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Abstract. Any isogeny between two supersingular elliptic curves can
be defined over Fp2 , however, this does not imply that computing such
isogenies can be done with field operations in Fp2 . In fact, the kernel gen-
erators of such isogenies are defined over extension fields of Fp2 , generi-
cally with extension degree linear to the isogeny degree. Most algorithms
related to isogeny computations are only efficient when the extension
degree is small. This leads to efficient algorithms used in isogeny-based
cryptographic constructions, but also limits their parameter choices at
the same time. In this paper, we consider three computational subrou-
tines regarding isogenies, focusing on cases with large extension degrees:
computing a basis of ℓ-torsion points, computing the kernel polynomial of
an isogeny given a kernel generator, and computing the kernel generator
of an isogeny given the corresponding quaternion ideal under the Deur-
ing correspondence. We then apply our algorithms to the constructive
Deuring correspondence algorithm from [EPSV23] in the case of a generic
prime characteristic, achieving around 30% speedup over [EPSV23].

1 Introduction

Isogeny-based cryptography is a key candidate for post-quantum cryptography,
developed in response to potential quantum threats to current cryptographic
systems. Protocols based on isogenies distinguish themselves from other post-
quantum cryptography candidates by their compactness. As suggested by its
name, the central objects in isogeny-based cryptography are isogenies between
supersingular elliptic curves.

As a well-studied topic in both algorithmic number theory and elliptic curve
cryptography, plenty of algorithms exist regarding elliptic curves and isoge-
nies computations such as the classic Vélu’s formula [V7́1] and square-root
Vélu [BDFLS20], which are both algorithms for computing an isogeny (mean-
ing computing its codomain and evaluation on points) given the domain curve
and the kernel. However, the swift advancement in isogeny-based cryptogra-
phy has led to emerging scenarios that demand more efficient algorithms. For
instance, the ideal to isogeny translation is the computational bottleneck for
[DFKL+20,DFLLW23,GPS17] but received attention only in recent few years.
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The current lack of efficient algorithms is particularly evident in computa-
tions over extension fields of Fp2 . While it is possible to work exclusively within
Fp2 by judiciously selecting parameters for protocol design, this approach can be
restrictive, as seen in the case of [DFKL+20], potentially necessitating the use
of a larger field characteristic p. Recently, there are a few papers that discuss
algorithms in extension fields of larger degrees such as [EPSV23], [BGDS23] and
[SEMR23]. In particular, the motivation of [SEMR23] is exactly to relax the con-
strains on parameter choices for [DFKL+20], and as a result, they achieve better
verifying speed without degrading the signing speed as shown by their reference
SageMath implementation. In this paper, we build upon these advancements
and further explore computational subroutines critical for isogeny-based crypto-
graphic schemes in extension fields.

1.1 Contributions

Let p be a prime > 3, E be a supersingular elliptic curve defined over Fp2 , and
ℓ be an odd prime. Let k be the extension degree w.r.t. (p, ℓ) (Definition 2).

In this paper, we look at three computational subroutines:

1. Torsion basis generation In Section 3, we provide a new algorithm (Al-
gorithm 1) that finds a basis of E0[ℓ] where E0 is the curve y2 = x3 + x
over Fp2 for p ≡ 3 mod 4 with the extra conditions that ℓ ≡ 1 mod 4 and

ord(p) = ℓ− 1 in (Z/ℓZ)×. This algorithm takes Õ(ℓ) operations in Fp2 and
surpasses other known methods when k > 5 according to our experiments.

2. Kernel polynomial computation In Section 4, we provide a new algo-
rithm (Algorithm 3) that computes the kernel polynomial of a kernel sub-
group H given a minimal polynomial w.r.t. H (see Definition 4). This algo-

rithm mainly follows [EPSV23, Algorithm 4], and it takes O(k2)+Õ(ℓ3/k2)+

Õ(ℓ) operations in Fp2 . Theoretical analysis indicates that the cost of our
algorithm outperforms [EPSV23, Algorithm 4] when k3 > ℓ2. The experi-
mental results from running our SageMath implementation suggest that the
improvement of our algorithm over [EPSV23, Algorithm 4] is only clear when
k is large enough, e.g., k > 300.

3. Ideal kernel points generation In Section 5, we provide an algorithm
(Algorithm 4) that computes the kernel of the corresponding isogeny given a
leftO0-ideal whereO0 is a quaternion maximal order isomorphic to End(E0).
It combines Algorithm 1 with a simple yet effective trick (Lemma 17) that we
observe. We incorporate Algorithm 4 to [EPSV23, Algorithm 2]. This speeds
up the kernel points generation step by around 40% in the constructive
Deuring correspondence algorithm from [EPSV23] and speeds up the full
algorithm by around 30%.

We also provide a SageMath [Dev23] implementation to measure the perfor-
mance of our algorithms in this work. The code is available at https://github.
com/wennycai/isoext/tree/master.

https://github.com/wennycai/isoext/tree/master
https://github.com/wennycai/isoext/tree/master
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2 Preliminaries

In this section, we provide a brief overview of the background necessary for this
work.

2.1 Quaternion algebras, supersingular elliptic curves, and isogenies

Quaternion Algebra Let p be a prime and let Bp,∞ denote the unique (up to
isomorphism) quaternion algebra ramified precisely at p and ∞. We fix a Q-
basis ⟨1, i, j,k⟩ of Bp,∞ that satisfies i2 = −q, j2 = −p and k = ij = −ji for some
integer q. A fractional ideal I in Bp,∞ is a Z-lattice of rank 4. We denote by n(I)
the norm of I as the largest rational number such that n(α) ∈ n(I)Z for any
α ∈ I. An order O is a subring of Bp,∞ that is also a fractional ideal. An order is
called maximal when it is not contained in any other larger order. A fractional
ideal is integral if it is contained in its left order OL(I) = {α ∈ Bp,∞ | αI ⊂ I},
or equivalently in its right order OR(I) = {α ∈ Bp,∞ | Iα ⊂ I}.

Supersingular elliptic curves and their isogenies Let E,E1, E2 be elliptic curves
defined over a finite field of characteristic p. An isogeny from E1 to E2 is a non-
constant rational map that is simultaneously a group homomorphism. An isogeny
is called as cyclic if it is not [k]φ′ for any integer k and φ′ another isogeny from E1

to E2. An isogeny from a curve E to itself is an endomorphism. The set End(E)
of all endomorphisms of E forms a ring under addition and composition. End(E)
is either an order in an imaginary quadratic field and E is called ordinary, or a
maximal order in Bp,∞, in which case E is called supersingular.

