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ABSTRACT
Efficiently verifying mathematical proofs and computations has
been a heavily researched topic within Computer Science. Partic-
ularly, even repetitive steps within a proof become much more
complex and inefficient to validate as proof sizes grow. To solve this
problem, we suggest viewing it through the lens of Incrementally
Verifiable Computation (IVC). However, many IVC methods, includ-
ing the state-of-the-art Nova recursive SNARKs, require proofs to
be linear and for each proof step to be identical. This paper proposes
Lova, a novel framework to verify mathematical proofs end-to-end
that solves these problems. Particularly, our approach achieves a few
novelties alongside the first-of-its-kind implementation of Nova: (i)
an innovative proof splicing mechanism to generate independent
proof sequences, (ii) a system of linear algorithms to verify a variety
of mathematical logic rules, and (iii) a novel multiplexing circuit
allowing non-homogeneous proof sequences to be verified together
in a single Nova proof. The resulting Lova pipeline has linear prover
time, constant verifying capability, dynamic/easy modification, and
optional zero-knowledge privacy to efficiently validate mathemati-
cal proofs. Code is available at https://github.com/noelkelias/lova.

KEYWORDS
Incrementally verifiable computation, mathematical proof verifica-
tion, Nova, SNARKs

1 INTRODUCTION
The efficient verification of proofs and computations has been a
long-term foundational problem within Computer Science. Proof
systems that efficiently verify computations in different contexts
have become key components in many new domains. For example,
with machine learning models it is absolutely essential to be able
to provide a proof of accurate training and verifiable inferencing
[21]. Using such a certificate promotes model transparency as users
can verify a model’s parameters and features instead of utilizing
its predictions through a black box. Additionally, in a Blockchain
context, the verification of proofs and computations can also be
used to authenticate different transactions while maintaining a
decentralized and anonymous network [13].

With the rise of Zero-Knowledge proofs [14], many efficient
solutions have been proposed to solve this problem. One of the
solutions commonly used are SNARKs (Succinct Non-interactive
Argument of Knowledge) [5]. In essence, SNARKs enable a “prover"
to succinctly prove a statement to a “verifier" in an efficient manner.
More specifically, SNARKs enable untrusted provers to be able to
demonstrate knowledge of some witness 𝜔 to the verifier. This

witness 𝜔 could be any statement that can be converted to a com-
putational trace. In addition, SNARKs not only offer succinct proofs
but also non-interactive and optionally zero-knowledge proofs.

These SNARKs can even be taken a step further and be utilized for
verifying the proofs of proofs. Thus a verification circuit of another
inner SNARK can be converted to be a witness 𝜔 for an outer
SNARK: recursive SNARKs [10]. By utilizing compatible SNARKs,
one can significantly increase the efficiency and memory costs of
such a proof generation.

So at an initial glace, SNARKs seem to solve the problem of
verifying mathematical proofs. However, the problem complex-
ity increases when such proofs become dynamic and are simply
repeated executions of the same function over and over again. Iter-
ative functions in these proofs might take the current state S and
produce some output based on that state as shown in Equation 1.

𝑠𝑖 = 𝐹 (𝑠𝑖−1) = 𝐹 (𝐹 (𝑠𝑖−2)) = 𝐹 (𝐹 (...𝐹 (𝑠0))) (1)

If we want to prove the correctness of such a state 𝑠𝑖 ’s execution,
we would have to verify the entire proof of the computation from 𝑠0
onwards. In addition, proofs for longer executions would be much
larger on the verifier’s side. This is not ideal and is the motivation
for the cryptographic idea of Incrementally Verifiable Computation
(IVC) [28].

At a high level, IVC suggests breaking a proof for such a program
into its respective iterative sub-steps. To verify each sub-step 𝑖 we
show the following proof 𝜋𝑖 : (1) we can verifiably arrive at 𝑠𝑖−1
starting from the original state 𝑠0 AND (2) 𝐹 (𝑠𝑖−1) = 𝑠𝑖 is computed
correctly. Utilizing combinations of these cryptographic checks we
can efficiently verify recursive proofs.

1.1 Problem Overview
As discussed, it is essential to be able to verify proof correctness
to facilitate trustworthy computation. Many computations within
computer science can easily be translated into mathematical proofs
or checkable logical proofs. Each step of these logical proofs can
be verified using simple axioms including first-order logic (FOL)
[2] and the rules of inference. Specifically, we focus on the rules
of addition, conjunction, simplification, resolution, modus ponens,
modus tollens, disjunctive syllogism, and hypothetical syllogism.
Generally, these mathematical/logic proofs not only need to be
verified at each independent step for axiomatic correctness but also
cumulatively verified for sequential correctness and order.

Throughout the years, optimizations in formal logic and cryptog-
raphy have dramatically decreased the overhead for the verification
of individual steps of proofs to sub-linear times. However, being
able to simultaneously compute checks over the entire proof and
between proof steps drastically increases the complexity of proof
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verification. An alternate approach might be to verify each proof
step independently and then aggregate all these verified steps with
a cryptographic aggregator. However, this is also problematic as
sequential checks to the entire proof are extremely difficult to com-
pute.

In addition, most existing constructions of proof verification are
not dynamic. In other words, a verification proof must be recom-
puted if new proof steps are added to the existing mathematical
proof. As a result, once verification proofs are generated, they must
remain static and cannot be easily utilized as sub-proofs for proving
larger computations. This dramatically decreases the efficiency of
many proof verification schemes as each proof must be verified
from scratch.

In essence, this is a problem solved by Incrementally Verifiable
Computation (IVC). However at the present, there is a lack of viable
implementations and general methodologies to be able to efficiently
and dynamically verify a basic mathematical logic proof. In partic-
ular, there are currently no common-place IVC implementations to
verify mathematical proofs for individual correctness and sequen-
tial order. In addition, most IVC tools do not work for non-linear
systems or for verifying proofs with differing non-repeated steps.
So, state-of-the-art IVC protocols like Nova [19] are not immedi-
ately applicable to verifying mathematical proofs which can be non-
linear and contain many different proof steps. Thus, Lova proposes
a general framework to solve these problems while dynamically
and efficiently verifying logic proofs using the state-of-the-art Nova
system for incrementally verifiable computation 1.

