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Abstract

The Feistel structure represents a fundamental architectural component within
the domain of symmetric cryptographic algorithms, with a substantial body of
research conducted within the context of classical computing environments. Nev-
ertheless, research into specific symmetric cryptographic algorithms utilizing the
Feistel structure is relatively scarce in quantum computing environments. This
paper builds upon a novel 4-round distinguisher proposed by Ito et al. for the
Feistel structure under the quantum chosen-ciphertext attack (qCCA) setting. It
introduces a 5-round distinguisher for Camellia. The efficacy of the distinguisher
has been empirically validated. Furthermore, this paper combines Grover’s algo-
rithm with Simon’s algorithm, utilizing an analysis of Camellia’s key scheduling
characteristics to construct a 9-round key recovery attack on Camellia algorithm.
The time complexity for acquiring the correct key bits is 261.5, and it requires 531
quantum bits. This represents the inaugural chosen-ciphertext attack on Camellia
under the Q2 model.

Keywords: Feistel cipher, Quantum chosen-ciphertext attacks, Grover’s algorithm,
Simon’s algorithm, Camellia

1 Introduction

In recent years, quantum technology has undergone rapid development, and algo-
rithms related to quantum computing have increasingly posed a threat to the security
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of traditional cryptographic algorithms. Shor’s algorithm[1], which is based on quan-
tum computing, can break the classical public key cryptographic algorithm RSA in
polynomial time. The advent of Grover’s algorithm[2] has reduced the complexity of
searching for an N-bit block cipher key from O(N) to O(

√
N). Furthermore, Simon’s

algorithm[3] has facilitated the construction of quantum distinguishers.
Until 2010, quantum attacks on symmetric ciphers were not considered a significant

threat. However, when Kuwakado and others[4] first introduced a polynomial distin-
guisher for a 3-round Feistel cipher under a quantum chosen-plaintext attack (qCPA)
setting, this perspective changed. Since then, various quantum attacks on symmetric
ciphers have been developed.

Zhandry[5], Kaplan[6], and others have proposed two different models for the
quantum cryptanalysis of symmetric ciphers:

Standard Security (Q1 Model): a block cipher is standard secure against quantum
adversaries if no efficient quantum algorithm can distinguish the block cipher from
pseudorandom permutation (PRP; or a PRF) by making only classical queries.

Quantum Security (Q2 Model): a block cipher is deemed quantum secure against
quantum adversaries if no efficient quantum algorithm can distinguish the block cipher
from PRP (or a PRF) even by making quantum queries.

This paper assumes that the attackers belong to the Q2 model. Recent studies
have analyzed the security of symmetric ciphersunder this model. In 2012, Kuwakado
et al.[7] studied the quantum security of the EM cipher under the Q2 model, utiliz-
ing Simon’s algorithm to construct an efficient distinguisher under the qCPA setting,
thereby proving that the quantum version of the EM cipher is not secure. Subse-
quently, in 2015, Dinur et al.[8] combined meet-in-the-middle and partitioning attacks
to enhance attacks on Feistel structures of more than four rounds. In 2016, Kaplan[9]
utilized Simon’s algorithm to break CBC-MAC, PMAC, and other symmetric cipher
systems in polynomial time, demonstrating that Simon’s algorithm could be used
for slide attacks, providing exponential acceleration. Leander et al.[10] in 2017 first
combined Grover’s algorithm with Simon’s algorithm to construct a quantum attack
framework, which was later applied to the analysis of FX structures. Since then, the
Grover-meets-Simon algorithm has been extensively utilized by numerous scholars in
the quantum analysis of symmetric ciphers. Following Kaplan[9] et al.’s development
of quantum slide attacks, Hosoyamada and colleagues[11] in 2019 expanded upon these
techniques, introducing a related-key attack on the EM cipher structure and presenting
a 2-round key-recovery attack on the EM cipher structure.

Dong et al.[12] combined Grover’s algorithm and Simon’s algorithm to introduce
a new quantum key-recovery attack on Feistel structures with varying rounds. In
2019, Ito[13] and others proposed a novel distinguisher for Feistel structures under
a quantum-chosen ciphertext attack (qCCA) setting. This distinguisher can differen-
tiate, in polynomial time, between 4-round Feistel-F, Feistel-KF constructions, and
6-round Feistel-FK structures from random permutations. Subsequently, quantum key-
recovery attacks for r-round Feistel-KF and Feistel-FK structures were performed,

achieving key-recovery in O(2
(r−4)n

4 ) and O(2
(r−6)n

4 ) time, respectively. In the same
year, Dong et al. [14] conducted a study on quantum distinguisher and key recov-
ery attacks for two generalized Feistel structure(GFS) algorithms. They constructed
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2d−1 rounds of quantum distinguisher against d-branch Type-1 type GFS and 2d+1
rounds of quantum distinguisher against 2d-branch Type-2 type GFS. Using these
quantum distinguishers, key-recovery attacks were conducted on the Type-1 and Type-
2 GFS ciphers over d2 − d+ 2 and 4d rounds, respectively, with time complexities of

O(2(
1

2d2
− 3

2d+2)·n2 ) and O(2
d2n
2 ).