Let ϕ : E1 → E2 be an isogeny and let its degree to be odd. According to
[Gal12, Lemma 25.1.16], ϕ can be written as

ϕ(x, y) =

(
A(x)

ψ2(x)
,
B(x, y)

ψ3(x)

)
,

where ψ(x) is a polynomial of degree (deg ϕ − 1)/2. We refer to this form as
standard form of an isogeny ϕ in this paper.

For an supersingular elliptic curve over Fq where q is a power of p, we de-
note its quadratic twist over Fq by Et which is a curve isomorphic to E over a
quadratic extension of Fq.

As an important integer that will be used throughout the paper, we give
precise definition of extension degree.

Lemma 1. Let E be a supersingular elliptic curve defined over Fp2 , let ℓ be an
odd prime and e be a positive integer, the following three descriptions determine
the same integer.

1. The smallest integer k such that E[ℓe] ⊆ E(Fp2k) or Et[ℓe] ⊆ Et(Fp2k) where
Et is the quadratic twist of E over Fp2k .

2. The degree of the minimal polynomial of x(P ) over Fp2 for any order ℓe point
in E[ℓe].
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3. Order of p2 in (Z/ℓeZ)×, i.e., the smallest integer such that p2k ≡ 1 mod ℓe.

Proof. The equivalences follow from the definition of a quadratic twist, the
structure of E(Fp2k) and Et(Fp2k), and the fact that #E(Fp2k) ×#Et(Fp2k) =
(p2k − 1)2 ([Sch87, Lemma 4.8]). ⊓⊔

Definition 2. Given p and ℓe, we call the integer defined from Lemma 1 the
extension degree w.r.t. (p, ℓe) and we denote it by k.

The Deuring correspondence Fix a supersingular elliptic curve E0, and an order
O0 ≃ End(E0). The curve/order correspondence allows one to associate to each
outgoing isogeny φ : E0 → E1 an integral left O0-ideal, and every such ideal
arises in this way (see [Koh96] for instance). Through this correspondence, the
ring End(E1) is isomorphic to the right order of this ideal. This isogeny/ideal
correspondence is defined in [Wat69], and in the separable case, it is explicitly
given as follows.

Definition 3. Given I an integral left O0-ideal coprime to p, we define the I-
torsion E0[I] = {P ∈ E0(Fp2)|α(P ) = 0 for all α ∈ I}. To I, we associate the
separable isogeny φI of kernel E0[I]. Conversely given a separable isogeny φ, the
corresponding ideal is defined as Iφ = {α ∈ O0 | α(P ) = 0 for all P ∈ ker(φ)}.

We summarize properties of the Deuring correspondence in Table 1, borrowed
from [DFKL+20].

Table 1. The Deuring correspondence, a summary [DFKL+20].

Supersingular j-invariants over Fp2 Maximal orders in Bp,∞
j(E) (up to Galois conjugacy) O ∼= End(E) (up to isomorphism)

(E1, φ) with φ : E → E1 Iφ integral left O-ideal and right O1-ideal

θ ∈ End(E0) Principal ideal Oθ
deg(φ) n(Iφ)

2.2 Kernel polynomial and minimal polynomial of a kernel
subgroup

Let E/Fp2 be a supersingular elliptic curve, the kernel polynomial defining a
finite subgroup H ≤ E, or equivalently an isogeny with kernel H, is the unique
monic squarefree polynomial hH whose set of roots is precisely the set of x-
coordinates of nonzero points in H. A related concept is the minimal polynomial
of H, whose definition is introduced in [EPSV23] and we recall here.

Definition 4. [EPSV23, Definition 15] Let E be an elliptic curve over a field K
and f ∈ K[X] a monic squarefree polynomial. The subgroup defined by f is the
subgroup H of E generated by the set of points {P ∈ E\{0}|f(x(P )) = 0}. In this
situation, we say that f is a defining polynomial for H, and if f is furthermore
irreducible, we refer to f as a minimal polynomial of H.
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Let ℓ be an odd prime and H ≤ E be a cyclic subgroup of order ℓ defined over
Fp2 . H gives rise to a unique cyclic isogeny φ : E → E′ such that ker(φ) = H
up to post-composition, and φ is defined over Fp2 . Note that as discussed in
[EPSV23, Section 2.2], in fact any isogeny between two supersingular elliptic
curves can be defined over Fp2 , by working with isomorphism representatives on
which the p2-power Frobenius is a scalar.

We denote the kernel polynomial of H by hH . hH(x) ∈ Fp2 [x] as H is defined
over Fp2 , and hH is of degree ℓ−1

2 by its definition. Let H = ⟨P ⟩, and let f(x)
denote the minimal polynomial of x(P ) over Fp2 , denote its degree by k, clearly

f(x) | hH(x). Let π denote the p2-power Frobenius map, x(π(P )) = x(P )p
2

is
another root of f(x), and therefore π(P ) is another generator of H and there
exists λ ∈ (Z/ℓZ)× such that π(P ) = [λ]P .

Clearly, there is a free and transitive action of the group (Z/ℓZ)×/{±1} on
the set X := H − 0E/{±1} by scalar multiplication. The subgroup ⟨λ⟩/{±1}
partitions X into ℓ−1

2k orbits, each orbit is of length k. Let a be a primitive root
in (Z/ℓZ)×, then

hH(x) =

ℓ−1
2k −1∏
i=0

(

k−1∏
j=0

(x− x([aiλj ]P ))). (1)

This follows from the fact that {ai}
ℓ−1
2k −1
i=0 is a set of coset representatives of

⟨λ⟩/{±1} in (Z/ℓZ)×/{±1}, and {λj}k−1
j=0 is a set of representatives of ⟨λ⟩/{±1}.

For each fixed i, the inner layer product
∏k−1
j=0 (x − x([aiλj ]P )) is the minimal

polynomial of x([ai]P ) over Fp2 of degree k.

2.3 Torsion basis generation algorithms over extension fields

In this section, we revisit the following problem of computing a torsion basis of
supersingular elliptic curves.

Problem 5. Let E be a supersingular elliptic curve over Fp2 , ℓ be a prime and e
be a positive integer, compute a Z/ℓeZ-basis of E[ℓe].

Torsion basis generation in isogeny-based cryptography is a fundamental step
that is involved in the efficiency of lots of constructions. In most isogeny-based
schemes, one prefers choosing a good characteristic p to make sure the extension
degree k w.r.t. (p, ℓe) equals to 1. This choice leaves solving Problem 5 for general
p, ℓe less studied. In what follows, we summarize two recent algorithms that
considers solving Problem 5 in extension fields. We note that in both works, the
torsion basis generation algorithms are not their main focuses but rather a tool
developed for further computational tasks.

