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Abstract—During the past decade, Deep Neural Networks
(DNNs) proved their value on a large variety of subjects.
However despite their high value and public accessibility, the
protection of the intellectual property of DNNs is still an issue
and an emerging research field. Recent works have successfully
extracted fully-connected DNNs using cryptanalytic methods
in hard-label settings, proving that it was possible to copy
a DNN with high fidelity, i.e., high similitude in the output
predictions. However, the current cryptanalytic attacks cannot
target complex, i.e., not fully connected, DNNs and are limited
to special cases of neurons present in deep networks. In
this work, we introduce a new end-to-end attack framework
designed for model extraction of embedded DNNs with high
fidelity. We describe a new black-box side-channel attack which
splits the DNN in several linear parts for which we can perform
cryptanalytic extraction and retrieve the weights in hard-label
settings. With this method, we are able to adapt cryptanalytic
extraction, for the first time, to non-fully connected DNNs,
while maintaining a high fidelity. We validate our contributions
by targeting several architectures implemented on a micro-
controller unit, including a Multi-Layer Perceptron (MLP)
of 1.7 million parameters and a shortened MobileNetv1. Our
framework successfully extracts all of these DNNs with high
fidelity (88.4% for the MobileNetv1 and 93.2% for the MLP).
Furthermore, we use the stolen model to generate adversarial
examples and achieve close to white-box performance on the
victim’s model (95.8% and 96.7% transfer rate).

1. Introduction

During the last decade, the number of tasks for which
Deep Neural Networks (DNNs) have proven their effec-
tiveness has steadily increased, leading to the widespread
adoption of these algorithms in a large variety of fields.

From computer vision to text translation and images gener-
ation, DNNs are everywhere now, and the best models have
become valuable intellectual property (IP). In the mean-
time, the parallel effort from hardware designers have made
possible DNNs’ deployment on edge device. However, due
to their high value, the IP of the deployed models must
be protected against new attacks caused by the embedded
context. Since the publication of a first side-channel attack
against the IP of an embedded DNN [2], the number of
physical-based attacks against DNNs has greatly increased.
Several methodologies using side-channel attacks with the
objective of the extraction of the DNN’s hyperparameters
have been proposed [11], [18]. DNN parameters have also
been targeted by physical attacks, via side-channel [19],
[32], or through fault injection [13], [27]. These types of
attack, targeting the parameters of the model, try to copy
the targeted model and perform a model extraction attack.

Model extraction is not only a threat to embedded DNNs
but to any deployed DNNs. There is therefore a large variety
of methods, and even objectives, for theses attacks. We can
characterize the two main types of objectives or adversarial
goals for model extraction with the terminology introduced
in [17]: accuracy-based model extraction and fidelity-based
model extraction. The first aims at gaining access to a substi-
tute model with good performance on the task of the targeted
model without having to perform the whole training process.
The second has for purpose to clone the targeted model
to acquire a copy as close as possible to the original. The
cloned model can then be used to gain information on the
victim’s DNN and potentially mount more powerful attacks
against it. In this study, we will consider only fidelity-based
model extraction.

Jagielski et al. [17] were the first to propose a functional
framework for fidelity-based model extraction of 1-layer
neural network (NN) using the ReLU (Rectified Linear Unit)



function. They exploited the gradient of the DNN to gain
access to what they defined as critical points. Such points
correspond to inputs where the activation value of one spe-
cific neuron is null. These points are visible in DNNs based
on the ReLU activation function, since they correspond to
points where discontinuities occur in the gradient of the
DNN. Using this knowledge, they were able to extract a
1-layer fully-connected NN using the least-square (LSTSQ)
algorithm. Due to the similarities with attacks targeting
crypto-system, i.e., analysis of a large number of input-
output pairs to gain information on a secret value, this
method was later characterized as cryptanalytic extraction
of DNNs. Both works in [6] and [28] successfully extended
this result to deeper architecture, with the method proposed
in [6] still achieving the highest fidelity today. One key
limitation in the method proposed in [6] was the extraction
of the neurons’ sign, for which they used an exhaustive
search. This is a critical information, as assigning the wrong
sign will deactivate the neuron when it should be activated,
and inversely. Shamir et al. argued that their method would
not scale well with larger architecture [4]. So they used
crafted perturbations activating specific neurons to infer this
information [4]. While very effective, all of these methods
rely on the fact that the output of the DNN is composed
of the full confidence score vector which allows gradient
estimation. This corresponds to an ideal case for the attacker,
and researches have aimed at removing this assumption in
order to move on to more realistic scenarios. Recent work by
Chen et al. [9] demonstrated that it was possible to extract
DNNs in hard-label settings for small networks. This was
further proved by the work of Carlini et al. [5], in which
they successfully extracted a four hidden-layer DNN using
only the hard-label. However, while these works no longer
require the confidence score, they are all designed solely for
fully-connected DNNs, excluding any target composed of a
non-fully connected layer, such as a pooling layer.

In parallel, several methods aiming for fidelity-based
model extraction have been proposed using physical attacks.
As mentioned before, the most notable examples of such at-
tacks were presented in [13], [27]. They used fault injection
to determine the value of a subset of the weights’ bits in
the DNN and constraint learning for the rest of the weights.
Contrarily to the methods previously mentioned, these are
not restricted to fully connected DNNs and, as such, were
successful in extracting various complex architectures, e.g.,
ResNet-34 or VGG-11 [27]. However, these methods are ei-
ther limited to DRAM platforms performing DNN inference,
i.e. Machine-Learning-as-a-Service (MLaaS) platforms, [27]
or require access to an open device, on which the attacker
has full control (i.e. white-box settings), to find the memory
localization of the weights’ bits [13].

We summarize in Table 1 the results and the threat
models from state-of-the-art (SOTA) frameworks perform-
ing fidelity-based model extraction using side-channel, fault
injection or cryptanalytic methods. To the best of our knowl-
edge, there is no method for extracting complex architec-
tures, i.e., not restricted to fully-connected layers, without
requiring an access to the confidence scores and an open

device.
Contributions: In this paper, we present an efficient

framework, combining black-box side-channel attacks and
cryptanalytic-based extraction of DNNs in a hard-label set-
ting. We propose a new method to acquire critical points
using a side-channel attack instead of the output of the
DNN. This allows the attack to be performed in a hard-
label settings, and offers higher precision than previous
methodologies in extracting weights, resulting in higher
fidelity. Additionally, our framework is not impacted by
the output’s data format, and we are the first to propose
results of cryptanalytic extraction with both 32- and 64-bit
data. Furthermore, we introduce an alternative methodology
to determine the sign of each neuron requiring only one
hypothesis by layer. Finally, the main advantage of our
method over other cryptanalytic extraction frameworks is the
ability of the side-channel attacks to subdivide the DNN at
each activation functions. Using this result, we improve the
SOTA by targeting complex DNNs composed of non-fully
connected layers, such as depth-wise separable convolution
or pooling layers, in a MobileNetv1 architecture. We sum-
marize the major contributions of our work as follows:

• We present a new black-box side-channel attack on
a constant-time implementation of the ReLU function
introduced as a SOTA countermeasure.

• We propose a new gradient-free extraction method
improving both the precision on the weights’ extraction
and the robustness to special cases of neurons.

• We introduce a new method to infer the sign of the
neurons without access to the confidence scores and
requiring only the testing of one hypothesis by layer.

• We build an end-to-end framework capable of extract-
ing DNNs with high fidelity and not limited to fully-
connected layers.

• To prove the practicability of our contributions, we
validate them through comparison against other SOTA
frameworks, and by targeting a shortened version of
MobileNetv1 embedded on an STM32F767ZI using the
X-Cube-AI framework.

We provide an implementation of our code at
https://github.com/X.

2. Background

2.1. Notations

Let calligraphic letters X denote sets, the corresponding
capital letters X (resp. bold capital letters) denote random
variables (resp. random vectors T), and the lowercase x
(resp. t) denote their realizations. We will use Ti to describe
the i-th element of a vector T. Throughout this paper, the
function modeled by a DNN is denoted as f : X → |Y|,
which characterizes its ability to classify a data X ∈ X , e.g.,
an image, over a set of |Y| classes. A DNN characterized
by the function f and the set of weight θ is denoted fθ, and
we denote fθ̂ the model extracted from fθ. The probability
of observing an event X is denoted by Pr[X]. Finally, we
denote DX , the distribution over the set of data X .



TABLE 1: Overview of the state-of-the-art of fidelity-based model extraction attacks.