Ito et al.[15] also designed a polynomial-level quantum distinguisher under the
qCPA setting for 3d − 3 rounds configurations of Type-1 GFS, along with a d2 −
d + 1 rounds version under the qCCA seting. Based on these distinguishers, key-
recovery attacks were performed on r-round Type-1 GFS ciphers, with complexities

of O(2

(
d2

2 − 3d
2 +2

)
· k2+

(r−d2)k
2 ) and O(2

(r−(d2−d+1))k
2 ).

Ni et al .[16] introduce a 3d− 3 rounds of quantum distinguisher on Type-1 GFS
under the Q2 model and also investigated quantum attacks against the CAST-256
block cipher. In 2020, Cid et al. [17] demonstrated a qCPA on contracting-Feistel
structures and studied related-key attacks on balanced-Feistel structures. That same
year, Hodzic et al.[18] based on Simon’s algorithm, developed a construction for 7-
round and 8-round quantum distinguishers for generalized Feistel structures under
the qCPA setting. In 2021, Li et al.[19] examined the round functions and linear
transformation P of Camellia, presenting a 5-round quantum distinguisher and, under
the qCPA setting, proposed a 7-round Camellia algorithm key-recovery attack with a
complexity of 224.

Cui et al.[20] initially defined weakly periodic functions, thereby extending the
application scope of Simon’s algorithm and further constructing several variant Feis-
tel structure distinguishers. They proposed quantum key-recovery attacks for Feistel
variants. In 2022, Canale et al.[21] provided an automated periodic function search
algorithm under a quantum computing model, implementing key-recovery attacks for
the 5-round Feistel-FK structure. In 2023, Xu et al.[22], based on the divisibility of
branch output functions, proposed quantum attacks on two types of GFS under the
qCPA setting. They constructed quantum distinguishers for an 8-round 4F and the
5-round 2F under the Q2 model, conducting 12-round and 7-round quantum key-
recovery attacks, respectively. Additionally, they constructed a 6-round 2F quantum
distinguisher on a weak divisibility basis, performing a 8-round quantum key-recovery
attack.

In the same year, Sun et al.[23] studied the security of Type-1 generalized Feistel
structures, constructing a quantum distinguisher for a d-branch d2 − 1 round Type-1
GFS structure under the qCCA setting. Furthermore, under the qCPA setting for the
Type-1 block cipher CAST-256, they introduced a 17-round quantum distinguisher

and constructed a quantum key-recovery attack with a complexity of O(2
37(r−17)

2 ).
Based on the findings of prior research, it is apparent that studies conducted under

the qCCA model remain inadequate, and numerous aspects remain unexplored. Build-
ing upon quantum distinguishers for block cipher structures, research on quantum
key-recovery attack techniques primarily relies on the quantum attack frameworks
of the Grover-meets-Simon algorithm. The effectiveness of these attacks is notably
influenced by the specific key scheduling algorithms employed by the block ciphers.
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The paper presents a 5-round distinguisher for Camellia algorithm [24] under the
qCCA setting. This is achieved by studying the round function and the characteristics
of the key scheduling algorithm. Additionally, a key recovery attack model is pro-
posed and the complexity of nine rounds of Camellia recovery key under the quantum
computing model is analyzed using the distinguisher.

2 Preliminaries

2.1 Notation

The following notations are used in this study:
Xi : Output on the left side of the i-th round in the Feistel structure
Xi−1 : Output on the right side of the i-th round
Fi : Round function of the i-th round in the Feistel structure
ki : Round key for the i-th round

2.2 Brief description of Camellia algorithm

Camellia algorithm [24], jointly designed by NTT and Mitsubishi Electric in 2000, is
known for its high security and efficient performance on both hardware and software
platforms. It was selected as a winning algorithm in the European NESSIE project
in 2003, recommended in Japan’s CRYPTREC initiative the same year, became an
IETF standard in 2004, adopted as an ISO/IEC standard in 2005.

Camellia is based on a Feistel structure with a block length of 128 bits and sup-
ports key lengths of 128, 192, and 256 bits, corresponding to 18, 24, and 32 rounds
respectively.