Method 1 The authors of [EPSV23] use a straightforward method to compute the
torsion basis, which is by sampling random elements in E(Fp2k) and multiplying

the points by a cofactor (pk±(−1)k)2

ℓe until a Z/ℓeZ-linearly independent pair P, Q
is found. This method costs O(k log p) operations in Fp2k [EPSV23, Section 3.3].
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Method 2 This method is introduced in [BGDS23, Appendix A] and we briefly
recall the main ideas here. Let π be the p2-power Frobenius endomorphism on E
and Φk(x) denote the k-th cyclotomic polynomial. Since Φk(x)|xk−1, there exists
an endomorphism θk on E such that (πk− idE) = Φk(π) ◦ θk. For any point P ∈
E(Fp2k), θk(P ) ∈ ker(Φk(x)), then sampling random points P and computing

[#ker(Φk(π))
ℓe ]θk(P ) would give rise to a basis of E[ℓe] similar to the idea of the

previous method. This method costs O(φ(k) log p) operations in Fp2k [BGDS23,
Appendix A], where φ(k) represents the value of the Euler totient function.

2.4 Constructive Deuring correspondence

The constructive Deuring correspondence problem is the following:

Problem 6. Given a maximal order O in Bp,∞, compute a supersingular elliptic
curve E/Fp2 such that End(E) ∼= O.

A natural strategy to tackle this, which is also used in [EPSV23], goes as follows:

Step 0: Fix a base curve E0/Fp2 with a known effective endomorphism ring O0.
Step 1 (KLPT): Construct an ideal I connecting O0 and O of suitable norm.
Step 2(IdealToIsogeny): Compute the isogeny corresponding to I as φI :
E0 → E.

[EPSV23] provides the most efficient algorithm for computing this correspon-
dence in the literature.

3 Torsion basis generation

Let p be a prime such that p ≡ 3 mod 4. Let E0 be a supersingular elliptic curve
over Fp defined by the equation y2 = x3+x. There exists an automorphism τ on
E0 given by the map τ : (x, y) 7→ (−x,

√
−1y) where

√
−1 is the square root of

−1 in Fp2 . In this section, we propose a new method that finds a basis of E0[ℓ]
for an odd prime ℓ when ℓ satisfies the additional conditions that:

- ℓ ≡ 1 mod 4;

- ord(p) = ℓ − 1 in (Z/ℓZ)×, this is equivalent to ord(p2) = ℓ−1
2 in (Z/ℓZ)×

given the previous condition, i.e., the extension degree is ℓ−1
2 .

The main idea of our method is to extract the minimal polynomials of
x(P ), x(Q) where P,Q form a basis of E[ℓ] from the denominator of the x-

coordinate of a degree ℓ endomorphism θ on E and its dual θ̂. Since the exten-
sion degree k = ℓ−1

2 , the x-coordinates of P,Q are defined over Fpℓ−1 . However,
our method allows us to only work in the base field Fp2 to obtain the minimal
polynomials. This significantly reduces the cost when the extension degree is
large.
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3.1 New algorithm for computing E0[ℓ]

Lemma 7. Let ℓ be an odd prime such that ord(p) = ℓ − 1 in (Z/ℓZ)×. Let

θ =
(
ψx(x)
ϕx(x)

,
ψy(x)
ϕy(x)

y
)

be an endomorphism of degree ℓ defined over Fp2 in its

standard form (see definition in Section 2.1). Let R be any generator of ker θ.
Then ϕx(x) = f2(x) where f(x) is the minimal polynomial of x(R).

Proof. Since deg θ = ℓ and ℓ is odd, we have ϕx(x) ∈ Fp2 [x] is of degree ℓ − 1
and is a square. Since x(P ) is a root of ϕx(x), then f(x) | ϕx(x). Note that
ord(p) = ℓ− 1 implies that f(x) is of degree ℓ−1

2 (see Lemma 1), then it follows
immediately that ϕx(x) = f2(x). ⊓⊔

Algorithm 1 TorsionBasisE0(ℓ)

Input: A prime ℓ ≡ 1 mod 4 such that ord(p) = ℓ− 1 in (Z/ℓZ)×.
Output: Minimal polynomials of x-coordinates of a basis P,Q of E0[ℓ].
1: Compute a, b such that a2 + b2 = ℓ by Cornacchia’s algorithm [Coh93, Section

1.5.2].
2: Compute the x-coordinates of the standard form of θ = [a]+τ [b] and θ̂ = [a]−τ [b],

which we denote by A(x)
F (x)

and B(x)

F̃ (x)
respectively.

3: Compute the square roots of F (x) and F̃ (x) as fP (x) and fQ(x).
4: Return fP (x), fQ(x).

Lemma 8. Let p, E0 and τ be as introduced in the beginning of Section 3. Let
ℓ be an odd prime with ℓ ≡ 1 mod 4 such that ord(p) = ℓ − 1 in (Z/ℓZ)×.
Algorithm 1 returns the minimal polynomials the x-coordinates of a basis of
E0[ℓ], and its takes Õ(ℓ) operations in Fp2 .

Proof. The correctness follows from Lemma 7 and the fact that a generator
of ker(θ) and a generator of ker(θ̂) are Z/ℓZ-linearly independent. Indeed, let

ker(θ) = ⟨R⟩, since θ̂ = 2a − θ, ker(θ̂) = ⟨R⟩ if and only if ℓ | 2a which is
impossible by our choice of a.

As for complexity, the bit-complexity for Step 1 is O(log2 ℓ) [FS16, Section

3.1]. Step 2 takes Õ(ℓ) operations in Fp [ACL+23, Lemma 2.7]. At Step 3, since
F (x) = f2P (x) from Lemma 7 and fP (x) is irreducible over Fp2 [x], we have
gcd(F (x), F ′(x)) = fP (x), where F

′(x) is the derivative of F (x). Hence, Step 3

requires Õ(ℓ) operations in Fp2 using FFT-based polynomial arithmetic. ⊓⊔

Generalization of the torsion basis computation algorithm (Algorithm 1). At
first glance, it may seem like our method is very restrictive as it is for only one
curve E0 and the prime ℓ needs to satisfy extra conditions. In fact, the curve
E0 plays a major role in isogeny-based cryptography. Assuming that p mod ℓ is
random in (Z/ℓZ)×, then the condition ord(p) = ℓ − 1 holds with probability
φ(ℓ−1)
ℓ−1 where φ is the Euler’s totient function. As ℓ considered in isogeny-based
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cryptography is significantly smaller than p, we compute the ratio φ(ℓ−1)
ℓ−1 for all

primes ℓ < 5000 such that ℓ ≡ 1 mod 4, and they have 1
5 as a lower bound.

