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Abstract—In the face of escalating security threats in modern
computing systems, there is an urgent need for comprehensive
defense mechanisms that can effectively mitigate invasive, non-
invasive and interactive security vulnerabilities in hardware
and software domains. Individually, hardware and software
weaknesses and probable remedies have been practiced but
protecting a combined system has not yet been discussed in
detail. This survey paper provides a comprehensive overview of
the emerging field of Hardware-Software co-Protection against
Invasive and Non-Invasive Security Threats. We systematically
review state-of-the-art research and developments in hardware
and software security techniques, focusing on their integration to
create synergistic defense mechanisms. The survey covers a wide
range of security threats, including physical attacks, side-channel
attacks, and malware exploits, and explores the diverse strategies
employed to counter them. Our survey meticulously examines the
landscape of security vulnerabilities, encompassing both physical
and software-based attack vectors, and explores the intricate
interplay between hardware and software defenses in mitigating
these threats.Furthermore, we discuss the challenges and oppor-
tunities associated with Hardware-Software co-Protection and
identify future research directions to advance the field. Through
this survey, we aim to provide researchers, practitioners, and
policymakers with valuable insights into the latest advancements
and best practices for defending against complex security threats
in modern computing environments.

Index Terms—Hardware-Software co-Protection, Non-Invasive
Attacks, Invasive Attacks, Hardware-Software Interaction, IC
Security, Hardware Security

I. INTRODUCTION

In an era characterized by ubiquitous computing and in-
terconnected systems, ensuring the security and integrity
of computing environments [1], [2], [3] has emerged as a
paramount concern. The pervasive nature of modern comput-
ing infrastructures exposes them to an increasingly diverse
array of security threats [4], [5], ranging from physical attacks
[6], [7] on hardware components (e.g. Invasive and non-
Invasive attacks [8]) to sophisticated software exploits [9],
[10] targeting system vulnerabilities. In response to these
multifaceted threats, researchers and practitioners have turned
to a synergistic approach known as Hardware-Software co-
Protection [11], [12] to fortify computing systems against
both invasive and non-invasive security vulnerabilities. The

abstraction layers of hardware and software are displayed in
Figure 1
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The concept of Hardware-Software co-Protection embod-
ies the integration of hardware and software-based security
mechanisms, leveraging the strengths of each domain to create
robust defenses against a broad spectrum of threats. Hardware-
based defenses provide a solid foundation by implementing
secure hardware architectures, encryption primitives [14], [15],
and tamper-resistant technologies to safeguard critical system
components against physical attacks. This security primitives
in the hardware level can be incorporated in the software
domain to facilitate risk-free execution of software programs
[16], [17] . Meanwhile, software-based defenses employ tech-
niques such as secure boot mechanisms, memory protection,
and runtime monitoring to mitigate software vulnerabilities
and thwart malware exploits. Software level techniques for
security measurement [18] can be taken to construction of
hardware to make the hardware secure.

This survey paper presents a detailed exploration of the
Hardware-Software co-Protection paradigm against Invasive
and Non-Invasive Security Threats. By systematically examin-
ing the landscape of security vulnerabilities and the interplay
between hardware and software defenses, this survey aims to
provide a thorough understanding of the latest advancements
and best practices in this topic. Through an in-depth analysis
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System.

of invasive threats targeting hardware components, including
fault injection attacks [19], [20], [21] and reverse engineering
techniques, coupled with an examination of software-based
threats such as malware infections and side-channel attacks,
this survey elucidates the diverse challenges facing modern
computing systems. A framework for HW/SW co-ordination
and probable holistic protection against attacks from either

domain are shown in Figure 4.

The subsequent sections of this paper will discuss the

following topics.

o Overview of Security Threats in HW and SW Domain:

We will provide an in-depth examination of the current
landscape of hardware security threats facing computing
systems. This will include an analysis of both invasive
threats, such as physical tampering and hardware Trojans,
as well as non-invasive threats like software-based attacks
including malware, side-channel attacks [22], and cryp-
tographic vulnerabilities . By understanding the diverse
range of threats, the paper sets the stage for the necessity
of comprehensive protection mechanisms.

Threat model in SW and HW Domains Combined: When
a software runs into a hardware(e.g. RTL or gate level
design), each of the domains are not aware of others’
respective design properties or other quantities. We will
explore which vulnerabilities or threats may arise because
of lack of awareness of SW execution from hardware or
hardware execution from software.

For instance, it may happen that running a complex
design in software domain is causing excessive power
dissipation in a a particular part of the design. But
the hardware is unaware and unprotected against this.
Similarly, software is running without any awareness
from the hardware execution. These kind of security
vulnerabilities will be explored.

Insights from real-World instances and existing method-
ologies: Tt will draw insights from real-world research
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Fig. 3. HW-SW Attack Scenario and Possible co-Protection against them

papers to illustrate the effectiveness of hardware-software
co-protection approaches. By referencing findings and
case studies from reputable research publications, the
paper will provide concrete examples of how these ap-
proaches have been implemented and their impact on
enhancing security posture. This section will include
summaries of key findings, experimental results, and
comparative analyses from selected research papers.

e Analysis of Co-Protection Methodologies: This paper will

delve into various methodologies and techniques that
integrate both hardware and software defenses to mitigate
security threats effectively. This analysis will cover a
wide range of approaches including hardware sensor re-
sponse based compiler execution, hardware root of trust,
protection of software programs using hardware power
traces and hardware model of invasive and non-invasive
attacks, cryptographic accelerators, and software-based
intrusion detection systems. The paper will discuss the
strengths and limitations of each approach, highlighting
the need for comprehensive solutions.

