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Abstract
Federated Learning (FL) is a distributed machine learning paradigm

that allows multiple clients to train models collaboratively without

sharing local data. Numerous works have explored security and

privacy protection in FL, as well as its integration with blockchain

technology. However, existing FL works still face critical issues.

i) It is difficult to achieving poisoning robustness and data privacy
while ensuring high model accuracy. Malicious clients can launch

poisoning attacks that degrade the global model. Besides, aggre-

gators can infer private data from the gradients, causing privacy
leakages. Existing privacy-preserving poisoning defense FL solu-

tions suffer from decreased model accuracy and high computational

overhead. ii) Blockchain-assisted FL records iterative gradient up-

dates on-chain to prevent model tampering, yet existing schemes

are not compatible with practical blockchains and incur high costs

for maintaining the gradients on-chain. Besides, incentives are

overlooked, where unfair reward distribution hinders the sustain-

able development of the FL community. In this work, we propose

FLock, a robust and privacy-preserving FL scheme based on prac-

tical blockchain state channels. First, we propose a lightweight

secure Multi-party Computation (MPC)-friendly robust aggrega-

tion method through quantization, median, and Hamming distance,

which could resist poisoning attacks against up to < 50% malicious

clients. Besides, we propose communication-efficient Shamir’s se-

cret sharing-based MPC protocols to protect data privacy with

high model accuracy. Second, we utilize blockchain off-chain state

channels to achieve immutable model records and incentive distri-

bution. FLock achieves cost-effective compatibility with practical

cryptocurrency platforms, e.g. Ethereum, along with fair incentives,

by merging the secure aggregation into a multi-party state channel.

In addition, a pipelined Byzantine Fault-Tolerant (BFT) consensus
is integrated where each aggregator can reconstruct the final ag-

gregated results. Lastly, we implement FLock and the evaluation

results demonstrate that FLock enhances robustness and privacy,

while maintaining efficiency and high model accuracy. Even with

25 aggregators and 100 clients, FLock can complete one secure ag-

gregation for ResNet in 2 minutes over a WAN. FLock successfully

implements secure aggregation with such a large number of aggre-

gators, thereby enhancing the fault tolerance of the aggregation.

CCS Concepts
• Security and privacy→ Distributed systems security.

1 Introduction
As a distributed machine learning paradigm, Federated Learning
(FL) [34, 41, 63] has achieved rapid development in recent years.

FL allows multiple clients to train a model collaboratively without

sharing local data. Each client uses its locally kept dataset to train

the model and then sends the gradients to the aggregator, which

aggregates all received gradients to update the model. Through

multiple rounds of updates, the global model is gradually optimized.

To avoid centralization failure, decentralized FL has been widely

studied [36, 53], which aims to eliminate dependence on the central-

ized server. In decentralized FL, multiple aggregators participate in

model aggregation or clients communicate and collaborate directly

through a Peer-to-Peer (P2P) network to achieve model training and

updates, which greatly enhances the reliability of the FL system.

FL is developing rapidly and has been used in highly sensitive

areas, e.g., medical [1, 12] and financial [68]. Moreover, its combi-

nation with Web 3.0 [26, 59] provides innovative solutions for data

rights confirmation, transparency, and incentive mechanisms. As

the next generation of the Internet, Web 3.0, based on blockchain

technology, realizes decentralization, trustlessness, and user data

rights confirmation, which is a natural fit with the distribution and

privacy protection of FL. Currently, FL is in its early stages and still

faces serious issues in security and practicability.
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Issue-❶ FL robustness and privacy with high accuracy. In
FL, achieving poisoning robustness and data privacy while ensuring

highmodel accuracy is a critical issue that requires urgent attention.

i) Poisoning robustness: Clients in FL are highly distributed, so

it is hard to guarantee their behaviors. Malicious clients might in-

tentionally manipulate the global model by submitting tampered

or falsified gradients, undermining the FL system’s overall effec-

tiveness [21, 55]. To address this problem, existing works pro-

posed various poisoning robustness methods to resist malicious

clients [8, 11, 13, 24, 46, 62, 64, 67]. These approaches use a vari-

ety of similarity metrics (e.g., Euclidean norm [8] and cosine dis-

tance [11]) and advanced detection algorithms [8, 11, 46] to discover

the abnormal gradients and mitigate potential threats. However, im-

plementing poisoning defenses on privacy-protected data is more

challenging, and imprecise defense mechanisms may filter out hon-

est clients’ gradients, leading to a decline in model accuracy.

ii) Data privacy: When the gradients are in plaintext, the ag-

gregators can infer private client data or data property from

the gradients. Existing works have developed different secure

aggregation schemes based on Secure Multi-party Computation
(MPC) [14, 19, 23, 49], masking [6, 9, 39], homomorphic encryp-
tion (HE) [3, 65], functional encryption [40] and differential privacy
(DP) [45, 51]. However, most of them focus on simple SUM/Average
aggregation, which is vulnerable to poisoning attacks.

To ensure both poisoning robustness and data privacy, trivially

combining existing robust aggregation methods with MPC tech-

niques presents several issues. Existing robust aggregation meth-

ods mostly rely on complex operations (e.g., cosine similarity) that

are MPC-unfriendly with decreased model accuracy, while caus-

ing high computation overhead [46]. While integrating MPC with

customized lightweight robust [19, 23, 49] to defend against both

attacks are restricted to 2- or 3-party settings (a.k.a., two or three

non-colluding aggregators). This setting is difficult to extend to

practical distributed environments with more aggregators, and it

fails to achieve fault tolerance for the aggregators.

Issue-❷ Practical compatibility to existing blockchains. The
structure of FL is distributed and highly consistent with the ar-

chitecture of the blockchain. As a distributed ledger, blockchain

enables decentralized data management through its chain structure

and consensus mechanisms, which provide a potential solution for

decentralized FL. The gradients of optimization iterations during

training could be uploaded on the chain, which prevents model tam-

pering and maintains the current global model for all participants.

However, there exist several problems:

i) Most blockchain-based FL schemes utilize specialized con-

sensus better suited for consortium chains than widely adopted

platforms like Bitcoin [43] or Ethereum [60], which restricts the

real-world application and poses significant challenges to deploy-

ment and scalability. Besides, to fully satisfy the decentralization

requirements of FL, several works have attempted to implement

vanilla FL (non-robustness or non-privacy protection) on top of the

blockchain [2, 66]. Moreover, the aggregation process is highly de-

pendent on the centralized aggregation server. Although some exist-

ing works attempt to construct FL frameworks based on blockchain,

many still depend on a single server for aggregation [42, 57], which

contradicts the high decentralization of the blockchain.

ii) Unfair incentives, or a lack thereof, may demotivate clients

with greater contributions in FL, adversely affecting the perfor-

mance of the global model. Furthermore, these imbalances can lead

some participants to reduce their contributions or even upload low-

quality local updates while still reaping benefits from the global

model. To address these issues, the incentive mechanisms in FL

must prioritize fairness, ensuring that the contributions of each

participant are reasonably recognized and rewarded.

Based on the above analyses, a burning question arises:

Can we design a FL scheme that not only achieves poisoning ro-
bustness, data privacy, and high model accuracy but also integrates
into practical blockchains at low cost with fair incentives?

In this work, we propose FLock, a robust and privacy-preserving

FL framework based on practical blockchain state channels, to an-

swer this question affirmatively. In FLock, we leverage the quanti-

zation, Hamming distance optimizations, and median computation

to resist the poisoning attacks against malicious training clients

and make use of Shamir’s secret sharing (SS)-based MPC protocol

to resist the inference attacks. Moreover, FLock takes advantage of

blockchain state channels to achieve low overhead decentralized FL

with fair incentives. To our knowledge, FLock is the first to achieve

low-cost decentralized FL by using state channels.