2.2.1 Camellia encryption Transformation

The encryption transformation of Camellia involves differing initial and final whitening
keys, with FL/FL−1 functions inserted every 6 rounds. For the 128-bit key version,
the process consists of three 6-round Feistel structures and two rounds of FL/FL−1

functions. Below, Camellia with a 128-bit key is described as shown in Figure 1.
The plaintext M is 128 bits, the whitening key kwi(1 ≤ i ≤ 4) is 64 bits, and the

round key ki(1 ≤ i ≤ 18) is 64 bits. The key kli(1 ≤ i ≤ 4) utilized in each FL/FL−1

function is 32 bits, and the final output ciphertext C is 128 bits. The specific encryption
process is as follows:
1. Plaintext Whitening

A 128-bit plaintext M undergoes an XOR operation with the whitening key
kw1∥kw2, resulting in two parts: the left 64 bits X−1 and the right 64 bits X0, such
that M ⊕ (kw1∥kw2) = X−1∥X0.

2. Round Iteration
For each round of the Feistel structure, let Xi denote the left output of the i-th

round, and Xi−1 denote the right output of the i-th round. For i = 1, 2, . . . , 18,
excluding i = 6 and i = 12, the i-th round transformation is performed as follows:

Xi = Xi−2 ⊕ F (Xi−1, ki) (1)
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Fig. 1 Encryption process of Camellia

For i = 6, 12, the transformation is as follows:

X ′
i = Xi−2 ⊕ F (Xi−1, ki) Xi = FL

(
X ′

i, kli/3−1

)
Xi−1 = FL−1(Xi−1, kli/3) (2)

3. Pre-whitening of ciphertext output
The final round output X18∥X17 is XORed with the whitening keys kw3∥kw4,

producing the whitened ciphertext C = (X18∥X17)⊕ (kw3∥kw4).
The FL and FL−1 transformations are defined as follows:

FL : F 64
2 → F 64

2 ,

(XL ∥XR, klL∥ klR) 7→ YL∥YR,

YR = ((XL ∩ klL) ≪ 1)⊕XR, YL = (YR ∪ klR)⊕XL

FL−1 : F64
2 → F64

2 ,

(YL ∥YR, klR∥ klL) 7→ XL∥XR,

XL = (YR ∪ klR)⊕ YL, XR = ((XL ∩ klL) ≪ 1)⊕ YR.

(3)

where ∩ represents bitwise logical ”AND” operation; ∪ represents bitwise logical ”OR”
operation. In the Feistel structure, the function F during step 2 utilizes an SP-structure
design that incorporates round key XOR operations, S-box lookups, and the permuta-
tion P. The final output of function F is formed by the outputs of eight S-boxes after
undergoing the permutation P, as depicted in Figure 2. The specific steps involved
are outlined below:
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1. Round Key XOR
A 64-bit input is divided into 8 bytes. Each byte is then XORed with a

corresponding round key byte before proceeding to the next step.
2. S-Box Lookup

The XORed bytes sequentially query 8 S-boxes in the order of
s1, s2, s3, s4, s2, s3, s4, s1.

3. Permutation P
The output from the S-boxes undergoes a linear transformation, described as

follows.

y1 = x1 ⊕ x3 ⊕ x4 ⊕ x6 ⊕ x7 ⊕ x8; y5 = x1 ⊕ x2 ⊕ x6 ⊕ x7 ⊕ x8

y2 = x1 ⊕ x2 ⊕ x4 ⊕ x5 ⊕ x7 ⊕ x8; y6 = x2 ⊕ x3 ⊕ x5 ⊕ x7 ⊕ x8

y3 = x1 ⊕ x2 ⊕ x3 ⊕ x5 ⊕ x6 ⊕ x8; y7 = x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x8

y4 = x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7; y8 = x1 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7

(4)

The final output order is (y8, y7, y6, y5, y4, y3, y2, y1). The diffusion layer P and
its inverse P−1 have the following coefficient matrices:

P =



0 1 1 1 1 0 0 1
1 0 1 1 1 1 0 0
1 1 0 1 0 1 1 0
1 1 1 0 0 0 1 1
0 1 1 1 1 1 1 0
1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1


,P−1 =



1 1 1 0 1 0 0 1
0 1 1 1 1 1 0 0
1 0 1 1 0 1 1 0
1 1 0 1 0 0 1 1
0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0


(5)

2.2.2 Key expansion algorithm

The round keys used in the encryption process are generated from a 256 -bit initial key
kL(128)∥kR(128). Initially, kL(128)∥kR(128) is input into the Feistel structure with round
constants Σ1,Σ2,Σ3,Σ4,Σ5,Σ6. After four rounds, 128-bit kA(128) is generated, and
after six rounds, 128 -bit kB(128) is produced. The structure of the algorithm is shown
in Figure 3. The six round constants involved in generating kA(128) and kB(128) are:

Σ1 = 0xA09E667F3BCC908B

Σ2 = 0xB67AE8584CAA73B2

Σ3 = 0xC6EF372FE94F82BE

Σ4 = 0x54FF53A5F1D26F1C

Σ5 = 0x10E527FADE682D1D

Σ6 = 0xB05688C2B3E6C1FD

(6)

In the 128-bit version of the master key, the 256-bit initial key is defined
as: kL(128)

∥∥kR(128) = k
∥∥ 0. The round keys for each round are derived by shift

transformations of the initial key KL and KA, as summarized in Table 1.
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Fig. 2 The round function of Camellia
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Fig. 3 The key expansion algorithm of Camellia

2.3 Related algorithms

In this section, we offer a concise overview of classical quantum algorithms, specifically
Simon’s algorithm, Grover’s algorithm, and the Grover-meets-Simon algorithm.
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Table 1 Wheel keys for each wheel

Round Round key Round key value Round Round key Round key value

Pre-whitening kw1(64) (kL <<< 0)L(64) F(Round10) k10(64) (kL <<< 60)R(64)

Pre-whitening kw2(64) (kL <<< 0)R(64) F(Round11) k11(64) (kA <<< 60)L(64)

F(Round1) k1(64) (kA <<< 0)L(64) F(Round12) k12(64) (kA <<< 60)R(64)

F(Round2) k2(64) (kA <<< 0)R(64) FL kl3(64) (kL <<< 77)L(64)

F(Round3) k3(64) (kL <<< 15)L(64) FL−1 kl4(64) (kL <<< 77)R(64)

F(Round4) k4(64) (kL <<< 15)R(64) F(Round13) k13(64) (kL <<< 94)L(64)

F(Round5) k5(64) (kA <<< 15)L(64) F(Round14) k14(64) (kL <<< 94)R(64)

F(Round6) k6(64) (kA <<< 15)R(64) F(Round15) k15(64) (kA <<< 94)L(64)

FL kl1(64) (kA <<< 30)L(64) F(Round16) k16(64) (kA <<< 94)R(64)

FL−1 kl2(64) (kA <<< 30)R(64) F(Round17) k17(64) (kL <<< 111)L(64)

F(Round7) k7(64) (kL <<< 45)L(64) F(Round18) k18(64) (kL <<< 111)R(64)

F(Round8) k8(64) (kL <<< 45)R(64) post-whitening kw3(64) (kA <<< 111)L(64)

F(Round9) k9(64) (kA <<< 45)L(64) post-whitening kw4(64) (kA <<< 111)R(64)

2.3.1 Simon’s algorithm

Given a Boolean function f : {0, 1}n → {0, 1}n, which is guaranteed to satisfy f(x) =
f(y) ⇔ x⊕ y ∈ {0, s}. It means that the function has a period s and we need to find
s. Classically, the optimal time to find period s is O

(
2n/2

)
.Nevertheless, Simon [3]

introduced an algorithm that significantly expedites this process, requiring only O(n)
queries to determine s. This algorithm comprises the following five steps:
1. Initialize two n-bit quantum registers in state |0⟩⊗n|0⟩⊗n and apply the Hadamard

transform to the first register to obtain the corresponding superposition state.

H⊗n|0⟩|0⟩ = 1√
2n

∑
x∈{0,1}n

|x⟩|0⟩ (7)

2. Conduct a quantum query on function f and map it to the current state.

1√
2n

∑
x∈{0,1}n

|x⟩|f(x)⟩ (8)

3. Measure the second register, reducing the first register to the following state:

1√
2
(|z⟩+ |z ⊕ s⟩) (9)

4. Apply the Hadamard transform to the first register to obtain

1√
2

1√
2n

∑
y∈{0,1}n

(−1)y·z (1 + (−1)y·s) |y⟩ (10)
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5. In this superposition state, the amplitudes corresponding to y · s = 1 are zero. As
a result, for any measurement of y, it is always true that y · s = 0. By iterating
this process O(n) times, a set of linear equations can be constructed. Solving this
system of equations results in determining the value of s.
At ISIT2010, Kuwawkado et al.[4] presented a quantum distinguishing attack on

a three-round Feistel cipher constructed using Simon’s algorithm. As illustrated in
Figure 4, α0 and α1 are arbitrary constants.

f : {0, 1} × {0, 1}n → {0, 1}n

b, x → αb ⊕X2, (X3, X2) = E (αb, x)

f(b, x) = F2 (F1 (αb)⊕ x)

(11)

Let f be a periodic function satisfying f(b, x) = f (b⊕ 1, x⊕ F1 (α0)⊕ F1 (α1)).
Subsequently, the period s = 1∥F1 (α0)⊕ F1 (α1) can be obtained in polynomial time
by employing Simon’s algorithm.