Approach Attack type Full extraction
(weight + bias)

Hard-label
setting

Not restricted to
fully connected
DNN

Random
queries

DNN’s
datatype
tested

Targeted architecture
(Most complex)

ICML’20 [28] Cryptanalytic ✓ ✗ ✗ ✓ 64-bit float MLP 10-20-20-1
Crypto’20 [6] Cryptanalytic ✓ ✗ ✗ ✓ 64-bit float MLP 40-20-10-10-1
AC’24 [9] Cryptanalytic ✓ ✓ ✗ ✓ 64-bit float MLP 1024-2-2-1
Preprint [5] Cryptanalytic ✓ ✓ ✗ ✓ 64-bit float MLP 3072-256×3-64-10
USENIX’19 [2] Side-Channel ✗ ✓ ✓ ✓ 32-bit float MLP 784-200×4-10
ICCAD’23 [33] Side-Channel ✓ ✗ ✗ ✓ 64-bit float LeNet5
IEEE S&P’22 [27] Fault Injection ✓ ✓ ✓ ✗ 8-bit data ResNet34 and VGG11
ESORICS’23 [13] Fault Injection ✓ ✗ ✓ ✗ 8-bit data CNN 3×(Conv + Pooling

+ ReLU)-Linear
This work Cryptanlytic and

side-channel
✓ ✓ ✓ ✓ 32- and 64-

bit float
Shortened MobileNetv1
MLP 3072-256×3-64-10

Attacks not in hard-label settings suppose an access to the confidence scores. Contribution not using random queries use a subset of the training or a
testing dataset to perform part of their attacks.

2.2. Fidelity-based model extraction

Model extraction attacks target the confidentiality of a
deployed model, by trying to obtain a copy of the victim’s
model. The most common goal, is to use the copy to gain
the target’s benefits, e.g., commercial value, performance on
specific tasks, etc., without having to train a model. Another
possibility is to use the stolen model to gain information on
the target and mount higher-level attacks against it, e.g.,
generation of adversarial examples in a white-box scenario
[7], [29] or membership inference attacks [10]. This diver-
sity in the attack scenarios leads to several adversarial goals
in a model extraction. Following the notations introduced
in [17], we consider two main goals, namely task accuracy
and fidelity.

The first one has for purpose to extract fθ̂, such as, for
the true task distribution DX×Y over the sets of input X
and label Y , fθ̂ maximizes PrX,Y [argmax(fθ̂(X) = Y ].
In practice, this can be achieved through learning-based
methods and optimisation. However, this approach induces
variability in the optimisation problem which can lead to
very different solutions (i.e., models) caused by the conver-
gence to different local minima. This is why this method
offers no guaranty from a fidelity point of view, and is used
for the goal of task accuracy.

The second adversarial goal consists in maximizing the
similarity between the stolen and the original models in
their predictions. The limits being functionally equivalent
extraction which is defined by:

Definition 1 (Functional equivalence [17]). Two models
fθ and fγ achieve functional equivalence on X if for any
distribution of input DX , the following equality holds:

∀X ∈ X , fθ(X) = fγ(X).

This is the strongest attack possible as it leads to an exact
copy of the targeted DNN. In this paper, we only consider
fidelity-based model extraction. To evaluate the success of
such extraction, we use a relaxed definition of functional
equivalence:

Definition 2 ((ϵ, δ)-functional equivalence [6]). Two mod-
els fθ and gγ are (ϵ, δ)-functionally equivalent on X if:

PrX∈X [|fθ(X)− gγ(X)| ≤ ϵ] ≥ 1− δ.

The advantages of fidelity-based model extraction have
stimulated researches on this subject. In particular physical-
based attacks and cryptanalytic approaches have been pro-
posed in recent years. Side channel attacks [2], [14], [19],
[33] and fault-based attacks [13], [27] have been used to
target all the weights of a DNN individually [2], [14],
[19], or to extract partial information on the weights in
order to train a substitute network using this information
as a constraint [13], [27]. Theses methods achieve fidelity-
based extractions but show limitations either in the attack
complexity, in the architecture of the targeted DNN, or in
the threat model, e.g., exclusive to certain platforms, white-
box settings such as access to the logits or to an open copy
of the targeted device. On the other hand, attacks based on
cryptanalysis have proved effective against shallow networks
[17], [26], and were then successfully adapted to DNNs [6],
[28]. In particular, Carlini et al. [6] were able to steal a DNN
with three hidden layers using 217.8 queries and extract the
1, 110 parameters with a maximum absolute error between
the weights θ and the stolen weights θ̂ of 2−27.1. These
methods will be briefly introduced in the following section.

2.3. Cryptanalytic extraction methodology

Both methods in [6], [28] extract the DNN’s weight
by targeting iteratively each neuron, monitoring its state,
in order to find its critical points. The critical points and the
state of a neuron η can be defined in the following way:
Definition 3 (Critical point and state of a neuron [6]).

Given an input X ∈ X , let V (η;X) be the function
characterizing the input of the neuron η before applying
the activation function. Then X is said to be a critical
point to the neuron η if V (η;X) = 0. If V (η;X) > 0
(resp. V (η;X) < 0) then η is said to be active (resp.
inactive).

The induced-hyperplane of a neuron can be defined
accordingly:



Definition 4 (Neuron-induced Hyperplane). The hyper-
plane of a neuron η corresponds to the set Hη ⊆ X
where ∀X ∈ Hη, V (η;X) = 0.

Figure 1: Neuron-induced hyperplane.

An example of critical points, neuron states and hyper-
plane is provided in Figure 1. By finding enough critical
points, it is possible to determine the equation of the neuron-
induced hyperplane. This can then be used to find the
weights’ values with high precision, since by definition, the
equation of the hyperplane follows:

n∑
i=1

θη,iXi + βη = 0,X ∈ Rn (1)

with θη (resp. βη) the weight (resp. the bias) vector asso-
ciated with the neuron η. It is important to notice that for
a neuron η with n parameters, the induced-hyperplane is
an (n − 1)-dimensional piecewise-linear surface [12]. This
causes that the weight vector can only be extracted up to a
scaling factor. In practice, we set the first weight θη,0 of θη
as the scaling factor and from Equation 1 we obtain:

X0 =

n∑
i=1

−θη,i

θη,0
Xi −

βη

θη,0
,θη,0 ̸= 0 (2)

After the extraction of n−1 critical points, it is possible
to retrieve the neuron’s weights up to a scaling factor. This
process is defined in [6] as signature search. The neuron’s
signature can be defined in the following manner:
Definition 5 (Neuron signature [4]). The signature of a

neuron η corresponds to a vector Sη ∈ Rn, for which
there exists a scalar α ∈ R such that θη = α ∗ Sη .

In the previous example, the vector Sη =

(1,
θη,1

θη,0
, . . . ,

θη,n

θη,0
) is a signature of the neuron η and

θη,0 is the scaling factor. By considering the target model
fθ as an oracle, the search for neuron’s signature can be
performed directly using its input-output pairs. Indeed,
if the target model is composed of piecewise linear
activation functions, then fθ is also piecewise linear
and discontinuities can be observed in the gradient of
fθ. These discontinuities correspond to each change of
state by a neuron in the DNN. However performing the
signature’s search using these discontinuities requires high

assumptions. Firstly, the target model’s output needs to
be either the confidence scores or the logits, to allow the
attacker to estimate the gradient through finite difference.
Secondly, the output needs to be returned in a high-precision
format to get the most precise estimation. This method
was introduced in [17] and adapted to DNNs in [6], [28]
to extract ReLU-based network running double-precision,
64-bit floating-point data.

Targeting deep ReLU networks is motivated by both the
popularity of the ReLU function as an activation function
and its properties. In particular, the discontinuity in the gra-
dient of the ReLU function is localized in 0, which implies
that by monitoring the gradient of the targeted model, critical
points for each neuron can be found. Furthermore, the ReLU
function is equivariant under positive multiplication, i.e.,
∀x ∈ R and ∀c ∈ R+, ReLU(c × x) = c × ReLU(x).
This means that the value of the scaling factor α of the
neuron’s signature is not important, only its sign. If the sign
of the input of the ReLU function is respected, then the
activation value of each neuron can later be re-scaled during
the extraction of the neurons’ signature in the following
layers. Therefore the model extraction attack can be seen
as an iterative process over the neurons based on two steps:

1) Extraction of the neuron’s signature.
2) Extraction of the sign of the scaling factor to ensure

that the neuron’s state remains the same.
While neuron signatures can be revealed through the

discontinuities of the gradient, the sign of the scaling factor
is not accessible directly by an attacker. Carlini et al. [6]
solve this by testing all of the 2m possibilities with m the
number of neurons in the layer. As this becomes rapidly
impractical for large DNNs, Canales-Martı́nez et al. [4]
propose another method based on activating specific neurons
through crafted inputs to extract the sign of each neuron.
Their method successfully extracts the sign of each neuron
within a model with 8 hidden layers each with 256 neurons,
for which the signatures were previously extracted.

Although, theses methods have successfully performed
complete extraction of Deep-ReLU networks up to 3 hidden
layers and 100, 480 parameters [6], deeper extraction has
not been achieved. Furthermore, access to the confidence
scores or the logits in a high-precision format is essential to
the success of the extraction, which will make the attack
impractical in most contexts. For example, in embedded
systems, the hardware constraints can impose limitations
on the precision or on the access to the logit values that
could prevent the attack. However, the embedded-system
context increases the surface of attack and allows an attacker
to consider side-channel attacks to improve fidelity-based
model extractions.