We will categorize
hardware-software co-protection strategies based on
their underlying principles and deployment scenarios.
This categorization may include classifications such
as prevention techniques, detection mechanisms, and
mitigation strategies. Additionally, the paper will
categorize solutions based on the targeted threat
models, such as protecting against physical attacks,
network-based attacks, or insider threats.

o Running and Future Working Directions and Challenges:

Lastly, the paper will discuss future directions and
challenges in the development and implementation of
hardware-software co-protection mechanisms. This may
include emerging trends such as the integration of ma-
chine learning and Al-based approaches, challenges in
securing emerging technologies like IoT and cloud com-
puting, and the need for standardization and interoper-
ability of security solutions.
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II. HARDWARE NON-INVASIVE AND INVASIVE SECURITY
VULNERABILITIES:

A. Hardware Non-Invasive Security Threats

Non-invasive hardware security vulnerabilities refer to
weaknesses in electronic systems that can be exploited without
physically altering the hardware [24]. These vulnerabilities
often exploit unintended behaviors or characteristics of the
hardware components themselves, such as electromagnetic
emissions, power consumption, or timing variations. Principal
types of non-Invasive attacks consist of fault injection attacks
and side channel attacks.

1) Fault Injection Attacks:: These attacks involve inducing
faults or errors in a device’s operation to compromise its
security. Through the exploitation of weaknesses within hard-
ware design or the manufacturing process, attackers can inject
faults such as voltage spikes, clock glitches, or electromagnetic
interference. These flaws may result in unforeseen system
behaviors, crashes, or breaches in security, posing a potential
threat to the confidentiality, integrity, and availability of the
system.
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Fig. 5. Representation of negative voltage glitch [25]

o Voltage glitch attack: One major fault injection attack
is Voltage glitching meaning manipulating the device’s
power supply to induce faults and trigger unexpected
behaviors [26], [27]. By manipulating the voltage levels
supplied to the device during its operation(please refer to
Figure 5), attackers can induce glitches or faults in the
system, causing it to malfunction or execute unintended
commands. These attacks are often meticulously timed to

occur during critical moments, such as cryptographic op-
erations or authentication processes, enabling attackers to
bypass security measures or extract sensitive information.

Taiiteh T-Tailitch
«—>c—>

Faulty
Clock
Signal
Inner : Correct / . \/Incorrect Incorrect
State ' Staten-1 \state n+1 State n+2

«—— > Fault Propagation———>»

Normal Timi

iming
CIO_CK Violation
Period

Fig. 6. Representation of clock glitch and fault-injection [28]

e Clock glitch attack: Clock glitching means introducing
glitches into the device’s clock signal (please refer to
Figure 6) to disrupt its normal operation [29], [30] and
potentially exploit vulnerabilities. By manipulating the
clock signals that govern the device’s operations, attack-
ers can introduce glitches or disturbances in the timing
sequence, causing the device to behave unpredictably or
execute unintended instructions(please refer to Figure 6).

e Optical fault Injection: Using laser or light pulses to
induce faults in the device’s components [31] leading to
security compromises. In this type of attack, a focused
laser beam is precisely targeted at specific components
within the device, such as integrated circuits or memory
cells. By introducing localized heat or inducing electro-
magnetic interference, the laser can disrupt the normal
operation of the targeted components [32], causing faults
or errors in their behavior. These faults can be exploited
by attackers to manipulate the device’s operation, extract
confidential data, or bypass security measures.
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attack. [33]

2) Side Channel Attacks:: These attacks exploit informa-
tion leaked by a device during its normal operation [34], such
as power consumption, electromagnetic radiation, or timing
variations. Common types include:

o Power Analysis Attacks: A Power Analysis Side-Channel

Attack involves exploiting fluctuations in the power usage



of electronic devices during their functioning to deduce
confidential information, like cryptographic keys or pro-
cessed data [35], [36], [37]. By monitoring and analyzing
these power consumption patterns, attackers can infer
details about the device’s internal operations, such as
executed instructions or variable values. This type of
attack is especially concerning for embedded systems
and cryptographic devices due to its potential for remote
execution without physical access.

o FElectromagnetic (EM) Side-Channel Attacks: An Elec-
tromagnetic (EM) side-channel attack is a sophisticated
method used to exploit unintentional emissions of elec-
tromagnetic radiation or electrical signals from electronic
devices during their operation. By analyzing these emis-
sions, attackers can glean sensitive information [38], [39],
[40] such as cryptographic keys or data being processed
by the device, without directly accessing the device
itself. EM side-channel attacks pose a significant threat
to the security of embedded systems, particularly those
handling confidential or sensitive information, and require
specialized equipment and expertise to execute.

o Timing Attacks: Timing variations in a device’s operations
can be exploited to deduce information about crypto-
graphic computations or sensitive processes [41], [42].

B. Hardware Invasive Security Threats

Invasive hardware attacks involve physically tampering with
electronic devices to exploit vulnerabilities or compromise
their security [43]. Unlike non-invasive attacks that rely on
analyzing the device’s behavior or emissions without altering
its physical structure, invasive attacks directly manipulate the
hardware components. These attacks typically require physical
access to the device, allowing attackers to directly interact with
its internal circuitry.

Hardware Trojan attacks [44], [45], [46] involve the clan-
destine insertion of malicious circuitry, known as Trojans, into
integrated circuits (ICs) during the design or manufacturing
stages. These Trojans are designed to remain dormant under
normal operating conditions but can be triggered remotely or
under specific circumstances to perform malicious activities,
such as leaking sensitive information [47], causing system
malfunctions, or providing unauthorized access. Hardware
Trojans pose significant challenges to the integrity and se-
curity of electronic systems [48], as they can evade tradi-
tional software-based security measures and remain undetected
during functional testing. Detecting and mitigating hardware
Trojans [49] require specialized techniques, including physical
inspection, side-channel analysis, and formal verification, to
ensure the trustworthiness of hardware components and pre-
vent potential exploitation.

