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Abstract—Secure aggregation is the distributed task of securely
computing a sum of values (or a vector of values) held by
a set of parties, revealing only the output (i.e., the sum) in
the computation. Existing protocols, such as Prio (NDSI’17),
Prio+ (SCN’22), Elsa (S&P’23), and Whisper (S&P’24), sup-
port secure aggregation with input validation to ensure inputs
belong to a specified domain. However, when malicious servers
are present, these protocols primarily guarantee privacy but
not input validity. Also, malicious server(s) can cause the
protocol to abort. We introduce SCIF, a novel multi-server
secure aggregation protocol with input validation, that remains
secure even in the presence of malicious actors, provided
fewer than one-third of the servers are malicious. Our pro-
tocol overcomes previous limitations by providing two key
properties: (1) guaranteed output delivery, ensuring malicious
parties cannot prevent the protocol from completing, and
(2) guaranteed input inclusion, ensuring no malicious party
can prevent an honest party’s input from being included in
the computation. Together, these guarantees provide strong
resilience against denial-of-service attacks. Moreover, SCIF
offers these guarantees without increasing client costs over Prio
and keeps server costs moderate. We present a robust end-to-
end implementation of SCIF and demonstrate the ease with
which it can be instrumented by integrating it in a simulated
Tor network for privacy-preserving measurement.

1. Introduction

Secure multiparty computation (MPC) allows a group of
entities to securely compute an arbitrary function operating
jointly over their individual inputs with the guarantee that
nothing beyond the output of the function is revealed. Secure
summation or aggregation is one of the simplest functions
to compute via MPC, yet it is already powerful enough to
facilitate computation of other aggregate statistics includ-
ing MEAN, STDDEV, MAX, MIN, (Boolean) AND, OR,
HISTOGRAMS, and more. A robust MPC implementation
can enable privacy-preserving collection of user travel data
for navigation apps [1], vitals in fitness trackers [2], various
statistics from web browsers, and, more generally, federated
learning [3], [4].
†Work done while the author was affiliated with Georgetown University.

In its simplest form, an MPC protocol for aggregation
proceeds as follows: Input parties share their input with
compute parties (which could be external servers or the input
parties themselves) using some linear secret-sharing scheme.
The compute parties can compute the sum of secret shares
locally and transmit the results to the output party who can
reconstruct the result. This simple protocol will guarantee
security against semi-honest corruption of all-but-one clients
and up to a threshold of servers (implied by the underlying
secret-sharing scheme). Standard techniques can be used to
boost the security to withstand malicious adversaries. How-
ever, there is a simple attack that can disrupt the protocol,
namely that the parties can give arbitrary values as inputs.
This can completely invalidate the result of the computation
(for the underlying target application).

Toward addressing this drawback, Corrigan-Gibbs and
Boneh designed Prio, one of the first secure aggregation
systems with input validation [5], which has been deployed
in various real-world scenarios by organizations such as
Apple, Google, Internet Services Research Group (ISRG),
and Mozilla [6]. In the Prio model, the task of secure
aggregation is delegated to an (external) set of server nodes
where correctness and privacy are guaranteed against a semi-
honest adversary that corrupts up to all but one of the
servers. A crucial ingredient, developed in the Prio work, is
a secret-shared (i.e., distributed) non-interactive proof which
allows each client to certify its input to the servers that only
hold secret-shares of the input while preserving privacy. A
non-interactive proof allows the clients to simultaneously
share their input and the proof to all servers in a single
message.

The main drawback of the Prio system is that their
security holds only against semi-honest corruption of the
servers, and moreover, if even one of the servers crash, all
data is lost, and the computation aborts.

In this work, our goal is to design and implement a
concretely-efficient secure aggregation scheme that meets
the following criteria:

(a) Security in the presence of malicious adversaries: The
security properties and features of the system should hold
even in the presence of a malicious (or active) adversary
that can arbitrarily deviate from the protocol.



(b) Guaranteed output delivery: An adversary that actively
attacks the system should not be able to prevent an honest
party from receiving the output. This property is important
to prevent denial-of-service attacks. Properties (a) and (b)
together are sometimes referred to as full security.

(c) Guaranteed input inclusion: The inputs of all honest
parties should be included in the computation even if the
adversary tries to actively attack the system.1

(d) Unreliable network on client side: Input clients are
required to participate in at most one round of communica-
tion.

(e) Input validation: In a robust secure aggregation system,
corrupted clients should be prevented from giving “artificial”
inputs. If the underlying domain D can be captured via a
predicate P : Fm → {0, 1} which outputs 1 on all inputs
x ∈ D and 0 otherwise, then a simple form of robustness
allows aggregation of inputs if and only if the predicate on
its input returns 1 [7], [8], [9].

(f) End-to-end implementation: The full system should
be realizable in an end-to-end implementation. The imple-
mentation should be deployable on commodity hardware, be
sufficiently scalable to support a large number of clients and
parallel statistics collection operations, and be sufficiently
modular to allow easy integration with existing software.

Secure aggregation has been broadly pursued in two
popular settings: (1) in works such as [5], [10], [11] com-
putation is delegated to an external set of servers, and (2)
following the line of works starting from Bonawitz et al.
[12], [8], [13] where the input parties also play the role
of compute parties and are connected in a star network
topology with the center of the star designated as the output
party. The former works do not guarantee output delivery
and the latter do not guarantee input inclusion and/or require
client participation in multiple rounds.

The current state of affairs for secure aggregation is that
there is no system that sufficiently meets all the desiderata.

1.1. Main Result and Techniques

In this work, we consider a model that is a slight variant
of the Prio model and design a secure aggregation system
with input validation that meets all our requirements. In
slightly more detail, we consider a model where security is
maintained even if an attacker simultaneously corrupts all
but one of the (input) clients, at most 1⁄3 of the (compute)
servers and the output party. We showcase our system as
lightweight via a robust end-to-end implementation.

On a high level, our protocol can be modularly described
via the Verifiable Relation Sharing (VRS) functionality as
observed in a recent work [14]. Introduced in the work by

1Typically, guaranteed output delivery implies guaranteed input in-
clusion. However, in scenarios where the input parties can join in a
permissionless way and the adversary controls who can join (as is the case
in the single server setting described later), guaranteed input inclusion does
not hold.

Applebaum et al. [15], VRS allows a dealer to share a secret
with n servers with the guarantee that all (honest) servers
either discard the dealer or output valid shares to a secret that
satisfies a predefined relation R. Given such a primitive for
a linear secret sharing scheme, a robust secure aggregation
protocol w.r.t. a predicate P meeting our desiderata can be
constructed as follows: (1) Each client acting as a dealer
uses a VRS scheme to secret share its input by relying on
the predicate to instantiate the relation R. Then, all (honest)
servers simply add the secret shares of clients (that were
not discarded at the end of the VRS instance) and send the
aggregate to the output party that reconstructs the secret. For
output to be correctly reconstructed even in the presence
of malicious servers, we will need the underlying secret-
sharing scheme to have some error reconstruction property.

We design a protocol to realize the VRS functionality
by reducing it to the distributed commit and prove func-
tionality (dCP) protocol following the paradigm introduced
in recent work [14]. In a dCP protocol, a prover holding a
secret witness w wishes to convince n verifiers each with
individual inputs x1, . . . , xn that n relations R1, . . . ,Rn

hold respectively (i.e., Ri(xi, w) holds for each i) w.r.t.
to the same witness w. This primitive will be useful for
the prover to first give secret shares of its input to n
servers and then convince them that the secret encoded in
the secret shares satisfies a (certain robustness) predicate
P . As an independent technical contribution, we provide
a concretely efficient instantiation of the dCP functionality
using the Ligero [16] sublinear zero-knowledge argument
system, which in turn yields an implementation of a VRS
(and a VSS i.e., Verifiable Secret Sharing) protocol for any
linear secret-sharing scheme as described above.

Comparison with [14]. As mentioned above, in this work
the authors designed a secure aggregation protocol using the
VRS and dCP functionalities. Their protocol satisfied (a)-
(e) of the desiderata and additionally offered the stronger
guarantee of differential privacy. However, the focus was
establishing a feasibility result using ad hoc techniques for
instantiating the dCP functionality and did not evaluate the
concrete efficiency via an implementation.

1.2. Implementation

A core contribution of this paper is the development,
evaluation, and concurrent release of privacy-preserving
Statistics Collection with Input validation with Full security
(SCIF), a ready-to-use open source distributed statistics
collection platform. SCIF supports secure and private sum-
mation on a large number of devices. To our knowledge, it is
the first implemented privacy-preserving statistics collection
system that offers protection against malicious participants
(both client and server), supports input validation, and guar-
antees output delivery and input inclusion. We evaluate SCIF
using a real-world deployment with geographically dis-
tributed clients and demonstrate that SCIF’s computational
and networking costs are minimal: a measurement involving
500 clients, where each client submits 104 inputs, requires
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less than 10 seconds of processing time on each client and
less than 40 seconds on the server, while consuming slightly
more than 2 MB of network bandwidth per client and
200 MB between the servers. Even when up to 40% of the
clients behave maliciously, which triggers a share correction
operation, the execution time is less than 90 seconds.

SCIF is written in Go with scalability and ease-of-use as
primary design goals. It is compatible with a large number
of platforms (our testing used OSX and Linux), and is easily
incorporated into existing systems to enable secure statistics
collection. As a proof-of-concept, we integrate SCIF with
a private deployment of Tor [17]—a popular anonymity
service [18]—and show how SCIF can be used to safely
learn information about the behavior of Tor nodes.

SCIF is available for download at https://anonymous.
4open.science/r/scif/ (hosted anonymously).