F2 F3

x

bX0

X-1
X2X1 X3

F1

f

Fig. 4 The periodic function of 3-round Feistel structure under qCPA setting

2.3.2 Grover’s algorithm

When dealing with an unordered set of N = 2n elements, Grover’s algorithm [2]
is employed to pinpoint a unique element that fulfills certain criteria. Specifically, a
quantum oracle O is used, which performs the operation O|x⟩ = (−1)f(x)|x⟩, where
f(x) = 0 for all x except x0 within the range 0 ≤ x < 2n, and f (x0) = 1. The goal is to
determine x0. The most efficient classical algorithm for searching this unordered data
has a time complexity of O(N). However, Grover’s algorithm, executed on a quan-
tum computer, dramatically reduces this to merely O(

√
N) operations. The algorithm

proceeds as follows:
1. Initialize an n-bit register |0⟩⊗n and apply the Hadamard transform to the first

register to achieve the corresponding superposition state, as shown in equation (12):

H⊗n|0⟩ = 1√
2n

∑
x∈{0,1}n

|x⟩ = |φ⟩ (12)

2. Construct a quantum oracle O : |x⟩ → (−1)f(x)|x⟩, if x is the correct state, then
f(x) = 1 ; otherwise, f(x) = 0.
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3. Define the Grover iteration: (2|φ⟩⟨φ|−I)O, and iterate this operation R ≈ π
√
2n/4

times:
[(2|φ⟩⟨φ| − I)O]R|φ⟩ ≈ |x0⟩ (13)

4. Return x0.

2.3.3 Grover-meets-Simon

During the 2017 ASIACRYPT conference, Leander et al.[10] presented a quantum key
recovery attack approach that integrates Grover’s algorithm with Simon’s algorithm,
specifically targeting the FX structure, depicted in Figure 5. The FX structure fulfills
the given equation:

Enc(x) = Ek0
(x+ k1) + k2 (14)

m

k1 k2

cEk0

Fig. 5 The structure of FX

Reference [10] constructs the function f(k, x) = Enc(x) + Ek(x) = Ek0
(x+ k1) +

k2 + Ek(x). When the correct key guess k = k0, it holds that f(k, x) = f (k, x+ k1).
However, for k ̸= k0, the function is not periodic. Under the qCPA setting, Reference
[10] employs a combination of Simon’s algorithm and Grover’s algorithm to attack the
FX structure.

Based on the work of Leander [10], Hosoyamada et al [25], and Dong et al [12] added
a few rounds behind the 3-round Feistel structured distinguisher shown in Figure 4 for
recovering the keys of the Feistel encryption algorithm for the r rounds, with a time
complexity of O

(
2(r−3)n/2

)
.

3 Construction of periodic functions

This chapter presents a brief description of the periodic function of 4-round Feistel
structure proposed by ITO et al[13]. Additionally, a periodic function for Camellia
algorithm is constructed and verified to be correct.

3.1 The periodic function of 4-round Feistel structure

At RSA 2019, Ito et al. introduced the design of periodic functions for a 4-round
Feistel cipher. They developed a quantum distinguisher and presented a key recovery
attack against the Feistel structure. We will now describe the method for constructing
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Fig. 6 The periodic function of 4-round Feistel structure

a periodic function for a 4-round Feistel structure,as proposed in Reference [13]. Figure
6 illustrates the structure of the periodic function.

The 4-round Feistel-F encryption structure is denoted as FF4, and its correspond-
ing decryption structure is represented by FF−1

4 . The round functions of Feistel-F are

signified by F1, . . . , F4 ∈ Func ( n/2 ). The plaintext input (a, b) ∈
(
{0, 1}n/2

)2
to FF4,

which outputs the ciphertext (c, d) ∈
(
{0, 1}n/2

)2
. The encryption structure (a, b) 7→

(c, d) is defined as follows:

c = a⊕ F1(b)⊕ F3 (b⊕ F2 (a⊕ F1(b)))

d = b⊕ F2 (a⊕ F1(b))⊕ F4 (a⊕ F1(b)⊕ F3 (b⊕ F2 (a⊕ F1(b))))
(15)

The decryption structure (c, d) 7→ (a, b) is defined as follow:

a = c⊕ F3 (d⊕ F4(c))⊕ F1 (d⊕ F4(c)⊕ F2 (c⊕ F3 (d⊕ F4(c))))

b = d⊕ F4(c)⊕ F2 (c⊕ F3 (d⊕ F4(c)))
(16)

For the input plaintext (αβ , x), the encryption and decryption structures can
be further simplified.The simplified structure is depicted in Figure 7. The function
fo(β∥x) is described as:

fo(β∥x) = α0 ⊕ α1 ⊕ F2 (x⊕ F1 (αβ))⊕ F2 (x⊕ F1 (αβ)⊕ F3 (αβ ⊕ F2 (x⊕ F1 (αβ)))

⊕F3 (αβ ⊕ α0 ⊕ α1 ⊕ F2 (x⊕ F1 (αβ))))
(17)

Theorem 1. Define Z(β∥x) = F1 (αβ)⊕ x. Then Z(β∥x) is a periodic function with a
period s = 1∥ (F1 (α0)⊕ F1 (α1)).