Attackers physically modify the device’s circuitry at the chip
level to introduce backdoors, modify functionality, or bypass
security mechanisms. This can involve techniques such as laser
cutting, wire bonding, or focused ion beam (FIB) milling.
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Fig. 8. Hardware Trojan [50]
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ITI. SOFTWARE EXECUTION VULNERABILITIES

Software program security threats encompass a broad spec-
trum of risks and vulnerabilities that can compromise the con-
fidentiality, integrity, and availability of software systems [52].
These threats can originate from various sources, including
malicious actors, software bugs, design flaws, and insecure
coding practices. Understanding and mitigating these threats
are essential for ensuring the trustworthiness and reliability
of software applications. Below are some common types of
software program security threats:

-
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@ Hijack control-flow
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Fig. 10. Example of code-injection attack. The CFG represents the accurate
execution flows of a harmless software, where the graph nodes(1-5) indicate a
software instruction. A code-injection attacker performs the actions 1-3. [53]

e Malware: Malicious software, such as viruses, worms,
Trojans, and ransomware, pose significant threats to
software security [54]. Malware can infiltrate systems
through various vectors, including email attachments, ma-
licious websites, and infected software downloads. Once
installed, malware can steal sensitive information, disrupt
system operations, and provide unauthorized access to



sw
Vulnerabilities

{

Data Flow Violations

' } .

Control Flow
Violations

| ! ] !

Injection Buffer Format String Integer oot Injection Backdoor/Trojan 0 "
[ Attacks ‘ \ GCrai ‘ . over flo Code Injection Attacks e Denial of Service
I
¥ v 1] Y ¥ ¥
SQL Injection Command Injection Cros_s -_Slte LDf\PI%(ML Remote ?ode Arbitrary Fode
Scripting Injection Execution Execution

Fig. 11. SW Vulnerabilities and Attacks for data and control flow violations.

attackers [55]. A malicious code injection process can be
seen in Figure 9.

Code Injection Attacks: Injection attacks like SQL in-
jection and cross-site scripting (XSS), can probe for
vulnerabilities in software input validation mechanisms.
Attackers inject malicious code or commands into input
fields [56], allowing them to manipulate the behavior of
the software and access sensitive data stored in databases
or execute unauthorized actions on behalf of legitimate
users. By inserting bad code, adversaries can also attempt
to steal data and/or control flow of the software design
[53], which can be seen in Figure 10.

Authentication and Authorization Flaws: Weak or inad-
equate authentication and authorization mechanisms can
lead to unauthorized access to sensitive data and function-
alities. Common vulnerabilities include weak passwords,
insufficient password policies, insecure session manage-
ment, and privilege escalation exploits. Attackers exploit
these flaws to bypass validation controls and acquire
illegal access to critical system resources.
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Fig. 12. Control Flow Integrity [57]

Information Leakage: Information leakage vulnerabilities
occur when sensitive data is inadvertently exposed to
unauthorized parties [58], [59]. This can happen through
various channels, including error messages, log files,
configuration files, and network transmissions. Attackers
can exploit information leakage vulnerabilities to gather
intelligence about system configurations, user behaviors,
and application logic, facilitating further attacks [60].

Data Exfiltration Attacks: Data exfiltration attacks involve
unauthorized extraction or leakage of sensitive data from
a software program. Attackers may exploit vulnerabilities
in data handling processes, such as insecure data stor-
age, weak encryption, or inadequate access controls, to
steal sensitive information. By compromising data flow
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Fig. 13. Data Leakage Resources.

integrity, attackers can extract confidential data, trade
secrets, or personally identifiable information (PII) from
the target system.

e Data Tampering: Data tampering attacks involve unau-
thorized modification or manipulation of data stored or
transmitted by software systems. Attackers can tamper
with data to alter its integrity, accuracy, or authenticity
[61], leading to erroneous decisions, financial fraud, or
privacy breaches. Common targets of data tampering
attacks include databases, configuration files, digital doc-
uments, and network communications [62].

IV. THREAT MODEL: SW-HW AFFECTING EACH OTHER

When there is a specific security attack in hardware domain,
it often occurs that software execution is unaware of hardware
vulnerabilities and vice versa. Software and hardware being
unaware of each others’ execution gives rise to several vul-
nerabilities to each domain.

How hardware attacks affect software execution:

e Data breaches: Hardware vulnerabilities, such as side-
channel attacks or insecure memory access, can compro-
mise the confidentiality of sensitive data processed by
software applications. Attackers may exploit weaknesses
in hardware components to gain unauthorized access to
data stored in memory [64] or transmitted across the sys-
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tem, jeopardizing the privacy of users and organizations
[65].

Hardware vulnerabilities can significantly contribute to
the emergence of software data breaches by providing
attackers with exploitable entry points into systems.
These vulnerabilities often stem from weaknesses in the
design, implementation, or configuration of hardware
components, such as processors, memory modules, or
peripheral devices. Attackers can exploit these vulnerabil-
ities to acquire uninvited access to security-critical data
or manipulate the behavior of software systems.

if <in bounds>

Fig. 15. Spectre attack scenario. Until the bounds check yields a definitive
outcome, the branch predictor proceeds with the anticipated branch target,
enhancing overall execution speed when predictions are accurate. However, in
cases where the bounds check is mistakenly predicted as true, there’s potential
for secret information leakage under specific circumstances. [66].
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Fig. 16. Spectre attack scenario. Branch predictor makes wrong prediction
according to training data from adversaries [66].

An instance of this attack is when attackers leverage
hardware vulnerabilities to execute malicious code or ex-
ploit software bugs that would otherwise be inaccessible.

For example, hardware vulnerabilities like speculative
execution flaws (e.g., Spectre [66], Meltdown [67] and
deterministic rowhammer [68]) can be exploited to bypass
software-based security measures and access privileged
information stored in memory. Similarly, vulnerabilities
in hardware-based encryption or authentication mecha-
nisms can undermine the security of software applications
that rely on these mechanisms for data protection.

