
Age-aware Fairness in Blockchain Transaction
Ordering for Reducing Tail Latency

Yaakov Sokolik, Mohammad Nassar and Ori Rottenstriech

Abstract—In blockchain networks, transaction latency is cru-
cial for determining the quality of service (QoS). The latency
of a transaction is measured as the time between its issuance
and its inclusion in a block in the chain. A block proposer
often prioritizes transactions with higher fees or transactions
from accounts it is associated with, to minimize their latencies.
To maintain fairness among transactions, a block proposer
is expected to select the included transactions randomly. The
random selection might cause some transactions to experience
high latency following the variance in the time a transaction waits
until it is selected. We suggest an alternative, age-aware approach
towards fairness so that transaction priority is increased upon
observing a large waiting time. We explain that a challenge with
this approach is that the age of a transaction is not absolute
due to transaction propagation. Moreover, a node might present
its transactions as older to obtain priority. We describe a new
technique to enforce a fair block selection while prioritizing
transactions that observed high latency. The technique is based on
various declaration schemes in which a node declares its pending
transactions, providing the ability to validate transaction age. By
evaluating the solutions on Ethereum data and synthetic data of
various scenarios, we demonstrate the advantages of the approach
under realistic conditions and understand its potential impact to
maintain fairness and reduce tail latency.

I. INTRODUCTION

In a blockchain system, it is critical to reach an agree-
ment on block content between all network nodes. This is
typically achieved by applying a consensus mechanism such
that a single node proposes a new block that goes through
some approval process among other nodes. Upon achieving
consensus on the proposed block, it is added to the blockchain.

A proposer can be selected using different techniques. The
most common one is Proof-of-Work (PoW) [2], which is
implemented in the Bitcoin [3] and Ethereum [4] 1.0 networks,
among others. In a PoW scheme, a node needs to solve a
cryptographic puzzle for gaining the right to propose a new
block. The puzzle can be finding some nonce such that the
hash value of the block and the nonce is below a defined
threshold. Another widely used technique is Proof-of-Stake
(PoS) [5], [6], by which the proposer is selected randomly
according to some token distribution over the network nodes.

Each block is constructed from issued transactions (txs),
pending to be written to the blockchain. The amount of
transactions contained in a block is limited. In case the
proposer has a pending transaction pool that is larger than
the maximal block size, the proposer needs to select which
transactions will be included in the proposed block.

Yaakov Sokolik, Mohammad Nassar and Ori Rottenstreich are with the
Technion - Israel Institute of Technology, Haifa, Israel (emails: yaakov-
soki@gmail.com, mohammadnassar22@gmail.com, or@technion.ac.il).

There are blockchain networks (e.g., Bitcoin and Ethereum),
by which a transaction is associated with a fee that its issuer
agrees to pay. The proposer gains the fees of the transactions
included in the block upon approval of a proposed block.
Therefore, the proposer typically selects those transactions
which maximize its profit from the proposed block. The
mechanism of fees implies that some transactions have higher
chances to be included in the block than others.

The autonomy granted to block builders in determining
transaction order gives rise to the concept of miner extractable
value (MEV) or blockchain extractable value (BEV). MEV, as
described in the research by Daian et al. [7], refers to the po-
tential value obtained by manipulating transaction sequencing
during block creation. Some decentralized exchanges employ
a dynamic trading ratio that adjusts with each transaction. In
decentralized finance (DeFi) systems, malicious actors such
as miners or traders can exploit the system’s transparency
to profit from front-running and back-running transactions,
extracting value from these transactions for personal gain.
Numerous studies, including those mentioned in [8], [9], [10]
have examined this phenomenon.

We study fairness in decentralized blockchain networks.
Such a network consists of nodes that serve multiple clients
(e.g. using cryptographic wallets). Transactions of all such
users are recorded on the same blockchain. Often, for security
reasons, each client is connected to multiple nodes. A key
factor in a client’s quality of service (QoS) is its transaction
latency — the time between a transaction’s issuance and its
inclusion in the blockchain. Transactions are not associated
with a particular fee.

A node is motivated to minimize the transaction latency of
some clients it knows and so it inserts as many of its own trans-
actions to a proposed block. Fairness in transaction selection
can be interpreted as providing each pending transaction with
identical chances to be selected in a new block. The concept
of transaction ordering fairness was introduced in Helix [11],
where it was proposed to achieve fairness in block selection
by selecting block transactions randomly among the proposer
pending pool. This ensures that each pending transaction had
the same chances of being selected. Other types of fairness
in blockchain have been suggested [12]. For instance, fairness
among nodes [13] such that in every round each node proposes
a similar number of transactions and order-fairness among
transactions [14] which assigns a pair of transactions an order
based on the identity of the transaction received earlier by
majority of the nodes.

Beyond the mean value of the latency, a recent work by
Shang, Ilk and Fan [15] indicated the high importance in
reducing the latency higher quantiles (i.e., tail of the distri-

bution). It is claimed that long waiting times often cause low
service reuse and customer satisfaction [16], [17]. Moreover,
firms communicate waiting time guarantees to customers as
“your wait is 20 min” which are perceived by customers as “I
(most likely) need to wait no more than 20 min”, rather than
“my average waiting time is 20 min” [18]. Beyond the context
of fairness several other recent works suggested methods to
reduce tail latency [19], [20], [21].

In fact, the randomness in transaction selection, even when
followed honestly by all nodes, can cause some transactions to
wait a long time before their inclusion in the blockchain. Our
perspective towards bounding the transaction latency is that an
older transaction would have a higher priority to be selected in
a block over a recently issued transaction. Since such priority
is determined by the elapsed time regardless of the identity of
the particular transaction, fairness is still maintained.

A preliminary version of this article appeared in IEEE/ACM
International Symposium on Quality of Service (IWQoS) ’20,
June 2020 [1].

Contributions: We make the following contributions:
• We present the notion of age-aware fairness in block

selection for reducing the tail latency of transactions.
• We study approaches for deriving age-aware fairness in

various characteristics of transaction propagation.
• We detail declarations schemes on the content of trans-

action pools that allow demonstrating high age of trans-
actions.

• We conduct experiments based on Ethereum and synthetic
data to evaluate the performance of the approach.

II. AGE-AWARE FAIRNESS IN BLOCK SELECTION

A. Motivation and Definition for Age-aware Fairness

We refer to nodes that play two main key roles. A primary
node is responsible for selecting a block from a pool of
pending transactions. Once a primary node selects a block,
a committee of members is responsible for validating it.
The committee is composed of a subset of nodes chosen
from the network. Each member independently evaluates the
block, and the validations are aggregated to determine the
block’s overall evaluation. The notion of block validation by
committee members for enforcing fairness is not new. As
fairness refers to the selection of transactions by a node among
its pool of transactions, it implies an inherent challenge as
the pools of pending transactions at different nodes are not
identical due to network latency. Accordingly, several previous
works suggest various methods for block validation by such
committees [11], [22], [23]. Often, the number of committee
members is small with respect to the number of network nodes.

Average transaction latency was analyzed as a key metric
to measure the scalability of the blockchain [24]. However,
the skewness of the latency distribution significantly affects
the user experience when providing guarantees on confirma-
tion time. In this work, we define latency as the duration
between the issuance of a transaction and its inclusion in
the blockchain. We address the issue of reducing tail latency
(e.g., q-99) which significantly affects blockchain QoS. The
q-k latency is defined as the latency time that at least k

4 16 64 256 1024 4096
0

0.2

0.4

0.6

0.8

1

Transaction latency (sec)

C
D

F

Ethereum selection
Age-aware selection

Fig. 1. Reducing tail latency of Ethereum transactions. The blue line shows
the cumulative distribution function (CDF) of measured latency in Ethereum.
The red line shows a CDF that was produced by selecting transactions in an
age-aware manner. For instance, the 99th percentile reduces from 380 seconds
to 203 seconds and the 99.9th percentile from 2197 seconds to 236 seconds.

percent of the transactions have lower latency. In particular,
we are interested in reducing high values of k as q-99 or q-
99.9, meaning that 99% or 99.9% of transactions have lower
latency. We propose a method that reduces the tail latency by
prioritizing senior transactions (those already observing high
latency), in a way that keeps fairness.

Besides the inherent priority to senior transactions, the
method maintains fairness among all other transactions that
have not yet observed high latency. This is done through
providing them identical chances to be selected randomly for
being included in a block.

We collected data from an Ethereum node about its pending
transactions over one hour on December 17, 2019. Fig. 1
shows the latency we measured for transactions that were
in the pending transactions pool and were included in some
block during our recording (Ethereum blocks 9120140 to
9120366). We simulated different blocks in which transactions
are selected in an age-based method of choosing 20% of the
block transactions by their age while the rest of the block was
selected randomly. Transactions that were not seen by our node
during the recording were not affected and were left inside
the block. We observed that the q-99 latency was reduced
from 380 seconds to 203 seconds. For a higher percentile,
the improvement is more significant as the q-99.9 latency
decreases from 2197 seconds to 236 seconds. It is important
to note the inherent differences with regards to Ethereum as it
does not apply a random selection policy. In Ethereum, each
transaction has a gas price which sets the reward that the
proposer gets for including this transaction. The proposer tries
to maximize its reward from the block and does not care about
the latency of transactions. This sometimes causes transactions
with low gas prices to observe high latency.

B. Challenges in Maintaining Age-aware Fairness

Age-aware Fairness can be challenging due to several key
points:

(i) Balancing fairness and latency: Prioritizing senior
transactions breaks the randomness in transaction selection
which is crucial to achieving fairness. This granted priority
should maintain fairness among non-senior transactions.

2

(ii) Transaction age differs between nodes: Following
inherent heterogeneity in the propagation of transactions, the
pending transaction pools of every pair of nodes might be
different. They differ not only in the set of transactions that
they are aware of but also in the transaction age. Each node
becomes aware of a transaction at a different time so nodes
can see the same transaction as having different ages.

(iii) Avoid forging transaction age: We need to make sure
a node cannot forge its transactions’ age. Namely, a committee
member should be able to verify the transaction age.