1.2 Literature Review
The field of formal verification offers many solutions to verify com-
putations. Such solutions often work by breaking down the steps
of a program into states that are verified based on logical formulas
[12]. However, in this paper, we particularly look at an implemen-
tation to efficiently verify, aggregate, and append to mathematical
proofs utilizing incrementally verifiable computation.

The foundation for most cryptographic solutions to the verifiable
computation problem are Interactive Proofs [15]. Interactive proofs
are simply 𝑛-message protocols between an efficient verifier and
an unbounded prover that are both complete and sound as defined
below

• Completeness: A prover can convince a verifier to accept a
true statement.

• Soundness: If a statement is false, no prover can convince
a verifier to accept such a statement with non-negligible
probability.

A classic example of such a proof is the Sum-Check protocol
[22]. In this protocol, the Prover uses a 𝑛-variate polynomial 𝑔 to
convince the Verifier that:

𝛽 =
∑︁

𝑥1∈{0,1}

∑︁
𝑥2∈{0,1}

...
∑︁

𝑥𝑛∈{0,1}
𝑔(𝑥1, 𝑥2, ..., 𝑥𝑛) (2)

This is done by providing the Verifier with oracle access to 𝑔 and
sending a univariate polynomial 𝑔𝑖 (𝑥𝑖 ) to the Verifier in each round.
However the proof size of this protocol is not constant and requires
a much less efficient Verifier [29].

1see Appendix A for Lova’s applications

As an alternative, the Probabilistically Checkable Proof (PCP)
theorem [3] is utilized to create much more efficient probabilistic
verifiers. These verifiers are required to have oracle access to the
proof 𝜋 and query the proof at a random number of points to either
accept or reject the proof statement in efficient time. A new property
that is introduced is defined below:

• Perfect Completeness: For every true statement, there ex-
ists a proof 𝜋 that the prover can submit to the verifier to
accept.

The most simple example of a PCP is a Linear PCP where the
proof 𝜋 is a linear function of the form:

𝜆(𝑎 × 𝑥 + 𝑏 × 𝑦) = 𝑎 × 𝜆(𝑥) + 𝑏 × 𝜆(𝑦) (3)

More complex PCP proofs can be generated alongside an Interactive
Oracle Proof (IOP) [7] or even a Polynomial IOP where a verifier
checks low-degree polynomials. This is particularly important as
polynomials can be utilized to express computations as constraints.
We can use this mechanism to mathematically verify that com-
putations are equivalent to their expected value with polynomial
properties. One such theorem is the Schwartz-Zippel lemma which
states that “two different polynomials 𝑝 and 𝑞 of degree d agree on
at most 𝑑 points". In other words, polynomials that are the same
are guaranteed to evaluate to the same value at random points
while different polynomials will have drastically different outputs
for random queries.

Polynomials are often used in cryptographic commitment schemes
which maintain proof integrity and proof secrecy (binding and hid-
ing) [18]. Such commitment schemes, like homomorphic commit-
ment schemes [16], provide a mechanism to evaluate a polynomial
at different points without revealing its coefficient terms. In practice,
these are implemented as arithmetic circuits [27] with multiplica-
tion and addition gates representing the evaluation of a polynomial.
A collection of these arithmetic circuits with satisfiable variables
is known as a constraint system. The current standard are Rank-1
Constraint System (R1CS) instances [6]. An R1CS instance is satis-
fiable if there exists some private variables or values (witness w)
such that 𝐴𝑤 + 𝐵𝑤 = 𝐶𝑤 . These matrices A, B, and C represent the
program and its circuit.

These tools have been combined to create one of the current
state-of-the-art solutions for verifiable computation: SNARKs [29].
As defined earlier, SNARKs are succinct non-interactive arguments
of knowledge where every prover producing a proof must be cor-
related to a known and extractable witness w. More concretely, a
SNARK can be described by three algorithms (G,P,V). G is a genera-
tor that outputs a public reference string and a verification state. The
honest prover P uses a valid witness w to generate a proof 𝜋 which
can be verified by V. Some SNARKs can even be zero-knowledge
indicating that the provided proof 𝜋 does not leak any additional
information about the claim. SNARKs are not only succinct but are
also complete and sound.

However, we run into a problem when applying SNARKs to an
IVC setting. Particularly we can examine the case where a verifier
should be able to verify incremental steps of a proof at different
states. The trivial approach is to construct SNARKs for local updates
so that at step 𝑖 we only need to show that (1) the output of step
𝑖 −1 is correct and (2) the program is correctly applied to the output
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of step 𝑖 − 1. This approach however is infeasible [19] due to its
large proof size. While different SNARK-IVC approaches have been
constantly proposed, the required trusted set-up and consistent
SNARK creation remain extremely inefficient. In addition, while
Incrementally Verifiable PCPs [28] pose another solution to IVC,
they also still rely on traditional verifiable computation methods
such as SNARKs [24]. Thus, solutions to the IVC problem without
using SNARKs are essential in increasing efficiency and improving
the practicality of these systems. This literary background is im-
portant to understand the benefits of the utilized IVC construction
and the importance of immediate practical implementations of this
IVC construction such as the one proposed in this paper.

2 METHODOLOGY
2.1 Contributions
To solve these problems with IVC, we specifically propose utiliz-
ing Nova: Recursive Zero-Knowledge Arguments from Folding
Schemes [19]. Nova is a protocol that utilizes folding schemes in-
stead of SNARKs to accomplish IVC. In doing so, Nova allows for a
constant-sized verifier circuit, an efficient prover, and a deferred
verification proof.