Exception Handling/
Suppression

Transient Accessed

Secret @

Instructions

Microarchitectural

State Change

Transfer|(Covert Channel)

Recovered

Secret Q=

Recovery

]

1

| Architectural
| State
]

Fig. 17. The Meltdown exploit leverages exception handling or suppression
to execute a sequence of temporary instructions. These temporary instructions
acquire a secret value that persists and alter the microarchitectural state of the
processor accordingly. This establishes one end of a microarchitectural covert
channel. The recipient end reads the microarchitectural state, converting it to
architectural, and retrieves the secret value. [67].

o Integrity compromise: Hardware-level attacks, such as
firmware tampering or hardware Trojans, can undermine
the integrity of software execution by injecting malicious
code or altering critical system functions. This can lead
to the execution of unauthorized commands, modification
of software binaries, or manipulation of system behavior,
posing significant risks to the reliability and trustworthi-
ness of software applications.

Hardware vulnerabilities can serve as the foundation
for software integrity violations, undermining the trust-
worthiness of software systems and leading to potential
security breaches. These vulnerabilities may arise from
flaws in the design, implementation, or configuration of
hardware components, such as processors, memory mod-
ules, or input/output devices. Attackers can exploit these
vulnerabilities to manipulate the execution environment
of software applications, compromise the integrity of
data, or subvert critical security mechanisms.

For instance, attackers leveraging hardware vulnerabil-
ities to inject malicious code into software systems or
modify existing code to alter program behavior. For
example, vulnerabilities in hardware-based memory pro-
tection mechanisms can enable attackers to overwrite
critical system data or execute arbitrary code in privi-
leged contexts, leading to unauthorized access or control
over software resources [69], [66]. Similarly, flaws in
hardware-based encryption or authentication mechanisms
can be exploited to bypass software-based security con-



trols and tamper with data integrity, compromising the
trustworthiness of software operations [70], [71].

o Availability Issues: Hardware-based security threats can
disrupt the availability of software services by exploit-
ing vulnerabilities in underlying hardware infrastruc-
ture. Denial-of-Service (DoS) attacks [72] targeting hard-
ware components, such as network interface controllers
or memory modules, can degrade system performance,

privilege escalation [66], compromising the security and
stability of software systems.

Some hardware vulnerabilities, such as buffer overflows
or memory corruption flaws in processors, can directly
impact software execution. Attackers can craft malicious
inputs or code sequences that exploit these vulnerabilities
to gain unauthorized access [81], execute arbitrary code,
or manipulate system behavior.

cause system crashes, or render software applications How software attacks affect hardware execution:

inaccessible, resulting in service disruptions and financial Software attacks can significantly impact hardware execu-
losses. tion by exploiting vulnerabilities in software components to
A frequent occurrence involves attackers leveraging hard- manipulate or compromise the behavior of underlying hard-
ware vulnerabilities to exhaust system resources like ware. These attacks can manifest in various forms, including:

CPU, memory, or network bandwidth, inundating the e Malware Exploitation: Malicious software such as

system with an abundance of traffic or nefarious requests.
For instance, weaknesses in network hardware or pro-
tocols may be utilized to produce extensive volumes of
network activity [73], overwhelming network connections
and inducing congestion or packet loss. Likewise, defi-
ciencies in memory management units (MMUSs) [74] or
memory controllers may prompt memory depletion or
fragmentation, thereby precipitating system instability or
failures.
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Fig. 18. A simple distributed denial of service attack scenario. [75].

Furthermore, compromised hardware components can
serve as attack vectors for launching distributed denial-
of-service (DDoS) attacks [72], [76], [77], where multiple
compromised devices coordinate to flood target systems
with malicious traffic. For instance, attackers may exploit
vulnerabilities in Internet of Things (IoT) devices or
embedded systems to create botnets capable of launching
massive DDoS attacks against internet-facing services,
disrupting their availability to legitimate users (Figure 18.
o Software Exploitation: Hardware vulnerabilities can serve
as entry points for exploiting software vulnerabilities,
enabling attackers to escalate privileges [66], [67], ex-
ecute arbitrary code, or bypass software-based security
mechanisms [78]. By exploiting weaknesses in hardware
architectures, attackers can launch sophisticated attacks,
such as buffer overflows, code injection [79], [80], or

buffer buffer stack
growth

viruses, worms, or Trojans can extract security weak-
nesses in operating systems or applications to acquire
unauthorized access to hardware resources. Once compro-
mised, the malware can manipulate hardware functional-
ity, disrupt system operations, or steal sensitive data.
Code Injection: Techniques like buffer overflows or in-
jection attacks enable attackers to inject malicious code
into running processes. If successful, this injected code
can execute arbitrary commands, manipulate hardware
registers, or even reconfigure hardware settings, leading
to system instability or unauthorized access.
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Fig. 19. Code injection attack scenario using stack. [82].

o Privilege Escalation: Software vulnerabilities those allow

unauthorized users to escalate their privileges can enable
attackers to gain elevated access to hardware resources.
With escalated privileges, attackers can manipulate hard-
ware configurations, access restricted data, or install
malicious firmware, compromising the integrity of the
hardware platform [83].

Windows/Linux kernel Privilege escalation: This vulnera-
bility allowed attackers to escalate privileges on Windows
or Linux systems [84] by exploiting a flaw in the kernel.
By running a specially crafted application, an attacker
could execute arbitrary code with elevated privileges,
potentially gaining unauthorized access to hardware re-
sources and compromising system integrity [85].

o Denial-of-Service (DoS) Attacks: DoS attacks target-

ing software vulnerabilities can overwhelm hardware
resources with excessive requests or malicious traffic.
Software vulnerabilities can lead to unauthorized hard-
ware Denial of Service (DoS) attacks through various
mechanisms. Here’s how:
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— Resource Exhaustion: Vulnerabilities in software
systems can be exploited to consume excessive sys-
tem resources, such as CPU, memory, or network
bandwidth. Attackers can leverage these vulnerabil-
ities to launch DoS attacks by flooding the system
with requests or executing resource-intensive oper-
ations [86], leading to the exhaustion of hardware
resources and causing legitimate users to be denied
access to the system [87]. Significance of detection
[88] and prevention of resource exhaustion attack is
paramount.