Contributions.Our main contributions are summarized as follows:

• Lightweight MPC-friendly robust aggregation scheme.
To defend against poisoning attacks from malicious clients, we

propose a lightweight, MPC-friendly robust aggregation method

that leverages quantization and Hamming distance optimizations,

our approach operates in an honest-majority setting (up to 50%

malicious clients) without needing a root-dataset. We propose

Shamir’s SS-based MPC protocols for securely evaluating our ag-

gregation method with high model accuracy. Our protocols can be

deployed on arbitrary aggregators and tolerate a certain number

of crashes. Additionally, we introduce several novel optimizations

that significantly reduce communication costs.

• Compatibility with practical off-chain channels
blockchain platforms and fair incentives. FLock achieves

low-cost compatibility with practical cryptocurrencies, such

as Ethereum, by putting the entire aggregation process in a

multi-party state channel with a pipelined Byzantine Fault-
Tolerant (BFT) consensus. To our knowledge, FLock is the first to

combine blockchain off-chain state channels and FL to realize low

on-chain cost while ensuring model immutability. Besides, FLock

introduces a fair incentive distribution through smart contracts

according to the contributions of aggregators and clients.

• Implementation and evaluation. We implement FLock and

compare the poisoning tolerance and aggregation efficiency with

existing protocols. Besides, we evaluate the on-chain and off-

chain overhead involved in FLock. The evaluation results show

the robustness of this work and demonstrate that even though

our work enhances privacy and security, it remains efficient. Even

with 25 aggregators and 100 clients, FLock can complete a secure

aggregation for ResNet in less than 120 seconds with around 5GB

communication size. There is currently little work evaluating

the performance of 25 aggregators. Besides, the on-chain and

off-chain overheads show the practicality of FLock.



Table 1: Comparison with state-of-the-art FL frameworks.

Security Decentralization # of Aggregators

Data Privacy Poisoning Robustness Blockchain-based

Cryptocurrency

Compatibility

Single/Two-party Multiple

Krum [8] - Euclidean norm # #  #
[64] - Trim-mean + median # #  #

FLTrust [11] - Root-dataset + cosine similarity # #  #
ELSA [49] Boolean SS Euclidean norm # #  #
FLAME [45] DP Euclidean norm # #  #
RoFL [37] Masking Euclidean norm # #  #
[6, 9, 39] Masking - # #  #

FLOD [19] SS + AHE
Root-dataset + Hamming

distance + quantization

# #  #

TGFL [66] - Data poisoning resistance  # #  
BDVFL [57] Masking -  #  #
Biscotti [51] DP Krum  # #  
PBFL [42] FHE Cosine similarity  #  #

BlockDFL [48] Gradient compression Median-based testing + Krum  # #  

FLock Shamir SS-based MPC
Quantization + median +

Hamming distance

  #  

# Not Support  Support

2 Preliminaries
2.1 Notations
Let 𝐶𝑙 denote the 𝑙-th training client and 𝑙 ∈ [𝑚]. 𝑃 𝑗 denote the
𝑗-th aggregator and 𝑗 ∈ [𝑛]. 𝒈 denotes the gradient vector of

(𝒈1, . . . ,𝒈𝐾 ) of size 𝐾 . 𝒈 (𝑙 )𝑘 is the 𝑘-th gradient component from

the 𝑙-th training client. By default, 𝒈 is the origin gradient before

quantization, 𝒈 indicates the sign-quantized gradient 𝒈 with val-

ues in {−1, +1}, and 𝒈 denotes Boolean encodings (a.k.a., values in
{0, 1}) of 𝒈. And ⟨·⟩ is utilized for SS.

2.2 Federated Learning
FL is a decentralized machine learning approach where clients

collaboratively train a global model under the coordination of ag-

gregators, utilizing local data without sharing the original datasets.

We focus on horizontal scenarios where data follows an indepen-

dent and identically distributed (i.i.d.) pattern and optimize the

model using Stochastic Gradient Descent (SGD) [70] in this work.

The main process of FL is as follows.

• Local training: Each client downloads the initial global model

from the server, and performs multiple training iterations locally

without sharing data to generate gradient updates.

• Model aggregation: Each client sends its updated gradients to

the server. The server aggregates the gradients from all clients to

generate the global model update.

• Global model updating: Once the gradients from all clients are

aggregated, the server updates the global model and distributes it

to each client for the next round of iterative local training.

Additionally, FL’s security issues cannot be ignored. Poisoning attack
can affect the training results of the global model by submitting

maliciousmodel updates, and even cause the global model to deviate.

Besides, the server may launch inference attacks to infer the local

private data or sensitive information of the clients from gradients.

2.3 Building Blocks Related to Blockchain
Blockchain is a distributed ledger that achieves transparency, im-

mutability, and security of information by storing data records on

all blockchain network nodes. Smart contracts are self-executing

codes deployed on the blockchain that can be automatically trig-

gered based on preset conditions. The logic of smart contracts runs

through the blockchain network, which is transparent and tamper-

proof, reducing manual intervention and trust assumptions.

2.3.1 Multi-party State Channels. To address blockchain scalability
issues, state channels offer an off-chain solution that facilitates

numerous transactions and states updating off-chain, with only

the channel create and close recorded on-chain. Moreover, multi-

party state channels enable multiple participants to interact within

a single off-chain channel, allowing any participant to update the

channel while all participants collaboratively maintain its state.

Assuming there are 𝑛 parties involved in a channel. The process of

a multi-party state channel is outlined as follows.

• Create: Each party 𝑃𝑖 intending to participate in the channel

deploys a state channel contract and deposits their respective

initial amounts as their initial state 𝑠𝑡𝑃𝑖 . The initial channel state

is 𝑆𝑇0 = {𝑠𝑡𝑃𝑖 }1≤𝑖≤𝑛 .
• Update: Any participant in the channel can initiate a state

update request, which will be broadcast to all participants within

the channel. The state update will be valid after all (or threshold)

participants agree, and all participants will jointly maintain the

latest state of the channel.

• Close: If a participant initiates a closing request and all par-

ticipants agree on the final state of the channel, the channel can

be closed with the final state, and the close transaction will be

recorded on the chain. Otherwise, others can raise a dispute with

the latest state, and the invalid request will be rejected.

2.3.2 Pipelined Multi-signature BFT Consensus. To formally de-

scribe the secure aggregation of participants within the channel,

we leverage a pipelined multi-signature BFT consensus, PMSBFT.
The pipelining setting allows proposals from different phases to be

processed in different consensus phases at the same time, which

enables the model gradients for different tasks to be aggregated

and processed in parallel, improving the efficiency and practicality

of model aggregation. PMSBFT adopts a stable leader, ensuring an

efficient and stable process when the leader behaves honestly. The

concrete PMSBFT protocol is described in Appendix A.

2.4 Shamir’s Secret Sharing-based MPC
Shamir’s SS is widely used to construct efficient MPC protocols [17,

35], and consists of five basic subprotocols:



• SS.Setup(1𝜅 , 𝑛) → (𝑝𝑝, {𝑣𝑝𝑘𝑖 , 𝑣𝑠𝑘𝑖 }𝑖∈ [𝑛] ) : Initialize the public pa-
rameter 𝑝𝑝 . Let F𝑝 be a finite field modulo 𝑝 . Generate the public-private

key pair (𝑣𝑝𝑘𝑖 , 𝑣𝑠𝑘𝑖 ) for each participant 𝑃𝑖 for 1 ≤ 𝑖 ≤ 𝑛.
• SS.Share({𝑠𝑘 }𝑘∈ [𝐾 ] ) → ({𝐶𝑘 }𝑘∈ [𝐾 ] , {𝑠𝑖𝑘 }𝑘∈ [𝐾 ],𝑖∈ [𝑛] ) : For each
secret 𝑠𝑘 , dealer randomly selects a degree-𝑡 polynomial 𝐹 ( ·, 𝑘 ) ∈ F𝑝 [ · ],
s.t. 𝐹 (0, 𝑘 ) = 𝑠𝑘 . Compute 𝑠𝑖𝑘 = 𝐹 (𝑖, 𝑘 ) as the share of 𝑠𝑘 to 𝑃𝑖 . ⟨𝑠𝑘 ⟩𝑡
denotes the shares of (𝑠

1𝑘 , . . . , 𝑠𝑛𝑘 ) with degree 𝑡 and ⟨𝑠𝑘 ⟩ indicates the
degree 𝑡 by default. Each party 𝑃𝑖 receives 𝐾 polynomial shares.