2.4. Side-channel attacks

Historically, side-channel analysis (SCA) is a class of
cryptographic attack in which an attacker tries to exploit the
vulnerabilities of the implementation of a real-word crypto-
system for key recovery by analyzing its physical charac-
teristics via side-channel traces, like power consumption or



electromagnetic (EM) emissions. During the execution of
an algorithm embedded into a crypto-system, side-channel
traces record the intermediate variable (e.g., secret key)
being processed. To discriminate the correct key hypoth-
esis from the incorrect ones, an attacker uses a statistical
distinguisher to extract the targeted variable from a large
number of traces.
Definition 6 (Statistical distinguisher). A statistical dis-

tinguisher, denoted d : T → K, is a statistical function
identifying the dependence between a set of physical
traces T and a targeted variable in K.

In [2], Batina et al. were among the first to transpose this
attack to the DNN paradigm by targeting the architecture
and the parameters of the model with two statistical distin-
guishers via a Simple Power Attack (SPA) and a Correlation
Electromagnetic Attack (CEMA). Since, CEMA has been
extended to target the weights of DNN on microcontrollers
(MCUs) [19] as well as on GPUs [14]. Several other
methodologies commonly applied in side-channel attacks
on crypto-system have been extended to target DNNs. In
particular, deep learning-based side-channel attacks [3], [22]
have been successfully adapted for extracting the hyperpa-
rameters of DNNs. Gao et al. [11] trained a set of meta-
models on physical traces to extract the architecture of the
targeted models with a high precision. Previously, Maia
et al. [23] successfully reconstructed the architecture of
ResNet and VGG models running on a GPU using the
physical traces. All theses attacks use supervised learning
to construct the statistical distinguisher. This imposes to the
attacker an access to an open device that provides the true
label before learning the mapping. This assumption is very
restrictive, leading researches to focus on more permissive
threat models using unsupervised learning methods. In par-
ticular, well-researched unsupervised cluster classification
algorithms, such as k-means clustering [1], can be used as
statistical distinguisher to find partitions effectively without
any manual methods or prior profiling. While we argue that
this method could improve fidelity-based model extraction,
to the best of our knowledge, it has never been applied to
the extraction of DNN weights.

3. Limitations in fidelity-based extraction

Although the methods presented in the previous section
demonstrate strong results, fidelity-based model extraction
remains a difficult task, especially in the context of embed-
ded systems. In Section 3.1, we provide further details on the
limitations of these methodologies in this specific context.
Then, in Section 3.2, we describe the threat model that is
considered in this paper. Finally, in Section 3.3, we present
the overall flow of our fidelity-based extraction framework.

3.1. Fidelity-based extraction issues

Even if an ideal scenario is assumed for the attacker, i.e.,
access to the complete confidence scores is given, cryptan-
alytic extraction using the previously introduced method is

still challenging for several reasons. First of all, the informa-
tion in the input-output pairs does not allow identification of
the neuron for which the critical point is found. Therefore,
an attacker cannot validate if consecutive critical points
found are related to the same neuron. Carlini et al. [6] solve
this issue by sampling a large number of critical points with
respect to the number of neurons. This statistically ensures
that each neuron has enough critical points to infer the
hyperplane required to find the corresponding signature, but
leads to the search of unnecessary critical points. This might
cause the attack to be too complex for deeper architectures
regarding the large number of required queries. Another
issue, reported in [4], is the special cases of neurons that
almost never change state. For these neurons, the number of
queries needed for the search of critical points can exceed
the mean number of required queries for a classical neuron
by a factor of 10. Even if these special cases of neuron are
highly difficult to threat in practice, no investigations are
provided in the SOTA to deal with such issue.

Additional practical limitations should be considered in
the embedded context, as hardware constraints might force
the neural network to use low-precision format of data for
the weights, the activations and the input-output pair. This
makes gradient estimations noisier, which has an impact on
the search for critical points. Furthermore, in the case of
classification task, if the output of the model fθ is only
the hard-label, i.e., ŷ = argmax(fθ(X)), then the attack
scenarios designed in [6], [17], [28] are no longer applicable.
While the logits or the confidence scores might be given
alongside the prediction in a MLaaS context, for embedded
systems, it is frequent that the output is restricted only to
the class with the highest probability. For example, FINN
[31] is a popular framework for the deployment of low-
precision neural network on FPGA, and by default only the
top-1 prediction is returned as output.

Finally, even if the application context of the neural
network imposes that the output includes the confidence
scores, several countermeasures can easily be implemented
to increase the cost of the cryptanalytic extraction attack.
Indeed, confidence scores are already used to generate ad-
versarial examples in a black-box scenario [8]. Therefore,
countermeasures designed to limit adversarial example gen-
eration, such as rounding or adding Gaussian noise to the
confidence scores [16], [30], would also be efficient against
extraction frameworks based on cryptanalysis such as [6],
[17], [28].

All of these practical issues have driven recent re-
searches to find an alternative not requiring the gradient to
find the critical points. Carlini et al. [5] propose to use the
decision boundary to find dual points, i.e., points that are
both critical and on the decision boundary, and extract the
trained parameters (i.e., the weights and biases). In their
work, they successfully extracted a four-layer DNN trained
on CIFAR-10 using only the hard-label provided by the
targeted model. However, their method is limited to fully-
connected networks, and, as such, cannot be extended to any
architecture using a layer that is not fully connected, e.g.,
an average pooling layer. Furthermore, while they report
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Figure 2: Overview of our attack framework. In Stage 1, the critical points of the neuron N1 are extracted using side-channel
leakages. During Stage 2, the critical points, already extracted, are used to infer the signature of N1. Finally, the sign of
the neuron is extracted in Stage 3.

the presence of special case neurons, they do not provide
an alternative for their extraction, leading to an increase in
the number of queries [5].

3.2. Threat model

In this paper, we consider an attacker, aiming for extrac-
tion of the weights of a DNN implemented in an embedded
system (e.g., an MCU). The purpose of this attack is to
achieve functional equivalence between the victim’s model
and the stolen copy (see Definition 1).

We assume that the attacker has a physical access to the
device on which the targeted DNN is running. This allows
recording of the physical leakages, e.g., EM traces, during
the processing of the input data by the DNN. However,
contrary to [13], [33], we restrict ourselves to the case where
the attacker does not have the possibility to profile the em-
bedded device. As a consequence, it is not possible to train
a statistical distinguisher on labelized physical traces. From
the physical attack point of view, this setting corresponds to
a black-box scenario.

Additionally, similarly to [17], [28] and [6], we only
consider Deep-ReLU networks as a target in this threat
model, and we assume that the exact architecture of the tar-
geted model is known. However, we do not restrict ourselves
to fully-connected layer. Finally, we suppose unrestricted
query access to the embedded model, and so, the DNN
can be seen as an oracle by the attacker. However, in this
threat model, we examine the case where the output of the
targeted DNN is restricted to the hard-label and not a vector
composed of the class-probabilities or the logits.

3.3. Fidelity-based extraction assisted by side-
channel attacks

In this work, we introduce a new attack framework
against DNNs, using side-channel information to assist
cryptanalytic extraction. It is an iterative process over all
neurons of all layers. Our framework begins by targeting
the input layer before moving to the first hidden layer, and
so on. The extraction of each neuron follows the following
three stages, as represented in Figure 2:

1) During the first step of our framework, we use side-
channel information to infer the targeted neuron’s state
for each input, and binary search to find the critical
points. Instead of the gradient, this method exploits
side-channel information through the use of a black-
box statistical distinguisher (see Definition 6) to esti-
mate the state of the neuron. Therefore, this stage is free
from any of the restrictions mentioned in Section 3.1.
This stage will be detailed in Section 4.

2) The second stage consists in retrieving the optimal
equation describing the hyperplane induced by the
targeted neuron. To do that, a system of equations
is constructed based on the critical points extracted
in the previous stage. Then, we use the least square
algorithm (LSTSQ) on this system of equations to find
the optimal solution, i.e., the hyperplane’s equation.
Further explanations on this part will be provided in
Section 5.

3) In the final stage of our framework, the sign of each
neuron is extracted through hypothesis selection, simi-
larly to [6]. However, we propose to take leverage the
physical traces collected during Stage 1. This reduces
the number of hypothesis from 2m, with m the number



of neurons in the layer, to a single hypothesis for
the whole layer. This method will be presented in
Section 6.

4. Stage 1: Search of Critical Points

Without any access to the confidence scores, the estima-
tion of the gradient is not possible, and the methodologies to
search for the critical points proposed in [6], [17], [28] are
no longer applicable. Furthermore, the search for the dual
points as introduced in [5], while effective in a hard-label
settings, is only possible on fully-connected DNNs. This
highlights the need for another method for the critical point
search in hard-label settings for non-fully connected DNNs.
In this section, we propose a new method, corresponding to
the first stage of our framework (see Figure 2), to address
these limitations. First of all, in Section 4.1, we present
how we exploit physical leakages to extract the targeted
neuron’s state without access to the confidence scores. Then,
in Section 4.2, we describe the algorithm that we use to find
the critical points associated with the neuron based on the
previously determined neuron’s state.

