation mechanisms.
Attackers inject malicious code or commands into input
fields [56], allowing them to manipulate the behavior of
the software and access sensitive data stored in databases
or execute unauthorized actions on behalf of legitimate
users. By inserting bad code, adversaries can also attempt
to steal data and/or control flow of the software design
[53], which can be seen in Figure 10.

Authentication and Authorization Flaws: Weak or inad-
equate authentication and authorization mechanisms can
lead to unauthorized access to sensitive data and function-
alities. Common vulnerabilities include weak passwords,
insufficient password policies, insecure session manage-
ment, and privilege escalation exploits. Attackers exploit
these flaws to bypass validation controls and acquire
illegal access to critical system resources.

CFI check:
"\ Valid target:{5,6}

Intended flow

Unintended flow

Fig. 12. Control Flow Integrity [57]

Information Leakage: Information leakage vulnerabilities
occur when sensitive data is inadvertently exposed to
unauthorized parties [58], [59]. This can happen through
various channels, including error messages, log files,
configuration files, and network transmissions. Attackers
can exploit information leakage vulnerabilities to gather
intelligence about system configurations, user behaviors,
and application logic, facilitating further attacks [60].

Data Exfiltration Attacks: Data exfiltration attacks involve
unauthorized extraction or leakage of sensitive data from
a software program. Attackers may exploit vulnerabilities
in data handling processes, such as insecure data stor-
age, weak encryption, or inadequate access controls, to
steal sensitive information. By compromising data flow

Unprotected
Networks

Inadequate
Encryption Passwords

Phishing
Attempts

Third-party
Access

Fig. 13. Data Leakage Resources.

integrity, attackers can extract confidential data, trade
secrets, or personally identifiable information (PII) from
the target system.

e Data Tampering: Data tampering attacks involve unau-
thorized modification or manipulation of data stored or
transmitted by software systems. Attackers can tamper
with data to alter its integrity, accuracy, or authenticity
[61], leading to erroneous decisions, financial fraud, or
privacy breaches. Common targets of data tampering
attacks include databases, configuration files, digital doc-
uments, and network communications [62].

IV. THREAT MODEL: SW-HW AFFECTING EACH OTHER

When there is a specific security attack in hardware domain,
it often occurs that software execution is unaware of hardware
vulnerabilities and vice versa. Software and hardware being
unaware of each others’ execution gives rise to several vul-
nerabilities to each domain.

How hardware attacks affect software execution:

e Data breaches: Hardware vulnerabilities, such as side-
channel attacks or insecure memory access, can compro-
mise the confidentiality of sensitive data processed by
software applications. Attackers may exploit weaknesses
in hardware components to gain unauthorized access to
data stored in memory [64] or transmitted across the sys-

Execution function f1()

flow 7 ,yentry:\
ot push %rbp
M mov %rsp,%rbp

e =}

/muv $0x0, ¥eax ‘-\L~

L
//—Almr@t

Attack

call *eax <A‘&w
[nov 566, %eax 3

function f2()
——TPentry:

push %rbp
mov %rsp,%rbp

N

SSret

Attack

Fig. 14. Bypass example of coarse-grained control flow integrity. The attacker
can divert the control flow from several calls and return points. Red arrows
show the valid destinations where attackers can redirect the flow. [63]

tem, jeopardizing the privacy of users and organizations
[65].

Hardware vulnerabilities can significantly contribute to
the emergence of software data breaches by providing
attackers with exploitable entry points into systems.
These vulnerabilities often stem from weaknesses in the
design, implementation, or configuration of hardware
components, such as processors, memory modules, or
peripheral devices. Attackers can exploit these vulnerabil-
ities to acquire uninvited access to security-critical data
or manipulate the behavior of software systems.

if <in bounds>

Fig. 15. Spectre attack scenario. Until the bounds check yields a definitive
outcome, the branch predictor proceeds with the anticipated branch target,
enhancing overall execution speed when predictions are accurate. However, in
cases where the bounds check is mistakenly predicted as true, there’s potential
for secret information leakage under specific circumstances. [66].

| Context B |

Context A | ‘
2R

call [function] ?call [function]
function A spectre gadget <

Branch
Predictor

Qe[noads

function B legit function

Fig. 16. Spectre attack scenario. Branch predictor makes wrong prediction
according to training data from adversaries [66].

An instance of this attack is when attackers leverage
hardware vulnerabilities to execute malicious code or ex-
ploit software bugs that would otherwise be inaccessible.

For example, hardware vulnerabilities like speculative
execution flaws (e.g., Spectre [66], Meltdown [67] and
deterministic rowhammer [68]) can be exploited to bypass
software-based security measures and access privileged
information stored in memory. Similarly, vulnerabilities
in hardware-based encryption or authentication mecha-
nisms can undermine the security of software applications
that rely on these mechanisms for data protection.

Exception Handling/
Suppression

Transient Accessed

Secret @

Instructions

Microarchitectural

State Change

Transfer|(Covert Channel)

Recovered

Secret Q=

Recovery

]

1

| Architectural
| State
]

Fig. 17. The Meltdown exploit leverages exception handling or suppression
to execute a sequence of temporary instructions. These temporary instructions
acquire a secret value that persists and alter the microarchitectural state of the
processor accordingly. This establishes one end of a microarchitectural covert
channel. The recipient end reads the microarchitectural state, converting it to
architectural, and retrieves the secret value. [67].

o Integrity compromise: Hardware-level attacks, such as
firmware tampering or hardware Trojans, can undermine
the integrity of software execution by injecting malicious
code or altering critical system functions. This can lead
to the execution of unauthorized commands, modification
of software binaries, or manipulation of system behavior,
posing significant risks to the reliability and trustworthi-
ness of software applications.

Hardware vulnerabilities can serve as the foundation
for software integrity violations, undermining the trust-
worthiness of software systems and leading to potential
security breaches. These vulnerabilities may arise from
flaws in the design, implementation, or configuration of
hardware components, such as processors, memory mod-
ules, or input/output devices. Attackers can exploit these
vulnerabilities to manipulate the execution environment
of software applications, compromise the integrity of
data, or subvert critical security mechanisms.

For instance, attackers leveraging hardware vulnerabil-
ities to inject malicious code into software systems or
modify existing code to alter program behavior. For
example, vulnerabilities in hardware-based memory pro-
tection mechanisms can enable attackers to overwrite
critical system data or execute arbitrary code in privi-
leged contexts, leading to unauthorized access or control
over software resources [69], [66]. Similarly, flaws in
hardware-based encryption or authentication mechanisms
can be exploited to bypass software-based security con-

trols and tamper with data integrity, compromising the
trustworthiness of software operations [70], [71].

o Availability Issues: Hardware-based security threats can
disrupt the availability of software services by exploit-
ing vulnerabilities in underlying hardware infrastruc-
ture. Denial-of-Service (DoS) attacks [72] targeting hard-
ware components, such as network interface controllers
or memory modules, can degrade system performance,

privilege escalation [66], compromising the security and
stability of software systems.

Some hardware vulnerabilities, such as buffer overflows
or memory corruption flaws in processors, can directly
impact software execution. Attackers can craft malicious
inputs or code sequences that exploit these vulnerabilities
to gain unauthorized access [81], execute arbitrary code,
or manipulate system behavior.

cause system crashes, or render software applications How software attacks affect hardware execution:

inaccessible, resulting in service disruptions and financial Software attacks can significantly impact hardware execu-
losses. tion by exploiting vulnerabilities in software components to
A frequent occurrence involves attackers leveraging hard- manipulate or compromise the behavior of underlying hard-
ware vulnerabilities to exhaust system resources like ware. These attacks can manifest in various forms, including:

CPU, memory, or network bandwidth, inundating the e Malware Exploitation: Malicious software such as

system with an abundance of traffic or nefarious requests.
For instance, weaknesses in network hardware or pro-
tocols may be utilized to produce extensive volumes of
network activity [73], overwhelming network connections
and inducing congestion or packet loss. Likewise, defi-
ciencies in memory management units (MMUSs) [74] or
memory controllers may prompt memory depletion or
fragmentation, thereby precipitating system instability or
failures.