C. Model and Terminology

Our blockchain network consists of a decentralized peer-
to-peer (P2P) architecture with multiple interconnected nodes.
Transactions can be issued by any user or node within the
network and are disseminated through a gossip-based commu-
nication mechanism. To append new blocks to the blockchain,
a block selection round takes place in which nodes within the
network construct a new block. During this process, certain
nodes are selected as consensus nodes, either randomly or
based on specific criteria. Among these consensus nodes, a
single node is designated as the block proposer responsible
for suggesting a new block from its pool of pending trans-
actions. The proposed block is then disseminated throughout
the network, and other nodes, known as committee members,
assess the fairness aspects of the proposed block and determine
whether to approve it or not [6].

Table I summarizes commonly used notations. We make the
following model assumptions.

Node identities: The identity of each node participating in
the protocol is known to all other nodes.

Selection of the block proposer and committee members:
Every block, a hash value is computed for each node. Besides
the node id, the input to the function also includes the hash of
the last block so the order is hard to be predicted in advance.
Nodes with minimal hash values are selected as the single
leader and NC committee members for block validation, where
NC is the fixed size of the committee.

Node’s behavior: There are two distinct roles a node can
play: an honest node or a malicious node. An honest node
adheres strictly to the protocol by proposing blocks and vali-
dating the proposed blocks in accordance with the established
rules. On the other hand, a malicious node exhibits different
behavior. It may prioritize certain transactions in its proposed
blocks, deviating from the protocol’s guidelines. Additionally,
a malicious node may validate proposed blocks in a manner
that diverges from the prescribed protocol specifications.

Proposer’ behavior: The probability that a proposer acts
dishonestly is larger than the probability that a block proposed
by an honest proposer does not pass the validation check.

Transaction propagation: Transactions are propagated
within the network through gossip-based communication. The
transaction propagation is not manipulated by nodes.

Gas price: Each transaction incurs the same gas price, gas
price is the per unit of work done.

Gas limit: Gas limit is proportional to the amount of work
estimated for a validator to do on a particular transaction.

Time: Time is simply measured in the granularity of the
blocks such that transactions are viewed based on the num-
ber of blocks added to the blockchain since the declaration
message. Accordingly, there is no need for a global highly-
accurate clock among network nodes.

D. Implementations Concepts

We refer for simplicity to a block of a bounded size in
term of its transaction number b. A discussion of simple
generalization of the model to block with bounded amount
of expected computation can be found in Section IX.

Transactions that wait a long time (higher than a threshold)
in the pending pool of the proposer are referred to as senior
transactions. The definition is based on the local age of a
transaction. Thus, a transaction can be defined as senior by
one node but not by some other node.

The proposed block consists of two parts:
1) The first section of the block, lower transactions, is

an age-based section that includes senior transactions
of size s, where s represents the size of the senior
transactions within the block. The proposer selects the
s oldest senior transactions based on their age.

2) In the second part, transactions with a size of b− s are
randomly selected from the pool. Here, b represents the
total size of the block. In each round, a hash function
is adjusted using a unique seed and applied to all the
pending transactions. Subsequently, the transactions are
sorted based on their hash values, and the ones with
the lowest values and a size of b − s are chosen to be
included in the block.

Age-aware Block Validation: Each committee member
runs the validation process of the proposed block which is
composed of validating the seniority of transactions declared
as senior transactions and validating the selection at random of
the non-senior transactions. If the proposed block passes both
parts, the committee member accepts it and votes accordingly.

Our method enforces the seniority of transactions included
in the age-based part, implying that the proposer should
include only senior transactions. Otherwise, the proposed
block should fail the validation. To maintain fairness among
transaction selection, the parameter s should be some small
fraction of b. The way nodes are selected to be the proposer of
a block implies identical chances for each node to be selected.
Such a node can include senior transactions in the block in
addition to the transactions selected randomly.

For non-senior transactions, a validator compares the pro-
posed transactions with its transaction pool. To pass the
validation, the local block, which is a set of transactions con-
structed locally from the validator’s transaction pool, and the
random part must demonstrate a significant level of similarity.
The specific similarity threshold is determined based on the
similarity between transaction pools. Similar approaches have
been utilized in prior studies such as [11], [23].

The age-aware protocol distinguishes itself from Ethereum
1.0 in several ways. Firstly, to generate new blocks it employs
a leader and validation routine by committee members. Roles
are assigned randomly based on hash values of previous

3

b ≜ Block size.
s ≜ Maximum size of senior transactions included in

the block because of their age.
Told ≜ Threshold on transaction age.

Tpropagation ≜ Maximal transaction propagation time if it exists.
Tdeclaration ≜ Time interval between two declaration phases.

Tx
issue ≜ Random variable representing issuance time of

transaction x.
T i,x
prop ≜ Random variable representing time since issuance

of transaction x until node i learned about it.
ti,xlearn ≜ Time that node i learned about transaction x.
ti,xprop ≜ Time since transaction issuance until node i

learned about transaction x.
Gi

x ≜ Random variable representing age of transaction
x as seen by node i.

gix ≜ Age of transaction x as seen by node i.

TABLE I
TABLE OF NOTATION

blocks. On the other hand, Ethereum 1.0 relies on PoW (Proof
of Work) for the selection of the leader who can select any
transactions for the block, while often aiming to maximize its
gain such that the particular transaction selection is not val-
idated. Secondly, Ethereum utilizes a distinct fee mechanism
where fees can impact the block creation process. In contrast,
our protocol prioritizes senior transactions, emphasizing their
significance during the block creation process.

III. BLOCK PROPOSAL AND VALIDATION

Since fairness refers to block selection among pending
transactions, enforcing fairness depends on the similarity of
the pending transaction pools among the proposer and the
committee members. When the different pending transaction
pools observe higher similarity or when one node has a better
knowledge of other nodes’ pool, it is easier to test the validity
of block selection. In the following, we explain how this can
be done for different characteristics of transaction propagation.

A. Bounded-Time Transaction Propagation Case

For some networks, their characteristics imply an upper
bound on transaction propagation time among all network
nodes, namely from the time a transaction is issued by a
node until it is received by any other node. Denote such a
maximal transaction propagation time as Tpropagation. For a
transaction x in pending transactions pool of some node i
with age gix, the existence of such a bound implies that for
any node j that also has x in its pending transactions pool its
age is gjx ∈ [gix − Tpropagation, g

i
x + Tpropagation].

Transactions with a local age larger than Told are defined
as senior transactions. In order that senior transactions will
appear in all nodes pending pools Told should be greater than
Tpropagation.

In the senior transactions validation, the committee member
validates that all the senior transactions in the proposed block
are also in its pending transactions pool and their local age
is at least Told − Tpropagation. If the proposer included those
transactions honestly (namely their age as seen by the proposer
indeed satisfies the condition), these transactions should also
be in the committee member’s pending pool due to the bound

on the transaction propagation. The committee member m also
finds the senior transaction that is included in the proposed
block with the smallest local age. Let this transaction be
denoted as x. The committee member checks in its pending
transactions pool whether some transaction y that is not
included in the proposed block satisfies gmy − Tpropagation >
gmx +Tpropagation, which means that the proposer has for sure
learned about y before x and dishonestly omitted y, and then
the block is denied. The pseudocode of the approach appears
in Algorithm 1. The local age(x) function which appears in
Algorithm 1 returns the local age of transaction x or 0 if it
has not learned about it.

This assumption on the propagation time restricts the ability
of a node to manipulate the age of a transaction. Assuming
a dishonest proposer forges its transaction age, it can add to
each transaction age at most Tpropagation. If this transaction is
selected in the random part, the change of the age would not
impact its latency. Alternatively, if the transaction was included
in the age-based part its real age must be larger than Told −
Tpropagation. In case Tpropagation is much smaller than Told,
it does not have a large impact on the latency.

B. Transactions Propagation Distribution is Known
Even in less restricted networks that do not have the upper

bound on transaction propagation time among all network
nodes, we can make use of transaction propagation distribu-
tion. To illustrate this we assume that the time that each node
learns about some transaction is distributed exponentially [25].

Given a transaction, its propagation distribution depends on
its issuance time. To calculate the propagation probability of a
transaction, we need its issuance time. Let denote transaction
issuance time as tissue. Since the propagation distribution of a
transaction is related to its issuance, let denote the propagation
cumulative distribution function (CDF) as CDF (tissue).

A transaction whose age is larger than Told is defined as
senior transaction for the age-based part of the block. The pro-
poser p includes for each senior transaction x in the age-based
part, the time that it claims it learned about the transaction
tp,xlearn. The claimed learning time enables committee members
to calculate the probability that x is indeed senior. A potential
generalization we do not elaborate on here is calculating this
probability without proposer’s claims on senior transactions
learning times. Such calculation can be based on Told and not
on a claimed age.

The committee member m validates the age-based part by
computing for each senior transaction x the probability that
its age as seen by the proposer p is larger or equal than the age
the proposer claims. The proposed block passes the age-based
part validation if the product of the probabilities for all senior
transaction equals at least some threshold v.∏

senior transaction l

Pr(Gp
l ≥ gpl | t

m,l
learn) ≥ v.