• SS.Reconstruct({𝑠𝑖𝑘 }𝑘∈ [𝐾 ],|𝑠𝑖𝑘 |≥𝑡 ) → ({𝑠𝑘 }𝑘∈ [𝐾 ] ) : Take the secret
shares {𝑠𝑖𝑘 }𝑘∈ [𝐾 ] as inputs, and output the original secrets {𝑠𝑘 }𝑘∈ [𝐾 ] if
the number of valid shares |𝑠𝑖𝑘 | ≥ 𝑡 .
• SS.Addition(⟨𝑎⟩, ⟨𝑏 ⟩) → ⟨𝑎 +𝑏 ⟩: Let ⟨𝑎⟩ and ⟨𝑏 ⟩ denote two shares

of secrets 𝑎,𝑏 ∈ F𝑝 , each party locally adds its secret shares to get ⟨𝑎 +𝑏 ⟩.
• SS.Multiplication: Let ⟨𝑎⟩ and ⟨𝑏 ⟩ be two degree-𝑡 shared secret in-

puts, the parties can compute degree-2𝑡 intermediate ⟨𝑧⟩2𝑡 by computing

their share locally. With the double sharing (⟨𝑟 ⟩, ⟨𝑟 ⟩2𝑡 ) of a random

𝑟
$← F, the parties can reduce the degree of ⟨𝑧⟩2𝑡 to 𝑡 as follows: i) all

parties locally compute ⟨𝑐 ⟩2𝑡 = ⟨𝑧⟩2𝑡 + ⟨𝑟 ⟩2𝑡 , ii) collaboratively recon-

struct 𝑐 , and iii) finally compute ⟨𝑎 · 𝑏 ⟩ = 𝑐 − ⟨𝑟 ⟩. And (⟨𝑟 ⟩, ⟨𝑟 ⟩2𝑡 ) can
be generated using the randomness extraction method [17].

On top of them, existing works have built various fast protocols

for more complex functions, including less-than (<, LT). We use

protocol LT of [35] for secure comparison in a black-box manner.

For convenience, we utilize + and · to represent SS.Addition and

SS.Multiplication implicitly in this work. Also, the above protocols

can be easily extended to vectors and matrices [35] in parallel, we

also use these technologies in our protocols.

3 System Design
We capture the communication model, threat model, and security

goals in this section.

3.1 Communication Model
In this work, we consider the synchronous model. Assuming that

all communication processes are composed of rounds. The size of

a round can be adjusted according to the actual situation, which

could be 1 second in the real world. Let Δ be the upper bound of

time delay. In the update phase within the multi-party channels,

to ensure that gradient shares can be reconstructed and channel

state updates can be processed quickly, the protocol adopts BFT

consensus with partial synchronization, which can also run under

a synchronous network.

3.2 Threat Model
We capture two kinds of adversaries in this work: i) We assume that

all participant aggregators in the multi-party state channel are semi-

honest, which means they will not deviate from the predetermined

process of the protocol, but will try to obtain as much private

information as possible during the execution. However, the MPC

protocol does not protect data before entering the channel. ii) In

training clients, we assume that the malicious adversary A can

control no more than 1/3 of any participants at the beginning of the
protocol and access all information of the corrupted participants.

There are 𝑛 ≥ 3𝑓 + 1 participants within a channel, where 𝑓 is the

maximum number of corrupted participants. The training clients

could be seen as malicious and may launch poisoning attacks.

3.3 Security Goals
In this work, we consider the following two security goals.

(G1) Poisoning robustness.When the FL system is attacked by

malicious clients, it can still maintain the accuracy, unbiasedness,

and fairness of the model to a certain extent.

(G2) Cryptographic privacy. Ensure that the aggregators cannot
infer sensitive information about the training data by accessing the

model or gradients.

4 Concrete Protocol
In this section, we first give an overview and then present FLock

in detail. The workflow is illustrated in Figure 1.

4.1 Overview
Task issue. The task issuer 𝐼𝑖 publishes its task through a smart

contract. Then 𝐼𝑖 pays a deposit to the contract address, which

is used as a reward for the training clients and the aggregation

participants in the channel. When the contract result is on the

chain, the task will be added to a pending set, and all peers can

choose whether to participate in training or gradient aggregation.

Local training. All peers who are willing to participate in the

training obtain the model weights and train the model to generate

updated model gradients. Then the training clients 𝐶𝑙 (1 ≤ 𝑙 ≤ 𝑚)
quantize the updated gradient components into the Boolean format

with SIGNSGD [7] and the SIGNSGD→ Boolean conversion for

the subsequent calculation of Hamming distance in aggregation.

Each training client𝐶𝑙 generates 𝑛 shares of the quantified gradient

components through SS.Share(·) and distributes the shares to the

participants in the multi-party state channel for secure aggregation.

Gradient secure aggregation. The peers who are willing to par-

ticipate in gradient aggregation for a task create a multi-party state

channel and wait for gradient shares from training clients. The

peers participating in the aggregation execute the process through

the off-chain state channels, making the overall gradient aggrega-

tion process compatible with existing cryptocurrency platforms

and making the protocol more practical. Each participant 𝑃 𝑗 first

verifies the validity of the shares by SS.Verify(·). Then 𝑃 𝑗 calcu-
lates the Hamming distance of the shares received from each train-

ing client 𝐶𝑙 to obtain a score 𝑣 (𝑙 ) and then performs a weighted

average of the shares according to the scores for gradient share

aggregation. The participants then reconstruct and synchronize

the aggregated gradient through the pipelined multi-signature BFT

consensus, PMSBFT, within the channel with SS.Reconstruct(·).
Model updating and incentive distribution. Finally, the channel
leader L returns the aggregated gradients to clients for iterative

training. If the current model has satisfied the requirements of the

task issuer, L submits the current model to the smart contract,

which will pay the participants {𝑃 𝑗 } 𝑗∈[𝑛] in the channel and pay

the training clients {𝐶𝑙 }𝑙∈[𝑚] according to the scores {𝑣 (𝑙 ) }𝑙∈[𝑚] .
For the sake of clarity, we introduce the plaintext training work-

flow in § 4.2, add the MPC-based privacy protection in § 4.3, and

describe how to be compatible with practical blockchain by state

channels and provide fair incentives in § 4.4.
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Figure 1: The workflow of the protocol

4.2 Plaintext Training Workflow
Our training method is inspired by FLOD [19]. Unlike FLOD which

requires a clean root-dataset to bootstrap trust against a majority

of malicious clients, our approach operates in an honest-majority

setting (up to 50% malicious clients) without needing a root-dataset.

This trade-off is practical, as the honest-majority assumption is

widely acknowledged while obtaining a clean root-dataset is often

challenging in decentralized settings.

