
Cryptography Experiments In Lean 4: SHA-3
Implementation

Gérald Doussot∗

November, 2024

Abstract

In this paper we explain how we implemented the Secure Hash Algorithm-
3 (SHA-3) family of functions in Lean 4, a functional programming lan-
guage and theorem prover. We describe how we used several Lean facilities
including type classes, dependent types, macros, and formal verification,
and then refined the design to provide a simple one-shot and stream-
ing API for hashing, and Extendable-output functions (XOFs), to reduce
potential for misuse by users, and formally prove properties about the
implementation.

1 Introduction
Lean 41[2] is a functional programming language, and theorem prover. It has
many features including first-class functions, dependent types, metaprogram-
ming, verification and extensible syntax to name a few, making it interesting
and suitable for a wide range of problems. Mathlib2[3], the Lean mathematical
library, is the most significant and impactful project written and formalized in
Lean. Lean’s dual nature makes it compelling for a number of reasons, one of
which is being able to formally prove properties about a program written in
Lean itself. Implementation, and usage of cryptography libraries is notoriously
difficult, and error-prone. At the least, this makes Lean 4 a good candidate
language for prototyping executable cryptographic primitive and protocol im-
plementations, and proving properties about them.

Cryptographic hash functions are arguably simpler to implement than other
primitives such as those found in public key cryptography. Yet, their imple-
mentations are not immune to memory corruption in memory unsafe languages,
and their design and implementation may lead to misuse and incorrect results.
There has recently been renewed interest in the Secure Hash Algorithm-3 family
of functions on data, and in SHAKE128/SHAKE256 in particular, due to their
adoption in post-quantum cryptography schemes. SHA-3 also has an interesting
design with implications for implementers, and consequences for users; it is a

∗gerald.doussot@nccgroup.com
1Lean 4: https://lean-lang.org/
2Mathlib: https://leanprover-community.github.io/mathlib-overview.html

1

https://lean-lang.org/
https://leanprover-community.github.io/mathlib-overview.html

sponge construction3, and care must be taken to enforce the correct sequencing
of operations, and management of internal data structures.

We present our experience in implementing SHA-3 in Lean 4 in this paper.
We first provide a brief introduction of SHA-3, focusing on interesting aspects
for our Lean implementation. We then describe how we implemented parts
of SHA-3 including state management, hash function parameters, permutation,
the sponge construction, user-facing API, and formal verification. We show how
we proved that all access to the input data, the SHA-3 round constants table,
the internal buffer, and state are in bounds, and how we enforced a prohibition
on undue absorb and squeeze alternation. We follow with a discussion on how
we tested our implementation for correctness, and performance. We present
potential issues to consider when implementing Lean code in high-assurance
systems, before providing concluding remarks.

Our SHA-3 implementation in Lean 4 is available on GitHub4.

2 SHA-3
The “FIPS 202 SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions”5 2015 standard specifies the Secure Hash Algorithm-3 fam-
ily of functions on data. It is based on an instance of the Keccak algorithm
that NIST selected as the winner of the “SHA-3 Cryptographic Hash Algo-
rithm Competition”. The SHA-3 family consists of four cryptographic hash
functions SHA3-224, SHA3-256, SHA3-384, and SHA3-512, and two extendable-
output functions (XOFs), SHAKE128 and SHAKE256. The latter are now man-
dated in post-quantum algorithms, as part of the Module-Lattice-Based Key-
Encapsulation Mechanism Standard (ML-KEM) FIPS 2036, and of the Module-
Lattice-Based Digital Signature Standard (ML-DSA) FIPS 2047 2024 standards.
SHA-3 is a sponge construction8 for building a function with variable-length in-
put and output, with a permutation on a fixed length block, the state. It has
two distinct phases, absorption and squeezing, and one cannot alternate these
phases in SHA-3. The fixed length block consists of two parts: the rate and the
capacity. All but two SHA-3 functions have different capacity parameters; with
the block size being set to 200 bytes, this drives the size of the matching rate
part of the block.

At a high level, in the absorption phase the input message is chunked, and
each chunk is XOR’ed with the rate part of the fixed block. The Keccak-f
permutation is called on the overall block after each chunk has been processed.
In the squeezing phase, the rate part of the block is returned, interleaved with
calls to the hash function on the whole block. Switching from the absorbing
phase to the squeezing phase will result in padding of the input message. De-
pending of the implementation, this process of working on different parts of the
block, with block parts of different sizes depending on the hash functions, and
for different input and output sizes, can be error-prone. In fact, researchers

3Sponge construction: https://en.wikipedia.org/wiki/Sponge_function
4SHA-3 Lean 4 implementation: https://github.com/gdncc/Cryptography
5FIPS 202: https://csrc.nist.gov/pubs/fips/202/final
6FIPS 203: https://csrc.nist.gov/pubs/fips/203/final
7FIPS 203: https://csrc.nist.gov/pubs/fips/204/final
8Cryptographic sponge functions: https://keccak.team/files/CSF-0.1.pdf

2

https://en.wikipedia.org/wiki/Sponge_function
https://github.com/gdncc/Cryptography
https://csrc.nist.gov/pubs/fips/202/final
https://csrc.nist.gov/pubs/fips/203/final
https://csrc.nist.gov/pubs/fips/204/final
https://keccak.team/files/CSF-0.1.pdf

found a buffer overflow vulnerability in the implementation of the Secure Hash
Algorithm 3 (SHA-3) that had been released by its designers[1]. Proving that
accesses to data structures are in bounds is therefore of interest to avoid memory
corruption and other adverse impacts.

3 Implementing The SHA-3 Family Of Functions
3.1 SHA-3 State
The SHA-3 core functions revolve around managing a state, which is 200 bytes
in length. This is large, and we need to find a way to represent this state in an
efficient manner. Lean allows to implement code closer to the machine, using
native types. It has support for efficient structures including array (Array),
and byte array (ByteArray), which is an array of unsigned byte elements. Note
that while Array is a native array, the elements of the array are Lean objects,
whereas ByteArray is a completely native byte array, and would probably be
more performant9 where applicable. Another potentially suitable structure is
the vector10(Vector) type in the Lean community Batteries library. This
library is officially maintained and relatively small, but for this project, we
wanted to limit our experiments to core Lean 4. Array is appropriate to rep-
resent the underlying SHA-3 state, and we chose this type. However, Array
can have an arbitrary size (and can change size), therefore it would be best
to put restrictions on its size to better convey our implementation intent, and
reduce possibilities of bugs. In our implementation, we created a Lean subtype
(a dependent type) to achieve that, as shown in listing 1.

-- An array of 25 UInt64 values
private abbrev Arr25 := { val : Array UInt64 // val.size = 25}
private abbrev State := Arr25

Listing 1: State subtype

We first defined Arr25, a subtype with a value of type Array UInt64,
which should work well on modern architectures, and the property that the
array has 25 elements, in the form of a logical statement. We then defined
another name, State for this data type. We used abbrev instead of def
to allow Lean to automatically find11 type class instance values based on the
unfolded definition.