This means that for a random pair (p, ℓ) with p ≡ 3 mod 4 and ℓ ≡ 1 mod 4 and
ℓ < 5000, there is at least a chance of 1

5 that our algorithm can be applied.
Our method can be generalized to other curves E as long as E has a known

endomorphism τ such that ℓ splits in Z[τ ]. We can also remove the condition
that ord(p2) = ℓ−1

2 in (Z/ℓZ)× and even extend to computing a basis for the
ℓe-torsion. The main idea still applies but the algorithm now requires factoring
F (x) and F̃ (x) as the minimal polynomials of the x-coordinates of a torsion basis
is only a factor of their square roots.

3.2 Experiments and performance

We implement Algorithm 1 in SageMath, and compare with the results running
the SageMath implementations of the two methods introduced in Section 2.3.
The comparison between the three methods are given in Table 2.

We choose ℓ ∈ {5, 13, 17, 41, 97, 193}, and for each ℓ, we randomly generate
a 256-bit p that satisfies the conditions that p ≡ 3 mod 4 and ord(p) = ℓ − 1
in (Z/ℓZ)×. Note that in our case when ℓ ≡ 1 mod 4, we have that E0[ℓ] ⊆
E0(Fp2(ℓ−1)) while Et0[ℓ] ⊆ Et0(Fpℓ−1). Therefore, it is more efficient for Method 1
to work with the twist curve Et0 and then sends back the torsion basis to E0 via
their isomorphism. However, this trick does not apply to Method 2 as Method
2 works with a curve on which the p2-power Frobenius is defined.

Note that Algorithm 1 outputs minimal polynomials of x(P ) and x(Q) while
the other two methods give the x, y coordinates for both points. For a fair
comparison, we also recover P and Q from fP (x) and fQ(x). Note that Fpℓ−1

can be constructed as an extension of Fp2 with modulus equals to fP (x) or fQ(x),
which means the x-coordinate of torsion basis is the generator β of Fpℓ−1 . The
y-coordinate of torsion basis can be recovered by computing a square root on
the twisted curve.

Table 2. Timings of torsion basis generation for different method. Since method 1 is a
probabilistic algorithm, we run 10 times for each method and take the average as the
final runtime. All of these benchmarks are running in SageMath 10.0 on a laptop with
an Intel Core i7-12700H processor.

Method ℓ = 5 ℓ = 13 ℓ = 17 ℓ = 41 ℓ = 97 ℓ = 193

Method 1 [EPSV23] 0.14s 1.26s 3.17s 16.50s 196.88s 737.17s
Method 2 [BGDS23] 0.46s 5.30s 13.46s 109.73s 1080.62s 7369.61s
This work 0.19s 0.86s 1.82s 6.86s 44.11s 190.90s

According to Table 2, we give a logarithmic runtime picture, where the run-
time of torsion basis generation is represented on a logarithmic scale, as shown
in Figure 1. As ℓ increases, the growth rate of runtime for the three algorithms
slightly decelerates. Overall, Algorithm 1 significantly outperforms both Method



Faster algorithms for isogeny computations over extensions of finite fields 9

1 and Method 2. Therefore, for large primes ℓ ≡ 1 (mod 4) with ord(p) = ℓ− 1
in (Z/ℓZ)×, using Algorithm 1 for generating a torsion basis of E0[ℓ] is much
more efficient.

Fig. 1. We plot the following graphs with data points provided in Table 2. The x-
axis represents the values of ℓ. The y-axis represents the logarithm of the runtime
(in seconds) from Table 2. This figure is mainly to illustrate the growth trend of the
runtime of the three algorithms as ℓ increases.

4 Computing kernel polynomials

Given a kernel generator P ∈ E of prime order ℓ that lives in an extension field
Fp2k over Fp2 , the time complexity of computing ϕ defined by the kernel subgroup

⟨P ⟩ using Velu’s formula is Õ(ℓ) operations over Fp2k . An alternative method
is to use Kohel’s formulas. Given the kernel polynomial of the isogeny ϕ, it
takes Õ(ℓ) operations over Fp2 to compute ϕ. [EPSV23, Algorithm 4] proposes
a new method to compute the kernel polynomial of ϕ given P , which takes
O(k2) + O(ℓk) + Õ(ℓ) operations in the field Fp2 . This leads to an algorithm
that computes the isogeny ϕ given P which can be faster than Vélu’s formulas
in some cases. Moreover, when it comes to evaluating a point P ′ ∈ Fp2k′ , Vélu’s
formulas perform this evaluation in the composition of the two fields Fp2k and
Fp2k′ whereas Kohel’s formulas perform this evaluation in Fp2k′ . Therefore, in
the application scenarios when evaluations of points defined over different field
extensions are needed, it can be preferable to use Kohel’s formula as well.

In this section, we further improve on [EPSV23, Algorithm 4] that computes
the kernel polynomial of φ given P , precisely, the x-coordinate of P . Their main
idea is to compute all the irreducible factors of the kernel polynomial and then
multiply them together, and each irreducible factor is computed via Shoup’s
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algorithm given a root of the irreducible factor. The main idea of our new algo-
rithm is a new method that computes the irreducible factors that outperforms
Shoup’s algorithm for some parameter choices.

4.1 Kernel polynomial computation algorithm

Let us recall that from Section 2.2, π(P ) = [λ]P with λ ∈ (Z/ℓZ)×. The subgroup
⟨λ⟩/{±1} ⊆ (Z/ℓZ)×/{±1} is the unique subgroup of order k in (Z/ℓZ)×/{±1}
and we denote it by S. Our new algorithm starts with finding a pair of integers
(a, b) that is good in the sense of the following definition.

Definition 9. We say a pair of integers (a, b) is (ℓ, k)-good if it satisfies the
following:

(1) modulo ℓ, a, b are primitive roots in (Z/ℓZ)×,
(2) viewed as elements in (Z/ℓZ)×/{±1}, b and a are in the same coset with

respect to the subgroup S,
(3) gcd(a, b) = 1.

Any integer a gives rise to an endomorphism on a supersingular elliptic curve
E which is simply the multiplication-by-amap often denoted by [a]. We introduce
a new notation [a]x(x) which is the x-coordinate of [a] when written as rational
maps.

Let us write [a]x(x) =
a1(x)
a2(x)

with a1(x), a2(x) ∈ Fp2 [x] be coprime polynomi-

als with degrees bounded above by O(a2), and [b]x(x) =
b1(x)
b2(x)

with b1(x), b2(x) ∈
Fp[x] be coprime polynomials with degrees bounded above by O(b2). Let f(x) =∑k
i=0 cix

i with ci ∈ Fp2 be the minimal polynomial of x(P ) over Fp2 . Then

f([a]x(x)) =

∑k
i=0 cia

k−i
2 (x)ai1(x)

ak2(x)
=:

dfa(x)

nfa(x)
,

f([b]x(x)) =

∑k
i=0 cib

k−i
2 (x)bi1(x)

bk2(x)
=:

dfb(x)

nfb(x)
.

