
“There’s always another counter”: Detecting
Micro-architectural Attacks in a Probabilistically

Interleaved Malicious/Benign Setting

Upasana Mandal , Rupali Kalundia , Nimish Mishra , Shubhi Shukla ,
Sarani Bhattacharya , and Debdeep Mukhopadhyay

Indian Institute of Technology Kharagpur, India
{mandal.up98, rupalikalundia, nimish.mishra,

shubhishukla}@kgpian.iitkgp.ac.in, {sarani, debdeep}@cse.iitkgp.ac.in

Abstract. Modern micro-architectural attacks use a variety of build-
ing blocks chained to develop a final exploit. However, since in most
cases, the footprint of such attacks is not visible architecturally (like, in
the file-system), it becomes trickier to defend against these. In light of
this, several automated defence mechanisms use Hardware Performance
Counters (HPCs) detect when the micro-architectural elements are be-
ing misused for a potential attacks (like flush-reload, Spectre, Meltdown
etc.). In order to bypass such defences, recent works have proposed the
idea of “probabilistic interleaving”: the adversary interleaves the actual
attack code with benign code with very low frequency. Such a strategy
tips off the HPCs used for detection with a lot of unnecessary noise;
recent studies have shown that probabilistically interleaved attacks can
achieve an attack evasion rate of 100% (i.e. are virtually undetectable).
In this work, we contend this folklore. We develop a theoretical model of
interleaved attacks using lightweight statistical tools like Gaussian Mix-
ture Models and Dip Test for Unimodality and prove they are detectable
for the correct choices of HPCs. Furthermore, we also show possible de-
fence strategy against a stronger threat model than considered in liter-
ature: where the attacker interleaves multiple attacks instead of a single
attack. Empirically, to instantiate our detector, in contrast to prior de-
tection strategies, we choose LLMs for a number of reasons: (1) LLMs can
easily contextualize data from a larger set of HPCs than generic machine
learning techniques, and (2) with simple prompts, LLMs can quickly
switch between different statistical analysis methods. To this end, we de-
velop an LLM-based methodology to detect probabilistically interleaved
attacks. Our experiments establish that our improved methodology is
able to achieve 100% speculative attacks like Spectre v1/v2/v3, Melt-
down, and Spectre v2 (with improved gadgets that even evade recent
protections like Enhanced IBRS, IBPB conditional, and so on). This
makes our methodology suitable for detecting speculative attacks in a
non-profiled setting: where attack signatures might not be known in ad-
vance. All in all, we achieve a 100% attack detection rate, even with very
low interleave frequencies (i.e. 10−6).
Our detection principle and its instantiation through LLMs shows how
probabilistically interleaving attack code in benign execution is not a

https://orcid.org/0009-0006-0106-3638
https://orcid.org/0009-0002-2942-2891
https://orcid.org/0000-0002-8585-9425
https://orcid.org/0000-0003-0452-885X
https://orcid.org/0000-0002-4190-2671
https://orcid.org/0000-0002-6499-8346

2 Authors Suppressed Due to Excessive Length

perfect strategy, and more research is still needed into developing and
countering better attack evasion strategies.

Keywords: LLMs · Micro-architectural attacks · Interleaved attacks

1 Introduction

Research into malware hiding strategies [6] is mostly focused upon better ways
of evading the ever-evolving defence mechanisms. Such attacks/defences can be
thought of as architectural attacks: they leave traces observable at the archi-
tectural level (for instance, the file-system). However, micro-architectural at-
tacks [3,7,9,10,12,14,15,17,19,20,21,16,18,5] are trickier to detect since they do
not leave any observable architectural trace. Micro-architectural attacks are ca-
pable of leaking sensitive cryptographic materials, breaking software/hardware
isolation, and using bad speculation (pipeline flushes) to drastic ends. Such at-
tacks target aspects of the micro-architecture (like cache, execution ports, on-
core buffers, and so on), and thus require different methods of detection than
traditional malware.
Strategies of detection. All modern vendors like Intel/AMD ship their pro-
cessors with documented/undocumented counters (otherwise technically named
Hardware Performance Counters or HPCs) that measure different aspects of the
hardware. Since micro-architectural attacks exploit aspects of the hardware, a
long line of research [1,2,4,8,13] into detecting micro-architectural attacks has
focused on using HPCs. The core idea is to monitor HPCs and look for statistical
variations that might flag adversarial execution from benign. Such defences use a
variety of tests: template-based matching, anomaly detection, machine learning,
and so on, as their detection strategy.
HPC design and Issues with Detection. Hardware Performance Counters,
by design, are tied to the specific hardware unit they target. For a concrete exam-
ple, on Intel systems, INST_RETIRED.ANY counts the number of x86 instructions
retired (and is thus tuned to the instruction retirement unit in the backend ex-
ecution unit 1. Likewise, BR_INST_RETIRED.ALL_BRANCHES counts the number
of retired branch instructions (and is thus attuned to the branch predictor unit
in the frontend execution unit) 2. As such, HPCs do not conform to software
isolation boundaries maintained in userspace. In other words, HPCs keep count-
ing irrespective of the software executing atop the processor. This means that
attack detection strategies that use HPCs are vulnerable to noise due to con-
text switches from kernel scheduling, hyperthreading, and other events in the
hardware. HPC-based detection strategies [1,2,4,8,13] then leverage statistical
methods to factor out such noise.
Emergence of “Interleaved” Attacks: Exploiting this software-agnostic na-
ture of HPC design, the authors in [13] have proposed a new micro-architectural
1 https://perfmon-events.intel.com/
2 Similar HPC counterparts exist for other vendors as well, like AMD.