The innovation of Nova lies in the ability to use folding schemes.
These primitives work by combining or “folding" two NP (nonde-
terministic polynomial time) instances of a problem into a single
NP instance. This single folded instance holds the property that it
is only satisfiable if the original NP instances are also satisfiable.
These folded instances are also dynamic and can be combined with
new instances to create new verification proofs without starting
from scratch. As a result, Nova folding schemes can efficiently verify
proof states within an IVC context.

However, to be able to achieve the feat of using Nova for mathe-
matical proof verification, mathematical proofs must be linear and
contain homogeneous (identical) proof steps to be compatible for
Nova folding. Currently, there are very few working end-to-end
implementations of Nova and no methods support the ability to
verify non-trivial proofs. The lack of literature and implementations
in this topic illustrate the necessity of the novelty of this work for
the real-world usability of such IVC-proof systems.

At a high level, Lova introduces a novel method to accomplish
this verification of non-linear and non-homogeneous mathematical
proofs utilizing the following pipeline. The mathematical proofs
are first formatted and sliced into independent sections: each with
the statements, logic rules, and previous lines that were utilized.
Next, the mathematical proof slices are converted into a system
of linear constraints based on a proof circuit. Utilizing a novel
multiplexing circuit, each instance calculates the necessary sums
for all logic rules before conducting the necessary checks for the
current logic step as indicated by a private input signal. Lastly, each
of these linear instances is folded utilizing Nova and converted
into a “recursive SNARK". To provide further proof compression,
this SNARK is then utilized to form another compressed SNARK
using the Spartan SNARK proof system [26]. A diagram of this
workflow is found in Figure 1. Formal analysis of the correctness
of this framework requires (i) analysis of proof verification logic

(Appendix B) (ii) analysis of Nova and Spartan proof systems [19].
The full code implementation can be found as follows 2.

To summarize, Lova provides an end-to-end efficient IVC frame-
work as a solution to mathematical proof verification (see Appen-
dix A for Lova’s applications). Particularly, Lova expands upon
the existing Nova proof system to allow for the efficient verifica-
tion of mathematical proofs that are non-linear and heterogeneous
(non-identical proof steps). More formally, the novelty of the Lova
framework can be described as follows:

• Amechanism to splice and encodemathematical proofs into
independent, verifiable, and Nova-friendly proof sequences.
These proof sequence are self-contained with the necessary
public and private inputs.

• An method to create conditional code segments without
breaking the linearity of R1CS instances.

• A system of algorithms to verify a variety of linear and
non-linear mathematical logic rules.

• A novel multiplexing circuit design which even allows for
non-homogeneous (non-identical) proof steps to be effi-
ciently verified together in a single succinct Nova proof.

• The incorporation of Nova recursive SNARKs with exist-
ing SNARK technologies resulting in an end-to-end proof
generation pipeline.

The attached Lova framework implementation addresses the
current lack of IVC implementations utilizing Nova SNARKs and
provides solutions for Nova’s theoretical shortcomings. Thus, the
Lova framework can be used as a stepping stone to understand how
to adapt Nova-based IVC techniques for universal succinct proof
verification 3.

2.2 Mathematical Proofs
Mathematical proofs are defined as deductive arguments that argue
the correctness of a statement via certain assumptions and math-
ematical/logical theorems. In particular, logical proofs or formal
proofs are mathematical proofs that strictly rely on more rigorous
predicate logic and logical axioms. Thus, all mathematical proofs
point towards more formal logical proofs that can be computation-
ally verified [17].

To generate these mathematical proofs or more precisely, logic
proofs, we need a few different logical operators as well as the Rules
of Inference (ROI). Specifically, we rely on the logical operators ∧
(and), ∨ (or),→ (if then), and ¬ (not). A line in the proof can thus be
formatted as “statement (logic, [reasoning_line1, reasoning_line2])”.
The format of the rules of inference that were utilized is defined in
Table 1.

Each proof is first parsed to check that the different logic rules
follow the syntax of the definitions in Table 1. The resulting proof is
then sliced into different independent sections. Each section is self-
contained with the statements to prove, the predicate logic utilized,
and a copy of the lines referenced for the logic reasoning. To ensure
proof serialization, each section can easily check that only previous
lines in the proof were referenced and no lines after the current
line were used as justification. Finally, the modified proof slices are
encoded numerically utilizing simple numeric substitution.

2https://github.com/noelkelias/lova
3see Appendix A for Lova’s applications
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Figure 1: Lova’s Pipeline for Mathematical Proof Verification

Table 1: Rules of Inference Definitions

Name Rule of Inference

Modus Ponens

𝑝

𝑝 → 𝑞

𝑞

Modus Tollens

¬𝑞
𝑝 → 𝑞

¬𝑝

Hypothetical Syllogism

𝑝 → 𝑞

𝑞 → 𝑟

𝑝 → 𝑟

Disjunctive Syllogism

𝑝 ∨ 𝑞
¬𝑝
𝑞

Addition
𝑝

𝑝 ∨ 𝑞

Simplification
𝑝 ∧ 𝑞
𝑝

Conjunction

𝑝

𝑞

𝑝 ∧ 𝑞

Resolution

𝑝 ∨ 𝑞
¬𝑝 ∨ 𝑟
𝑞 ∨ 𝑟

2.3 Linear Verification
As mentioned earlier, one of the key drawbacks of most IVC proof
systems including Nova is that proof steps must be validated lin-
early. To get around this requirement and validate the independent
proof slices produced by the last step, a system of linear equations
was developed to validate each possible logic step.

As shown by Table 1, there are three possible lines for any proof
step: two lines of reasoning and a final statement. We can divide
these lines into three groups of sums: the reasoning sum, the state-
ment sum, and the entire proof statement sum. Simply by using
certain values of the inputted proof slice to compute these sums,
we can ensure through a series of linear equations that the inputted
proof slice is bound to the required syntax of the logic step. An
example can be demonstrated for the Modus Ponens rule as shown
by Equation 4 4.