— Memory Corruption: Software vulnerabilities, such
as buffer overflows [89], [90] or memory corruption
flaws, can result in memory leaks or memory corrup-
tion issues. Attackers can exploit these vulnerabilities
to consume system memory excessively [91], leading
to memory depletion and system instability. This can
cause hardware components to become unresponsive
or malfunction, resulting in a Denial of Service for
legitimate users.

— Packet Amplification: Vulnerabilities in network pro-
tocols or network-facing software can be exploited
to amplify network traffic, leading to network con-
gestion and service disruption. Attackers can manip-
ulate network packets to increase their size or fre-
quency, leveraging vulnerable software components
to amplify the impact of their attacks on hardware
resources, such as network switches, routers, or
firewalls.

— Interrupt Storms: Software vulnerabilities in device
drivers or kernel components can lead to the genera-
tion of excessive hardware interrupts or interrupts
storms. Attackers can exploit these vulnerabilities
to trigger a large number of hardware interrupts,
overwhelming the system’s interrupt handling ca-
pabilities and causing hardware devices to become
unresponsive or enter into a degraded state, resulting
in a Denial of Service for legitimate users.

— Race Conditions: Software vulnerabilities those re-
sult in race conditions or concurrency issues can be
exploited to disrupt the normal operation of hardware
components. Attackers can manipulate the timing or
sequence of software operations to create race con-
ditions [92], [66], leading to unpredictable behavior
in hardware devices or systems. This can result in
hardware resources being locked or unavailable for
legitimate users, causing a Denial of Service [76].

o Firmware Exploitation: Vulnerabilities in firmware, such
as BIOS or device drivers, can be exploited to com-
promise hardware functionality. Attackers can modify
firmware settings, implant rootkits, or disable security
features, undermining the integrity and security of the
hardware platform [93].

o Side-Channel Attacks:

Software side-channel attacks, such as timing attacks or
cache-based attacks while primarily targeting vulnera-
bilities within software, can also precipitate significant
issues in hardware components. These attacks exploit the
unintended leakage of information from software exe-
cution, often exploiting the underlying architecture and
implementation of hardware. For instance, speculative
execution [66], a performance optimization technique in
modern processors, can inadvertently expose sensitive
data through timing or cache-based side channels. This
exposure can lead to a myriad of problems in hard-
ware, including compromised confidentiality, integrity,
and availability.

V. EXISTING TECHNIQUES FOR HARDWARE SOFTWARE
CO-PROTECTION:

A. Hardware-based Security Mechanisms:

Hardware-based security features such as Trusted Platform
Modules (TPM) [94], [95], Secure Enclaves (e.g., Intel SGX)
[96], and Hardware Security Modules (HSM) [97], [98]
provide a secure foundation for software execution. These
components offer secure storage, cryptographic operations,
and isolation mechanisms to protect sensitive data and code.

A Trusted Platform Module (TPM) operates as a secure
cryptoprocessor that provides a hardware-based approach to
managing and protecting cryptographic keys and other sen-
sitive data. At its core, the TPM is designed to carry out
cryptographic operations and securely store keys that protect
information [94]. When a system with a TPM starts up,
the module conducts a series of integrity checks to ensure
that the system has not been tampered with. This process,
known as the Trusted Boot (tBoot), involves validating each
component of the startup process before it is loaded, ensuring
that only trusted software is executed. The TPM can generate
cryptographic keys that remain within the device; these keys
can be used for various security functions but cannot be
extracted by software. Additionally, the TPM can encrypt and
decrypt data using these keys, providing secure storage that is
resistant to external software attacks [95].
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The TPM also supports remote attestation, creating a virtu-
ally tamper-proof environment. This feature allows the TPM
to provide a cryptographic report of the hardware and software
configuration of the host system to a remote verifier, ensuring
that the system is secure and has not been altered. Furthermore,
the TPM can seal and bind data, encrypting it in such a way
that it can only be accessed on the same TPM with the same
hardware configuration. This ability makes TPMs invaluable
for scenarios requiring high levels of data security, such as
in enterprise environments where ensuring the confidentiality
and integrity of sensitive data is critical. Overall, the operation
of a TPM enhances the security of a computing system
by integrating hardware-based security measures that protect
against unauthorized access and tampering.

However, exiting TPM systems possess several drawbacks
including performance overhead, cost implications, complexity
in management, compatibility issues etc.
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Fig. 21. An example Return on Programming(ROP) attack. [101]

B. Software-hardened Hardware:

Software techniques such as Data Flow Integrity(DFI) [102],
[103] , Data Execution Prevention (DEP) [104], and Control
Flow Integrity (CFI) [105], [106], [107] can be implemented
to harden hardware against various attacks. These measures
make it more difficult for attackers to exploit vulnerabilities in
hardware components. But often they include code-redundancy
and data-redundancy.

An example control flow protection method is explained
in Figure 22. Adversaries manipulate the control flow of a
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(b) Hardware Security Module Architecture. [100]
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program by altering the destination addresses of indirect jump
or call instructions, thereby seizing control over the program’s
flow. To safeguard against such tampering, a linear encryption
technique, such as XOR encryption, encrypts the instructions
located at these target addresses, fortifying the integrity of the
program’s control flow.

When an indirect jump or call instruction is triggered, the
instructions at the destination addresses undergo decryption
using a decryption key generated through XOR encryption
of key2 (as shown in Figure 22) and the address of the call
site acquired from the PC register. As long as the program
adheres to the paths outlined in the original Control Flow
Graph (CFG), the decryption process will proceed accurately,
enabling the program to operate smoothly. However, deviating
from these paths may lead to a system error and failure of the
Jump-Oriented Programming (JOP) technique.
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Fig. 22. An example of protecting the control flow of a program encrypting
all first instructions at target addresses in the CFG. [101]

C. Hardware-assisted Sandboxing:

Hardware virtualization technologies such as Intel VT-x
[108] and AMD-V enable the creation of isolated execution
environments, or sandboxes, where untrusted software can run
safely. By leveraging hardware support for virtualization, these
sandboxes provide strong isolation between applications and
the underlying system.