Title Suppressed Due to Excessive Length 3

attack strategy: interleave attack code, with low frequency, among executions of
benign code. On a high-level, such an interleaved attack strategy executes the
benign code for multiple iterations, and interleaves the attack in some iterations
(driven by a small probability threshold). Since the probability threshold of in-
terleaving is small (like 1 in million), this strategy tips off all existing defence
mechanisms [1,2,4,8,13], which mainly capture characteristics of the predominant
benign execution and miss characteristics of the otherwise sporadic attacker ex-
ecution. This leads us to the following question, which we deal in this work:

Can we develop a lightweight statistical analysis of interleaved attacks that still
allows detection through HPCs, which have no detection strategy in literature?

1.1 Our Contributions

We answer this question in the affirmative. This work contributions to a general
understanding of the statistical behaviour of interleaved attacks, as well as a
generic detection strategy. We also contribute a detection strategy against an
even stronger variant of the threat model considered by interleaved attacks. We
summarize our contributions thus:

1○ We propose a theoretical modeling of interleaved attacks using lightweight
statistical tools like Gaussian Mixture models and Dip Test for Unimodality.
We demonstrate that for carefully chosen measurements (i.e. HPCs), inter-
leaved attacks are still detectable.

2○ We demonstrate the detection of interleaved attacks claimed to be unde-
tectable by the prior art. In particular, we test against Spectre v1, Spectre
v3, and Meltdown. Furthermore, we also test for Spectre v2, in both the tra-
ditional setting as well as through advanced gadgets which evade detection
even by state-of-the-art Spectre v2 mitigations like Enhanced IBRS, IBPB
conditioning and so on.

3○ We analyze the HPC data collected during the execution of an inter-
leaved attack using a large language model (LLM) to perform the Dip test.
The LLM allows easy user-friendly detection by identifying multimodal dis-
tributions through the Dip Test for Unimodality, which helps reveal potential
interleaved attacks like Spectre v1 and other similar threats.

4○ We also consider a stronger threat model of interleaved attacks: instead
of a single attack, several different attacks are interleaved with benign ex-
ecution. We extend our model trivially to Multimodal Gaussian mixtures
and show that multiple attacks interleaved with benign execution are still
detectable by HPCs.

4 Authors Suppressed Due to Excessive Length

2 Background

2.1 Interleaved Attacks

The idea of interleaved attacks was first presented in [13]. The main objective
of the work is to systematically evaluate the effectiveness of HPC-based detec-
tion mechanisms against cache-based side-channel attacks. This analysis is done
across four dimensions: 1○ threat model, 2○ performance overhead, 3○ detec-
tion speed, and 4○ detection reproducibility. About 50 state-of-the-art defence
mechanisms are evaluated against these dimensions, and relevant comparisons
are drawn between them. Through this systematization, the authors consolidate
a commonality between different classes of defences wrt. the assumptions they
place on the adversary. Concretely, all defences expect the attacks to occur in
isolation for which HPC traces (with minor operational noise) can be collected.

From this understanding, the authors put forward a new threat model where
attacks are interleaved with benign executions with low frequency. As a concrete
example, consider the case of the Flush+Reload covert channel, which forms
an exfiltration channel for several other attacks. In a traditional Flush+Reload
attack, the adversary flushes a shared memory line from the cache, waits for
the victim to access the cache line, and then measures the time taken to reload
the data. This timing reveals whether the victim accessed the flushed cache line.
However, in [13] this Flush+Reload exfiltration activity is interleaved among sev-
eral iterations (like 10000 or 1000000) of the benign function. This low-frequency
execution reduces the footprint of the attack in the HPC data, making it appear
as though the system was executing typical benign tasks. In some sense, inter-
leaved attacks achieve temporal blending of the attack with benign execution: by
strategically placing the malicious execution alongside frequent benign execu-
tion, the attack produces no clear statistical deviation in data from HPCs such
as cache hits, cache misses, or branch mispredictions. A basic outline of such an
attack is given in Listing 1.1. The key idea is that by running the attack code
at a low frequency and interspersing it with frequent benign tasks, the result-
ing behavior looks just like normal, harmless execution. In contrast, traditional
methods like Flush+Reload create noticeable patterns in cache activity that can
be detected. However, when an attack is interleaved with normal operations, this
distinctive cache activity gets mixed with normal cache activity, making it much
harder for detection systems that rely on HPC data to identify the attack.

Briefly stating, existing detection mechanisms rely purely on large-scale sta-
tistical anomalies in HPC data, and thus are unable to detect interleaved attacks.
This is because such systems operate under the assumption that malicious ac-
tivity will always manifest as an obvious anomaly, but when the attack is subtle
and well-hidden, such as by blending with normal behavior, these systems fail
to perform effectively.

Title Suppressed Due to Excessive Length 5

1 void interleaved () {
2 benign ();
3 // this threshold is very small
4 if(sample_probability () < threshold)
5 attack ();
6 benign ();
7 }

Listing 1.1: A skeleton of interleaved attack from [13].

2.2 Dip Test of Unimodality

The Dip Test of Unimodality [11] is a statistical test that quantifies multi-
modality in a sample by measuring the statistical distance between the “actual”
distribution and the expected unimodal distribution. Concretely, the “actual”
distribution of a set of data points x = {x1, x2, · · · , xn}, formally called the
Empirical Distribution Function (EDF) or Fn(x), is given as:

Fn(xj) =
1

n
Σn

i=1I(xi) : j ∈ {x1, x2, x3, · · · , xn}

Where I is an indicator function that returns 1 iff xi ≤ xj and 0 otherwise.
Informally, Fn(· · ·) is a step function that adds 1

n mass for every point in x =
{x1, x2, · · · , xn}.