Lemma 10. Let a, b be two integers satisfying the conditions (2) and (3) in
Definition 9, then gcd(dfa(x), dfb(x)) is the minimal polynomial of x([a−1]P )
where here a−1 is the inverse of a modulo ℓ.

Proof. Since [a]([a−1]P ) = P , we have that [a]x(x([a
−1]P )) = x(P ) and it is

a root of f(x). Therefore, x([a−1]P ) is a root of f([a]x(x)), and it means that
dfa(x([a

−1]P )) = 0. Similarly, we can show that dfb(x([b
−1]P )) = 0. Since

a, b are in the same coset of (Z/ℓZ)×/{±1} modulo ⟨λ⟩/{±1}, x([a−1]P ) and
x([b−1]P ) have the same minimal polynomial, let us denote it by f1(x). Then
this implies that f1(x) | gcd(dfa(x), dfb(x)).

We now show that dfa(x) and dfb(x) have no other common roots besides
those shared with f1(x). Consider the two sets [a−1](S ·P ) (the orbit of P of the
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S action multiplied with [a−1]) and [b−1](S ·P ), they are equal by the conditions
on a, b. The roots of dfa(x) are x-coordinates of [a−1](S · P )+̃E[a] (where the
addition +̃ is performed over all possible pairwise combinations by summing each
element from the first set with each element from the second set), and the roots
of dfb(x) are x-coordinates of [b−1](S · P )+̃E[b]. Since gcd(a, b) = 1, one can
see that there are no common elements in these two sets except for [a−1](S ·P ).
This shows that f1(x) = gcd(dfa(x), dfb(x)). ⊓⊔

Heuristic 11. We can find desired a, b ∈ [−B,B]−{0} with B a small multiple
of ℓ−1

4k .

We provide a justification of the Heuristic above.

- There must be two integers in [−B,B]−{0} belong to the same coset when-
ever B > ℓ−1

4k since then 2B > ℓ−1
2k and ℓ−1

2k is the number of cosets.

- The chance that the other two conditions are satisfied for a random pair
in [−B,B] − {0} is reasonably high, we expect to obtain one such pair by
adding a small constant multiple to ℓ−1

4k .

Remark 12. Asymptotically, we expect to find the desired a, b ∈ [−B,B] − {0}
when B is a small multiple of ((ℓ− 1)/k)1/2 by the birthday paradox. This can
be used to improve the complexity of Algorithm 2 and then Algorithm 3. But
we do not use this bound since we are dealing with ℓ and k where ℓ/k is not
very large.

Algorithm 2 KernelPolynomialFromMinipoly(E,f ,ℓ)

Input: An elliptic curve E/Fp2 , a prime ℓ and a minimal polynomial f of x(P ) of
degree k where P is a point of order ℓ.

Output: The kernel polynomial h w.r.t. the kernel subgroup ⟨P ⟩.
1: Set m← (ℓ− 1)/2k and f0 ← f .
2: Find smallest pair (a, b) (smallest in terms of max{|a|, |b|}) that is (ℓ, k)-good. Let

B = max{|a|, |b|}).
3: For i = 1 to m− 1 do
4: Compute [a]x(x) =

a1(x)
a2(x)

and [b]x(x) =
b1(x)
b2(x)

.

5: Construct polynomials dfa(x)←ak
2(x)fi−1([a]x(x)), dfb(x)←bk2(x)fi−1([b]x(x)).

6: Set fi(x)← gcd(dfa(x), dfb(x)).
7: end For
8: Compute h←

∏m−1
i=0 fi using a product tree.

9: Return h.

Lemma 13. Assuming Heuristic 11, Algorithm 2 is correct and it takes Õ( ℓ
3

k2 )+

Õ(ℓ) operations in Fp2 .
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Algorithm 3 KernelPolynomialFromIrrationalX(E, ζ, ℓ)

Input: Elliptic curve E/Fp2 , extension Fp2k/Fp2 , x-coordinate ζ ∈ Fp2k of an order-ℓ
point P ∈ E lying in an eigenspace of the p2-power Frobenius on E.

Output: The kernel polynomial h⟨P ⟩ ∈ Fp2 [x] defining the subgroup of E generated
by P .

1: Find the minimal polynomial f ∈ Fp2 [x] of ζ over Fp2 using Shoup’s algorithm.
2: Return KernelPolynomialFromMinipoly(E, f, ℓ).

Proof. The correctness of Algorithm 2 follows from Lemma 10 and Eq. (1). The
smallest (a, b) pair that is (ℓ, k) good can be found by an exhaustive search, i.e.,
by enumerating all (a, b) pairs in each coset such that |a|, |b| ≤ B and check

whether they are (ℓ, k)-good. The cost of finding (a, b) is Õ(log3(ℓ)B2) bit oper-

ations. The cost of Step 4 - 6 is Õ(kB2) using FFT as explained in Remark 14,

which is Õ( ℓ
2

k ) according to Heuristic 11. Therefore the loop takes Õ( ℓ
3

k2 ) oper-

ations in Fp2 . Finally, the product tree in the last step can be computed in Õ(ℓ)
operations in Fp2 , using FFT based arithmetic, same as [EPSV23, Lemma 16].

⊓⊔

Remark 14. We explain how to compute dfa(x), dfb(x) and fi(x) here in more

detail. If 2⌊log
k·a2+1
2 ⌋|p2 − 1, then there always exist 2⌊log

k·a2+1
2 ⌋-th roots of unity

over Fp2 , we denote the set of these units to be µa. For i = 1, . . . ,m − 1, we
compute each dfa(x) in Algorithm 2 by first computing Ya := {[a]x(η), η ∈
µa}, we then compute the evaluation of fi−1(x) at each element in Ya in Õ(k)
operations over Fp2 . Taking these evaluation values, the inverse FFT algorithm

can be used to recover the coefficients of dfa(x) in Õ(kB2) operations in Fp2 .
The construction of dfb(x) is similar. Then the final gcd computation can be

done in Õ(kB2) operations in Fp2 with FFT.

Lemma 15. Algorithm 3 is correct and takes O(k2) + Õ( ℓ
3

k2 ) + Õ(ℓ) operations
in Fp2 .

Proof. The complexity of Algorithm 3 is O(k2) for running Shoup’s algorithm
plus the complexity of Algorithm 2.

Remark 16. Let us recall here that the corresponding algorithm [EPSV23, Algo-

rithm 4] takes O(k2) +O(ℓk) + Õ(ℓ) operations in Fp2 . Therefore, the difference
is only in the middle term and we expect to outperform [EPSV23, Algorithm 4]

when ℓ3

k2 < ℓk, i.e., when k3 > ℓ2. We test this observation with our experiments
in next section.