Proof. Z((β∥x)⊕s) = x⊕ F1 (α0)⊕ F1 (α1)⊕ F1

(
α(β⊕1)

)
= x⊕ F1 (αβ) = Z(β∥x).

It is straightforward to demonstrate that Z(β∥x) is a periodic function. The output
function f◦(β∥x) can be described as follows:

fo(β∥x) = α0⊕α1⊕F2

(
Zβ∥x

)
⊕F2

(
Zβ∥x ⊕ F3

(
α0 ⊕ F2

(
Zβ∥x

))
⊕ F3

(
α1 ⊕ F2

(
Zβ∥x

)))
(18)

It can be deduced that fo(β∥x) is a periodic function with a period of s.
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0 ||f x（ ）
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x
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0 1 

Fig. 7 The equivalent structure of 4-round Feistel structure periodic function

3.2 Construction of periodic functions for Camellia

In this section, we aim to construct a periodic function for Camellia, leveraging the
periodic function construction methods outlined in the preceding section. To com-
mence, we construct the 5-round periodic function structure as illustrated in Figure
8.

0 ||f x（ ）
(0000 00 0)

0000 00 0)P x(

0

'X2X 3X 4X 5X

1F 2F
3F 4F 4F

3F
2F

（0 00 0000）

5F 5F
1F

0X

1X − 1X 1

'X2

'X
3

'X

Fig. 8 The construction of Camellia’s periodic function

In the illustrated structure, F5 and F1 do not participate in the construction of
the periodic function fo(β∥x), thus the structure can be further simplified as shown
in Figure 9.

0 ||f x（ ）

(0000 00 0)

0000 00 0)P x(

0

'X
3

'X

0X

2X 3X 4X

1F 2F
3F 4F 4F 3F

2F

（0 00 0000）

1X −
1X

2

'X 1

'X

Fig. 9 The quivalent structure of Camellia periodic function

Let the inputs for the two branches be (000000αβ0) and P(000000x0), where 0
represents a sequence of eight zero bits. The variables αβ and x are both byte variables,

12



both of which are located at the sixth byte. Byte indexing starts at 0 in this article.
The input P(000000x0) is obtained from (000000x0) through a permutation P.

After the first round function transformation, we get the output X1 as

X1 = F1 (X0)⊕X−1 = F1 (000000αβ0)⊕P(000000x0) = P(000000 ∗ 0) (19)

where ∗ = s1 (αβ)⊕ x, si is the s transformation of the i-th round function. Given the
characteristics of Camellia algorithm’s P permutation matrix, we get the output X2

as:

X2 = F2 (X1)⊕X0 = P(00∆∆∆∆∆0)⊕ (000000αβ0) (20)

Within this structure, each symbol ∆ is distinct and consists solely of bytes that
are related to ∗. The output obtained above continues to participate in the round
function operation, and we can obtain the subsequent output as shown in the following
equations:

X3 = X1 ⊕ F3 (X2) = P(000000 ∗ 0)⊕ F3 (P(00∆∆∆∆∆0)⊕ (000000αβ0))

= P(000000 ∗ 0)⊕ F3 ((∆∆∆∆∆∆∆∆)⊕ (000000αβ0))

= P(000000 ∗ 0)⊕ F3(∆∆∆∆∆∆?∆)

= P(000000 ∗ 0)⊕P(∆∆∆∆∆∆?∆)

= P(∆∆∆∆∆∆?∆)

(21)

The symbol ? is used to indicate a byte where the periodicity of the function cannot
be determined.

X4 = F4 (X3)⊕X2 = F4(P(∆∆∆∆∆∆?∆))⊕P(00∆∆∆∆∆0)⊕ (000000αβ0)

= F4(∆∆?????∆)⊕P(00∆∆∆∆∆0)⊕ (000000αβ0)
(22)

X ′
2 = F4 (X3 ⊕ (0α000000))⊕X4 = F4((∆∆?????∆)⊕ (0α000000))⊕X4

= P (∆α′?????∆)⊕P(∆∆?????∆)⊕P(00∆∆∆∆∆0)⊕ (000000αβ0)

= P (∆α′∆∆∆∆∆∆)⊕ (000000αβ0)

(23)

X ′
1 = F3 (X

′
2)⊕X ′

3 = P(∆∆∆∆∆∆?∆)⊕X4 ⊕ (0α000000) = P(∆∆∆∆∆∆?∆)
(24)

X ′
0 = X ′

2 ⊕ F2 (X
′
1) = P (∆α′∆∆∆∆∆∆)⊕ (000000αβ0)⊕ S2P(P(∆∆∆∆∆∆?∆))

(25)
Perform the P−1 operation on both sides of the above equation, we obtain:
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P−1X ′
0 = (∆α′∆∆∆∆∆∆)⊕P−1 (000000αβ0)⊕ S2(∆∆?????∆)

= (∆α′∆∆∆∆∆∆)⊕ (00αβαβαβαβ0αβ)⊕ (∆∆?????∆)

= (∆∆??????)