4Formal analysis of algorithm in Appendix B

𝑙𝑖𝑛𝑒1 = [𝑎, 𝑏, 𝑐]
𝑙𝑖𝑛𝑒2 = [𝑑, 𝑒, 𝑓 ]
𝑙𝑖𝑛𝑒3 = [𝑔, ℎ, 𝑖]
𝑚𝑜𝑑𝑢𝑠𝑃𝑜𝑛𝑒𝑛𝑠_𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡_𝑠𝑢𝑚 = 𝑓

𝑚𝑜𝑑𝑢𝑠𝑃𝑜𝑛𝑒𝑛𝑠_𝑟𝑒𝑎𝑠𝑜𝑛_𝑠𝑢𝑚 = 𝑎 + 𝑎 + 𝑎𝑟𝑟𝑜𝑤_𝑣𝑎𝑙 + 𝑔
𝑚𝑜𝑑𝑢𝑠𝑃𝑜𝑛𝑒𝑛𝑠_𝑝𝑟𝑜𝑜 𝑓 _𝑠𝑢𝑚 = 2 · 𝑑 + 2 · 𝑓 + 𝑎𝑟𝑟𝑜𝑤_𝑣𝑎𝑙

(4)

By computing the sums of the statement, reasoning, and entire
proof sum in a non-traditional method, we can verify that this
inputted proof slice contains the correct values. Particularly, in
the case of Modus Ponens, we can check that the reasoning sum
of all values in lines 1 and 2 is the same as 2a+arrow_val+g. This
inadvertently ensures that the necessary values of the reasoning
lines are empty and the proof splice follows the syntax where no
other values except for the presumed p and q values are present in
the reasoning lines. Similarly, the Modus Ponens statement sum
checks if the presumed q value of the statement is in both line 2 of
the reasoning and the statement line (line 3). Lastly, the proof sum
does one final check to ensure that the same p and q values occur
twice throughout the entire proof splice. Thus, using this linear
system, we can validate the syntax and format of any inputted proof
step that is supposed to show Modus Ponens. An example formal
analysis of this algorithm can be seen in Appendix B. Similar linear
equations to check the other logic steps found in Table 1 are found
in the code implementation.

2.4 Circuit Generation
Zero-knowledge proof systems like SNARKs rely on arithmetic
circuits or R1CS constraint systems to represent statements and
their corresponding witnesses. To satisfy this requirement, a circuit
was designed utilizing the Circom domain-specific language [4].
Circom’s parameterizable circuits, or templates, allow for the valid
assignment and computation of all wires within a circuit.

The circuit was also bounded by the following experimental
constraints. First, no quadratic expressions were allowed to be
part of the circuit as these Circom circuits needed to be able to
be converted to R1CS instances. Second, all variables and signals
within the circuit needed to be known at compile-time to provide
an R1CS instance. Most importantly, the circuit itself needed to
have a homogeneous (each iteration is identical) architecture with
no conditional calculations for the Nova folding scheme to work.
This was essential to be able to verify dissimilar steps of proofs and
combine them into a single Nova folded instance.
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Thus, circuits where the proof validation computation drastically
changed based on the inputted predicate logic could not be utilized.
To solve this requirement for homogeneity, a novel multiplexed
circuit design was developed to replace any conditional logic within
each circuit. At a high level, the validation of all possible rules of
inference was calculated on each iteration of the circuit and a signal
was utilized to decide which outputs to compare for the final public
output. An outline of this circuit is shown in Algorithm 1.

The encoded proof slices served as private inputs to the Circom
circuit. The circuit in turn calculated check-sums on the predicate
logic and the lines used for proof reasoning that were both passed
into the circuit as private inputs. These check-sums were systems of
linear equations that were calculated on the encoded statement and
lines of reasoning to be compared to the expected sums as shown
in the previous section. Each check-sum was based on the logic
signal that was inputted and makes sure that the inputted statement
and reasoning signal follow Table 1. As a result, each iteration of
the circuit checked whether or not the proof slice was valid and
outputted the validated proof sum as a public output/witness.

Algorithm 1 Proof Verification Circuit Pseudocode
Input: statement, reasoning, logic

var proof_sums = []
proof_sums[0]← Premise(statement,reasoning)
proof_sums[1]←ModusPonens(statement,reasoning)
...

proof_sums[8]← Resolution(statement,reasoning)

var statement_sum = sum of statement values
var reason_sum = sum of reasoning values
var proof_sum = sum of entire proof slice
assert(statement_sum == proof_sums([logic][0])
assert(reasoning_sum == proof_sums([logic][1])
assert(proof_sum == proof_sums([logic][2])

Output: proof_sum

The resulting multiplexed Circom circuit was then compiled
into an R1CS instance with 10 template instances, 1 public input,
1 public output, 10 private inputs, 3 wires, 121 labels, and close to
10000 constraints per step. Afterward, utilizing the Nova-Scotia
middleware [9], these R1CS instances are converted directly to a
Nova-compatible homogeneous relaxed R1CS instance for folding.

2.5 Nova
As mentioned, we often represent a set of correct execution code in
the form of R1CS constraints. However, these instances are not triv-
ially compatible with folding schemes as they are less convenient
for linear combinations. This leads to potential problems for the
Nova Scheme which has to verify the correctness of each previous
state (proof 𝜋𝑁−1) utilizing R1CS instances [20].

