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Abstract. A spectre is haunting consensus protocols—the spectre of
adversary majority. The literature is inconclusive, with possibilities and
impossibilities running abound. Dolev and Strong in 1983 showed an
early possibility for up to 99% adversaries. Yet, we have known impos-
sibility results for adversaries above 1/2 in synchrony, and above 1/3 in
partial synchrony. What gives? It is high time that we pinpoint the cul-
prit of this confusion: the critical role of the modeling details of clients.
Are the clients sleepy or always-on? Are they silent or communicating?
Can validators be sleepy too? We systematize models for consensus across
four dimensions (sleepy/always-on clients, silent/communicating clients,
sleepy/always-on validators, and synchrony/partial-synchrony), some of
which are new, and tightly characterize the achievable safety and liveness
resiliences with matching possibilities and impossibilities for each of the
sixteen models. To this end, we unify folklore and earlier results, and fill
gaps left in the literature with new protocols and impossibility theorems.

1 Introduction

The field of Byzantine consensus presents a seemingly contradictory landscape
of claims regarding the resilience of protocols—that is, regarding what fraction
of parties a protocol can tolerate to deviate from the protocol, while preserving
the consensus security-properties safety and liveness. The oft-cited Dolev–Strong
protocol [18], along with recent works such as [25,24], famously tolerates up to
99% adversary parties. This stands in stark contrast to the perhaps equally-oft-
cited “51% attack” that renders many blockchains based on Nakamoto’s longest-
chain consensus protocol [17,14]4 insecure as soon as more than half of the parties

SS and ENT contributed equally and are listed alphabetically. A part of Sec. 3.2
appeared in an earlier preprint [54] by SS, DZ, and DT.

4 By Nakamoto consensus, we here mean longest-chain proof-of-stake (PoS) vari-
ants [17,14], not the proof-of-work (PoW) protocol of Bitcoin [43,21]. Some readers
may remark that PoS Nakamoto is special because it supports the sleepy model [50].
We’ll get to that, but for now treat it as a protocol for synchrony, which it is, too.
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are Byzantine. One naturally asks: Why bother with protocols that break under
51% attacks when there are protocols that purportedly tolerate 99% adversary?
The Crucial Role of Clients. The security guarantees of Dolev–Strong and
Nakamoto protocols are both given under synchrony assumptions, so the net-
work model is not the culprit. Rather, it is client assumptions. Blockchains com-
prise not only validators–—active participants in the consensus protocol, such as
stakeholders in a proof-of-stake (PoS) blockchain—–but also clients. While they
do not actively contribute to consensus, they monitor the chain for payments and
ship merchandise in response. Two specific characteristics of clients are relevant:
(1) Sleepiness: Clients may only follow the chain intermittently (e.g., a merchant
during business hours), or may turn to a chain only long after its inception. We
then call this the sleepy client model, in analogy to sleepy validators in [50]. In
contrast, in the always-on client model, we expect clients to follow the chain
continuously, such as in the case of block explorers or wallet providers. (2) Inter-
activity: In the silent client model, clients may be constrained to only listen to
messages from validators. In contrast, in the communicating client model, they
may be able to relay messages to validators or other clients, for instance, through
a system-wide gossip protocol. Consensus is easier when clients are always-on
rather than sleepy, and communicating rather than silent.

Nakamoto consensus makes only the weakest client assumptions, sleepy silent
clients, but achieves only 49% resilience—which is optimal for that model [52,50,49].
In contrast, the Dolev–Strong 99%-resilience holds under the assumption of
always-on communicating clients, i.e. the strongest client assumptions [9]. (The
original Dolev–Strong work was developed in a model with only validators and
no clients.) What about the intermediate client assumptions, sleepy communicat-
ing clients or always-on silent clients? What about if the validators themselves
can also be sleepy instead of being always-on as in Nakamoto consensus [17,14]?
And what about if the network is partially synchronous instead of synchronous?
Our Contributions. The main contribution of this paper is a full characteri-
zation of the achievable security in all such scenarios. The results are summa-
rized in Fig. 1 in terms of tight achievable safety and liveness resiliences under
each scenario. Safety resilience of a protocol is the maximum fraction of ad-
versary validators such that safety is guaranteed, and liveness resilience of a
protocol is the maximum fraction of adversary validators such that liveness is
guaranteed [41,44]. Traditional resilience of a protocol, the maximum fraction
of adversary validators such that it is both safe and live, is the minimum of the
protocol’s safety and liveness resiliences. Separate safety and liveness resiliences
provide a meaningfully more fine-grained measure of a protocol’s security since
the impact of safety loss and liveness loss to a client is often different.

Fig. 2 shows the relationship of all the scenarios we considered in this paper.

Synchronous network with always-on validators: The first column of
Fig. 1 shows the results in the synchronous network model. Fig. 1j shows that
one can achieve 99% resilence when clients are always-on and communicating,
i.e., the Dolev–Strong client model. Fig. 1a shows that one can achieve 49% resi-
lence when clients are sleepy and silent, i.e., the Nakamoto client model. Fig. 1d
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Fig. 1: Tight achievable ( ) and impossible ( ) safety resilience tS and liveness
resilience tL bounds for different models (cf. Fig. 2), each with four aspects: Net-
work delay: synchrony ∆ vs. partial synchrony ∆; Validator sleepiness: always-
on validators

!!!
vs. sleepy validators

zZ
; Client sleepiness: always-on clients

!!!
vs. sleepy clients

zZ
; and Client interactivity: communicating vs.

silent . Citations with corollaries, or theorems, indicate previously known,
or new results, respectively.
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Fig. 2: Hasse diagram illustrating the relative difficulty of consensus in all the
different models we study (proof: Lem. 1). Each small white box indicates a
different model (see Fig. 1 for icon legend). Models are grouped in a shaded
circle when they share validator model and network model but the client model
differs. Group (∆,

zZ
) is faded out because consensus is impossible [46,22,31].

and Fig. 1g are the two intermediate client settings; our impossibility results
show that the achievable resilences in both settings do not improve over the
Nakamoto client model, i.e., 49% resilience. However, the similarity ends when
one looks at safety and liveness resiliences separately. In particular, we show a
new protocol for sleepy communicating clients that can achieve 99% safety re-
silience and 49% liveness resilience simultaneously (Fig. 1g, Thm. 4), a resilience
pair that is impossible for sleepy silent clients (Fig. 1a), and strictly dominates
classical protocols like Nakamoto’s that achieve only 49% safety resilience and
49% liveness resilience. What is more, we show another protocol for sleepy com-
municating clients that achieves 49% safety and 99% liveness resilience (Fig. 1g,
Thm. 5). On the other hand, we show that silent clients do not benefit from being
always-on rather than sleepy in synchronous networks even when one considers
safety and liveness resiliences separately (Figs. 1a and 1d, Thms. 1 and 2).

Synchonous network with sleepy validators: The concept of “sleepy”
parties was previously introduced in the sleepy model [50] where it pertains to
validators rather than clients. That model features—in addition to adversary
Byzantine faults—relatively-benign mobile crash-faults. Each validator is either
honest, crashed, or adversary, and liveness must hold even when many validators
are crashed [46,47]. We show that under synchrony with silent or with always-on
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communicating clients, validator sleepiness does not affect achievable safety–
liveness pairs (Figs. 1a, 1b, 1d, 1e, 1j and 1k). Validator sleepiness does affect,
though, what’s achievable for sleepy communicating clients (Figs. 1g and 1h).
Specifically, while 49% safety and 99% liveness resilience remain simultaneously
achievable (Fig. 1h, Thm. 9), that is not the case for 99% safety and 49% liveness
resilience (Fig. 1h, Thms. 6 and 8).

Partially synchronous network: Finally, the astute reader will note that—
whether validators are sleepy or always-on—our discussion above regarding Dolev–
Strong and Nakamoto consensus assumes synchrony, where the protocol is pa-
rameterized by an upper bound ∆ on the delay of message propagation among
honest parties. In contrast, PBFT-style protocols [11,10,57,53,16] are designed
for partial synchrony, where such a delay bound is guaranteed to hold only even-
tually, after an initial period of unknown duration with arbitrary network delay.
Network delay constitutes the fourth and last aspect of our models (Fig. 2).
Interestingly, the safety–liveness resilience pairs achievable under partial syn-
chrony do not depend on client sleepiness or client interactivity (Figs. 1c, 1f,
1i and 1l—with sleepy validators, safety under partial synchrony is impossible
[46,22,31]; cf. Fig. 2). This “robustness” of the partially synchronous model to
different client assumptions is perhaps why clients have so far often been an
afterthought in the distributed-systems literature.

2 Model

We focus on the most relevant model aspects. Other standard aspects: App. A.
Parties. A fixed set N of parties called validators is known to all parties.
Define n = |N |. Each validator has a secret key with which they may sign their
messages, and all parties know the public keys of all validators. We assume a
permissioned setting [32,8,50] with a fixed and known set of validators, and defer
the proof-of-stake setting to Sec. 6. Unlike validators, the number and identities
of the clients is not known to all parties, and clients do not have public keys.
Adversary. At the beginning of the execution, before any randomness is drawn,
the PPT adversary A controls f adversary validators (a.k.a. Byzantine faults).
A may also corrupt any number of clients. All our theorems hold for any number
of adversary clients. We discuss adaptive corruption in Sec. 6.
Validator sleepiness (cf. [50]). At every round r, a subset awaker ⊆ N of
validators are awake while the rest are asleep. When asleep, validators behave
like temporarily crashed nodes: they do not run computation or send messages.
Whenever a validator is awake, it knows the current round (i.e., it wakes up
with a synchronized clock). In the always-on validators model, all validators
are always awake, (∀r : awaker = N ). In the sleepy validators model, A selects
awaker, and adversary validators are always awake.
Client Models. We classify clients along two orthogonal criteria. Interactivity :
Communicating clients may send messages to other parties, silent clients do
not. Sleepiness: Always-on clients are always awake while sleepy clients may



6 S. Sridhar, E. N. Tas, J. Neu, D. Zindros, D. Tse

be put to sleep by A. When asleep, clients do not perform any computation,
send messages, or output new logs. This results in the four client models shown
in Fig. 2. For example, the sleepy communicating model means that all clients
are sleepy and communicating. Communicating clients are new in this work
and more accurately depict blockchain implementations in which communication
is facilitated by a non-eclipsed gossip network comprised of both clients and
validators. Since clients’ messages cannot be authenticated due to their lack
of PKI, really the best they can do is relay messages received from validators
to other clients. Yet, communicating clients circumvent impossibility results for
silent clients (Fig. 1).
Network delay models. We consider two standard network models. In the syn-
chronous model, there is a known constant ∆ such that if an honest party sends
a message at round r, then every honest party receives the message by round
r +∆.5 The partially synchronous model is described in App. A.

In both models, messages are delivered to asleep parties, but they can only
process them after awakening. In practice, equivalent behavior can be achieved by
having the awakening party query online parties who reply with the ‘important’
past messages (e.g., ‘initial block download’ [5]). Thus, although sleepy parties
receive all the same messages as always-on parties, they are less powerful since
they cannot record the time of message receipt.
SMR. At the start of each round, each awake party may receive some transac-
tions as input. At the end of every round r, each awake honest client k outputs a
log (sequence of transactions) LLLr

k. For a client k asleep at round r, let LLLr
k = LLLr−1

k .
For all clients k, LLL0

k = Lgenesis. We use A ⪯ B to denote that log A is a (not
necessarily strict) prefix of the log B. We use A ∼ B (‘A is consistent with B’)
as a shorthand for A ⪯ B ∨B ⪯ A.

Definition 1 (Safety). An SMR protocol Π is safe iff for all rounds r, s and
all honest clients k, k′, LLLr

k ∼ LLLs
k′ .