Likewise, the unimodal distribution FU is given such that for its domain D,

∃xm ∈ D :
d

dx
(FU (x)) ≥ 0 for x ≤ xm and

d

dx
(FU (x)) ≤ 0 for x ≥ xm

In other words, there exists a mode (i.e. xm) in the input domain of the
function such that the function is increasing for all x ≤ xm and decreasing for
all x ≥ xm.

Given this definition, the Dip Test of Unimodality measures how far Fn(x)
deviates from FU . Concretely, the Dip statistic is the following computation:

Dstat =| Fn(x)−FU (x) |∞ : x ∈ sup

Informally, Dstat is then the infinite norm of the differences of the EDF and
the best fitting unimodal distribution over the support of these functions. It is
straightforward to see that since we compute the infinite norm, considering the
kernel of these functions is wasteful computation, hence the statistic restricts to
computing over the support supp of Fn.

6 Authors Suppressed Due to Excessive Length

3 Statistical Modeling of Interleaved Attacks

It is useful to first devise a statistical model of interleaved attacks in their most
generic form: without any assumptions on both the attack itself as well as the
benign program within which the attack is interleaved. As intended by [13], this
approach allows us to view interleaved attacks as a new mechanism of hiding
any micro-architectural attack. Such an attack-agnostic modeling of interleaved
attacks then informs a generic detection mechanism independent of considera-
tions of the actual use case and thereby extends beyond case studies presented
in this work to any micro-architectural attack in general.

3.1 Viewing HPCs as Gaussian Samplers

The first intermediary requirement is to understand what kind of distribution
do HPCs adopt. By design, all Hardware Performance Counters (HPCs) are
monotonic in nature and increment at the frequency of the occurrence of events
they count. For example, on Intel’s systems 3, INST_RETIRED.ANY counts the
number of x86 instructions retired and will increment at the frequency with
which the backend’s instruction retirement unit retires instructions. Likewise,
BR_INST_RETIRED.ALL_BRANCHES counts the number of retired branch instruc-
tions and will increment at the frequency with which the frontend’s branch
predictor unit retires branches.

Now the frequency of HPC update may or may not be affected by certain
assumptions on the software executing on the processor. As a concrete example,
ASSISTS.HARDWARE 4 counts the number of hardware assists during speculation.
It is evident that not all software will thereby lead to increments in this HPC; one
has to write software with corner cases [5] that has opportunities for hardware
assists in order to increment this HPC. Informally, we call such HPCs as requiring
assumptions on the software: they require special conditions in software to trigger
increments. On the other hand, HPCs like INST_RETIRED.ANY are more relaxed
in assumptions since all software triggers the instruction retirement unit in the
backend execution unit. Informally stating, no matter what software executes,
INST_RETIRED.ANY will always increment. Using this, we state an observation.

Observation 1 (Modeling HPCs as Gaussian Samplers) . HPCs that do
not enforce assumptions on software can be reliably modeled as Gaussian sam-
plers. Because variations in their increments are not from assumptions in the
software executing, but from infrequent events like non-maskable interrupts, non-
voluntary context switches, priority scheduling from the kernel, and so on.

Some concrete examples 5 of such HPCs: INST_RETIRED.ANY, BR_INST_RETIRED.
ALL_BRANCHES, and LONGEST_LAT_CACHE.REFERENCE. Note that BR_INST_RETIRED.
3 This with without loss of generality. A similar argument holds on other systems (like

AMD) as well.
4 https://perfmon-events.intel.com/ ; Alder Lake and Sapphire Rapids
5 https://perfmon-events.intel.com/

Title Suppressed Due to Excessive Length 7

ALL_BRANCHES (counts the number of branches) and LONGEST_LAT_CACHE.REFERENCE
(counts the number of memory accesses) do impose some assumptions on soft-
ware in order to increment: 1○ BR_INST_RETIRED.ALL_BRANCHES requires call
and jmp instructions, while 2○ LONGEST_LAT_CACHE.REFERENCE requires load/
store instructions. We also consider them in our preliminary analysis since
loops, function calls, memory operations, if-else branches, etc. are fairly common
programming constructs. However, note that INST_RETIRED.ANY increments for
any instruction, and therefore imposes absolutely no assumptions on the soft-
ware. Thereby, in deployment of our eventual detection mechanism, we only
consider INST_RETIRED.ANY.

3.2 Viewing Interleaved attacks as Bimodal Gaussian Samplers

We borrow the skeleton of an interleaved attack from [13]. Refer Listing 1.2: in
a benign function, with very constrained probability, some micro-architectural
attack is executed. For now, we place no assumptions on attack() or benign().
With this understanding, we combine our observation of Sec. 3.1 to state another
observation:

1 void interleaved () {
2 benign ();
3 // this threshold is very small
4 if(sample_probability () < threshold)
5 attack ();
6 benign ();
7 }

Listing 1.2: A skeleton of interleaved attack from [13].

Observation 2 (Modeling Interleaved attacks as Bimodal Gaussians)
. Considering measurements from HPCs that do not enforce assumptions on
software, interleaved attacks can be reliably modeled as samples from Bimodal
Gaussian mixtures.

Briefly, for the same HPC, the execution in Listing 1.2 either executes the
function sequence (benign() + benign()) or the function sequence (benign()
+ attack() + benign()). Since the HPCs considered do not enforce any as-
sumptions on these functions, measurements from such HPCs are essentially
Gaussian samples. Finally, since there are two execution paths, the overall dis-
tribution of Listing 1.1 shall be a mixture of two Gaussian (i.e. a Bimodal Gaus-
sian), written as p(x):

p(x) = w1 .N (x;µ1, σ1) + w2 .N (x;µ2, σ2)

Where N (x;µ1, σ1) corresponds to the execution path (benign() + benign()),
and N (x;µ2, σ2) corresponds to the execution path (benign() + attack() +
benign()). Also note that since threshold is small, w2 << 1. Finally, w1+w2 =
1 since either of the two execution paths will definitely execute in each run of
interleaved().