Fig. 2 illustrates a timeline of the transaction propagation
since its issuance among the proposer (above the arrow) and
the committee member (below the arrow).
Pr (Gp

x ≥ gpx | t
m,x
learn) is the probability that for transaction

x its age as seen by the proposer p is larger or equal than the

4

Algorithm 1 Senior validation in bounded transaction propa-
gation

1: procedure VALIDATEBOUNDED(pool, block)
2: senior ← senior transactions of block (as of proposer)
3: if senior ̸⊆ pool then
4: return false
5: oldPool← max{local age(x)|x ∈ pool}
6: youngBlock ← min{local age(x)|x ∈ senior}
7: if youngBlock < Told − Tpropagation then
8: return false
9: if oldPool − Tpropagation > youngBlock +

Tpropagation then
10: return false
11: return true

Sec0 1 2 3 4 5 6 7

propagation
period -
tpprop age - gp

propagation
period -
tmprop

age - gm

tplearn

tmlearn

p - proposer

m - committee
member

validation

block proposal

tx
issuance

Fig. 2. Illustration of transaction propagation timeline since its issuance.

age the proposer claims, given the time the committee member
m learned about x. The committee member needs to compute
this probability for each senior transaction x which depends
on the issuance time of x. In order to estimate it from the
time the committee member learned about the transaction, we
compute:

Pr(Gp
x ≥ gpx | t

m,x
learn) =∫

tissue

(
Pr(Gp

x ≥ gpx | t
m,x
learn,tissue)

·fTx
issue|t

m,x
learn

(tissue)
)
dtissue =∫

tissue

(
Pr(T p,x

prop ≤ tp,xlearn − tissue |tissue)

·ftm,x
learn−Tm,x

prop|tm,x
learn

(tissue)
)
dtissue

The integral runs over values of tissue. Thus, all the
parameters of the propagation distribution T p,x

prop and Tm,x
prop are

known. The first component inside the last integral Pr(T p,x
prop ≤

tp,xlearn − tissue | tissue) is the probability that propagation
period of transaction x to the proposer is lower or equal
than the difference between the time the proposer claimed of
learning about x and integration variable tissue. It is calculated
directly from CDF (tissue). The second component inside
the integral ftm,x

learn−Tm,x
prop|tm,x

learn
(tissue) is the PDF (probability

density function) value of transformed Tm,x
prop (multiplied by −1

and adding a constant) which is calculated by the derivation
of the transformed CDF (tissue).

time0 τ 2τ 3τ 4τ 5τ 6τ 7τ 8τ 9τ
A

B

C

Declaration cycle
TdeclarationDeclaration Declaration

Block
proposal

Declaration message
Proposal message

Challenge message
Response message

Fig. 3. Illustration of a declaration cycle in a blockchain network of 3
nodes. Each node broadcasts a declaration about its pending transactions to all
other nodes which learn about the declaration at different times. Time unit is
denoted by τ . At the time 3τ node B proposes a block. Nodes A,C serve as
committee members and they validate the proposed block. Validation of senior
transactions age is based on past declarations of the proposer. In Merkle tree
and Accumulator schemes, the committee members send a challenge to the
proposer and validate the response.

C. General Propagation Characteristics

We would like the committee member to be able to validate
the transaction’s age also in a more general case where
the transaction propagation distribution is not well known.
We suggest using a declarations mechanism to enable this
validation. We make a distinction between transactions to
declarations for which we still have an assumption on the
bounded delay.

In this mechanism, a declaration phase occurs periodically
every time of Tdeclaration. At a declaration phase, each node
sends a declaration of its pending transactions to all other
nodes as described later in section IV. Once a transaction was
included in a declaration, there is no need to include it again
in a later declaration. While a node receives such a declaration
message, it stores the declaration along with the reception time
(denoted as timestamp(declaration)) and the sending node.
Tdeclaration should be a time by which necessarily all nodes
got a declaration message from the declarer node. The age
threshold for defining a transaction as a senior transaction is
Told. The block proposer includes in the age-based part of the
block only transactions that can be validated as seniors. Since
the block proposal can be immediately after the declaration
phase, it implies that only transactions that passed at least
Told since their declaration can be selected as the age-based
part of the block.

Fig. 3 illustrates a declaration phase in which each node
sends a declaration on its pending transactions to all other
nodes. In the example, time slot is denoted by τ and
Tdeclaration is 6τ . In section IV, we detail several declaration
schemes and provide pseudocode for the validation process of
each.

IV. DECLARATION SCHEMES

In this section, we refer to a general propagation delay. We
explain how declaration on pending transactions pool can serve

5

as a basis for age-aware block validation and in particular the
senior transactions in the block. We discuss three schemes
based on complete lists, Merkle trees, and accumulators. We
explain that the last two of them are communication efficient
but on the other hand require a challenge-response process
where a committee member questions the block proposer.
Intuitively, when a block proposer proposes a block, it includes
senior transactions in the block and can be challenged by
a committee member with regard to the seniority of such
transactions. The block proposer then serves as a prover
(and the committee member as a verifier) and can refer to
a past declaration it has at least Told time earlier in which
the examined transaction served as part of the input to the
computation of the declaration.

A. Complete List Scheme

In this scheme, a declaration contains all undeclared pending
transactions as a complete list. Those declarations might be
very large messages causing a communication overhead, yet
it can serve as a baseline.

In the age-based part validation, the committee member
validates that the senior transactions in the proposed block
were included in some declaration. The validation is done
by checking that every transaction in the age-based part that
its local age is smaller than Told was included in the list of
transactions that the proposer sent in declarations where their
age is at least Told. A pseudocode is shown in Algorithm 2.

B. Merkle Tree Scheme

In this scheme, a declaration is the Merkle tree [26] root
of the pending transactions. The Merkle tree is a full binary
tree that stores the data as leaves and every inner node is the
hash of its children concatenation. The node which sends the
declaration constructs this tree and saves it in memory.

The pseudocode of the age-based part validation is shown in
Algorithm 3. In case some transaction is included as a senior
transaction and the committee member does not have it in its
pending transactions pool or has it with an age smaller than
Told, the committee member challenges the proposer to prove
the transaction age. The proof is a Merkle proof to some previ-
ous declaration with an age of at least Told. The Merkle proof
of a transaction is all siblings of the nodes on the path from
the transaction leaf to the Merkle root as illustrated in Fig. 4.
For instance, the Merkle proof of tx2 is {h3, h0−1, h4−7}. If
the proposer managed to provide appropriate proofs, the block
passes the age-based part validation.

The declarer can delete from its memory a Merkle tree after
all the transactions its stores were included in the blockchain.
Since the proposer selected the oldest senior transactions to
the age-based part, the committee members can delete all
declarations of the proposer that are older than the declaration
used to prove a transaction age.

C. Accumulator Scheme

Another bandwidth and memory efficient scheme is declar-
ing the accumulated [27] value of all pending transactions.

Algorithm 2 Senior validation with complete list declaration
1: procedure VALIDATELIST(block, proposer)
2: senior ← senior transactions of block (as of proposer)
3: declared ← transactions included in declarations

of proposer with timestamp ≥ Told

4: for each tx ∈ senior and local age(tx) < Told do
5: if tx /∈ declared then
6: return false
7: return true

Merkle root

tx0 tx1 tx2 tx3 tx4 tx5 tx6 tx7

h0−7 =
H(h0−3 ·h4−7)

h0−3 =
H(h0−1 ·h2−3)

h0−1 =
H(h0 ·h1)

h0 h1

h2−3 =
H(h2 ·h3)

h2 h3

h4−7 =
H(h4−5 ·h6−7)

h4−5 =
H(h4 ·h5)

h4 h5

h6−7 =
H(h6 ·h7)

h6 h7

Fig. 4. Illustration of a Merkle tree of 8 txs. The Merkle proof of tx2 is
nodes h3, h0−1 and h4−7 filled with grey.

Algorithm 3 Senior validation with Merkle tree declaration
1: procedure VALIDATEMERKLETREE(block, proposer)
2: senior ← senior transactions of block (as of proposer)
3: merkleRoots← all Merkle roots sent by proposer
4: to prove← []
5: for each tx ∈ senior and local age(tx) < Told do
6: to prove← to prove+ tx

7: if to prove == [] then
8: return true
9: proofs← CHALLENGEMERKLEPROOF(to prove)

10: for each tx ∈ to prove do
11: tx proof ← proof for tx in proofs
12: mr′ ← CALCMERKLEROOT(tx proof, tx)
13: if mr′ /∈ merkleRoots then
14: return false
15: for each mr ∈ merkleRoots do
16: if mr′ == mr and timestamp(mr) < Told

then
17: return false
18: return true

The accumulator data structure can support set membership
proving. It is based on a quasi-commutative function

f : X × Y → X

which ∀x ∈ X and ∀y1, y2 ∈ Y ,

f(f(x, y1), y2) = f(f(x, y2), y1)

This property enables accumulating a hash of a set of elements
{y1, y2, . . . , ym}:

z = f(f(f(...f(f(f(x, y1), y2), y3, ..., ym−2), ym−1), ym)

6

Algorithm 4 Hashing transactions to prime numbers [28]
1: procedure HASHTOPRIME(x)
2: y ← H(x)
3: while y is even or PRIMALITYTEST (y) == False do
4: y ← H(y)

5: return y

Algorithm 5 Senior validation with accumulator declaration
1: procedure VALIDATEACCUMULATOR(block, proposer)
2: senior ← senior transactions of block (as of proposer)
3: accumulators← all accumulators sent by proposer
4: to prove← []
5: for each tx ∈ senior and local age(tx) < Told do
6: to prove← to prove+ tx

7: if to prove == [] then
8: return true
9: proofs← CHALLENGEACCPROOF(to prove)

10: for each tx ∈ to prove do
11: tx proof ← proof for tx in proofs
12: z′ ← h(tx proof, HASHTOPRIME(tx))
13: if z′ /∈ accumulators then
14: return false
15: for each z ∈ accumulators do
16: if z′ == z and timestamp(z) < Told then
17: return false
18: return true

such that the accumulated hash of all permutations of yi gives
the same value z. The partial accumulated value except yj is

zj = f(...f(f(...f(x, y1), ...yj−1), yj+1)..., ym)

and since f(zj , yj) = z the value zj is the proof of existence
of yj .

A common accumulator is the collision free RSA
based [29], which accumulates prime numbers using the quasi-
commutative modular exponentiation function en(x, y) = xy

mod n. The modulus value n is chosen as a product of two
suitable large primes as in the RSA [30], and the initial value
x is some random number smaller than n.

In order to accumulate transactions, we use the transaction
hash value (txHash) which identifies the transaction. The
txHash is mapped to a prime number with the same number
of bits (which is typically 256 bits) by the HASHTOPRIME
function [28] that Algorithm 4 shows its pseudocode. Since the
domain of HASHTOPRIME is larger than its codomain, there
might be collisions meaning two different txHashs mapped to
the same prime. However, in our scheme it does not cause
a problem since assuming the mapping is random and the
number of primes smaller than 2λ is O(2λ

log 2λ
) = O(2

λ

λ). λ is
the number of bits in the prime number which is typically very
big (256 bits), hence, the probability that two such transactions
are in the pending pool is negligible.