Definition 2 (Liveness). An SMR protocol Π is live with latency u iff for
all rounds r, if a transaction tx was received by an awake honest validator or
communicating client before round r − u, then for all honest clients p awake
during rounds [r − u, r], tx ∈ LLLr

p.6

Definition 3 (Resilience). For always-on validators, a family of SMR proto-
cols Π(n) achieves safety resilience tS ∈ [0, 1] and liveness resilience tL ∈ [0, 1]
if for all n,7 Π(n) is safe with overwhelming probability over executions with
f ≤ tSn and live with overwhelming probability over executions with f ≤ tLn.
For sleepy validators, denote the adversary fraction f

minr awaker
by β. Then, a

protocol Π achieves safety resilience tS ∈ [0, 1] and liveness resilience tL ∈ [0, 1]

5 Gossip networks have been shown to maintain connectivity, and thus synchrony, even
under adversary majority [13,34,35].

6 Clients may not output new logs for a few rounds after awakening. We use a single
parameter u for the maximum of such delay and the protocol’s latency.

7 The number of parties is constrained to be polynomial in the security parameter.
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if Π is safe with overwhelming probability over executions with β ≤ tS and live
with overwhelming probability over executions with β ≤ tL.

3 Synchrony with Always-On Validators

3.1 Sleepy Silent, Always-On Silent Clients (Fig. 1a, Fig. 1d)

We group the protocols and impossibility results for sleepy silent and always-on
silent clients in this section because the results are the same for both (Figs. 1a
and 1d). Due to Lem. 1, we prove impossibility results for the easier always-on
silent client model and show protocols for the harder sleepy silent client model.

Impossibility for Always-On Silent Clients

Theorem 1. In a synchronous network with always-on validators and always-
on silent clients, no protocol can achieve resiliences (tL, tS) such that tL+tS ≥ 1.

Thm. 1 is due to a split-brain attack. Suppose a protocol has resilience (tL, tS)
such that tL + tS = 1. Then, the protocol must remain live given f = tLn
adversary validators and safe given f = (1 − tL)n adversary validators. Then,
consider a set of (1− tL)n adversary validators that emulate in their heads two
apparently honest executions with two different transactions.8 These validators
can ensure that two clients, each hearing only one of the emulated executions,
output different logs. Thus, the protocol cannot ensure safety under (1− tL)n =
tSn adversary validators, which is a contradiction. Note that the success of the
split-brain attack crucially requires the clients to remain isolated, i.e., to be
silent. The full proof is in App. B.1.1. For sleepy silent clients, Cor. 1 follows
from Thm. 1 and Lem. 1, and a similar proof is also in [41,45].

Corollary 1. In a synchronous network with always-on validators and sleepy
silent clients, no protocol can achieve (tL, tS) such that tL + tS ≥ 1.

Achievability for Sleepy Silent Clients (Safety-Favoring)

Corollary 2. In a synchronous network with always-on validators and sleepy
silent clients, for all (tL, tS) with tL + tS < 1 and tL < 1/2, Sync HotStuff [2]
with a quorum size of q ∈ (tSn, (1− tL)n] achieves (tL, tS).

Cor. 2 follows from [2, Theorems 3 and 4], by replacing the quorum sizes by
q ∈ (n/2, n]. A similar construction and its security proof can be found in [41].
Other protocols such as Sync Streamlet [12] can also be adapted with quorums
q ∈ (n/2, n] to achieve the same result. Due to Lem. 1, the protocol achieves the
same resiliences in a synchronous network with always-on silent clients.

Achievability for Sleepy Silent Clients (Liveness-Favoring) We next
describe a family Πq

live of protocols (Alg. 1, Fig. 3) parameterized by the integers
8 Since each execution requires a polynomial amount of computation, a polynomial-

time adversary can emulate both these executions.
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Algorithm 1 Liveness-favoring SMR protocol Πq
live for sleepy silent clients

1 ▷ Code for validator v
2 on init(N , Lgenesis)
3 Pint ← new Πint(N , Lgenesis) ▷ instantiate a new Πint validator
4 on receiving transaction tx or ⟨tx⟩v′ for some v′ ∈ N
5 gossip(⟨tx⟩v) ▷ send tx and signature on tx to all parties
6 Pint. input(tx) ▷ input tx to the internal protocol

7 ▷ Client code
8 on init(N , Lgenesis)
9 Pint ← new Πint(N , Lgenesis) ▷ instantiate a new Πint client

10 Q← ∅ ▷ liveness queue: txs seen so far
11 LLL ← Lgenesis ▷ output log of the combined protocol Πq

live

12 on {⟨tx⟩v}v∈V such that V ⊆ N , |V | ≥ q at round r
13 Q. enqueue((tx, r)) ▷ add tx to the liveness queue on receiving at least q signatures
14 on every round r
15 Lint ← output by Pint at round r
16 for (tx, r′) ∈ Q such that r′ ≤ r − uint and tx /∈ Lint

17 Lint ← Lint||tx
18 LLL ← Lint ▷ output log

txs sign Πint

delay uint

Lint||txs LLL

if ≥ q
signed

Lint

txs

V
al

id
at

or
s C

lients

Fig. 3: A family of protocols that achieves any resilience tL + tS < 1 and tS <
tL for sleepy silent or always-on silent clients (lower right triangle of Figs. 1a
and 1d). The internal protocol Πint is any SMR protocol achieving all resilience
pairs tS < 1/2, tL < 1/2 for sleepy silent clients (e.g. Sync HotStuff [2]). On
receiving transaction tx, validators sign it and broadcast the signature before
processing it as an input to Πint. A client, on receiving transaction tx signed by
q > tSn validators, and after waiting uint rounds (where uint is the maximum
latency of Πint), if tx is not included in the log Lint output by the client from
Π, concatenates tx to Lint to output the final confirmed log LLL.

q ∈ [0, n/2], one for each resilience pair satisfying tL + tS < 1 and tL ≥ tS. The
protocol Πq

live consists of an internal protocol Πint and a liveness queue. The
internal protocol can be any SMR protocol that achieves all tS < 1/2, tL < 1/2
under synchrony (e.g., Sync HotStuff [2]).

Each honest validator v participates in the internal protocol. Upon receiving
a transaction tx for the first time, v signs tx and sends tx and its signature
to all parties (Alg. 1 l. 5). Each client locally maintains a liveness queue. If a
transaction tx gathers q or more signatures, it is added to the queue (Alg. 1 l. 13).
Each client also maintains an internal log Lint output from the internal protocol
(see Fig. 3). To output its log at a round r, a client k appends transactions added
to the liveness queue at rounds r′ ≤ r−uint (where uint is the internal protocol’s
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latency) to its internal log at round r, discarding duplicates (Alg. 1 l. 17). The
augmented internal log is then output as the log at round r.

Theorem 2. In a synchronous network with always-on validators and sleepy
silent clients, for all (tL, tS) with tL + tS < 1 and tL ≥ 1/2, the protocol Πq

live

with q ∈ (tSn, (1− tL)n] achieves (tL, tS).

When f ≤ tLn validators are adversary, all transactions input to an honest
validator gather q signatures and enter the liveness queues and eventually enter
the output log, ensuring liveness with resilience tL. When f ≤ tSn (which implies
f ≤ tLn, since tL + tS < 1 and tL ≥ 1/2), the internal protocol is safe and
live, and adversary validators cannot produce q signatures without an honest
validator. Therefore, any transaction tx added to the liveness queue must be
known to an honest validator and processed by the internal protocol. By the
internal protocol’s liveness, tx enters the internal log within uint rounds. Thus,
no transaction is ever appended to the internal log. Safety then follows from the
internal protocol’s safety. The full proof is in App. B.1.2

3.2 Sleepy Communicating Clients (Fig. 1g)

Impossibility for Sleepy Communicating Clients

Theorem 3. In a synchronous network with always-on validators and sleepy
communicating clients, no protocol can achieve resiliences (tL, tS) ∈ [1/2, 1] ×
[1/2, 1].

Suppose a protocol can achieve tL = tS = 1/2. Let P and Q be two disjoint
sets of n/2 validators and k1, k2 be two clients. Consider two worlds where the
(P, k1) and (Q, k2) are adversary respectively. In both worlds, the adversary
parties initially do not communicate with honest parties. By liveness, in world
i ∈ {1, 2}, client ki awake since the start outputs transaction txi by round u
after hearing from the honest validators. In both worlds, a client k3 awakes after
round u and hears from all parties including the adversary ones. By liveness, k3
also outputs txi in world i. However, the two worlds are indistinguishable for k3
because P −Q and k1 − k2 exchange their roles in the two worlds, implying its
log is the same and must contain both tx1 and tx2 in both worlds, leading to a
safety violation in at least one world. The full proof is in App. B.2.1.

Achievability for Sleepy Communicating Clients (Safety-Favoring)
This protocol achieves (tL, tS) for all tL < 1/2 and tS = 1. In particular, it is al-
ways safe. It uses a freezing gadget applied to an internal SMR protocol Πint that
is certifiable [47,30] (cf. public verifiability [41]). Quorum-based protocols such
as HotStuff [57,38], Streamlet [12], Tendermint [7], Casper [10], and their syn-
chronous variants such as Sync HotStuff [2] and Sync-Streamlet [12, Sec. 4]9 are
9 The synchronous variants can be made certifiable by having validators broadcast a

signature on their ‘committed’/‘finalized’ logs [41, Sec. 4.2].
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Algorithm 2 Freezing protocol for sleepy communicating clients
1 ▷ Code for client
2 on init(N , Lgenesis)
3 Pint ← new Πint(N , Lgenesis) ▷ instantiate a new Πint client
4 S ← ∅ ▷ set of valid logs seen so far
5 LLL ← Lgenesis ▷ output log of the combined protocol Πfrz

6 on certificate C output by Pint.W() once per round or C received from network
7 Lint ← C(C) ▷ extract log from certificate
8 S ← S ∪ {Lint} ▷ add Lint to set of logs seen so far
9 gossip(C) ▷ send the transcript to all parties

10 wait(∆) ▷ meanwhile, continue processing other events
11 if Lint ̸⪯ LLL and ∀L′ ∈ S : Lint ∼ L′ ▷ log has grown, no conflicting logs
12 LLL ← Lint

txs Πint

network

delay ∆ ∼ output
log LLL

internal
log Lint

gossip Πfrz

Fig. 4: The freezing protocol Πfrz that achieves tL < 1/2, tS = 1 for sleepy
communicating clients. The internal protocol Πint is any certifiable SMR protocol
that can achieve all tS, tL < 1/2. On seeing a log Lint from Πint or the network,
the client gossips Lint (formally, the corresponding certificate), and waits for ∆

rounds. The conflict resolution component ∼ remembers the set S of all logs
it ever received at the input port on its top. On receiving L at the input port
on its left, this component outputs L if there were no conflicting logs in S (see
Alg. 2 ll. 11 and 12).

certifiable. In these protocols, clients output a log on receiving enough quorum
certificates which form a certificate that other clients can verify non-interactively.
Certifiable safety means that adversaries controlling ≤ tS validators cannot forge
certificates certifying two conflicting logs.

Definition 4 (Certifiable protocol). An SMR protocol Π is certifiable if
there exists a computable functionality W (the certificate producer) and a com-
putable deterministic non-interactive function C (the certificate consumer) such
that when a client p invokes W() at round r, it produces a certificate C such that
C(C) = LLLr

p. A certifiable protocol Π is certifiably safe if Π is safe, and moreover,
if at any round r, the adversary outputs a certificate C such that C(C) = L, then
for all clients q, for all rounds s, L ∼ LLLs

q. A certifiable protocol Π achieves cer-
tifiable safety resilience tS if Π is certifiably safe with overwhelming probability
over executions with f ≤ tSn.

The protocol is described in Alg. 2 and is illustrated as a block diagram in
Fig. 4. Each client runs a client for the internal protocol Πint, (Πint in Fig. 4,
Alg. 2 l. 3) periodically outputs a certificate C for the internal log Lint, and
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Round
r −∆ r

1 p outputs L2 p sees L,
gossips L

3 All clients see L,
do not output L′ ̸∼ L

Fig. 5: Illustration for the freezing protocol’s safety which is maintained during
adversary majority (Thm. 4). 1 Suppose that at round r, a client p outputs a log
L. 2 The client must have seen L (and its certificate C) either from the internal
protocol Π or from the network latest by round r −∆, at which point it must
have sent L (and C) to all other clients. 3 Thus, by round r, all clients must
have seen L and thereafter will never output a log that conflicts with L.

gossips it to the network. It similarly processes certificates received from other
clients. After waiting ∆ rounds (Alg. 2 l. 10), the client outputs the log Lint iff
it has seen no conflicting logs (Alg. 2 ll. 11 and 12).