To solve this problem, Nova introduces the concept of NP-complete
relaxed R1CS instances with a scalar term u and a slack or error
vector E as shown below:

𝐴𝑧 × 𝐵𝑧 = 𝑢𝐶𝑧 + 𝐸 (5)

As mentioned, each relaxed R1CS instance can be described by
its public and private vector values: 𝑧𝑖 = (𝑤𝑖 , 𝑥𝑖 ). Using folding
schemes, Nova combines these equations into a new representation
z=(w,x) which implies that each original 𝑧𝑖 = (𝑤𝑖 , 𝑥𝑖 ) holds with
the system of equations given by the matrices of A,B, and C. More
formally, this is done by having the verifier select some random
value r so that z can be written as a linear combination of 𝑧1 and 𝑧2,
particularly z=𝑧1+𝑟𝑧2. In doing so, the error vector E and scalar u of
the relaxed R1Cs instance encompasses the extra terms generated
by such a linear combination to result in the following equation:

𝐸 = 𝐸1 + 𝑟 (𝐴𝑧1 × 𝐵𝑧2 +𝐴𝑧2 × 𝐵𝑧1 − 𝑢1𝐶𝑧2 − 𝑢𝑧𝐶𝑧1) + 𝑟2𝐸2 (6)

Now these values of E and u are also added to the representation
of the folded relaxed R1CS instance. Particularly, to hide their values
we represent them in commitment schemes like Pedersen commit-
ments which are homomorphic and allow for computations. Thus,
an instance of a committed relaxed R1CS can be described by the
tuple (x, 𝐶𝑜𝑚𝑚𝑖𝑡 (𝑤, 𝑟𝑤), 𝐶𝑜𝑚𝑚𝑖𝑡 (𝐸, 𝑟𝐸 ), u) and is satisfied by the
witness tuple (E, 𝑟𝐸 , w, 𝑟𝑤 ). Note that we can shorten 𝐶𝑜𝑚𝑚𝑖𝑡 (𝑥)
as 𝑐𝑜𝑚(𝑥).

Now suppose the verifier and prover have access to multiple
instances (𝑥1, 𝑐𝑜𝑚(𝑤1), 𝑐𝑜𝑚(𝐸1), 𝑢1) and (𝑥2, 𝑐𝑜𝑚
(𝑤2), 𝑐𝑜𝑚(𝐸2), 𝑢2) and the prover needs to show knowledge of the
witnesses (𝐸1, 𝑟𝐸1 ,𝑤1, 𝑟𝑤1 ) and (𝐸1, 𝑟𝐸1 ,𝑤1,
𝑟𝑤1 ). The Nova protocol occurs as follows:

• The prover computes𝑇 = 𝐴𝑧1 × 𝐵𝑧2 +𝐴𝑧2 × 𝐵𝑧1 −𝑢1𝐶𝑧2 −
𝑢2𝐶𝑧1 and sends a commitment 𝑐𝑜𝑚(𝑇 ). The verifier re-
sponds with a random challenge r.

• The prover and verifier create the folded instance: 𝑐𝑜𝑚(𝐸) =
𝑐𝑜𝑚(𝐸1) + 𝑟2𝑐𝑜𝑚(𝐸2) + 𝑟𝑐𝑜𝑚(𝑇 ) with the associated pub-
lic and private variables (𝑐𝑜𝑚(𝐸), 𝑢, 𝑐𝑜𝑚(𝑤), 𝑥) defined as
linear combinations of both instances with the value r.
– 𝑐𝑜𝑚(𝐸) = 𝑐𝑜𝑚(𝐸1) + 𝑟2𝑐𝑜𝑚(𝐸2) + 𝑟𝑐𝑜𝑚(𝑇 )
– 𝑢 = 𝑢1 + 𝑟𝑢2
– 𝑐𝑜𝑚(𝑤) = 𝑐𝑜𝑚(𝑤1) + 𝑟𝑐𝑜𝑚(𝑤2)
– 𝑥 = 𝑥1 + 𝑟𝑥2

• The prover also updates the correspondingwitnesses (𝐸, 𝑟𝐸 ,𝑤, 𝑟𝑤)
in a similar fashion utilizing r.
– 𝐸 = 𝐸1 + 𝑟𝑇 + 𝑟2𝐸2
– 𝑟𝐸 = 𝑟𝐸1 + 𝑟𝑟𝑇 + 𝑟2𝑟𝐸2
– 𝑤 = 𝑤1 + 𝑟𝑤2
– 𝑟𝑤 = 𝑟𝑤1 + 𝑟𝑟𝑤2

With this protocol, the prover is able to update the witness
parameters after each folding step - IVC. Then, utilizing a SNARK
the prover can easily demonstrate knowledge of the secret witness
(𝐸, 𝑟𝐸 ,𝑤, 𝑟𝑤) to the verifier who has the folded instance of the last
step of the IVC. Particularly, we can use a Polynomial interactive
oracle proofs[8] where we can convert the matrices A,B, C as well as
the vectors E,w,z,y=(x,u) as multilinear extensions (ML). We simply
compute the function F(t):

𝐹 (𝑡) =
∑︁
𝑦

𝐴𝑀𝐿 (𝑡, 𝑦)𝑧𝑀𝐿 (𝑦)) ×
∑︁
𝑦

𝑉𝑀𝐿 (𝑡, 𝑦)𝑧𝑀𝐿 (𝑦))

−𝑢
∑︁
𝑦

𝐶𝑀𝐿 (𝑡, 𝑦)𝑧𝑀𝐿 (𝑦) + 𝐸𝑀𝐿 (𝑡))
(7)
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We can check if the function holds by determining if
∑
𝑥 𝑔(𝜏, 𝑥)𝐹 (𝑥) =

0 for a random value of 𝜏 . This can be checked by applying the sum-
check protocol [23] to the polynomial defined by 𝑝 (𝑡) = 𝑔(𝑟, 𝑡)𝐹 (𝑡)
where g(x,y)=1 if x=y and 0 otherwise. Thus, using Nova we can
succinctly and efficiently verify proofs in an IVC format by utilizing
folding schemes on relaxed R1CS instances and SNARKing the final
state to demonstrate knowledge of the corresponding folded wit-
nesses. With this Nova protocol, independent sections of the proof
can each be verified in a distributed setting and later combined
to form a new folded Nova instance which can be proved. This
promotes proof dynamicity, allowing existing proof instances to be
verified independently and combined efficiently without starting
from scratch.

To implement this protocol, we specifically relied on the Rust
Recursive SNARK implementation on relaxed R1CS instances as
implemented by Microsoft in the original Nova paper [19].