8 Authors Suppressed Due to Excessive Length

3.3 Motivating Example of an Interleaved Attack

Consider a concrete instantiation of Listing 1.2 as an actual attack as in Algo. 1.
Concretely, in Algo. 1, the execution pattern of the interleaved attack comprises
a Flush+Reload covert channel as the malicious code and a matrix-matrix mul-
tiplication operation as the benign execution. The interleaved attack is governed
by a threshold mechanism, where the threshold dictates whether only the benign
code or both the benign and malicious code are executed concurrently. Initially,
the threshold is set to 10000, with num_of_samples configured as 5×threshold
and num_of_traces set to 100000. Under this configuration, the malicious code
is executed at an interval of 1

10000 , while the benign code dominates execution
during the remaining iterations.

From the discussion in Sec. 3.1, for preliminary analysis, we consider
BR_INST_RETIRED.ALL_BRANCHES, INST_RETIRED.ANY, and LONGEST_LAT_CACHE.
REFERENCE6. In Fig. 1a, Fig. 1b, and Fig. 1c, we give concrete distributions of
these HPCs for Algo. 1 (but without attack(), i.e. no interleaving). It is clear
how these HPCs follow a Gaussian distribution.

Should we enable attack() (i.e. enable interleaving), the concrete distribu-
tions of BR_INST_RETIRED.ALL_BRANCHES, INST_RETIRED.ANY, LONGEST_LAT_CACHE
.REFERENCE are as captured in Fig. 2a, Fig. 2b, and Fig. 2c. Note how the red
curves in the figures have a short second peak, denoting the occurrence of inter-
leaved attacks 7, signifying the low threshold with which attack() is interleaved
in benign() execution.

Algorithm 1 Interleaved Attack Example
1: procedure attack_code
2: flush_reload();
3: procedure benign
4: matmul();
5: procedure main
6: for outer = 1 to num_of_traces do
7: for inner = 1 to num_of_samples do
8: if inner % threshold = 0 then
9: attack();

10: benign()

6 Actual deployment of the detection mechanism is only using INST_RETIRED.ANY, for
reasons detailed in Sec. 3.1

7 The bimodal nature of interleaved() is software-agnostic because of the choice of
HPCs, that do not enforce any assumptions on software. As such, this phenomenon
is true when benign() executes SPEC2017, which is the actual benign() implemen-
tation in [13]. Refer Sec. 5 for details on runs through SPEC2017.

Title Suppressed Due to Excessive Length 9

0 200 400 600 800 1000
Branch Misses

0

500

1000

1500

2000

2500

3000

3500

4000

D
en

si
ty

Benign execution

(a) BR_INST_RETIRED.ALL_BRANCHES

250 260 270 280 290 300 310 320
Instructions Retired +4.194509e9

0

2500

5000

7500

10000

12500

15000

17500

20000

D
en

si
ty

Benign execution

(b) INST_RETIRED.ANY

1.314 1.315 1.316 1.317 1.318 1.319
L1d Cache Misses 1e7

0

2500

5000

7500

10000

12500

15000

17500

D
en

si
ty

Benign execution

(c) LONGEST_LAT_CACHE.REFERENCE

Fig. 1: Distribution of different HPCs with respect to Algo. 1, but without
attack().

3.4 Fitting Gaussian Mixture Model with BIC/AIC criteria

Finally, to formally establish the bimodality of interleaved attacks, we fit a Gaus-
sian Mixture Model (GMM) with multiple modalities and leverage the Bayesian
Information Criterion (BIC) and Akaike Information Criterion (AIC) to deter-
mine the optimal number of Gaussian components. This approach facilitates
the identification of distinct latent distributions within the HPC readings, cor-
responding to various operational modes, including both normal execution and
attack-induced anomalies. The GMM approach allows us to rigorously model
the heterogeneity in the HPC readings and conclusively compute the modality
of the distribution enforced by interleaved attacks.

Tab. 1 captures the BIC and AIC for when GMM is fitted to the readings
collected for INST_RETIRED.ANY while the interleaved attack is operational (i.e.
the red curve in Fig. 2b). Concretely, the GMM models the data as a mixture
of k Gaussian distributions. The likelihood of data x under a GMM with k
components is:

10 Authors Suppressed Due to Excessive Length

0 200 400 600 800 1000
Branch Misses

0

500

1000

1500

2000

2500

3000

3500

4000

D
en

si
ty

Benign execution
Interleaved benign/malicious execution

(a) BR_INST_RETIRED.ALL_BRANCHES

200 300 400 500 600 700
Instructions Retired +4.194509e9

0

2500

5000

7500

10000

12500

15000

17500

20000

D
en

si
ty

Benign execution
Interleaved benign/malicious execution (bimodal)

(b) INST_RETIRED.ANY

1.314 1.315 1.316 1.317 1.318 1.319
L1d Cache Misses 1e7

0

2500

5000

7500

10000

12500

15000

17500

D
en

si
ty

Benign execution
Interleaved benign/malicious execution (bimodal)

(c) LONGEST_LAT_CACHE.REFERENCE

Fig. 2: Distribution of different HPCs with respect to a sample program
(matrix-matrix multiplication) and interleaved attack code (Flush+Reload

covert channel) with interleaving probability 1
10000 .

p(x) =

k∑
i=1

πiN (x|µi, σi) (1)

where πi are the mixing coefficients8, µi is the mean of the i-th Gaus-
sian, and σi is the standard deviation of the i-th Gaussian. We fit GMMs
with k ∈ {1, 2, 3, 4, 5} to parameterize the underlying distribution enforced by
INST_RETIRED.ANY. Final model selection is based on BIC and AIC, which bal-
ance model fit and the complexity (i.e. number of modes in the multi-modal
Gaussian fitted):

AIC = 2p− 2 ln(L), BIC = p ln(n)− 2 ln(L) (2)

Where p is the number of model parameters, L the log-likelihood, and n the
number of data points. Lower BIC/AIC values indicate accurate modeling. In
8 The probability that x belongs to the i-th Gaussian in p.