Applying this gadget to an internal protocol Πint with certifiable safety and
liveness resilience tLint < 1/2, tSint < 1/2 (e.g., Sync HotStuff [2]) results in a
protocol Πfrz (Fig. 4) with resilience tL < 1/2, tS = 1. Safety of Πfrz is ensured
by the freezing gadget. See Fig. 5 for a visual safety proof. Liveness of Πfrz comes
from the internal protocol’s liveness and certifiable safety, which guarantee that
new transactions are included in the internal log and no conflicting certificates
are seen. The full proof is in App. B.2.2.

Theorem 4. In a synchronous network with always-on validators and sleepy
communicating clients, for all (tL, tS) with tL < 1/2 and tS ≤ 1, Πfrz with Sync
HotStuff as its internal protocol achieves (tL, tS).

Achievability for Sleepy Communicating Clients (Liveness-Favoring)
The protocol Π∗live achieves any (tL, tS) with tL = 1, tS < 1/2 under always-on
validators. The protocol is very similar to Πq

live the liveness-favoring protocol for
sleepy silent clients (Sec. 3.1) but simpler, so we only describe the key difference.
Unlike silent clients in Πq

live (Sec. 3.1), communicating clients add transactions
to their liveness queue as soon as they receive them. This is because while silent
clients require signatures from q > tSn validators to infer that at least one
honest validator received the transaction, communicating clients can do so by
gossiping the transaction themselves. The full protocol and security proof are in
App. B.2.3.

Theorem 5. In a synchronous network with always-on validators and sleepy
communicating clients, for all (tL, tS) with tL ≤ 1, tS < 1/2, Π∗live with Sync
HotStuff as its internal protocol achieves (tL, tS).

3.3 Always-On Communicating Clients (Fig. 1j)

Achievability for Always-On Communicating Clients Dolev and Strong [18],
and Lamport, Shostak, and Pease [27] presented protocols for the Byzantine
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Generals problem when all but one validator are adversary. In their problem
setting, there are no clients. Instead, a designated leader (‘general’) broadcasts
a value and all honest validators (‘lieutenants’) must agree on a common value,
which matches the leader’s value if the leader is honest. However, the Dolev-
Strong protocol can be extended to support always-on communicating clients;
the client follows the same rules a validator uses to output a value.

An SMR protocol can be created by having each validator propose a block
as the leader in an instance of the Dolev-Strong protocol, allowing always-on
communicating clients to agree on a unique block (possibly a default empty
block) per leader. The client’s log is formed by concatenating these blocks in a
set order, repeating the process to grow the log. This approach is presented in
[9,25], with optimizations in [24]. We recap the protocol from [9] in Alg. 5 and
prove its security in App. B.3.1.

Corollary 3. In a synchronous network with always-on validators and always-
on communicating clients, for all (tL, tS) with tL, tS < 1, Alg. 5 achieves (tL, tS).

We note that no protocol can achieve tL = tS = 1 (cf. App. C.3.2).

4 Synchrony with Sleepy Validators

4.1 Sleepy Silent, Always-On Silent Clients (Fig. 1b,Fig. 1e)

Impossibility for Always-On Silent Clients This follows from Thm. 1
and Lem. 1.

Corollary 4. In a synchronous network with sleepy validators and always-on
silent clients, no protocol can achieve resiliences (tL, tS) such that tL + tS ≥ 1.

Achievability for Sleepy Silent Clients (Equal Resiliences) This follows
from Sleepy Consensus [50, Theorem 1] and Goldfish [15, Theorem 2].

Corollary 5. In a synchronous network with sleepy validators and sleepy silent
clients, for all (tL, tS) with tL < 1/2, tS < 1/2, the Sleepy Consensus protocol [50]
and Goldfish [15] achieve (tL, tS).

Achievability for Sleepy Silent Clients (Safety-Favoring) To achieve
any resilience (tL, tS) with tL + tS < 1 and tL < tS, we modify the Goldfish
protocol [15]. In a nutshell, in Goldfish, voters select a block to vote for by
walking down a tree of blocks, and at each fork, selecting the subtree with the
largest number of votes from the previous slot. Our key modification is to instead
select the subtree with at least ϕ fraction of the total votes from the previous
slot, where ϕ ∈ (tS, 1− tL]. The details of this protocol are in App. C.1.1.

Theorem 6. In a synchronous network with sleepy validators and sleepy silent
clients, for all (tL, tS) with tL + tS < 1 and tL < 1/2, Goldfish modified with
ϕ ∈ (tS, 1− tL] achieves (tL, tS).
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Achievability for Sleepy Silent Clients (Liveness-favoring) For any
resilience (tL, tS) with tL+tS < 1 and tL ≥ tS, we show a protocol Πϕ

live achieving
(tL, tS). The protocol is very similar to Πq

live, the liveness-favoring protocol for
sleepy silent clients under always-on validators (Sec. 3.1). The key difference
is that to add a transaction to the liveness queue, clients require a fraction ϕ
of validators to sign the transaction (unlike a fixed number q in Πq

live). More
precisely, at every round r = ℓ∆ for some ℓ ∈ Z, each client calculates the
number Ttx of validators that signed a transaction tx. It also calculates the
number Tℓ−1 of unique validators that have either sent a ‘heartbeat’ message
for round (ℓ − 1)∆ or a signature on some transaction in the past. Then, if
Ttx/Tℓ−1 ≥ ϕ, the client adds tx to its liveness queue. The full protocol and
security proof are in App. C.1.2.

Theorem 7. In a synchronous network with sleepy validators and sleepy silent
clients, for all (tL, tS) with tL + tS < 1 and tL ≥ 1/2, the protocol Πϕ

live with
ϕ ∈ (tS, 1− tL] achieves (tL, tS).

4.2 Sleepy Communicating Clients (Fig. 1h)

Impossibility for Sleepy Communicating Clients

Theorem 8. In a synchronous network with sleepy validators and sleepy com-
municating clients, no protocol can achieve (tL, tS) with tL+tS ≥ 1 and tS ≥ 1/2.

The proof is similar to Thm. 3. Suppose a protocol can achieve tL = 25%, tS =
75%. Let P and Q be two disjoint sets of 0.75n and 0.25n validators respectively,
and k1, k2 be two clients awake since the start. Consider two worlds, 1 and 2,
where the (P, k1) and (Q, k2) are adversary respectively. In both worlds, the
adversary parties initially do not communicate with honest parties. Note that
liveness must hold in world 2 because only 25% validators are adversary, and
in world 1 because the 75% adversary validators appear indistinguishable from
sleepy honest validators. Thus, in each world, client ki outputs transaction txi in
its log. In both worlds, a client k3 awakes after round u and hears from all parties
including the adversary ones. However, the two worlds are indistinguishable for
k3 because P − Q and k1 − k2 exchange their roles, implying that its log must
be the same in both worlds, and it contains tx2 as world 2 has liveness, leading
to a safety violation in at least one world. The full proof is in App. C.2.1.

Achievability for Sleepy Communicating Clients (Liveness-Favoring)
The protocol Π∗live in Sec. 3.2 does not rely on the validators for its liveness, and
its safety only requires safety and liveness of the internal protocol in a closed-
box manner. Therefore, the same protocol, when instantiated with an internal
protocol for sleepy validators (e.g., Sleepy Consensus [50]), achieves the following.

Theorem 9. In a synchronous network with sleepy validators and sleepy com-
municating clients, for all (tL, tS) with tL ≤ 1, tS < 1/2, Π∗live (Sec. 3.2) with the
Sleepy Consensus protocol [50] as its internal protocol achieves (tL, tS).

Proof. Follows from [50, Theorem 1] and Lems. 4 and 5.
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4.3 Always-on Communicating Clients (Fig. 1k)

Achievability for Always-on Communicating Clients We show that
the SMR protocol based on Dolev-Strong (Sec. 3.3, Alg. 5) achieves any tL <
1, tS < 1 even under sleepy validators. Under sleepy validators with always-on
communicating clients, when a majority of the awake validators are adversary,
the clients must output safe and live logs even though the validators themselves
may not agree on a log (since validators are sleepy and communicating, the
impossibility in Fig. 1h applies to them). Thus, the challenge is to design the
validator’s code to behave correctly even without knowing what happened while
it was sleeping.

This challenge resolves itself due to the following observations. First, while
the SMR protocol (Alg. 5) runs instances of Dolev-Strong one after the other,
each instance does not depend on the previous instances. Second, within an in-
stance, since the Dolev-Strong protocol (Alg. 4) guarantees agreement and valid-
ity when all but one validator are adversary under always-on validators (Lem. 6),
it does so even when only one validator is honest and awake throughout the in-
stance (all honest validators who sleep could be considered adversary). Moreover,
we don’t even require the same honest validator to be awake throughout the in-
stance but only require that for each round during the instance, some honest
validator is awake. Finally, since each validator (including the leader) signs only
one message per instance, it may sleep after it does so without affecting the
protocol’s remaining execution. Thus, sleepy validators can faithfully run Alg. 4.
We explain these surprising observations and prove security in App. C.3.1.

Theorem 10. In a synchronous network with sleepy validators and always-on
communicating clients, for all (tL, tS) such that tL, tS < 1, Alg. 5 achieves
(tL, tS).

5 Related Work

No clients. Much of the classic SMR literature [2,1,33,12,50,14,17,26,21] did not
explicitly consider clients. Let’s call this the ‘no clients’ model. In this model,
validators (a.k.a. ‘replicas’ or ‘nodes’) output logs, and in any protocol with re-
silience tL+ tS < 1, sleepy silent clients may learn the log by querying a quorum
of tSn + 1 validators [2,1,33] (see Fig. 1a). However, always-on and/or commu-
nicating clients may use other means to learn the log. For example, always-on
communicating clients can run the same ‘confirmation logic’ that validators use.
This makes the ‘no clients’ model equivalent to always-on communicating clients
(Fig. 1j). However, under sleepy validators, the ‘no clients’ model is equivalent to
sleepy communicating clients (Fig. 1h), possibly weaker than always-on commu-
nicating clients. Reliable broadcast and Byzantine agreement, typically defined
without clients, can also apply to different client types (e.g., Def. 10).
Sleepy Silent Clients. Sleepy clients have been called sleepy [50], late-spawning [49,55,14],
and lazy [29]. It has been proven that no protocol with sleepy silent clients can



Consensus Under Adversary Majority Done Right 15

achieve both tL ≥ 1
2 and tS ≥ 1

2 [52,50,49]. When safety and liveness are decou-
pled, [45,41] prove tL + tS ≥ 1 is impossible. But their proofs require a stronger
notion of security, certifiability, i.e., the protocol produces non-interactively ver-
ifiable certificates (cf. Def. 4, [30]). Certifiable protocols are also secure for sleepy
silent clients, but the converse is not true (e.g., Nakamoto consensus [43,50,14,17]
supports sleepy silent clients, but lack certificates since clients must check for
longer chains). Thus, the impossibility results of [45,41] apply to certifiable pro-
tocols, but not necessarily to sleepy silent clients. We prove (in Thm. 1) that
tL + tS ≥ 1 is impossible for both sleepy silent and always-on silent clients.
Sleepy communicating clients. The idea of sleepy clients gossiping out-of-
band to detect liveness or safety violations isn’t new [40], although we are the
first to formalize the sleepy communicating client model and apply it to SMR.
Validators in some protocols [2,12] with 1/2 resilience also wait ∆ to detect
conflicts, but achieving tS = 99% requires communicating clients. Concurrent
work [28] proposes a variant of Bitcoin [43] that is claimed to achieve resilience
tL < 1/2, tS = 1 in the sleepy validators model with no clients, equivalent to
sleepy validators with sleepy communicating clients. However, in App. E, we
show a concrete attack and prove that no protocol can achieve these resiliences
under sleepy validators with sleepy clients (see also Fig. 1h and Sec. 4.2).10

Sleepy validators. Protocols achieving tL < 1/2, tS < 1/2 for sleepy validators
appear in [50,37,15,23,42,51,36]. With sleepy validators and ‘no clients’, [50,49]
prove that no protocol can simultaneously achieve tS ≥ 1/2, tL ≥ 1/2.