We then defined a number of utility functions, and tools as shown in listing
2.

The first function instantiates an empty state, by creating an array of 25
zero values, and providing a proof that the array has indeed 25 elements, as

9Array and ByteArray representation: https://leanprover.zulipchat.com/#narr
ow/channel/113489-new-members/topic/Code.20review.3A.20proof.20about.20
Array.20map/near/454906535

10Batteries library vector type: https://github.com/leanprover-community/batte
ries/blob/31a10a332858d6981dbcf55d54ee51680dd75f18/Batteries/Data/Vect
or/Basic.lean#L23

11def vs abbrev: https://leanprover-community.github.io/archive/stream/27
0676-lean4/topic/def.20vs.20abbrev.html

3

https://leanprover.zulipchat.com/#narrow/channel/113489-new-members/topic/Code.20review.3A.20proof.20about.20Array.20map/near/454906535
https://leanprover.zulipchat.com/#narrow/channel/113489-new-members/topic/Code.20review.3A.20proof.20about.20Array.20map/near/454906535
https://leanprover.zulipchat.com/#narrow/channel/113489-new-members/topic/Code.20review.3A.20proof.20about.20Array.20map/near/454906535
https://github.com/leanprover-community/batteries/blob/31a10a332858d6981dbcf55d54ee51680dd75f18/Batteries/Data/Vector/Basic.lean#L23
https://github.com/leanprover-community/batteries/blob/31a10a332858d6981dbcf55d54ee51680dd75f18/Batteries/Data/Vector/Basic.lean#L23
https://github.com/leanprover-community/batteries/blob/31a10a332858d6981dbcf55d54ee51680dd75f18/Batteries/Data/Vector/Basic.lean#L23
https://leanprover-community.github.io/archive/stream/270676-lean4/topic/def.20vs.20abbrev.html
https://leanprover-community.github.io/archive/stream/270676-lean4/topic/def.20vs.20abbrev.html

private def mkState : State :=
⟨ mkArray 25 0, by decide ⟩

instance : GetElem Arr25 Nat UInt64 (λ _ i ↦ i < 25) where
getElem state idx _ := state.val[idx]

-- proof that array size does not change upon modification
private def subtypeModify

{α : Type u}
{n : Nat}
(xs : { val : Array α // val.size = n })
(i : Nat)
(elem: α)
: { a : Array α // a.size = n } :=

let val := xs.val.modify i (λ _ => elem)
⟨val, (Array.size_modify xs.val i (λ _ => elem)) ▸ xs.property⟩

Listing 2: State utility functions and tools

required by our subtype definition, using the decide12 tactic.
In the second definition, we overload the indexing notation for the State

value, which is a collection, by implementing an instance of the GetElem type
class. In effect, this permits using a nicer notation to access a value of a given
State A, with A[i] instead of A.val.get i, where i is an index that ranges
from 0 to 24. Note that we will need to provide a proof that i is lower than 25,
when we use either notation.

The third definition is more complex. Because modifying a Lean array may
change the number of its elements, we must provide a proof that the State
inner array val size did not change, if we want to return a modified State
that conforms to its type definition. Function subtypeModify() returns this
proof along with the modified state value, based on lemmas included in Lean.

3.2 Modeling Sponge Direction and Hash Parameters
One of the goals of this project was to attempt to make it more difficult for
users of the SHA-3 library to inadvertently misuse it. For instance, one should
not be able to compile code that absorbs data, after squeezing the sponge,
as this is not a valid state transition. The latter case was enforced by the
use of different sponge subtypes for absorbing and squeezing (see listing 3),
and functions that would accept an allowed state, and return the next valid
state. Callers passing a sponge to callees, and callees returning a sponge, will
be responsible for providing proofs that the sponges are in the expected states.

def AbsorbingKeccakC : Type :=
{keccak : KeccakC // keccak.state = SpongeState.absorbing }

def SqueezingKeccakC : Type :=
{keccak : KeccakC // keccak.state = SpongeState.squeezing }

Listing 3: Absorbing and squeezing sponge types

In an effort to catch other potential mistakes one could make in using the
12decide tactic: https://github.com/leanprover/lean4/blob/79428827b802558

84d46fc422ed709e2f5427e57/src/Lean/Parser/Tactic.lean#L71

4

https://github.com/leanprover/lean4/blob/79428827b80255884d46fc422ed709e2f5427e57/src/Lean/Parser/Tactic.lean#L71
https://github.com/leanprover/lean4/blob/79428827b80255884d46fc422ed709e2f5427e57/src/Lean/Parser/Tactic.lean#L71

library, we tried to force various call chains that should be rejected. In one
instance, our library implementation happily absorbed data in one primitive
state e.g. SHA3-256, and squeezed data using another primitive e.g. SHA3-512,
on this SHA3-256 state. We chose to use dependent types to remediate this.
Recall that the SHA-3 family of functions differ in their handling of state by
three parameters:

• capacity

• padding delimiter

• (default) output length.

For instance, SHA3-224, and SHA3-256 have the following capacity, padding
delimiter, and output length values, respectively: 56, 6, 28, and 64, 6, 32.

We implemented the HashFunction α β γ type, which is parameterized
with three values of arbitrary types for now, representing capacity, padding
delimiter, and default output length as shown in listing 4. HashFunction
56 6 28 is actually a type in the same way UInt64 is, but it is distinct
from HashFunction 1 2 3, another type instantiated from different capac-
ity, padding delimiter, and output length values. We then augmented our
sponge state types, namely AbsorbingKeccakC, SqueezingKeccakC, and
their underlying type KeccakC, to depend on this newly created hash function
type. We can now have type AbsorbingKeccakC (HashFunction 56 6
28) to represent a sponge for hash function SHA3-224, in absorbing state.

-- Sponge function, defined by its capacity, padding,
-- and output bit length
private inductive HashFunction
{α : Type u}
{β : Type v}
{γ : Type w}
: α → β → γ → Type (max u v w) where
| f (capacity : α) (paddingDelimiter : β) (outputBitsLen : γ)

(property :
(capacity = c) ∧
(paddingDelimiter = p) ∧ (outputBitsLen = o))

: HashFunction c p o

def AbsorbingKeccakC (α : Type) : Type :=
{keccak : KeccakC α // keccak.state = SpongeState.absorbing}

def SqueezingKeccakC (α : Type) : Type :=
{keccak : KeccakC α // keccak.state = SpongeState.squeezing}

Listing 4: HashFunction type

After the initial implementation was publicly released, the Lean community
suggested and implemented a simplification of the unneeded complexity of this
design in a GitHub pull request13, which was merged into the main branch of
the project. It replaces the HashFunction α β γ dependent type with a
simple HashFunction structure, and makes KeccakC, and other definitions