2. Related Work

Single-server setting. The single server setting has been
extensively studied in prior works [12], [19]. Initial research
developed secure aggregation protocols designed to protect
the privacy of client inputs while tolerating potential client
dropouts [12], [19], [20], [21], [22]. However, they fell short
in ensuring the correctness of the aggregate when faced
with malicious clients who can bias the results by sending
malformed inputs. To mitigate such attacks in statistical
contexts, methods include ensuring well-formed inputs, such
as restricting inputs to 0 or 1 in counts, adding only a value
of 1 per histogram bucket, and limiting contributions to mul-
tiple histogram buckets. In the federated learning context,
bounding the norms of inputs (e.g., L2 and Linf norms) has
proven effective against such attacks. Prior works [8], [23],
[13], [11] implemented these defenses using input validation
mechanisms2 to verify that clients submitted valid inputs,
which utilized zero-knowledge proofs. These protocols offer
varying levels of security. Some simply detect malicious
clients and abort the protocol upon detection (security with
abort) [8], [13]. Others go further by identifying and ex-
cluding misbehaving clients from the aggregate (full secu-
rity) [23], [13], [11]. Although these protocols can handle
malicious adversaries, they often require multiple rounds of
interaction between clients and the server, which is unde-
sirable in settings with unreliable clients. Our focus is on
achieving full security while limiting client participation to
a single round. This means clients are required to send only
a single communication to the server, after which clients’
online presence is not necessary.

Many more secure aggregation methods in the single-
server setting have been studied and utilized in federated
learning. For a comprehensive overview of this literature,
refer to the survey by Mansouri et al. [24].
Multi-server setting. In the multi-server setting, con-
siderable research [5], [10], [25] has emerged, employing
multi-party computation techniques for computing aggregate

2This is also referred to as input certification, Byzantine resilience, or
robustness in prior work.

statistics. In this setting, clients delegate computation tasks
to a small set of servers. Different threat models exist,
depending on whether adversaries corrupt parties in a semi-
honest or malicious manner, and whether there exists a
dishonest or honest majority among the servers.

The seminal work by Corrigan-Gibbs and Boneh [5]
introduces an efficient secure aggregation system called Prio
in the multi-server model where the adversary can semi-
honestly corrupt all but one of the servers and maliciously
corrupt the clients. Subsequent research builds upon this
foundation. Notably, the works of [5], [10], [25], [26] en-
hance the original protocol. Prio+, a system introduced by
[10], improves upon the client computation costs over Prio
by employing boolean secret sharing for input validation,
rather than relying solely on zero-knowledge proofs. Yet
another system, Elsa, proposed by [25], further improves
both Prio and Prio+ in a setting where there are two non-
colluding servers and achieves privacy even when one server
is maliciously compromised. Developed by [26], the Whis-
per system aims to scale to millions of clients in a similar
two servers setting by improving upon the server-to-server
communication and server storage to be sublinear in the
number of clients (albeit with a slight increase in client-to-
server communication).

On the upside, the aforementioned works in the multi-
server setting can tolerate an adversary corrupting any num-
ber of servers (i.e., a dishonest majority among the servers).
However, they have a limitation: they cannot guarantee out-
put delivery if even a single server is maliciously corrupted.
In contrast, our focus is on achieving guaranteed output
delivery in a different threat model, where an adversary can
only corrupt a minority of the servers maliciously (i.e., an
honest majority among the servers).

Additionally, we aim to ensure guaranteed input inclu-
sion, even in the presence of malicious corruption of clients
and a minority of the servers. Contrast this with the single-
server setting, where the central server can decide which set
of clients to include in the final aggregate, (as long as the set
meets a minimum size requirement) and could potentially
discard many honest clients’ inputs. Our work strives to
achieve both guaranteed input inclusion and guaranteed
output delivery while ensuring that clients’ participation
remains limited to a single round.

A closely related work is the Flag secure aggregation
system by Bangalore et al. [11] who show how to achieve
input validation and guaranteed output delivery in the client-
server setting where all parties are connected in a star topol-
ogy with the output party. They demonstrate efficiency by
benchmarking components of their system. However, similar
to the single-server setting, their work fails to guarantee
input inclusion as the output party can censor input clients.

3. Preliminaries

Basic notation. We denote the set of clients by U =
{U1, . . . ,Unc}, servers by S = {S1, . . . ,Sns} and the output
party by O. For simplicity, we assume that each client Ui is
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also identified by a unique integer in [nc] and each server Sj
is identified by a unique integer in [ns]. Although an integer
may be associated with a client and a server, we usually
specify the type of entity; if not it can be easily inferred
from the letters used to specify the identity. BC(·) denotes
the communication over a broadcast channel.

3.1. Our Model

We consider a synchronous network model involving nc
clients, ns servers, and an output party O. The network
assumes point-to-point secure and authenticated channels
between the following parties: (i) client to server, (ii) server
to server, and (iii) server to output party. This can be
facilitated with a public-key infrastructure and standard
cryptographic primitives such as authenticated encryption.
All parties know the identities (i.e., public keys) of the other
parties they need to communicate with.
Threat model. Both clients and servers can be malicious
at any point in our protocol, meaning they can arbitrarily
deviate from the protocol. We assume at most tc malicious
clients and ts malicious servers. More precisely, the ad-
versary can maliciously corrupt all but one of the clients
i.e., tc < nc and maliciously corrupt up to a threshold of
ts < ns/3 servers. Additionally, the adversary can mali-
ciously corrupt the output party.

3.2. Secure Aggregation

We consider the problem of adding vectors over integers
captured by a large enough field F. In our model, we have nc
clients, ns servers, and an output party. Each client Ui ∈ U
has a vector Xi ∈ Fd of size d. The servers do not have any
inputs, and the output party receives the final aggregate.

Our MPC protocol aims to implement the ideal function-
ality FAgg for secure aggregation that is given in Figure 1.
This functionality is parameterized by nc, the (maximum)
number of clients, and d, the length of input vector. FAgg

receives the inputs from the clients and stores these values.
The functionality will aggregate the inputs of the clients that
satisfy the predicate P (·) and sends the result to the output
party.

3.3. Replicated Secret Sharing Scheme

We adopt the notation from [27] to describe the Repli-
cated Secret Sharing (RSS) Scheme. RSS, introduced by
[28], with threshold t, is defined by the following proce-
dures3. We let R be any finite ring, λ =

(
n
t

)
and denote by

T1, . . . , Tλ ⊂ [n] all subsets of indices of size n− t.
• Enc(x): To encode a secret x with threshold t, first

generate λ random xT1
, . . . , xTλ

∈ R under the con-
straint that x = xT1

+ . . . + xTλ
. The share shi is a

3Rather than using the standard share and reconstruct terminology, we
define RSS using slightly different terminology: encode Enc(·) and decode
Dec(·). This ensures consistency with the coding scheme notation used in
our dCP.

tuple consisting of all xTj such that i ∈ Tj . We denote
the output of the encoding by Share = (sh1, . . . , shn).
Sometimes, the randomness used for Enc, say r, is
explicitly specified as Enc(x; r).

• Dec(Share): For each subset T holding a value xT ,
obtain all the values for xT repeated across the differ-
ent share tuple of the encoding Share; if there exists
different values for xT , then set the majority value to
be xT . Finally, Pi sets x =

∑
T⊆[n]:|T |=n−t xT .

For an encoding of size n and threshold t, there are(
n
t

)
distributed shares. Each share has

(
n−1
t

)
values. We

can check that a encoding is consistent, by ensuring the
equality of the joint values in each pair of shares. Note that
each pair of shares can check pairwise consistency of an
arbitrarily large number of sharings by comparing a hash of
the string consisting of all their joint values. Refer to [27]
for more details.
Non-interactive Generation of Random RSS Sharings.
Let F = Fk | k ∈ 0, 1κ, Fk : 0, 1κ → F be a family of
pseudo-random functions. Let the random values associated
with the RSS encoding of k are kT1

, . . . , kTλ
. To gener-

ate the ℓ-th random encoding, compute the value rℓT as
rℓT = FkT

(ℓ). The newly generated random sharing, denoted
by (rshℓ1, . . . , rsh

ℓ
n), is such that rshℓi consists of all rℓTj

where i ∈ Tj , as defined in Enc(·).

4. Secure Aggregation with Input Validation

In this section, we introduce our secure aggregation pro-
tocol, which incorporates input validation and full security.

We start with a high-level overview of the protocol.
Similar to standard MPC techniques, the basic structure
consists of two main phases: input sharing and output re-
construction. In the input sharing phase, each client secret-
shares its input among the servers using a linear secret
sharing scheme (which we instantiate with a replicated
secret sharing scheme). During the output reconstruction
phase, the servers aggregate the shares received from all
clients and send the aggregated shares to the output party,
who then reconstructs the final aggregate. By setting the
threshold of the secret-sharing scheme to ts < ns/3, our
protocol can tolerate the malicious corruption of up to ts
servers, ensuring guaranteed output delivery.
Input validation via zero-knowledge proofs. To en-
sure that clients submit valid inputs, our protocol employs
zero-knowledge proofs. Clients must demonstrate to each
server that their input is well-formed and that the input
shares distributed among the servers are consistent with
this input. This is achieved through a distributed Commit
and Prove (dCP) functionality, detailed in Section 4.1. The
dCP functionality involves two phases. During the Com-
mit phase, the client commits to its input. Subsequently,
during the Prove phase, the client proves to each server
that the committed input is well-formed with respect to
some predicate P (·) and consistent with the input shares
distributed among the servers. Each server then accepts or
rejects the proof and outputs the shares if the proof is
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Functionality FAgg

The functionality FAgg communicates with the set of clients U = {U1, . . . ,Unc}, an output party O and an adversary A. It is
parameterized by P : Fd → {0, 1}, nc and d, where P is the predicate used for certify the inputs, nc is the number of clients and
d denotes the size of client’s input vector.