2.6 Spartan
Most zero-knowledge SNARK protocols require a trusted setup
which creates some“toxic waste" that can be utilized by a malicious
verifier to break the soundness requirement of a SNARK and gen-
erate valid fake proof. The Spartan-proof system is one solution
to this problem by that avoids the trusted setup phase. At a high
level, Spartan [26] works by first converting the statement to an
arithmetic circuit and then a low-degree polynomial. The polyno-
mial is then formatted so that the sum of the polynomial over the
boolean hypercube is zero. Lastly, the polynomial is submitted for
the sum-check protocol.

More precisely, after the arithmetic circuit is converted into a
low-degree polynomial via arithmetization [25], each function in
the polynomial is replaced with its multi-linear extension (MLE)
as shown in Equation 8 where Z is a function and ˜𝑍 (𝑡) is its multi-
linear extension:

˜𝑍 (𝑡) (𝑥1, ..., 𝑥𝑛) =
∑︁

𝑒∈{0,1}𝑛
𝑍 (𝑒) ·

𝑛∏
𝑖=1
(𝑥𝑖 +𝑒𝑖 + (1−𝑥𝑖 ) · (1−𝑒𝑖 )) (8)

Then, the resulting MLE polynomial is formatted to be suit-
able for the sum-check protocol [23] where polynomial commit-
ments are used to verify the witness. This is done to make sure
that nonzero terms do not cancel out when running the sum-check
protocol of resulting polynomial ˜𝑍 (𝑡). Particularly, we use a modi-
fied polynomial Q(x) utilizing ˜𝑍 (𝑡) by multiplying the sum of ˜𝑍 (𝑡)
by different powers of x, Q: 𝑄 (𝑥) = ∑ ˜𝑍 (𝑡) · 𝑥𝑦 . Now, Q(x) can be
directly fed into the sum-check protocol to prove and verify the
statement much more efficiently and without a trusted setup.

For this reason, the recursive SNARK of the Nova folded instance
is once again inputted into the Spartan proof system for an even
smaller andmore efficient proof. Specifically, we utilized the Spartan
proof system with inner product arguments (IPA) and polynomial
commitments (PC) as implemented in Rust by Microsoft in the
original Spartan paper [26]. Another reason for this inclusion was
to demonstrate the Lova’s cross-compatibility between the resulting
Nova proofs and existing SNARK implementations like Spartan.

Figure 2: Lova’s Performance in SNARK Generation

3 RESULTS
The resulting Lova proof verification pipeline successfully spliced
the proof, encoded the proof slices, generated relaxed R1CS con-
straints, folded these instances into a single verifiable instance
with Nova, and finally compressed all this computation into a suc-
cinct Spartan proof. A few different experiments were conducted
to further understand the capabilities of Lova’s proof verification
pipeline. Particularly, these experiments were conducted to get a
better understanding of the Lova framework’s capabilities with
varying proof sizes and different proof parameters. These bench-
marks can be compared to other external approaches for mathe-
matical proof verification that may or may not be included in this
paper. The datasets used for these benchmarks are included in the
implementation 5.

The first experiment experimented on Lova’s performance with
different proof sizes. Particularly, the proof generation and veri-
fication time for the recursive Nova SNARK and the compressed
Spartan SNARK were measured and analyzed for efficiency and
performance in regards to the proposed proof verification Circom
circuit. Proofs ranged from having just a few steps to proofs with
1000+ steps. The results are the averages of 20 trials that were
conducted with the exact same parameters for each different input
proof. All computations were run on a 2.3 GHz Dual-Core Intel
Core i5 processor without a GPU. The results of this experiment is
shown in Figures 2 and 3.

As demonstrated by the data, the resulting recursive Nova SNARK
grows linearly by the number of proof steps in the mathematical
proof. On the other hand, the Spartan proof system with IPA-PC
maintains a constant proof generation time even with a varying
number of proof steps. This makes sense as the Recursive Nova
SNARK includes the step of folding more relaxed R1CS instances
together as the number of proof steps increases. As a result, the
generation time for the Nova Recursive SNARK only grows linearly
or in 𝑂 (𝑛) time where n is the number of proof steps! However,
the compressed Spartan SNARK works on a constant size input
which is simply the output of the Nova recursive SNARK whose
output remains constant with variable proof steps. As such, the

5https://github.com/noelkelias/lova/tree/main/misc/proof_tests

https://github.com/noelkelias/lova/tree/main/misc/proof_tests
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Figure 3: Lova’s Performance in SNARK Verification

generation time for the Spartan SNARK remains 𝑂 (1) or constant.
In addition, Figure 3 demonstrates that the proposed Lova pipeline
gets the added benefit of efficient and short verification times no
matter the size of the inputted mathematical proof. Thus, the pro-
posed verification circuit did not differ at all from Nova’s expected
performance.

Another experiment that was conducted included testing Lova’s
performance with the implemented Circom circuit on different cy-
cles of elliptic curves. Within the Nova implementation, two curves
are utilized for folding. One curve is utilized for the inputted private
and public points of the relaxed R1CS instance while the other curve
is used for Nova’s secondary circuit. As such this experiment ana-
lyzes the performance of utilizing different combinations of curves
for both Nova inputs and the Nova secondary circuit. Specifically,
the pasta (Pallas/Vasta) curves and the bn256/grumpkin curves as
defined by the arkworks [1] and implemented by the original Nova
paper [19] were tested. Each curve was tested with a 50-step proof
and then compared the proof generation and verification time for
the recursive Nova SNARK and the compressed Spartan SNARK.

Table 2 illustrates that the overall best combination of curves
was the Pasta curve where the Nova inputs are assigned as points
on the Pallas curve and Nova’s secondary circuit runs on the Vesta
curve. This resulted in the shortest amount of time needed for
Nova folding for the recursive SNARK creation and contained the
shortest verification times for both the recursive and compressed
SNARKs. In fact, the Pasta curves are much more efficient than
the bn256_grumpkin curves taking close to 1/4 less time to fold
instances together for Nova and generate public parameters for
the recursive SNARK. This suggests that for the proof verification
circuit, the Pasta curves contain the best field for the corresponding
low-value integer arithmetic of the implemented mathematical
proofs verification Circom circuit.