6 Discussion

Proof-of-Stake. The protocols in Sec. 3.1, Sec. 3.2, Sec. 3.2, Sec. 4.1, Sec. 4.2 are
independent of the internal protocol’s validator selection mechanism, and can be
applied to proof-of-stake. The protocol in Sec. 3.1 is based on Sync HotStuff and
Sec. 4.1 on Goldfish [15], and similar protocols are deployed on proof-of-stake
Ethereum. The protocol in Sec. 3.3 supports proof-of-stake [9], but the one in
Sec. 4.3 doesn’t as validators lack knowledge of the log and stake distribution.
Preserving Security under Partial Synchrony. Partially-synchronous PBFT-
style protocols (e.g., Casper [10], Tendermint [7], HotStuff [57] or HotStuff2 [38])
maintain safety under asynchrony with resilience tL < 1/3, tS < 1/3. Applying
our freezing gadget (Sec. 3.2) to such a protocol preserves this safety under asyn-
chrony, while making it always safe under synchrony. Safety is only compromised
if both the network is asynchronous, and the adversary exceeds 1/3.
Adaptive Corruption. Our impossibility results only use static corruption,
but all protocols inherit security under adaptive corruption from Sync HotStuff
variants [2,41], Dolev-Strong [18], and Goldfish [15].
10 The model we use assumes a known set of validators of which f are corrupted while

the model in [28] instead uses proof-of-work and assumes limited adversary hashing
power. Although these models are incomparable, our impossibility proof (Thm. 8)
applies to that model as well (see detailed discussion in App. E).
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Heterogeneous Clients. Heterogeneous clients are described in [39,56,44]. In the
Dolev-Strong-based SMR protocol (Sec. 3.3), always-on communicating clients
may output the resulting log achieving any tL, tS < 1, silent clients may query
n
2 + 1 validators achieving tL, tS < 1/2, and sleepy communicating clients may
further use the freezing gadget (Sec. 3.2) achieving tL < 1/2, tS = 1 or the
liveness gadget (Sec. 3.2) achieving tL = 1, tS < 1/2 simultaneously.
Liveness-favoring Protocols. Optimistic rollups can benefit from layer 1 blockchains
that prioritize liveness since the liveness of the layer 1 is necessary for the timely
inclusion of fraud proofs. Although layer 1’s safety is also often needed for the
rollup’s safety, rollups that settle on a different chain than the one they use for
ordering the blocks [4] would need only liveness from the settlement chain.
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A Model

In this section, we describe the model and notation used in the rest of the
paper. A state-machine replication (SMR) consensus protocol is a distributed
protocol run among two types of parties: validators and clients. Validators take
inputs called transactions and enable clients to agree on a sequence of confirmed
transactions called the log.

Time. Time proceeds in logical units called rounds indexed by r = 0, 1, 2, . . ..
We assume the maximum clock offset between any two parties is bounded (any
bounded clock offset can be absorbed into the network delay bound [50]).

Cryptography. We assume an ideal random oracle as a common source of
randomness for the protocols. We assume probabilistic polynomial-time (PPT)
adversaries and the existence of collision-resistant hash functions and unforgeable
digital signatures.

Validators. There is a fixed set N of parties called validators known to
all parties. We denote the number of validators by n = |N |. We assume a
public key infrastructure (PKI): each validator has a public key and a secret
key with which they may sign their messages, and all parties know the public
keys of all validators. In this work, we adopt the permissioned setting [32,8,50]
where the set of validators is fixed and known to all parties. Our impossibil-
ity results also apply to the weaker proof-of-stake (in the literature also called
“quasi-permissionless” [32,8]) setting where the set of validators is known but
may change over time. We discuss in Sec. 6 how our protocols can be adapted
to the proof-of-stake setting.

Clients. Unlike validators, the number and identities of the clients is not known
to all parties, and clients do not have public keys. Thus, messages sent by clients
cannot be authenticated by other parties and the adversary can impersonate an
honest client (cf. ‘identity theft’ [48]).

Adversary. For simplicity, we assume a static adversary, so that at the begin-
ning of the execution, before any randomness is drawn, the PPT adversary A
corrupts a set of validators corrupt ⊆ N . These validators are called adversary
and are controlled by A (also known as Byzantine faults). We also use adversary
validator to denote a corrupted validator. Parties that are not adversary are
called honest. The number of adversary validators is denoted by f = |corrupt|.
Since our model allows clients to influence the execution by sending messages, we
also allow A to corrupt any number of clients. While a protocol’s security may
be conditioned on the number of adversary validators f , it must be independent
of the number of adversary clients because the adversary may impersonate even
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honest clients due to the lack of authentication. The adversary has access to the
internal state of all adversary parties, including private keys. Modeling static
corruption makes our impossibility results stronger. Protocols that we build as
closed-box transformations of an existing protocol inherit the latter’s security
under adaptive corruption (details in Sec. 6).

Validator models. We use the sleepy model of consensus [50] to model inter-
mittently crashed honest validators. At every round r, a subset awaker ⊆ N of
validators are awake while the rest are asleep. When asleep, validators behave
like temporarily crashed nodes: they do not run computation or send messages.
Whenever a validator is awake, it knows the current round (i.e., it wakes up
with a synchronized clock). Based on the sleepiness of validators, we define two
validator models:

– Always-on validators: All validators are always awake, (∀r : awaker = N ).
– Sleepy validators: At the start of each round r, A selects awaker. Adversary

validators are always awake. Other parties do not know whether a validator
is awake or asleep.

Client Models. We classify clients along two orthogonal criteria:

– Communicating clients may send messages to other parties, silent clients
do not.

– Always-on clients are always awake while sleepy clients may be put to sleep
by A. When asleep, clients do not perform any computation, send messages,
or output new logs.

This results in four client models shown in Fig. 2. For example, the sleepy
communicating model means that all clients are sleepy and communicating.

Communicating clients are newly introduced in this work. In deviation from
previous literature, we allow clients to send messages and other parties to act
on such messages. However, due to the lack of a PKI for clients, their messages
cannot be authenticated, so really the best they can do is relay messages received
from validators to other clients. On the one hand, this is a more accurate de-
piction of blockchain implementations in which communication is facilitated by
a non-eclipsed gossip network comprised of both clients and validators. On the
other hand, this seemingly insignificant change in the network model enables
us to circumvent impossibility results [45,41], thus solving SMR under higher
adversary resilience than with silent clients (Fig. 1).

Network delay models. Parties can send messages to each other and call a
functionality gossip(.) to send a message to all other parties. We consider two
standard models of network communication: the synchronous model and the
partially (eventually) synchronous model.

– Synchronous model: There is a known constant ∆ such that if an honest
party sends a message at round r, then every honest party receives the message
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by round r+∆. Within this bound, the adversary chooses when each honest
party receives each message.11

– Partially synchronous model: there exists a round GST (unknown to hon-
est parties) and a known constant ∆ such that if an honest party sends a
message at round r, then every honest party receives the message by round
max{r,GST} +∆. The adversary chooses GST adaptively and decides when
each honest party receives each message within these bounds.

The adversary may also inject some of its own messages, and a party does
not know the time at which other parties received the messages. Note that in
both models, messages are delivered to the inbox of asleep parties but they can
process the messages only after awakening (like the model in [50]). In practice,
equivalent behavior can be achieved by having the awakening party query online
parties who reply with the ‘important’ past messages the awakening party then
processes (e.g., ‘initial block download’ [5]), with the weak extra assumption
that at least one (potentially different each round) honest party stays awake
between consecutive rounds to relay the messages. Thus, while a sleepy party
still receives all messages an always-on party receives, sleepy parties are strictly
less powerful because they cannot record when they received a message.

Notation. We use A ⪯ B to denote that sequence A is a (not necessarily
strict) prefix of the sequence B. We use A ∼ B (‘A is consistent with B’) as a
shorthand for A ⪯ B ∨B ⪯ A.

Definition of SMR. At the start of each round, each awake party may receive
some transactions as input. At the end of every round r, each awake honest client
k outputs a log (sequence of transactions) LLLr

k. For a client k asleep at round r,
let LLLr

k = LLLr−1
k . For all clients k, LLL0

k = Lgenesis. We define the following properties
for an SMR protocol:

Definition 5 (Safety). An SMR protocol Π is safe iff for all rounds r, s and
all honest clients k, k′, LLLr

k ∼ LLLs
k′ .

Definition 6 (Liveness). An SMR protocol Π is live with latency u iff for all
rounds r (r ≥ GST for partial synchrony), if a transaction tx was received by an
awake honest validator or communicating client before round r − u, then for all
honest clients p awake during rounds [r − u, r], tx ∈ LLLr

p.12

Definition 7 (Resilience). For always-on validators, a family of SMR proto-
cols Π(n) achieves safety resilience tS ∈ [0, 1] and liveness resilience tL ∈ [0, 1]
if for all n,13 Π(n) is safe with overwhelming probability over executions with
f ≤ tSn and live with overwhelming probability over executions with f ≤ tLn.
For sleepy validators, denote the adversary fraction f

minr awaker
by β. Then, a

11 Gossip networks have been shown to maintain connectivity, and thus synchrony, even
under adversary majority [13,34,35].

12 Clients may not output new logs for a few rounds after awakening. We use a single
parameter u for the maximum of such delay and the protocol’s latency.

13 The number of parties is constrained to be polynomial in the security parameter.
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protocol Π achieves safety resilience tS ∈ [0, 1] and liveness resilience tL ∈ [0, 1]
if Π is safe with overwhelming probability over executions with β ≤ tS and live
with overwhelming probability over executions with β ≤ tL.

Note that it is trivial to get protocols with tS = 1, tL = 0 (never output) and
tL = 1, tS = 0 (output everything in any order), so we don’t consider these edge
cases going forward.

Hierarchy of Models. We group the models defined above into four categories
as shown in Fig. 2. Within each category, one model is more powerful than the
other. For example, communicating clients are more powerful than silent clients
because communicating clients can simulate silent clients by staying silent. Thus,
any protocol designed for silent clients will work equally well for communicating
clients. Therefore, solving SMR for communicating clients is at least as easy as
solving SMR for silent clients. This is formalized in the lemma below.

Lemma 1 ((cf. Fig. 2)). Define the four pairs of models: validator activity

models (A0, A1) = (
!!!
,

zZ
), network delay models (B0, B1) = (∆,∆), client

communication models (C0, C1) = ( , ), client activity models (D0, D1) =

(
!!!
,

zZ
). For all i1, j1, k1, l1 ∈ {0, 1} and i2 ≤ i1, j2 ≤ j1, k2 ≤ k1, l2 ≤ l1, if

some SMR protocol Π achieves resilience (tL1 , t
S
1) in the model (Ai1 ,Bj1 ,Ck1

,Dl1)
and (tL2 , t

S
2) in the model (Ai2 ,Bj2 ,Ck2

,Dl2), then tL2 ≥ tL1 and tS2 ≥ tS1 .

Proof. It is sufficient to prove the statement in the four cases when from (i1, j1, k1, l1)
to (i2, j2, k2, l2), exactly one index is decreased and the other three remain the
same. We now prove these four cases.

If Π achieves (tL, tS) under sleepy validators, in particular, Π is safe (live)
when n validators are all awake and up to tSn (tSn) of them are adversary. If
Π is safe (live) under partial synchrony, in particular, it is safe (live) with the
same number of adversary validators when the adversary sets GST = 0 which is
equivalent to synchrony. If Π is safe (live) under silent clients, it is also safe (live)
when the communicating clients do not send any messages. If Π is safe (live)
under sleepy clients, in particular, it is safe (live) when no client sleeps.

The above lemma implies that any resilience pair achievable in a ‘harder’
model in Fig. 2 is also achievable in an ‘easier’ model. Conversely, any impossi-
bility result proven for an ‘easier’ model also holds for a ‘harder’ model.