1) Upon receiving input ("Input", sid,Ui, Xi) from some new client Ui ∈ U where Xi ∈ Fd, store the client’s input Xi.
2) Upon receiving ("Output",O) from the output party O, proceed as follows:

– Compute the aggregate Yagg =
∑

Ui∈U P (Xi) ·Xi (note that this is equivalent to aggregating only inputs of clients that
satisfy the predicate P ).

– Send ("Output", sid,Yagg) to the output party O and halt.

Figure 1. Ideal Functionality for Secure Aggregation with Input Certification

accepted. After the dCP, servers need to agree on a set
of valid clients whose inputs will be included in the final
aggregate. Servers broadcast complaints against clients for
whom proof verification failed. Based on the number of
complaints, clients are either discarded if the complaints are
too high or included in the valid set otherwise. We will rely
on a zk-SNARK so that only a single message is required to
generate a proof. Our dCP protocol is inspired by the work
of Zhang et al. [29] who rely a similar primitive towards
designing a VSS protocol.

Ensuring all honest servers possess valid shares. For
the final aggregate to be reconstructible, all honest servers
must have valid input shares from clients in the valid set. If
any honest server lacks valid input shares, it cannot compute
its aggregate share. This could prevent the output party
from reconstructing the aggregate if the number of missing
aggregate shares exceeds the reconstruction threshold. To
address this, we employ a verifiable relation sharing (VRS)
scheme that enhances the dCP to ensure that all honest
servers receive valid shares, guaranteeing output delivery.

We begin by discussing our dCP and VRS constructions
in Sections 4.1 and 4.2 respectively and then show how
to integrate them into our secure aggregation protocol with
input validation.

4.1. Distributed Commit-and-Prove (dCP)

We construct a dCP protocol involving a prover and n
verifiers. This protocol serves as a foundational component
in validating the inputs with respect to a predicate P (·). In
our scenario the prover secret-shares its input and demon-
strates that both the input and its shares, distributed among
the verifiers, are “well-formed”. To elaborate, the prover
secret-shares its input x and sends the share shj to verifier
Vj , where (sh1, . . . , shn) ← Enc(x; rdcp) and rdcp is the
randomness used by Enc. Subsequently, the prover needs to
prove the following two properties to each verifiesr Vj ∈ V .

1) P (x) = 1
2) shj = [Enc(x; rdcp)]j , indicating that shj is a valid

share with respect to input x and randomness rdcp.
We now construct the dCP protocol based on the Ligero

zk-SNARK proof system. First, we first establish termi-
nology. the circuit and the associated distributed relations

which will be used for our dCP construction. We repeat this
verbatim from [14].
Notation 4.1 (Circuit Description given a predicate P ). We

consider a circuit C that takes w = (x, rdcp) as input and
yields output (out1, . . . ,outn) such that if P (x) = 1,
then outj = shj , otherwise outj = ⊥ for all j ∈ [n]
where (sh1, . . . , shn)← Enc(w).

We employ the following notation to specify a set of
relations (R1, . . . ,Rn) via a circuit C.
Notation 4.2 (Determination of Distributed Relations from

Circuits). Consider a circuit C : Fin → Fout that takes an
input w and produces (out1, . . . ,outn), where outj =
[C(w)]j represents the jth output of the circuit for input
w. A pair (outj ,w) belongs to Rj if the evaluation
by C(w) does not result in (⊥, . . . ,⊥). Additionally,
we assert that the distributed relation (R1, . . . ,Rn) is
determined by a circuit C if (outj ,w) belongs to Rj

for each j ∈ [n].

With the terminology established, our focus now is on
constructing a dCP protocol for a set of relations determined
by a circuit C as described previously. This circuit C takes
input w = (x, rdcp) and verifies if w satisfies the predicate
P (·). If P (x) = 1, the circuit internally computes and
outputs the shares (out1, . . . ,outn), otherwise, it outputs
(⊥, . . . ,⊥).

Initially, let us consider how a prover with input w can
prove to a single verifier, denoted as Vj , that the two afore-
mentioned properties hold for w. The prover can execute
the Ligero proof generation outlined in Appendix B with
respect to circuit C and input w. All constraints imposed
by the circuit are enforced via code, linear, and quadratic
tests, akin to the standard Ligero proof system. Additionally,
the column consistency check aligns with Ligero’s protocol.
Note that randomness for tests and opening columns is
generated via Fiat-Shamir transformation.

However, this process is not sufficient, as we still need
to ensure consistency between:

• the share shj received by verifier Vj
• the output outj = [C(w)]j which is included in the

extended witness
Formally, we need to ensure that shj = [C(w)]j . This

equality between the share and portion of the extended wit-
ness can be checked via an additional linear test to confirm

5



Protocol ΠdCP

This protocol involves a prover P and n verifiers V = {V1, . . . ,Vn}. It is parameterized by n relations (R1, . . . ,Rn) which are
determined by a circuit C : Fn1 → Fn2 . C takes as input w and outputs (out1, . . . ,outn), where outj = [C(w)]j is the jth

output of the circuit given input w. Recalling Definition 4.2, a pair (outj ,w) belongs to Rj if the evaluation by C(w) does not
output (⊥, . . . ,⊥). Refer to Appendix B for a self-contained description of Ligero proof system.
Input & Output The prover has input w ∈ Fn1 and the verifiers have no inputs. Each verifier Vj ∈ V outputs (outj , accept) if

(outj ,w) ∈ Rj ; otherwise outputs reject.

Commit Phase: The prover P does the following.
1) Compute the commitment to the proof oracle following the procedure outlined in Appendix B. Specifically, for a given

circuit C with input w, P performs the following steps:
• Compute the extended witness wext.
• Encode the extended witness row by row using the Reed-Solomon scheme.
• Commit to the encoded extended witness column-wise using a Merkle-tree-based hash.
• The resulting Merkle root, denoted by com, serves as the commitment to the proof oracle.

2) Broadcast (Commit, sid,P, com) to all the verifiers V .

Prove Phase: P proves to Vj that (shj ,w) ∈ Rj for each of the verifiers Vj ∈ V where (sh1, . . . , shn) ← Enc(w) This phase
proceeds as follows.

1) The proof is generated according to the Ligero proof system specifications and includes the following components for each
verifier Vj :

• Outputs of the standard Ligero tests associated with circuit C: code, linear, quadratic, and linear-share tests, which are
common to all verifiers.

• Output of the column consistency check, as specified in Ligero, including the authentication paths for opening the
columns of the extended witness (which was committed to using the Merkle root com).

• Output of an additional linear test, verifying that shj = outj , where shj is the received share and outj is the jth

output of the circuit C (recall that outj is included in the extended witness).
• The Merkle root com′ and authentication paths associated with opening the output of the additional linear test for Vj .

Here, com′ is the root of the Merkle tree, with each of the n outputs of the additional linear test as the leaves.
Note that the first two components of the proof are common across all verifiers, while the third component differs for each
verifier.

2) Finally, P sends the proof and the share shj to Vj for all j ∈ [n].
3) Each verifier Vj ∈ V verifies the proof received in the previous step and outputs the (accept,outj) if the proof verification

passes, otherwise outputs reject.

Figure 2. A Distributed Commit-and-Prove Protocol

that the share shj received by Vj matches the jth output of
C(w)]j i.e., outj , which is included in the extended witness.

By introducing this additional linear test to ensure share
consistency, we ensure the prover can convince a single
verifier Vj of the aforementioned properties. Extending this
proof among n verifiers is our next step. The straightfor-
ward approach would be to repeat the aforementioned proof
generation process for each verifier. However, this method
fails because of the following reason. Note that using the
Fiat-Shamir transform to obtain the non-interactive variant
of the Ligero Proof system needs some more work to extend
to multiple verifiers. This is because the additional compo-
nents of the linear test are different for different verifiers,
which results in different columns being opened for different
verifiers. This can violate the zero-knowledge property. To
avoid this, we need to ensure that all the verifiers open the
same columns. We do so by building a Merkle tree with
the output of the linear test (for share consistency) as the
leaves and use the Merkle root in the Fiat-Shamir transform.
When the prover sends the proof to each verifier, it also
presents the authentication path corresponding to the output

of the linear test for share-consistency to each verifier. This
addresses the issue of differing randomness across verifiers.

In summary, the additional linear test for share-
consistency and the modification of the Fiat-Shamir trans-
form allow us to extend the Ligero proof system to accom-
modate multiple verifiers. Leveraging this, we can construct
a dCP protocol as follows. During the Commit phase, the
prover commits to the proof oracle corresponding to circuit
C and input w using the Merkle tree-based hash. The re-
sulting Merkle root is then broadcasted to all the verifiers.
Subsequently, during the Prove phase, the prover generates
the proof following the extension of Ligero to multiple
verifiers and forwards the proof, along with the respective
shares, to each of the verifiers.

The ideal functionality for Distributed Commit-and-
Prove (dCP), represented by FdCP, is provided in Figure 10
of Appendix A. The corresponding protocol ΠdCP, which
securely implements FdCP, is detailed in Figure 2. The
formal theorem and the proof sketch are presented below.