Hardware-assisted sandboxing leverages specialized fea-
tures within the hardware architecture to enhance the security
and isolation of software applications. By utilizing hardware
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support, such as virtualization extensions in modern CPUs,
sandboxing can create isolated environments, known as sand-
boxes, where untrusted or potentially malicious code can run
safely without compromising the integrity of the host system.
These hardware features enable the efficient implementation of
sandboxing mechanisms, such as memory isolation, privileged
access controls, and secure execution environments. As a
result, hardware-assisted sandboxing offers robust protection
against various security threats, including malware, exploits,
and unauthorized access, thereby safeguarding sensitive data
and critical system resources.

D. Fine-grained Access Control:

Hardware-enforced access control mechanisms, such as
Memory Protection Units (MPUs) [110], [111] and Hardware-
based Access Control (HBAC) [112], [113], restrict access to
critical resources based on predefined security policies. These
mechanisms prevent unauthorized access and limit the impact
of software vulnerabilities.
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Fig. 24. A typical architecture of memory management unit. Memory
management or protection unit is used as a fine grained HW resource
distribution approach. [114]

The Memory Protection Unit (MPU) oversees processor
transactions, such as instruction fetches and data accesses, and
is capable of initiating a fault exception upon detecting an
access violation(Figure 25). The primary objective of MPU is

to restrict a process from accessing memory regions that have
not been specifically allocated to it.

At its core, the MPU operates by defining and enforcing
access permissions for various memory regions based on pre-
defined rules and configurations. These rules typically include
specifying the allowable types of access (e.g., read, write,
execute) and the range of memory addresses accessible to each
process or application.

When a processor executes instructions or accesses data in
memory, the MPU monitors these transactions and compares
them against the configured memory protection settings. If an
access violation is detected such as an attempt to read from
or write to a memory region that the process is not authorized
to access the MPU triggers a fault exception which interrupts
the normal flow of execution.

Fine-grained access control of hardware plays a crucial
role in reducing software security vulnerabilities by providing
granular control over the interactions between software com-
ponents and hardware resources [114]. By allowing admin-
istrators to define precise rules governing access to hardware
resources such as memory, input/output ports, and peripherals,
fine-grained access control restricts the ability of malicious
software to exploit hardware vulnerabilities for unauthorized
access or privilege escalation [115], [116] . This approach
enhances security by minimizing the attack surface exposed
to potential exploits and mitigating the impact of software
bugs or vulnerabilities that could otherwise be leveraged to
compromise system integrity [117]. Furthermore, fine-grained
access control facilitates the implementation of defense-in-
depth strategies, where multiple layers of security mechanisms
work together to protect against different types of threats,
thereby strengthening the overall resilience of the system
against cyberattacks.
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Fig. 25. Memory protection unit available in ARM-cortex M7. [118].

E. Hardware-accelerated Cryptography:

Hardware accelerators for cryptographic operations [119],
such as AES-NI and SHA extensions in modern CPUs [120],



improve the performance and efficiency of cryptographic
algorithms. By offloading cryptographic tasks to dedicated
hardware, these accelerators reduce the attack surface and
enhance overall system security.
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Fig. 26. Hardware architecture of a system with cryptographic accelerator.
[121].

Hardware-accelerated cryptography represents a powerful
approach to mitigating hardware and software security vulner-
abilities by offloading cryptographic operations to specialized
hardware components. By leveraging dedicated cryptographic
processing units or accelerators integrated into modern hard-
ware architectures, such as CPUs, GPUs, or dedicated crypto-
graphic co-processors, hardware-accelerated cryptography en-
hances the efficiency and security of cryptographic operations
while reducing the burden on software implementations. This
not only improves the overall performance of cryptographic
algorithms but also minimizes the exposure of sensitive cryp-
tographic keys and operations to potential software-based
attacks, such as side-channel attacks or malware exploits.
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Fig. 27. A crypto API stack. [121].

[ Network ]

For instance, when a user space application initiates a
cryptographic operation through the Crypto API, the request
is relayed to the kernel, which then determines whether to
execute it using hardware or software, based on a priority-
based hierarchy. While the Linux kernel itself provides a soft-
ware implementation as an alternative to OpenSSL, hardware
implementations typically take precedence due to their higher
priority. Applications utilizing this API remain oblivious to the
underlying method employed for cryptographic computation,

allowing for potential acceleration via either hardware or more
efficient software implementations, all without necessitating
modifications to their code. The sole requirement is the
inclusion of any new implementation into the existing priority
list.

F. Hardware-based Intrusion Detection and Prevention:

Hardware-based intrusion [122] detection and prevention
systems (IDPS) use specialized hardware components, such as
network interface cards (NICs) [123] and programmable logic
devices (FPGAs), to monitor and analyze network traffic in
real-time. These systems detect and block malicious activities
before they can compromise the system.

Hardware-based intrusion detection and prevention systems
are a proactive cyber-security approach utilizing dedicated
hardware components to detect and mitigate threats at the
hardware level. These systems employ specialized hardware
modules, like security co-processors or dedicated intrusion
detection units, to continuously monitor system activity in real-
time. By analyzing network traffic, system calls, memory ac-
cess patterns, and other critical system events, hardware-based
intrusion detection systems can identify anomalous behavior
indicative of potential security breaches or unauthorized access
attempts. Additionally, these systems can implement hardware-
enforced security policies and access controls to prevent mali-
cious activities from compromising system integrity. Operating
at the hardware level offers several benefits, including reduced
overhead, increased resilience against sophisticated attacks,
and improved scalability across heterogeneous computing en-
vironments. In summary, hardware-based intrusion detection
and prevention systems play a crucial role in strengthening
cyber-security defenses, providing an extra layer of protection
against evolving cyber-threats.