4.1. Neuron’s state identification using side-channel
information

In this study, we only consider Deep-ReLU networks,
meaning that we restrict ourselves to DNNs where the
activation function is always the ReLU function σ(x) =
max(0, x). This is a common assumption, as the ReLU
function is one of the most popular choice for activation
function in DNNs. The key of the first step of our framework
is based on constructing a statistical distinguisher mapping
a side-channel trace to one of the two possible states of
a neuron. The purpose of such distinguisher is to solve a
classification problem and discriminates active from inac-
tive neurons, based on physical traces characterizing their
process. Then, once this separation is constructed, it is
possible to infer the state of a given neuron for one input.
Consequently, for two different inputs, using the statistical
distinguisher allows the attacker to determine if they corre-
spond to the same state for a given neuron, i.e., if they are
on the same side of the induced-hyperplane. It is important
to notice that such distinguisher does not need to provide a
mapping that returns the true state, i.e., active or inactive. As
we are only interested in the similarity in the neuron’s state,
only the separation learned by the statistical distinguisher is
required.

The activation function of DNNs has already been tar-
geted using a statistical distinguisher exploiting a difference
of timing in [2], [24], leading to the identification of the
used activation function and even the weights’ mantissa. To
prevent this issue, Maji et al. [24] proposed a constant-time
implementation of the ReLU function based on a mask de-
rived from the sign of the processed value. It is nevertheless
worth mentioning, that non-constant-time implementations
can still be found in popular open-source frameworks such
as NNOM [21].

While effective, both previously mentioned approaches
used supervised learning to find the best statistical distin-
guisher. This strategy requires access to an open device
which is a very restrictive assumption. In this work, we con-
sider a more realistic threat model in which an open device
is not accessible to the attacker. Therefore, the supervised
learning strategy is impossible.

To achieve this, we propose another kind of statistical
distinguisher based on an unsupervised k-means clustering
algorithm [1]. The idea is to first generate enough traces with
random inputs to build a dataset in which both classes (i.e,
active and inactive neuron) are evenly represented. Then,
we use the k-means algorithm to identify two clusters cor-
responding to each of the states. As mentioned previously,
it does not matter to know which cluster corresponds to the
active or inactive state, since that information is not needed
to find a critical point. As the inputs are randomly generated,
these two clusters are then used as reference to identify the
state of a neuron. Finally, given the physical trace of a new
neuron, we use its Euclidean distance to the two clusters’
centroids as our statistical distinguisher function to infer the
neuron’s state.

4.2. Binary search of critical points

Using physical leakages, we are able to infer the state
of a neuron through clustering. Even without the gradient,
this approach, combined with binary search, is successful in
finding the critical points. Indeed, starting from two random
points, providing that they correspond to the two different
states for the targeted neuron, an attacker can search for
critical points by dichotomy, as represented in Figure 2. A
high-level description of our methodology is presented in
Algorithm 1.

Due to numerical approximations, finding a point on the
hyperplane can be challenging. Instead, we use an hyper-
parameter ∆ to place a critical point within a determined
distance to the hyperplane. We use the k-means statistical
distinguisher to infer the state of the neuron at each step
of our binary search, and determine which point to update
to get closer to the hyperplane. Since we are also using
binary search to retrieve the critical points, the complexity
of this phase is the same as the one in [17] and will require
|log2(∆)| queries to place a point within a distance of ∆ to
the hyperplane.

It is important to notice that the vulnerability that leaks
the neuron’s state comes from the DNN’s implementation
itself and is therefore independent from the output provided
by the targeted DNN, contrary to classical cryptanalytic
methods [6], [17]. Another important limitation of the clas-
sical cryptanalytic methods is their inability to determine to
which neuron a critical point corresponds. To circumvent
this issue, the solution adopted in [6] consists in sampling
a large number of critical points, i.e., the number of total
collected critical points nc is established via the coupon
collector argument nc ≫ Nlog(N) with N the number of
total neurons in the network, to ensure that there is enough
critical points for each neuron to extract the signature. This



Algorithm 1 Binary search of critical point

Require: an input X ∈ X , a statistical distinguisher d, a
trace generator Q : N × X → T related to the targeted
neuron η ∈ N, distance precision ∆ ∈ R,

Ensure: X ∈ Hη

Y ← random(X )
TX , TY ← Q(η,X), Q(η, Y )
V (η;X), V (η;Y )← d(TX), d(TY )
while V (η;X) = V (η;Y ) do

Y ← random(X )
TY ← Q(η, Y )
V (η;Y )← d(TY )

end while
while ||X − Y ||2 > ∆ do

M ← X+Y
2

TM ← Q(η,M)
V (η;M)← d(TM )
if V (η;M) = V (η;X) then

X ←M
else ▷ Implies that V (η;M) = V (η;Y )

Y ←M
end if

end while
return X

issue is not present in our contribution, as we use a statistical
distinguisher to extract the targeted neuron’s state. We are
therefore able to localize to which neuron corresponds the
identified critical point. Once all the desired critical points
are found, an attacker can use them to retrieve the neuron’s
signature.

5. Stage 2: Signature Extraction

In this section, we describe how we use the collected
critical points to infer the targeted neuron’s signature. This
corresponds to Stage 2 of our framework depicted in Fig-
ure 2. Section 5.1 introduces the general method. Then, in
Section 5.2, we propose the first solution to deal with special
neurons introduced in [4], namely always-on and always-off,
and for a new type of special neurons, input-off neurons.

5.1. Generic method

The idea is to infer the equation of the neuron-induced
hyperplane (see Definition 4) by constructing a linear system
based on Equation 1 with the critical points from Stage 1.
Such system can then be used to extract the weigths. For
example, given a set of n critical points {X1,X2, . . . ,Xn}
s.t. Xi ∈ Rn, the following system of equations can be
expressed in order to extract the n weights of the targeted
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Figure 3: Signature extraction through batch normalization.
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During the second stage of our framework, we find
the equation of the hyperplane by solving the least square
problem of this system of equations. We then extract the
signature of the targeted neuron by arbitrarily fixing the
scaling factor θη,0 to ±1. The sign of the scaling factor
determines the state of the neuron, and is therefore, a critical
component to extract. While the critical point search does
not require to label each cluster, we need to assign it to
conduct the full extraction attack. To do so, the sign must
be retrieved. This step will be detailed in Section 6.

It is important to notice that the proposed method is
not impacted by the presence of linear transformations, e.g.,
batch normalization, between the matrix multiplication and
the activation function. Indeed, it is possible to fuse all these
linear operations into one, and then extract an aggregate of
the weights (see Figure 3).

This framework splits the neuron’s signature extraction
process at each activation and is therefore the first frame-
work not impacted by non-fully connected layers. However,
one issue mentionned in SOTA’s frameworks which still
impact our methodology, is the presence of special cases
of neurons.

5.2. Special cases of neurons

From the previous section it can be observed that the
whole signature’s extraction process is based on a system of
equations constructed with the critical points of the targeted
neuron η as represented in Figure 2. Some conditions must
thus be respected. First of all, the number of critical points,
i.e., the number of equations, needs to be at least equal to
the number of targeted parameters (weights, bias, etc.) in
the neuron. And secondly, each targeted parameter must be
expressed through a non-null component value in at least
one critical point. In other words, the matrix describing the
system of equations must be of full rank.

Unfortunately, there exist neurons for which it is difficult
to meet these conditions, and which therefore require a very
large number of queries to find a subset of critical points



satisfying them. Such neurons can be broadly classified in
two types:

• Neurons that almost never change states, except on
a very small subset of the input space X , making it
difficult to find critical points via random queries. Such
neurons were already described in [4], but no solution
was proposed to extract their signature. Neurons that
are almost always active (resp. inactive) are referred as
always-on (resp. always-off ).

• Neurons for which one of the components of the critical
points is almost always null. This specific type of
neurons was not mentioned in [4], but cause issues for
the signature extraction. Indeed, the number of queries
needed to form a full-rank matrix for these neurons
can exceed the average number of queries needed for
classical neurons by a factor of 10. We designate such
neurons as input-off.

For these types of special neurons, the signature extrac-
tion differs and a special process depending on the type of
special neurons is performed. It is important to notice that,
due to the information we extract from physical leakages, we
are able to differentiate always-off from always-on neurons.
This distinction is closely related to the sign extraction of the
scaling factor using side-channel analysis (see Section 6).

Extraction of always-off neurons. The most simple
case of specific neuron is the always-off neuron. Since its
output value is almost always null and therefore independent
from the input, we can directly assign its output value to 0
without having to extract the related weights.

Extraction of always-on neurons. For always-on neu-
rons, the search for critical points can be extremely long
and costly in queries. Furthermore, due to the sequential
paradigm of our attack, applying our methodology on a
layer without complete extraction of the previous ones is
impossible. It is then crucial to extract all neurons at each
layer. Since we know that the neuron is always-on, one
solution is to consider the neuron’s activation function, i.e,
the ReLU function, as the identity and treat the neuron as
a weighted skip connection between this layer and the next
one. Let X ∈ Rn be the input of a layer l composed of
m neurons and η a always-on neuron in this layer l with
θ ∈ Rn (resp. βη) its weight vector (resp. bias). Let λ be
a neuron in layer l + 1 and γ ∈ Rm (resp. βλ) its weight
vector (resp. bias). If we denote Ai the activation value of
the neuron i in layer l corresponding to the input X of layer
l, the neuron η can be approximated as a skip connection
to λ, and Equation 1 then becomes:

m∑
i=1,
i̸=λ

γiAi + γη ×
n∑

j=1

θjXj + γλβη + βλ = 0 (4)

A schematic description of the approximation process
for always-on neurons is provided in Appendix A. As we
can see, this equation remains linear with respect to the tar-
geted neuron’s weights. Based on Equation 4, a new system
of equations can be constructed for the targeted always-on

neuron. Using the same notations as in Equation 4, we can
described it in the following manner:
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with βηλ an aggregate of the biases of η and λ, and z the
number of total equations (s.t. z ≥ n+m− 2).