B Proofs for Synchrony with Always-On Validators

B.1 Sleepy Silent Clients, Always-On Silent Clients

B.1.1 Impossibility for Always-On Silent Clients

Proof of Thm. 1. Proof is by contradiction. Suppose there exists a protocol with
safety resilience tS and liveness resilience tL such that tL + tS ≥ 1. Then, there
are numbers fS and fL such that fS + fL = n, and the protocol is safe and
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live in the presence of fS and fL adversary validators respectively. Let P and
Q be disjoint sets of fS = n − fL and fL validators respectively. Consider the
following three worlds:
World 1: Validators in P are honest, and those in Q are adversary. There is a
single client k1. The environment inputs a single transaction tx1 to the validators
in P at time 0. The adversary validators do not communicate with those in P
and ignore their messages. Towards k1, they simulate the behavior of honest
validators that have not received any transaction from the environment and
that cannot communicate with those in P . Due to liveness under fL adversary
validators, k1 outputs tx1 (and no other transaction from the environment) as
part of its log by time u.
World 2: Validators in P are honest, and those in Q are adversary. There is a
single client k2. The environment inputs a single transaction tx2 to the validators
in P at time 0. The adversary validators do not communicate with those in P
and ignore their messages. Towards k2, they simulate the behavior of honest
validators that have not received any transaction from the environment and
that cannot communicate with those in P . By liveness, k2 outputs tx2 (and no
other transaction from the environment) as part of its log by time u.
World 3: World 3 is a hybrid world. Validators in Q are honest, and those in
P are adversary. The environment inputs the transactions tx1 and tx2 to the
validators in P at time 0. Validators in P simulate the execution in world 1
towards k1 and the execution in world 2 towards k2 via a split-brain attack.
They do not communicate with the validators in Q and ignore their messages.
Since the worlds 1 and 3 are indistinguishable in k1’s view, it outputs tx1 (but
not tx2) as part of its log by time u. Since the worlds 2 and 3 are indistinguishable
in k2’s view, it outputs tx2 (but not tx1) as part of its log by time u. However,
this implies a safety violation in the presence of fS adversary validators, which
is a contradiction.

B.1.2 Achievability for Sleepy Silent Clients (Liveness-Favoring)

Proof of Thm. 2. Let f be the number of adversary validators.
Liveness: Suppose f/n ≤ tL, i.e., f ≤ n − q, and consider a transaction tx

input to an honest validator at some round r. Now, tx gathers signatures from
all honest validators by round r + ∆, and all clients observe these signatures
by round r + 2∆. Then, since there are q or more honest validators, all honest
clients add tx to their liveness queues by round r+2∆. Every transaction added
to the liveness queue of a client at some round r′ is output as part of its log by
round r′+uint. Therefore, tx is output as part of all honest clients’ logs by round
r + uint + 2∆, implying that Πq

live satisfies liveness with latency uint + 2∆ and
resilience n− q.

Safety: Suppose f/n ≤ tS, i.e., f < q. Then, the internal protocol is safe and
live with latency uint as q ≤ n/2. Any transaction tx added to the liveness queue
of an honest client k at some round r must have been signed by q validators
before round r, one of which is honest. Thus, tx would be input to the internal
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protocol Πint by round r, and by liveness, output as part of k’s internal log Lint

by round r + uint. Since k attempts to append tx to Lint for the first time at
round r+uint, and tx appears as part of Lint by round r+uint, tx is not added to
the tip of Lint. By the same logic, if f < q, no transaction added to the liveness
queue of an honest client is appended to the tip of its internal log, implying that
each honest client outputs its internal log as it is. Finally, safety follows from
the safety of the internal protocol.

B.2 Sleepy Communicating Clients

B.2.1 Impossibility for Sleepy Communicating Clients

Proof of Thm. 3. Proof is by contradiction. Suppose there exists a protocol with
resiliences tS and tL such that tS, tL ≥ n/2. Then, the protocol is safe and live in
the presence of f = ⌈n/2⌉ adversary validators. Let P , Q and R denote disjoint
sets of n − f , n − f and 2f − n validators respectively. Consider the following
four worlds:

World 1: Validators in P are honest, and those in Q and R have crashed.
There is a single client k1. The environment inputs a single transaction tx1 to
the validators in P at time 0. Since |Q∪R| ≤ f , by liveness, k1 outputs tx1 (and
no other transaction from the environment) as part of its log by time u.

World 2: Validators in Q are honest, and those in P and R have crashed.
There is a single client k2. The environment inputs a single transaction tx2 to
the validators in Q at time 0. Since |P ∪R| ≤ f , by liveness, k2 outputs tx2 (and
no other transaction from the environment) as part of its log by time u.

World 3: Validators in P are honest, and those in Q ∪ R are adversary.
Validators in R have crashed. There are two honest clients, k1 and k3, and the
adversary simulates a client k2. Client k3 joins the protocol at round u. The
environment inputs a single transaction tx1 to the validators in P at time 0.

Client k2 and the validators in Q do not communicate with the client k1 and
the validators in P . Thus, for k1, world 3 is indistinguishable from world 1, and
it outputs tx1 (and no other transaction from the environment) as part of its log
by time u. In the meanwhile, k2 and the validators in Q start with transaction
tx2, and emulate the execution in world 2 until round u.

Once k3 joins the protocol at round u, k2 and the validators in Q emulate
towards k3 the behavior of the honest validators (in Q) and the client k2 in world
4. In other words, they pretend like honest validators and an honest client who
have been shunned by the validators in P ∪R and client k1. Since |Q ∪R| ≤ f ,
by liveness, k3 outputs tx1 as part of its log by time 2u.

World 4: Validators in Q are honest, and those in P ∪ R are adversary.
Validators in R have crashed. There are two honest clients, k2 and k3, and the
adversary simulates a client k1. Client k3 joins the protocol at round u. The
environment inputs a single transaction tx2 to the validators in Q at time 0.

Client k1 and the validators in P do not communicate with the client k2 and
the validators in Q. Thus, for k2, world 4 is indistinguishable from world 2, and
it outputs tx2 (and no other transaction from the environment) as part of its log
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by time u. In the meanwhile, k1 and the validators in P start with transaction
tx1, and emulate the execution in world 1 until round u.

Once k3 joins the protocol at round u, k1 and the validators in P emulate
towards k3 the behavior of the honest validators (in P ) and the client k1 in world
3. In other words, they pretend like honest validators and an honest client who
have been shunned by the validators in Q ∪R and client k2. Since |P ∪R| ≤ f ,
by liveness, k3 outputs tx2 as part of its log by time 2u.

Finally, note that worlds 3 and 4 are indistinguishable by k3 with overwhelm-
ing probability, since the validators and clients send the same messages in both
worlds. Therefore, k3 outputs the same log, containing tx1 and tx2, in both worlds
by time 2u. However, this implies a safety violation either in world 3, where k1
outputs the log [tx1] by round u, or in world 4, where k2 outputs the log [tx2]
by round u. This is a contradiction as the protocol must have been safe in the
presence of f adversary validators.

B.2.2 Achievability for Sleepy Communicating Clients (Safety-Favoring)

Definition 8 (Certifiable protocol). An SMR protocol Π is certifiable if
there exists a computable functionality W (the certificate producer) and a com-
putable deterministic non-interactive function C (the certificate consumer) such
that when a client p invokes W() at round r, it produces a certificate C such that
C(C) = LLLr

p.

Definition 9 (Certifiable safety). A certifiable protocol Π is certifiably safe if
Π is safe, and moreover, if at any round r, the adversary outputs a certificate C
such that C(C) = L, then for all clients q, for all rounds s, L ∼ LLLs

q. A certifiable
protocol Π achieves certifiable safety resilience tS if Π is certifiably safe with
overwhelming probability over executions with f ≤ tSn.

A more formal pseudocode of the protocol based on Def. 4 is in Alg. 2.

Lemma 2 (Safety). Suppose the network is synchronous and the clients are
sleepy and communicating. Then, Πfrz has safety resilience tS = 1.

Proof. See Fig. 5 for reference. Towards contradiction, let r be the smallest round
such that for some s ≥ r, and some honest clients p, q, LLLr

p ̸∼ LLLs
q. For shorthand,

let L = LLLr
p. Then, at round r −∆, client p must have seen a certificate C such

that C(C) = L. Client p also gossiped C at round r−∆, which means that before
the end of round r, client q must have seen C. Thus, client q added L to its set
S before the end of round r. However, since client q output LLLs

q ̸∼ L at round
s ≥ r, this is a contradiction to the freezing (Alg. 2 l. 11).

Lemma 3 (Liveness). If Πint has certifiable safety resilience tSint and liveness
resilience tLint, then Πfrz has liveness resilience min{tLint, tSint}.

Proof. Let u = uint +∆ where uint is the latency of Πint. Let r < rmaj be any
arbitrary round. Suppose that a transaction tx is received by all honest validators
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Algorithm 3 SMR protocol Π∗live achieving tL = 1, tS < 1/2

1 on init(N , Lgenesis)
2 P ← new Πint(N , Lgenesis) ▷ instantiate a new Πint client
3 Q← ∅ ▷ liveness queue: txs seen so far
4 LLL ← Lgenesis ▷ output log of the combined protocol Π∗

live

5 on transaction tx from the network at round r
6 Q. enqueue((tx, r)) ▷ add tx to the liveness queue
7 gossip(tx)

8 on L output by P at round r
9 for (tx, r′) ∈ Q such that r′ ≤ r − uint −∆ and tx /∈ L

10 L← L||tx
11 LLL ← L ▷ output log

txs

network

Πint

tS = tL < 1/2

delay uint + ∆ txs ⊆ Lint?

Lint||txs LLL
Lint

no

txs

Fig. 6: A protocol that achieves tL = 1, tS < 1/2 for sleepy communicating
clients. The internal protocol Πint is any SMR protocol safe and live under
honest majority, achieving any tS = tL < 1/2. On receiving any transaction tx,
parties gossip the transaction to the network (all parties). Clients add tx to a
local liveness queue. After uint +∆ rounds (where uint is the maximum latency
of Π), if tx is not included in the log Lint output by the client from Πint, the
client appends tx to Lint to output the final confirmed log LLL.

before round r− u. Consider an honest client p that wakes up before r− u. Due
to liveness of Πint, at round s = r − u + uint, tx ∈ Lint

s
p (the log output by the

internal protocol Πint). At round s, client p runs C ←W() and adds L = C(C)
to its set S(Alg. 2 ll. 6 and 7). Recall from Def. 4 that L = Lint

s
p. Due to

certifiable safety, the set S of client p, contains only logs that are consistent with
L. Therefore, at round s+∆ = r, LLLr

p ⪰ L ∋ tx (due to Alg. 2 ll. 11 and 12).

Proof of Thm. 4. From Lems. 2 and 3.

B.2.3 Achievability for Sleepy Communicating Clients (Liveness-Favoring)
Protocol pseudocode: Alg. 3, block diagram: Fig. 6.

Lemma 4. Suppose the network is synchronous, and the clients are sleepy and
communicating. Then, the protocol Π∗live has liveness resilience tL = 1.

Proof. Consider a transaction tx received by an honest validator at round r. The
validator gossips tx to all clients. All clients receive tx by round r+∆ and add it
to their liveness queues. For any client k, by round r′ = r+∆+ uint +∆, either
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tx is in the internal log of k or k appends tx in its output log, therefore, tx ∈ LLLr′

k .
The protocol Π∗live is thus live with resilience tL = 1 and latency uint + 2∆.

Lemma 5. Suppose the network is synchronous, and the clients are sleepy and
communicating. If the internal protocol Πint has resilience (tL, tS), then the pro-
tocol Π∗live has safety resilience min{tL, tS}.

Proof. Suppose the number of adversary validators is f ≤ nmin{tL, tS}. Thus,
Πint is safe and live. We will show that for every client k and round r,LLLr

k = Lint
r
k,

i.e., the output log is identical to the internal log. Then, Π∗live is safe due to the
safety of Πint.