4.2 Experiments and performance

We explain our strategy for generating the parameters k, ℓ, p. We first fix the
extension degree k, then we find a prime ℓ such that ℓ−1

2k > 1. We then find
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a pair (a, b) that is (ℓ, k)-good (Definition 9). Finally we look for primes of
the form 2rf ± 1 (for p ≡ 1 mod 4 and p ≡ 3 mod 4 respectively) with r =

⌊logk·max(a,b)2+1
2 ⌋ by randomly generating f and testing whether 2rf ± 1 is a

prime.

In the case of p ≡ 1 mod 4, the 2r-th root of unity is an element in Fp.
However, since we consider the elliptic curve over Fp2 , computing [a]x(x) and
[b]x(x) still involves operations on Fp2 and there is not much difference in the
case of p ≡ 1 mod 4 and p ≡ 3 mod 4. For convenience, we only discuss the case
of p ≡ 1 mod 4 in this work. We use the above strategy to find 13 parameters
for our experiments, with k ranging from 24 to 940. Besides, for these ℓ and k
we can always find the smallest a, b ∈ {±2,±3}. Table 3 provides comparisons
of computing the kernel polynomial for a given x-coordinate of an order-ℓ point.

From Remark 16, we expect that our algorithm can achieve better perfor-
mance if k3 > ℓ2. However, from Table 3, experiments suggests that our algo-
rithm is faster than the previous method in [EPSV23] if k > 300 regardless of
k3 > ℓ2 or not. This is potentially caused by the fact that we have an extra

log factor in Õ( ℓ
3

k2 ) that was not taken into consideration in the comparison in
Remark 16, therefore we perform worse when k is relatively small. On the other
hand, the (a, b) pair we encounter in practice are much smaller than the upper
bound we gave in the complexity analysis of Algorithm 2, this explains why we
outperform [EPSV23] when k is large enough in practice.

Table 3. Timings of computing the kernel polynomial from the x-coordinate of genera-
tor for ℓ-isogeny, running in SageMath 10.1 on a computer with an Intel(R) Core(TM)
i9-12900K processor. For comparison, we also record the runtime of this procedure
in [EPSV23]. Both algorithms run in a same environment.

(ℓ, k) [EPSV23] Algorithm 3 Speed Up

(97, 24) 0.04s 0.09s −125.00%
(431, 43) 0.29s 0.56s −93.10%

(1499, 107) 1.67s 2.51s −50.30%
(1201, 200) 2.96s 3.04s −2.7%
(4423, 201) 10.03s 11.90s −18.64%
(1009, 252) 3.11s 4.31s −38.59%
(3461, 346) 12.05s 11.41s 5.31%

(10781, 385) 47.51s 26.50s 44.22%

(5641, 470) 31.96s 23.90s 25.22%

(2017, 504) 11.38s 10.29s 9.58%

(24001, 600) 146.88s 71.42s 51.38%

(28387, 747) 196.60s 78.25s 60.20%

(28201, 940) 306.89s 136.20s 55.62%
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Fig. 2. Heatmap of timing comparison about computing kernel polynomials in Table 3.
On the right side of this log-log picture is a colorbar from −100 (resp. blue) to 100
(resp. red), which indicates the percentage of speed up. The dotted red line represents
the case when k3 = ℓ2, i.e. 2 log ℓ = 3 log k. Hence, dots above the line correspond to
the case when k3 > ℓ2, and those below correspond to the case when k3 < ℓ2. The
color of the dots in the figure represents the speedup percentage.

5 Application to the constructive Deuring correspondence

In this section, we consider applications of our new algorithms to the constructive
Deuring correspondence algorithm in [EPSV23]. The relevant part is Step 2 in
the general strategy as defined in Section 2.4, i.e., the IdealToIsogeny step.
Even though both of our two algorithms TorsionBasisE0(ℓ)(Algorithm 1) and
KernelPolynomialFromIrrationalX(E, ζ, ℓ)(Algorithm 3) can be used in theory
when the parameter requirements are met, we only incorporate our Algorithm 1
to the algorithm in [EPSV23] as the effect of the SageMath implementation
of Algorithm 3 becomes clear only when k is bigger than 300, and this never
happens for the extension degrees considered in [EPSV23].

Specifically, we use our Algorithm 1 in IdealToKernelGens ([EPSV23, Algo-
rithm 2]). The cost of this algorithm consists of two main parts, one is computing
a basis of E0[ℓ

e] which costs (k log p) operations in Fp2k , the other one is evalu-
ating a basis of O0 on the torsion basis points which costs O(log p) operations
in Fp2k . We replace their method for generating a torsion basis algorithm for E0

with ours whenever parameters p, ℓ satisfy our conditions. Besides this, we also
observe one trick that could speed up their computation which is supported by
the following lemma.



Faster algorithms for isogeny computations over extensions of finite fields 15

Lemma 17. Let E be a supersingular elliptic curve, ℓ be a prime, and e be a
positive integer. Let P ∈ E[ℓe] be of order ℓe, let γ ∈ End(E) be an endomor-
phism whose degree is ℓe, then γ(P ) is of order ℓe with probability ℓ

ℓ+1 .

Proof. There exists an explicit isomorphism of E[ℓe] and Z/ℓeZ × Z/ℓeZ such
that under this isomorphism γ = L where L is the map

L : Z/ℓeZ× Z/ℓeZ → Z/ℓeZ
(m,n) 7→ m.

A point (m,n) ∈ Z/ℓeZ × Z/ℓeZ is of order ℓe if and only if at least one of
m and n is of order ℓe, and therefore that are 2 × (ℓe − ℓe−1)ℓe − (ℓe − ℓe−1)2

such elements. L(m,n) is of order ℓe if and only m is of order ℓe and there are
(ℓe − ℓe−1)ℓe such choices. Therefore, the desired probability is

(ℓe − ℓe−1)ℓe

2× (ℓe − ℓe−1)ℓe − (ℓe − ℓe−1)2
=

ℓ

ℓ+ 1
.

⊓⊔

In view of this lemma, it is of high probability that knowing one element of
order ℓe in E0[ℓ

e] suffices to find the kernel generator (see step 9 of [EPSV23,
Algorithm 2]). Therefore, it is unnecessary to generate the full torsion basis as
in step 8 of [EPSV23, Algorithm 2]. We introduce Algorithm 4 as a variant of
[EPSV23, Algorithm 2] to include our Algorithm 1 and this new observation,
Algorithm 4 deviates from [EPSV23, Algorithm 2] from step 8.