Theorem 4.1. Given a predicate P : Fd → {0, 1}, we
first instantiate the circuit C and distributed relation
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(R1, . . . ,Rn) as per definitions 4.1 and 4.2.
Then, the ΠdCP protocol, given in Figure 2, involving a
prover P and n verifiers V1, . . . ,Vn, securely realize the
FdCP functionality (given in Figure 10) against a static
malicious adversary A who controls the prover and at
most t verifiers.
The communication between the prover and verifier Vi
is O(|outi| +

√
|C| · κ + BC(h)) field elements where

κ is the security parameter, |C| is the number of multi-
plication gates in circuit C and h is the output length of
the hash function.

Communication efficiency. The prover initially broad-
casts the commitments com, the root of a Merkle tree with
a size of h, incurring a cost of BC(h). During the proof
phase, the prover sends the input share and the proof to
each verifier. The input share sent to each verifier Vi is
of size O(|outi|). The proof size is O(

√
|C| · κ) (follows

from the Ligero proof system). The additional linear test and
authentication paths in our variant of Ligero do not alter the
costs asymptotically. Thus, the total costs align with those
specified in Theorem 4.1.

Proof Sketch. We briefly discuss the key ideas of
our proof. Let A be the static adversary who maliciously
corrupts parties in protocol ΠdCP. Let C be the subset of
verifiers corrupted by A where |C| ≤ t.

We now describe the simulator Sim. Sim internally in-
vokes the adversary A with some auxialliary input z. We
consider two cases depending on whether A corrupts the
prover or not.

Simulating the case where the Prover is honest. Since
the dCP is based on the Ligero proof system, we first
describe how to adapt the simulator for the zero-knowledge
property in the Ligero proof system to our setting. In our
setting, the simulator needs to simulate the proofs for each
corrupt verifiers. Recall that we deviate from the standard
Ligero proof system in two ways. First, the prover sends a
separate proof to each of the verifiers, differing only in the
output of an additional linear test that we introduce. The
common part of the proof across all verifiers is simulated
as in Ligero and remains the same for all verifiers. The
additional linear test, specific to each verifier, is simulated
similarly to Ligero’s linear test; this part differs across
verifiers. Second, the outputs of the additional linear tests are
committed via a merkle tree and later revealed towards their
respective verifiers. This additional merkle root, computed
using a collision resistant hash function (modeled as a
random oracle), does not reveal any additional information.

Now, we describe the simulation of the Commit and
Prove phases in the dCP protocol: Whenever an honest
prover P commits to a value w, Sim receives a message
(receipt, sid,P). Upon receiving the receipt message, Sim
simulates the proof according to Ligero, which includes a
common portion for all verifiers and the additional linear test
outputs that differ across verifiers. Let c̃om be the Merkle
commitment to the extended witness, generated as part of
the common portion of the simulated proof. Sim simulates

a broadcast of c̃om among the verifiers on behalf of the
honest prover P .

Next, whenever an honest P sends the
(Prove, sid,P,Vj , shj) message to FdCP, Sim receives
the message (Proof, sid,P,Vj , shj , accept) from FdCP on
behalf of Vj ∈ C. For each Vj ∈ C, then Sim internally
sends the message (shj , π̃j) to A on behalf of P , where π̃j

is the simulated proof associated with verifier Vj ∈ C.

Simulating the case where the Prover is corrupted. The
simulation of Commit Phase is as follows. Whenever A
(controlling P) wants to commit to a value, Sim obtains
the commitment comVd

that A broadcasts to all verifiers.
Since the proof system is non-interactive and operates in
the random oracle model, then Sim can observe all of the
queries that P makes to the random oracle while computing
the proof, and use it to obtain the witness w. Then, Sim
externally sends the message (commit, sid,P,w) to FdCP

and keeps track of the value w.
Next, the Prove Phase is simulated as follows. Whenever

A wants to prove a statement to a verifier Vj , Sim receives
from A the share shj and the proof πj on behalf of the
honest verifier Vj . Sim first verifies the proof πj as per
the verification steps described in Figure 2. If the proof
verification passes but Rj(shj ,w) ̸= 1 for any of the honest
verifiers Vj , then Sim aborts. If Sim does not abort, it
externally sends the message (Prove, sid,P,Vj , shj) to FdCP

on behalf of A for each honest verifier Vj . Finally, Sim
outputs whatever A outputs and halts.

We now prove that the real world view is computa-
tionally indistinguishable from the ideal world view. When
the prover is uncorrupted, the key difference between the
ideal and real executions is that the commitment c̃om and
proof {π̃j}Vj∈C are both simulated in the former and gen-
erated as per the protocol in the latter. It follows from the
zero-knowledge property of the Ligero proof system that
the REAL and IDEAL distributions are indistinguishable
(when the prover is honest).

When the prover is corrupted, we first claim that Sim
aborts with negligible probability: if Rj(shj ,w) ̸= 1, then
proof verification on input (shj , πj) corresponding to an
honest verifier Vj fails, except with negligible probability.
This follows from the soundness of Ligero.

Assuming that Sim does not abort, we need to show
that the outputs of the honest verifiers are the same in both
the real execution with A and the ideal execution with
Sim. In the ideal execution, upon receiving (shj , πj) in-
ternally from A, Sim will send (dCP-Prove, sid,P,Vj , shj)
to FdCP for each honest verifier Vj . Recall that dur-
ing the simulation, if the proof verification passes, then
Rj(shj ,w) = 1; similarly, if the proof verification fails,
Rj(shj ,w) ̸= 1. This holds because we assume Sim does
not abort. As per the simulation, FdCP functionality sends
(Proof, sid,P,Vj , shj , accept) whenever Rj(shj ,w) = 1
(equivalently, when proof verification passes); otherwise
sends (Proof, sid,P,Vj ,⊥, reject) to each honest verifier Vj .
Therefore, the accept/reject outcome depends on whether the
proof verification passes or fails in both the real and ideal
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world executions. As a result, the honest parties have the
same output in both worlds, assuming Sim does not abort.

4.2. Verifiable Relation Sharing (VRS) from dCP

The problem of Verifiable Relation Sharing (VRS), in-
troduced by [15], allows a client (prover) to share a vector of
secret data items among multiple servers (the verifiers) while
proving in zero knowledge that the shared data adheres
to certain properties. This combined task of sharing and
proving generalizes notions like verifiable secret sharing and
zero-knowledge proofs over secret-shared data.

We use the framework established by [14], which
demonstrates the construction of a Verifiable Random Secret
(VRS) from a dCP. At a high level, the VRS construction
involves the prover invoking the dCP ideal functionality with
its input. Note that the dCP is weaker than a VRS in that
some honest verifiers might output "accept" while others
output “reject.” In contrast, a VRS requires unanimous
agreement among honest verifiers: either all accept and hold
a valid share, or all reject.

To ensure this unanimous agreement in a VRS, we
implement a share recovery mechanism whenever a verifier
gets “reject” from the dCP functionality invoked by the
prover. This mechanism ensures that verifiers are able to
recover their shares or collectively discard the prover and
output “reject.” At a high level, this recovery process in-
volves all verifiers masking their input shares with a random
share pre-computed during the offline phase using a Verifi-
able Secret Sharing (VSS) scheme. These masked shares are
broadcasted and subsequently used by the verifiers to either
unanimously reject (if the masked shares are malformed) or
to recover their respective shares.

Our construction is similar to that in [14], but it uses
replicated secret sharing instead of Shamir’s secret sharing
scheme. We chose replicated secret sharing for its simplicity
and because it allows for an offline phase that can be
reused across executions, with a cost that is independent
of input size, unlike the approach in [14]. The ideal VRS
functionality is provided in Figure 11 of Appendix A and
our VRS construction is given in Figure 3.
Optimization. The protocol described in Figure 3 re-
quires the prover to broadcast the commitment which will
require the prover to participate in more than one round.
Since we need the prover to be involved only in a sin-
gle round, we modify the protocol slightly to leverage
the broadcast channel that exists between the verifiers. In
slightly more detail, the prover sends the commitment to
each of the verifiers over a point-to-point channel (instead
of a broadcast). The verifiers then execute step (1) of
the sharing phase of protocol ΠVRS in Figure 3. Next,
each verifier Vj broadcasts to all verifiers: If the verifier
received happyj = accept, then broadcast the commit-
ment.Otherwise, broadcast a complaint message.

If there are more than ts complaints, then verifiers agree
to discard the prover and output (reject,⊥). Otherwise, the
verifiers proceed to executing steps (2) to (4) of the sharing

phase of ΠVRS and output accept along with input share
obtained at the end of step (4) (i.e., share recovery phase)
of protocol ΠVRS. We now state the formal theorem with
this optimization incorporated in Appendix C and discuss
the complexity.

4.3. Secure Aggregation from VRS

In this section, we describe our secure aggregation pro-
tocol, leveraging the VRS functionality discussed earlier.
Recall that we outlined the basic structure of our protocol in
the overview of Section 4. At its core, our protocol unfolds
in two primary phases:

• Input Sharing: Clients share their inputs using the VRS
functionality FVRS. Here, each client acts as a prover
and servers act as verifiers during the invocation of
the FVRS. At the end of each invocation of FdCP by a
client, the servers receive accept/reject along with the
input share associated with this client.

• Output Reconstruction: Servers determine a set of valid
clients if they received the output accept from FdCP.
Then, they sum the shares received from invocation of
FdCP corresponding to all the valid clients and send
their aggregate shares to the output party. The output
party collects and error-corrects the received shares to
reconstruct the aggregate output.

For completeness, we provide a detailed protocol de-
scription using VRS in Figure 4, as taken verbatim from
[14]. The formal theorem statement below.