13GitHub pull request 1: https://github.com/gdncc/Cryptography/commit/d50aa
61efab7d9ea9a6469f5a2a9c7616d5d0d24

5

https://github.com/gdncc/Cryptography/commit/d50aa61efab7d9ea9a6469f5a2a9c7616d5d0d24
https://github.com/gdncc/Cryptography/commit/d50aa61efab7d9ea9a6469f5a2a9c7616d5d0d24

dependent on the value of this new HashFunction structure only. See listing
5 for a sample extract of these changes.

private structure HashFunction where
capacity : Capacity
paddingDelimiter : Nat
outputBitsLen : Nat

/-- The base cryptographic sponge context -/
private structure KeccakC (hf : HashFunction) where
A : State
state : SpongeState := SpongeState.absorbing
rate : RateValue hf.capacity := ⟨ 0, by omega ⟩
buffer : FixedBuffer
bufPos : RateIndex hf.capacity :=

⟨ 0, by simp [KeccakPPermutationSize]; omega ⟩
outputBytesLen := 0

Listing 5: New definition of HashFunction and simplified definition of
KeccakC

3.3 The Block Permutation
The SHA-3 permutation consists of the repetition of several steps θ (theta), ρ
(rho), π (pi), χ (chi), and ι (iota). Lean conveniently allows defining function
names using Greek symbols, at the expense of making it difficult to identify
them in performance data collected by tools such as Linux perf14. Our first
implementation was more or less a textbook algorithmic implementation of these
steps, apart from the usage of native types (UInt64 instead of arbitrary large
Nat for instance). See listing 6, for the first algorithmic implementation of θ.
Notice that for a pure functional programming language, Lean 4 permits to
model mutations in a simple manner.

private def theta (A : State) : State := Id.run do
let mut C : Array UInt64 := mkArray 5 0
let mut D : Array UInt64 := mkArray 5 0
let mut A := A

for x in [:5] do
C := C.set! x ((A.get! x) ^^^ (A.get! (x + 5)) ^^^

(A.get! (x + 10)) ^^^ (A.get! (x + 15)) ^^^
(A.get! (x + 20)))

for x in [:5] do
D := D.set! x ((C.get! ((x + 4) % 5))

^^^ ((((C.get! ((x + 1) % 5)) <<< 1) |||
((C.get! ((x + 1) % 5)) >>> 63))))

for y in [:5] do
A := A.set! (x + 5 * y) ((A.get! (x + 5 * y) ^^^ (D.get! x)))

A

Listing 6: Algorithmic implementation of θ step

We profiled the code to establish a performance baseline, and then attempted
14perf: https://en.wikipedia.org/wiki/Perf_(Linux)

6

https://en.wikipedia.org/wiki/Perf_(Linux)

to unroll the loops across all steps (see listing 7). This resulted in a significant
performance increase, at the cost of longer source code.

private def theta (A : State) : State := Id.run do
let C0 := (A.get! 0) ^^^ (A.get! 5) ^^^ (A.get! 10) ^^^

(A.get! 15) ^^^ (A.get! 20)
let C1 := (A.get! 1) ^^^ (A.get! 6) ^^^ (A.get! 11) ^^^

(A.get! 16) ^^^ (A.get! 21)
let C2 := (A.get! 2) ^^^ (A.get! 7) ^^^ (A.get! 12) ^^^

(A.get! 17) ^^^ (A.get! 22)
let C3 := (A.get! 3) ^^^ (A.get! 8) ^^^ (A.get! 13) ^^^

(A.get! 18) ^^^ (A.get! 23)
let C4 := (A.get! 4) ^^^ (A.get! 9) ^^^ (A.get! 14) ^^^

(A.get! 19) ^^^ (A.get! 24)

let mut D0 := C4 ^^^ ((C1 <<< 1) ||| (C1 >>> 63))

-- (Snip ...)

A := A.set! 24 (A.get! 24 ^^^ D0)

A

Listing 7: Unrolled loop implementation of θ step (abbreviated)

In the profiled code, we noticed a number of calls checking that the indices
used to access elements of data structures were within bounds. Indeed, the
get!() function accesses an element from a byte array, or panics if the index is
out of bounds15, so the Lean 4 runtime repeatedly checks whether this is the
case or not.

Providing formal proofs that indices are within bounds permits eliding this
runtime check in the compiled code. We decided to move to the next step,
which was to provide these proofs. Our first attempt was to write a proof
that accesses to the SHA-3 round constants table was within bounds. Recall
that SHA-3 executes 24 rounds of a sequence of steps. In each round, the ι
step performs a bitwise XOR operation between a per round constant stored in
the round constants table, and the first element of the state array. The initial
implementation of the ι step, along with how it is called by the Keccak-p
function keccalP() is shown in listing 8. The Lean runtime checks that the
table assignment A.set!, and read A.get! operations are in bounds.

We rewrote the ι step to accept a proof h where the round index ir is valid.
We use the roundConstants[ir]'h notation to pass this proof to the body of ι.
Therefore, the responsibility falls upon the caller to provide the proof. In func-
tion keccakP, the for loop provides a proof tuple h (using the Lean ForIn'
type class) that round is an element of collection [0, roundConstants.size),
and specifically the second part of the tuple h2 is a proof that ir is lower than
the size of roundConstants. The code, updated to include the in bounds
access proof, is presented in listing 9.

15The runtime behavior for an out of bounds access is a panic. These kinds of
runtime-fallible methods are accounted for in Lean and do not cause soundness issues;
they are defined as returning a prescribed default value on failure. To illustrate, kernel-
reducing a bad array access via Array.get!() returns Nat.zero, the default element:
♯reduce (♯[] : Array Nat).get! (1 : Nat). Trying to evaluate generated code for
a bad array access yields a runtime error ♯eval (♯[] : Array Nat).get! (1 : Nat).

7

private def iota
(A : State)
(ir : Nat)
: State := Id.run do
A.set! 0 ((A.get! 0) ^^^ (roundConstants.get! ir))

/--
The KECCAK-p[b, nr] permutation consists of nr iterations of:
Rnd(A, ir) = iota(chi(π(ρ(theta(A)))), ir).
-/

private def keccakP (k : KeccakC α) : KeccakC α := Id.run do
let mut A := k.A
for round in [:k.numberRounds] do
A := A |> theta |> rhopi |> chi |> (iota · round)
{k with A := A}

Listing 8: ι and Keccak-p implementation without proofs

-- iota
private def ι
(A : State)
(ir : Nat)
(h : ir < roundConstants.size)
: State := Id.run do
A.set! 0 ((A.get! 0) ^^^ (roundConstants[ir]'h))

private def keccakP (k : KeccakC α) : KeccakC α := Id.run do
let mut A := k.A
-- KECCAK[c] number round nr := 24
for h : round in [:roundConstants.size] do
-- h1 : col.start <= round, h2 := round < 25
let ⟨_h₁, h₂⟩ := h
A := A |> θ |> ρπ |> χ |> (ι · round h₂)

{k with A := A}

Listing 9: Access to round constants table with formal proof

Based on this success, we then attempted to provide in bounds access proofs
for all accesses to the state array, and any temporary arrays in all steps of
the Keccak-p permutation. Unfortunately, we seemingly experienced a per-
formance issue in Lean’s elaborator, a component in charge of turning the user-
facing syntax into a representation suitable for the rest of the Lean compiler. We
filed an issue16 on GitHub. Faced with this issue, we dropped our exploration
on improving the performance of the implementation, and decided to focus on
Lean 4 other strengths, including the usage of formal proofs to verify correctness
of aspects of the implementation. We returned to the implementation of the
step functions with loops, and provided the in bounds access proofs, as shown
in listing 10.