ST —---—----—----—=—=--====-==
i —_———— 1
| Botnet Il M R
1 [
| E [
1
1 TR,
1 I I '
1 | ! —
| () | [=
i - I E I : u
1 '
1 < 4 ——»l | >
' X =T | H <
N ! 3
| Attacker with : I Victim
I Bot Master 1 [
1
- | (. LA
| L 1
1 Stage 1. Attacker | = | H Stage 2. Zombies
| plants a Malware | | attack the Victim
| | [—
\ I/
- LimEy
1
| = | !
! : a S
| Zombies !
. e b
(R puplys iU,

Fig. 18. A simple distributed denial of service attack scenario. [75].

Furthermore, compromised hardware components can
serve as attack vectors for launching distributed denial-
of-service (DDoS) attacks [72], [76], [77], where multiple
compromised devices coordinate to flood target systems
with malicious traffic. For instance, attackers may exploit
vulnerabilities in Internet of Things (IoT) devices or
embedded systems to create botnets capable of launching
massive DDoS attacks against internet-facing services,
disrupting their availability to legitimate users (Figure 18.
o Software Exploitation: Hardware vulnerabilities can serve
as entry points for exploiting software vulnerabilities,
enabling attackers to escalate privileges [66], [67], ex-
ecute arbitrary code, or bypass software-based security
mechanisms [78]. By exploiting weaknesses in hardware
architectures, attackers can launch sophisticated attacks,
such as buffer overflows, code injection [79], [80], or

buffer buffer stack
growth

viruses, worms, or Trojans can extract security weak-
nesses in operating systems or applications to acquire
unauthorized access to hardware resources. Once compro-
mised, the malware can manipulate hardware functional-
ity, disrupt system operations, or steal sensitive data.
Code Injection: Techniques like buffer overflows or in-
jection attacks enable attackers to inject malicious code
into running processes. If successful, this injected code
can execute arbitrary commands, manipulate hardware
registers, or even reconfigure hardware settings, leading
to system instability or unauthorized access.

{Wi0101110101111
|| 1100110011100101 |
% 111011101010110011
T10101101111010184 |
[| 0101070101 TT0000Ty
0110110000001111

malicious code
injected into
buffer

return address gowth

retumn address
overwritten

stack stack

Fig. 19. Code injection attack scenario using stack. [82].

o Privilege Escalation: Software vulnerabilities those allow

unauthorized users to escalate their privileges can enable
attackers to gain elevated access to hardware resources.
With escalated privileges, attackers can manipulate hard-
ware configurations, access restricted data, or install
malicious firmware, compromising the integrity of the
hardware platform [83].

Windows/Linux kernel Privilege escalation: This vulnera-
bility allowed attackers to escalate privileges on Windows
or Linux systems [84] by exploiting a flaw in the kernel.
By running a specially crafted application, an attacker
could execute arbitrary code with elevated privileges,
potentially gaining unauthorized access to hardware re-
sources and compromising system integrity [85].

o Denial-of-Service (DoS) Attacks: DoS attacks target-

ing software vulnerabilities can overwhelm hardware
resources with excessive requests or malicious traffic.
Software vulnerabilities can lead to unauthorized hard-
ware Denial of Service (DoS) attacks through various
mechanisms. Here’s how:

Memory
Corruption

Denial of
Service

Resource
Exhaustion

Packet
Amplification

Race
Conditions

Fig. 20. Sources of denial of service attack in hardware due to software
vulnerabilities.

— Resource Exhaustion: Vulnerabilities in software
systems can be exploited to consume excessive sys-
tem resources, such as CPU, memory, or network
bandwidth. Attackers can leverage these vulnerabil-
ities to launch DoS attacks by flooding the system
with requests or executing resource-intensive oper-
ations [86], leading to the exhaustion of hardware
resources and causing legitimate users to be denied
access to the system [87]. Significance of detection
[88] and prevention of resource exhaustion attack is
paramount.

— Memory Corruption: Software vulnerabilities, such
as buffer overflows [89], [90] or memory corruption
flaws, can result in memory leaks or memory corrup-
tion issues. Attackers can exploit these vulnerabilities
to consume system memory excessively [91], leading
to memory depletion and system instability. This can
cause hardware components to become unresponsive
or malfunction, resulting in a Denial of Service for
legitimate users.

— Packet Amplification: Vulnerabilities in network pro-
tocols or network-facing software can be exploited
to amplify network traffic, leading to network con-
gestion and service disruption. Attackers can manip-
ulate network packets to increase their size or fre-
quency, leveraging vulnerable software components
to amplify the impact of their attacks on hardware
resources, such as network switches, routers, or
firewalls.

— Interrupt Storms: Software vulnerabilities in device
drivers or kernel components can lead to the genera-
tion of excessive hardware interrupts or interrupts
storms. Attackers can exploit these vulnerabilities
to trigger a large number of hardware interrupts,
overwhelming the system’s interrupt handling ca-
pabilities and causing hardware devices to become
unresponsive or enter into a degraded state, resulting
in a Denial of Service for legitimate users.

— Race Conditions: Software vulnerabilities those re-
sult in race conditions or concurrency issues can be
exploited to disrupt the normal operation of hardware
components. Attackers can manipulate the timing or
sequence of software operations to create race con-
ditions [92], [66], leading to unpredictable behavior
in hardware devices or systems. This can result in
hardware resources being locked or unavailable for
legitimate users, causing a Denial of Service [76].

o Firmware Exploitation: Vulnerabilities in firmware, such
as BIOS or device drivers, can be exploited to com-
promise hardware functionality. Attackers can modify
firmware settings, implant rootkits, or disable security
features, undermining the integrity and security of the
hardware platform [93].

o Side-Channel Attacks:

Software side-channel attacks, such as timing attacks or
cache-based attacks while primarily targeting vulnera-
bilities within software, can also precipitate significant
issues in hardware components. These attacks exploit the
unintended leakage of information from software exe-
cution, often exploiting the underlying architecture and
implementation of hardware. For instance, speculative
execution [66], a performance optimization technique in
modern processors, can inadvertently expose sensitive
data through timing or cache-based side channels. This
exposure can lead to a myriad of problems in hard-
ware, including compromised confidentiality, integrity,
and availability.

V. EXISTING TECHNIQUES FOR HARDWARE SOFTWARE
CO-PROTECTION:

A. Hardware-based Security Mechanisms:

Hardware-based security features such as Trusted Platform
Modules (TPM) [94], [95], Secure Enclaves (e.g., Intel SGX)
[96], and Hardware Security Modules (HSM) [97], [98]
provide a secure foundation for software execution. These
components offer secure storage, cryptographic operations,
and isolation mechanisms to protect sensitive data and code.

A Trusted Platform Module (TPM) operates as a secure
cryptoprocessor that provides a hardware-based approach to
managing and protecting cryptographic keys and other sen-
sitive data. At its core, the TPM is designed to carry out
cryptographic operations and securely store keys that protect
information [94]. When a system with a TPM starts up,
the module conducts a series of integrity checks to ensure
that the system has not been tampered with. This process,
known as the Trusted Boot (tBoot), involves validating each
component of the startup process before it is loaded, ensuring
that only trusted software is executed. The TPM can generate
cryptographic keys that remain within the device; these keys
can be used for various security functions but cannot be
extracted by software. Additionally, the TPM can encrypt and
decrypt data using these keys, providing secure storage that is
resistant to external software attacks [95].

Platform Attestation
Identity

Key (AIK)

Non-Volatile
Storage

Program

Configuration
Code

Register (PCR)

Communications

Random
Key RSA Exec
Number
Generationfl Engine| Enginej
Generator

Trusted Platform Module (TPM)

(a) A typical Trusted Platform Module Architecture. [99]

The TPM also supports remote attestation, creating a virtu-
ally tamper-proof environment. This feature allows the TPM
to provide a cryptographic report of the hardware and software
configuration of the host system to a remote verifier, ensuring
that the system is secure and has not been altered. Furthermore,
the TPM can seal and bind data, encrypting it in such a way
that it can only be accessed on the same TPM with the same
hardware configuration. This ability makes TPMs invaluable
for scenarios requiring high levels of data security, such as
in enterprise environments where ensuring the confidentiality
and integrity of sensitive data is critical. Overall, the operation
of a TPM enhances the security of a computing system
by integrating hardware-based security measures that protect
against unauthorized access and tampering.