3.1 Case Study: Binary Arithmetic
In addition to these evaluations, we also compared the performance
of Lova with existing proof-checking tools like Coq. Particularly,
we examined the case of simple binary arithmetic computations
and other logical proof rooted in the rules of inference.

First, we implemented sanity tests that are utilized to prove each
of the rules of inference can be proven in Coq. Note that in Lova,
this is implemented at the circuit level. These checks can be found
in the repository 6. Next, we did a side-by-side comparison of binary
arithmetic operations implemented by Coq versues those verified by
Lova. All computations were run on a 2.3 GHz Dual-Core Intel Core
i5 processor without a GPU. The recorded times are averages of
10+ trials with controlled conditions. We looked particularly at the
generation time of the Nova SNARK for each of the resulting Lova
proofs as well as the runtime of the Coq compiler. In addition, we
also looked at the complexity of the resulting proof by measuring
the number of lines necessary to verify each of the computations.

As demonstrated by Table 3, there seems to be a positive corre-
lation between the number of boolean operations within a proof
and the time taken to create and verify both the Lova and Coq
proofs. However, Lova seems to take a lot longer to verify these
proofs (up to 34 seconds) compared to Coq’s relatively lower 3
second runtime bounds. It is interesting to note that with smaller
more simpler boolean arithmetic operations Lova performs better
or simillar to the Coq standard (1.73 vs 2.19 seconds). Lastly, there is
a clear positive correlation between the Coq’s proof complexity as
more boolean operations are being verified namely, for 20 boolean
operations, Coq requires a 70 line complex proof while the frame-
work only requires 36 basic lines. This key observation provides
justification to the performance discrepancy between Lova and Coq.
Namely, Coq is a much more complex proof-checking methodology
that is harder to learn and utilizing for the normal user. The amount
of time spent on (1)learning Coq synta, (2)debugging errors, and
(3)setting up Coq environment far exceeds to 30 second run-time
different between Lova and Coq. Lova instead provides usability at
the cost of simillar performance where users are able to easily input
the logical steps of a boolean computation into a text file using
basic discrete mathematics. As such, Lova usability is highlighted
through these results as it can be easily used by high school or
even undergraduate student while Coq requires higher proficiency
and hours of practice obtained mostly by grad students. Longer
boolean computation tests were not able to be computed due to the
difficulty of creating equivalent Coq proofs.

For a more direct comparison of Coq and Lova’s capabilities,
we also compared their performance on more standard logic proof
rooted in the rules of inference instead of just binary arithmetic.
These checks can be found in the repository 7. The goal of these
experiments was to understand the performance and usability of
Coq vs Lova for more complex logical proofs utilizing a wider
variety of axioms rather than just addition and conjunction for
binary arithmetic. Once again we recorded the average times of 10+
trials and compared the generation time of the Nova SNARK for
each of the resulting Lova proofs as well as the runtime of the Coq
compiler. The number of different axioms within the proofs was
measured to represent the complexity of each of these tests as all
tests had a similar number of lines.

Furthermore, as indicated by Table 4, utilizing difference num-
bers of axioms within the proof does not seem to have a major
effect on Lova’s performance but does seem to have an effect on the

6https://github.com/noelkelias/cs380s/tree/main/coq/logic_sanitytests
7https://github.com/noelkelias/cs380s/tree/main/coq/roi_tests

https://github.com/noelkelias/cs380s/tree/main/coq/logic_sanitytests
https://github.com/noelkelias/cs380s/tree/main/coq/roi_tests
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Curve Nova SNARK
Generation

Spartan SNARK
Generation

Nova SNARK
Verification

Spartan SNARK
Verification

Pasta: Pallas 45.70s 65.06s 0.35s 0.43s
Pasta: Vesta 51.68s 65.80s 0.419s 0.43s

bn256_grumpkin: bn256s 208.71s 127.81s 5.71s 5.28s
bn256_grumpkin: grumpkin 219.21s 113.38s 5.34s 4.06s

Table 2: Different Curve Combinations

Type Coq Proof Size Coq Time (s) Framework Proof Size Framework Time (s)
Addition 28 2.19 2 1.73

Multiplication 28 2.48 3 2.37
2 Operations 40 2.26 4 2.95
8 Operations 50 2.41 12 9.52
20 Operations 70 2.79 36 34.02

Table 3: Coq vs Framework Binary Arithmetic

Type Different Axioms Coq Time (s) Framework Time (s)
Test 1 3 2.43 7.82
Test 2 4 2.56 7.98
Test 3 6 2.96 7.97

Table 4: Coq vs Framework Logical Proofs

Coq proof. Thus, the bottleneck between for Lova is proof length
rather than proof complexity via diverse more complex axioms
while Coq’s might be both. Namely, both Coq and the framework
run at 3 and 9 seconds respectively even when the number of ax-
ioms has been doubled. It is important to note that the framework
uses 10 lines for these proofs while Coq uses close to 100. This once
again brings attention to the disparities between the entry barrier
of both tools as well as their complexity for accomplishing the same
task.

4 CONCLUSION
Utilizing incrementally verifiable computation we were able to de-
velop Lova, a novel framework to efficiently verify mathematical/-
logic proofs. Lova addresses the short comings of current state-of-
the-art IVC methods by providing a general approach and concrete
implementation to efficiently verify non-linear and non-homogeneous
mathematical proofs. Particularly, Lova introduces a unique proof
splicing methodology, a system of linear equations for logic verifi-
cation, and a novel multiplexing circuit to generate Nova friendly
proof instances from incompatible mathematical proofs. Then using
the Nova folding scheme, we can combine these resulting relaxed
R1CS instances of statements within a proof into a single folded
instance. This instance can easily and efficiently be proved utilizing
a recursive SNARK and further compressed utilizing the Spartan
proof system. As a result, we have shown that we can achieve
linear-time proof validation of mathematical proofs and constant
time verification of these validation proofs via IVC.