(26)

As derived above, the 0 th and 1st bytes ofP−1X ′
0 relate only to the variable ∗, thus

they can be used to construct a periodic function. Define the output byte P−1 (X ′
0)1

as the function fo(β, x), i.e., fo(β, x) =
(
P−1 (X ′

0)1
)
. The theorem states as follows:

Theorem 2. The period of the function fo(β, x) is s = 1∥s1 (α0)⊕ s1 (α1).

fo(β, x) = fo (β ⊕ 1, x⊕ s1 (α0)⊕ s1 (α1))

Proof. When β = 0, for fo(β∥x), ∗ = s (α0) ⊕ x = s (α0⊕1) ⊕ x ⊕ s (α0) ⊕ s (α1) =
s (α0) ⊕ x. Since the value of fo(β∥x) relates only to ∗, it follows that fo(0∥x) =
fo (0⊕ 1∥x⊕ s (α0)⊕ s (α1)).

When β = 1, for fo(β∥x), ∗ = s (α1) ⊕ x = s (α1⊕1) ⊕ x ⊕ s (α0) ⊕ s (α1) =
s (α1) ⊕ x. Since the value of fo(β∥x) relates only to ∗, it follows that fo(1∥x) =
fo (1⊕ 1∥x⊕ s (α0)⊕ s (α1)).

It can be demonstrated that the function fo(β∥x) exhibits periodicity. In accor-
dance with Theorem 2 of the literature [13], a distinguisher against the 5-round
Camellia can be constructed using the function fo(β∥x).

3.3 Experimental validation

In this subsection, we conducted targeted experiments to validate the correct-
ness of the periodic functions developed in the preceding section.In accordance
with the Camellia algorithm criteria outlined in the literature[24], we have con-
structed the 5-round periodic function structure presented in Subsection 3.2 on the
Python 3.7 environment. Our primary aim was to verify the equation f◦(β, x) =
f◦ (β ⊕ 1, x⊕ s1 (α0)⊕ s1 (α1)). Consequently, we gathered a diverse array of data
sets for periodicity testing, and the results consistently upheld the accuracy of the
periodic function. As illustrated in Figure10, the periodic function is demonstrated to
be correct with a specific set of data.

The input plaintext group data is (000000αβ0) ,P (000000x0), where x =
(00000000), α0 = (00000000), and α1 = (00000001). When β = 0, for f◦(β, x),
the plaintext input comprises solely zeros. The output for the first byte, denoted as(
P−1

)
X ′

0, is (01101100).
For f◦ (β ⊕ 1, x⊕ s1 (α0)⊕ s1 (α1)), the plaintext group data is updated to

(0000000α1) ,P(000000x⊕ s1 (α0) ⊕ s1 (α1) 0 ), and remarkably, the output for the
first byte, again denoted as

(
P−1

)
X ′

0, remains unchanged at (01101100).
Given the experimental verification outlined above, Theorem 1 is confirmed to be

accurate.
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Fig. 10 Experimental result

4 The attack model for Camellia

This section presents a key-recovery attack model for Camellia algorithm under the
qCCA setting, leveraging the 5-round distinguisher proposed in Subsection 3.2. Here
is an outline of our attack methodology:
1. Implement a 9-round encryption oracle, denoted as E , and decrypt the input of

the periodic function fin over two rounds. The resulting intermediate value after
the 2 -rounds and the subkeys for the 2 -rounds as the input to the circuit E .
Then, the output of E undergoes two rounds of decryption and is XORed with a
constant.

2. Implement a quantum circuit D that computes the inverse of E . Encrypt the
results from the previous step over two rounds, inputting the intermediate value
along with subkeys into the circuit D. Subsequently, encrypt D’s output over two
rounds to acquire the periodic function output fout .

3. Guess the keys for the two rounds preceding and succeeding the quantum circuits
E and D.

4. For each key guess, check its correctness with the following procedure.
a) Apply the 5 -round distinguisher to E and D.
b) If the distinguisher returns “this is a random permutation”, then judge that

the guess is wrong. Otherwise judge that the guess is correct.