However, exiting TPM systems possess several drawbacks
including performance overhead, cost implications, complexity
in management, compatibility issues etc.

gadgetl:
Low address stack EaLst
addr 4 MOV ecx,ebx
/ | ret
7
4 gadget2:
ESP—» addr, | ___/ _ EoS
" addr,"| pop ecx €]—
data ; 3
, ret M
addr; \/{ S - gadgct3 : 2 4
i addr; | OV ecX,eax e
addry ret
T _ System call
High address

Fig. 21. An example Return on Programming(ROP) attack. [101]

B. Software-hardened Hardware:

Software techniques such as Data Flow Integrity(DFI) [102],
[103] , Data Execution Prevention (DEP) [104], and Control
Flow Integrity (CFI) [105], [106], [107] can be implemented
to harden hardware against various attacks. These measures
make it more difficult for attackers to exploit vulnerabilities in
hardware components. But often they include code-redundancy
and data-redundancy.

An example control flow protection method is explained
in Figure 22. Adversaries manipulate the control flow of a

ﬂiardware Security Module

Secure
Storage

OS

1/O et CPU e

|
Cryptographic operations

Key
Management

Encryption
Decryption

TRNG Hash

-

(b) Hardware Security Module Architecture. [100]

7

program by altering the destination addresses of indirect jump
or call instructions, thereby seizing control over the program’s
flow. To safeguard against such tampering, a linear encryption
technique, such as XOR encryption, encrypts the instructions
located at these target addresses, fortifying the integrity of the
program’s control flow.

When an indirect jump or call instruction is triggered, the
instructions at the destination addresses undergo decryption
using a decryption key generated through XOR encryption
of key2 (as shown in Figure 22) and the address of the call
site acquired from the PC register. As long as the program
adheres to the paths outlined in the original Control Flow
Graph (CFG), the decryption process will proceed accurately,
enabling the program to operate smoothly. However, deviating
from these paths may lead to a system error and failure of the
Jump-Oriented Programming (JOP) technique.

gadgetl:

0x0084753e
—— 0x0084753f

add ecx,0x30
jmp eax;

Encrypted with 0x0084753f & key_2 \
Pl
4 |

X X

jmp eax |

gadget2:

0x0084755e
0x00847561

1

Encrypted with 0x00847561 & key_2 /
gadget3: P

/

y

—> 0x008476e3

e— normal path = —— —» attack path

Fig. 22. An example of protecting the control flow of a program encrypting
all first instructions at target addresses in the CFG. [101]

C. Hardware-assisted Sandboxing:

Hardware virtualization technologies such as Intel VT-x
[108] and AMD-V enable the creation of isolated execution
environments, or sandboxes, where untrusted software can run
safely. By leveraging hardware support for virtualization, these
sandboxes provide strong isolation between applications and
the underlying system.

Hardware-assisted sandboxing leverages specialized fea-
tures within the hardware architecture to enhance the security
and isolation of software applications. By utilizing hardware

Hardware Sandbox

L
g Controller
1.°1 am active.”

2. “Disable yourselves!"
rd _—_——grsTsssresessss=- -~
I Teleph :
| elephony -

N Module WiFi Module :

|

| |

: 3G Module | |
|

I‘ Hardware Sandbox)

Fig. 23. An instance showcasing the application of hardware sandboxing is
the prevention of real-time wiretapping over the internet. This is achieved by
disabling all hardware modules necessary for Internet connectivity while a
phone call is in progress. [109]

support, such as virtualization extensions in modern CPUs,
sandboxing can create isolated environments, known as sand-
boxes, where untrusted or potentially malicious code can run
safely without compromising the integrity of the host system.
These hardware features enable the efficient implementation of
sandboxing mechanisms, such as memory isolation, privileged
access controls, and secure execution environments. As a
result, hardware-assisted sandboxing offers robust protection
against various security threats, including malware, exploits,
and unauthorized access, thereby safeguarding sensitive data
and critical system resources.

D. Fine-grained Access Control:

Hardware-enforced access control mechanisms, such as
Memory Protection Units (MPUs) [110], [111] and Hardware-
based Access Control (HBAC) [112], [113], restrict access to
critical resources based on predefined security policies. These
mechanisms prevent unauthorized access and limit the impact
of software vulnerabilities.

Main Memory

T Physical addresses T
N\ 4

-
| IOMMU MMU
: J HE € J
A : A 3
Device [addresses : Virtual [addresses:
Device CPU

Fig. 24. A typical architecture of memory management unit. Memory
management or protection unit is used as a fine grained HW resource
distribution approach. [114]

The Memory Protection Unit (MPU) oversees processor
transactions, such as instruction fetches and data accesses, and
is capable of initiating a fault exception upon detecting an
access violation(Figure 25). The primary objective of MPU is

to restrict a process from accessing memory regions that have
not been specifically allocated to it.

At its core, the MPU operates by defining and enforcing
access permissions for various memory regions based on pre-
defined rules and configurations. These rules typically include
specifying the allowable types of access (e.g., read, write,
execute) and the range of memory addresses accessible to each
process or application.

When a processor executes instructions or accesses data in
memory, the MPU monitors these transactions and compares
them against the configured memory protection settings. If an
access violation is detected such as an attempt to read from
or write to a memory region that the process is not authorized
to access the MPU triggers a fault exception which interrupts
the normal flow of execution.

Fine-grained access control of hardware plays a crucial
role in reducing software security vulnerabilities by providing
granular control over the interactions between software com-
ponents and hardware resources [114]. By allowing admin-
istrators to define precise rules governing access to hardware
resources such as memory, input/output ports, and peripherals,
fine-grained access control restricts the ability of malicious
software to exploit hardware vulnerabilities for unauthorized
access or privilege escalation [115], [116] . This approach
enhances security by minimizing the attack surface exposed
to potential exploits and mitigating the impact of software
bugs or vulnerabilities that could otherwise be leveraged to
compromise system integrity [117]. Furthermore, fine-grained
access control facilitates the implementation of defense-in-
depth strategies, where multiple layers of security mechanisms
work together to protect against different types of threats,
thereby strengthening the overall resilience of the system
against cyberattacks.

LI
i]
g i
Eﬁ M ial]
h’— DAP prmeecizc?:um Sz:wtlre ==
B il
E Data :. Hash]
E watchpoints: ; patch]
O ; il
Bus Matrix
E Code SRAM & :]
E interface Peripheral [F]
p-

. 1
| | JDDDDDDFD

-

Fig. 25. Memory protection unit available in ARM-cortex M7. [118].

E. Hardware-accelerated Cryptography:

Hardware accelerators for cryptographic operations [119],
such as AES-NI and SHA extensions in modern CPUs [120],

improve the performance and efficiency of cryptographic
algorithms. By offloading cryptographic tasks to dedicated
hardware, these accelerators reduce the attack surface and
enhance overall system security.

Secure MCU
Service Request

RISC-V el
2t

‘ AXI4 Decode For config&control

NOC

’ AXI4 128bit Decode For Dataflow

[] [] [] []

‘DMA||DMA||DMA“DMA’

I/F I/F I/F I/F

‘AES H SHA ‘ ECC ’TRNG‘

Crypto-CoProcessor

Fig. 26. Hardware architecture of a system with cryptographic accelerator.
[121].

Hardware-accelerated cryptography represents a powerful
approach to mitigating hardware and software security vulner-
abilities by offloading cryptographic operations to specialized
hardware components. By leveraging dedicated cryptographic
processing units or accelerators integrated into modern hard-
ware architectures, such as CPUs, GPUs, or dedicated crypto-
graphic co-processors, hardware-accelerated cryptography en-
hances the efficiency and security of cryptographic operations
while reducing the burden on software implementations. This
not only improves the overall performance of cryptographic
algorithms but also minimizes the exposure of sensitive cryp-
tographic keys and operations to potential software-based
attacks, such as side-channel attacks or malware exploits.

[User Space]

&

Kernel

—L =]

[Crypto API

[Driver][Software]

Fig. 27. A crypto API stack. [121].

[Network]

For instance, when a user space application initiates a
cryptographic operation through the Crypto API, the request
is relayed to the kernel, which then determines whether to
execute it using hardware or software, based on a priority-
based hierarchy. While the Linux kernel itself provides a soft-
ware implementation as an alternative to OpenSSL, hardware
implementations typically take precedence due to their higher
priority. Applications utilizing this API remain oblivious to the
underlying method employed for cryptographic computation,

allowing for potential acceleration via either hardware or more
efficient software implementations, all without necessitating
modifications to their code. The sole requirement is the
inclusion of any new implementation into the existing priority
list.