[Local Training] After each client 𝐶𝑙 (1 ≤ 𝑙 ≤ 𝑚) completes

training locally, the original floating gradients provide a wider

space for possible attacks. Then 𝐶𝑙 transforms each gradient com-

ponent into {−1, 1}-encodings (denoted as 𝒈 (𝑙 ) = (𝒈 (𝑙 )
1
, . . . ,𝒈 (𝑙 )

𝐾
))

as SIGNSGD [7]. This conversion could effectively limit the attack

space of the adversary, where the gradients are restricted to discrete

values. Then, 𝐶𝑙 further converts 𝒈
(𝑙 )

into Boolean type through

the following conversion process:

SIGNSGD→Boolean conversion: Given 𝒈 (𝑙 ) , for each element 𝒈 (𝑙 )
𝑘

with 1 ≤ 𝑘 ≤ 𝐾 , we have

𝒈 (𝑙 )
𝑘

=

{
0, if 𝒈 (𝑙 )

𝑘
= 1,

1, otherwise.
(1)

All the above computations are executed locally on the training

client. Then, 𝐶𝑙 obtains the Boolean gradients 𝒈 (𝑙 ) send them to

aggregator 𝑃 . Note we only send the Boolean gradients without

{−1, 1}-encoded ones. Looking ahead, this is because if sends both,

we will need to ensure consistency
1
of them in secure aggregation,

which is expensive in MPC.

[Gradient aggregation]After receiving the gradients {𝒈 (𝑙 ) }𝑙∈[𝑚] ,
aggregator 𝑃 first converts 𝒈 (𝑙 ) into {−1 + 1}-encodings for the
subsequent aggregation by

𝒈 (𝑙 ) = 1 − 2 · 𝒈 (𝑙 ) . (2)

Then, 𝑃 𝑗 sums {𝒈 (𝑙 ) }𝑙∈[𝑚] in element-wise, i.e., 𝒈 (𝑠 )
𝑘

=
∑𝑚
𝑙=1

𝒈 (𝑙 )
𝑘

.

Next, 𝑃 computes 𝒈 (𝑘 ) to bootstrap trust in honest-majority as

𝒈 (𝑠 )
𝑘

=

{
0, if 𝒈 (𝑠 )

𝑘
≥ 0,

1, otherwise.
(3)

It is easy to see 𝒈 (𝑠 ) excludes 50% of the malicious clients in element-

wise since it is determined by major gradients’ values. Although

𝒈 (𝑠 ) can also represent honest aggregated results, too much infor-

mation is lost, leading to accuracy degradation of the global model.

1
Boolean and {−1, 1}-encoded gradients satisfy equation (1)

To keep as many honest gradients as possible, we leverage the

Hamming distance-based weighted aggregation [19].

Hamming distance computing: Aggregator 𝑃 computes the Ham-

ming distance between 𝒈 (𝑠 ) and 𝒈 (𝑙 ) from each 𝐶𝑙 as

ℎ𝑑 (𝑙 ) =
𝐾∑︁
𝑘=1

(𝒈 (𝑙 )
𝑘
⊕ 𝒈 (𝑠 )

𝑘
) . (4)

Then, we compute a score for each client based on ℎ𝑑 (𝑙 ) . Intuition-
ally, a smaller Hamming distance means that the gradient is closer

to 𝒈 (𝑠 ) , a.k.a., more likely to be sent by an honest client, and thus

should have a higher score. The score is calculated as follows.

𝜆-Score computing: Compute the score 𝑣 (𝑙 ) for each client 𝐶𝑙 as

𝑣 (𝑙 ) =
{
𝜆 − ℎ𝑑 (𝑙 ) , if ℎ𝑑 (𝑙 ) < 𝜆

0, otherwise

(5)

Weighted aggregation: Aggregator 𝑃 weighted aggregates the gra-

dients as:

𝒈 =

𝑚∑︁
𝑙=1

𝑣 (𝑙 )∑𝑚
𝜏=1

𝑣 (𝜏 )
𝒈 (𝑙 ) (6)

Noted that in the weighted aggregation, we use the {−1, +1}-
encoded gradients following existing works [7, 19].

Security & privacy concerns. During the above aggregation

method, 𝒈 (𝑠 ) and Hamming distance-based score could provide

resistance to poisoning attacks, which excludes < 50% malicious

clients. Unfortunately, it does not consider the resistance to privacy

attacks, where the aggregators could infer the private information

of the local dataset from gradients sent by training clients.

4.3 MPC-based Secure Aggregation
We leverage Shamir’s SS to design MPC protocols for securely eval-

uating our aggregation method. Unlike previous approaches limited

to 2 or 3 aggregators [19, 23, 49], our secure aggregation can be

deployed on arbitrary aggregators and tolerates a certain number of

crashes benefiting from Shamir’s SS. Additionally, we introduce sev-

eral novel optimizations that significantly reduce communication

costs, which may be of independent interest.

[Gradient secure aggregation] To protect data privacy, we design
secret sharing-based MPC protocols to achieve secure aggregation

for the plaintext training procedure in § 4.2. At a high level, we

employ several aggregators {𝑃 𝑗 }𝑛𝑗=1
and develop four subprotocols:

ΠBoostrap, ΠHM, Π𝜆Score, and ΠWA, for each step of the aggregation.



4.3.1 Protocol ΠBoostrap. After receiving its gradients shares

⟨𝒈 (𝑙 ) ⟩𝑗 from client 𝐶𝑙 , 𝑃 𝑗 first need to check whether every element
of 𝒈 (𝑙 ) lies in {0, 1} or not. This is trivial in plaintext but challenging

in MPC since aggregators cannot access the true values.

Given ∀𝑥 , we observe that 𝑥 ∈ {0, 1} ⇔ 𝑥 · (1−𝑥) = 0. Similarly,

for each ⟨𝒈⟩ (𝑙 ) , all aggregators can also collaboratively compute

⟨𝒄 (𝑙 ) ⟩ = ⟨𝒈 (𝑙 ) ⟩ · (1 − ⟨𝒈 (𝑙 ) ⟩), (7)

open 𝒄 (𝑙 ) , and check whether 𝒄 (𝑙 ) is all 0 or not. However, this

requires a communication of 𝑂 (𝑚𝐾𝑡), which is dependent on 𝐾 .

To reduce the communication, we propose two optimizations:

(1) Probabilistic Test. After getting 𝒄 (𝑙 ) , we interpret vector

𝒄 (𝑙 ) = [𝒄 (𝑙 )
0
, 𝒄 (𝑙 )

2
, . . . , 𝒄 (𝑙 )

𝐾−1
] as 𝐾 coefficients of a degree-(𝐾 − 1)

polynomial. Then, we can use the Schwartz–Zippel lemma [50, 71]

for the polynomial identity test. Roughly, we let all parties sample

a common random 𝑟
$← F, compute 𝜎 (𝑙 ) =

∑𝐾−1

𝑖=0
𝒄 (𝑙 )
𝑖
𝑟 𝑖 , and

check 𝜎 (𝑙 ) = 0 or not.

(2) Test-then-Open. Recall that all values are in the secret-shared
fashion, if we follow existing secure multiplication, the parties

need to reduce the degree for the whole vector 𝒄 (𝑙 ) in equation (7)

before polynomial identity test. However, we can post the degree

reduction after the polynomials computation: assuming ⟨𝒈 (𝑙 ) ⟩ is
of degree-𝑡 , then all aggregators first compute degree-2𝑡 ⟨𝒄 (𝑙 ) ⟩2𝑡
locally. Next, we let all aggregators locally compute ⟨𝜎 (𝑙 ) ⟩2𝑡 =∑𝑛−1

𝑖=0
⟨𝒄 (𝑙 )
𝑖
⟩2𝑡𝑟 𝑖 . Finally, all aggregators only need to open one

value 𝜎 (𝑙 ) , instead of the vector 𝒄 (𝑙 ) .

With the above two optimizations, we only need𝑂 (𝑚𝑡) communica-

tion for checking whether 𝒈 (𝑙 ) ∈ {0, 1}𝐾 for 𝑙 ∈ [𝑚]. Also, with the

Schwartz–Zippel lemma, when 𝜎 (𝑙 ) = 0, we have at least 1 − 𝐾−1

|F |
probability to guarantee that 𝒄 (𝑙 ) is composed of all 0. For widely

used neural networks with millions of parameters (a.k.a., 𝑛 < 2
16
),

we can choose 60 bits finite field F, and we have probability at least

1 − 2
−40

guarantee probabilistic test works. After the above check,

the aggregators discard gradients with 𝜎 ≠ 0.