To show that LLLr
k = Lint

r
k, consider any transaction tx that client k adds to its

liveness queue at some round r′. Since client k gossips tx, all honest validators
receive tx by round r′+∆. Due to liveness of Πint, tx ∈ Lint

r′+∆+uint

k . Therefore,
client k does not append tx to LLL and simply drops it from the liveness queue.
Since this holds for all transactions, LLLr

k = Lint
r
k for all r.

Proof of Thm. 5. From Lems. 4 and 5.

B.3 Always-On Communicating Clients

B.3.1 Achievability for Always-On Communicating Clients We first
define a variant of the Byzantine Generals problem in which clients (not valida-
tors) output values and then recap the Dolev-Strong protocol with always-on
communicating clients.

Definition 10. Let V be a predefined set of values and let ⊥ /∈ V be a predefined
default value. In the Byzantine Generals problem, a leader ℓ BG-broadcasts a
value vℓ ∈ V at a known start round R and each client k BG-outputs a value
vk ∈ V ∪ {⊥} with the following properties:

– Termination: For some u, all clients output a value by round Rℓ + u.
– Agreement: For all honest clients k, k′, vk = vk′ .
– Validity: If ℓ is honest, then for all clients k, vk = vℓ.

The Dolev-Strong protocol (with clients) achieving termination, agreement
and validity when up to n−1 validators are adversary is shown in Alg. 4 (cf. [9,3]).
Since we will use our Byzantine Generals protocol to build an SMR protocol
over n validators, we consider the leader to be one of the validators, although, in
general, the leader could be any party with a public key. In Alg. 4, ⟨m⟩p denotes
messages m signed by party p and the protocol uses an instance identifier id to
enable running multiple instances in the SMR protocol. As in the classic Dolev-
Strong protocol [18,3], validators build a signature chain in which the leader
signs its value, the second validator signs the leader’s signed message, and so on
(l. 9), and a signature chain is considered valid if it arrives within a timeout (ll. 8
and 13). The key differences from classic Dolev-Strong are that clients broadcast
messages they receive as-is (without signing) to all parties and the timeouts
are twice as long to accommodate for the round-trip delay between clients and
validators (2k∆ in Alg. 4 v.s. k∆ in [18]).
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Algorithm 4 Dolev–Strong protocol with clients
1 ▷ Each instance of the protocol is identified by (id, ℓ) where ℓ is the leader.
2 ▷ All parties know the starting round Rid for each id
3 ▷ Code for leader ℓ (who is also a validator)
4 on BG-broadcast(id, ℓ, v) at round Rid

5 Send ⟨id, ℓ, v⟩ℓ to all parties
6 ▷ Code for validator i
7 on receiving m = ⟨⟨⟨(id, ℓ, v⟩j1 ⟩j2 ...⟩jk where j1, ..., jk ̸= i are distinct validators and j1 = ℓ
8 if current round ≤ Rid + 2k∆
9 Send ⟨m⟩i to all parties

10 ▷ Code for client
11 Vout ← ∅ ▷ Set of candidate output values
12 on receiving m = ⟨⟨⟨id, ℓ, v⟩j1 ⟩j2 ...⟩jk where j1, ..., jk are distinct validators and j1 = ℓ
13 if current round ≤ Rid + (2k − 1)∆
14 Vout ← Vout ∪ {v}
15 Send m to all parties
16 at the end of round Rid + (2n− 1)∆
17 if |Vout| = 1
18 BG-output(id, ℓ, v) where Vout = {v}
19 else
20 BG-output(id, ℓ,⊥)

Lemma 6. For any f < n, Alg. 4 satisfies agreement and validity when f val-
idators are adversary.

Proof. Termination: All clients output a value after (2n− 1)∆ rounds.
Validity: Suppose the leader ℓ is honest and BG-broadcasts value vℓ. By

round ∆, all clients receive ⟨v⟩ℓ. Thus, the condition in l. 13 is true, all clients
add v to their set of candidate output values Vout. Moreover, since the leader is
honest and signatures are unforgeable, no party ever receives ⟨v′⟩ℓ for v′ ̸= v.
Therefore, Vout = {v} and the client BG-outputs v at the end of round (2n−1)∆.

Agreement: Let’s refer to a message of the form ⟨⟨⟨id, ℓ, v⟩j1⟩j2 ...⟩jk where
j1, ..., jk are distinct validators and j1 = ℓ as a k-signature chain on v. First, we
show that if a client c adds a value v to Vout, then all other clients do so too.
Since client c added v to Vout, for some k ≤ n, it received a k-signature chain m
on v by round (2k − 1)∆. If at least one of the validators j1, ..., jk who signed
this message is honest, then due to l. 8, for some k′ ≤ n, this validator signed
the k′-th signature in the chain by round 2(k′ − 1)∆, so client c′ receives a k′-
signature chain by round (2k′−1)∆ and thus also adds v to Vout. If no signatory
of m is honest, then k ≤ n − 1. In this case, client c sends m to all parties, so
all validators receive m by round 2k∆. Since the condition in l. 8 is satisfied, at
least one honest validator (who has not yet signed by assumption) signs m, and
so client c′ receives a (k + 1)-signature chain by round (2k + 1)∆ ≤ (2n− 1)∆.
So, client c′ also adds v to Vout. Agreement follows since we have established
that all clients have the same set Vout at the end of round (2n+ 1)∆.

Next, we build an SMR protocol using the Dolev-Strong protocol with clients
(Alg. 4). A similar construction is already found in [9,25] but we recap it in
Alg. 5 for completeness. Every 2n∆ rounds (which Alg. 4 takes to terminate),
each validator starts a new instance of the Dolev-Strong protocol (Alg. 4) as the
leader. At the end of 2n∆ rounds, clients agree on one block (possibly empty)
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Algorithm 5 SMR protocol achieving any tL, tS < 1

1 Rid ← k · 2n∆ for all id = 1, 2, ... ▷ known to all parties
2 ▷ Code for validator i
3 at round Rid for id = 1, 2, ...
4 BG-broadcast(id, ℓ, B) where B is a block of transactions received so far
5 ▷ Code for client
6 LLL ← [ ], id← 1
7 on BG-output(id, ℓ, Bℓ) for all ℓ ∈ N
8 for ℓ in enumerate(N ) ▷ all validators in a predetermined order
9 append(LLL,Bℓ) ▷ append Bℓ to log; treat invalid Bℓ or ⊥ as empty block

10 id← id + 1
11 Output LLL

from each validator and add them to their logs in a predetermined ordering over
the validators.

Proof of Cor. 3. Safety follows from the agreement property of the Dolev-Strong
protocol with clients (Lem. 6). Assuming honest parties broadcast all transac-
tions they receive, an honest validator will BG-broadcast a block containing
all valid transactions sent to any honest party. By validity of the Dolev-Strong
protocol with clients (Lem. 6), all clients will append this block to their logs.

C Proofs for Synchrony with Sleepy Validators

C.1 Sleepy Silent Clients, Always-On Silent Clients

C.1.1 Achievability for Sleepy Silent Clients (Safety-Favoring) Re-
cap of Goldfish (cf. [15]). Goldfish is an SMR protocol secure under syn-
chrony and sleepy validators for any resilience tS = tL < 1/2. Goldfish divides
time into slots of length 3∆. Each slot t has a leader, which proposes a block, and
a set of validators called voters that cast slot t votes, all selected via a verifiable
random function (VRF). Each message contains a slot number and because of
the VRF, all parties ignore messages from validators who were not a leader or
voter for the claimed slot. Each validator and client maintains a buffer and a
tree of blocks and votes called the bvtree. Upon receiving a valid message (block
or vote), each validator echoes the message and adds it to its buffer, but does
not add it to the bvtree immediately (message buffering). The crux of Goldfish
is the mechanism through which messages are added to and removed from the
bvtree as guided by two principles: message buffering and vote expiry.

At the beginning of each slot t, i.e., time 3∆t, the leader momentarily com-
bines its buffer and bvtree without merging them permanently and runs the
GHOST-Eph fork-choice rule on the combined bvtree using the slot t− 1 votes.
The rule outputs a canonical chain within the combined bvtree. It iteratively
moves down the tree, starting at the genesis block, and, at each block B, ob-
serving the subtrees rooted at B’s children. It then selects the child block with
the largest number of slot t− 1 votes by unique validators for the blocks in that
tree. This process is repeated until reaching a leaf, which identifies the canonical
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Algorithm 6 Modified GHOST-Eph fork-choice rule.
1 ▷ The blocktree is denoted by T .
2 ▷ Children(T , B) returns the set of B’s children within T .
3 ▷ Votes(T , B, t) returns the number of slot t votes by unique validators in the subtree defined

by a block B within T .
4 function GHOST-Eph(T , t)
5 B ← B0 ▷ Start fork-choice at genesis block
6 while true
7 ▷ Choose the subtree that has ϕ fraction of the slot t votes from unique validators.
8 Finish← true
9 for B′ ∈ Children(T , B)

10 ▷ The original Goldfish rule [15] would have selected the child with the heaviest
subtree.

11 if Votes(T , B′, t) ≥ ϕ ·Votes(T , B0, t)
12 B ← B′

13 Finish← false
14 if Finish return B

chain.14 Finally, the leader extends the tip of the identified canonical chain with
a block, and proposes the new block along with the combined bvtree. Note that
vote expiry is in action here, since the GHOST-Eph rule considers only the votes
from the previous slot t− 1, but not the earlier slots.

At time 3∆t+∆, each slot t voter merges the bvtree proposed by the leader
with its local bvtree. Subsequently, it votes for the tip of the canonical GHOST-
Eph chain, again identified using only the slot t− 1 votes on the merged bvtree.
Note that the voter does not use its buffer at this stage, instead adding the
leader’s bvtree to its own before voting (vote buffering).

At time 3∆t+2∆, each validator and client permanently adds the messages in
its buffer into its bvtree. Each client finds the canonical GHOST-Eph chain, this
time by running the GHOST-Eph fork-choice rule on its bvtree (after buffer is
added) using the slot t votes. It outputs the sequence of blocks on this canonical
chain from slots t− κ or older as the log, where κ is a security parameter.

Our modification of Goldfish. To achieve any resilience tS ≤ ϕ and tL <
1 − ϕ, we modify the GHOST-Eph fork-choice rule used by Goldfish as follows
(Alg. 6). Within any iteration of the GHOST-Eph fork-choice, validators do
not simply select a child block with the largest number of slot t votes (or slot
t− 1 votes, depending on which slot’s votes are being considered). They instead
inspect the number of slot t votes by unique validators on each tree rooted at the
children of a block B (i.e., the weight of the sub-trees) as well as the total number
of slot t votes by unique validators observed so far (i.e., the total weight). Then,
if the fraction of the weight of one of the subtrees (rooted at a child of B) over
the total weight is at least ϕ, the validator moves to that child and repeats this
process. If none of the subtrees have sufficient weight or B does not have any
children (i.e., a leaf block), then the validator terminates the fork-choice rule at
B and returns B along with its prefix. We denote the Goldfish protocol using the
modified GHOST-Eph rule by Πϕ

live. Finally, to support clients, we stipulate that

14 Note that sleepy parties can run the GHOST-Eph fork-choice rule because each
message specifies the slot it belongs to.
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upon becoming awake15, each client maintains a buffer and bvtree, and outputs
a log at rounds 3∆t + 2∆ of every slot t via the same rule as validators, i.e.,
after merging its buffer and bvtree.

Proof of Thm. 6. Proof is a minor modification of the proof of the Goldfish
protocol [15, Appendix B]. We consider an execution of our modified Goldfish
in a synchronous network with sleepy validators and sleepy, silent clients. Recall
the definition of adversary fraction β from Def. 316.

We first note that a generalized form of [15, Lemma 1] is still true for our
modified Goldfish execution as our modifications do not affect the voter selection.
Therefore, w.o.p., for every slot t, the number of adversary slot t voters at round
3∆(t+1)+∆ is less than a β fraction of the slot t voters awake at round 3∆t+∆.
Also w.o.p., all slot intervals of length κ have at least one slot t, where an honest
validator is recognized as the slot t leader by all awake honest validators at round
3∆t.

Furthermore, [15, Lemma 2] is also true as its proof is also not affected by
our modification: If a validator v is recognized as the leader of a slot t by all
awake honest validators at some round 3∆t + ∆, then, all honest slot t voters
awake at round 3∆t+∆ vote for v’s proposal.