VI. ANALYSIS OF CO-PROTECTION METHODOLOGIES:
PROPOSED APPROACHES

Hardware can be protected through software feedback, and
software can be protected using hardware feedback. Hardware-
software co-protection methodologies aim to fortify systems
against security threats by leveraging a combination of hard-
ware sensors, power spectrum analysis, and information flow
modeling. Hardware sensors can be integrated into devices
to monitor physical and operational parameters, such as tem-
perature, voltage fluctuations, and electromagnetic emissions,
providing real-time insights into potential tampering or anoma-
lies. Power spectrum analysis further enhances security by
analyzing the electrical signals produced by hardware compo-
nents to detect unusual patterns indicative of malicious activity.
Meanwhile, information flow modeling involves mapping and
controlling the pathways through which data travels within
a system, ensuring that sensitive information is protected and
that any unauthorized access or data leakage is promptly iden-
tified. By combining these approaches, systems can achieve a
robust defense mechanism that not only detects and responds
to threats in real-time but also proactively mitigates vulnera-
bilities through comprehensive monitoring and control.



A. Hardware sensor based SW Protection:

Hardware sensors are integrated into the physical compo-
nents of the system, including processors, memory modules,
input/output interfaces, and peripheral devices. These sensors
continuously monitor physical parameters such as temperature,
voltage, current, electromagnetic emissions, and other environ-
mental conditions.
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Fig. 28. Arm-SoC with inserted various sensors to capture activities and
properties of various modules . [124]

Protecting software execution through hardware on-chip
sensor placement involves strategically embedding sensors
directly onto the integrated circuits of computer hardware
to monitor and detect various aspects of software execution.
These sensors can capture real-time data related to temper-
ature, voltage fluctuations, electromagnetic emissions, and
other physical characteristics of the hardware environment.
By analyzing this data, hardware-based security mechanisms
can detect anomalies indicative of unauthorized software ex-
ecution, such as malicious code injection or runtime attacks.
Leveraging hardware sensors offers several advantages, includ-
ing low-level access to critical system components, reduced
susceptibility to software-based attacks, and the ability to
operate independently of the software stack, thus enhancing
overall system security and resilience.

For detection and protection against several fault-injection
attacks, different hardware sensors have been proposed. For
instance, Fault-to-time converter(FTC) [125] sensor converts
various non-invasive faults to delay and captures the encoded
response in ZynQQ FPGA. Laser fault injection sensor [126]
captures the response of LASER injection into device.

Quantifying security properties of an RTL design and relat-
ing them to various injected faults and corresponding viola-
tions has been a long discussed issue. Security property driven
vulnerability assessment framework against fault injection
attacks(SoFI) [127] has been developed to co-relate specific
security property violation due to fault injection attacks. How
the on-chip sensors respond against faults and how they are
related to security property violation has also been discussed
[128].

To protect the SW execution using HW sensor response
against FIAs, the injection attacks can be modeled in terms
of internal quantities such as delay. When SW codes are
running into hardware, or in a gate level synthesized design,
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Fig. 29. Fault to time converter sensor. [125]

specific cells of the libraries are being used, each of which
are vulnerable to the FIAs defined before. The vulnerability
of each cell against each attack can be quantized. When a
compiler transforms a high level code(C/C++) into assembly,
it can be sensitive to each attack modeled previously. In this
way SW execution can be sensitive to HW sensor response
and can be protected by redundancy or any other methods.
This method is displayed in Figure 34.
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Fig. 30. Propagation delay vs supply voltage variation.

Modeling supply voltage variation involves simulating
changes in the voltage supplied to the hardware components,
which can occur due to fluctuations in the power supply or
deliberate manipulation by attackers. This variation can lead
to transient faults, where the voltage drops below the required
threshold, causing errors or malfunctions in the system. Sev-
eral previous research suggested that supply voltage variation
can be modeled as a fluctuation in delay(Figure ??). So, we
can add a delay component in the standard cell library that
can be activated at a certain time to show the effects of supply
voltage variation.

Modeling laser fault injections in standard cells involves
simulating the effects of laser-induced faults on the behavior
of semiconductor devices within the cells. One approach to
achieve this is by adding additional current components to
the standard cell models, which represent the changes in
device characteristics caused by laser irradiation. Modeling
and validation of LFI into hardware involves several steps
such as identifying vulnerable locations, defining fault models,
integrating current components, simulate LFI attacks etc.
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The compiler plays a significant role in bridging the gap
between software and hardware execution by translating high-
level programming code into low-level instructions that can
be understood and executed by hardware components. As
software developers write code in languages like C, C++,
or Python, the compiler analyzes the code, performs opti-
mizations, and generates machine code tailored to the target
hardware architecture(Figure 31). This machine code is then
executed directly by the hardware, enabling the software’s
functionality to be realized efficiently. Additionally, modern
compilers often incorporate optimization techniques like loop
unrolling, instruction re-arrangement, and register relocation
to maximize performance and minimize resource utilization.
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Compilers may play a vital role in mitigating hardware-
software vulnerabilities by implementing various security
mechanisms and optimizations during code generation. One
fundamental approach is through the enforcement of memory

safety checks, such as stack canaries, bounds checking, and
address space layout randomization (ASLR) [129], which
prevent buffer overflows and other memory corruption vul-
nerabilities. Additionally, compilers can implement control-
flow integrity (CFI) mechanisms to detect and prevent code
execution hijacking attacks, for instance: return-oriented pro-
gramming and jump-oriented programming.

We can drive the compiler or generate extra plugins to make
it aware of hardware vulnerabilities(Figure 32). The compiler
may take the essence of modeling various hardware faults and
be aware of hardware execution.