Below, all aggregators process the qualified ⟨𝒈 (𝑙 ) ⟩ to get ⟨𝒈 (𝑠 ) ⟩:
i) each 𝑃 𝑗 locally convert its ⟨𝒈 (𝑙 ) ⟩ from Boolean encoding to

{−1, +1}-encoding as ⟨𝒈 (𝑙 ) ⟩ = 1 − 2⟨𝒈 (𝑙 ) ⟩. ii) each 𝑃 𝑗 sums its

shares in element-wise to obtain ⟨𝒈 (𝑠 ) ⟩ = ∑𝑚
𝑙=1
⟨𝒈 (𝑙 ) ⟩, and collabo-

ratively computes ⟨𝒈 (𝑠 ) ⟩ = 1− (⟨𝒈 (𝑠 ) ⟩ ≥ 0), where the comparison

(⟨𝒈 (𝑠 ) ⟩ ≥ 0) can be implemented by Less-Than protocol LT of [35].

4.3.2 Protocol ΠHM. In this protocol, we securely compute the

Hamming distance between ⟨𝒈 (𝑙 ) ⟩ and ⟨𝒈 (𝑠 ) ⟩ for 𝑙 ∈ [𝐾]. Since
the gradients are secretly shared in Shamir secret sharing over field

F, we need to compute the Hamming distance using arithmetic op-
erations over F. One trivial solution is as follows: first, we compute

the element-wise XOR as:

⟨𝒅 (𝑙 ) ⟩ = ⟨𝒈 (𝑙 ) ⟩ + ⟨𝒈 (𝑠 ) ⟩ − 2 · ⟨𝒈 (𝑙 ) ⟩ · ⟨𝒈 (𝑠 ) ⟩. (8)

Then, 𝑃 𝑗 can locally compute

⟨ℎ𝑑 (𝑙 ) ⟩ =
𝐾−1∑︁
𝑘=0

⟨𝒅 (𝑙 )
𝑘
⟩. (9)

However, this method requires communicating 𝑂 (𝑚𝐾𝑡) field
elements for the secure multiplication in equation (8). To reduce the

communication costs, we exploit Sum-then-DegReduce technique: In
the secure multiplication ⟨𝒈 (𝑙 ) ⟩ · ⟨𝒈 (𝑠 ) ⟩, after getting ⟨𝒈 (𝑙 ) ·𝒈 (𝑠 ) ⟩2𝑡 ,
instead of conducting degree-reduction immediately, we can first

perform summation. Concretely, we interpret ⟨𝒈 (𝑙 ) ⟩ and ⟨𝒈 (𝑠 ) ⟩
as degree-2𝑡 Shamir secret shares (by padding the coefficients of

degree-𝑡 to dgree-(2𝑡 − 1) as 0), then we compute ⟨𝒅 (𝑙 ) ⟩2𝑡 . Next,
we compute ⟨ℎ𝑑 (𝑙 ) ⟩2𝑡 similar as equation (9) but with degree-2𝑡

sharing. Finally, we only need to reduce the degree of ⟨ℎ𝑑 (𝑙 ) ⟩2𝑡 to
𝑡 . In this way, our total communication for computing Hamming

distance is reduced to 𝑂 (𝑚𝑡), not dependent on 𝐾 .

4.3.3 Protocol Π𝜆Score. With the Hamming distance ⟨ℎ𝑑 (𝑙 ) ⟩, 𝑃 𝑗
computes the score ⟨𝑣 (𝑙 ) ⟩ for the gradients of 𝐶𝑙 as:

⟨𝑣 (𝑙 ) ⟩ = (𝜆 − ℎ𝑑 (𝑙 ) ) ·
(
(𝜆 − ⟨ℎ𝑑 (𝑙 ) ⟩) ≥ 0

)
, (10)

where the comparison ((𝜆 − ⟨ℎ𝑑 (𝑙 ) ⟩) ≥ 0

)
can be computed using

protocol LT. In this way, when (𝜆 − ℎ𝑑 (𝑙 ) ) ≥ 0 ⇔ ℎ𝑑 (𝑙 ) ≤ 𝜆, we
get 𝑣 (𝑙 ) = 𝜆 − ℎ𝑑 (𝑙 ) ; otherwise, we set 𝑣 (𝑙 ) = 0, computing 𝜆-Score

securely in MPC.

4.3.4 Protocol ΠWA. Simply computing equation (6) involves ex-

pensive secure division, we thus decompose it as follows:

1) We compute ⟨V⟩ = ∑𝑚
𝑙=1
⟨⟨𝑣⟩ (𝑙 ) ⟩ and revealV .

2) The aggregated results can be computed as ⟨𝒈⟩ = ∑𝑚
𝑙=1

1

V ·
(⟨𝑣 (𝑙 ) ⟩ · ⟨𝒈 (𝑙 ) ⟩), where 1

V is computed in plaintext, and we only

need secure addition and multiplication.

However, the above procedure still requires a communication of

𝑂 (𝑚𝐾𝑡) field elements. Hence, we use Sum-then-DegReduce to

reduce the communication. In detail, we first get ⟨𝑣 (𝑙 ) · 𝒈 (𝑙 ) ⟩2𝑡
when computing (⟨𝑣 (𝑙 ) ⟩ · ⟨𝒈 (𝑙 ) ⟩), summing up to get ⟨𝒈⟩2𝑡 =∑𝑚
𝑙=1

1

V · ⟨𝑣
(𝑙 ) · 𝒈 (𝑙 ) ⟩2𝑡 , and finally reduce the degree of ⟨𝒈⟩2𝑡 to

𝑡 . In this way, we only require a communication of 𝑂 (𝐾𝑡), achiev-
ing a reduction of𝑚×. Although we reveal V in step 1), it saves

the expensive costs of secure division. And revealingV alone will

not leak the values or distributions of gradients. We think it is a

reasonable trade-off between efficiency and security.

By integrating all the subprotocols outlined in § 4.3.1-§ 4.3.4, we

construct our secure 𝑛-party aggregation for robust FL.

4.4 Blockchain Compatibility & Fair Incentive
The above process only involves a privacy-preserving FL train-

ing scheme but does not mention compatibility with practical

blockchain and incentive distribution. Then, we introduce how

to merge the above FL scheme into practical blockchain state chan-

nels with fair incentive distribution.

[Task issue] First, to add an incentive mechanism, we introduce

the task issue process, where the task issuer deposits the rewards for

the training clients and aggregators. We leverage smart contracts

to achieve fair incentives, where the task issuer cannot deny the

published tasks and the promised rewards. The task issue process

can be found in Appendix B.