Theorem 4.2. Let ns, ts, d ∈ N such that ts < ns/3 and
P : Fd → {0, 1} be an arbitrary predicate. Let FAgg be
the ideal functionality given in Figure 1. The protocol
ΠAgg, as outlined in Figure 4, securely realizes FAgg in
the FVRS-hybrid model among nc clients each holding
input vectors of length d with elements in some finite
field F, ns servers, and an output party O, which is
secure against a static, malicious rushing adversary that
can maliciously corrupt an arbitrary number of clients,
up to ts servers and the output party and ensures guaran-
teed output delivery where κ is the security parameter.
Additionally, a client is required to engage in only a
single round of communication.
The communication between the prover and each of the
verifiers is O(d ·

(
ns−1
ts

)
+ ρ) field elements where κ

and O(1) field elements is the security parameter and
|P | is the number of gates in the circuit associated with
predicate P . The total communication among the servers
is as follows (in terms of field elements):

– Offline phase: O(n3s + ns · BC(n2s ))
– Online phase in the worst case: O(nc · ns · ρ+ nc · ns ·
BC(h) + ·nc · ns · d · BC(

(
ns−1
ts

)
))

– Online phase in the optimistic setting (when the all the
servers are honest) and γ fraction of the clients are
malicious: O(nc · ns · (d ·

(
ns−1
ts

)
+ ρ)+ nc · ns · BC(h)+

γ · nc · ns · d · BC(
(
ns−1
ts

)
)). (the main difference is the

additional γ factor in the second term).
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Protocol ΠVRS

This protocol allows a prover P with input x ∈ F to verifiably secret share x ∈ F among n verifiers V = {V1, . . . ,Vn} and prove
that P (x) = 1 to all the verifiers.
Public Parameters. It is parameterized by a bound n ≥ 3t + 1 where n is the number of verifiers, t is the number of corrupt

verifiers and a predicate P : F → {0, 1}. For the predicate P , we can obtain a circuit C : Ft+1 → Fn2 and n relations
(R1, . . . ,Rn) as per Definition 4.2. All the parties have access to an distributed commit-and-prove ideal functionality FdCP,
which is parameterized by (R1, . . . ,Rn).

Input & Output. P has an input x ∈ F and the verifiers V have no inputs. If P (x) = 1 holds, then each verifier Vj ∈ V outputs
(Sharej , accept) where (Share1, . . . , Sharen)← Enc(x). Otherwise, all verifiers output reject.

Offline Phase. The parties interactively generate a valid sharing of a random (unknown) value k ∈ F where (ksh1, . . . , kshns)←
Enc(k) and each verifier Vj receives shares rshi for all i ∈ [n]. Each verifier Vi ∈ V proceeds as follows:

1) Sample a random value ki ∈ F and secret-share using RSS it among the other verifiers using a VSS scheme such that Vj .
Note that Vi acts as a dealer here.

2) The verifiers run a pair-wise consistency check where the parties exchange the common values between their shares. If
there are any inconsistencies, broadcast a complaint with identities of the pair of parties. Then, the dealer broadcasts all
the shares held by the pair of parties againts whom a complaint was raised.

3) Upon the completion of all n instances of secret sharing and pair-wise consistency checks, Vi computes and outputs a
sharing of k =

∑
i∈[n] ki from the RSS shares of {ki}i∈[n] because of the linearity property of RSS.

Later, during the sharing phase, the verifiers can use the replicated secret sharing of k to generate an RSS sharing
(rsh1, . . . , rshn) non-interactively (as described in Section 3.3).

Sharing Phase.
1) [Input Sharing] Prover P with a secret x proceeds as follows.

• Sample randomness rvrs and encode the input x as follows: (sh1, . . . , shn) ← Enc(x; rvrs). Let (sh1, . . . , shn) be
denoted by Shares.

• Invoke the Commit Phase of FdCP as the prover with input (Commit, sid,P, x, rvrs).
• Invoke the Prove phase of FdCP as a prover with input (Prove, sid,P,Vj , shj).

2) Upon receiving the message (Proof, sid, shj , happyj) from FdCP, each verifier Vj proceed as follows.
• If happyj = accept, then broadcast (Masked-Share, sid,Vj ,mshj) where the masked share mshj := shj + rshj
• Otherwise, set mshj := ⊥ and broadcast nothing.

3) [Consistency Check] Let the broadcasted message from each verifier Vj ∈ V be denoted by (Masked-Share, sid,Vj ,msh′j).
If the masked shares obtained from verifiers’ broadcasts, denoted by (msh′1, . . . ,msh′n), form a valid encoding i.e., decoding
succeeds on shares (msh′1, . . . ,msh′n).

4) [Share Recovery] Each verifier Vj locally computes its output as follows:
a) If the consistency check fails, then set Sharej := ⊥ and output (reject,⊥).
b) If the consistency check passes, then each verifier Vj ∈ V outputs (accept, Sharej) where Sharej is computed as

follows:
i) Keep Existing Share: If happyi = accept, then set Sharej := shj , or

ii) Recover Share: If happyi = reject, then Vj needs to recover its share by computing Sharej := msh′′j − rshj
where (msh′′1 , . . . ,msh′′n) is obtained by error-correcting (msh′1, . . . ,msh′n).

Figure 3. A VRS Protocol for predicate P

where h is the output length of the hash function and ρ =√
(d ·

(
ns−1
ts

)
+ |P |) · κ

The costs in the above theorem are obtained by multi-
plying the costs in Theorem C.1 by a factor of nc.

5. Implementation and Evaluation

We demonstrate the efficacy, performance, and practi-
cality of our protocol through an implementation that we
call SCIF. The core aim of our implementation is to enable
analysts to easily and securely compute aggregate statistics
over data that is distributed potentially across a large number
of parties. SCIF is ready-to-deploy software released under

a permissive open-source license, and is available for use
now at https://anonymous.4open.science/r/scif/.

We begin by describing SCIF’s architecture and oper-
ation (Section 5.1). We then explore the operational costs
of using SCIF via a real-world deployment consisting of
hundreds of distributed clients (Section 5.2). Finally, we
describe a case-study in which we use SCIF to securely
and privately compute statistics about the performance of a
private Tor network (Section 5.3).

5.1. Architecture and Operation

SCIF is constructed with security, scalability, and ease-
of-use as principle design goals. We build SCIF in 7.7k
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Input-Certified Secure Aggregation Protocol ΠAgg

Public parameters. Security parameter λ, field F, input vector length d, server corruption threshold ts, predicate P : F→ {0, 1}.
Parties. Clients U = {U1, . . . ,Unc} , servers S = {S1, . . . ,Sns} and an output party O.
Input & Output. {x1, . . . , xnc} where xi ∈ F is client Ui’s input. The output party O receives

∑
Ui∈U P (xi) · xi.

Setup. Each client has a point-to-point private, authenticated channel with every server. Also, the servers have point-to-point,
private authenticated channels with all other servers and a broadcast channel.

Input Sharing. [U → S] The input sharing proceeds as follows.
1) Each client Ui acts as a dealer and invokes an instance of the VRS functionality FVRS with input xi ∈ F. This calls for

the client Ui to send the tuple (Input, sid,Ui, xi, rvrs,i) to FVRS where rvrs,i is the randomness sampled by the Ui.
2) Each server Sj participates in FVRS as a verifier and receives the tuple

(
Output, sid,Sj , Share(i)j , happy

(i)
j

)
for all j ∈ [ns].

As per the properties of the FVRS, all servers output the same happy bit i.e., happy(i)j = happy
(i)

j′ for j, j′ ∈ [ns]. So, we
drop the subscript j while referring to the happy bit.

Output Reconstruction. [S → O]

1) At the end of all the invocations to FVRS, the servers define a set Valid to comprise of all clients Ui such that happy(i) =
accept.

2) Each server Sj sums the shares it received from all clients in the set Valid i.e., oshj =
∑

Ui∈Valid Share
(i)
j and sends its

output share oshj to the output party.
3) The output party collects shares of the output oshj from each server Sj ∈ S. If no share is received from the server Sj ,

then the output party sets oshj := ⊥. Finally, the output party error-corrects the vector (osh1, . . . , oshns) to reconstruct
Yagg and sets Yagg as the output.

Figure 4. An Input-Certified Secure Aggregation Protocol from VRS
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HTTPS

HTTPS2

3

4
HTTPS

1

Bootstrapping
Service

(external to SCIF)

SCIF Servers

Output Party

Figure 5. High-level architecture of SCIF. After bootstrapping (❶), clients
send secret shares and proofs to each server (❷). Servers then construct
their outputs (❸) and communicate their outputs to the output party (❹).

lines (as measured by scc) of Go and make extensive use
of the language’s memory safety and parallelism features
(i.e., goroutines) to optimize CPU resources and support
large numbers of clients. Cryptographic functions used Go’s
crypto package, including crypto/tls, crypto/sha256, and
crypto/rand, and PRFs were constructed using ChaCha20.

For our implementation, we prioritized simplicity, fo-
cusing on essential features and deployment. We built our
protocol in a modular fashion, with separate packages for
packed secret sharing, replicated secret sharing (RSS), and
the Ligero proof system. Some choices we made, while
simplifying the process, might not be ideal: (1) We used
a the näive polynomial interpolation algorithm that runs
in quadratic time for packed secret sharing instead of a
more efficient Fast Fourier Transform (FFT)-based approach
that runs in quasilinear time. As we built our code in a
modular fashion, we can easily replace the packed secret
sharing protocol with the FFT-based approach, enhancing
performance without major code overhauls. (2) We opted for

RSS due to its simplicity and efficiency, especially suitable
for a small number of servers and field sizes. RSS facilitates
an offline phase independent of input size and enables non-
interactive random sharing generation for share recovery.
If alternative schemes become more suitable, RSS can be
easily substituted, given our modular implementation.