For accessing values, note that we now use the same notation as the one we
employed to access the round constants table e.g. A[index]'(h), where A is the
state, with collection indexing notation A[] permitted by the implementation
of the GetElem type class, and h a proof. The additional difficulty in step θ

16Non-Linear Growth In Elaboration Time With A Number Of Local Vars Declared With
Let: https://github.com/leanprover/lean4/issues/5324

8

https://github.com/leanprover/lean4/issues/5324

theorem StateIndexWithinBounds521
(index : Nat)
(offset : Nat)
(hCol : index ∈ [:5])
(hOffset : offset < 21)
: index + offset < 25 := by
let ⟨ _h₁, h₂ ⟩ := hCol
simp at h₂
omega

theorem StateIndexWithinBounds55
(index : Nat)
(offset : Nat)
(hCol : index ∈ [:5])
(hOffset : offset ∈ [:5])
: index + 5 * offset < 25 := by
let ⟨ _hc₁, hc₂ ⟩ := hCol
let ⟨ _ho₁, ho₂ ⟩ := hOffset
simp at hc₂ ho₂
omega

-- theta
private def θ (A : State) : State := Id.run do
let mut C : Arr5 := ⟨ mkArray 5 0, by decide ⟩
let mut D : Arr5 := ⟨ mkArray 5 0, by decide ⟩
let mut A := A

for hx : x in [:5] do
C := subtypeModify C x

(A[x]'(StateIndexWithinBounds521 x 0 hx (by trivial)) ^^^
A[x + 5]'(StateIndexWithinBounds521 x 5 hx (by trivial)) ^^^
A[x + 10]'(StateIndexWithinBounds521 x 10 hx (by trivial)) ^^^
A[x + 15]'(StateIndexWithinBounds521 x 15 hx (by trivial)) ^^^
A[x + 20]'(StateIndexWithinBounds521 x 20 hx (by trivial)))

for hx : x in [:5] do
D := subtypeModify D x

(C[(x + 4) % 5] ^^^
((((C[(x + 1) % 5]) <<< 1) |||
-- Lean's `%` is remainder, not modulo
((C[(x + 1) % 5]) >>> 63))))

for hy : y in [:5] do
A := subtypeModify A (x + 5 * y)

((A[(x + 5 * y)]'(StateIndexWithinBounds55 x y hx hy) ^^^
(D[x])))

A

Listing 10: θ step implementation with access proofs

compared to the round constants table case is that the index varies differently
e.g. x, x + 5, …, x + 20 in one instance, instead of just incrementing x by
one. We moved some of the proof logic to several Lean 4 theorems to reduce
repetition, and for clarity. Notice that in all θ step loops, as for the round
constants table, we get a proof that both indexing variables x and y are within
the interval [0, 5). This proof is accessible in the scope delimited by `(). Lean
permits inspecting the proof state, including what must be proven. Listing
11 shows the initial proof state for case x + 5, and the outstanding proof
x+ 5 < 25. Notice that proof hx was obtained from the for loop.

For this proof, we wrote theorem StateIndexWithinBounds521, which

9

A† : State
C† : Arr5 := ⟨mkArray 5 0, ⋯⟩
D : Arr5 := ⟨mkArray 5 0, ⋯⟩
A : State := A†
col† : Std.Range := { start := 0, stop := 5, step := 1 }
x : Nat
hx : x ∈ col†
r† : Arr5
C : Arr5 := r†
⊢ x + 5 < 25

Listing 11: θ step initial proof state for case x + 5

accepts a variable x (a natural number N, an offset from x e.g. 5, another
natural number, a proof hCol that x is in the interval [0, 5), and a (trivial)
proof hOffset that the offset is less than 21, which the Lean trivial
tactic provides for us. In the lemma, we then decomposed the hCol proof to
obtain h2, which is a proof that index is less than 4. and specifically:

index < { start := 0, stop := 5, step :=1 }.stop.
We use the Lean simp tactic to rewrite h2 as h₂ : index < 5. At this stage,

our proof state is a system of simple inequalities, as shown in listing 12.

index offset : Nat
hCol : index ∈ { start := 0, stop := 5, step := 1 }
hOffset : offset < 21
_h₁ : { start := 0, stop := 5, step := 1 }.start ≤ index
h₂ : index < 5
⊢ index + offset < 25

Listing 12: θ step second-last proof state for case x + 5

The Lean omega tactic uses the two inequalities hOffset : offset < 21,
and h₂ : index < 5, to solve the final goal h₂ : index < 5. All other in bounds
read access proofs in the θ and other steps follow a similar pattern.

We continued using function subtypeModify(), presented earlier, to prove
that mutation of the state underlying data structure values did not affect the
size of this data structure (and that therefore further read and write accesses
at the given index are still valid).

3.4 Sponge Construct Handling
We described how we implemented most of the SHA-3 state, sponge direction,
hash parameters, and the core SHA-3 permutation function. We also formally
proved all index-based accesses to the state data, and round constant table are
in bounds, thus eliding runtime checks that accesses are in bounds. Then, we
modeled getting data in, and out of our state in our sponge construct.

Our implementation of the construct went through several iterations. Early
in the project, we abstracted common behavior for all hash, and extendable-
output functions, and for one-shot and streaming APIs, using Lean type classes,
and this design persisted. Absorb defines a generic absorption operation that
takes a state, an input, and returns an updated state. Squeeze defines another
generic squeeze operation that takes a state and an output length, and returns a

10

product type consisting of the updated state, and the desired output (see listing
13). These generic operations should give leeway to specialize what kind of
input and output data structures we can work with in future implementations,
without API changes.

private class Absorb (α : Type) (β : Type) where
absorb : α → β → α

private class Squeeze (α : Type) (β : Type) (γ : outParam Type) where
squeeze : α → β → γ

Listing 13: Absorb and Squeeze type classes

The original type classes instance implementations of these operations were
again algorithmic in nature, and worked as expected. However, we encountered
difficulties in providing in bounds access proofs for handling the internal tempo-
rary buffer, where input to be hashed is copied to in a round-robin basis in the
absorption phase, and when copying data from the state to the output buffer in
the squeeze phase. The reason for this is that we did not have enough informa-
tion conveyed by the types we initially chose to use to write a suitable proof.
It was akin trying to prove that for every natural numbers a and b, which can
be seen as index and offset to a data structure of size 42, a + b < 42, which is
false. Moreover in this inequality, the ceiling may vary depending on the hash
parameters including the capacity. We therefore needed to carefully choose our
types to restrict what potential values are permissible, and render the problem
solvable.