[Gradient secure aggregation] We enable gradient secure ag-

gregation off-chain by leveraging multi-party state channels with



the pipelined multi-signature BFT consensus, PMSBFT, improv-

ing compatibility with most cryptocurrency platforms. To ver-

ify the validity of shares received from clients, we consider in-

troducing the verifiability of SS. Besides, we leverage batching
to optimize efficiency, which allows the dealer to share multi-

ple secrets in parallel and aggregators can verify the validity

of shares at one time. Specifically, introduce a polynomial com-

mitment PolyCommit(·) in SS.Share and generate a commitment

𝐶𝑘 ← PolyCommit(𝐹 (·, 𝑘)) for 𝑘 ∈ [𝐾]. Then, adding a verifica-

tion algorithm SS.Verify({𝐶𝑘 }𝑘∈[𝐾 ] , {𝑠𝑖𝑘 }𝑘∈[𝐾 ],𝑖∈[𝑛] ) → 𝑏, which

outputs a indicator bit 𝑏 ∈ {0, 1} to indicate whether the secret

shares {𝐶𝑘 }𝑘∈[𝐾 ] are valid.
Aggregated gradient reconstruction within the channel. All
peers who are willing to join the model aggregation as aggregators

for some task create a multi-party state channel, where the iden-

tifier is ID. The initial state of the channel is 𝑆𝑇0 := {𝑠𝑡𝑃 𝑗 } 𝑗∈[𝑛] .
After the channel is created, all participants {𝑃 𝑗 } 𝑗∈[𝑛] wait for the
gradient shares sent from the training clients. The share aggrega-

tion is the same as the process above. After that, each participant

𝑃 𝑗 obtains the aggregated gradient share ⟨𝒈𝑗 ⟩. Then 𝑃 𝑗 revokes
PMSBFT.Pre(⟨𝒈𝑗 ⟩) and obtains the aggregated signature Σ𝑖 with re-
constructed gradient 𝒈𝑗 , where 𝒈 ← SS.Reconstruct({⟨𝒈𝑗 ⟩} 𝑗∈[𝑛] ).
After that, 𝑃 𝑗 revokes PMSBFT.Com(msg.vote𝑒

𝑗
,msg.commit𝑒−1

𝑗
)

with msg.commit𝑒−1

𝑗
= (Commit, 𝑒 − 1,𝒈) and msg.vote𝑒

𝑗
=

(Vote, 𝑒, 𝛿 𝑗 ,msg𝑖 ), where 𝛿 𝑗 = MulSig(𝑠𝑘 𝑗 ,msg𝑖 ) and msg𝑖 de-
notes the shares for another task 𝜏𝑖 . The process of aggregated gra-

dient reconstruction in the multi-party state channel with PMSBFT
consensus is shown in Figure 2.
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Figure 2: The process of pipelined multi-signature BFT con-
sensus PMSBFT protocol.

[Model updating and incentive distribution] After the recon-
struction, the participants in the channel obtain the aggregated

gradient 𝒈. If the current gradient has reached the requirements of

the task issuer 𝐼𝑖 , the leader L in the channel will input it into the

smart contract, and the smart contract will distribute rewards to the

channel participants {𝑃 𝑗 } 𝑗∈[𝑛] and clients {𝐶𝑙 }𝑙∈[𝑚] . The rewards
for the channel participants are uniform, and the rewards for the

clients are based on their scores 𝑣 (𝑙 ) in gradient aggregation.

5 Security Analysis
We capture the security of FLock in Theorem 1 and the concrete

analysis and proofs are illustrated in Appendix D.

Theorem 1. FLock achieves poisoning robustness and crypto-
graphic privacy on the top of the blockchain multi-party state channel,
as long as i) there are less than 50% malicious clients, ii) the underlying

protocols ΠBootstrap,ΠHM,Π𝜆Score, and ΠWA are secure against static
semi-honest adversaries in the Shamir’s SS-hybrid model, and iii) the
PMSBFT consensus is secure under the honest-majority assumption
with 𝑛 ≥ 3𝑓 + 1, where 𝑓 is the maximum of corrupted aggregators
and 𝑛 is the total number of aggregators.

6 Evaluation
Testbed Environment.We conduct the experiments on a machine

with Intel(R) Xeon(R) Sliver 4314 CPU@ 2.40GHz with 512GB RAM

and Nvidia A100 with 40GB RAM. We simulate a WAN network

setting: 400Mbps bandwidth and 4ms latency, with tc command.

Our FL evaluation is based on FederatedScope [61] and we utilize

LeNet [31] on dataset MNIST [18] and ResNet-20 [25] on dataset

CIFAR-10 [30]. MPC protocols are developed on library hmmpc-

public
2
. We finite field F𝑝 with 𝑝 = 2

61−1
with a fixed-point preci-

sion of 12 bits for MPC protocols. All of the instantiations related

to blockchain are performed over the elliptic curve secp256k1,
which is used on Bitcoin and Ethereum. To better demonstrate the

compatibility of our work with Ethereum, we deploy the smart

contracts on Ethereum with Solidity 0.8.0. Besides, we implement

the PMSBFT consensus by using Go-1.22.1.

6.1 Poisoning Tolerance
We evaluate the accuracy of FLock under Gaussian attack [38],

which is the most commonly used attack method. With the fraction

of malicious clients 𝛿 to 10%, 20%, 30%, and 40%. We execute 100

rounds of training on ResNet over dataset CIFAR-10 [30] and com-

pare the performance with FedAvg [41], Median
3
[64], and FLOD

[19]. FedAvg is a vanilla FL scheme without any built-in defenses

against poisoning attacks, which performs optimally in the absence

of such attacks. We measure the main task test accuracy, and ex-

perimental results are illustrated in Figure 3. We can see that as

the training rounds increase, all methods gradually achieve their

optimal test accuracy. However, as 𝛿 increases, the accuracy of

Median and ours begin to fluctuate, while FLOD is relatively more

stable, especially when 𝛿 = 30% and 𝛿 = 40%. The performance

of FLock is between FLOD and Median. However, when 𝛿 = 30%

and 𝛿 = 40%, even FLock is not as stable as FLOD, we still maintain

comparable test accuracy. Besides, it is important to claim again

that we do not require a clean root-dataset on the server side, while

FLOD relies on this assumption. Besides, we compare the best test

accuracy of these works on LeNet over dataset MNIST [18], the

results are shown in Table 6. (c.f., Appendix C).

6.2 Secure Aggregation Efficiency
We evaluate the communication overhead (MB) and time cost (s)

of ΠBoostrap, ΠHM, Π𝜆Score, and ΠWA. We set the number of ag-

gregators to 7, 13, 19, and 25, where the performance of 7 and

25 aggregators is shown in Table 2 and the rest of the results are

shown in the Appendix C. As mere prior works can support so

many aggregators, for example, FLOD focuses on 2PC and can-

not easily extended to more than 2 aggregators, we only measure

our efficiency in experiments. From Table 2, we can see that: i)

ΠBoostrap and ΠHM account for most of the communication and

time costs for all experiments. This is expected since their cost is

2
https://github.com/f7ed/hmmpc-public

3
Median is applied after the binarization process.

https://github.com/f7ed/hmmpc-public
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(c) 𝛿 = 30%
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Figure 3: Comparison of the test accuracy with 100 rounds of training iterations (FLOD adopts a root-dataset)

Table 2: Aggregation efficiency with communication cost (MB) and run time (s) of Lenet (62K) and Resnet (273K)

# Agg. Model # Client ΠBoostrap ΠHM Π𝜆Score ΠWA
Comm. Run-time Comm. Run-time Comm. Run-time Comm. Run-time

7

Lenet

10 100.546 2.070 23.3823 0.401 0.016 0.015 2.338 0.081

50 100.548 2.072 116.914 1.857 0.081 0.015 2.338 0.081

100 100.550 2.074 233.828 3.504 0.162 0.015 2.338 0.081

Resnet

10 442.731 9.144 102.96 1.510 0.016 0.015 10.296 0.027

50 442.730 9.162 514.8 18.430 0.081 0.015 10.296 0.027

100 442.732 9.174 1029.6 33.689 0.162 0.015 10.296 0.027

25

Lenet

10 401.885 8.505 90.470 2.433 0.065 0.030 9.047 0.248

50 401.886 8.508 452.352 10.132 0.324 0.452 9.047 0.248

100 401.894 8.518 904.704 21.109 0.648 0.495 9.047 0.248

Resnet

10 1769.566 39.027 398.362 8.552 0.065 0.030 39.836 1.030

50 1769.567 39.277 1991.810 41.038 0.324 0.452 39.836 1.030

100 1769.575 39.352 3983.620 78.805 0.648 0.495 39.836 1.030

dependent on the size of the very large gradient vectors. ii) The cost

of ΠBoostrap and ΠWA is only proportional to the size of gradient

vectors but independent of the number of clients. This is because

we only need to process one gradient vector. The cost of Π𝜆Score
is the least as we only need to compute one score (a.k.a., scalar)
for each gradient. iii) The cost of ΠBoostrap is mainly determined

by computing ⟨𝒈 (𝑠 ) ⟩. Though the size ⟨𝒈 (𝑠 ) ⟩ is independent of the
client number, it requires more costs than ΠWA since LT is much

more expensive than secure multiplication. Moreover, we can see

similar efficiency observations for the results in Table 5 (c.f., Ap-

pendix C). As shown in Table 3, we also compare the aggregation

overhead with FLOD
4
on ResNet, where FLOD is on ResNet-18

and FLock is on ResNet-20, which is heavier. Although our model

has large parameters, our communication and run-time are much

better than FLOD, confirming the efficiency of FLock’s aggregation.