4.1 9-round key-recovery attack on Camellia

Utilizing the established attack model, a 9-round key-recovery attack is exe-
cuted, as depicted in Figure 11. The periodic function input fin is configured as
[P(000000x0), (000000αβ0)], with the output fout being P−1 ((X7)1).To decrypt
fin through two rounds and retrieve the plaintext, the keys K1 and K2,{2,3,4,5,6} need
to be guessed. Subsequently, the ciphertext is obtained after nine rounds of encryption
by the oracle. In addition, the keys to be guessed for the decryption of the cipher-
text for two rounds are K9,{0,3,4,5,6} and K8,7. After xOR the obtained intermediate
state with the constant [(00000000), (0α000000)], it needs to guess the keys K8,7

and K9,{0,3,5,6,7} to encrypt for two rounds to obtain the ciphertext. The plaintext
is then obtained by nine rounds of decryption oracle. Finally, the keys K1 and K2,1

must be guessed in order to encrypt the plaintext for two rounds, thereby obtaining
the output fout .
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Fig. 11 The key-recovery attack model of Camellia

Due to the characteristics of Camellia’s key scheduling, where round keys for F
(Round 1), F (Round 2), and F (Round 9) are derived from cyclic shifts of KA, many
key bits are repeated. We guess all key bits for Round 1 and bytes 1-6 for Round 2.
Round 9 requires guesses for 0 and 3-7 bytes of the key, with 45 bits being repetitions.
As shown in Figure 12,the orange portion of the figure indicates the 3-bit non-repeating
key positions that must be guessed in round 9. Thus, the actual key bits to guess are
KA[0−63],KA[72−119],KL[37−44],KA[69,70,71], totaling 64+ 48 + 8 + 3 = 123 bits.

r

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

n …

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

Key bits

1

2

9

Fig. 12 Camellia round key duplicate bits

Define g : F 64
2 × F 48

2 × F 8
2 × F 32

2 × F
(8+1)
2 → F 8

2 satisfying(
KA[0−63],KA[72−119],KL[37−44],KA[69,70,71], y

)
→ f(y), where y = fo(β, x). If the key

guess is correct, the following holds true:

g
(
KA[0−63],KA[72−119],KL[37−44],KA[69,70,71], y

)
=

g
(
KA[0−63],KA[72−119],KL[37−44],KA[69,70,71], y ⊕ s

) (27)

If fin → fout is a periodic function, then the period of this function can be
determined by inputing it into Simon’s algorithm. The guess is correct; otherwise, the
guess is incorrect.

As outlined in the literature [10], the formula for the number of quantum bits
required for a key recovery attack is as follows:
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sum = nk + nin × l + nout × l, l = 2(ñ+
√
n) (28)

where sum represents the total number of quantum bits required, nk the length of
the key, nin the input length of the periodic function, nout the output length of
the periodic function, and ñ the length of the period. For Camellia’s guessed keys
KA[0− 63],KA[72− 119],KL[37− 44],KA[69, 70, 71], we have that:

nk = 64 + 48 + 8 + 3 = 123, nin = 8 + 1 = 9, ñ = 8 + 1 = 9

nout = 8, l = 2(9 +
√
9) = 24, sum = 123 + 9× 24 + 8× 24 = 531

(29)

The whole attack needs 123 + 9× 2(9 +
√
9) + 8× 2(9 +

√
9) = 531 qubits. Based

on Grover’s algorithm, an exhaustive search is performed on a 123-bit key. If the
function outputs a period s using Simon’s algorithm, then the guessed key is correct.
The required time complexity is 2

nk
2 = 261.5.

5 Conslusion and future work

Ito et al. studied the 4-round Feistel structure quantum distinguisher under the Q2
model, but did not consider the algorithm’s internal structure .This paper investigates
quantum key-recovery attacks against Camellia under the Q2 model. Initially, based
on the round function and key scheduling features of Camellia, a 5-round qCCA dis-
tinguisher is proposed. Subsequently, utilizing this distinguisher, we present a 9-round
quantum key -recovery attack based on the Grover-meets-Simon algorithm, achiev-
ing a time complexity of 261.5. Compared to previous quantum analyses of Camellia,
our attack performs better and is the first to conduct a quantum chosen-ciphertext
key-recovery attack on Camellia.

The ability of symmetric cryptographic algorithms against quantum attacks is gar-
nering increasing attention. In addition to performing quantum security analyses on
existing symmetric cryptographic algorithms, scholars are also considering quantum
security as an essential criterion in proposing new symmetric cryptographic algorithms.
Future research will concentrate on the construction of quantum distinguishers with
an increased number of rounds under the quantum computing model. Additionally, the
time complexity of quantum key-recovery attacks may be reduced through the explo-
ration of quantum algorithms. Furthermore, the efficacy of symmetric cryptographic
structural schemes against quantum attacks will be further investigated.
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