As we can see, the system of equations is very similar
to the one described in Equation 3. Therefore, we use the
same methodology to solve it. We can also observe that the
signature of the neuron η appears in the extracted signature
of λ. So, by solving the least square problem for a neuron
in the next layer, it is possible to find the signature of an
always-on neuron. The only exception is the bias which
cannot be directly extracted. Instead, solving the system
of equations returns a combination of the bias from η and
λ. However, as the signature extraction of the weights is
already performed, only the bias remains unknown. This
implies that we only require one additional non-null critical
point, corresponding to the targeted always-on neuron, to
extract the bias.

Extraction of input-off neurons. Finally, the case of the
input-off neurons has a very similar solution to the case of
always-on neurons. The idea is also to use the signature’s
search for a deeper neuron to extract the signature of the
targeted neuron. However, for input-off neurons, their state
changes with the input, and the activation function can
no longer be approximated by the identity function for
all inputs. Since we are targeting ReLU activations, we
know that the activation function is equivalent to either the
null or the identity function. Therefore, we use physical
leakages to detect which inputs lead to the null or the iden-
tity function, and artificially transform the inputs’ equation
ourselves. Then we solve the same system of equations as
for the always-on neurons to extract the neuron’s signature.
Similarly, to the case of always-on neurons, we extract the
bias using a critical point directly for the targeted input-off
neuron.

Our framework proposes a similar extraction method to
what has been introduced in [6], [17], [28]. However, we
use side-channel analysis both to make this methodology
robust to special neurons, e.g., always-off/on and input-off,
and to improve the final part of our attack: extraction of the
sign of the scaling factor. The following section describes
how side-channel analysis can be used to infer the state of
each neuron.

6. Stage 3: Sign Extraction

To achieve functional equivalence, the sign of the scaling
factor associated with the extracted signature must be ob-
tained in the third and final stage of our attack. We propose



a new methodology, free from any assumptions of access to
the confidence scores or requiring supplementary queries,
and only needing one hypothesis by layer. In Section 6.1,
we introduce how we make use of the previously acquired
physical traces to align all the neurons of the targeted layer.
Further, in Section 6.2, we detail how we take advantage
of this alignment to infer the scaling factor’s sign of all the
neurons with only one hypothesis.

6.1. Layer alignment

The extraction of the sign of all the scaling factors
begins once all of the neurons’ signature in the layer have
been extracted. In this case, the attacker knows the induced
hyperplane for each neuron and can associate an arbitrary
state to each side of the hyperplanes, referred as VA and
VB , creating 2n hypotheses, with n the number of neurons
in the layer. To reduce this number, we can align the
neurons such as, for each neuron in the layer, the arbitrary
state VA corresponds to the same neuron’s real state (either
active or inactive), while VB corresponds to the other. The
number of hypotheses is reduced to one corresponding to
the identification of the sign related to VA or VB . This
alignment is achieved using the collected physical traces
during the signature’s search, i.e., Stage 1. Indeed, after the
first stage of our framework, for each neuron physical traces
have been collected, labelled using the k-means algorithm
and split into two groups corresponding to their arbitrary
state VA or VB . Under the assumption that the processing
of the ReLU function remains the same from one neuron
to another within the same layer, it is possible to regroup
the traces in two global groups by comparing the centroids
from each cluster for each neuron.

6.2. Hypothesis selection

After the neurons of the targeted layer have been aligned,
one assumption is made on the arbitrary state: we suppose
that the state VA (resp. VB) corresponds to the active (resp.
inactive) state. This hypothesis leads to two representations
for the whole layer as represented in Figure 2. We test
the validity of our hypothesis during the signature’s search
of the first neuron in the next layer. Indeed, once enough
critical points are extracted, a linear relation between these
points and the output of the previous layer is expected (see
Section 5). A wrong assumption on the state VA and VB

will break this linear relation by having the ReLU function
performing A = ReLU(−x) instead of A = ReLU(x).
This produces incorrect activation values, i.e., incorrect in-
puts for the next layer, and Equation 1 no longer holds
for the next layer. Therefore, we use the residuals of the
solution to the least-square problem (see Section 5) as a
criterion for the validity of our sign hypothesis selection.
The correct hypothesis is the one leading to the lowest
residual error. Using this method, we are able to extract
the sign of each neuron without requiring supplementary
queries. Furthermore, since our method only requires one

hypothesis per layer, we argue that it remains practical even
for complex and deep architectures.

7. Evaluation

In this section, we first describe the metrics that we use
in Section 7.1 and the experimental setup in Section 7.2.
Then, in Section 7.3, we detail the side-channel vulnerability
we exploit in our methodology. Finally, we evaluate the
practicability of our framework against architectures that
have never been targeted before, such as a shortened Mo-
bileNetv1, in Section 7.4. We then compare our results with
SOTA model extraction frameworks in Section 7.5.

7.1. Attack Evaluation Metrics

General metrics. Similarly to [6], we use the maximum
of the absolute difference between the correct weights θ
and their extracted counterparts θ̂, as well as the number
of queries to evaluate the performances of our attack. We
also use the mean error by layer between the true activation
value A and the estimated one Â.

Metrics dedicated to classifiers. Most of the metrics
described in [6] were designed for the specific task of
regression. To evaluate our attack on other tasks, such as
classification, we extend our set of metrics to include two
additional ones used in [27] and [13]: Fidelity and Accuracy
Under Attack (AuA). Fidelity corresponds to the average
label agreement between the stolen and the original model
on the top-1 prediction for a subset of inputs. Accuracy
under attack corresponds to the transfer rate of adversarial
examples generated on the stolen model and tested on the
targeted model. It is used as a proxy to represent the ability
to craft more powerful attacks on the victim’s network using
the stolen model.

7.2. Experimental setup

Dataset and Architecture. We target several embedded
DNNs including a shortened MobileNetv1 [15]. This DNN
shares the same basic block as the original MobileNetv1:
depth-wise separable convolutions. To the best of our knowl-
edge, these blocks have never been successfully extracted
using cryptanalytic extraction. Full description of all the
targeted architectures are provided in Appendix B. All clas-
sifiers were trained on the CIFAR-10 dataset1 except for
the architecture from [9]. This one, as well as all the DNNs
performing regression, is trained on random datasets. Table 2
summarizes all the targeted DNNs in this work.

Hardware configuration. The models are embedded
on an ARM Cortex-M7 microcontroller unit (MCU), on
an STM32-F767ZI board via the X-Cube-AI framework,
and uses 32-bit floating point data for all processed values
(i.e., input, weights, activations values, etc.). This board
incorporates 2 Mbytes of flash memory and 512 Kbytes of

1. https://www.cs.toronto.edu/∼kriz/cifar.html

https://www.cs.toronto.edu/~kriz/cifar.html


TABLE 2: Targeted architectures in this work.

Type of architec-
ture

Number of
parameters

Number
of
targets

Targeted by

Small MLP < 200, 000 7 This work, [4],
[6], [17], [28]

MLP 935, 370 1 This work, [5]
Large MLP 1, 721, 802 1 This work
MobileNetv1-short 5, 234 1 This work

Figure 4: Signal-to-noise ratio associated with the process-
ing of the ReLU function.

SRAM. X-Cube-AI is a framework developed by ST Micro-
electronics to facilitate the deployment of DNNs on STM’s
embedded devices. However, it is important to notice that
this framework is not intended to provide secure deployment
for embedded DNNs.

Practical setup. A probe from Langer (EMV-Technik
RF-U 2.5 is connected to an amplifier (ZLF-2000G+) to
capture the EM physical leakages. To acquire the EM signal,
a Lecroy oscilloscope (2.5 GHz WaveRunner 625Zi) is used
in our setup.

7.3. Side-channel vulnerability

Our attack relies on the crucial step of side-channel
extraction of each neuron’s state (see Section 4). To validate
our methodology, we extract the state of each neuron from
an embedded neural network, as described in Section 7.2.

Description of the weakness. The implementation of
the ReLU function in X-Cube-AI is constant-time, as rec-
ommended in [24]. Algorithm 2 describes the main idea
behind this implementation2 for 32-bit values.

Algorithm 2 Pseudo-code of the constant-time ReLU func-
tion
Require: the vector of pre-activation values Z ∈ Rn with

n the number of neurons
Ensure: A = max(0,Z) ∈ (R+)n

for i in m do
Ai ← (∼ (Zi ≫ 31)) & Zi

end for

Given a signed pre-activation value Zi ∈ R encoded on
32 bits, the sign can be extracted (Zi ≫ 31), and casted

2. For the purpose of this work, we decide to explain the weakness we
exploit as an illustrated example, but understanding the vulnerability is not
a prerequisite to perform our black-box extraction attack.

on 32 bits to serve as a mask (i.e., (∼ (Zi ≫ 7)) ∈
{0x00000000, 0xFFFFFFFF}). Hence, depending on
the sign of Zi, application of the mask will either cause
no modification or set the output to zero. A variant of this
implementation can also be found in CMSIS-NN [20].