We next split [15, Lemma 3] into two parts to help with the liveness and safety
proofs respectively. Proof of the lemma closely resembles that of [15, Lemma 3]:

Lemma 7. We consider two cases for a slot t:

1. Suppose all honest slot t voters awake at round 3∆t+∆ vote for a descendant
of some block B. Then, given any β ≤ 1 − ϕ, w.o.p., all honest slot t + 1
voters awake at round 3∆(t+ 1) +∆ vote for a descendant of B.

2. Suppose no honest slot t voter awake at round 3∆t+∆ votes for any descen-
dant of some block B (including B itself). Then, given any β < ϕ, w.o.p.,
no honest slot t+1 voter awake at round 3∆(t+1)+∆ vote for a descendant
of B.

Proof of Lem. 7. Consider an honest slot t + 1 voter v awake at round 3∆(t +
1) + ∆. Since v must have been awake at least since round 3∆t + 2∆ due to
the joining procedure of Goldfish [15, Section 3.1], its bvtree at round 3∆t+2∆
contains all votes broadcast by honest slot t voters awake at round 3∆t + ∆.
The same is true for its bvtree at round 3∆(t+1)+∆ after merging it with the
bvtree in any proposal. Moreover, when β ≤ 1− ϕ the number of adversary slot
t voters at round 3∆(t+1)+∆ is at most a β fraction of the slot t voters awake
at round 3∆t+∆ ([15, Lemma 1]). Hence, in the first case, the number of slot
t votes for B’s descendant in v’s bvtree is larger than a ϕ fraction of the total
number of slot t votes by unique validators in v’s bvtree at round 3∆(t+1)+∆

15 Through Goldfish’s joining procedure [15]
16 An adversary fraction of β as defined in Def. 3 implies a (β, 3∆)-compliant execution

of Goldfish (cf. [15, Definition 2]), enabling us to replace the notion of compliant
executions with β fraction in the proof of the modified protocol.
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([15, Lemma 1]). Consequently, upon invoking the GHOST-Eph fork-choice rule
at round 3∆(t+1)+∆, v selects B’s descendant over all blocks conflicting with
B and moves down the tree until at least reaching a child of B. Thus, at round
3∆(t+1)+∆, the fork choice rule returns a descendant of B, and v votes for it.

Now, in the second case, the number of slot t votes for B’s descendant in
v’s bvtree is smaller than a 1− ϕ fraction of the total number of slot t votes by
unique validators in v’s bvtree at round 3∆(t + 1) + ∆. Hence, upon invoking
the GHOST-Eph fork-choice rule at round 3∆(t + 1) + ∆, v does not select
B over blocks conflicting with B. Thus, at round 3∆(t + 1) + ∆, fork choice
does not return B or any of its descendants, and v does not vote for B or its
descendants.

Safety: To prove safety, we modify the proof of [15, Theorem 1]. Suppose
β < ϕ, and an honest validator v with proposed block B is accepted as the
leader of some slot t by all awake honest validators at round 3∆t+∆. From [15,
Lemmas 1 and 2] and Lem. 7 part (ii), it follows by induction that w.o.p., for
any t′ ≥ t, no honest slot t′ voter awake at round 3∆t′ + ∆ votes for a block
that is not consistent with B.

By synchrony, the honest votes of slot t′ reach all honest validators (and
clients) awake at round 3∆t′+2∆ by then, when they also merge the votes into
their bvtrees. The number of honest slot t′ voters awake at round 3∆t′ + 2∆
is greater than a 1 − ϕ fraction of the total number of slot t′ voters at round
3∆(t′ + 1) + 2∆ (by Lem. 1). Upon invoking the GHOST-Eph rule at rounds
3∆t′+2∆, 3∆(t′+1) and 3∆(t′+1)+∆, respectively, an awake honest validator,
or client (who must have been awake since at least 3∆t′ + 2∆) observes that at
every iteration of the fork choice, every block that conflicts with B has less slot
t′ votes in its subtree (and on itself) than a ϕ fraction of the total number of slot
t′ votes in the bvtree. Thus, the fork choice rule returns a block that is consistent
with B.

Now, let ch1 and ch2 denote the two chains confirmed by some clients k1 and
k2 at slots t1 and t2 ≥ t1 respectively. Note that the slot interval [t1−κ, t1] has at
least one slot t, where an honest validator with proposed block B is recognized
as the slot leader by all awake honest validators at round 3∆t+∆, and, by the
arguments above, no block that is not consistent with B is ever identified by
any awake honest validator’s or client’s fork choice rule in rounds r ≥ 3∆t+2∆.
Now, as t ≥ t1 − κ, but by Goldfish’s confirmation rule, blocks in ch1 are from
no later than t1−κ, ch1 is in the prefix of B. Moreover, by the earlier argument,
ch2 is consistent with B. Therefore, ch1 and ch2 are consistent.

Liveness: Suppose β < 1− ϕ. Then, liveness follows from [15, Theorems 1,
2 and 3], which hold given [15, Lemmas 1 and 2] and Lem. 7 part (i), the latter
implying the same result as [15, Lemmas 3].

C.1.2 Achievability for Sleepy Silent Clients (Liveness-Favoring) Sim-
ilar to Sec. 3.1, we describe a family Πϕ

live of protocols, ϕ ∈ (0, 1/2], such that
Πϕ

live is live with resilience tL ≤ 1− ϕ and safe with resilience tS < ϕ. The pro-
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tocol Πϕ
live is very similar to its counterpart in Sec. 3.1, consisting of an internal

protocol Πint and a liveness queue. The internal protocol can be any SMR proto-
col that provides all resiliences tS < 1/2, tL < 1/2 under synchrony and sleepy
validators (e.g., [50, Section 4]). To determine whether a transactions tx should
be added to the liveness queue, validators observe the number of signatures on
tx and of validators that are believed to be awake; either because they signed tx,
or recently announced they are awake. Validators add tx to be liveness queue if
their fraction is ϕ or more.

Let uint be the liveness parameter of Πint. Each honest awake validator v
participates in the internal protocol. At every round r that is a multiple of ∆,
i.e., r = ℓ∆ for some ℓ ∈ Z, v also does the following: If it has received a
transaction tx from the environment (or the other validators) for the first time
within the rounds ((ℓ− 1)∆, ℓ∆], it sends tx and a signature on it to all parties
(including clients). It also signs and sends the number ‘ℓ’ as a heartbeat message.

Each client locally maintains a liveness queue and an internal log Lint. At
every round r = ℓ∆ for some ℓ ∈ Z, each client k calculates the tally Ttx of
signatures observed for each transaction tx. It also calculates the number Tℓ−1
of unique validators that have either sent a signature on the number ℓ− 1 or a
signature on some transaction in the past. Then, if Ttx/Tℓ−1 ≥ ϕ, k adds tx to its
liveness queue. To output its log at a round r, the client k appends its liveness
queue to its internal log with the delay uint as in Sec. 3.1.

Proof of Thm. 7. Recall the definition of β from Def. 3.
Liveness: Suppose β ≤ 1 − ϕ, and consider a transaction tx input to an

honest validator for the first time at some round r ∈ ((ℓ − 1)∆, ℓ∆]. At round
(ℓ+1)∆, tx gathers signatures from all honest validators awake at round (ℓ+1)∆,
and all clients observe these signatures by round (ℓ+2)∆. Then, for any Ttx and
T(ℓ+1)∆ in a client’s view at round (ℓ+2)∆, it holds that Ttx/T(ℓ+1)∆ ≥ 1−β ≥ ϕ.
Therefore, all clients awake at round (ℓ + 2)∆ add tx to their liveness queues.
Every transaction added to the liveness queue of a client at some round r′ is
output as part of its log by round r′ + uint. Hence, tx is output as part of all
clients’ logs by round uint + (ℓ+ 2)∆, implying that Πϕ

live satisfies liveness with
parameter uint + 3∆ and resilience 1− ϕ.

Safety: Suppose β < ϕ. Then, the internal protocol is safe and live with
parameter uint as ϕ ≤ 1/2. Any transaction tx added to the liveness queue
of a client k at some round (ℓ + 1)∆ must have been signed by ϕTℓ or more
validators for the value of Tℓ in k’s view. Now, Tℓ is the same or larger than
the size of the set that contains all honest validators awake at round ℓ∆ and
all adversary validators whose signatures on tx were received by k. Let H, A,
Ã respectively denote the numbers of (i) the honest validators awake at round
ℓ∆, (ii) the adversary validators whose signatures on tx were received by k,
and (iii) the remaining adversary validators. Then, ϕTℓ > βTℓ ≥ β(H + A) =
β(H+A+Ã)−βÃ ≥ A+(1−β)Ã, since β(H+A+Ã) ≥ A+Ã by the definition
of β. This implies ϕTℓ − A > 0, i.e., one of the signatures on tx received by k
is by an honest validator. Thus, tx would be input to the internal protocol Πint

by round (ℓ + 1)∆, and by liveness, output as part of the internal log Lint by
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round (ℓ + 1)∆ + uint. As k attempts to append tx to Lint for the first time at
round (ℓ+ 1)∆+ uint, and tx appears as part of Lint by round (ℓ+ 1)∆+ uint,
tx is not added to the tip of Lint. Therefore, if β < ϕ, no transaction added to
the liveness queue of an honest client is appended to the tip of its internal log,
implying that each honest client outputs its internal log as it is. Finally, safety
follows from the safety of the internal protocol.

C.2 Sleepy Communicating Clients

C.2.1 Impossibility for Sleepy Communicating Clients

Proof of Thm. 8. Proof is by contradiction. Suppose there exists a protocol with
resiliences tS = β and tL = 1−β ≤ tS for some β ∈ [1/2, 1]. Let P and Q denote
disjoint sets of βn and (1− β)n validators. Consider the following four worlds:

World 1: Validators in P are honest and awake, and those in Q are asleep.
There is a single client k1. The environment inputs a single transaction tx1 to the
validators in P at time 0. By liveness, k1 outputs tx1 (and no other transaction
from the environment) as part of its log by time u.

World 2: Validators in Q are honest and awake, and those in P are asleep.
There is a single client k2. The environment inputs a single transaction tx2 to the
validators in Q at time 0. By liveness, k2 outputs tx2 (and no other transaction
from the environment) as part of its log by time u.

World 3: Validators in P are honest and awake, and those in Q are adversary.
There are two honest clients, k1 and k3, and the adversary simulates a client
k2. Client k3 joins the protocol at round u. The environment inputs a single
transaction tx1 to the validators in P at time 0.

Client k2 and the validators in Q do not communicate with the client k1 and
the validators in P . Thus, for k1, world 3 is indistinguishable from world 1, and
it outputs tx1 (and no other transaction from the environment) as part of its log
by time u. In the meanwhile, k2 and the validators in Q start with transaction
tx2, and emulate the execution in world 2 until round u.

Once k3 joins the protocol at round u, k2 and the validators in Q emulate
towards k3 the behavior of the honest validators (in Q) and the client k2 in world
4. In other words, they pretend like honest validators and an honest client who
have been shunned by the validators in P and client k1. Since |Q|/n ≤ tL, by
liveness, k3 outputs tx1 as part of its log by time 2u.

World 4: Validators in Q are honest and awake, and those in P are adversary.
There are two honest clients, k2 and k3, and the adversary simulates a client
k1. Client k3 joins the protocol at round u. The environment inputs a single
transaction tx2 to the validators in Q at time 0.

Client k1 and the validators in P do not communicate with the client k2 and
the validators in Q. Thus, for k2, world 4 is indistinguishable from world 2, and
it outputs tx2 (and no other transaction from the environment) as part of its log
by time u. In the meanwhile, k1 and the validators in P start with transaction
tx1, and emulate the execution in world 1 until round u.



Consensus Under Adversary Majority Done Right 35

Once k3 joins the protocol at round u, k1 and the validators in P emulate
towards k3 the behavior of the honest validators (in P ) and the client k1 in world
3. In other words, they pretend like honest validators and an honest client who
have been shunned by the validators in Q and client k2.