The HASHTOPRIME algorithm makes use of a collision
resistant hash function H. The primality test of y can be
done by the Baillie-PSW primality test [31]. A number that
passes this test is very probably prime. The expected number

Transaction Hash (256 bit)
0xf5b4c966692b6c7ba4d5585140c4e83d5d9a54ae94a126329f277a3abca2e889
0x3bce38326633a8fc1de1f75add1a0b38d21c6d320ce36281dbe7e49a77f3da39
0x250688d7397cb0ed9547de1e1bb7ec14f20a035cd9505f319285829777d677ea
0xbe19f11c1a9a65dc84812d3e027baa31ca03b4e2e47d8ffbcd7acdc880af246c
0xeda481c1dfd0f69488d007b6daedd28f6000b142a4c74e0d3f34bd4f1004ca22
0x1fd7e61ec4587cd8a8385c14d5e568df2450f1b8a851ba70a5e4c9efe19e542f
0x5335ecbf65280ee652ebabd4111f2d9c9fbcfbfcc58b7411172d9c995b48c535
0xf9506b280cad8213c5082550aff486e7a7d34152f33554e30d99620019a8deb4

TABLE II
BLOCK EXAMPLE: TRANSACTIONS HASH OF ETHEREUM BLOCK #871477

(OF 8 TXS)

of iterations of calling H assuming HASHTOPRIME uses a
random hash function H is O(λ).

While constructing the declaration, the proposer saves the
proof for each transaction. Every declaration makes use of
a different RSA modulus n in order to obtain security. The
declaration includes the accumulator value and the modulus
n.

Validation of the age-based part is done similarly to
the Merkle tree scheme and its pseudocode is shown in
Algorithm 5. The committee member challenges the pro-
poser in case some transaction is included as senior and
its pending pool does not contain it or its local age is
smaller than Told. The proposer responds with the mem-
bership proof of the senior transaction in some previous
accumulator (tx proof). The committee member calculates
h(tx proof, HASHTOPRIME(txHash)) and verifies that it is
equal to some previous declaration that is older than Told.

V. EXAMPLE AND SCHEME COMPARISON

A. Illustrative Example for Declarations

We illustrate the declaration schemes through a simple real
Ethereum block (#871477 of January 19, 2016), containing
only 8 transactions. E.g., we assume that the pending trans-
actions pool and produced declaration contain only those 8
transactions. We illustrate the various declarations over such a
pool. The number of transactions in the declaration is denoted
by nd. Each transaction is represented by its hash value of
256 bit (w denotes this length). The values of transaction hash
values (txhash) are listed in Table II. We chose this block for
our example because of its unique number of transactions.

Complete list scheme - The complete list declaration
is very simple, and there is no need for further proof. The
declaration is the whole transaction table. The declaration size
in our example is of nd · w = 8 · 256 = 2048 bits.

Merkle tree scheme - The Merkle tree declaration is the
Merkle root. In the example, we built the Merkle tree of the
transactions as in Fig. 5 where we used SHA256 as the hash
function. The Merkle root value (also of w = 256 bit) is
MR =0xc6a9d81cd4fc1fab04ebae22388d74e38c614a37bf701f1bfa64e1047bf1e813.

The declaration is simply the Merkle root, implying
declaration size of 256 bit. The proof of transaction inclusion
e.g tx2 is the values of
tx3=0xbe19f11c1a9a65dc84812d3e027baa31ca03b4e2e47d8ffbcd7acdc880af246c

h0−1=0x762bbcb0389a1793ccb39eefb11e8966913da8fd24b7dfad078f9861b55eaf9a

7

Merkle root

h0−7 =
0xc6a9
d81c...

h0−3 =
0x14a6
4e11...

h0−1 =
0x762b
bcb0...

tx0 =
0xf5b4
c966...

tx1 =
0x3bce
3832...

h2−3 =
0x3a16
2514...

tx2 =
0x2506
88d7...

tx3 =
0xbe19
f11c...

h4−7 =
0xcea7
f8d1...

h4−5 =
0xf3fd
2737...

tx4 =
0xeda4
81c1...

tx5 =
0x1fd7
e61e...

h6−7 =
0xef0a
bf1a...

tx6 =
0x5335
ecbf...

tx7 =
0xf950
6b28...

Fig. 5. Merkle root computation for the block of 8 txs from Table II. Filled
with grey are hash values used for showing the inclusion of tx2 in the block.

HASHTOPRIME(txHash) (256 bit)
0x2b3b5312255e85590929506a702691954bee4fa2c0ccdd2abc3df8b2a83393c9
0x64c15009c6dc4430ae62b7b8d6abc162efceb03f3bffa5a51074b415e8d1d561
0x422134d3b572a67cd550895f347269c8415fe192771b9a0a7f39163904484b9b
0x35f6eaf93696fb2f5089c78f4c7831323335e079580ed54eb41a0a282580642f
0xaf5d065b8948dce72d5b538d3775ae24cc58038b4a53bd62fa956a8310921f77
0xbfaa8c4e5231c4bdf2b98564360947290c7f1fba3b3ea386cd71988eaee4a5b5
0x484d9321170d064fde2d5576bae3b7a3b954051c88e41e15676d2a00f8cfed7f
0xdfe80ed79ed2a104ac0fafa455f41059316229c2723d9ddd50015b3865b05d65

TABLE III
PRIME NUMBERS REPRESENTING THE TRANSACTIONS OF THE BLOCK OF 8
TXS FROM TABLE II THROUGH CALLING HASHTOPRIME (ALGORITHM 4)

h4−7=0xcea7f8d17ad5a6a0cb67242f5a34dcad6060645cdd0b992ecdd1f6c4146e921d .
Validating the inclusion of tx2 is done by comparing MR to

H(H(h0−1 · H(tx2 · tx3)) · h4−7) =

H
(

H
(
0x762bbcb0...

· H(0x250688d7... · 0xbe19f11c...)
)

· 0xcea7f8d1...
)
.

The proof size is O(log(# of txs)) and is of size (log2 nd)·w =
3 · 256 = 768 bit.

Accumulator scheme - For the above block example,
we used SHA256 as the hash function H in HASHTOPRIME
(Algorithm 4) as in Table III.

The accumulator declaration is the accumulated value. For
security reasons, the RSA modulus field should be a very large
number (e.g., 3072 bit), but in our example, in order to be able
to show the number, we use only 64 bit for the modulus, n =
0x4aad342c8d171f3 which is the product of 2 randomly
primes. The initial value is x = 0x42c79f75c2f308b.

The declaration is the accumulator value z =((
(xtx0)

tx1

)...)tx7

mod n = 0x356e2acb83eaa7f.
Its size is as the RSA modulus, in our example is 64 bit,
but usually 3072 bit. The proof of each transaction in our
example is in Table IV. The proof size is also as the RSA
modulus.

Validating the inclusion of tx2 is done as shown in Fig. 6
by comparing the declaration z to the computed value
tx2 proof HASHTOPRIME(tx2) mod n.

tx proof (64 bit)
0x995c9ed6269f5c
0xf50ba5dd021f8e
0x3bd0a206390314a
0x222eb08cf39f3eb
0x1a5ac9525df262c
0x18328f09ae4f5be
0x19a28bff37e4bd
0x4598171f94b1614

TABLE IV
ACCUMULATOR SCHEME: PROOF OF INCLUSION FOR EACH TRANSACTION

IN THE BLOCK OF 8 TXS FROM TABLE II

Scheme Declaration Proof Validation Declaration
size (bits) size (bits) method difficult tasks

Complete list nd · t - Local -
Merkle tree t log(nd) · t Challenge O(nd) hash functions
Accumulator r r Challenge nd HASHTOPRIME+

nd modular exponentiations
Parameters: nd - # of transactions in declaration, t - hash value in bits,

r - RSA modulus in bits

TABLE V
FUNDAMENTAL PROPERTIES OF AGE PROVING BY VARIOUS DECLARATION

SCHEMES

B. Scheme Comparison

We compare the schemes based on their complexity. The
number of transactions in a declaration is denoted by nd, the
number of bits of the transaction hash by t, the number of bits
in the RSA modulus by r and let the number of bits of the
hash function output be assumed the same as transaction hash
t. Table V summarizes properties of the different schemes for
the transaction declaration that we have proposed.

The simplest complete list scheme does not require chal-
lenging the proposer during the validation process. Its draw-
back is the declaration size that is sent to every node in the
network. The Merkle tree scheme declaration is small but the
declarer needs to compute the Merkle tree and store it in its
memory to answer challenges. The size of a Merkle proof is
a log factor of the number of transactions in the declaration.

The accumulator scheme declaration is with a fixed size as
the Merkle tree declaration, but practically would be larger
since the RSA modulus would be a large number. The proof
of a transaction is also a fixed size of the RSA modulus. The
computational effort in producing the accumulator declaration
is high since it requires finding a prime representation for
each transaction (by Algorithm 4) and calculating the modular
exponentiation of all prime numbers. The validation of the
proof also requires finding a representation of the transaction
and calculating one modular exponentiation. The expected
number of hash computations for each transaction in running
HASHTOPRIME is linear in the number of bits t, representing
the hashed value.

VI. EXPERIMENTAL RESULTS

In Fig. 1 (presented in Section II) we demonstrated the po-
tential impact of the age-aware block selection on transaction
latency in the Ethereum network.

We have conducted two simulations. First, we built a toy
blockchain simulation based on synthetic data of transaction
issuance rate and block sizes. Second, we collected data from

8

tx2 proof HASHTOPRIME(tx2) mod n =

0x3bd0a206390314a0x422134d3b572a67cd550895f347269c8415fe192771b9a0a7f39163904484b9b mod 0x4aad342c8d171f3 =

0x356e2acb83eaa7f
?
= z

Fig. 6. Validation of the seniority of a transaction tx2 based on a proof tx2 proof and a declaration z = 0x356e2acb83eaa7f.

the Ethereum Ropsten testnet [32] on the issuance rate and
block sizes and evaluated our blockchain simulation according
to the collected data.

Before presenting detailed results, we highlight the main
observations from the experimental study.