Although this implementation is constant-time, the usage
of the mask leads to a physical leakage that can be cap-
tured by an attacker. In particular, depending on the state
of the neuron, the mask is defined by 0x00000000 or
0xFFFFFFFF. The difference in the Hamming weight, i.e.,
the number of bits equal to one between these two values,
produces a data-dependency between the physical traces and
the manipulated mask. As this dependence can be linked to
the state of each neuron, it is therefore possible to create two
groups, using clustering algorithms, on the physical traces,
corresponding to the two active and inactive states.

Critical point search. To validate our method, we ac-
quire a set of 10, 000 EM traces using the setup defined
in Section 7.2. Then, we conduct the strategy defined in
Section 4 and measure the success rate of retrieving the
neuron’s state for 12 neurons. To identify the dependence be-
tween the physical traces and the mask (i.e., neuron’s state),
we apply the Signal-to-Noise Ratio (SNR) [25] using the
10, 000 traces. The obtained result is illustrated in Figure 4.
As expected, a high dependence, i.e., a high SNR, between
the physical traces and the mask can be observed.

As mentioned in Section 4, we use the k-mean algorithm
to generate the two neuron’s state clusters without any prior
knowledge on the neuron’s states themselves. To measure
the success rate, we suppose access to the true state of the
neurons. As stated in Section 4, we only need a correct sep-
aration between the two clusters for our attack. Therefore,
to compute our metric, we verify for each input, that if they
correspond to the same state, they are in the same cluster.

With this method, we successfully extract the neuron’s
state for the first time using a black-box side-channel attack
on a protected implementation based on a SOTA counter-
measure. We obtain an average success rate of 100% over
all tested neurons and traces (see Appendix C for further
details). This success rate and the number of physical traces
needed to attain it is highly dependant of several experimen-
tal factors, such as the overall noise produced by the physical
system, the type of the probe, etc.. Given the high number
of queries needed to fully extract a DNN, it is critical to
maintain a high success rate while keeping the number of
needed traces as low as possible. To consider the worst
case scenario for the victim (i.e., best case scenario for the
attacker), we suppose an ideal set-up allowing the attacker
to perform side-channel attacks with a 100% success rate
in only one EM trace. All of the followings results are
given under this hypothesis. This allows to set an empirical
boundary for the performance of our framework and will
ease future comparison with other frameworks. Finally, this
assumption is not restrictive since, if one attack requires
N EM traces to achieve a 100% success rate, the global
complexity of the attack is given by the worse-case scenario
complexity multiplied by N .

Sign extraction. As previously mentioned, the side-



TABLE 3: Results of our extraction framework on a large
MLP and a truncated MobileNetv1.

Model Parameters Queries Accuracy
Original

Accuracy
Stolen

Fidelity

MLP 1, 721, 802 226.0 54.3% 54.0% 93.2%
MobileNetv1 5, 234 218.8 59.7% 59.2% 88.4%

channel vulnerability is not only used to find the critical
points during Stage 1 of our attack, but also to determine
the sign of the neurons once all of the neuron’s signatures
in the layer have been found. For this step, we exploit the
methodology introduced in Section 6 to reduce the number
of clusters to two for the whole layer. Based on this method,
we achieve a success rate of 99.7% for retrieving the sign
of the scaling factor related to each neuron.

Our results are not dependent from the algorithm, and
could be improved using more complex unsupervised meth-
ods, but the overall principle will remain the same. To the
best of our knowledge, this is the first successful extraction
of the neuron’s sign in a hard-label setting not requiring
extra queries.

7.4. Evaluation of the framework against large
architectures

We first consider the extraction of a large MLP. While
this architecture could be targeted by other SOTA frame-
works, as it is only composed of fully connected layers,
we use it to validate our framework against a very large
architecture with almost twice the number of weights of the
largest DNN targeted by previous cryptanalytic extraction
frameworks [5]. Then, to test the true advantage of our
framework, i.e., extraction of non-fully connected layers,
we target a truncated MobileNetv1. While its number of
parameters is quite low (5, 234) compared to the extracted
MLP, this is, to the best of our knowledge, the deepest DNN
extracted using cryptanalytic methods. Furthermore, this
model includes depth-wise separable convolutions followed
by batch-normalization, which has never been targeted be-
fore. It also includes an average pooling layer, which makes
it impossible to use the methods introduced in [6], [17], [28]
or in [5].

We summarize our results in Table 3. We successfully
extract a non-fully connected DNN with high fidelity for the
first time using our framework and achieve an accuracy of
59.2% (resp. 54.9%) with a fidelity of 88.4% (resp. 94.1%)
on the complete test-set of CIFAR-10 (10, 000 images) for
the MobileNetv1 (resp. large MLP).

Comparison with learning-based extraction. We pro-
vide a comparison with learning-based extractions using
a baseline model trained on the queries sent during the
critical points’ search, with the responses of the targeted
model as labels. To be in the most ideal settings for the
baseline model, the same hyper-parameters (architecture,
learning rate, etc.) as for the training of the targeted model
are used, as well as a balanced training dataset to obtain
similar number of samples per class. While the baseline

method seems to offer decent performance during training
(around 56% of accuracy on the random dataset), it does
not generalize well and the performance drops significantly
on the true dataset, achieving only 19.6% with a fidelity
of 21.1% for the MobileNetv1. The use of random queries,
which are not from the same distribution as the true training
set from CIFAR-10, and the hard-label setting drastically
reduce the performance of the baseline model. This illus-
trates that learning-based extraction methods are limited by
data distribution which makes cryptanalytic attacks more
appropriate for offering better performance in the threat
model considered in this paper.

Impact of the depth. Using binary search, it is only
possible to place a critical point within a certain distance
of the hyperplane (see Section 4.2). This creates a small
error on the estimation of the weights as we can see in
Table 4. For the first layer L0, the maximum error on the
estimated weights is 2−18.9. As we exploit side-channel
attacks to localize critical points, we are primarily limited
by the data type processed by the DNN. For comparison, we
include in Table 4 the results of our extraction framework
on the same target but using 64-bit data. In this scenario, the
maximum error for the same layer L0 is reduced to 2−46.6

which corresponds to a division of the maximum error by a
factor over 500 compared to SOTA best results in a similar
scenario [6]. This proves the value of side-channel attacks
for the critical point search. However, from Table 4, we
can also see that the performance of the extraction attack
diminishes with the depth of the layer. This is due to the
propagation of this small error on the weights in the current
layer, which will be accumulated in the activation values,
i.e., the inputs for the system of equations of the next layer.
This observation is not intrinsic to our method, as all SOTA
cryptanalytic extraction frameworks are impacted by it. It
is then crucial to minimize the error at each layer to have
the smallest impact on the next layer, which underlines the
benefits of our extraction. Alternatively, several methods
could be implemented to reduce this propagation, such as
re-computation of the weights to achieve higher precision,
but we leave them for future works.

Impact of the last layer. As we can see in Table 4,
the mean difference between the activation values from the
victim’s model and the one from our stolen model remains
below 0.01 even after the extractions of the first eleventh
layers. Therefore, we suppose that the loss in the fidelity
between the stolen and the targeted model comes mainly
from the extraction of the last layer. To validate our as-
sumption, we measure the fidelity and the accuracy obtained
from an hybrid MobileNetv1 model composed of our first
eleventh layers and a final layer with the real weights from
the targeted model. Such model achieves a top-1 accuracy
of 59.77% on CIFAR10, and a fidelity of 99.56%. This
confirms that the main loss in the fidelity is coming from the
extraction of the last layer. The absence of ReLU function in
this layer implies that no critical points can be extracted for
this layer. Therefore, we use the collected input-output pairs
during Stage 1, and supervised learning to extract the last
layer’s weights. While this method is not optimal, the high



TABLE 4: Layer wise statistics of the extraction of the shortened MobileNetv1.

Datatype Metrics L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11
32 bits max|θ − θ̂|L 2−18.9 2−17.6 2−7.9 2−18.2 2−7.6 2−13.9 2−9.9 2−11.4 2−8.8 2−6.7 2−4.3 23.7

mean|A− Â|L 2−21.6 2−20.9 2−11.2 2−11.2 2−15.2 2−15.5 2−13.0 2−12.7 2−12.3 2−11.7 2−8.6 24.1

64 bits max|θ − θ̂|L 2−46.6 2−43.8 2−37.4 2−34.2 2−29.0 2−27.1 2−26.0 2−26.8 2−23.1 2−22.7 2−15.3 23.8

mean|A− Â|L 2−49.0 2−48.0 2−40.3 2−34.1 2−32.2 2−31.6 2−28.3 2−28.0 2−26.4 2−25.6 2−20.5 24.4

precision achieved in the extraction of the previous layer
outweighs the induced loss which allows our extraction to
offer high fidelity. As this limitation impacts all methods
based on extraction of the critical points in hard-label set-
tings, we leave improvement of the extraction of the last
layer for future works.