Finally, note that worlds 3 and 4 are indistinguishable by k3 with overwhelm-
ing probability, since the validators and clients send the same messages in both
worlds. Therefore, k3 outputs the same log as in world 3, which contains tx1. Now,
if the first transaction in k3’s log is tx1, this implies a safety violation in world
4, since k2 outputs the log [tx2] by round u in world 4. This is a contradiction
since the protocol must have been safe, as |P |/n = β = tS. On the other hand, if
the first transaction in k3’s log is not tx1, this implies a safety violation in world
3, since k1 outputs the log [tx1] by round u in world 3. This is a contradiction
again, since the protocol must have been safe, as |Q|/n = 1− β ≤ tS.

C.3 Always-On Communicating Clients

C.3.1 Achievability for Always-On Communicating Clients We show
that the SMR protocol based on Dolev-Strong (Sec. 3.3, Alg. 5) achieves any
tL < 1, tS < 1 even under sleepy validators. Under sleepy validators with always-
on communicating clients, when a majority of the awake validators are adversary,
the clients must output safe and live logs even though the validators themselves
may not agree on a log (since validators are sleepy and communicating, the
impossibility in Fig. 1h applies to them). Thus, the challenge is to design the
validator’s code to behave correctly even without knowing what happened while
it was sleeping.

This challenge resolves itself due to the following observations. First, while
the SMR protocol (Alg. 5) runs instances of Dolev-Strong one after the other,
each instance does not depend on the previous instances. Second, within an
instance, since the Dolev-Strong protocol (Alg. 4) guarantees agreement and
validity when all but one validator are adversary under always-on validators
(Lem. 6), it does so even when only one validator is honest and awake through-
out the instance (all honest validators who sleep could be considered adversary).
Moreover, we don’t even require the same honest validator to be awake through-
out the instance but only require that for each round during the instance, some
honest validator is awake. Finally, since each validator (including the leader)
signs only one message per instance, it may sleep after it does so without af-
fecting the protocol’s remaining execution. Thus, sleepy validators can faithfully
run Alg. 4.

Proof of Thm. 10. For any tL, tS < 1, we know that at any given round r, there
is at least one honest node awake. First, we will prove that Alg. 4 satisfies
agreement and validity (Def. 10), where the definition of validity is modified to
require an honest and awake leader. Then, using that, we will show that Alg. 5
satisfies safety and liveness.

Validity: Suppose the leader ℓ is awake and honest and BG-broadcasts value
vℓ. By round ∆, all clients receive ⟨v⟩ℓ. Thus, the condition in l. 13 is true, all
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clients add v to their set of candidate output values Vout. Moreover, since the
leader is honest and signatures are unforgeable, no party ever receives ⟨v′⟩ℓ for
v′ ̸= v. Therefore, Vout = {v} and the client BG-outputs v at the end of round
(2n+ 1)∆.

Agreement: Let’s refer to a message of the form ⟨⟨⟨v⟩j1⟩j2 ...⟩jk as a k-signature
chain on v. First, we show that if a client c adds a value v to Vout, then all other
clients do so too. Since client c added v to Vout, for some k ≤ n, it received a
k-signature chain m on v by round (2k − 1)∆. If at least one of the validators
j1, ..., jk who signed this message is honest, then due to l. 8, for some k′ ≤ n, this
validator signed the k′-th signature in the chain by round 2(k′−1)∆ (when it was
awake), so client c′ receives a k′-signature chain by round (2k′ − 1)∆ and thus
also adds v to Vout. If no signatory of m is honest, then k ≤ n− 1. In this case,
client c sends m to all parties, so all validators receive m by round 2k∆. Note
that a validator can check the condition in l. 8 using m and knowledge of the
leader, validator set, and current round, even if it has been sleeping earlier. Since
the condition is satisfied, an honest awake validator (who exists and has not yet
signed by assumption) signs m, and so client c′ receives a (k+1)-signature chain
by round (2k + 1)∆ ≤ (2n − 1)∆. So, client c′ also adds v to Vout. Agreement
follows since we have established that all clients have the same set Vout at the
end of round (2n+ 1)∆.

For the SMR protocol (Alg. 5), safety again follows immediately from agree-
ment. Liveness follows from validity since an honest awake validator will BG-
broadcast a block containing all valid transactions it has received.

C.3.2 Impossibility for Always-On Communicating Clients We con-
clude by showing that it is impossible to achieve safety and liveness resiliences
of exactly 1 simultaneously.

Theorem 11. In a synchronous network with always-on validators and always-
on communicating clients, no protocol can achieve resiliences (tL, tS) such that
tL = tS = 1.

Proof. Proof is by contradiction. Suppose there exists a protocol Π with re-
siliences tS = tL = 1. Consider the world (called world 1), where all validators
are adversary and crashed, and there are n′ clients (at least two of which are
honest). By assumption, the protocol satisfies safety and liveness, even though
the adversary can simulate any (polynomial) number of clients.

Next, consider a world (called world 2) with a synchronous network and n′

always-on validators that are connected by authenticated channels. These val-
idators simulate n other crashed validators in their head, and run the protocol
Π above, assuming the simulated validators are crashed. Even though they are
connected via authenticated channels, they can run the protocol Π; since the
communication among the n′ clients in world 1 can be emulated by the n′ val-
idators in world 2. By the assumption above, safety and liveness are satisfied for
these validators in world 2, even though the adversary can simulate n + f val-
idators for any constant f ≥ n/3. However, this contradicts with the well-known
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FLM’85 impossibility result [20], implying that the protocol cannot be safe and
live in world 1.

D Partial Synchrony

Corollary 6. Suppose the network is partially synchronous with always-on val-
idators. Then for any type of clients, no protocol achieves (tL, tS) such that
2tL + tS ≥ 1.

Corollary 7. Suppose the network is partially synchronous with always-on val-
idators. Then for any type of clients, for all q ∈ (n/2, n], HotStuff [57] with a
quorum size q achieves all (tL, tS) with tL ≤ n−q

n and tS < 2q−n
n .

Corollary 8. Suppose the network is partially synchronous with sleepy valida-
tors. Then for any tS > 0, tL > 0, no protocol can achieve (tL, tS).

Cor. 6 follows from the ‘split brain proof’ [41, Theorem 3.1], in turn inspired
by [19,6]. The impossibility is proven for the ‘no client’ model, which as discussed
in Sec. 5, is equivalent to always-on silent clients. Due to Lem. 1, the impossibility
result holds for all client types. Cor. 7 follows from [57, Theorems 2 and 4] by
replacing the quorum sizes with q ∈ (n/2, n]. The protocol is proven secure for
sleepy silent clients, thus for all other clients too. Other protocols Streamlet [12],
Casper FFG [10], and Tendermint [7] can also be used to achieve the same result.
Finally, Cor. 8 follows from the ‘blockchain CAP theorem’ [31,47].

E Stubborn Nakamoto

E.1 A Concrete Attack on the Protocol

There have been attempts at creating protocols that maintain safety against
all adversaries (tS = 1) and liveness against 1/2 adversaries (tL = 1/2) in the
setting of Bitcoin. It has been posited that communicating clients can achieve
safety resilience tS = 1. The Stubborn Nakamoto protocol, put forth in a recent
preprint [28], is akin to Alg. 2. The model is synchronous, with sleepy validators
and sleepy communicating clients. The protocol [28, Def. 3] is largely identical
to Alg. 2, but uses Bitcoin as its internal protocol Πint. The communicating
clients, upon receiving a new candidate ledger to be confirmed, in the form of a
k-deep block in a longest chain, gossip it and wait 2∆ rounds before they output
it. However, because the protocol aims to work in the sleepy validator setting,
the internal protocol is not17 certifiable. Concretely, the paper’s “certificates”
are proof-of-work blockchains starting at the genesis block and attesting to the
confirmation of transactions that have been buried under k blocks. But such
“certificates” do not satisfy certifiable safety in Def. 4. The reason is that a
17 Certifiable safety is proven impossible in the ‘unsized’ sleepy validator setting such

as proof-of-work [30].
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block’s transactions should be output in the log only if the block is k-deep in
the longest chain, but the “certificate” only guarantees that the block is k-deep
in some chain and does not rule out the existence of longer chains. This lack of
certifiability of Πint makes Stubborn Nakamoto insecure.

For a concrete attack, consider a majority mining adversary, and sleepy com-
municating clients18. Suppose that the adversary mining rate is very high, and
consider two honest clients P1 and P2, initially agreeing on the genesis block.
The adversary performs a balancing attack. She keeps mining two independent
and eternally-growing chains C1 and C2, aiming for P1 to output C1 and P2 to
output C2. Initially, the adversary mines k blocks on C1 and another k blocks
on C2 (before the honest miners manage to mine any k-long chain). At time t0,
the adversary simultaneously sends the first k blocks of C1 to P1 and the first k
blocks of C2 to P2. When P1 receives the k blocks of C1, he will gossip them and
wait 2∆ rounds before confirming them. In the meantime, P2 also receives the
k blocks of C2 and does the same. From that point on, the adversary will mine
blocks on top of both chains and disseminate one new block of C1 to P1 and
one new block of C2 to P2 every ∆/2 rounds (assume she either has sufficient
mining power to keep mining, or she has premined them in advance). Before P1

has received P2’s gossiped blocks, the adversary has mined another block on top
of C1 and made it known to P1 at time t0 + ∆/2, thereby causing P1 to grow
the longest chain in its view. When P1 receives P2’s gossiped blocks at time
t0 + ∆, the chain received from P2 is no longer candidate for confirmation, as
it is not a longest chain. Therefore, the message from P2 to P1 does not stop
P1 from outputting C1. The process continues with both clients having different
ever-growing longest chains, without ever halting. As a result, no matter what
confirmation depth k is used, the protocol is unsafe.

Trying to patch the protocol to achieve the desired resiliences tL < 1/2, tS = 1
for sleepy communicating clients cannot work due to the impossibility shown in
Thm. 8.

E.2 Impossibility for Proof-of-Work

Thm. 8 proves that with sleepy validators and sleepy communicating clients,
for any ϵ ∈ (0, 1/2), resilience tL = ϵ, tS ≥ 1 − ϵ are impossible. In particular,
tL > 0, tS = 1 is impossible. Our model assumed a fixed known set of validators,
a number f of which are corrupted. However, Bitcoin’s validator model has two
key differences. First, Bitcoin uses proof-of-work and assumes that each validator
has a limited hashing power [21]. Second, the number of validators, in this case,
the total hash rate, is not known (to start with, we may consider it fixed as in
the static difficulty Bitcoin model [21]).

On one hand, having unknown number of validators makes Bitcoin’s model
harder to solve SMR than in the sleepy validators model. On the other hand,
the adversary’s power being determined by its hashing power makes Bitcoin’s
model incomparable to our model. In particular, some impossibility proofs (e.g.,

18 This attack works even on always-on communicating clients.
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Thm. 3) that use a split-brain attack would not hold in Bitcoin’s model be-
cause the adversary cannot simultaneously use its hashing power to simulate
two different executions (“mine two chains”).

However, the impossibility result in Thm. 8 holds even in Bitcoin’s model
because it does not use a split-brain attack. Rather, while honest miners run
one execution, the adversary simulates an alternate execution without commu-
nicating with honest parties, and an adversary with 1− ϵ fraction of the hashing
power can simulate an alternate live execution that appears as if it was run by
honest miners. The crux of the proof is that a sleepy client who awakens later
in the execution cannot distinguish whether 1 − ϵ fraction of hashing power is
adversary or ϵ fraction is adversary.

A model for Bitcoin’s setting is described below. The proof of Thm. 8 follows
in exactly the same way under this model too. The model is the same as that
in App. A, except for the following modifications. The proof-of-work is modeled
using a permitter oracle [21,32,31]. At every round, each validator can call the
permitter oracle at most once19 with a message m and the oracle responds with
R(m) where R is a random oracle [32]. Following [21], each honest party is
allowed unlimited “verification” queries to R.

19 Recall that a round is an arbitrarily small unit of time. Moreover, without loss of
generality, we may assume that each validator has the same hashing power since a
validator with higher hashing power may be considered as multiple validators.
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