Taking the setting with 100 clients and 7 aggregators as an example,

FLock reduces the communication costs by 76.26× and is around

54.16× faster compared to FLOD.

Table 3: Comparison of the aggregation efficiency with FLOD
in terms of communication cost (MB) and time (s) on ResNet

# Clients Comm. Run-time
FLOD. On. FLOD. Off. FLock FLOD. On. FLOD. Off. FLock

10 403.0 11,745.280 556.004 43.170 192.040 10.696

50 1,982.610 58,030.080 967.970 202.760 969 27.634

100 3,957.650 109,117.440 1482.790 406.160 1917.430 42.905

6.3 On-chain and Off-chain Performance
We evaluate the on-chain and off-chain overhead involved in FLock,

where on-chain cost is reflected by gas, and off-chain cost is re-

flected by time. In Ethereum, gas consumption reflects the complex-

ity of the computation in the smart contracts. We set the gas price

4
Although FLOD is fixed to 2 aggregators, we compare FLock to it since it is the most

relevant existing work to ours.

as 6 Gwei (as of Oct. 2024) and the exchange rate as 2315.8 USD per

Ether. It can be seen from Table 4 that we increased the number

of aggregators in the multi-party aggregation and then tested the

time consumption of PMSBFTwithin the off-chain channel and the

on-chain gas consumption of the multi-party state channel. The

gas consumption includes the sum of the channel create and close.

From the results, channel create and close cost a total of 227.8k

gas ($4.138) when the number of participants is 7. It costs a total

of 558.9k gas ($7.765) for a 37-party state channel. This price will

fluctuate with the exchange rate of Ethereum.

Table 4: Overhead of PMSBFT consensus (off-chain) within
the channel and multi-party state channels (on-chain)

# of aggregators 7 13 19 25 31 37

Off-chain (s) 0.620 1.227 4.685 6.249 8.291 13.370

On-chain
Gas 227815 254517 450019 486309 522600 558904

Ether/10
−3

1.367 1.527 2.700 2.918 3.136 3.353

USD 4.138 3.536 6.253 6.758 7.262 7.765

7 Related Work
There are lots of works on privacy-preserving FL, many of

which have achieved decentralization and can be combined with

blockchain, and many works focus on secure aggregation. In Table

1, we compare some existing works from multiple dimensions.

Currently, many blockchain-based FL works have been proposed

to achieve decentralization. However, most works have designed

specialized consensus algorithms [2, 4, 15, 27, 33, 48, 51, 57, 66],

which are only suitable on permissioned chains and are not compat-

ible with existing permissionless cryptocurrency platforms, such

as Bitcoin and Ethereum. Some works utilize a single server for

gradient aggregation [42, 47, 58], which still has problems in cen-

tralization including a single point of failure. Besides, many studies

have ignored the privacy of models and data [16, 22, 44, 54, 56],

leading to potential security risks. First, there is a risk of leakage



of private datasets for training, which makes it possible for the

aggregator to reversely infer sensitive information of the original

training data by analyzing intermediate results or gradient informa-

tion [66]. Second, in a distributed environment, malicious clients

can launch poisoning attacks to inject malicious or abnormal data

into the system and disrupt the training process. This will not only

affect the accuracy and performance of the global model after ag-

gregation but may also cause model failure and even bring greater

security threats. Some works use DP to protect models [20], but DP

always has a direct negative impact on model accuracy.

Secure aggregation of FL is a widely studied technology that pro-

tects the privacy and security of data and models and resists infer-

ence attacks and poisoning attacks from aggregators and malicious

clients. First, from the perspective of dataset privacy protection,

there are many techniques have been adopted in existing works

[40], including masking [5, 32, 37, 39, 57], Additively Homomorphic
Encryption (AHE) [28, 52], Fully Homomorphic Encryption (FHE)

[42], SS [29, 49], and some non-cryptographic methods [48, 51, 69].

Second, from the perspective of secure aggregation against mali-

cious client poisoning, methods such as cosine similarity, Euclidean

distance, Krum [8], root-dataset reference, and Hamming distance

are commonly used. Third, in terms of the number of aggregators,

most works are still aimed at single or two aggregators, and there

is still less work on multi-party aggregation.

8 Conclusion
In this work, we propose FLock, a robust and privacy-preserving

FL framework based on practical blockchain state channels. First,

FLock achieves robustness against poisoning attacks from mali-

cious clients through the proposed lightweight MPC-friendly robust

aggregation method with quantization and Hamming distance op-

timizations. Second, FLock achieves privacy protection and resists

inference attacks through our proposed multi-party secure aggre-

gation taking advantage of Shamir’s SS. Third, FLock is compatible

with practical blockchain platforms, such as Ethereum, through

multi-party state channels with PMSBFT consensus. Furthermore,

this work provides fair incentives according to the contributions

of participants by smart contracts. Moreover, we analyze the se-

curity of FLock. Evaluation results demonstrate our efficiency and

practicality.
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A Pipelined Multi-signature BFT Consensus
A.1 (𝑛, 𝑡)-aggregable multi-signatures
The aggregable signatures allow multiple independent signatures

to be aggregated into a single one and support batch verifica-

tion of the validity of all signatures. The aggregable signatures

aim to reduce data storage and computing resources, especially

in scenarios such as distributed systems and blockchains. There

are five algorithms involved in the aggregable signature scheme,

which is shown in Appendix A.1. We set the aggregable signature

to be (𝑛, 𝑡)-threshold and instantiate the (𝑛, 𝑡)-aggregable multi-

signature based on the BLS signature [10]. We illustrate the (𝑛, 𝑡)-
aggregable multi-signature in Figure 4.

A.2 The concrete protocol
The concrete PMSBFT protocol is described as follows.

• PMSBFT.Setup(1𝜅 )
- Initiate the signature list SIG :=⊥, vote list QC :=⊥, and commit

list QCΣ :=⊥.
• PMSBFT.Pre(msg) // Prepare phase
⊲ As a leader L: //Members P = {𝑃1, . . . , 𝑃𝑛 }

- Check if the current epoch 𝑒 has ended.

- If Valid(req𝑖 ) = 1:

(1) Construct msg𝑖 := (Proposal, req𝑖 ) .
(2) Broadcast (msg𝑖 , 𝑒, Σ𝑖−1,msg𝑖−1

) among P.
(3) Start the timer Δ.

- Else, discard req𝑖 .
⊲ As a non-leader member 𝑃 𝑗 (1 ≤ 𝑗 ≤ 𝑛)
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(𝑛, 𝑡 )-Aggregable Multi-Signature
• MulSetup(𝜆) → 𝑝𝑝 : // generate the required public parameters

- Initialize a bilinear group (𝑞,G1,G2,G𝑡 , 𝑒, 𝑔1, 𝑔2 ) ← G(𝜆) .
- Output the public parameter 𝑝𝑝 = (𝑞,G1,G2,G𝑡 , 𝑒, 𝑔1, 𝑔2 ) .