F. Hardware-based Intrusion Detection and Prevention:

Hardware-based intrusion [122] detection and prevention
systems (IDPS) use specialized hardware components, such as
network interface cards (NICs) [123] and programmable logic
devices (FPGAs), to monitor and analyze network traffic in
real-time. These systems detect and block malicious activities
before they can compromise the system.

Hardware-based intrusion detection and prevention systems
are a proactive cyber-security approach utilizing dedicated
hardware components to detect and mitigate threats at the
hardware level. These systems employ specialized hardware
modules, like security co-processors or dedicated intrusion
detection units, to continuously monitor system activity in real-
time. By analyzing network traffic, system calls, memory ac-
cess patterns, and other critical system events, hardware-based
intrusion detection systems can identify anomalous behavior
indicative of potential security breaches or unauthorized access
attempts. Additionally, these systems can implement hardware-
enforced security policies and access controls to prevent mali-
cious activities from compromising system integrity. Operating
at the hardware level offers several benefits, including reduced
overhead, increased resilience against sophisticated attacks,
and improved scalability across heterogeneous computing en-
vironments. In summary, hardware-based intrusion detection
and prevention systems play a crucial role in strengthening
cyber-security defenses, providing an extra layer of protection
against evolving cyber-threats.

VI. ANALYSIS OF CO-PROTECTION METHODOLOGIES:
PROPOSED APPROACHES

Hardware can be protected through software feedback, and
software can be protected using hardware feedback. Hardware-
software co-protection methodologies aim to fortify systems
against security threats by leveraging a combination of hard-
ware sensors, power spectrum analysis, and information flow
modeling. Hardware sensors can be integrated into devices
to monitor physical and operational parameters, such as tem-
perature, voltage fluctuations, and electromagnetic emissions,
providing real-time insights into potential tampering or anoma-
lies. Power spectrum analysis further enhances security by
analyzing the electrical signals produced by hardware compo-
nents to detect unusual patterns indicative of malicious activity.
Meanwhile, information flow modeling involves mapping and
controlling the pathways through which data travels within
a system, ensuring that sensitive information is protected and
that any unauthorized access or data leakage is promptly iden-
tified. By combining these approaches, systems can achieve a
robust defense mechanism that not only detects and responds
to threats in real-time but also proactively mitigates vulnera-
bilities through comprehensive monitoring and control.

A. Hardware sensor based SW Protection:

Hardware sensors are integrated into the physical compo-
nents of the system, including processors, memory modules,
input/output interfaces, and peripheral devices. These sensors
continuously monitor physical parameters such as temperature,
voltage, current, electromagnetic emissions, and other environ-
mental conditions.

| ARM
| Processor

[on-chi
Core P

RAM

UART

GPIO
Interrupt
Controller
ROM
Interface

External
Memory
Interface

AHB Bus

1 Bridge
| DecoderL
' [+=.]

DMA Arbiter | |sener APB
Controller

Fig. 28. Arm-SoC with inserted various sensors to capture activities and
properties of various modules . [124]

Protecting software execution through hardware on-chip
sensor placement involves strategically embedding sensors
directly onto the integrated circuits of computer hardware
to monitor and detect various aspects of software execution.
These sensors can capture real-time data related to temper-
ature, voltage fluctuations, electromagnetic emissions, and
other physical characteristics of the hardware environment.
By analyzing this data, hardware-based security mechanisms
can detect anomalies indicative of unauthorized software ex-
ecution, such as malicious code injection or runtime attacks.
Leveraging hardware sensors offers several advantages, includ-
ing low-level access to critical system components, reduced
susceptibility to software-based attacks, and the ability to
operate independently of the software stack, thus enhancing
overall system security and resilience.

For detection and protection against several fault-injection
attacks, different hardware sensors have been proposed. For
instance, Fault-to-time converter(FTC) [125] sensor converts
various non-invasive faults to delay and captures the encoded
response in ZynQQ FPGA. Laser fault injection sensor [126]
captures the response of LASER injection into device.

Quantifying security properties of an RTL design and relat-
ing them to various injected faults and corresponding viola-
tions has been a long discussed issue. Security property driven
vulnerability assessment framework against fault injection
attacks(SoFI) [127] has been developed to co-relate specific
security property violation due to fault injection attacks. How
the on-chip sensors respond against faults and how they are
related to security property violation has also been discussed
[128].

To protect the SW execution using HW sensor response
against FIAs, the injection attacks can be modeled in terms
of internal quantities such as delay. When SW codes are
running into hardware, or in a gate level synthesized design,

Initial Delay Line Observable Delay Line

HVT Cell 1I OI al Dl
| XOR

1I 1I 1T UT
LVT Cell

Flip-Flop Stage [0...N] |

Clock

Sensor Blocks

Encoded |
Qutput +
Bubble Proof Encoder [log,(N)] |

Logic Analyzer BRAM

Fig. 29. Fault to time converter sensor. [125]

specific cells of the libraries are being used, each of which
are vulnerable to the FIAs defined before. The vulnerability
of each cell against each attack can be quantized. When a
compiler transforms a high level code(C/C++) into assembly,
it can be sensitive to each attack modeled previously. In this
way SW execution can be sensitive to HW sensor response
and can be protected by redundancy or any other methods.
This method is displayed in Figure 34.

BELAY.J1LDELAY_LIETROP_DELAY Mion Mar 78 11:2208 204

Fig. 30. Propagation delay vs supply voltage variation.

Modeling supply voltage variation involves simulating
changes in the voltage supplied to the hardware components,
which can occur due to fluctuations in the power supply or
deliberate manipulation by attackers. This variation can lead
to transient faults, where the voltage drops below the required
threshold, causing errors or malfunctions in the system. Sev-
eral previous research suggested that supply voltage variation
can be modeled as a fluctuation in delay(Figure ??). So, we
can add a delay component in the standard cell library that
can be activated at a certain time to show the effects of supply
voltage variation.

Modeling laser fault injections in standard cells involves
simulating the effects of laser-induced faults on the behavior
of semiconductor devices within the cells. One approach to
achieve this is by adding additional current components to
the standard cell models, which represent the changes in
device characteristics caused by laser irradiation. Modeling
and validation of LFI into hardware involves several steps
such as identifying vulnerable locations, defining fault models,
integrating current components, simulate LFI attacks etc.

High Level
Language

Lexical Analyzer

Syntax Analyzer

‘l S nalyzer \
Symbol Table Error Handling
Intermediate Code

Generator

Code Optimiser

Target Code
Generation

Assembly Code

Fig. 31. Steps a compiler performs to translate a high level code to machine
language.

The compiler plays a significant role in bridging the gap
between software and hardware execution by translating high-
level programming code into low-level instructions that can
be understood and executed by hardware components. As
software developers write code in languages like C, C++,
or Python, the compiler analyzes the code, performs opti-
mizations, and generates machine code tailored to the target
hardware architecture(Figure 31). This machine code is then
executed directly by the hardware, enabling the software’s
functionality to be realized efficiently. Additionally, modern
compilers often incorporate optimization techniques like loop
unrolling, instruction re-arrangement, and register relocation
to maximize performance and minimize resource utilization.

Y

Vulnerability
Analysis

v
il
=

Meodeling the Attacks
-féx ; a
Hardened Code

‘(I)i

Code Input

el

Compiler

- L@

Security Properties Code Hardening Rules

Fig. 32. During compilation, software can be hardened against physical
attacks by this framework.

Compilers may play a vital role in mitigating hardware-
software vulnerabilities by implementing various security
mechanisms and optimizations during code generation. One
fundamental approach is through the enforcement of memory

safety checks, such as stack canaries, bounds checking, and
address space layout randomization (ASLR) [129], which
prevent buffer overflows and other memory corruption vul-
nerabilities. Additionally, compilers can implement control-
flow integrity (CFI) mechanisms to detect and prevent code
execution hijacking attacks, for instance: return-oriented pro-
gramming and jump-oriented programming.

We can drive the compiler or generate extra plugins to make
it aware of hardware vulnerabilities(Figure 32). The compiler
may take the essence of modeling various hardware faults and
be aware of hardware execution.

B. Instruction spectrum based software-hardware protection:

When a software runs on a hardware, it creates several
property traces on a hardware, such as power, delay variation
etc. These traces can be tracked to HW execution strategies
and HWs can be made aware of the placement of sensors
etc. Modifications of fault injection detection and prevention
strategies in the hardware side can be done to prevent any
attack that can for example, produce high power traces or any
unusual activities during the SW execution.