Title Suppressed Due to Excessive Length 11

case of Tab. 1, notice how for two components (i.e. when GMM fits a bimodal to
the red curve in Fig. 2b), we observe the optimal BIC and AIC, thereby further
establishing the bimodality of interleaved attacks. The primary peak corresponds
to normal behavior, while the secondary peak represents deviations caused by
interleaved attacks. A similar result of bimodality was also observed while trying
other HPCs in a similar setting of interleaved attacks.

Components in GMM BIC AIC
1 901113.744073 901094.718222
2 404847.192319 404799.627691
3 405288.252292 405212.148888
4 405601.373257 405496.731076
5 405717.546513 405584.365557

Table 1: BIC and AIC for INST_RETIRED.ANY while interleaved attack is
operational. red marking denotes the optimal/minimum BIC and AIC.

4 Generic Detection Strategy for Interleaved Attacks

Sec. 3 conclusively establishes interleaved attacks to follow a bimodal gaussian
distribution, without any assumptions on attack() or benign() (cf. Listing 1.2).
It is straightforward to then infer that a suitable statistical test for unimodality
is sufficient to detect such attacks. In this work, we rely upon the Dip test for
unimodality9. Therefore, to determine whether the system is in an attack-free
state or actively under attack, we employ the Dip Test as a first step to validate
the dataset’s modality, followed by a detailed analysis of the relative prominence
of these peaks.

4.1 Dip Test Confirmation of Bimodality

The Dip Test of Unimodality [11] is a non-parametric hypothesis test used to
assess whether a dataset deviates from unimodality by measuring the maximum
deviation of the empirical distribution function (EDF) from the closest unimodal
distribution. In this context, the Dip Test allows us to statistically confirm the
presence of two distinct modes in the dataset, representing normal (benign) and
attack-induced behaviors. The null hypothesis H0 of the Dip Test is: the dataset
follows a unimodal distribution, while the alternative hypothesis H1 posits that
the data is of modality > 1.

Upon applying the Dip Test to the dataset, the rejection of the null hypothesis
H0 provides evidence that the distribution is indeed bimodal. This confirms that
9 Note that the widely used Welch’s t-test is unsuitable here, as it assumes unimodal

normality in source distribution.

12 Authors Suppressed Due to Excessive Length

the dataset contains two distinct Gaussian components—one associated with
benign system behavior and the other with interleaved attack patterns.

4.2 Interpreting the Results: Determining Attack Presence

While the Dip Test confirms the dataset’s bimodality, it does not directly indicate
the current operational state— whether the system is functioning normally or is
under attack. To address this, we proceed by analyzing the relative distribution
of data points between the two identified peaks (corresponding to the benign
and attack modes). The following criteria are employed:

benign() execution. The system can be considered to be in a normal (attack-
free) state if the majority of data points are concentrated around the primary
peak, which corresponds to normal system behavior. In this case, the contri-
bution of the secondary peak, representing attack activity, is negligible or non-
existent. Mathematically, this can be expressed by evaluating the probability
density under the primary Gaussian component. If the proportion of data points
assigned to the primary peak exceeds a predefined threshold θ, the system is
classified as attack-free:

P (primary peak) > θ

where θ is a high confidence threshold, typically set around 95%, to ensure
robust detection of normal behavior.

benign() + attack() execution. Conversely, an ongoing attack is indicated
if a non-trivial portion of data points lies within the secondary peak, suggesting
frequent deviations from the normal operational mode. The magnitude of the
secondary peak, characterized by its mixing coefficient in the Gaussian Mixture
Model (GMM), becomes a key metric for identifying an attack. Specifically,
we monitor the ratio between the mixing coefficients π2 of the secondary peak
(attack behavior) and π1 of the primary peak (normal behavior):

π2

π1
> δ

where δ is a predefined threshold (0.05 in our experiments) that reflects the level
of sensitivity to anomalies. If the mixing coefficient ratio exceeds this threshold,
it indicates that the system is under attack, as the secondary peak is no longer
merely an outlier but has become significant in relation to the primary peak.

Title Suppressed Due to Excessive Length 13

We summarize the takeaways from Sec. 3 and Sec. 4 below:

1. HPCs like INST_RETIRED.ANY do not enforce any assumption on the
software, and thus are closely modeled by unimodal Gaussians, with op-
erational noise.

2. Interleaved attacks take one of two possible paths: benign() or
benign() + attack(). Thereby, when interleaved attacks are sampled
through INST_RETIRED.ANY, we observe two distinct modes, i.e. a bi-
modal Gaussian. The peak corresponding to benign() + attack() is
of much shorter since benign() + attack() executes with very less
probability.

3. Since the difference between benign() and benign() + attack() is the
modality of the Gaussian, statistical tests for unimodality suffice to de-
tect when benign() + attack() executes, irrespective of the frequency
of execution.

5 Case Studies

In this section, we demonstrate the detection of various attack types concealed
within benign code, collectively forming an interleaved attack. All experiments
were conducted on Intel systems, with specifications detailed in Table 2. In newer
generation Intel systems, speculative execution attacks like Spectre v1, Spectre
v2, Spectre v3, and Meltdown are mitigated. For our experiments, we disabled
all such mitigations, wherever needed.