Now not only is Lova efficient and effective, but also allows the
prover to enable many more features for such a validation proof.
The Nova folding scheme is in fact amendable and dynamic. Relaxed

R1CS instances can be calculated in a distributed setting and folded
individually. Later, if a proof needs to be appended, the resulting
Nova folded state of the existing proof can simply be combined
with the new proof steps to create a new valid validation proof.
SNARKs can additionally be used as zero-knowledge tools and pro-
vide a validation proof of a mathematical proof without revealing
any additional information of the input (see Appendix A for ex-
panded applications). Thus, utilizing IVC methods such as Nova
folding marks the start of more efficient and robust technologies
for mathematical proof validation.
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6 APPENDIX
6.1 A - Lova Applications
There are many immediate applications that the Lova framework
can be utilized for. The experiments and datasets described in this
paper are just a sample of one possible configuration of the Lova
framework. Developers and researchers can generalize this proof-
of-concept implementation to validate proofs with rules and logic
of their choice.

A simple and immediate use case of Lova could be to validate
the correctness of basic mathematical proofs for mathematical the-
orems. These proofs could be first-order-logic proofs that a student
or program has computed for an exam or an assignment. Normally,
each step of the proof is different and thus cannot be verified us-
ing traditional IVC schemes like Nova. However, Lova solves this
problem exactly by allowing the efficient/succinct verification of
heterogeneous proofs. So, the grader could simply input the stu-
dent’s proof into the Lova framework. Utilizing, the Nova folding
scheme, the linear verification algorithms, and multiplexing circuit,
Lova can check the inputted proof for syntax and logic correctness.
This determines whether or not the input is a valid proof for the as-
signed question utilizing FOL and the rules of inference. At the end
of this run, Lova outputs a succinct SNARK proof that shows how
the inputted proof was evaluated for correctness and on which step
it failed, if any. Thus, the grading/evaluation of the correctness of a
proof is transparent and utilizing the outputted SNARK properties
can be easily verified by the student themselves to ensure grading
fairness.

Another use case for the Lova framework could be for integrated
circuit design and verification [11]. Many companies use proof
checking as a method to verify that certain operations (especially
floating point units) within their processors work as expected. This
is often done by converting the gate logic into FOL proofs. These
proofs then undergo formal analysis to determine if the operations
correctly returns the output of a sample program. As these formal
specifications (proofs) are in FOL, they can be verified using the
Lova framework. Just as before, Lova will break the formal speci-
fication of the processor’s operations into self-contained chunks
and utilize the implemented linear verification algorithms to ensure
the proof contains valid first-order-logic. Utilizing Nova alongside
Lova’s multiplexing circuit design (allows for non-homogeneous
proofs), each proof step will be folded into a single instance which
can be easily checked in one setting and dynamically modified using
the power of IVC. Now, adding new changes to such a formal speci-
fication will not require validating the entire proof but instead only
the newly added steps. As output, the designers will get a succinct
SNARK showing that the inputted operation’s formal specification
works as expected. This succinct SNARK for each operation can be
efficiently verified by any client before purchasing a processor to
ensure all operations on the processor work as expected.

A more advanced use case for Lova could be for validating infer-
encing/training for machine learning models. Often times, we want
to verify that a model’s inference was computed correctly without
any malicious or biased input. To check this, we can examine the
outputs of each layer of the model and, based on the architecture,
apply the necessary transformations. The resulting output can then
be cross-checked with the inference. The Lova framework can be
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directly applied to this situation. The sequence of transformations
or multiplications showing how the model computed its inference
is essentially a mathematical proof. These steps can be translated
into prepositions using interactive proof assistants like Coq. The
result is a first-order logic proof. As a result, these proofs can be
fed into the Lova framework to be validated and compressed into a
succinct SNARK indicating their correctness. A similar workflow
could be utilized to verify that transactions on a Blockchain were
conducted correctly (checking hashes computed correctly etc.) or
that new blocks contain valid transactions etc.

As part of next steps, developers could build on top of the existing
Lova framework and use the multiplexing circuit design alongside
the linear logic checking algorithms to check their own logic rules
(instead of just first order logic). For example, the developer could
define an operation over a group (addition, multiplication, etc) and
create logic checking algorithms to verify the validity of that oper-
ation on elements in that group. Thus, any proof with logic rules
programmed into the Lova framework can be easily and efficiently
validated.

6.2 B - Proof of Modus Ponens Verification
We can show that the system demonstrated in 4 correctly validates
Modus Ponens. Recall the Modus Ponens rule is as follows:

𝑝

𝑝 → 𝑞

𝑞
(9)

Notice p is the same preposition in the 1st line and 2nd line of
reasoning. In addition, q is the same preposition in the 2nd line
of reasoning and the result. We simply need to check that the
prepositions in these locations are equal to validate Modus Ponens.
Now, we can assume that the input pre-processing step of Lova
ensures that the inputted sequence is of the form:

𝑎

𝑑 → 𝑓

𝑔
(10)

Thus, the input sequence contains (a,d,f,g) which can be assumed
to be some valid prepositions. All the other possible elements of
the input sequence are confirmed to be initialized to 0 (input pre-
processing step). To show that this input sequence follows Modus
Ponens logic, we need to check f=g and a=d. Now the first check
ensures that the outputted statement (resulting statement) corre-
sponds to the 2nd preposition of the Modus Tollens reasoning. This
is given by f. To do this we can simply rely on the 4th line of Equa-
tion 4. Now we only need to check that the same preposition (p)
appears in both lines of reasoning. We could simply check that
a=d, however that would introduce conditional code segments into
our circuit and cause it to be non-linear. Instead, we can simply
check that the two reasoning lines of the proof sequence compute
to a+d+f = 2a+f. Note that the first check ensures that the f value is
valid. So as f is already valid and can be subtracted, this equation
ensures that the same p value or a=d in this case. This is the same
equation as the 5th line in Equation 4. Thus, this algorithm validates
whether or not the input sequence follows the Modus Ponens rule.
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