The high-level architecture of SCIF is shown in Figure 5.
The three principle components—clients, servers, and the
output party—are all implemented as web services, and
use an object-relational mapping (ORM) model to persist
program state. SCIF is compatible with any backend sup-
ported by GORM [30]; we use MySQL 8.0.36 for servers
and the output party. Messages exchanged between parties
are transmitted via HTTPS (i.e., TLSv1.3). SCIF supports
using its own PKI, but for simplicity, we use certificates
from LetsEncrypt in our test deployment.

SCIF assumes a bootstrapping phase in which partic-
ipants (clients, servers, and the output party) receive the
parameters and credentials that are necessary to participate
in an experiment (Figure 5, ❶). The use of credentials is
explained below. Parameters include a unique experiment
ID (exp); the time by which clients must submit their
inputs’ shares; the times by which servers must submit their
complaints, the masked shares of clients that correspond
to received complaints, and aggregates of clients’ shares;
the public parameters for the Ligero proof system; and the
network identifiers (e.g., hostnames) and public keys of the
SCIF servers.

To restrict which clients may participate in a particular
experiment, SCIF supports optional client authentication via
a modular authentication API. The API consists of a single
function, ⊤/⊥ ← auth(exp, cred), where auth returns true
(⊤) iff the credential cred is valid for an experiment exp.
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We have implemented a simple token-based authentication
scheme. Adding support for additional authentication mech-
anisms (e.g., a university login) simply requires overloading
the auth function.

Importantly, distributing the parameters and credentials
is handled externally to SCIF. This provides maximum
flexibility as it allows distribution to be carried out using
mechanisms that best match the particular deployment (e.g.,
over-the-air updates for an experiment involving smartphone
users vs. a browser extension that contains experiment con-
figurations for web users).

After the bootstrapping phase, SCIF performs the op-
erations described in Section 4. Clients submit their shares
and proofs to each SCIF server (❷) and optionally include
an authentication credential with their submission. Servers
verify the credential (if applicable), and perform proof
verification and complaint generation (if necessary) when
shares are received. After the shares are due, the servers
initiate a server processing phase (❸) in which they first
broadcast their complaints and then perform masked share
generation and broadcasting, followed by share correction4,
and aggregation. In the current implementation, we did
not implement a protocol to realize broadcast between the
servers but rather accomplished broadcasting by sending
point-to-point messages. After the server processing phase,
the servers send their output (aggregate shares) to the output
party (❹) which then computes the aggregate result.

5.2. Distributed Cloud Deployment

To evaluate its performance under real-world conditions,
we deployed SCIF across multiple data centers and geo-
graphic locations using Google Cloud.
Setup. SCIF servers and the output party used fixed in-
stances in the us-east1 (South Carolina) and us-west1 (Ore-
gon) regions, while clients were located on regions selected
randomly from those available in Google Cloud. SCIF uses
TLS for secure communication; we registered domain names
for the servers and the output party and configured our SCIF
instances with certificates issued from LetsEncrypt. Servers
and the output party were c2d-standard-32 instances with 32
VCPUs (16 cores) and 128 GB of RAM. Unless otherwise
specified, each client was a e2-standard-8 instance with 8
VCPUs (4 cores) and 32 GB of RAM. All machines ran
Ubuntu 22.04 with kernel 6.5.0-1020-gcp.

The values of clients’ inputs were generated uniformly
at random. SCIF’s performance and operation do not depend
on the particular inputs chosen by clients. (We do explore
how the size of clients’ inputs affects SCIF’s performance.)

SCIF utilizes deadlines (i.e., for clients’ input shares
submissions, servers’ complaints, and masked shares and
aggregate shares submissions) to achieve synchronization
among all parties. Through extensive experiments, we found

4Servers issue complaints against a client if the proof associated with
the client fails to verify (see Section 4). The share recovery phase, which
includes mask generation and correction, is executed by the servers for
clients who have had complaints raised against them.

optimal deadlines that minimize the waiting time at each
phase. When measuring the execution time of the system,
we subtract the waiting time from our results. Our results
thus are informative of how quickly experiments could be
carried out (under our experimental setup). We emphasize
that SCIF supports parallel experiments, and thus the cost
of idling could be amortized away if several measurements
are conducted in parallel.

The current system did not implement offline phase so
we assume the pairwise PRF keys were already available
for the system to use. This is a one-time setup cost that can
be used across multiple experiments and therefore will not
affect our benchmarks.

The performance of SCIF depends on the client’s input
length, number of servers, and public parameters for the
Ligero proof system. The default values of these parameters,
as used in our experiments, are listed in Appendix D.

Proof generation and verification. We first consider
the cost of generating and verifying proofs—operations that
occur respectively at the client and the servers. Figure 6
shows the median time required to generate (top) and verify
(bottom) a proof for varying client input sizes. Error bars
represent the range of values across five executions. (Many
error bars are not visible due to their low magnitude.)

We find that the generation and verification times are
modest and our measurements confirm that they grow sub-
linearly with respect to input length (note that the x-axis in
Figure 6 is in log-scale). Generating and verifying a client’s
input of 10,000 values requires less than two seconds in
total. Even with very large inputs consisting of 106 values,
the median time for the client to generate the proof is 65
seconds. Verification time, at the server, for the proof over
106 values is only 13 seconds. In Appendix E, we show
similar results using 10 clients and 7 servers.

Performance in the presence of malicious behavior. We
test our system’s performance in the presence of a malicious
adversary as follows. To simulate a malicious adversary, we
can either have a malicious client send a malformed message
(such as an input share or proof) to the server, or introduce
a malicious server that deviates from the protocol (e.g. by
becoming unreachable or sending unnecessary complaints).
Our system’s performance depends on the number of the
clients for which the share recovery mechanism is triggered,
regardless of whether it was triggered by a malicious client
or server. Thus, we study the performance of our system by
varying the percentage of clients for which share recovery
is triggered and we trigger the share recovery by having
malicious clients send malformed proofs to a server.

First, we evaluate SCIF’s performance when a fraction
of the clients behave maliciously and transmit malformed
proofs to one of the servers. Our experiments use four
servers and 500 clients, the latter of which are distributed
across six machine. Each of the client machines was provi-
sioned with 16 cores and 128 GB of RAM.

SCIF’s performance when 50 (10%) of the clients are
malicious is presented in Figure 7 (top). The Figure shows
the constituent costs of SCIF’s operations; the overall cost
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Figure 6. The time required for a client to generate
a proof (top) and for a server to verify a client’s
proof (bottom) for various sized client inputs (in
log-scale).
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Figure 8. Top: Client communication cost as the
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communication cost for 500 clients with varied in-
put lengths (log-scale). Fifty (10%) of the clients
are malicious.

is shown as “total”. When each client’s input vector has
105 values, the total execution time for a server is 442.38
seconds, which involves verifying 500 proofs in parallel,
generating 500 complaints, executing share recovery for 50
malicious clients’ shares, aggregating all valid shares, and
then sending the aggregated shares to the output party, as
well as any time due to network communication. The offline
phase5 is not factored into the server costs as this is a one-
time expense and can be reused across multiple experiments.

We also explored how the system scales with various
percentages of malicious clients. As the percentage of ma-
licious clients increases from 10 to 40%, the total execution
time grows linearly, as is shown in Figure 7 (bottom). Even
when 40% of the clients provide malicious inputs, the total
execution time is less than 1.5 minutes.
Communication cost. A practical secure aggregation
system should not impose excessively high communication
costs. To understand SCIF’s communication overhead, we
examine the total communication cost produced by our
system for each party, as measured by (pcap) packet traces
we record on each node. Our experimental setup consisted
of four servers, one output party, and 500 clients; 50 (10%)
of the clients were configured to be malicious. The results

5Recall that during the offline phase, each server verifiably secret
shares the PRF keys as per the replicated secret-sharing scheme. These
keys are later used to locally generate a secret sharing of the masks when
required for the share recovery mechanism.

are shown in Figure 8. For client input vectors of 105 values,
the total communication cost for a client is 4.95 MB (Fig-
ure 8, top), which includes transmitting the shares and proof.
This cost accounts for communication with all 4 servers.
The total communication cost for a server is 181.62 MB
(Figure 8, bottom), which consists of sending complaints
for 500 clients to each of the three other servers, masked
shares for 50 malicious clients to each of the other servers,
and aggregates of 500 clients’ shares to the output party.
In summary, we consider the communication costs to be
minimal for clients and modest for servers.

5.3. Simulation Case Study: Safely Measuring Tor

As a case study, we use SCIF to measure the perfor-
mance of nodes in a simulated Tor network [17]. Tor enables
anonymous communication by forwarding its users’ traffic
through a series of routers (or in Tor parlance, relays).
The use of encrypted message headers prevents relays and
network eavesdroppers from learning the network locations
(i.e., IP addresses) of the communicants. We chose Tor as an
illustrative use-case because (1) it is a popular service with
millions of daily users [18]; (2) privacy is the focal point
of its ethos and thus SCIF’s privacy protections make SCIF
a natural fit; and (3) the network’s clients and volunteer-
operated relays can behave dishonestly, making input vali-
dation an important desiderata for deployment.
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The primary goal of our case study is to demonstrate
the ease at which systems such as Tor can be instrumented
with SCIF to provide privacy-preserving secure measure-
ments. We opted to perform measurements on a private
Tor network which we deploy in Shadow [31], [32], a
high-fidelity discrete-event simulator. Shadow allows us to
operate SCIF on all Tor clients and relays, which would not
be possible on the live Tor network without buy-in from both
its maintainers and its users. We emphasize that Shadow
runs unmodified binaries (including Tor and SCIF) on top
of a virtualized networking layer, and that no changes to
Tor or SCIF were required for our case study.