Recall that the capacity is a parameter that differs depending of the hash
function, and that the rate is derived from the width b of a Keccak-p permu-
tation (200 bytes for all SHA-3 functions) as follows rate = b - capacity.
We summarized these values in table 1.

Table 1: Capacity and rate of SHA-3 hash functions

Function Capacity Rate
SHA3-224 56 144
SHA3-256 64 136
SHA3-384 96 104
SHA3-512 128 72
SHAKE128 32 168
SHAKE256 64 136

Notice that the capacity does not exceed 128 bytes in all cases. We used the
Fin 129 type for the capacity, where Fin n is a natural number i with the
constraint that 0 ≤ i < n.

We declared a FixedBuffer subtype for the internal buffer, a byte ar-
ray with a proof obligation that it has the size of the Keccak-p permutation.
Recall that this buffer is made of two parts of different lengths, the capacity,
followed by the rate section. We implemented dependent types RateValue n,
RateIndex n which are based on the capacity and the Keccak-p permutation
size. RateIndex n is an index into the rate component of the internal buffer
FixedBuffer rate section. We also implemented a number of theorems to

11

prove simple properties about these structures. Listing 14 shows the definitions
of these newly defined types, and one sample theorem.

def KeccakPPermutationSize := 200

private abbrev RateValue (capacity : Capacity) :=
Fin (KeccakPPermutationSize - capacity + 1)

private abbrev RateIndex (capacity : Capacity) :=
Fin (KeccakPPermutationSize - capacity)

private abbrev FixedBuffer :=
{val : ByteArray // val.size = KeccakPPermutationSize }

@[simp] theorem FixedBufferSize (fb : FixedBuffer)
: fb.val.size = KeccakPPermutationSize :=
by exact fb.2

Listing 14: RateValue n, RateIndex n, and FixedBuffer dependent
types

Introduction of these definitions required refactoring of several other struc-
tures, and functions. More importantly, it allowed conveying more fine-grained
information in functions accessing the internal buffer. For example in function
absorb() (listing 15), notice the following:

• The AbsorbingKeccakC α n structure depends on n of type Capacity,
instead of Nat (N), and thus allows deriving the domain of values for
bufPos of type RateIndex n, for all the possible hash function capac-
ity values.

• We implemented and used fixedBufferModify(), which like subtypeModify()
for the state, proves that the buffer size does not change upon modifica-
tion of the buffer. it depends on variable bufPos, for which we maintain
a proof that it is always in bounds, even after increasing.

• In the secondary loop with index j from 0 to 24, we read 8 bytes from the
buffer at an increasing start position, and provide a proof that the end
positions (and therefore the start) are always in bounds, and specifically
that 7 + start < buffer.val.size. Note that start is a Nat, and
we are just proving that start + 7 will always be less than 200, the
permutation width.

• As a side remark, hi contains the proof that index i is within bounds of
inputBytes, allowing to use the notation inputBytes[i], and there-
fore removing in bounds access checks on the input buffer as well.

Another function, DomainDelimitAndPad101() (listing 16) was also formally
proven to have all access to the buffer in bounds. As specified in the FIPS PUB
202 standard, the total number of bytes denoted by q that are appended to a
message in the internal buffer is determined by m and the rate r: q = (r /
8) – (m mod (r / 8)), which translates in our byte aligned implementation to
rate - bufPos. Our function has slightly more complex inequalities to prove,
including rate - bufPos < KeccakPPermutationSize - n + 1, in the case
only one padding byte is required. We were able to write the proofs with the

12

private def absorb
{α : Type}
{n : Capacity}
(k : AbsorbingKeccakC α n)
(inputBytes : ByteArray)
: AbsorbingKeccakC α n := Id.run do
let mut k := k
let mut buffer := k.val.buffer
let mut bufPos := k.val.bufPos

for hi : i in [:inputBytes.size] do
if bufPos.val == k.val.rate.val - 1 then

buffer := fixedBufferModify buffer ⟨ bufPos, by omega⟩ inputBytes[i]
let mut A := k.val.A
for hj : j in [:25] do

let start := j <<< 3 -- lane size = 8
A := subtypeModify A j ((A[j]) ^^^

(FixedBuffer.toUInt64LE buffer start (by
let ⟨ _hj₁, hj₂ ⟩ := hj ;
simp at hj₂ ;
simp [KeccakPPermutationSize]; omega)))

k := {k with val := keccakP
{k.val with A := A, buffer := buffer, bufPos :=
⟨ 0, by simp [KeccakPPermutationSize]; omega⟩}}

buffer := fixedBufferModify buffer ⟨ bufPos, by omega ⟩ inputBytes[i]
bufPos := bufPos + ⟨ 1, by simp [KeccakPPermutationSize]; omega⟩

{k with val := {k.val with buffer := buffer, bufPos := bufPos }}

Listing 15: Function absorb() with internal buffer in bounds access proofs

availability of richer type information, and with the assistance of the omega
tactic.

Coming back to our usage of type classes, we implemented a single in-
stance of the Absorb type class, which absorbs a byte array input for the
AbsorbingKeccakC α n sponge, where α, and n are respectively, a specific
SHA-3 function, and a capacity. We implemented two instances of the Squeeze
type class, squeezeAbsorbedInput(), and squeezeNotFullyAbsorbedInput() to fa-
cilitate streaming and non-streaming APIs, and to prevent invalid states such
that a squeezing sponge cannot be used to absorb again, using types. Specifi-
cally, squeezeAbsorbedInput() only accepts and returns SqueezingKeccakC
α n sponges, whereas squeezeNotFullyAbsorbedInput() only accepts AbsorbingKeccakC
α n sponges, and returns SqueezingKeccakC α n sponges.