Fig. 3 summarizes the end-to-end detection framework. Unlike Sec. 3, the
benign() execution throughout this section is gcc_r from SPEC2017 (as used
in [13] as well). Finally, it is clear from Sec.3 and Sec. 4 that the detection strategy
follows trivially from modeling the statistical nature of interleaved attacks, and
using the correct test to detect. However, throughout this section, we choose to
instantiate the detector through LLMs, for a number of reasons. First, LLMs
abstract away the working details of the detection and allow users to interact
with it in natural language; this allows for: 1○ an almost non-existent learning
curve to use our detector in deployment. Secondly, LLMs also abstract away
contextualization of data from multiple sources (i.e. HPCs); this allows 2○ the
flexibility to add more HPC sources to the detection methodology than what we
currently demonstrate. Finally, again with simple prompts in natural language,
users can easily switch between statistical tests; this allows for 3○ flexibility
to add other statistical tests to our detector in addition to the Dip Test for
Unimodality to cover other use-cases outside the scope of this work10.

10 For example, a real deployment of detection would like to detect both state-of-the-art
legacy cache side-channel attacks, as well as interleaved attacks. Thus such detectors
would need to switch between 1○ statistical tests, 2○ data sources (HPCs), 3○ detec-

14 Authors Suppressed Due to Excessive Length

Generation Model Name Code Name
13th Generation Intel(R) Core(M) 17-13700 Raptor Lake
12th Generation Intel(R) Core(M) 15-12500 Alder Lake
8th Generation Intel(R) Core(TM) 17-8700 CPU @ 3.20GHz Coffee Lake

Table 2: Processor details for systems on interleaved attacks are performed

Interleaved Attack

Benign Code

HPC Dataset LLMUser Dip Test Code

Fig. 3: Detection Strategy for Interleaved Attacks leveraging LLM

5.1 Spectre v1

In Algorithm 1, we initially employed a basic matrix multiplication operation as
the benign workload, alongside a simple Flush+Reload attack as the malicious
component. This served as the foundation for developing a generalized attack
detection methodology. Expanding on this, we now extend the framework to
cover a broader range of attack types. For this, we use the gcc_r benchmark from
the SPEC CPU2017 suite as the benign code, which reflects a more realistic and
complex execution environment, as discussed in Kosasih et al.[13]. In contrast,
the malicious workload consists of a Spectre v1 attack, configured to execute
with a very low probability to ensure it remains hidden within the legitimate
activity of the benign program. In spectre v1 attack, the attacker manipulates
the CPU’s branch predictor, causing it to incorrectly predict the direction of
a branch. This leads the CPU to execute instructions speculatively that would
not normally be executed according to the correct program logic. As a result,
the attacker can access sensitive data stored in the program’s memory. During

tion intervals, and 4○ other parameters to effectively operate. While such a combined
detector is essentially programmable in a high-level programming language, using
LLMs allows abstracting out much inner details, allowing for an easier operational
interface for the end-user.

Title Suppressed Due to Excessive Length 15

execution of the interleaved attack, we collect hardware performance counter
(HPC) values to capture the system’s runtime behavior.

As detailed in Section 4, the captured HPC dataset is subsequently input into
a large language model (LLM), which is tasked with performing the Dip test. The
Dip test serves as a crucial tool for detecting multimodal distributions within the
data, which are indicative of interleaved attacks, such as Spectre v1. Leveraging
the LLM for conducting the Dip test enhances the detection process by utilizing
its advanced pattern recognition capabilities, which may outperform traditional
statistical approaches in identifying subtle anomalies. By running the Dip test
on the HPC dataset, we can ascertain whether interleaved malicious activity
is occurring, thus providing a robust mechanism for detecting stealthy attacks
embedded within legitimate workloads.

User: Hi! Can you kindly perform a Dip test on the provided HPC dataset file to
check whether my system is currently undergoing any interleaved attacks?
LLM: Sure!! Here is the code for the dip test you may execute it on our system to
check for interleaved attacks, executing on your system.
import pandas as pd
from diptest import diptest
file_path = “file_path.txt”
data = pd.read_csv(file_path, header=None)
data_values = data[0].values
dip_stat, p_value = diptest(data_values)
print(“Dip Test statistic:”, dip_stat, “p-value:”, p_value)
if p_value < 0.05:
print(“Yes!, Interleaved attack is executing.”)

else:
print(“Your system is safe”)

After running this, the dip test will tell you if there are multiple peaks in your
dataset. A p-value below 0.05 would refer that your system is undergoing an inter-
leaved attack.

ChatBox 1: Spectre v1 Interleaved Attack detection

Moreover, the integration of an LLM in the detection process not only adds
a layer of sophistication in interpreting multimodal data distributions but also
strengthens the overall detection framework. This hybrid approach, combining
statistical testing with machine learning techniques, ensures more accurate and
efficient detection of low-probability malicious executions such as Spectre v1,
which are designed to evade conventional detection mechanisms.

5.2 Spectre v2

In the preceding case study 5.1, we demonstrated the detection of an interleaved
attack where the malicious activity was attributed to Spectre v1. In this section,

16 Authors Suppressed Due to Excessive Length

we extend our analysis by considering Spectre v2 as the malicious component
within the algorithm 1, while the benign workload remains unchanged, specif-
ically the gcc_r benchmark. In spectre v2 the attacker targets a specific code
sequence, or ’gadget,’ in the victim’s memory by exploiting the Branch Tar-
get Buffer (BTB). By mis-training the BTB to predict the wrong target for an
indirect branch, the attacker redirects speculative execution to the gadget’s ad-
dress. While the CPU corrects the mis-prediction, changes to the cache persist,
allowing sensitive data extraction via cache side-channel attacks. The attack is
successful by aligning virtual addresses between the attacker and victim memory,
even without executable code at the attacker’s gadget address

As with 5.1, we collect HPC events, particularly BR_INST_RETIRED.ALL_BRANCHES
and INST_RETIRED.ANY, during the execution of the interleaved attack.