GLN: Gate-level netlist

SP Definition
SP: Security property
GLN Generation Fault List
from FPGA Generation

Extract SP-driven
Fan-in Circuit
from GLN

Fault Simulation

|

Critical Location
Identification

Input Stimulus
Generation

Fig. 33. Critical Location identification on HW using SoFI Framework. [127]

Developing a power model for assembly instructions in-
volves quantifying the power consumption associated with
executing each instruction within a processor. By analyzing the
power spectrum derived from these models, software execution
can be guided to optimize both hardware and software security
simultaneously. The power spectrum reflects the power con-
sumption patterns exhibited by different instructions during
execution, offering insights into the energy requirements of
various software operations.

Leveraging this information, software can be designed or
modified to prioritize low-power instructions or sequences,
reducing overall power consumption and minimizing the risk
of hardware-based attacks, such as side-channel attacks. Addi-
tionally, by aligning software execution with the power spec-
trum, potential vulnerabilities in both hardware and software
can be mitigated, as the power consumption characteristics
of specific instructions can serve as indicators of potential
security risks. This approach not only enhances hardware

security by reducing susceptibility to power-based attacks but
also strengthens software security by optimizing execution
patterns to minimize exposure to potential vulnerabilities.

By integrating security measures directly into the hardware
architecture, such as through hardware-based encryption, se-
cure enclaves, or trusted execution environments, vulnerabili-
ties at the software level can be mitigated more effectively.
Hardware-based security provides a robust foundation for
protecting sensitive data and critical processes from various
threats, including malware, unauthorized access, and tamper-
ing.

SW Zone HW Zone
CIC++ Code Analysis of FIAs
I I
. Fault Injection
compllex Attack Modeling
*17 .
[Accembly | Incorporation of
As(s:er(;\bly FIA Model into
oce library cells
A — ;
Processing
Gl feedbacks for
RTL/SoC compiler

Fig. 34. SW protection by HW sensor feedback against Fault Injection attacks.

Building power model for each type of instruction(such as
load,store from memory, arithmetic operations etc) enables
us to construct power model for specific applications(Figure
35). If any application, such as matrix multiplication, or
convolution operation for a CNN creates stress in the specific
part of the hardware by drawing excessive power, we can trace
that information in the hardware domain, and send it to the
compiler so that software execution is aware of the hardware
execution and power trace.

Software modules(such as sensors) running on the system
assist in monitoring and analyzing the power consumption pat-
terns. These software components collect power consumption
data and perform statistical analysis to identify anomalies or
suspicious behavior. They also define and manage security
policies based on the observed power spectra and trigger
appropriate responses to mitigate security risks.

Fig. 35. Power traces of hardware blocks during execution of instructions in
a processor and its peripherals.

C. Securing SW execution via monitoring HW Architectural
Activity:

Securing software execution through hardware architectural
activity is an effective strategy in modern computing systems.

SW HW
Execution Execution
Analysis of Fault
CIC++ Code Injection Attacks
|
Compiler > Fault Injection
Assembly Attack Modeling
Run on Placement of
RTL/SoC sensors
——— i
Property Modifications of
Traces: Power, HW execution
Delay Strategies

Fig. 36. HW protection by examining property traces during SW execution.

When a SW program runs into HW, such as a processor,
different components of the processor gets ’activated’ with
the execution of instructions. As the execution of instruction
sequences correlate with hardware resources such as registers,
memory, computing units, corruption in any of the blocks will
also hamper SW execution. Corruption in hardware can be in
many forms. For instance, a data forwarding unit chooses the
data to be put in ALU from execution or memory stage. If the
forwarding unit is corrupted, wrong data can be put into the
hardware even if we do the correct software execution (Figure
38).

Fig. 37. FTC Sensor placed among various blocks of an SoC and the response
is characterized

Hardware architectural activities can be collected via sen-
sors also. In figure 37, the FTC sensor is placed between

different placed parts of a ZynQ SoC that has a core processor
and peripherals like UART, SPI, timer etc. The sensor response
changes when they are placed closer or further to some
blocks those have relatively higher activities. Via placement of
sensors and collecting their responses, we can send feedback
to the software side that during execution of some particular
instructions, some blocks have more vulnerability towards a
bit flip or data failure.

ID/EX EX/MEM MEM/WB

Forward from
i EX stage
Registers I T ksl
I V

Data (-
memory

Regular path
from register file

|

T |—‘\/

EX/MEM RegisterRd

MEMWB RegisterRd

Which sources
are needed

Fig. 38. Simple processor displaying the usage and probable corruption of a
data forwarding path.

Securing software execution involves monitoring the activity
of distinct hardware blocks within the system to detect and
prevent potential security threats. By continuously monitoring
the behavior of hardware components such as the CPU, mem-
ory modules, and input/output interfaces, anomalous activities
indicative of malicious software behavior can be identified in
real-time. This monitoring process typically involves analyzing
metrics such as resource utilization, data access patterns,
and communication protocols to detect unauthorized access
attempts, abnormal program executions, or other suspicious
activities. By integrating hardware-level monitoring mecha-
nisms into the system architecture, software execution can be
safeguarded against a wide range of security threats, including
malware infections, code injections, and privilege escalation
attacks.

D. Information flow modeling approach for HW/SW Security
Verification

[N
\’nlﬂg
Hi ,
E"V Information Flow 3 X
Hirdiwacs Security Model Security Properties
N
HW/SW oA
Design Instrument Insert '
IFT Logic
:) Design
‘ [Verification]H:[Output J
Software Fails

Vulnerability

Design Modification

Fig. 39. Proposed design flow of HW/SW co-verification method

Information flow implication method is another approach
we consider. Software programs are converted into hardware
descriptions using a model and combined with hardware
designs to form a logic circuit to track the information

flow among software and hardware. So using data security
labels, all logical information flows are captured. This flow
can be incorporated into CAD verification tools and easily
determine the violation of information flow security property,
leading to detecting software, hardware, system level security
vulnerabilities.

Security properties for HW/SW designs.

| Security Properties

Security Vulnerabilities Implementation |

Confidentiality: Sccurity | ty: Unirusted data

for SW/HW Designs level assets can not leak to | can not flow trusted
| unclassified regions. zones.
1| malicious/backdoor program SW N
2| insecure software function S
3 | malicious logic or hardware Trajan | HW J v
4 hardware design flaw HW | N +
5| system-level hardware Trojan | HW and SW | 7 ”
6 timing side-channel HW and SW

Fig. 40. Security properties of HW/SW designs.

VII. FUTURE WORK AND CONCLUSION

The exploration of hardware-software co-protection against
interactive security threats offers a promising avenue for future
research and development in the field of cybersecurity. As
interactive security threats continue to evolve and grow in
sophistication, it is imperative to develop comprehensive and
integrated approaches that combine hardware and software
mechanisms to mitigate these threats effectively.

One area for future work is the development of novel
hardware architectures and co-design methodologies specif-
ically tailored to address interactive security threats. Sensor
based and machine learning based hardware-software property
analysis are two prominent directions to protect both hardware
and software. Collaborative efforts between hardware and
software engineers will be essential to design and implement
these advanced security features seamlessly within existing
computing systems.

Additionally, future research should focus on the refinement
and optimization of hardware-software co-protection mech-
anisms to achieve a balance between security, performance,
and usability. This involves conducting extensive performance
evaluations and benchmarking studies to assess the overhead
and impact of security mechanisms on system performance,
as well as user experience. Furthermore, exploring adaptive
and dynamic security strategies that can respond to evolving
threats in real-time will be crucial for ensuring the resilience
of hardware-software co-protection solutions.

REFERENCES

[1] R. Luna and S. A. Islam, “Security and reliability of safety-critical
rtos,” SN Computer Science, vol. 2, p. 356, Jun 2021.

[2] B. Lampson, “Computer security in the real world,” Annual Computer
Security Applications Conference, vol. 16, 12 2000.

[3] S. Duggineni, “Impact of controls on data integrity and information
systems,” pp. 29-35, 07 2023.

[4] H. Tabrizchi and M. Kuchaki Rafsanjani, “A survey on security
challenges in cloud computing: issues, threats, and solutions,” The
Journal of Supercomputing, vol. 76, pp. 9493-9532, Dec 2020.

[5] H. Pearce, R. Karri, and B. Tan, “High-level approaches to hardware
security: A tutorial,” ACM Trans. Embed. Comput. Syst., vol. 22, apr
2023.