• Age-aware block selection reduces the q-99 percentile by
8%-40%.

• A strong correlation exists between the number of senior
transactions and the total pending pool size.

• In networks with longer transaction propagation delays,
the proposer must prove knowledge of more transac-
tions—transactions seen as senior by the proposer but
not necessarily by other nodes.

• Computing a Merkle tree declaration is three orders of
magnitude faster than computing the accumulator decla-
ration.

A. Synthetic Simulation

Setup - The network is constructed from four nodes
and every round a random node issues new transactions.
In the simulation, we considered different block sizes that
characterize high and low network load. In every round, a
random node is elected to propose a new block and new
transactions are issued by some random node. The amount
of new transactions being issued, k, is uniformly distributed
over L = {1, 3, 5, 7, 9, 11, 13, 15, 17}. Sampling the amount
of new transactions is a memory-based event, such that k at
time t - denoted as kt satisfies |kt− kt−1| ≤ 2. The memory-
based sampling aims to simulate different network loads over
the simulation with periods of a high rate of new transactions
and other periods with a low rate. The propagation delay time
of an issued transaction to reach some peer node is uniformly
distributed over {0, 2, 4} rounds. The propagation delay of a
transaction is independent for every peer in the network. We
considered two block sizes of b = 10 or b = 7 transactions per
block such that the larger block size allows more transactions
to be included in each block and results in typically lower
latency values. In the age-aware block selection, we set s = 2
for both block sizes, meaning that s among the b transactions
in a block were selected due to their age.

Reducing Tail Latency by Age-aware Selection - Fig. 7
shows the CDF of the observed latency in units of blocks.
The higher the load the network observes, the more significant
is the improvement of the age-aware selection method in
reducing the tail latency. In the experiment, the q-95 percentile
of the latency is reduced from 40 to 37 blocks for low network
load and in the high network load, it drops from 111 to
90, a reduction of 19%. The improvement of the higher q-
99 percentile is even more significant. It is reduced from 60

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Transaction latency (Blocks)
C

D
F

Age-aware selection - Low load
Random selection - Low load

Age-aware selection - High load
Random selection - High load

Fig. 7. CDF of transaction latency in random selection and in age-aware
selection. Latency is measured as elapsed number of blocks between transac-
tion issuance to inclusion. This shows the impact of age-aware selection in
different network loads.

blocks to 45 blocks in low load and from 173 to 104 blocks
in high load, an improvement of roughly 40%.

Pending Transactions Pool Characteristic - We inspected
the pending transactions pool in order to see patterns in the
amount of senior transactions and the amount of undeclared
senior transactions with various Tdeclaration values. We used
Told = Tdeclaration ∈ {30, 40} and in each round we counted
all pending transaction, the senior transactions, and senior
transactions which were not declared yet. As can be seen
in Fig. 8 the amount of senior transactions has the same trend
as the total pending pool size since when the pool size is
larger it causes transactions to wait longer time meaning more
transactions will be senior. The amount of senior transactions
is smaller in (b) than in (a) since there are fewer transactions
which their age is greater than Told = 40. The amount of
undeclared senior transactions is reduced when a declaration
phase occurs every Tdeclaration rounds.

B. Simulation based on the Ropsten Testnet

In order to get real data to simulate transactions arrival
over time, we have used the Ropsten testnet of Ethereum
network [32]. We have listened to a node and collected all
transactions and blocks that were propagated from its peers.
Our recording was performed for 12 hours beginning from
September 5, 2020, 4:41pm (UTC). In Fig. 9 we see the
distribution of the number of recorded new transactions over
time in resolution of 1 hour (in (a)), 5 minutes (in (b)) or 1
minute (in (c)).

We used the collected data to simulate the arrival rate and
block sizes by aggregating the number of arrived transactions

9

0 200 400 600 800 1,000
0

500

1,000

RoundPe
nd

in
g

po
ol

si
ze

(#
tx

s)

pool size (all txs)
seniors

seniors not declared

(a) Told = Tdeclaration = 30

0 200 400 600 800 1,000
0

500

1,000

RoundPe
nd

in
g

po
ol

si
ze

(#
tx

s)

pool size (all txs)
seniors

seniors not declared

(b) Told = Tdeclaration = 40

Fig. 8. Changes in pending pool size of a node through time. For different
Tdeclaration we measured in each round the pending pool size of some node,
the number of senior transactions and the number of senior transactions which
were not declared yet.

16
:4

1

17
:4

1

18
:4

1

19
:4

1

20
:4

1

21
:4

1

22
:4

1

23
:4

1

00
:4

1

01
:4

1

02
:4

1

0

500

1,000

1,500

2,000

2,500

3,000

3,500

Time

N
um

be
r

of
tx

s

(a) Arrival rate in time units 1 hour. Each bar represents the
number of new transactions in the hour that starts from the time
in the label below it.

16
:4

1

16
:4

6

16
:5

1

16
:5

6

17
:0

1

17
:0

6

17
:1

1

17
:1

6

17
:2

1

17
:2

6

17
:3

1

17
:3

6

0
20
40
60
80
100
120
140
160
180
200

Time

N
um

be
r

of
tx

s

(b) Arrival rate in time units 5 minutes. It shows the first hour
of recording.

16
:4

1
16

:4
2

16
:4

3
16

:4
4

16
:4

5
16

:4
6

16
:4

7
16

:4
8

16
:4

9
16

:5
0

16
:5

1
16

:5
2

16
:5

3
16

:5
4

16
:5

5
16

:5
6

16
:5

7
16

:5
8

16
:5

9
17

:0
0

17
:0

1
17

:0
2

17
:0

3
17

:0
4

17
:0

5
17

:0
6

17
:0

7
17

:0
8

17
:0

9
17

:1
0

0

10

20

30

40

50

60

Time

N
um

be
r

of
tx

s

(c) Arrival rate in time units 1 minutes. It shows the first 30
minutes of recording.

Fig. 9. Transactions arrival rate, recorded from Ethereum Ropsten testnet. It
is shown in different time units resoultions.

in every minute and summing the number of transactions that
are included in blocks propagated in every minute. In each
round in our simulation, the number of issued transactions is

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Block Size (number of txs)

C
D

F

Real Block Size
Reduced Block Size

Fig. 10. CDF of block size used in the simulation. Measured block size is
the number of transactions that were included in all blocks in some minute.
Reduced block size is 70% of the measured block size, and is used for
simulating high load.

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Transaction latency (Blocks)

C
D

F
Age-aware selection - Real
Random selection - Real

Age-aware selection - Smaller blocks
Random selection - Smaller blocks

Fig. 11. Ropsten Testnet - CDF of random selection and of age-aware
selection using real issue transaction rate and real vs. lower block size values.
Lower block size corresponds to higher load of transaction.

the number of arrived transactions in the corresponding minute
and the block size that the proposer creates is the number of
transactions included in blocks in the same minute.

We used the measured data and reevaluated the simulation
from Fig. 7 based on the real data. The number of senior
transactions selected in the age-aware is proportional to the
block size as s = ⌊0.2b⌋. In this simulation, the block size
is not fixed. Let denote the number of transactions included
in all blocks which were proposed in ith minute from starting
the recording as bi. High latency is when the block size in
each round i is set to ⌊0.7bi⌋ and in low latency it is set as
bi. Fig. 10 depicts the CDFs of the measured block size and
reduced block size. In the measured block size distribution
70% of the blocks include 20-42 transactions and 94% of the
blocks have size of at most 60 transactions. This indicates that
most blocks are within a factor of 3x in size from each other.

Fig. 11 depicts the CDFs of the latency. In the experiment,
the q-99 percentile of the latency is reduced from 9 blocks to
8 blocks in low load and from 142 to 131 blocks in high load,
an improvement of roughly 8%.

Fig. 12 shows the pending pool sizes in this simulation.
The maximum of the pool size is smaller compared to the
synthetic simulation in Fig. 8 since there are smaller periods
when there are more issued transactions than the proposed
block can include. Because of the relatively small pool size

10

0 100 200 300 400 500
0

50

100

150

200

Round

Pe
nd

in
g

po
ol

si
ze

(#
tx

s)
pool size (all txs)

seniors
seniors not declared

Fig. 12. Changes in pending pool size of a node through time using the testnet
rates data and Tdeclaration = 5. Each point is computed as the average of
5 rounds.

0 200 400 600 800 1,000
−40

−20

0

20

40

Round

N
um

be
r

of
tx

s

Synthetic Simulation
Testnet Simulation

Fig. 13. Difference (either positive or negative) between number of issued
transactions and block size in each round. The Ropsten testnet is evaluated
for a shorter time period (500 vs. 1000 rounds) and observes higher variance.

we used Told = Tdeclaration = 5.
The difference between the number of issued transactions

number and the proposed block size is depicted in Fig. 13.
One can see the consecutive positive values in the synthetic
simulation that result in growing numbers in the pending
transactions in the pool. The high variance between two
sequential rounds in the testnet simulation difference causes
pending pool size in Fig. 12 to be noisier than that of the
synthetic simulation in Fig. 8.

C. Size of Declarations

We evaluated the usage of different schemes in terms of
the declarations, challenge, and response messages size under
various transaction delays scenarios. In the experiment, we
used the blockchain described above except that the prop-
agation delay of transactions is uniformly distributed over
[0, ..., d] rounds where d denotes the maximal delay. Told

and Tdeclaration were set as 30 rounds. Transaction identifier
(txHash) is of 256 bit. For every maximal delay, we measured
for each scheme the mean of its declaration size among all
declarations made in 1000 rounds.

Fig. 14a shows the mean size of declarations in each
scheme. As higher the propagation delay is, there are fewer
transactions in the pending pool since more transactions get
included in some proposed block before their arrival to other
nodes. Thus, when the maximal delay is higher, there are fewer

transactions to include in declarations. In Merkle tree and
accumulator schemes, the declaration size is fixed regardless of
the number of included transactions as summarized in Table V.