Generation of adversarial examples. Finally, we use
AuA to quantify how much our extraction attack can im-
prove other attacks, and more specifically adversarial at-
tacks in the settings described in [13], [27]. We obtain a
transfer rate of 95.78% (resp. 96.67%) for the MobileNetv1
(resp. large MLP) architecture, achieving close to white-
box performance. Our methodology outperforms powerful
substitute model trained with access to the true data [27]
and prove its ability to mount more powerful attacks on the
targeted model.

We provide supplementary results on the MLP and Mo-
bileNetv1 architectures in Appendix D as well as results on
the impact of the special cases of neurons in Appendix E.
We then compare our framework against results from SOTA
methodologies in the next section.

7.5. Evaluation of the framework against SOTA
techniques

Since cryptanalytic extraction of DNNs running 32-bit
data has not been previously performed, only results with
64-bit data are provided in this section to have a more rep-
resentative comparison. The results we present are obtained
via simulating the side-channel vulnerability on software
implementation with DNNs using 64-bit data. These results
are synthesized in Table 5 To get the most complete work,
we also conduct our extraction attack on 32-bit and report
the result in Appendix F.

TABLE 5: Simulation of our framework on DNN with 64-
bit data.

Architecture Parameters Approach Queries max|∆θ|L−1

784-128-1 (R) 100, 480
This work 222.6 2−40.8

[6] 221.5 2−24.7

40-20-10-
1, 110

This work 216.8 2−42.0

10-1 (R) [6] 217.8 2−27.1

3072-256-
256-256- 935, 370

This work 226.2 2−35.0

64-10 (C) [5] - 2−18.0

(C) Classification task with hard-label settings, (R) Regression task with
access to the prediction score.

The 784-128-1 DNN corresponds to a model with an input
size of 784, an hidden layer of 128 neurons and 1 output.
Except for the work included in [5], all the other frame-
works consider access to the confidence scores and exploit

the estimated gradient. To have a fair comparison for the
cryptanalytic frameworks, we excluded the final layer of our
results in Table 5. Full results are included in Appendix F.

Side-channel attacks offer a higher precision on the lo-
calisation of the critical points than previous SOTA methods.
In consequence, our framework improves accuracy on the
extraction of the DNNs targeted in [6] by reducing the
maximum error on the extracted weights from 2−24.7 (resp.
227.1 to 2−40.8 (resp. 2−42.0) corresponding to a division
by more than 30, 000 of this error. For the comparison with
the framework presented in [5], as they operate under the
assumption that the previous layer is perfectly extracted, we
also use this assumption, and reduce the maximum error on
the estimated weights from 2−18.0 to 2−35.0. Supplementary
results are given in Appendix F. In [5], the dual point’s
search is also performed via binary search. Given the limited
level of information provided by the hard-label setting, this
increases the number of necessary queries, making our at-
tack more effective. However, the precise number of queries
was not given so far, so the comparison is rather hard.
Also, when access to the gradient is authorized, the gain
we obtain from the direct association between the critical
points and their neuron compensates the loss induced by
the naive binary search (i.e., without optimization using the
gradient [6]).

We give supplementary results against SOTA frame-
works as well as a more detailed analysis of our results on
the 3072-256-256-256-64-10 architecture, in Appendix F. In
conclusion, we can see that our method is able to extract
with high fidelity all of the architectures targeted by other
SOTA frameworks, and even outperforms them on the pre-
cision obtained on the extracted weights.

7.6. Related works

In this work, we only compare ourselves to the results
obtained with the cryptanalytic extraction frameworks pre-
sented in [4], [6], [17], [28] and in [5]. We argue that
the difference in threat model and attacker’s goals for the
extraction is too high to make a relevant comparison with
other type of frameworks.

Side-channel extraction of DNNs using CEMA, as pre-
sented in [2], [14], naturally offers guaranties in term of
fidelity, but suffers from several limitations, as mentioned in
[19]. In particular, the extraction of the bias or the impact
of the ReLU function on the attack are still open problems,
which limit the practicability of these attacks. Similarly to
our framework, Zhang et al. also use side-channel attacks
to infer the state of the neurons and the confidence scores
to extract each layers [33]. However, due to their access to



the Intel Running Average Power Limit (RAPL) and to an
open device to perform their profiled side-channel attack,
they consider a very different threat model to ours.

Model extraction frameworks using fault injection have
been recently proposed [13], [27]. Both have proven suc-
cessful against a variety of architectures using the Rowham-
mer attack and laser fault injection, respectively. However,
the threat model considered in [13] is very close to the one in
[33] i.e., access to the logits and to an open device, making
the comparison with our work biased. Finally, the work in
[27] requires that the attacker and the victim share the same
device, i.e. MLaaS context, and is only applicable on DRAM
platforms which corresponds to a very different threat model
from our own.

8. Conclusion

In this study, we propose a new framework combining
side-channel attacks and crytptanalytic extraction to target
fully and non-fully connected DNNs. We successfully ex-
tract complex architectures with high fidelity, emphasizing
on the serious threat that poses side-channel attacks on
the intellectual property (IP) of DNNs. In particular, the
lack of protection on the activation functions from a side-
channel context has allowed the extraction of the weights
of a shortened MobileNetv1. Such vulnerability could lead
to different exploitation in the future and could easily be
adapted to adversarial attacks for example. Therefore, it is
critical to integrate both software and hardware countermea-
sures against model extraction to protect the IP of DNNs.
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Appendix

Appendix A.
Approximation of the always-on and input-off
neurons

Extracted neuron Targeted neuron Unknown neuron

Approximation as a 

skip connection

Figure 5: Approximation of the special case neuron η as a
skip connection to the neuron λ.

In Figure 5 we provide a schematic representation of a
targeted always-on neuron being extracted in the next layer.
The neuron η is approximated as a weighted skip connection
to the next layer. It is then possible to extract its signature by
finding the signature of a neuron in the following layer. In
the case represented in this figure, we use the neuron λ in the
next layer to achieve this. As mentioned in subsection 5.2,
using this method, the signature of λ includes also the
signature of η as described in Equation 5. This trick takes
advantages of the ReLU function to approximate it to the
identity function for positive values.

2∑
i=1

γiAi + γ3 ×
4∑

j=1

θjXj + γ3βη + βλ = 0,X ∈ R4

Appendix B.
Description of the targeted architectures

An overall description of the targeted architecture based
on MobileNetv1 is given in Table 6 and Table 7. Then in
Table 8, we detail the architecture of our large MLP.

Appendix C.
Supplementary results on the side-channel at-
tack

In our experiment we use the k-means algorithm to
infer the state of the neurons in our search for the critical
points. We achieve an average success rate of 85.9%, using
only one side-channel trace for each acquisition. While this
result validates our methodology, the high number of queries



TABLE 6: Description of the architecture of the shortened
MobileNetv1.

Layers Output size Parameters
Conv2D 3 × 3, padding,
stride=2

1× 12× 16× 16 324

BatchNorm2D 1× 12× 16× 16 24
ReLU 1× 12× 16× 16 0
Depth-wise separable convo-
lution

1× 8× 16× 16 244

Depth-wise separable convo-
lution

1× 16× 8× 8 248

Depth-wise separable convo-
lution

1× 16× 8× 8 464

Depth-wise separable convo-
lution

1× 32× 4× 4 752

Depth-wise separable convo-
lution

1× 64× 4× 4 2528

Adaptive Average Pooling 1× 64× 1× 1 0
Dense 1× 10 650

TABLE 7: Description of the depth-wise separable convo-
lution.

Layers Kernel
size

Padding Grouped con-
volution

Bias

Conv2D 3× 3 1 ✓ ✗
BatchNorm2D
ReLu
Conv2D Nc×1×1 1 ✗ ✗
BatchNorm2D
ReLu

Nc corresponds to the number of output channel of the previous layer.

needed to perform the attack (see Table 3) imposes a higher
success rate (close to 100 %) to extract complex DNNs. A
basic method to increase the success rate, would be to repeat
the acquisition of the EM trace and use a majority vote to
infer the state.

In Figure 6, we plot the success rate obtained with a
majority vote versus the number of times the side-channel
acquisition is repeated for different initial success rate (i.e.,
success rate in one trace). With a 85.9% initial success rate,
we achieve a true success rate over 99% with 7 traces and
over 99.9% with 13 traces. In practice, it is possible to
increase the number of side-channel traces to come close to

Figure 6: Success rate vs number of side-channel traces.

TABLE 8: Description of the architecture of the large MLP.

Layers Output size Parameters
Flatten 1× 3072 0
Dense + ReLU 1× 512 1, 573, 376
Dense + ReLU 1× 256 131, 328
Dense + ReLU 1× 64 16, 448
Dense + ReLU 1× 10 650

Figure 7: Success rate vs number of side-channel traces
(zoom of Figure 6).

a 100% success rate with an arbitrary precision with a rate of
convergence bounded by the Chernoff Bound. Furthermore,
the global success rate is highly impacted by the success rate
in one trace, which is highly dependent on the implemen-
tation and the experimental set-up. This success rate could
greatly be improved in an ideal scenario where the chip
would be unpackaged, which was not the case in our set-
up. Finally, the choice of the algorithm for the classification
of the side-channel trace has an important impact on the
final result. For all of the previously mentioned reasons, we
choose to focus our work on the methodological aspects
and give our results considering an ideal attack. We leave
the improvement of the side-channel attacks for future work.