(6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

C. Dong, Y. Xu, X. Liu, F. Zhang, G. He, and Y. Chen, “Hardware
trojans in chips: A survey for detection and prevention,” Sensors,
vol. 20, no. 18, 2020.

M. T. Rahman, Q. Shi, S. Tajik, H. Shen, D. L. Woodard, M. Tehra-
nipoor, and N. Asadizanjani, “Physical inspection attacks: New frontier
in hardware security,” in 2018 IEEE 3rd International Verification and
Security Workshop (IVSW), pp. 93-102, 2018.

M. Vidakovic and D. Vinko, “Hardware-based methods for electronic
device protection against invasive and non-invasive attacks,” Electron-
ics, vol. 12, no. 21, 2023.

M. Humayun, M. Niazi, N. Z. Jhanjhi, M. Alshayeb, and S. Mah-
mood, “Cyber security threats and vulnerabilities: A systematic map-
ping study,” Arabian Journal for Science and Engineering, vol. 45,
pp. 3171-3189, Apr 2020.

Y. Su, M. Li, C. Tang, and R. Shen, “An overview of software
vulnerability detection,” 2016.

M. Malenko and M. Baunach, “Hardware/software co-designed secu-
rity extensions for embedded devices,” in Architecture of Computing
Systems — ARCS 2019 (M. Schoeberl, C. Hochberger, S. Uhrig,
J. Brehm, and T. Pionteck, eds.), (Cham), pp. 3—14, Springer Inter-
national Publishing, 2019.

J. Gu, B. Zhu, M. Li, W. Li, Y. Xia, and H. Chen, “A Hardware-
Software co-design for efficient Intra-Enclave isolation,” in 31st
USENIX Security Symposium (USENIX Security 22), (Boston, MA),
pp. 3129-3145, USENIX Association, Aug. 2022.

E. Hozan, “Understanding the layers of a computer system,” 02 2020.
T. Huffmire, T. Levin, T. Nguyen, C. Irvine, B. Brotherton, G. Wang,
T. Sherwood, and R. Kastner, “Security primitives for reconfigurable
hardware-based systems,” ACM Trans. Reconfigurable Technol. Syst.,
vol. 3, may 2010.

R. Karam, R. Liu, P.-Y. Chen, S. Yu, and S. Bhunia, “Security primitive
design with nanoscale devices: A case study with resistive ram,”
in 2016 International Great Lakes Symposium on VLSI (GLSVLSI),
pp- 299-304, 2016.

D. Kirovski, M. Drini¢, and M. Potkonjak, “Enabling trusted software
integrity,” SIGARCH Comput. Archit. News, vol. 30, pp. 108-120, oct
2002.

A. Maia, J. Lopez, J. J. Ortega, E. Pimentel, and J. M. Troya, “A
framework for secure execution of software,” International Journal of
Information Security, vol. 3, pp. 99-112, Nov 2004.

D. Dorfmeister, F. Ferrarotti, B. Fischer, E. Haslinger, R. Ramler, and
M. Zimmermann, “An approach for safe and secure software protection
supported by symbolic execution,” in Database and Expert Systems
Applications - DEXA 2023 Workshops (G. Kotsis, A. M. Tjoa, I. Khalil,
B. Moser, A. Mashkoor, J. Sametinger, and M. Khan, eds.), (Cham),
pp. 67-78, Springer Nature Switzerland, 2023.

A. Gangolli, Q. H. Mahmoud, and A. Azim, “A systematic review of
fault injection attacks on iot systems,” Electronics, vol. 11, no. 13,
2022.

S. Delarea and Y. Oren, “Practical, low-cost fault injection attacks on
personal smart devices,” Applied Sciences, vol. 12, no. 1, 2022.

A. Gangolli, Q. H. Mahmoud, and A. Azim, “A systematic review of
fault injection attacks on iot systems,” Electronics, vol. 11, no. 13,
2022.

S. Kaur, B. Singh, and H. Kaur, “Stratification of hardware attacks: Side
channel attacks and fault injection techniques,” SN Computer Science,
vol. 2, p. 183, Mar 2021.

C. Shepherd, K. Markantonakis, N. van Heijningen, D. Aboulkassimi,
C. Gaine, T. Heckmann, and D. Naccache, “Physical fault injection and
side-channel attacks on mobile devices: A comprehensive analysis,”
Computers Security, vol. 111, p. 102471, 2021.

P. Prinetto and G. Roascio, “Hardware security, vulnerabilities, and
attacks: A comprehensive taxonomy,” in ltalian Conference on Cyber-
security, 2020.

Z. Kazemi, D. Hely, M. Fazeli, and V. Beroulle, “A review on
evaluation and configuration of fault injection attack instruments to
design attack resistant mcu-based iot applications,” Electronics, vol. 9,
p- 1153, 07 2020.

K. Gomina, J.-B. Rigaud, P. Gendrier, P. Candelier, and A. Tria, “Power
supply glitch attacks: Design and evaluation of detection circuits,” in
2014 IEEE International Symposium on Hardware-Oriented Security
and Trust (HOST), pp. 136-141, 2014.

Y. Lu, “Injecting software vulnerabilities with voltage glitching,” ArXiv,
vol. abs/1903.08102, 2019.

[28]

[29]

[30]

[31]

[32]

[33]

[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]
[46]

[47]

[48]

[49]

[50]

[51]

Z. Kazemi, D. Hely, M. Fazeli, and V. Beroulle, “A review on
evaluation and configuration of fault injection attack instruments to
design attack resistant mcu-based iot applications,” Electronics, vol. 9,
no. 7, 2020.

B. Selmke, F. Hauschild, and J. Obermaier, “Peak clock: Fault injection
into pll-based systems via clock manipulation,” in Proceedings of the
3rd ACM Workshop on Attacks and Solutions in Hardware Security
Workshop, ASHES’19, (New York, NY, USA), p. 85-94, Association
for Computing Machinery, 2019.

Z. Kazemi, A. Papadimitriou, I. Souvatzoglou, E. Ae, M. Ahmed,
D. Hely, and V. Beroulle, “On a low cost fault injection framework for
security assessment of cyber-physical systems: Clock glitch attacks,”
pp. 7-12, 07 2019.

F. Cai, G. Bai, H. Liu, and X. Hu, “Optical fault injection attacks for
flash memory of smartcards,” in 2016 6th International Conference
on Electronics Information and Emergency Communication (ICEIEC),
pp. 46-50, 2016.

D. Petryk, Z. Dyka, R. Sorge, J. Schaeffner, and P. Langendoerfer,
“Optical fault injection attacks against radiation-hard registers,” 06
2021.

D. Z. Zabib, M. Vizentovski, A. Fish, O. Keren, and Y. Weizman,
“Vulnerability of secured iot memory against localized back side laser
fault injection,” 2017 Seventh International Conference on Emerging
Security Technologies (EST), pp. 7-11, 2017.

Y. Zhou and D. Feng, “Side-channel attacks: Ten years after its
publication and the impacts on cryptographic module security testing,”
IACR Cryptol. ePrint Arch., vol. 2005, p. 388, 2005.

S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks: Reveal-
ing the Secrets of Smart Cards (Advances in Information Security).
Berlin, Heidelberg: Springer-Verlag, 2007.

H. Gamaarachchi and H. Ganegoda, “Power analysis based side chan-
nel attack,” 01 2018.

N. Gattu, M. N. Imtiaz Khan, A. De, and S. Ghosh, “Power side chan-
nel attack analysis and detection,” in 2020 IEEE/ACM International
Conference On Computer Aided Design (ICCAD), pp. 1-7, 2020.

D. Agrawal, B. Archambeault, J. Rao, and P. Rohatgi, “The em side-
channel(s):attacks and assessment methodologies,” 12 2008.

M. Tehranipoor, N. Nalla Anandakumar, and F. Farahmandi, EM Side-
Channel Attack on AES, pp. 163—-181. Cham: Springer International
Publishing, 2023.

R. Wang, H. Wang, and E. Dubrova, “Far field em side-channel attack
on aes using deep learning,” in Proceedings of the 4th ACM Workshop
on Attacks and Solutions in Hardware Security, ASHES 20, (New York,
NY, USA), p. 35-44, Association for Computing Machinery, 2020.
Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microarchitec-
tural timing attacks and countermeasures on contemporary hardware,”
Journal of Cryptographic Engineering, vol. 8, pp. 1-27, Apr 2018.