3.5 Implementing the API
We implemented commonly expected APIs for traditional hash functions in-
cluding:

• One-shot:

– initialize
– hash

• Streaming:

13

private def DomainDelimitAndPad101
{ n : Capacity }
(buffer : FixedBuffer)
(bufPos : RateIndex n)
(rate : RateValue n)
(paddingDelimiter : Nat)
: FixedBuffer := Id.run do
let mut buffer := buffer
-- padding bytes required
let q : RateValue n := ⟨rate - bufPos, by omega ⟩
if hq : q == 1 then
buffer := fixedBufferModify buffer ⟨ bufPos, by omega ⟩

(paddingDelimiter + 0x80).toUInt8
else
buffer := fixedBufferModify buffer ⟨ bufPos, by omega ⟩

paddingDelimiter.toUInt8
for hi : i in [bufPos + 1 : rate - 1] do

buffer := fixedBufferModify buffer
⟨ i, by

let ⟨ _hi₁, hi₂⟩ := hi;
simp at hi₂ ;
omega ⟩ 0

buffer := fixedBufferModify buffer
⟨ rate - 1, by simp [KeccakPPermutationSize];
omega ⟩
(0x80).toUInt8

buffer

Listing 16: Function DomainDelimitAndPad101() in bounds access proofs

– initialize
– update
– finalize

We only implemented the streaming API for the SHA-3 extendable-output
functions, and used API function names such as absorb(), and squeeze(). We
also found that we needed to implement another public function for the XOF
streaming API, toSqueezing(), to facilitate entering mutating loop of the SHA-3
context, as exemplified in listing 17.

let mut ctx1 := SHAKE128.mk |> (SHAKE128.absorb · a) |> (SHAKE128.toSqueezing ·)
let mut s1 := ByteArray.mk $ mkArray 10 0
for _ in [0:3] do
(ctx1, s1) := SHAKE128.squeeze ctx1 10
-- (do something with s1 SHAKE output)

Listing 17: toSqueezing() sample usage

We used two Lean 4 macros to implement, and expose the public API in a
consistent manner for XOF and hash functions (see listing 18 for the latter).
This allowed to implement a hash function such as SHA3-224 with a simple
statement, as shown in listing 19. In this example, SHA3_224 is a name space,
that exposes our functions, with the correct hash function type (we chose to
represent the padding byte in hexadecimal notation, but this is not required).

The Lean 4 community later submitted a GitHub pull request17 to com-
17GitHub pull request 2: https://github.com/gdncc/Cryptography/pull/2

14

https://github.com/gdncc/Cryptography/pull/2

macro "defhash" id:ident ":=" e:term : command => `(
def kf := $e
def kfType := match kf with | .f c p o _h => HashFunction c p o
def c : Capacity := match kf with | .f c _p _o _h => c

instance : Absorb
(AbsorbingKeccakC kfType c)
ByteArray where

absorb := absorb
instance : HashFunctionParameters

kfType
(Capacity × Nat × Nat) where

params := params
instance : Squeeze

(SqueezingKeccakC kfType c)
Nat
(Id (SqueezingKeccakC kfType c × ByteArray)) where

squeeze := squeezeAbsorbedInput
instance : Squeeze

(AbsorbingKeccakC kfType c)
Nat
(Id (SqueezingKeccakC kfType c × ByteArray)) where

squeeze := squeezeNotFullyAbsorbedInput

namespace $id
def $(mkIdent `final)

(s : AbsorbingKeccakC kfType c)
: ByteArray :=
(Squeeze.squeeze s s.val.outputBytesLen).2

def $(mkIdent `update)
(s : AbsorbingKeccakC kfType c)
(bs : ByteArray) :=

Absorb.absorb s bs

def $(mkIdent `mk) := mkKeccakC kf c

def $(mkIdent `hashData)
(bs : ByteArray)
: ByteArray :=
let k : AbsorbingKeccakC kfType c := mkKeccakC kf c

(Squeeze.squeeze (Absorb.absorb k bs) k.val.outputBytesLen).2
end $id

)

Listing 18: defhash macro

defhash SHA3_224 := mkHashFunction 56 0x06 28

Listing 19: Implementing the SHA3-224 hash function using the defhash
macro

pletely remove the use of macros to implement the hash, XOF APIs and func-
tions (see listing 20). The main idea is that we don’t need to define constructors,
and other API functions for each hash/XOF SHA-3 function; we can just define
one HashFunction type and constructor, namespaces for the respective APIs,
and Lean resolves the method notation for us. This designs manages to make
the code shorter than the equivalent macro code, and is much easier to debug.

15

the pull request was merged to the main branch of the project.

-- Implement the hash and xof function APIs.

namespace HashFunction

def final
{hf : HashFunction} (s : AbsorbingKeccakC hf) : ByteArray :=
(Squeeze.squeeze s s.val.outputBytesLen).2

def update {hf : HashFunction}
(s : AbsorbingKeccakC hf) (bs : ByteArray) :=
Absorb.absorb s bs

def hashData
{hf : HashFunction} (bs : ByteArray) : ByteArray :=
let k : AbsorbingKeccakC hf := hf.mk
(Squeeze.squeeze (Absorb.absorb k bs) k.val.outputBytesLen).2

end HashFunction

def XOF := HashFunction

namespace XOF

def toSqueezing
{xof : XOF} (k : AbsorbingKeccakC xof) : SqueezingKeccakC xof :=
(Squeeze.squeeze k 0).1

nonrec def absorb
{xof : XOF} (s : AbsorbingKeccakC xof) (bs : ByteArray)
: AbsorbingKeccakC xof :=
absorb s bs

def squeeze
{xof : XOF} {α : Type} [Squeeze α Nat ((SqueezingKeccakC xof) × ByteArray)]

(k : α) (l : Nat) : ((SqueezingKeccakC xof) × ByteArray) :=
Squeeze.squeeze k l

end XOF

-- Implement our hash, and xof functions
def SHA3_224 : HashFunction := HashFunction.ofParams 56 0x06 28
def SHA3_256 : HashFunction := HashFunction.ofParams 64 0x06 32
def SHA3_384 : HashFunction := HashFunction.ofParams 96 0x06 48
def SHA3_512 : HashFunction := HashFunction.ofParams 128 0x06 64
def SHAKE128 : XOF := HashFunction.ofParams 32 0x1f 32
def SHAKE256 : XOF := HashFunction.ofParams 64 0x1f 64

Listing 20: Implementation of the hash, XOF APIs, and functions without
macros

Usage of the APIs is demonstrated18 in the example build target of the
implementation.

18Example API usage: https://github.com/gdncc/Cryptography/blob/main/Cryp
tography/Hashes/SHA3/example.lean

16

https://github.com/gdncc/Cryptography/blob/main/Cryptography/Hashes/SHA3/example.lean
https://github.com/gdncc/Cryptography/blob/main/Cryptography/Hashes/SHA3/example.lean

4 Testing
4.1 Correctness
We detailed how we proved that all access to the input data, the SHA-3 round
constants table, the internal buffer, and state are in bounds, and how we en-
forced a prohibition on undue absorb and squeeze alternation. Lean 4 also
did not report being unable to determine whether any implemented function is
terminating. Therefore, we did not have to explicitly provide any termination
proof, and, more importantly, Lean was able to prove that all our functions are
terminating.

We implemented the Secure Hash Algorithm-3 Validation System (SHA3VS)19

test vectors including the short, long message, and pseudorandomly generated
messages (Monte Carlo) tests for all implemented hash and XOF functions, and
in addition, the variable-length output tests for all XOFs. We did not decide on
a suitable test framework, so the tests only output whether they pass or fail.

Of interest, we made use of the built-in Lean 4 parser combinator library
Parsec to extract all test vectors and pass them to the SHA-3 library.