When the proposer has included in the age-based part
of the block transactions which are not defined as seniors
by a committee member, there is a challenge and response
epoch between the proposer and the committee member. In
the experiment, we measured in every round the number
of transactions included in the age-based part and were not
defined as seniors by some other node. The sum of such trans-
actions across all nodes gives the total number of challenge
messages in any round. The proposer sends a response to a
challenge, providing the inclusion proof for each transaction
in some previous declaration. The mean sizes of challenge
and response messages across all rounds appear in Fig. 14b
and 14c, respectively. In the complete list scheme, there is no
need for challenging the proposer. Therefore, the challenge
and response message’s size is shown as 0.

The larger the maximal delay is, the higher variance be-
tween the age of transaction seen by different nodes. The high
variance of the age causes more transactions to be defined
as senior by the proposer but not by other nodes. As seen
in Fig. 14c the proposer has to prove the seniority of more
transactions upon a higher maximal delay.

D. Declaration Computation Measurement

We evaluated the time of computing a declaration using a
Python implementation of the Merkle tree and RSA accumu-
lator. We have chosen different sizes of transaction pools and
calculated the time to create the declaration by the mean of
10 runs. Table VI shows the comparison between the Merkle
tree and accumulator schemes production times. The Merkle
tree production time is 3 orders of magnitude faster than
the accumulator since calculating the modular exponentiations
in the accumulator is a very heavy task. Fig. 15 depicts
the production times. The production time is linear with the
number of transactions the declaration contains as analyzed
in Table V. Times were measured on Macbook Pro with
hardware that includes Processor: Intel(R) Core(TM) i7-7567U
CPU @ 3.50GHz, Memory: 16 GB 2133 MHz LPDDR3.

VII. ANALYSIS

In this section, we present a simple model for transaction
latency and likewise refer to the freshness of transaction
declarations through the notion of age of information.

A. Delay Distribution for Age-aware Selection

Assume a constant rate of transaction issuance as well as
a constant block size. These imply that the pending pool size
is fixed. Let denote the pool size as np and block size as b.
For random selection, the probability of a transaction to be
chosen in a block is b/np. Latency of a transaction denoted
by k where k ≥ 0 is defined as the number of rounds that the
transaction was in the pending pool and was not selected to a

11

5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

·104

26,327 25,739
24,531

23,360 22,808
21,702 20,998

248 248 248 248 248 248 248

2,982 2,982 2,982 2,982 2,982 2,982 2,982

Maximal Delay (rounds)

Si
ze

(b
its

)

List scheme Merkle scheme Accumulator scheme

(a) Declaration Size (mean)

5 10 15 20 25 30 35
0

20

40

60

80

100

120

0 0 0 0 0 0 01 2

12

26

44

68

119

1 2

12

26

44

68

119

Maximal Delay (rounds)

Si
ze

(b
its

)

List scheme Merkle scheme Accumulator scheme

(b) Challenge Message Size (mean)

5 10 15 20 25 30 35
0

200

400

600

800

0 0 0 0 0 0 08 11

83

177

320

503

866

6 18
58

141

237

344

559

Maximal Delay (rounds)

Si
ze

(b
its

)

List scheme Merkle scheme Accumulator scheme

(c) Response Message Size (mean)

Fig. 14. Measurement of declaration size, challenge and response messages under different declaration schemes.

0 1 2 3

·104

0

0.1

0.2

0.3

Transaction number

Ti
m

e
(s

ec
)

Merkle tree

(a) Merkle tree calculation time

0 1 2 3

·104

0

200

400

Transaction number

Ti
m

e
(s

ec
)

accumulator

(b) Accumulator calculation time

Fig. 15. Time length of computing a declaration - time is linear in number
of included transactions.

proposed block. The latency in random selection follows the
geometric distribution such that

Pr (latency = k) =

(
1− b

np

)k (
b

np

)
,

and

CDF = Pr (latency ≤ k) = 1−
(
1− b

np

)k+1

.

For the age-aware selection, the number of senior transac-
tions in each block is denoted as s. The number of senior
transactions in the proposer pool is a random variable Ns.
This number of transactions depends on the ratio between the
issuance transactions rate and the block size and of course
on the parameter of Told which defines the minimal age of
a senior transaction. To simplify the analysis further assume
that Ns is also fixed and let denote it as ns. Then, in age-aware
selection:

Pr (latency = k)

=


k < Told

(
1− b−s

np

)k

·
(

b−s
np

)
k ≥ Told

(
1− b−s

np

)Told

·
(
1− s

ns
− b−s

np

)k−Told

·
(

s
ns

+ b−s
np

)
The probability when k ≥ Told is composed of three factors.
The first factor means the probability of not being chosen
for Told rounds. Then the transaction becomes senior, and
the second factor is the probability of not being selected for
additional k−Told rounds. The third factor is of being chosen
in a round following the earlier k rounds either in the random
selection or as a senior.

pool size Merkle tree Accumulator
mean (sec) mean (sec)

2 6.493e-5 20.09
3642 0.03838 60.27
7283 0.07148 100.6
10924 0.1079 140.3
14564 0.1518 186.2
18205 0.1798 233.8
21846 0.2188 280.0
25486 0.2555 324.6
29127 0.2898 379.2
32768 0.3292 435.3

TABLE VI
DECLARATION COMPUTATION TIME FOR DIFFERENT POOL SIZE. VALUES

ARE BASED ON THE MEAN FOR 10 RUNS.

For high percentiles where the latency is greater than Told,
the latency CDF holds

Pr (latency ≤ k) = 1−
(
1− b−s

np

)Told
(
1− s

ns
− b−s

np

)k−Told+1

.

B. Age of Information

Age of Information (AoI) [33] is a metric to measure
freshness of status updates about some system. In our model,
the information covers a set of pending transactions of some
other node, expressed according to some declaration method.
The pending transaction pool size of a node grows with the
transaction issuance rate and decreases with the throughput
of the blockchain (number of transactions in each block
multiplied by the number of new blocks in time unit).

Declarations Di
k of node i are sent in time points α

(i)
k , k ∈

{1, 2, 3, ...} with measurement intervals Γk(i) = α
(i)
k −

α
(i)
k−1 = Tdeclaration. Arrival time of declaration Di

k to some
other node j is denoted by β

(ij)
k and follows an exponentially

distributed delay [25], such as tcomm = β
(ij)
k −α(i)

k ∼ Exp(η).
The Peak Age of Information (PAoI) is the value of age
achieved immediately before receiving the declaration

Ak(D
i
k, j) = Tdeclaration + tcomm = Γk(i) + tcomm

= β
(ij)
k − α

(i)
k−1.

The average Peak Age of Information of a declaration is

A = E [Γk(i) + tcomm] = Tdeclaration + E [tcomm]

= Tdeclaration + 1/η.

12

Intuitively, the age of information represents the elapsed time
from the sending time of the recent declaration the node has
received. After a declaration is sent, as the time ticks there
might be more transactions whose local age is greater than
Told. Those transactions cannot be included in the age-based
part of the block since their age cannot be verified. The
smaller the average PAoI of the proposer’s declaration, the
more pending transactions are declared and can be selected as
part of the age-based part of the block. Therefore, from the
AoI aspect, the smaller Tdeclaration the more transactions can
be included in the age-based part.

VIII. RELATED WORK

Fairness in Blockchain Systems and Beyond: There are
other works that ensure fairness among transactions by forcing
the proposer to randomly select the transactions [11] while the
proposer is elected randomly and by a non-leader consensus
protocol, meaning that every node proposes a random subset
of transactions [34]. Declarations on the transactions known
to a node have been studied in [22] to improve fairness.
Another study by Nassar et al. [23], introduced a protocol
that utilizes zone structures to improve fairness by capitalizing
on the inherent structure of the network. This approach aims
to further enhance fairness within the system. The notion of
fairness among transactions is defined differently in [13] as
each node gets a fair share of the ledger. Namely, each block
contains the same number of transactions from each node
assuming that they have infinite streams of transactions.

Another line of research [35], [36], [37], [38], [14] explores
the concept of ”order fairness,” which involves selecting trans-
actions based on their arrival order. This enforces transaction
selection such that if many nodes learned about a transaction
before some other transactions such an order should be re-
flected in the ledger. The protocol proposed in [14] focuses
on achieving order fairness in permissioned environments,
while [37] suggests approaches for achieving order fairness
in permissionless contexts. Notably, [36] and [35] contribute
techniques to streamline communication complexity, and [36]
additionally achieves a standard liveness property, distinguish-
ing it from other works that exhibit weaker liveness guarantees.
Weaker potential definitions refer to the unfairness of the order
of two transactions only if they were received sufficiently
apart in time. Wendy [39] discusses relative order fairness and
claims for fairness requirements for subsets of transactions,
e.g., those belong to several existing markets.

Beyond blockchain, aspects of fairness have been studied
in other networking and computer system settings where a
restricted resource is shared among multiple entities. Examples
include a queue with a bounded service rate or a link with
limited capacity [40]. A well-known notion is the max-min
fairness, which suggests how to determine a resource partition
based on the demands of multiple users, summing up to more
than the resource availability. Intuitively, such a fair allocation
tries to maximize the share of users of small demands. On the
other hand, users asking for a share larger than their relative
part, can be negatively affected by other users. Generalizations
of the definition have also been suggested [41], [42].

Transactions Propagation: Once a user sends a transaction
to some node, the node is responsible to propagate this
transaction through the network. In Bitcoin [3] the propagation
is done in a gossip-based flooding method, namely a node that
receives a transaction potentially relays it to all its peers which
propagate it onwards. In Ethereum [4], there are different client
protocols as Geth which sends the transactions to all peers,
and Parity which sends transactions only to a square root of
its peers [43].

Transaction Selection: In our work, we discuss how a
block proposer should select which transactions to include
inside the proposed block. In commonly used blockchains
based on PoW consensus as Bitcoin [3] and Ethereum [4], the
selection process is not part of the protocol and can be decided
by the proposer. Since transactions might have different fees,
the block proposer typically selects those of maximal fee it is
aware of in order to maximize its profit [44].

Reducing Tail Latency: We focus on reducing tail latency
of transactions. The problem of tail latency is known to highly
affect QoS also in other environments such as storage systems
or cloud services and various approaches have been suggested
to mitigate it. This includes reducing the tail latency of read
and write operations in SSD [45] while relying on garbage
collection, the response time of interactive services [46] with
parallelism, and request completion time of cloud servers [47]
through the use of data duplication.