P. Kaushik and D. Majumdar, “Timing attack analysis on aes on modern
processors,” pp. 462-465, 09 2017.

A. Tria and H. Choukri, Invasive Attacks, pp. 623-629. Boston, MA:
Springer US, 2011.

M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” IEEE Design Test of Computers, vol. 27,
no. 1, pp. 10-25, 2010.

S. Ranjani and N. Devi, “Malicious hardware detection and design for
trust: An analysis,” 2017.

Y. Jin and Y. Makris, “Hardware trojan detection using path delay
fingerprint,” pp. 51-57, 07 2008.

A. Das, G. Memik, J. Zambreno, and A. Choudhary, “Detect-
ing/preventing information leakage on the memory bus due to malicious
hardware,” pp. 861-866, 03 2010.

C. Dong, Y. Xu, X. Liu, F. Zhang, G. He, and Y. Chen, “Hardware
trojans in chips: A survey for detection and prevention,” Sensors (Basel,
Switzerland), vol. 20, 09 2020.

E. Oriero, F. Khalid, and H. Syed, “Demist: Detection and mitigation
of stealthy analog hardware trojans,” in Proceedings of the 12th
International Workshop on Hardware and Architectural Support for
Security and Privacy, HASP °23, (New York, NY, USA), p. 47-55,
Association for Computing Machinery, 2023.

D. Sisejkovic and R. Leupers, Hardware Trojans, pp. 13-24. Cham:
Springer International Publishing, 2023.

H. Noman, “Code injection attacks in wireless-based internet of things
(iot): A comprehensive review and practical implementations,” Sensor
Review, vol. 23, 06 2023.

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

IR

J. V. D. Ham, “Toward a better understanding of “cybersecurity”;
Digital Threats, vol. 2, jun 2021.

E. Dushku, J. @stergaard, and N. Dragoni, “Memory offloading for
remote attestation of multi-service iot devices,” Sensors, vol. 22,
p. 4340, 06 2022.

P. Maniriho, A. N. Mahmood, and M. J. M. Chowdhury, “A study on
malicious software behaviour analysis and detection techniques: Tax-
onomy, current trends and challenges,” Future Generation Computer
Systems, vol. 130, pp. 1-18, 2022.

M. Azeem, D. Khan, S. Iftikhar, S. Bawazeer, and M. Alzahrani,
“Analyzing and comparing the effectiveness of malware detection:
A study of machine learning approaches,” Heliyon, vol. 10, no. 1,
p. €23574, 2024.

D. Mitropoulos and D. Spinellis, “Fatal injection: A survey of mod-
ern code injection attack countermeasures,” PeerJ Computer Science,
vol. 3, p. el36, 11 2017.

L. Davi and A.-R. Sadeghi, Building Control-Flow Integrity Defenses,
pp. 27-54. Cham: Springer International Publishing, 2015.

K. Anjaria and A. Mishra, “Information leakage analysis of software:
How to make it useful to it industries?,” Future Computing and
Informatics Journal, vol. 2, no. 1, pp. 10-18, 2017.

J. Heusser and P. Malacaria, “Quantifying information leaks in soft-
ware,” pp. 261-269, 12 2010.

I. Herrera Montano, J. J. Garcia Aranda, J. Ramos Diaz,
S. Molina Cardin, I. de la Torre Diez, and J. J. P. C. Rodrigues, “Survey
of techniques on data leakage protection and methods to address the
insider threat,” Cluster Computing, vol. 25, Dec 2022.

P. Falcarin, M. Baldi, and D. Mazzocchi, “Software tampering detection
using aop and mobile code,” 04 2004.

B. Yu, M. Hu, Z. Sun, and B. Chen, “Data tampering attack design
for ros-based object detection and tracking robotic platform,” in 2021
International Conference on Control, Automation and Information
Sciences (ICCAIS), pp. 159-164, 2021.

S. Sayeed, H. Marco-Gisbert, I. Ripoll, and M. Birch, “Control-flow
integrity: Attacks and protections,” Applied Sciences, vol. 9, no. 20,
2019.

J. M. Borky and T. H. Bradley, “Protecting information with cyberse-
curity,” in Effective Model-Based Systems Engineering, pp. 345-404,
Cham: Springer International Publishing, 2019.

F. Cremer, B. Sheehan, M. Fortmann, A. N. Kia, M. Mullins, F. Mur-
phy, and S. Materne, “Cyber risk and cybersecurity: a systematic review
of data availability,” Geneva Pap. Risk Insur. Issues Pract., vol. 47,
pp. 698-736, Feb. 2022.

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in 2019 IEEE
Symposium on Security and Privacy (SP), pp. 1-19, 2019.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in 27th USENIX
Security Symposium (USENIX Security 18), (Baltimore, MD), pp. 973—
990, USENIX Association, Aug. 2018.

V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice,
G. Vigna, H. Bos, K. Razavi, and C. Giuffrida, “Drammer: Deter-
ministic rowhammer attacks on mobile platforms,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’16, (New York, NY, USA), pp. 1675-1689, Association
for Computing Machinery, 2016.

G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T.-H. Lai, “Sgxpectre:
Stealing intel secrets from sgx enclaves via speculative execution,”
IEEE Security Privacy, vol. PP, 01 2020.

H. Bar-El, “Security implications of hardware vs software crypto-
graphic modules,” 01 2002.

J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx,
“Foreshadow: extracting the keys to the intel sgx kingdom with tran-
sient out-of-order execution,” SEC’18, (USA), pp. 991-1008, USENIX
Association, 2018.

J. Bellardo and S. Savage, “802.11 Denial-of-Service attacks: Real vul-
nerabilities and practical solutions,” in /2th USENIX Security Sympo-
sium (USENIX Security 03), (Washington, D.C.), USENIX Association,
Aug. 2003.

D. Chaudhary, K. Bhushan, and B. B. Gupta, “Survey on ddos attacks
and defense mechanisms in cloud and fog computing,” International

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]
[82]

[83]

[84]
[85]
[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

Journal of E-Services and Mobile Applications, vol. 10, pp. 61-83, 07
2018.

T. Gilmont, J.-D. Legat, and J.-J. Quisquater, “Enhancing security in
the memory management unit,” in Proceedings 25th EUROMICRO
Conference. Informatics: Theory and Practice for the New Millennium,
vol. 1, pp. 449-456 vol.1, 1999.

A. Saravanan, S. Sathyabama, S. Kadry, and L. Ramasamy, “A new
framework to alleviate ddos vulnerabilities in cloud computing,” In-
ternational Journal of Electrical and Computer Engineering, vol. 9,
pp. 4163—4175, 10 2019.

C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “Ddos in the iot:
Mirai and other botnets,” Computer, vol. 50, no. 7, pp. 80-84, 2017.
Y. Al-Hadhrami and F. K. Hussain, “Ddos attacks in iot networks: a
comprehensive systematic literature review,” World Wide Web, vol. 24,
pp. 971-1001, May 2021.

E. Kim and H.-K. Choi, “Security analysis and bypass user authen-
tication bound to device of windows hello in the wild,” Security and
Communication Networks, vol. 2021, pp. 1-13, 07 2021.

D. Ray and J. Ligatti, “Defining code-injection attacks,” vol. 47,
pp. 179-190, 01 2012.

A. Francillon and C. Castelluccia, “Code injection attacks on harvard-
architecture devices,” Proceedings of the 15th ACM conference on
Computer and communications security, 2008.

S. Schaik, M. Minkin, A. Kwong, D. Genkin, and Y. Yarom, “Cacheout:
Leaking data on intel cpus via cache evictions,” pp. 339-354, 05 2021.
Y. Oyama and A. Yonezawa, “Prevention of code-injection attacks by
encrypting system call arguments,” 04 2006.

M. Maniatakos, “Privilege escalation attack through address space
identifier corruption in untrusted modern processors,” in 2013 8th
International Conference on Design Technology of Integrated Systems
in Nanoscale Era (DTIS), pp. 161-166, 2013.

A. Ahmed. 2021.

G. Khawaja, Windows Privilege Escalation, pp. 273-304. 2021.

J. Antunes, N. Neves, and P. Verissimo, “Detection and prediction of
resource-exhaustion vulnerabilities,” pp. 87-96, 11 2008.