We instantiated a Tor network in Shadow that consists
of 100 Tor relays, 25 of which are exit relays that route
Tor’s egress traffic to the final destination. Each exit relay
also operated a SCIF client. We additionally introduced six
SCIF servers and one SCIF output party into the network.
As a workload for our two hour experiment, we used the
tgen [31] traffic generator to cause Tor clients to periodically
fetch web pages through the anonymity network.

Integrating Tor and SCIF took minimal effort. We wrote
a short (∼80 lines) Python script that executed on each Tor
instance. The script listens to Tor’s control port for system
events and maintains the desired statistic (explained below).
To facilitate SCIF measurements, the script constructs a
binary vector where each element in the vector corresponds
to bin in a histogram. This mirrors the approach of prior
work on privacy-preserving measurements for Tor [33]. The
script communicates this vector to the SCIF client that is
running on the same node, which in turn participates in the
distributed SCIF protocol with the SCIF servers.

The aggregate statistics, as computed by the SCIF output
party, are shown in Figure 9. (We manually verified the
results are consistent with the individual measurements from
the relays.) We consider two statistics that are of interest to
the Tor community: the rate of TCP connections established
by exit relays (i.e., the rate of TCP flows anonymized
through Tor) and the observed rate of Tor egress traffic.
These are respectively depicted in the left- and right-hand
sides of Figure 9. The empirically measured distribution of
connections and throughput generally follow the bandwidth
capacities of the exit relays; this is unsurprising since Tor
employs a bandwidth-weighted relay selection strategy [17].

Our case study highlights one potential path for instru-
menting other applications to use SCIF. Network simulators,
such as Shadow, that execute unmodified code provide a
proving ground for “glueing” applications together with
SCIF. In the case of Tor, this took minimal effort and
less than 100 lines of code. Our future work entails real-
world experimentation with SCIF-equipped Tor—work that
we believe will be critical for improving our understanding
of how privacy-sensitive systems are used in practice.

6. Discussion

Improvements to implementation. We are continuing to
improve SCIF, and view its development and maintenance
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Figure 9. Histogram of the number of connections per minute observed by
Tor exit relays (left) and the observed throughput of the exit relays (right).

as long-term efforts. Our most immediate plans include
decreasing memory consumption, which currently presents
scaling issues with very large input sizes (i.e., above 106).
Here, we plan to leverage Ligetron [34], a recent proposal
to improve the Ligero ZK system that has been shown to
scale to billions of gates and run efficiently even inside
of a browser. We believe that Ligetron is more memory
efficient than our Ligero implementation, and its design
seems compatible with SCIF.

A useful enhancement of a secure aggregation protocol
involves executing the protocol over multiple iterations.
This approach is beneficial in federated learning, where
the objective is to repeatedly run the protocol to achieve
a stable solution, such as a machine learning model. This
necessitates that servers retain state and implement a method
to verify the consistency of client inputs across iterations,
which we propose as future work.
In-passing contributions. Several components of SCIF
may be of independent value to applied cryptographers and
system implementers. Although Go offers a comprehensive
cryptography library, not all primitives required by SCIF
were available. In constructing SCIF, we developed (to our
knowledge) the first Go-based implementations of packed
secret sharing and replicated secret sharing. We designed
these components with modularity in mind so that they are
separable from SCIF. We are releasing each as independent
FOSS libraries, with the hope that they may foster develop-
ment of new privacy-preserving systems.
Deployment scenarios. Although there are myriad uses
for private-preserving statistics collection, we conclude by
highlighting exciting use-cases for SCIF. For example, hos-
pitals may want to collaborate in analyzing patient outcomes
for emerging diseases, enabling researchers to identify pat-
terns and analyze the exposure of threats in a privacy-
preserving manner. Embedded as a browser extension, SCIF
could facilitate studies that examine online ad networks, the
selection of content on users’ social networking feeds, or
users’ web browsing behavior. And, as explored above, SCIF
is a natural fit for performing measurements of anonymous
networks and/or censorship-resistant technologies. Our fu-
ture work entails exploring these and other use-cases.
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Appendix A.
Ideal Functionalities for dCP and VRS

We present the ideal functionality of dCP in Figure 10
and VRS in Figure 11, as described in [14].

Appendix B.
Building Block: Ligero Proof System

In this appendix, we give a self-contained description
of the Ligero system [35]. This description is reused from
FLAG [11]. For ease of exposition, we will describe it in
the Interactive Oracle Proofs (IOP) model [36]. First, we
recall some basic notation definitions of the codes used in
the Ligero system.
Coding notation. For a code C ⊆ Σn and vector v ∈
Σn, denote by d(v, C) the minimal distance of v from C,
namely the number of positions in which v differs from the
closest codeword in C, and by ∆(v, C) the set of positions
in which v differs from such a closest codeword (in case
of ties, take the lexicographically first closest codeword),

and by ∆(V,C) =
⋃

v∈V {∆(v, C)}. We further denote by
d(V,C) the minimal distance between a vector set V and
a code C, namely d(V,C) = minv∈V {d(v, C)}. Our IOP
protocol uses Reed-Solomon (RS) codes, defined next.
Definition B.1 (Reed-Solomon Code). For positive integers

n, k, finite field F, and a vector η = (η1, . . . , ηn) ∈
Fn of distinct field elements, the code RSF,n,k,η is the
[n, k, n − k + 1] linear code over F that consists of all
n-tuples (p(η1), . . . , p(ηn)) where p is a polynomial of
degree < k over F.

Definition B.2 (Encoded message). Let L = RSF,n,k,η
be an RS code and ζ = (ζ1, . . . , ζℓ) be a se-
quence of distinct elements of F for ℓ ≤ k. For
u ∈ L we define the message DecodeL,ζ(u) to be
(pu(ζ1), . . . , pu(ζℓ)), where pu is the polynomial (of
degree < k) corresponding to u. For U ∈ Lm with
rows u1, . . . , um ∈ L, we let DecodeLm,ζ(U) be the
length-mℓ vector x = (x11, . . . , x1ℓ, . . . , xm1, . . . , xmℓ)
such that (xi1, . . . , xiℓ) = DecodeL,ζ(u

i) for i ∈ [m].
Finally, when ζ is clear from the context, we say that
U encodes x if x = DecodeLmζ(U). All our codes will
employ the same F, n, η and we will simply refer the
code by RSk.

At a very high level, the Ligero IOP protocol proves
the satisfiability of an arithmetic circuit C of size s in the
following way. The prover arranges (a slightly redundant
representation of) the s wire values of C on a satisfying
assignment in a matrix, and encodes each row of this matrix
using the Reed-Solomon code. The verifier challenges the
prover to reveal linear combinations of the entries of the
codeword matrix and checks their consistency with nopen
randomly selected columns of this matrix.

For convenience, we provide a list of our parameters in
Table 1.

TABLE 1. DESCRIPTION OF OUR PARAMETERS.

Parameter Description
wext Extended witness
U Encoded extended witness
m # of rows in the extended witness
ℓ # of columns in the extended witness
s Circuit size
n Codeword length
nopen # of queries on U
κ Security parameter

Formal description of the Ligero IOP(C,F). This sec-
tion provides a self-contained description of the Ligero IOP
for an arithmetic circuit over a (sufficiently large) field F.
We remark that the exposition here is a variant of the system
described in [35] that is optimized for a proof length and
prover’s computation.

• Input: The prover P and the verifier V share a common
input arithmetic circuit C : FN → F and input state-
ment x. P additionally has input w = (w1, . . . ,wN )
such that C(w) = 1. P and V agree on an encoding
RSF,n,k,η and ζ. In fact, we will assume there are public
algorithms that can generate ζ and η given F, n and k.
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Functionality FdCP

FdCP runs among the Prover P and n Verifiers V = {V1, . . . ,Vn} and an adversary Sim. It is parameterized by n relations
(R1, . . . ,Rn). FdCP proceeds as follows.
Commit Phase : Upon receiving a message (Commit, sid,P,w) from the prover P , record the values w and P , and send the

message (receipt, sid,P) to the verifiers in V and Sim. (If a commit message has already been received, then ignore any other
messages with the same sid.)

Prove Phase : Upon receiving a message (Prove, sid,P,Vj , shj) from the prover P , then proceed as follows:
• If (shj ,w) ∈ Rj , send the message (Proof, sid,P,Vj , shj , accept) to the verifier Vj and Sim. Vj outputs (accept, shj).
• Otherwise, send (Proof, sid,P,Vj ,⊥, reject) to the verifier Vj and Sim. Vj outputs reject.

Figure 10. Ideal Functionality for Distributed Commit-and-Prove

Functionality FVRS

The functionality FVRS communicates with a dealer D, a set of n verifiers V = {V1, . . . ,Vn}, and an adversary A. It is
parameterized by a verifier corruption-threshold t, d is the length of input vector, and predicate P : Fd → {0, 1}.
Inputs. The Dealer D has input x ∈ Fd and randomness rvrs. The verifiers V do not have any inputs. The dealer sends the message

(Input, sid,D, x, rvrs) to FVRS.
Output. Upon receiving the input from D, FVRS proceeds as follows.

• Compute the shares (Share1, . . . , Sharen)← Enc(x; rvrs)
• If P (x) = 1 holds, then send (Output, sid,D,Vj , Sharej , accept) to each verifier Vj , who then outputs (accept, Sharej),

for all i ∈ [n].
• Otherwise, send (Output, sid,D,Vj ,⊥, reject) to all the verifiers and the verifiers output (reject, ⊥).