The asymptotic runtime of Algorithm 4 is the same as that of [EPSV23, Al-
gorithm 2], but it performs better in practice. The performance depends heavily
on the prime factors of N(J) =

∏r
i=1 ℓ

ei
i , so it is hard to give a simple estimate

of how faster the new algorithm is than the old one, in particularly so for the
basis generation step. If we only consider the trick of computing one less torsion
basis, the speedup over [EPSV23, Algorithm 2] is

∑r
i=1

2ℓi
ℓi+1 times.

Implementations To measure the performance of our improvements, we compare
the runtime of the constructive Deuring correspondence algorithm in [EPSV23]
with our version replacing [EPSV23, Algorithm 2] by Algorithm 4.

We first run the comparison on the 3 parameters mentioned in [EPSV23].
For each parameter, we record the primes p and the norms of the ideals J
connecting E0

5 to E in Appendix A. The results are summarized in Table 4,
and the table indicates that our work can significantly reduce the cost of the
constructive Deuring correspondence computation, achieving approximately a
1.3x acceleration. However, we note that the requirements on ℓ are met only
around 3 times in the whole iterations for parameter p2 and 1 time for p3923.
Both of them need around 70 times iterations for kernel points generation in
total. As a consequence, for both primes, Algorithm 1 only brings around 1%
speed up.

5 Note that when p ≡ 1 mod 4, we take E0 to be the curve defined as in [EPSV23,
Section 3.1] and our torsion basis generation algorithm can be adapted to it as well.
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Algorithm 4 IdealToKerGens(J,E0)

Input: left O0-ideal J of norm N =
∏r

i=1 ℓ
ei
i , curve E0 with effective endomorphism

ring End(E0) ∼= O0.
Output: {G1, . . . , Gr}, a generating set of kerφJ with ord(Gi) = ℓei .
1: Compute α ∈ End(E0) such that J = O0α + O0N under the isomorphism

End(E0) ∼= O0.
2: let (ϕ1, . . . , ϕ4) be a basis of End(E0) ∼= O0 consisting of efficiently evaluatable

endomorphisms.
3: Write ᾱ as a fraction of the form (c1ϕ1+ . . .+ c4ϕ4)/t, where c1, c2, c3, c4 ∈ Z and

t ∈ Z≥1.
4: For i ∈ {1, . . . , r} do
5: Set vi = νℓi(t) to be the ℓi-adic valuation of t.

6: Let c
(i)
j = cj(t/ℓ

vi)−1 mod ℓei+vi
i for j ∈ {1, . . . , 4}.

7: Define γi = c
(i)
1 ϕ1 + · · ·+ ci4ϕ4.

8: If p ≡ 3 mod 4and ℓi ≡ 1 mod 4and ei + vi = 1 then
9: f(x), f ′(x)← TorsionBasis(ℓi).
10: Compute ℓi-torsion point P from f(x).
11: Compute Gi ← γi(P ).
12: If ℓei−1Gi =∞E0 then
13: Compute ℓi-torsion point Q from f ′(x).
14: Compute Gi ← γi(Q).
15: end If
16: else
17: Find ℓi-torsion point P ∈ E0.
18: Compute Gi ← γi(P ).
19: If ℓei−1Gi =∞E0 then
20: Find ℓi-torsion point Q ∈ E0.
21: Compute Gi ← γi(Q).
22: end If
23: end If
24: end For
25: Return {G1, . . . , Gr}

Table 4. Timings of the IdealToKerGens algorithms (referred to as kernel in the table)
and the full constructive Deuring correspondence computations (referred to as Deuring
in the table) for different primes, using SageMath 10.0 on a laptop with an Intel Core
i7-12700H processor. Since the IdealToKerGens algorithms are probabilistic, we execute
10 times benchmarks with random maximal orders and take the average as the final
result for each characteristic.

Primes
Kernel Deuring

[EPSV23, Alg 2] Algorithm 4 Speed Up [EPSV23] This work Speed Up

p3923 274.97s 167.05s 39.25% 520.07s 404.60s 22.20%
p1 174.07s 107.83s 38.05% 352.42s 266.92s 24.26%
p2 477.32s 299.57s 37.24% 689.76s 512.63s 25.68%
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In order to better measure the performance of the new torsion basis gen-
eration algorithm, we randomly generate three 256-bit primes and adjust cost
model proposed in [EPSV23, Section 4.2] to allow more ℓ in the norm of the
ideal (which is an input of the KLPT step, see Section 2.4) that satisfies the
conditions of Algorithm 1. Specially, we consider all primes ℓ < 150 and add it
to the norm if it satisfies that ℓ ≡ 1 mod 4 and that the order of p in (Z/ℓZ)×
is ℓ − 1. The runtime of constructive Deuring correspondence computation for
p3, p4, p5 is provided in Table 5. According to the results, after adjusting cost
model to use new algorithm for torsion basis generation more frequently, one can
get a significant speed up during the computation of the constructive Deuring
correspondence.

Table 5. Timings of the IdealToKerGens algorithms (referred to as kernel in the table)
and the full constructive Deuring correspondence computations (referred to as Deur-
ing in the table) for p3, p4 and p5, using SageMath 10.0 on a laptop with an Intel
Core i7-12700H processor. Since we want to measure the speedup brought by Algo-
rithm 1 and the trick implied by Lemma 17, we add two invariants to our work. One
is IdealToKerGens without using Algorithm 1 (referred to as trick only), the other one
is IdealToKerGens with the trick and Algorithm 1, which is Algorithm 4. Since the ker-
nel point generation algorithm is probabilistic, we execute 10 times benchmarks with
random maximal orders and take the average as the final result.

p3 p4 p5
Kernel Deuring Kernel Deuring Kernel Deuring

[EPSV23] 2217.06s 3205.94s 1424.43s 2007.57s 1371.94s 2318.64s

This work
trick only 1801.41s 2614.69s 1086.72s 1608.23s 928.96s 1823.63s

Algorithm 4 1144.33s 1957.88s 832.24s 1353.75s 787.53s 1678.88s

Speed Up
trick only 18.75% 18.44% 23.71% 19.89% 32.29% 21.35%

Algorithm 4 48.39% 38.93% 41.57% 32.57% 42.60% 27.59%
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V7́1. Jacques Vélu. Isogénies entre courbes elliptiques. Comptes Rendus de
l’Académie des Sciences de Paris, A, 273:238–241, 1971.