IX. DISCUSSION AND GENERALIZATIONS

We highlight potential generalizations and points to consider
this work opens up.

Block Computation Capacity: Rather than being limited
to include a fixed number of b transactions, in some blockchain
networks, a block can be restricted based on the expected
amount of computation. In Ethereum, a transaction is asso-
ciated with a bound on its implied computation described as
gas limit. The gas is small for simple payment transactions and
higher for advanced smart contract transactions that involve
computational-intensive operations and allocate extra mem-
ory. The age-aware fairness model can also support such a
computation-based model.

Denote by Cb the block computation capacity. Within such
a block, up to Cs of its capacity can be dedicated to senior
transactions. Similar to the description in Section II-D, in each
round, the transactions are sorted based on their hash values.
Based on the order, the maximal number of first transactions
that their sum of expected computation is below Cb −Cs are
selected to be included in the block.

The definition of fairness among transactions can be ex-
tended to avoid starvation of transactions with low computa-
tion by a small number of computation-intensive transactions.
One method to do that is to scale the random to a range
based on the expected gas limit of a transaction so that light
transactions have higher chances to be included in a block.

Ordering within Block: While there are many definitions
of ordering fairness, the definition in this paper refers to the
inclusion of transactions in a block. Beyond that definition, in
several blockchain systems, the internal order of transactions

13

within a block can also be of importance such as with
regards to miner extractable value (MEV, see for instance
the Introduction for more details). The age-aware fairness can
also enhance fairness with regard to internal block ordering
by restricting the miner’s flexibility. Two simple ways to do
so can be to include all senior transactions first and then
regular (namely, typically non-senior) transactions such that
within its subset transactions must be ordered according to
the hash values computed for every transactions. Similarly, we
can mix the senior and the regular transactions such that all
transactions must be ordered due to the hash values. For both
restrictions, validation of the internal block order is simple
through computing the hash values and can be done easily
also be committee members that do not have some of the
block transactions in their pools.

Verifiable Delay Function (VDF) declaration scheme:
VDF [48], [49] is a recent cryptographic tool used for adding
delay in decentralized applications. The VDF is a function
f : X → Y which its computation time is prescribed, even
on a parallel computer. Once the function was computed on
x ∈ X its output y ∈ Y is unique and can be verified quickly.
The VDF is composed of three algorithms:

• setup(λ, T) → pp which initializes the VDF environ-
ment. It takes a security parameter λ and a time bound
T , and outputs public parameters pp.

• evaluation(pp, x)→ (y, π) which takes an input x ∈ X
and outputs a y ∈ Y together with its a proof π.

• verification(pp, x, y, π) → {accept, reject} outputs
accept if y is indeed the right evaluation of the VDF
and otherwise reject.

In this scheme, committee members of the first block run
the setup which initializes the public parameters pp. The
parameters pp are saved in each node and when a new node
joins the network it asks for the parameters pp from its peer.
Each node either periodically or whenever the amount of new
pending transactions is large arranges all transactions in its
pending pool as a Merkle tree and computes the VDF function
on the Merkle root MR. Consider a block verification by a
committee member such that some transactions are included
in the age-based part as senior. To validate such a selection
the committee member challenges the proposer to send the
transaction Merkle proof with the root MR together with the
VDF proof π of MR.

There are two common implementations of VDFs (By
Pietrzak and by Wesolowski [50]). We describe the VDF
algorithms so they can be implemented in either construction.

• The setup generates an RSA group shared by all network
nodes by using a decentralized algorithm for multi-
party [51]. It produces an RSA modulus N of λ = 2048
bits. The SHA256 is used as the hashing function and the
desired time-bound is set as Told.

• The evaluation uses as input the Merkle root of the
pending pool x = MR, and then computes y = MR2Told

mod N . The proof π which is part of the output is defined
in each VDF construction.

• The verification algorithm differs between each VDF
construction. While Pietrzak’s performance of the verifi-

cation step is better than Wesolowski’s it trades off the
network overhead of the VDF proof which is higher.

The computation produces a proof that enables everyone to
efficiently verify it. One might consider applying VDFs as
another scheme for proving the age of a transaction. Basically,
the availability of the output of a VDF computed over a
transaction can demonstrate that its age is at least the time
it takes to compute the function. The computational overhead
of such a potential scheme can be high in practice. A node
should periodically produce a Merkle tree from its pending
transactions pool and calculate a VDF on it and store the
Merkle tree together with the VDF proofs.

Age-aware fairness overhead: Using our age-aware block
selection schemes compared to other block selection methods
necessitates overhead. The validation process of a new block
is computationally more complex. In the schemes where the
committee members challenge the proposer, it also causes
communication overhead and delay. The declaration schemes
increase the communication overhead and computing the
Merkle tree or accumulator declarations requires computa-
tional resources. Since the validation process speed affects
the rate of new blocks added to the blockchain, achieving
age-aware fairness might degrade the network transactions
throughput to some extent.

Senior priority level: The scheme allows including s
among the b block transactions based on their seniority. One
can wonder how to select the value of s ∈ [1, b]. On the
one hand, selecting s such that a large portion of the block
contains senior transactions reduces fairness since the senior
transactions are not selected randomly and this increases the
latency of lower percentiles. On the other hand, selecting a
low value of s reduces tail latency improvement. In time the
network has low load, the values of s does not have high
impact as often the number of transactions becoming senior is
low and if a transaction indeed becoming so, it often can be
included within the next block. However, consider for instance
a burst of transactions that are issued in a short period of time.
If not included in a block within some time, such transactions
can become senior at similar times. For a high value of s,
those transactions can be included in the next block while for
a low s value, such transactions would have to wait longer and
appear in one of the several next blocks. This highly affects
the probability of a transaction observing a delay much longer
than Told, the time it takes to be senior. On the other hand,
high value of s also reduces the number of randomly selected
transactions in the block, implying lower chances to observe
very low latency. Overall, higher s values make the latency
distribution more dense.

Weighted random transaction selection: The proposed
age-aware block selection is based on the ability of the block
proposer to include s senior transactions among a block of
b transactions while other b − s transactions are randomly
selected. An alternative scheme to prioritize senior transactions
is to select all b transactions of the block randomly among the
pool of pending transactions but with associating a probability
to each transaction to be selected based on its age. In such a
model, the notion of seniority is continuous rather than the
discrete definition we used for seniority (an age beyond a

14

Age-aware Weighted random
selection selection

Notion of seniority discrete continuous

Block validation validation of each validation based on similarity
senior transaction between proposed block to

local pool content

TABLE VII
COMPARISON OF WEIGHTED RANDOM SELECTION TO AGE-AWARE

SELECTION

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Transaction latency (Blocks)

Pr
ob

ab
ili

ty
to

be
in

cl
ud

ed
in

a
bl

oc
k Age-aware selection - Low Told

Age-aware selection - High Told

Weighted random selection - Low Told

Weighted random selection - High Told

Fig. 16. Illustration of Weighted random transaction selection.

threshold). A block can be validated based on the similarity
between its content to a local computation by a committee
member. Although the age of a transaction can differ among
nodes, it is expected to be similar when the variance of
transaction propagation delay is relatively small. Thus, blocks
are selected from similar distributions and some level of
similarity between the blocks is expected. This scheme of
transaction selection has the advantage that the number of
senior transactions in a block does not need to be predefined
by some parameter and it is controlled by the weighted
selection. Table VII shows different attributes of weighted
random selection and age-aware selection. Fig. 16 illustrates
the weighted random selection by showing the probability of
a transaction to be included in a block based on its latency.
We assume here for simplicity that the number of senior
transactions is small so they can be included in the next
block. Two curves refer to the traditional age-aware selection
with two values of the threshold Told: low Told = 60 (in
red) and high Told = 80 (in green). Transactions of lower
latency observe identical chances to be selected. The next two
curves refer to weighted random selection. In both, even below
the threshold Told the probability increases for higher latency
values. First, in blue in the form of a step function. Second,
in orange, as a strictly monotonic function. These are simple
examples for weighted random selection and the particular
computation of the probability as a function of the latency
can vary. Moreover, in these examples the probability jumps
to 1 upon a latency of Told which is not mandatory.

Finality of a committee decision: Once the committee
votes are collected and the proposed block is approved, the
new block is propagated to all network nodes and is not further
changed. This typically requires a predetermined minimum
number of supporting votes among the committee but once
achieved implies finality. This is unlike for instance the typical
proof-of-work block selection in Bitcoin when finality of a
block is not achieved immediately after block approval.

Combining declarations in proposed blocks: Consider
a scenario in which a node is selected as a block proposer
every fixed interval (e.g., in a round-robin selection) and the
interval is relatively small to a high percentile of transaction
latency. Then, it is possible to reduce communication overhead
by including the proposer declaration as part of the proposed
block. Since the communication overhead in the Merkle tree
and accumulator schemes is relatively small, we do not expect
it to reduce the transactions throughput.

Flooding attacks prevention: In the fairness model where
transactions are served equally, we need to prevent a potential
attack of a node that floods the blockchain with transactions
to achieve denial of service (DoS). Simple mitigation could be
applying a fixed fee to each transaction such that this attack
cost will be high. Another mitigation can be to monitor nodes
that spam the network and ignore their transactions.

X. CONCLUSION

Transaction confirmation time is of importance and highly
affects the quality of service of blockchain systems. In existing
fair block selections that time can observe a large variance.
This paper proposes mechanisms to reduce the skewness of
that time through prioritizing in the block selection transac-
tions with earlier issuance time. We explain how this can be
achieved while keeping the fairness property. The solutions are
designed for multiple distributions of transaction propagation
and make use of concise declarations on pending pools.
Experiments demonstrate a reduction in high percentiles of
the confirmation time.

REFERENCES

[1] Y. Sokolik and O. Rottenstreich, “Age-aware fairness in blockchain
transaction ordering,” in IEEE/ACM International Symposium on Quality
of Service (IWQoS), 2020.

[2] C. Dwork and M. Naor, “Pricing via Processing or Combatting Junk
Mail,” in CRYPTO, 1992.