J. Antunes, N. F. Neves, and P. J. Verissimo, “Detection and prediction
of resource-exhaustion vulnerabilities,” in 2008 19th International
Symposium on Software Reliability Engineering (ISSRE), pp. 87-96,
2008.

M. Elsabagh, D. Barbard, D. Fleck, and A. Stavrou, “On early detection
of application-level resource exhaustion and starvation,” Journal of
Systems and Software, vol. 137, pp. 430—447, 2018.

S. Alhusayni and D. Alsuwat, “The buffer overflow attack and how to
solve buffer overflow in recent research,” vol. 2, pp. 5-11, 10 2020.
M. A. Butt, Z. Ajmal, Z. I. Khan, M. Idrees, and Y. Javed, “An in-depth
survey of bypassing buffer overflow mitigation techniques,” Applied
Sciences, vol. 12, no. 13, 2022.

“System memory protection and vulnerability assessment in presence
of software attacks,” 2021.

C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic evaluation of
transient execution attacks and defenses,” in Proceedings of the 28th
USENIX Conference on Security Symposium, SEC’19, (USA), pp. 249—
266, USENIX Association, 2019.

V. Srihith Indla, A. Donald, T. Aditya, T. A. Srinivas, D. Anjali Reddy,
and A. Chandana, “Firmware attacks: The silent threat to your iot
connected devices,” International Journal of Advanced Research in
Science, Communication and Technology, vol. 3, pp. 2581-9429, 04
2023.

A. Hoeller and R. Toegl, “Trusted platform modules in cyber-physical
systems: On the interference between security and dependability,” in
2018 IEEE European Symposium on Security and Privacy Workshops
(EuroSPW), pp. 136-144, 2018.

J. D. Osborn and D. C. Challener, “Trusted platform module evolution,”
Johns Hopkins APL Technical Digest (Applied Physics Laboratory),
vol. 32, no. 2, pp. 536-543, 2013.

W. Zheng, Y. Wu, X. Wu, C. Feng, Y. Sui, X. Luo, and Y. Zhou, “A
survey of intel sgx and its applications,” Frontiers of Computer Science,
vol. 15, 06 2021.

S. Mavrovouniotis and M. Ganley, “Hardware security modules,”
Secure Smart Embedded Devices, Platforms and Applications, pp. 383—
405, 06 2013.

M. Sommerhalder, Hardware Security Module, pp. 83-87.
Springer Nature Switzerland, 2023.

Cham:

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]
[119]

[120]

[121]

[122]

[123]

N. Haimbala, Avoiding Dark Cloud: Secure Storage and Trusted
Computing. PhD thesis, 09 2016.

K. Malinka, O. Hujndk, P. Hanacek, and L. Hellebrandt, “E-banking
security study - 10 years later,” IEEE Access, vol. 10, pp. 1-1, 01 2022.
L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund,
S. Niirnberger, and A.-R. Sadeghi, “Poster: control-flow integrity
for smartphones,” in Conference on Computer and Communications
Security, 2011.

L. Feng, J. Huang, J. Huang, and J. Hu, “Toward taming the overhead
monster for data-flow integrity,” ACM Trans. Des. Autom. Electron.
Syst., vol. 27, nov 2021.

T. Lu and J. Wang, “Data-flow bending: On the effectiveness of data-
flow integrity,” Computers Security, vol. 84, pp. 365-375, 2019.

N. Stojanovski, M. Gusev, D. Gligoroski, and S. Knapskog, “Bypassing
data execution prevention on microsoftwindows xp sp2,” in The Sec-
ond International Conference on Availability, Reliability and Security
(ARES’07), pp. 1222-1226, 2007.

S. Sayeed, H. Marco-Gisbert, I. Ripoll, and M. Birch, “Control-flow
integrity: Attacks and protections,” Applied Sciences, vol. 9, no. 20,
2019.

T. Mishra, T. Chantem, and R. Gerdes, “Survey of control-flow integrity
techniques for real-time embedded systems,” ACM Trans. Embed.
Comput. Syst., vol. 21, oct 2022.

N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler,
and M. Payer, “Control-flow integrity: Precision, security, and perfor-
mance,” ACM Comput. Surv., vol. 50, apr 2017.

M. Klanovicz Ferreira, H. Freitas, and P. Navaux, “From intel vt-
X to mips: An archc-based model to understanding the hardware
virtualization support,” 06 2008.

Q. Yan, Y. Li, T. Li, and R. Deng, “Insights into malware detection
and prevention on mobile phones,” vol. 58, pp. 242-249, 12 2009.
M. Grisafi, M. Ammar, and B. Crispo, “On the (in)security of memory
protection units : A cautionary note,” in 2022 IEEE International
Conference on Cyber Security and Resilience (CSR), pp. 157-162,
2022.

O. Stecklina, P. Langendoerfer, and H. Menzel, “Design of a tailor-
made memory protection unit for low power microcontrollers,” 06
2013.

L. Bossuet and A. Cherkaoui, “Hardware access control in constrained
environments,” 10 2014.

N. Anciaux, L. Bouganim, and P. Pucheral, “A hardware approach for
trusted access and usage control,” 01 2008.

K. Albulayhi, A. Abuhussein, F. Alsubaei, and F. T. Sheldon, “Fine-
grained access control in the era of cloud computing: An analytical
review,” in 2020 10th Annual Computing and Communication Work-
shop and Conference (CCWC), pp. 0748-0755, 2020.

J. Li and X. Chen, “Fine-grained access control system based on out-
sourced attribute-based encryption,” in Computer Security — ESORICS
2013, pp. 592-609, 2013.

S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable,
and fine-grained data access control in cloud computing,” in 2010
Proceedings IEEE INFOCOM, pp. 1-9, 2010.

R. Zhang, H. Ma, and Y. Lu, “Fine-grained access control system based
on fully outsourced attribute-based encryption,” Journal of Systems and
Software, vol. 125, pp. 344-353, 2017.

T. Martin, ed., Chapter 4 - Cortex Microcontroller Software Interface
Standard, Newnes, 2016.

J. Chang, C. Liu, and J.-L. Gaudiot, “Hardware acceleration for
cryptography algorithms by hotspot detection,” vol. 7861, 05 2013.
E. G. AbdAllah, Y. R. Kuang, and C. Huang, “Advanced encryption
standard new instructions (aes-ni) analysis: Security, performance, and
power consumption,” in Proceedings of the 2020 12th International
Conference on Computer and Automation Engineering, ICCAE 2020,
(New York, NY, USA), pp. 167-172, Association for Computing
Machinery, 2020.

L. Leonardi, G. Lettieri, P. Perazzo, and S. Saponara, “On the hardware-
software integration in cryptographic accelerators for industrial iot,”
Applied Sciences, vol. 12, no. 19, 2022.

R. Abdulhammed, M. Faezipour, and K. Elleithy, “Network intrusion
detection using hardware techniques: A review,” pp. 1-7, 04 2016.
M. Thanoun, Analysis and Design of Network Interface Card for
Computer Network Using Network Processor and Simevent Technique,
Ph.D. Thesis Authors Supervised by Assistant Professor Dr. A.LA.

[124]

[125]

[126]

[127]

[128]

[129]

Jabbar Mohammed Younis Thanoun Publication date 2011 Institution
University of Mosul. PhD thesis, 07 2011.

H. Hellmich, A. Erdogan, and T. Arslan, “Re-usable low power dsp ip
embedded in an arm based soc architecture,”

M. R. Muttaki, T. Zhang, M. Tehranipoor, and F. Farahmandi, “Ftc:
A universal sensor for fault injection attack detection,” in 2022 IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST), pp. 117-120, 2022.

M. Ebrahimabadi, S. S. Mehjabin, R. Viera, S. Guilley, J.-L. Danger,
J.-M. Dutertre, and N. Karimi, “Detecting laser fault injection attacks
via time-to-digital converter sensors,” in 2022 [EEE International
Symposium on Hardware Oriented Security and Trust (HOST), pp. 97—
100, 2022.

H. Wang, H. Li, F. Rahman, M. M. Tehranipoor, and F. Farahmandi,
“Sofi: Security property-driven vulnerability assessments of ics against
fault-injection attacks,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 41, no. 3, pp. 452-465, 2022.
M. R. Muttaki, B. Barker, M. Tehranipoor, and F. Farahmandi, “Ftc:
A universal low-overhead fault injection attack detection solution,”
pp- 386-391, 10 2022.

1. Articles, “Address space layout randomization,” 2021.