B. Instruction spectrum based software-hardware protection:

When a software runs on a hardware, it creates several
property traces on a hardware, such as power, delay variation
etc. These traces can be tracked to HW execution strategies
and HWs can be made aware of the placement of sensors
etc. Modifications of fault injection detection and prevention
strategies in the hardware side can be done to prevent any
attack that can for example, produce high power traces or any
unusual activities during the SW execution.
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Fig. 33. Critical Location identification on HW using SoFI Framework. [127]

Developing a power model for assembly instructions in-
volves quantifying the power consumption associated with
executing each instruction within a processor. By analyzing the
power spectrum derived from these models, software execution
can be guided to optimize both hardware and software security
simultaneously. The power spectrum reflects the power con-
sumption patterns exhibited by different instructions during
execution, offering insights into the energy requirements of
various software operations.

Leveraging this information, software can be designed or
modified to prioritize low-power instructions or sequences,
reducing overall power consumption and minimizing the risk
of hardware-based attacks, such as side-channel attacks. Addi-
tionally, by aligning software execution with the power spec-
trum, potential vulnerabilities in both hardware and software
can be mitigated, as the power consumption characteristics
of specific instructions can serve as indicators of potential
security risks. This approach not only enhances hardware



security by reducing susceptibility to power-based attacks but
also strengthens software security by optimizing execution
patterns to minimize exposure to potential vulnerabilities.

By integrating security measures directly into the hardware
architecture, such as through hardware-based encryption, se-
cure enclaves, or trusted execution environments, vulnerabili-
ties at the software level can be mitigated more effectively.
Hardware-based security provides a robust foundation for
protecting sensitive data and critical processes from various
threats, including malware, unauthorized access, and tamper-
ing.
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Fig. 34. SW protection by HW sensor feedback against Fault Injection attacks.

Building power model for each type of instruction(such as
load,store from memory, arithmetic operations etc) enables
us to construct power model for specific applications(Figure
35). If any application, such as matrix multiplication, or
convolution operation for a CNN creates stress in the specific
part of the hardware by drawing excessive power, we can trace
that information in the hardware domain, and send it to the
compiler so that software execution is aware of the hardware
execution and power trace.

Software modules(such as sensors) running on the system
assist in monitoring and analyzing the power consumption pat-
terns. These software components collect power consumption
data and perform statistical analysis to identify anomalies or
suspicious behavior. They also define and manage security
policies based on the observed power spectra and trigger
appropriate responses to mitigate security risks.

Fig. 35. Power traces of hardware blocks during execution of instructions in
a processor and its peripherals.

C. Securing SW execution via monitoring HW Architectural
Activity:

Securing software execution through hardware architectural
activity is an effective strategy in modern computing systems.
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Fig. 36. HW protection by examining property traces during SW execution.

When a SW program runs into HW, such as a processor,
different components of the processor gets ’activated’ with
the execution of instructions. As the execution of instruction
sequences correlate with hardware resources such as registers,
memory, computing units, corruption in any of the blocks will
also hamper SW execution. Corruption in hardware can be in
many forms. For instance, a data forwarding unit chooses the
data to be put in ALU from execution or memory stage. If the
forwarding unit is corrupted, wrong data can be put into the
hardware even if we do the correct software execution (Figure
38).

Fig. 37. FTC Sensor placed among various blocks of an SoC and the response
is characterized

Hardware architectural activities can be collected via sen-
sors also. In figure 37, the FTC sensor is placed between



different placed parts of a ZynQ SoC that has a core processor
and peripherals like UART, SPI, timer etc. The sensor response
changes when they are placed closer or further to some
blocks those have relatively higher activities. Via placement of
sensors and collecting their responses, we can send feedback
to the software side that during execution of some particular
instructions, some blocks have more vulnerability towards a
bit flip or data failure.
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Fig. 38. Simple processor displaying the usage and probable corruption of a
data forwarding path.

Securing software execution involves monitoring the activity
of distinct hardware blocks within the system to detect and
prevent potential security threats. By continuously monitoring
the behavior of hardware components such as the CPU, mem-
ory modules, and input/output interfaces, anomalous activities
indicative of malicious software behavior can be identified in
real-time. This monitoring process typically involves analyzing
metrics such as resource utilization, data access patterns,
and communication protocols to detect unauthorized access
attempts, abnormal program executions, or other suspicious
activities. By integrating hardware-level monitoring mecha-
nisms into the system architecture, software execution can be
safeguarded against a wide range of security threats, including
malware infections, code injections, and privilege escalation
attacks.

D. Information flow modeling approach for HW/SW Security
Verification
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Fig. 39. Proposed design flow of HW/SW co-verification method

Information flow implication method is another approach
we consider. Software programs are converted into hardware
descriptions using a model and combined with hardware
designs to form a logic circuit to track the information

flow among software and hardware. So using data security
labels, all logical information flows are captured. This flow
can be incorporated into CAD verification tools and easily
determine the violation of information flow security property,
leading to detecting software, hardware, system level security
vulnerabilities.

Security properties for HW/SW designs.
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Fig. 40. Security properties of HW/SW designs.

VII. FUTURE WORK AND CONCLUSION

The exploration of hardware-software co-protection against
interactive security threats offers a promising avenue for future
research and development in the field of cybersecurity. As
interactive security threats continue to evolve and grow in
sophistication, it is imperative to develop comprehensive and
integrated approaches that combine hardware and software
mechanisms to mitigate these threats effectively.

One area for future work is the development of novel
hardware architectures and co-design methodologies specif-
ically tailored to address interactive security threats. Sensor
based and machine learning based hardware-software property
analysis are two prominent directions to protect both hardware
and software. Collaborative efforts between hardware and
software engineers will be essential to design and implement
these advanced security features seamlessly within existing
computing systems.

Additionally, future research should focus on the refinement
and optimization of hardware-software co-protection mech-
anisms to achieve a balance between security, performance,
and usability. This involves conducting extensive performance
evaluations and benchmarking studies to assess the overhead
and impact of security mechanisms on system performance,
as well as user experience. Furthermore, exploring adaptive
and dynamic security strategies that can respond to evolving
threats in real-time will be crucial for ensuring the resilience
of hardware-software co-protection solutions.
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