[3] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2008.
[Online]. Available: http://bitcoin.org/bitcoin.pdf

[4] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” 2014. [Online]. Available: https://gavwood.com/paper.pdf

[5] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros:
A Provably Secure Proof-of-Stake Blockchain Protocol,” in CRYPTO,
2017.

[6] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling Byzantine Agreements for Cryptocurrencies,” in Symposium on
Operating Systems Principles (SOSP), 2017.

[7] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach,
and A. Juels, “Flash boys 2.0: Frontrunning in decentralized exchanges,
miner extractable value, and consensus instability,” in IEEE Symposium
on Security and Privacy (SP), 2020.

[8] S. Eskandari, S. Moosavi, and J. Clark, “SoK: Transparent dishonesty:
Front-running attacks on blockchain,” in Financial Cryptography and
Data Security (FC) International Workshops, 2019.

[9] V. Manahov, “Front-running scalping strategies and market manip-
ulation: why does high-frequency trading need stricter regulation?”
Financial Review, vol. 51, no. 3, pp. 363–402, 2016.

15

[10] L. Heimbach and R. Wattenhofer, “Sok: Preventing transaction reorder-
ing manipulations in decentralized finance,” CoRR, 2022.

[11] D. Yakira, A. Asayag, G. Cohen, I. Grayevsky, M. Leshkowitz, O. Rot-
tenstreich, and R. Tamari, “Helix: A fair blockchain consensus protocol
resistant to ordering manipulation,” IEEE Trans. Netw. Serv. Manag.,
vol. 18, no. 2, pp. 1584–1597, 2021.

[12] S. Shyamsukha, P. Bhattacharya, F. Patel, S. Tanwar, R. Gupta, and
E. Pricop, “PoRF: Proof-of-reputation-based consensus scheme for fair
transaction ordering,” in International conference on electronics, com-
puters and artificial intelligence (ECAI), 2021.

[13] K. Lev-Ari, A. Spiegelman, I. Keidar, and D. Malkhi, “FairLedger: A
Fair Blockchain Protocol for Financial Institutions,” in International
Conference on Principles of Distributed Systems (OPODIS), 2019.

[14] M. Kelkar, F. Zhang, S. Goldfeder, and A. Juels, “Order-Fairness for
byzantine consensus,” in Annual International Cryptology Conference
(CRYPTO), 2020.

[15] G. Shang, N. Ilk, and S. Fan, “Need for speed, but how much does
it cost? unpacking the fee-speed relationship in bitcoin transactions,”
Journal of Operations Management, 2022.

[16] J. De Vries, D. Roy, and R. De Koster, “Worth the wait? How restaurant
waiting time influences customer behavior and revenue,” Journal of
operations Management, vol. 63, pp. 59–78, 2018.

[17] P. B. Goes, N. Ilk, M. Lin, and J. L. Zhao, “When more is less: Field
evidence on unintended consequences of multitasking,” Management
Science, vol. 64, no. 7, pp. 3033–3054, 2018.

[18] P. Kumar, M. U. Kalwani, and M. Dada, “The impact of waiting
time guarantees on customers’ waiting experiences,” Marketing science,
vol. 16, no. 4, pp. 295–314, 1997.

[19] K. Wang and H. S. Kim, “Fastchain: Scaling blockchain system with
informed neighbor selection,” in IEEE International Conference on
Blockchain (Blockchain), 2019.

[20] Y. Zhu, C. Hua, D. Zhong, and W. Xu, “Design of low-latency
overlay protocol for blockchain delivery networks,” in IEEE Wireless
Communications and Networking Conference (WCNC), 2022.

[21] R. Saltini, “Bigfoot: A robust optimal-latency bft blockchain consensus
protocol with dynamic validator membership,” Computer Networks, vol.
204, p. 108632, 2022.

[22] A. Orda and O. Rottenstreich, “Enforcing Fairness in Blockchain Trans-
action Ordering,” in IEEE International Conference on Blockchain and
Cryptocurrency (ICBC), 2019.

[23] M. Nassar, O. Rottenstreich, and A. Orda, “CFTO: communication-
aware fairness in blockchain transaction ordering,” IEEE Trans. Netw.
Serv. Manag., vol. 21, no. 1, pp. 490–506, 2024.

[24] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, E. Gün Sirer, D. Song, and R. Wattenhofer,
“On Scaling Decentralized Blockchains,” in Financial Cryptography and
Data Security, 2016.

[25] C. Decker and R. Wattenhofer, “Information propagation in the Bitcoin
network,” in IEEE International Conference on Peer-to-Peer Computing
(P2P), 2013.

[26] R. C. Merkle, “Secrecy, Authentication, and Public Key Systems,” PhD
Thesis, Department of Electrical Engineering, Stanford University, 1979.

[27] J. Benaloh and M. de Mare, “One-Way Accumulators: A Decentralized
Alternative to Digital Signatures,” in EUROCRYPT, 1993.

[28] D. Boneh, B. Bünz, and B. Fisch, “Batching Techniques for Accumula-
tors with Applications to IOPs and Stateless Blockchains,” in CRYPTO,
2019.

[29] N. Barić and B. Pfitzmann, “Collision-Free Accumulators and Fail-Stop
Signature Schemes Without Trees,” in EUROCRYPT, 1997.

[30] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems,” Communications of
the ACM, vol. 21, no. 2, pp. 120–126, 1978.

[31] C. Pomerance, J. L. Selfridge, and S. S. Wagstaff, “The Pseudoprimes to
25·109,” Mathematics of Computation, vol. 35, no. 151, pp. 1003–1026,
1980.

[32] “Ropsten Ethereum Testnet Explorer.” [Online]. Available: http:
//ropsten.etherscan.io/

[33] A. Kosta, N. Pappas, and V. Angelakis, “Age of Information: A New
Concept, Metric, and Tool,” Foundations and Trends® in Networking,
vol. 12, no. 3, pp. 162–259, 2017.

[34] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The Honey Badger
of BFT Protocols,” in ACM CCS, 2016.

[35] Y. Zhang, S. T. V. Setty, Q. Chen, L. Zhou, and L. Alvisi, “Byzantine
ordered consensus without byzantine oligarchy,” in USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2020.

[36] M. Kelkar, S. Deb, S. Long, A. Juels, and S. Kannan, “Themis: Fast,
strong order-fairness in byzantine consensus,” IACR Cryptol. ePrint
Arch., p. 1465, 2021.

[37] M. Kelkar, S. Deb, and S. Kannan, “Order-fair consensus in the per-
missionless setting,” in ACM ASIA Public-Key Cryptography Workshop,
2022.

[38] C. Cachin, J. Micic, N. Steinhauer, and L. Zanolini, “Quick order
fairness,” in Financial Cryptography and Data Security (FC), 2022.

[39] K. Kursawe, “Wendy, the good little fairness widget,” arXiv preprint
arXiv:2007.08303, 2020.

[40] R. Jain, D.-M. Chiu, and W. R. Hawe, “A quantitative measure of
fairness and discrimination,” Eastern Research Laboratory, Digital
Equipment Corporation, Hudson, MA, 1984.

[41] E. Danna, A. Hassidim, H. Kaplan, A. Kumar, Y. Mansour, D. Raz, and
M. Segalov, “Upward Max-Min Fairness,” Journal of the ACM (JACM),
vol. 64, no. 1, pp. 2:1–2:24, 2017.

[42] P. Nilsson, “Fairness in communication and computer network design,”
PhD Thesis, Department of communication systems, Lund University,
2006.

[43] S. K. Kim, Z. Ma, S. Murali, J. Mason, A. Miller, and M. Bailey,
“Measuring Ethereum Network Peers,” in ACM Internet Measurement
Conference (IMC), 2018.

[44] W. Wang, D. T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang, Y. Wen, and
D. I. Kim, “A Survey on Consensus Mechanisms and Mining Strategy
Management in Blockchain Networks,” IEEE Access, vol. 7, pp. 22 328–
22 370, 2019.

[45] W. Kang and S. Yoo, “Dynamic management of key states for reinforce-
ment learning-assisted garbage collection to reduce long tail latency in
SSD,” in Annual Design Automation Conference (DAC), 2018.

[46] M. E. Haque, Y. h. Eom, Y. He, S. Elnikety, R. Bianchini, and K. S.
McKinley, “Few-to-Many: Incremental Parallelism for Reducing Tail
Latency in Interactive Services,” in ACM ASPLOS, 2015.

[47] H. M. Bashir, A. B. Faisal, M. A. Jamshed, P. Vondras, A. M. Iftikhar,
I. A. Qazi, and F. R. Dogar, “Reducing Tail Latency using Duplication:
A Multi-Layered Approach,” in ACM CoNEXT, 2019.

[48] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch, “Verifiable Delay
Functions,” in Advances in Cryptology – CRYPTO, 2018.

[49] K. Pietrzak, “Simple Verifiable Delay Functions,” in Innovations in
Theoretical Computer Science (ITCS), 2019.

[50] D. Boneh, B. Bünz, and B. Fisch, “A Survey of Two Verifiable Delay
Functions,” IACR Cryptology ePrint Archive, vol. 2018, p. 712, 2018.

[51] V. Attias, L. Vigneri, and V. Dimitrov, “On the Decentralized Generation
of the RSA Moduli in Multi-Party Settings,” arXiv:1912.11401, 2019.

Yaakov Sokolik received the B.Sc. and M.Sc. de-
grees in Computer Science from the Technion, Haifa,
in 2017 and 2020, respectively. He is currently a
Software Engineer at Pinecone, where he works on
building a scalable vector database.

Mohammad Nassar received the B.Sc. and degree
in Computer Engineering from the Technion, Haifa,
Israel. In 2023 he completed the M.Sc. degree at
the Technion’s Viterbi Department of Electrical and
Computer Engineering.

Ori Rottenstreich is an associate professor at the
department of Computer Science and the department
of Electrical and Computer Engineering of the Tech-
nion, Haifa, Israel. Previously, he was a Postdoctoral
Research Fellow at Princeton university. Ori received
his B.Sc. degree in Computer Engineering and Ph.D.
degree in Electrical Engineering from Technion.

16