Appendix D.
Supplementary results for the MLP and the
MobileNetv1 architecture.

In the MobileNetv1 model, the 10 successive layers
after the first convolution layer (denoted L1-L10 in Table 4)
correspond to the depth-wise separable convolutions. These
blocks are composed of two convolutions, one depth-wise
with a kernel of 1 × 3 × 3 weights and, a point-wise
convolution composed of c × 1 × 1 weights, with c the
number of channels. The alternation between these two types
of convolution is clearly visible in Table 4, the point-wise
convolution corresponds to the even layers and the depth-
wise to the odd layers. The extraction for the depth-wise
convolution is always easier than for the point-wise. This is
likely due to the number of parameters being lower for the
depth-wise. However, it is not the only factor, as for layer
L4, the number of channels is only of 8. And, as such, the



Figure 8: Results on the MLP architecture presented in
Table 8.

Figure 9: Results on the shortened MobileNetv1 architec-
ture.

number of parameters is lower than for the corresponding
depth-wise. But the precision of the extraction remains lower
for the point-wise compared to the depth-wise. We make the
hypothesis that the higher error comes from the different
operations induced in the point-wise convolution in com-
parison with depth-wise convolution. In particular, for the
point-wise convolution, the error could be higher because
its operations mix the channels, whereas the depth-wise
convolution performs its operations on a single channel. This
behaviour is not present in the results of the extraction of
the MLP.

Appendix E.
Impact of the special cases neurons

To visualize the impact of the special cases of neurons,
we present their share in the total number of requests and
neurons for the 3072-256-256-256-64-10 MLP in Figure 10.

In Figure 10, we display the percentage of requests
dedicated to the special cases neurons by layer as well
as the percentage of these neurons by layer. As expected,
the number of special neurons augments with the depth of

Figure 10: Comparison of the percentage of request dedi-
cated to normal versus special cases neurons.

TABLE 9: Average number of requests by layer for normal
and special cases neurons.

Neuron type Layer 1 Layer 2 Layer 3 Layer 4
Special 32, 919.8 53, 158.8 224, 354.0 416, 799.0
Normal 19, 051.2 18, 885.1 20, 634.9 51, 136.7

the layer. This observation is confirmed when looking at
the average number of requests to extract one special case
neuron and one normal neuron for each layer (see Table 9).
Among those special cases neurons, most of them can be
defined as input-off. Due to the nullification of some portions
of the input space by ReLU functions, obtaining a full rank
matrix for the system of equations is difficult which leads
to an increase of the number of requests. This issue is more
present in deeper layer due to nesting of the activation func-
tions which restricts the input space accessible to an attacker
in deeper layer. One global consequence of this nesting is
the increase in the average number of queries necessitated
for one neuron, independently of its type (normal or special
case) extraction. These results highlight the impact of the
special cases neurons on the number of requests to extract
a DNN even for a simple architecture (i.e. MLP).

Appendix F.
Supplementary results against SOTA frame-
works

To further validate our contribution, we compare the
results obtained with our method against the ones obtained
with other SOTA frameworks. However, since most of these
frameworks (except for the one included in [5], [9]) target
DNNs trained for regression tasks, the unrestricted access to
the output value of the DNN allows the attacker to compute
the gradient. Furthermore, all frameworks consider DNN
using 64-bit data, which allows for an accurate estimation of
the gradient. We decided to compare our framework in that
context, the overall methodology does not change, but access
to the continuous output value improves our extraction of
the last layer (see Section 7.4). Our results are presented in
Table 10.



TABLE 10: Simulation of our framework on DNN with 64-
bit data (supplementary results).

Architecture Parameters Approach Queries max|∆θ|L
784-32-1 25, 120 This work 220.6 2−43.5

[6] 219.2 2−30.2

[17] 218.2 2−1.7

10-10-10-1 210 This work 215.6 2−46.2

[6] 216.0 2−36.0

[28] 222.0 2−12.0

10-20-20-1 620 This work 215.6 2−46.5

[6] 217.1 2−37.0

80-40-20-1 4, 020 This work 218.3 2−44.2

[6] 218.5 2−39.7

We outperform all the other cryptanalytical frameworks
in the maximum distance between the estimated weights
and the real ones. Even in an ideal side-channel scenario
(see Section 7.3 and Appendix C), our attack requires a
higher number of queries for short and wide network than
other SOTA attacks. However, if we increase the depth of
the targeted network, we can see that the performance of
our attack improves compared to other frameworks. This
could result from an optimization described in [6], where the
gradient is used to localize directly the critical points without
binary search, in the case where only one neuron changes
sign. In this configuration, their search is greatly improved
compared to ours. The counterpart is that, since the gradient
does not provide an association between the critical points
and the neurons, the side-channel does. In order to be sure to
have enough critical points for each neuron, gradient-based
methods need to extract a higher number of critical points
than side-channel based methods do. This trade-off could
explain our performance and why the results obtained with
our framework are better in the case of deeper DNNs. To
facilitate future comparisons, we also include results on all
these architectures but using 32-bit data in Table 11.

TABLE 11: Results of our framework against targeted ar-
chitecture by SOTA frameworks using 32-bit data

Architecture Parameters Queries max|∆θ|L
784-32-1 25, 120 219.8 2−17.7

784-128-1 100, 480 221.7 2−17.4

10-10-10-1 210 213.0 2−18.2

10-20-20-1 620 214.5 2−17.8

40-20-10-10-1 1, 110 216.4 2−12.1

80-40-20-1 4, 020 219.1 2−14.8

We also include comparison with recent works by Chen
et al. [9] and Carlini et al. [5]. In both studies, the authors
demonstrate that the attacker could target DNNs in a hard-
label settings. We thus present the full results obtained with
our framework against the architectures targeted in these
papers in Table 12. We include only the deepest architecture
from [9], and we use the metrics associated with classifier
similarly to Table 3. In Table 3, the metric max|∆L

θ | com-
putes the maximum error between the estimated weights
and the real ones. However, as mentioned in Section 7.4,
the extraction of the last layer cannot be performed using
our framework, and we therefore use a learning based ap-

proach to extract the weights of this layer. In Figure 11 and
Figure 12, we consider this metrics over the whole network.
We can clearly see that, for the previous layers, we propose
a very low error on the weights or the activation values, and
even outperform SOTA frameworks on the error between the
estimated and the true weights. Once again, this highlights
the need for an alternative method for the extraction of the
last layer.

Figure 11: Results on the architecture presented in [9].

Figure 12: Success metrics over the whole network with our
framework.

We also outperform methods presented in [5], [9] in
terms of number of queries to the targeted DNN. In the hard-
label settings this was expected, since we use side-channel
to guide our binary search towards the critical point, whereas
the works presented in [5], [9] use the boundary decision,
which leaks fewer information on the state of the neurons.
We achieve high fidelity between the stolen DNN and the
targeted one against both architecture.

In [5], a perfect extraction of the previous layers is
assumed before extraction of the current layer. This is a very
strong assumption as it completely removes the propagation
of any error. For comparison, we perform the extraction of
the 3072-256-256-256-64-10 MLP under this assumption
and report the results in Figure 13. We exclude the last
layer in these results, as it not extracted using cryptanalyt-



TABLE 12: Comparison with state-of-the-art frameworks against classifiers.

Model Parameters Approach Queries Fidelity max|∆θ|L−1 max|∆θ|L

1024-2-2-1 2,059 [9] 222.49 100% - 2−20.38

This work 217.12 99.5% 2−42.5 23.45

3072-256-256-256-64-10 935,370 [5] - - - 2−18.0

This work 226.20 96.5% 2−16.1 23.22

Figure 13: Extraction of the architectures presented in [5]
without the propagation of errors and excluding the last
layer.

ical methods. Under this hypothesis, we can see that the
performance is not impacted by the depth of the DNN,
and the extraction proposed by of our framework offers
similar performance at each layer. This clearly underlines
the importance of minimizing the propagation error during
the extraction of DNNs.


	Introduction
	Background
	Notations
	Fidelity-based model extraction
	Cryptanalytic extraction methodology
	Side-channel attacks

	Limitations in fidelity-based extraction
	Fidelity-based extraction issues
	Threat model
	Fidelity-based extraction assisted by side-channel attacks

	Stage 1: Search of Critical Points
	Neuron's state identification using side-channel information
	Binary search of critical points

	Stage 2: Signature Extraction
	Generic method
	Special cases of neurons

	Stage 3: Sign Extraction
	Layer alignment
	Hypothesis selection

	Evaluation
	Attack Evaluation Metrics
	Experimental setup
	Side-channel vulnerability
	Evaluation of the framework against large architectures
	Evaluation of the framework against SOTA techniques
	Related works

	Conclusion
	References
	Appendix
	Appendix A: Approximation of the always-on and input-off neurons
	Appendix B: Description of the targeted architectures
	Appendix C: Supplementary results on the side-channel attack
	Appendix D: Supplementary results for the MLP and the MobileNetv1 architecture.
	Appendix E: Impact of the special cases neurons
	Appendix F: Supplementary results against SOTA frameworks