4.2 Performance
To measure the performance impact of changes to the code, we initially wrote a
foreign function interface (FFI) wrapper around the Read Time-Stamp Counter
(RDTSC) instruction on x86 processors using Lean FFI facilities. In the process
we erroneously omitted to use an IO monad, resulting in incorrect timestamps
being returned. Lean is a pure functional programming language, and assumes
that functions return the same result when called with the same input so such
result can be re-used, and/or the functions may be called in arbitrary order.
Returning an IO monad instructs Lean to carry the effectful operation, and
to use the result of this operation. We later discovered that Lean provides
the IO.monoNanosNow function, which returns monotonically increasing time
since an unspecified past point in nanoseconds. We removed our RDTSC wrap-
per, and used this function instead.

We implemented one performance test, SHAKE128 absorption speed of 32B,
1KB, and 1MB chunks. Our implementation is 2 orders of magnitude slower
than the results reported by the xoflib20 benchmark, which wraps the native
sha3 Rust crate21. Table 2 summarizes the absorption performance results on
a 2.3GHz quad‑core 10th‑generation Intel Core i7 processor.

Table 2: Absorption performance of 32B, 1KB, and 1MB chunks

Implementation 32B 1KB 1MB
xoflib 110 MB/s 344 MB/s 381 MB/s
Lean 1.29 MB/s 2.93 MB/s 2.97 MB/s

Several Lean users have had difficulties instrumenting performance of Lean
19SHA3VS: https://csrc.nist.gov/csrc/media/projects/cryptographic-alg

orithm-validation-program/documents/sha3/sha3vs.pdf
20xoflib: https://github.com/GiacomoPope/xoflib/tree/main
21Crate sha3: https://docs.rs/sha3/latest/sha3/

17

https://csrc.nist.gov/csrc/media/projects/cryptographic-algorithm-validation-program/documents/sha3/sha3vs.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-algorithm-validation-program/documents/sha3/sha3vs.pdf
https://github.com/GiacomoPope/xoflib/tree/main
https://docs.rs/sha3/latest/sha3/

programs in the past. For reference, we were able to use to capture performance
data using the Linux perf perf tool on our target binary:

perf record -g --call-graph=dwarf Cryptography-Hashes-SHA3-perftest

Listing 21: Calling perf to gather performance data

Adding the following options to our performance test binary target, and
the cryptography library in our project lakefile.lean, which contains the
configuration that lake needs to build the application, provided more fine-
grained information:

moreLeancArgs := #["-UNDEBUG", "-O3", "-ggdb",
"-g3", "-fno-omit-frame-pointer"]

Listing 22: lakefile.lean configuration data for performance profiling

Hotspot22 can display the resulting data for analysis. We did not spend
much effort analyzing the data in this project.

We measured the impact of inlining functions on x86 platform, and kept
inlining declarations that showed consistent performance increase using declara-
tion modifiers always_inline, and inline. The latter declaration appears23

to be conditional on some other information, but the logic is currently not im-
plemented in the Lean compiler. For now, using both modifiers is redundant,
but they are not mutually exclusive.

5 Potential Issues When Implementing Cryptog-
raphy

Readers may have noticed a surprising behavior in function absorb() (previous
listing 15) with variable bufPos of type RateIndex n, which is in effect a
finite (Fin) type; the variable is never explicitly set to zero, and silently wraps
around zero. Lean currently implements the addition operation modulo n, as
illustrated in listing 23.

This does not appear to be a problem in our implementation but this is
likely going to be a source of bugs in systems using the Fin type, where data
operations may not lead to the desired values. Non-overflowing operations could
be added to the Fin type, or an alternative data structure that provides such
operations could be developed. We modified our absorb() function implemen-
tation to explicitly set bufPos to zero when needed, and provided a proof that
the value will not wrap around, as shown in listing 24.

Another potential issue to be mindful of, and which is not specific to Lean 4,
is that any strong abstractions such as type classes permit to create APIs that
are generic. We explained in a previous section that we could absorb data in
one cipher primitive state, and squeeze data using another primitive in an early
implementation. Lean 4 makes it easy to work with generic abstractions, and
one should be careful that it does not permit unwanted interactions.

22Hotspot: https://github.com/KDAB/hotspot
23Function inlining: https://leanprover.zulipchat.com/#narrow/channel/11348

8-general/topic/Function.20inlining/near/480299272

18

https://github.com/KDAB/hotspot
https://leanprover.zulipchat.com/#narrow/channel/113488-general/topic/Function.20inlining/near/480299272
https://leanprover.zulipchat.com/#narrow/channel/113488-general/topic/Function.20inlining/near/480299272

/--
Returns `a` modulo `n + 1` as a `Fin n.succ`.
-/
protected def ofNat {n : Nat} (a : Nat) : Fin (n + 1) :=
⟨a % (n+1), Nat.mod_lt _ (Nat.zero_lt_succ _)⟩

/--
Returns `a` modulo `n` as a `Fin n`.

The assumption `NeZero n` ensures that `Fin n` is nonempty.
-/
protected def ofNat' (n : Nat) [NeZero n] (a : Nat) : Fin n :=
⟨a % n, Nat.mod_lt _ (pos_of_neZero n)⟩

-- We intend to deprecate `Fin.ofNat` in favor of `Fin.ofNat'` (and later rename).
-- This is waiting on https://github.com/leanprover/lean4/pull/5323
-- attribute [deprecated Fin.ofNat' (since := "2024-09-16")] Fin.ofNat

private theorem mlt {b : Nat} : {a : Nat} → a < n → b % n < n
| 0, h => Nat.mod_lt _ h
| _+1, h =>
have : n > 0 := Nat.lt_trans (Nat.zero_lt_succ _) h;
Nat.mod_lt _ this

/-- Addition modulo `n` -/
protected def add : Fin n → Fin n → Fin n
| ⟨a, h⟩, ⟨b, _⟩ => ⟨(a + b) % n, mlt h⟩

Listing 23: Lean Fin type implementation

Lean operations on convenient data types such as Fin, which is backed
by Nat are not constant-time, and this can have disastrous consequences in
cryptography. For instance, the Nat type is unboxed up to 63 bits, then Lean
uses the GMP24 library beyond that25. The switch from unboxed to boxed values
and vice-versa can reveal information about the size of the operands and result.
The GMP library itself is not constant-time, and may also reveal information
about these.

6 Concluding Notes And Future Work
We implemented the SHA-3 family of functions in Lean 4, and described our ex-
perience. In this process, we gained a better understanding some salient features
of Lean including but not limited to dependent types, and formal verification,
and how to apply them. We also learnt more about the SHA-3 algorithm and
the sponge construction. For the latter, actually providing proofs for some as-
pect of the implementation permitted us to gain additional insights that we
initially missed.

During the course of our project, we encountered a performance issue with
Lean’s elaborator, preventing us from proving properties of better performing
code. We then chose to focus on program verification, instead of improving
performance.