Wat69. William C Waterhouse. Abelian varieties over finite fields. In Annales
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A Experimental parameters for constructive deuring
correspondence

The primes used in Section 5 are given as follows.

p3923 = 23759399264157352358673788613307970528646815114090876784643387662192449945599

p1 = 11956566944641502957704189594909498993478297403838643406058180334130656750161

p2 = 37670568336551536389503919665937491111216122470333837677213877442445311999999

p3 = 88881583528687251695085351202716893361162950661419911309645115899579883741851

p4 = 82460884298062985073154572827668830392815810118105762484859341606469999173287

p5 = 95008112981120315885997172640930988762706307039235815007466698894954688225259

For each prime, we also give the norm of the equivalent left ideal J . Our opti-
mization focus on kernel point generations, so we provide the top three costly
torsion groups during this procedure which was also mentioned in [EPSV23,
Table 2].

– For prime p3923, the top three costly torsion groups to work are E0[3
68] ∈

E0(Fq27), E0[109] ⊆ E0(Fq27) and E0[4733] ⊆ E0(Fq26).

N(J) = 265 · 366 · 54 · 72 · 112 · 132 · 172 · 192 · 23 · 292 · 31 · 372 · 41 · 43 · 47 · 53
· 61 · 67 · 73 · 79 · 97 · 101 · 109 · 127 · 131 · 139 · 151 · 157 · 197 · 239 · 241
· 263 · 271 · 281 · 283 · 307 · 331 · 397 · 461 · 521 · 563 · 599 · 607 · 619 · 743
· 827 · 941 · 1153 · 1301 · 2179 · 2357 · 2393 · 3061 · 3361 · 3907 · 3923 · 4733
· 8273 · 9199 · 9661 · 10069 · 10753 · 11719 · 12517 · 17033 · 26489 · 58897
· 62731 · 107641.

– For prime p1, the top three costly torsion groups are E0[461] ⊆ E0(Fq23),
E0[691] ⊆ E0(Fq23) and E0[13789] ⊆ E0(Fq18).

N(J) = 25 · 35 · 52 · 72 · 11 · 1319 · 17 · 192 · 2918 · 31 · 37 · 41 · 4318 · 47 · 53 · 61
· 79 · 89 · 97 · 101 · 103 · 113 · 131 · 137 · 151 · 157 · 181 · 193 · 199 · 239
· 277 · 281 · 331 · 401 · 419 · 421 · 443 · 457 · 461 · 541 · 601 · 617 · 691 · 739
· 811 · 919 · 1621 · 2473 · 2741 · 3299 · 3373 · 4049 · 4933 · 6823 · 8609
· 11953 · 13789 · 13921 · 15467 · 15679 · 25969 · 33161 · 41681 · 91837.

– For prime p2, the top three costly torsion groups are E0[859] ⊆ E0(Fq33),
E0[1321] ⊆ E0(Fq33) and E0[409] ⊆ E0(Fq34).

N(J) = 242 · 35 · 58 · 72 · 114 · 13 · 17 · 194 · 23 · 29 · 31 · 37 · 41 · 43 · 473 · 53
· 59 · 61 · 676 · 73 · 79 · 97 · 1013 · 103 · 1133 · 1373 · 139 · 157 · 1812 · 197
· 223 · 239 · 241 · 271 · 2773 · 281 · 3073 · 311 · 349 · 397 · 409 · 4213 · 449
· 547 · 691 · 829 · 859 · 907 · 919 · 1013 · 1103 · 1171 · 1321 · 1597 · 2341
· 2647 · 2777 · 3271 · 3739 · 4513 · 5419 · 6091 · 9007 · 10267 · 11981
· 20641 · 26083 · 32957 · 52627.



20 S. Cai, M. Chen, C. Petit

– For prime p3, before adjusting cost model, the top three costly torsion groups
are E0[11161] ⊆ E0(Fq45), E0[2351] ⊆ E0(Fq47) and E0[1223] ⊆ E0(Fq47).

N(J) = 24 · 35 · 54 · 11 · 132 · 172 · 19 · 23 · 29 · 31 · 37 · 41 · 43 · 47 · 53 · 59 · 61
· 67 · 71 · 73 · 79 · 83 · 89 · 97 · 101 · 103 · 109 · 113 · 137 · 149 · 157 · 173·
181 · 191 · 193 · 197 · 199 · 239 · 241 · 251 · 257 · 271 · 311 · 353 · 397 · 431
· 463 · 521 · 601 · 631 · 677 · 769 · 953 · 1063 · 1117 · 1223 · 1301 · 1453·
1621 · 1783 · 1801 · 2351 · 2521 · 2857 · 4673 · 5581 · 6043 · 7937 · 8087·
9103 · 9829 · 10729 · 11161 · 12161 · 13441 · 17209 · 17807 · 29017 · 46901
· 47269 · 47441 · 77969 · 85021 · 89839 · 180503.

– For prime p4, before adjusting cost model, the top three costly torsion groups
are E0[1723] ⊆ E0(Fq41), E0[1559] ⊆ E0(Fq41) and E0[3361] ⊆ E0(Fq40).

N(J) = 25 · 34 · 52 · 72 · 132 · 17 · 19 · 23 · 29 · 31 · 372 · 41 · 43 · 47 · 53 · 59 · 61
· 67 · 71 · 73 · 79 · 83 · 89 · 97 · 101 · 109 · 113 · 127 · 139 · 157 · 163 · 181·
193 · 229 · 233 · 239 · 241 · 277 · 311 · 379 · 397 · 401 · 409 · 463 · 677 · 769
· 859 · 877 · 881 · 937 · 1217 · 1301 · 1321 · 1423 · 1489 · 1559 · 1597 · 1723
· 1873 · 1973 · 2377 · 2887 · 3361 · 3461 · 3499 · 3571 · 3697 · 3769 · 3877·
4231 · 4993 · 5023 · 5437 · 5669 · 5881 · 6211 · 6449 · 6781 · 8317 · 8677·
10501 · 12757 · 15227 · 19441 · 19793 · 29389 · 64577.

– For prime p5, the top three costly torsion groups are E0[83] ⊆ E0(Fq41),
E0[2029] ⊆ E0(Fq39) and E0[859] ⊆ E0(Fq39).

N(J) = 24 · 34 · 53 · 73 · 112 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 43 · 47 · 53 · 59
· 61 · 67 · 71 · 73 · 79 · 83 · 89 · 97 · 101 · 103 · 109 · 113 · 127 · 131 · 137·
151 · 157 · 193 · 199 · 223 · 229 · 233 · 239 · 257 · 349 · 409 · 541 · 601 · 631
· 661 · 701 · 727 · 751 · 859 · 1009 · 1213 · 1471 · 1489 · 1601 · 1657 · 2029
· 2341 · 2441 · 2609 · 2801 · 3361 · 3559 · 4159 · 4831 · 5077 · 7193 · 9649·
9929 · 13441 · 13907 · 13913 · 14293 · 21937 · 22573 · 27961 · 38851 · 52667
· 59621 · 69193 · 162499 · 170047 · 208141 · 288493.
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