The collected HPC event data is processed through an LLM, which outputs
a corresponding Dip test code. This code is executed on our system to assess
whether the interleaved attack is successfully mounted.

5.3 Spectre v2 with advanced gadgets

Spectre v2 revealed critical weaknesses in modern CPU architectures, exploiting
branch target injection to force speculative execution down unintended paths,
resulting in data leakage through side channels. Although hardware and soft-
ware mitigations like IBRS and Retpoline have been introduced, attackers have
developed advanced gadgets to overcome these defenses and exploit speculative
execution more effectively. One prominent class of these advanced techniques in-
cludes dispatch gadgets, which allow attackers to gain greater control over CPU
registers and execution flow. Key types of dispatch gadgets include:

Dispatch-to-Call attackers redirect control to unexpected but legitimate
code segments, manipulating CPU registers through intermediary steps.

Dispatch-to-Any allows jumps to arbitrary locations when Indirect Branch
Tracking (IBT) is disabled, expanding the attack surface.

Dispatch-to-Dispatcher multiple dispatchers are chained, allowing attack-
ers to orchestrate more complex speculative execution paths.

So we have replaced the malicious code present in Algo. 1, one of these
three gadgets at a time, and measured the HPC events. Following a similar
process shown in 5.1, we get the Dip test code, with which we can check for
the interleaved attack getting mounted on the system or not. With this too, we
achieve a 100% detection rate.

5.4 Spectre v3

Spectre v3 is a variant of Spectre family of attacks that rely upon Branch History
Injection. Concretely, the attack poisons the branch predictor by maliciously

Title Suppressed Due to Excessive Length 17

injected branches, which forces the processor (under speculation) to mis-issue
incorrect branches. As with previous case studies, we use INST_RETIRED.ANY to
detect Spectre v3, and succeed with a 100% detection rate.

5.5 Meltdown

Finally, we also test our detection methodology with Meltdown which follows a
completely different attack strategy than Spectre v1 and its later variants. Pre-
cisely, in face of a faulted load, data belonging to the victim address space gets
incorrectly forwarded to the adversarial address space under speculation. The
adversary then uses a covert channel (like Flush+Reload) to encode such tran-
siently forwarded data into the cache. The predominant reason for Meltdown is
aggressive speculation in on-core buffers, which do not respect software isolation
boundaries.

Our detection methodology, along with the choice of HPC INST_RETIRED.ANY,
is generic enough to warrant no additional change when we shift from Spectre to
Meltdown. In this case as well, when Meltdown executes, a bimodal distribution
is observed, that is captured by the Dip Test of Unimodality. This is irrespec-
tive of the frequency of interleaving Meltdown with gcc_r. In this case too, we
achieve 100% detection rate.

6 Statistical Modeling of Interleaved Attacks with > 1
multiplicity

The interleaved attack strategy from [13] considers a single attack interleaved
in benign execution (cf. Listing 1.1). Here, we consider an even stronger threat
model: the adversary can interleave N > 1 attack vectors within the same be-
nign code. Concretely, such interleaved attacks with > 1 multiplicity can be
considered as what Listing 1.3 depicts.

1 void interleaved () {
2 benign ();
3 // this threshold is very small
4 if(sample_probability () < threshold){
5 attack = pick_one(attack1 , attack2 , ..., attackN)
6 attack ();
7 }
8 benign ();
9 }

Listing 1.3: A skeleton of interleaved attack from [13].

Borrowing our discussion from Sec. 3, we can statistically model such an
attack vector as a Multimodal Gaussian of form:

p(x) = wb .N (x;µb, σb)+w1 .N (x;µ1, σ1)+w2 .N (x;µ2, σ2)+· · ·+wN .N (x;µN , σN)

18 Authors Suppressed Due to Excessive Length

Where wb .N (x;µb, σb) denotes the benign execution (benign() + benign())
and wi .N (x;µi, σi); ∀i ∈ {1, · · · , N} denotes the execution (benign() + attacki
+ benign()). We recall that the Dip test for Unimodality is able to detect mul-
timodal distributions as well. As with Sec. 4.2, the following criteria is applied:

benign() execution. As before, the system is in a normal state if the majority
of data points are concentrated around the primary peak. As before, this is
mathematically represented as:

P (primary peak) > θ

benign() + attacki() execution. In this case, unlike before, we now have the
ratio parameterized by i, to denote the i-th attack executing, such as:

πi

π1
> δ

If the ratio of mixing coefficients exceeds this threshold (0.05 in our experi-
ments), it indicates that the system is under attack, as the secondary peak has
become significant in relation to the primary peak.

7 Conclusion

In this work, we introduce a novel detection methodology for micro-architectural
attacks in a probabilistically interleaved malicious/benign execution environ-
ment. By leveraging lightweight statistical tools such as Gaussian Mixture Mod-
els (GMM) and the Dip test for Unimodality, we demonstrate the ability to
detect subtle deviations in hardware performance counter (HPC) data caused
by low-frequency interleaved attacks. The detection process is further stream-
lined by utilizing Large Language Models (LLMs) to automate the generation
of Dip test code, allowing users to efficiently identify multimodal distributions
indicative of interleaved attacks. Our experiments show a 100% detection rate
for attacks like Spectre v1/v2/v3 and Meltdown, even when interleaved with
benign processes at very low frequencies.