24GMP: https://gmplib.org/
25Nat implementation: https://leanprover.zulipchat.com/#narrow/channel/270

676-lean4/topic/.E2.9C.94.20Type.20erasure.2Fcompilation.20questions/ne
ar/473374900

19

https://gmplib.org/
https://leanprover.zulipchat.com/#narrow/channel/270676-lean4/topic/.E2.9C.94.20Type.20erasure.2Fcompilation.20questions/near/473374900
https://leanprover.zulipchat.com/#narrow/channel/270676-lean4/topic/.E2.9C.94.20Type.20erasure.2Fcompilation.20questions/near/473374900
https://leanprover.zulipchat.com/#narrow/channel/270676-lean4/topic/.E2.9C.94.20Type.20erasure.2Fcompilation.20questions/near/473374900

abbrev Capacity := Fin 129

def KeccakPPermutationSize := 200

abbrev RateIndex (capacity : Capacity) :=
Fin (KeccakPPermutationSize - capacity)

theorem RateIndexLTBlockMinCap
{n : Capacity}
(ri : RateIndex n)
: ri < KeccakPPermutationSize - n := by
omega

theorem RateIndexLTBlockMinCapMinOne
{n : Capacity}
(ri : RateIndex n)
(h1 : ¬(ri == KeccakPPermutationSize - n - 1) = true)
: ri + 1 < KeccakPPermutationSize - n := by
simp at h1
have h2 : ri < KeccakPPermutationSize - n := (by exact RateIndexLTBlockMinCap ri)
refine Nat.add_lt_of_lt_sub ?h
omega

private def absorb
{α : Type}
{ n : Capacity}
(k : AbsorbingKeccakC α n)
(inputBytes : ByteArray)
: AbsorbingKeccakC α n := Id.run do
let mut k := k
let mut buffer := k.val.buffer
let mut bufPos := k.val.bufPos
for hi : i in [:inputBytes.size] do
if hif : bufPos.val == KeccakPPermutationSize - n - 1 then

buffer := fixedBufferModify buffer ⟨ bufPos, by omega⟩ inputBytes[i]
let mut A := k.val.A
for hj : j in [:25] do

let start := j <<< 3 -- lane size = 8
A := subtypeModify A j ((A[j]) ^^^

(FixedBuffer.toUInt64LE buffer start (by
let ⟨ _hj₁, hj₂ ⟩ := hj;
simp at hj₂;
simp [KeccakPPermutationSize];
omega)))

k := {k with val := keccakP
{k.val with A := A, buffer := buffer, bufPos :=
⟨ 0, by simp [KeccakPPermutationSize]; omega⟩}}

buffer := fixedBufferModify buffer ⟨ bufPos, by omega ⟩ inputBytes[i]
bufPos := ⟨ 0, by simp [KeccakPPermutationSize]; omega⟩

else
buffer := fixedBufferModify buffer ⟨ bufPos, by omega ⟩ inputBytes[i]
bufPos := RateIndex.add bufPos

⟨ 1, by simp [KeccakPPermutationSize]; omega⟩
(by exact RateIndexLTBlockMinCapMinOne bufPos hif)

{k with val := {k.val with buffer := buffer, bufPos := bufPos }}

Listing 24: absorb() function updated to prevent silent wrapping of bufPos
value

20

We have not explored other avenues of potential interest:

• Lean 4 code is ultimately transformed into machine language and we lose
formally proven properties in the process. It would be extremely useful
to be able to parse the generated assembly code, and to prove properties
about it.

• We proved that access to several data structures including the state was
in bounds. We did not prove, nor did we test that input bytes are injected
at the correct place in the state when using the streaming API. The Rust
FN-DSA crate tries to catch issues in its SHAKE implementation test
suite26 by running each test vector twice, once as a single chunk, and then
again by injecting it one byte at a time. Proving that input bytes are
injected at the correct location would prevent the rare bugs that this Rust
implementation test is looking for in the first place.

• In the current API implementation, one could inadvertently duplicate a
state, and use the wrong state instance later to absorb and squeeze data.
Implementing the typestate pattern or similar, to ensure that a previous
state cannot be reused, could be of interest.

• Implementing the duplex construction in addition to the sponge construc-
tion would permit to access and experiment with a wider variety of cryp-
tographic functions.

7 Acknowledgments
We thank Thomas Pornin, Eli Sohl, and the anonymous reviewers for their
useful comments and suggestions.

References
[1] Nicky Mouha and Christopher Celi. “A Vulnerability in Implementations of

SHA-3, SHAKE, EdDSA, and Other NIST-Approved Algorithms”. en. In:
13871. CT-RSA 2023: Cryptographers’ Track at the RSA Conference, San
Francisco, CA, US, 2023. doi: https://doi.org/10.1007/978-3-
031-30872-7_1. url: https://tsapps.nist.gov/publication/
get_pdf.cfm?pub_id=936243.

[2] Leonardo de Moura and Sebastian Ullrich. “The Lean 4 Theorem Prover
and Programming Language”. In: Automated Deduction – CADE 28. Ed.
by André Platzer and Geoff Sutcliffe. Cham: Springer International Pub-
lishing, 2021, pp. 625–635. isbn: 978-3-030-79876-5.

26: FN-DSA: https://github.com/pornin/rust-fn-dsa/blob/main/fn-dsa-com
m/src/shake.rs#L862-L891

21

https://doi.org/https://doi.org/10.1007/978-3-031-30872-7_1
https://doi.org/https://doi.org/10.1007/978-3-031-30872-7_1
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=936243
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=936243
https://github.com/pornin/rust-fn-dsa/blob/main/fn-dsa-comm/src/shake.rs#L862-L891
https://github.com/pornin/rust-fn-dsa/blob/main/fn-dsa-comm/src/shake.rs#L862-L891

[3] The mathlib Community. “The Lean Mathematical Library”. In: Proceed-
ings of the 9th ACM SIGPLAN International Conference on Certified Pro-
grams and Proofs. POPL ’20: 47th Annual ACM SIGPLAN Symposium
on Principles of Programming Languages. New Orleans LA USA: ACM,
Jan. 20, 2020, pp. 367–381. isbn: 978-1-4503-7097-4. doi: 10 . 1145 /
3372885.3373824. url: https://dl.acm.org/doi/10.1145/
3372885.3373824 (visited on 11/13/2024).

22

https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1145/3372885.3373824
https://dl.acm.org/doi/10.1145/3372885.3373824
https://dl.acm.org/doi/10.1145/3372885.3373824

	Introduction
	SHA-3
	Implementing The SHA-3 Family Of Functions
	SHA-3 State
	Modeling Sponge Direction and Hash Parameters
	The Block Permutation
	Sponge Construct Handling
	Implementing the API

	Testing
	Correctness
	Performance

	Potential Issues When Implementing Cryptography
	Concluding Notes And Future Work
	Acknowledgments