Figure 11. Ideal FVRS Functionality for Reed Solomon encoding

• Oracle π: Let m, ℓ be integers such that m · ℓ > N +s
where s is the number of multiplication gates in the cir-
cuit. For simplicity, we will assume N and s are multi-
ples of ℓ. Then P generates an extended witness wext ∈
Fmℓ to be w concatenated with the internal wire values,
namely w1, . . . ,wN , α1, . . . , αs, β1, . . . , βs, γ1, . . . , γs
where (αi, βi, γi) are the left input, right input and
output values of the ith multiplication gate when eval-
uating C(w). All affine constraints on the wire values
can be encoded via (A, b) where A ∈ Fmℓ×mℓ, b ∈ Fmℓ

such that for any w that satisfies C, we have A ·w = b.

The prover samples a random codeword U ∈ Lm

where L = RSk subject to w = DecodeLm,ζ(U)
where ζ = (ζ1, . . . , ζℓ) is a sequence of distinct ele-
ments disjoint from (η1, . . . , ηn). P sets the oracle as
U ∈ Lm. Depending on the context, we may view U
either as a matrix in Fm×n in which each row Ui is a
purported L-codeword, or as a sequence of n symbols
(U [1], . . . , U [n]), U [j] ∈ Fm.

• Interactive Protocol:
1) V picks randomness:

a) [Code test:] r1 ∈ Fm,

b) [Linear test:] r2 ∈ Fmℓ,

c) [Quadratic test:] r3 ∈ Fs/ℓ.
and sends (r1, r2, r3) to P .

2) P responds with (qcode, qlin, qquad) where:

a) [Code test:] qcode ∈ Fn is computed as

qcode = rT1 · U, (1)

b) [Linear test:] qlin ∈ Fn is computed as

qlin[j] = (R2[j])
T · U [j] (2)

for j ∈ [n] where R2 is the unique matrix such
that

DecodeLm
1 ,ζ(R2) = rT2 ·A (3)

where L1 = RSℓ.

c) [Quadratic test:] qquad ∈ Fn is computed as

qquad =

s/ℓ∑
i=1

(r3)i · (Ulefti ⊙ Urighti − Uouti) (4)

Recall that DecodeLm,ζ(U) =
(w1, . . . ,wN , α1, . . . , αs,
β1, . . . , βs, γ1, . . . , γs). Setting
(lefti, righti, outi) = (Nℓ + i, N+s

ℓ + i, N+2·s
ℓ + i)

we have

DecodeL,ζ(Ulefti) = (αℓ·(i−1)+1, . . . , αℓ·i)

DecodeL,ζ(Urighti) = (βℓ·(i−1)+1, . . . , βℓ·i)

DecodeL,ζ(Uouti) = (γℓ·(i−1)+1, . . . , γℓ·i)

3) V queries a set Q ⊂ [n] of nopen random symbols
U [j], j ∈ Q and accepts iff the following conditions
hold:
a) [Code test:] qcode is a valid codeword, i.e.

qcode ∈ L and for every j ∈ Q, qcode[j] =∑m
i=1(r1)i · Ui[j].
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b) [Linear test:] Let v = DecodeL2,ζ(qlin) where
L2 = RSk+ℓ. Then the verifier checks if the
values in v add up to rT2 · b, i.e.

∑ℓ
i=1 vi = rT2 · b

and for every j ∈ Q, qlin[j] = (R2[j])
T · U [j]

where R2 is as defined above (noting here that
the verifier can locally compute R2).

c) [Quadratic test:] Let v′ = DecodeL3,ζ(qquad)
where L3 = RS2·k. The verifier checks that every
entry of v′ is 0 and it holds that qquad[j] =∑m̃

i=1(r3)i · (Ulefti [j] · Urighti [j]− Uouti [j]).

The soundness analysis has been argued in [16] and is
formally stated in the following lemma,
Lemma B.3. Let e be a positive integer such that e < d/3

and suppose that there exists no α such that C(α) = 1.
Then, for any maliciously formed oracle U∗ and any
malicious prover strategy, the verifier rejects except with
at most (d/|F|)σ + 2/|F|σ′

+ (1 − e/n)nopen + 2((e +
2k)/n)nopen probability where σ is the number of times
the code test is repeated and σ′ is the number of times
the linear and quadratic tests are repeated.

Achieving Zero-knowledge. Note first that the verifier
obtains two types of information in two different building
blocks of the IPCP. First, it obtains linear combinations of
codewords in a linear code L. Second, it probes a small
number of symbols from each codeword. Since codewords
are used to encode the NP witness, both types of information
give the verifier partial information about the NP witness,
and thus the basic IOP we described is not zero-knowledge.
Fortunately, ensuring zero-knowledge only requires intro-
ducing small modifications to the construction and analysis.
Specifically, the second type of “local” information about
the codewords is made harmless by making the encoding
randomized, so that probing just a few symbols in each
codeword reveals no information about the encoded mes-
sage. The high level idea for making the first type of infor-
mation harmless is to use an additional random codeword
for blinding the linear combination of codewords revealed
to the verifier. However, this needs to be done in a way that
does not compromise soundness.
Compiling the Ligero IOP to a SNARK. Compiling the
IOP to a SNARK follows a standard compilation [37], [36]
using commitments and Fiat-Shamir heuristic. In slightly
more detail, generating a committing to the proof oracle
proceeds as follows: (1) Compute the U matrix that is
an encoding of wext and (2) Compute a commitment to
U [j] for all j ∈ [n]6. The prover can commit and reveal
specific locations of the proof oracle and the random oracle
instantiated via a hash function to generate the verifier’s
random challenges and queries to the oracle and complete
the execution (computing its own messages) based on the
emulated verifier’s messages. Namely, relying on Merkle-
tree commitment for the proof oracle, including a challenge-
response round at the end to reveal U [j] (j ∈ Q) using

6In Ligero, the n commitments are further used to build a Merkle tree
and the root of the Merkle tree is used as the commitment of the proof
oracle.

Merkle decommitments and Fiat-Shamir to generate the
verifier’s challenges in Round 1 and generate the set Q at
the end.

Appendix C.
Verifiable Relation Sharing (VRS) Theorem

Theorem C.1. Let t, n ∈ N such that t < n/3 and P is a
predicate. Then, the protocol ΠVRS between a dealer D
and n verifiers V1, . . . ,Vn described in Figure 3 securely
realizes FVRS functionality in the FdCP-hybrid model
where we instantiate the encoding scheme Enc(·) via
replicated secret sharing scheme parameterized by (n, t).
The communication between the prover and each of the
verifiers is O

(
d ·

(
n−1
t

)
+ ρ + h

)
field elements. The

total communication of all the servers in each phase is
as follows:

– Offline phase: O(n3 + n · BC(n2)) field elements
– Online phase: O

(
n · ρ+n · BC(h) +n · d · BC(

(
n−1
t

)
)
)

field elements
– Online phase in the optimistic setting7 (where prover

and all verifiers are honest): O(n · d ·
(
n−1
t

)
+ n · ρ +

n · BC(h)) field elements

where κ is the security parameter, ρ =√
(d ·

(
n−1
t

)
+ |P |) · κ, |P | is the number of gates

in the circuit associated with predicate P and h is the
output length of the hash function.

Communication efficiency. The prover sends to
each of the verifiers the dCP proof, which costs
O(

√
(d ·

(
n−1
t

)
+ |P |) · κ + h) and an input share of size

O(d ·
(
n−1
t

)
). The offline phase, run among the verifiers,

involves n parallel invocations of VSS to secret-share one
field element. We use the VSS scheme from [38], which has
a communication cost of O(n2 +BC(n2)) field elements to
secret-share a single field element among n parties. Thus,
the total offline communication is n times the cost of a
single VSS. In the online phase, each verifier receives an
input share and proof, then broadcasts the commitment in
the optimistic case. In the worst case, share recovery will
be triggered, and the verifiers will additionally broadcast the
masked shares. The costs in the theorem are computed by
summing these costs.

Appendix D.
Experiment Parameters

The default values of the parameters, as used in our
experiments (see Section 5.2) are presented in Table 2 and
Table 3.

7Offline phase communication costs are independent of whether the
setting is optimistic or not.
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TABLE 2. EXPERIMENT PARAMETERS

Parameter Description Value
ns # of servers 4
ts # of malicious server 1
nopen # of queries on U a 240
d input length see Table 3
m # of rows in the extended witnessa see Table 3

a refer to Ligero proof generation in Appendix B

TABLE 3. NUMBER OF ROWS IN THE EXTENDED WITNESS (m)
FOR VARIOUS INPUT LENGTHS (d)

d 100 101 102 103 104 105 106

m 1 2 4 8 20 100 2000

Appendix E.
Additional Evaluation Results

To understand the computation cost when the number
of servers increases, we measured the cost of generating
and verifying proofs using 7 servers. Figure 12 presents the
results. When input length is within 10,000, generating and
verifying a proof is completed in 5 seconds, compared to 2
seconds when using four servers. Even with an input length
of 105, the median time for a client to generate a proof
is 35 seconds and for a server to verify it is 12 seconds,
compared to 10 seconds and 6 seconds when using four
servers. Overall, SCIF is adaptable to different numbers of
servers. When the total number of servers increases, more
malicious servers could be tolerated as long as ts < ns/3.

100 101 102 103 104 105
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0.22s
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Client Proof Generation Time
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Figure 12. The time required for a client to generate a proof and for a server
to verify a client’s proof for various sized client inputs (in log-scale).
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