This work refutes the assumption that probabilistically interleaved attacks
are inherently undetectable by showcasing the effectiveness of lightweight statis-
tical analysis in identifying such threats. While the LLM in this context primarily
serves to provide automated Dip-test code, its integration facilitates quick and
accessible implementation of detection strategies without requiring deep exper-
tise in statistical analysis. Our findings highlight the importance of adaptable de-
tection techniques and the need for further research into both advanced evasion
tactics and more sophisticated countermeasures, ensuring continued resilience
against evolving micro-architectural attacks.

Title Suppressed Due to Excessive Length 19

Acknowledgment

The authors would like to thank the reviewers for their suggestions for improv-
ing the paper. They would also like to thank the Department of Science and
Technology (DST), Govt of India, IHUB NTIHAC Foundation, C3i Building,
Indian Institute of Technology Kanpur, and Centre on Hardware-Security En-
trepreneurship Research and Development, MeitY, Govt of India, for partially
funding this research.

References

1. Ahmad, B.A.: Detecting Spectre and Meltdown Attacks Using Hardware Perfor-
mance Counters and Machine Learning. Ph.D. thesis, PhD thesis. University of
the Punjab (2019)

2. Akram, A., Mushtaq, M., Bhatti, M.K., Lapotre, V., Gogniat, G.: Meet the sherlock
holmes’ of side channel leakage: A survey of cache sca detection techniques. IEEE
Access 8, 70836–70860 (2020)

3. Aldaya, A.C., Brumley, B.B., ul Hassan, S., García, C.P., Tuveri, N.: Port con-
tention for fun and profit. In: 2019 IEEE Symposium on Security and Privacy
(SP). pp. 870–887. IEEE (2019)

4. Aweke, Z.B., Yitbarek, S.F., Qiao, R., Das, R., Hicks, M., Oren, Y., Austin,
T.: Anvil: Software-based protection against next-generation rowhammer attacks.
ACM SIGPLAN Notices 51(4), 743–755 (2016)

5. Chakraborty, A., Mishra, N., Mukhopadhyay, D.: Shesha: Multi-head microar-
chitectural leakage discovery in new-generation intel processors. arXiv preprint
arXiv:2406.06034 (2024)

6. Eresheim, S., Luh, R., Schrittwieser, S.: The evolution of process hiding techniques
in malware-current threats and possible countermeasures. Journal of Information
Processing 25, 866–874 (2017)

7. Genkin, D., Poussier, R., Sim, R.Q., Yarom, Y., Zhao, Y.: Cache vs. key-
dependency: Side channeling an implementation of pilsung. IACR Transactions
on Cryptographic Hardware and Embedded Systems pp. 231–255 (2020)

8. Gonzalez-Gomez, J., Bauer, L., Henkel, J.: Cache-based side-channel attack miti-
gation for many-core distributed systems via dynamic task migration. IEEE Trans-
actions on Information Forensics and Security 18, 2440–2450 (2023)

9. Gullasch, D., Bangerter, E., Krenn, S.: Cache games–bringing access-based cache
attacks on aes to practice. In: 2011 IEEE Symposium on Security and Privacy. pp.
490–505. IEEE (2011)

10. Gulmezoglu, B., Zankl, A., Tol, M.C., Islam, S., Eisenbarth, T., Sunar, B.: Under-
mining user privacy on mobile devices using ai. In: Proceedings of the 2019 acm
asia conference on computer and communications security. pp. 214–227 (2019)

11. Hartigan, J.A., Hartigan, P.M.: The dip test of unimodality. The annals of Statistics
pp. 70–84 (1985)

12. Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg, M.,
Lipp, M., Mangard, S., Prescher, T., et al.: Spectre attacks: Exploiting speculative
execution. Communications of the ACM 63(7), 93–101 (2020)

13. Kosasih, W., Feng, Y., Chuengsatiansup, C., Yarom, Y., Zhu, Z.: Sok: Can we
really detect cache side-channel attacks by monitoring performance counters? In:
AsiaCCS (2024)

20 Authors Suppressed Due to Excessive Length

14. Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Horn, J., Mangard, S.,
Kocher, P., Genkin, D., Yarom, Y., et al.: Meltdown: Reading kernel memory from
user space. Communications of the ACM 63(6), 46–56 (2020)

15. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: 2015 IEEE symposium on security and privacy. pp. 605–
622. IEEE (2015)

16. Moghimi, D.: Downfall: Exploiting speculative data gathering. In: 32nd USENIX
Security Symposium (USENIX Security 23). pp. 7179–7193 (2023)

17. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the case
of aes. In: Topics in Cryptology–CT-RSA 2006: The Cryptographers’ Track at the
RSA Conference 2006, San Jose, CA, USA, February 13-17, 2005. Proceedings. pp.
1–20. Springer (2006)

18. Ragab, H., Barberis, E., Bos, H., Giuffrida, C.: Rage against the machine clear: A
systematic analysis of machine clears and their implications for transient execution
attacks. In: 30th USENIX Security Symposium (USENIX Security 21). pp. 1451–
1468 (2021)

19. Yarom, Y., Falkner, K.: {FLUSH+ RELOAD}: A high resolution, low noise, l3
cache {Side-Channel} attack. In: 23rd USENIX security symposium (USENIX se-
curity 14). pp. 719–732 (2014)

20. Yarom, Y., Genkin, D., Heninger, N.: Cachebleed: a timing attack on openssl
constant-time rsa. Journal of Cryptographic Engineering 7, 99–112 (2017)

21. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-vm side channels and
their use to extract private keys. In: Proceedings of the 2012 ACM conference on
Computer and communications security. pp. 305–316 (2012)

	``There's always another counter'': Detecting Micro-architectural Attacks in a Probabilistically Interleaved Malicious/Benign Setting