• MulKeyGen(𝑝𝑝 )→ (𝑝𝑘𝑖 , 𝑠𝑘𝑖 ) : // generate key pair for each participant

- Pick a 𝑠𝑘𝑖 ← Z𝑞 and compute 𝑝𝑘𝑖 ← 𝑔
𝑠𝑘𝑖
2

, 𝜌𝑖 ← H1 (𝑝𝑘𝑖 )𝑠𝑘𝑖 .
- Output (𝑝𝑘𝑖 , 𝑠𝑘𝑖 ) and a public key listP̄K = {𝑝𝑘1, . . . , 𝑝𝑘𝑛 }.

• MulSig(𝑝𝑝, 𝑠𝑘𝑖 ,𝑚)→ (𝛿𝑖 ,𝑚) : // generate a signature share for 𝑃𝑖
- Compute 𝛿𝑖 ← H0 (𝑚)𝑠𝑘𝑖 and output (𝛿𝑖 ,𝑚) .

• MulAgg(P̄K,𝑚, {𝛿 𝑗 , 𝑝𝑘 𝑗 } |𝑡 | ) → (Σ, 𝑐𝑝𝑘, 𝒗,𝑚) : // aggregate more than 𝑡 valid

signature shares into a single one, where 𝑡 is the threshold

- Initialize the signature share list
¯SIG← ∅.

- Verify if (𝑝𝑘 𝑗 ∈ P̄K)∧ (𝑒 (𝛿 𝑗 , 𝑔2 ) =𝑒 (H0 (𝑚), 𝑝𝑘 𝑗 ) ) for received 𝛿 𝑗 .
- If the equation holds, then add (𝛿 𝑗 , 𝑝𝑘 𝑗 ) into ¯SIG.
- If | ¯SIG | ≥ 𝑡 , then compute:

Σ←∏
{𝛿𝑗 | (𝛿𝑗 ,·) ∈ ¯SIG} 𝛿 𝑗 , 𝑐𝑝𝑘 ←

∏
{𝑝𝑘𝑗 | ( ·,𝑝𝑘𝑗 ) ∈ ¯SIG} 𝑝𝑘 𝑗 .

- Initiate a vector 𝒗, where 𝒗 [𝑖 ] = {0, 1}.
- Let 𝒗 [ 𝑗 ] indicate whether 𝑝𝑘 𝑗 is in ¯SIG and output (Σ, 𝑐𝑝𝑘, 𝒗,𝑚) .

• MulVer(P̄K, Σ, 𝑐𝑝𝑘, 𝒗,𝑚)→0/1: // verify the validity of an aggregation of many

signature shares at one time

- Verify whether 𝑐𝑝𝑘 =
∏
{ 𝑗 |𝒗 [ 𝑗 ]=1} P̄K[ 𝑗 ] holds.

- If the equation holds, then verify if 𝑒 (Σ, 𝑔2 ) = 𝑒 (H0 (𝑚), 𝑐𝑝𝑘 ) .
- If the equation does not hold, output 0. Otherwise, it outputs 1.

Figure 4: The (𝑛, 𝑡)-aggregable multi-signature scheme

- If received (msg𝑖 , 𝑒, Σ𝑖−1,msg𝑖−1
) such that

MulVer(Σ𝑖−1,msg𝑖−1
) = 1, then commit msg𝑖−1

and construct

msg.commit𝑒−1

𝑗
:= (Commit, 𝑒 − 1,msg𝑖−1

) .
- Else, discard Σ𝑖−1.

- If Valid(msg𝑖 ) = 1, generate 𝛿 𝑗 ← MulSig(𝑠𝑘 𝑗 ,msg𝑖 ) .
- Construct msg.vote𝑒

𝑗
:= (Vote, 𝑒, 𝛿 𝑗 ,msg𝑖 ) .

- Send (msg.vote𝑒
𝑗
,msg.commit𝑒−1

𝑗
) to the leader L.

• PMSBFT.Com(msg.vote𝑒
𝑗
,msg.commit𝑒−1

𝑗
) // Commit phase

- If received msg.vote𝑒
𝑗

= (Vote, 𝑒, 𝛿 𝑗 ,msg𝑖 ) from 𝑃 𝑗 , s.t.

Verify(𝛿 𝑗 ,msg𝑖 ) = 1, set ¯SIG := ¯SIG∪ {𝛿 𝑗 },QC := QC∪ {msg.vote𝑒
𝑗
}.

- Else, discard msg.vote𝑒
𝑗
.

- If |QC | ≥ 2𝑛/3 before Δ:
(1) Generate (Σ𝑖 ,msg𝑖 ) ← MulAgg({𝛿 𝑗 }𝛿 𝑗 ∈ ¯SIG,msg𝑖 ) .
(2) Set the state of msg𝑖 as msg𝑖 .𝑠𝑡 := prepared.

- If (Δ 𝑒𝑛𝑑𝑠 ) ∧ ( |QC | < 2𝑛/3) , reject and discard msg.vote𝑒
𝑗
.

- Upon msg.commit𝑒−1

𝑗
= (Commit, 𝑒 − 1,msg𝑖−1

) from 𝑃 𝑗 :

(1) QCΣ := QCΣ ∪ {msg.commit𝑒−1

𝑗
}.

(2) If |QCΣ | ≥ 2𝑛/3 before Δ, set msg𝑖−1
.𝑠𝑡 := committed.

(3) Start the timer of the next epoch.

A.3 Security definition of PMSBFT
The security of PMSBFT protocol is defined as follows.

Definition 1. Let ΠPMSBFT be a PMSBFT protocol under a par-
tially synchronous network. Let 𝛿PMSBFT ≤ Δ be the actual network
delay and TPMSBFT be the upper bound of 𝛿PMSBFT. ΠPMSBFT is said
to be secure if and only if the following properties hold.

• Safety: If any two honest participants 𝑃𝑖 and 𝑃 𝑗 output the com-
mit messages mag.commit𝑒 and mag.commit′𝑒 in same epoch 𝑒 ,
then there must be mag.commit𝑒 = mag.commit′𝑒 .
• Liveness: If there is a valid message req submitted by time 𝑡 , then
there must be a msg committed by all honest participants before
time 𝑡 + TPMSBFT.

Algorithm 1 Task Issue

Let Addr_Contract be the address of smart contract

Let 𝑅𝑒𝑞𝑖 be the statement of the task

Init: C𝑖 ← ∅
Init: exp𝑖 for task expiry time

1: ⊲ As task issuer 𝐼𝑖 :
2: Set the expected accuracy𝐴𝑐𝑐𝑖 � 0 < 𝐴𝑐𝑐𝑖 < 1

3: Create constraint parameters 𝑐1, . . . , 𝑐𝑚
4: Let C𝑖 := C𝑖 ∪ {𝑐1, . . . , 𝑐𝑚 }
5: Generate Tx𝑖 = (𝐵𝑖 ,Addr_Contract) � 𝐵𝑖 is the reward

6: Sign on Tx𝑖 : 𝜎𝑖 ← Sign𝑠𝑘𝑖 (Tx𝑖 )
7: Output 𝜏𝑖 =< 𝑅𝑒𝑞𝑖 , 𝐴𝑐𝑐𝑖 ,C𝑖 , 𝐵𝑖 , exp𝑖 > and Tx𝑖
8: ⊲ As a peer who executes smart contracts:
9: Upon receiving Tx𝑖 and 𝜏𝑖 do
10: Parse 𝜏𝑖 =< 𝑅𝑒𝑞𝑖 , 𝐴𝑐𝑐𝑖 ,C𝑖 , 𝐵𝑖 , exp𝑖 >
11: if SigVer(𝑝𝑘𝑖 , Tx𝑖 , 𝜎𝑖 ) = 1 then
12: if 𝜏𝑖 ∉ T then
13: T := T ∪ {𝜏𝑖 }
14: else discard 𝜏𝑖 and stop

B Task issue
The task issuer 𝐼𝑖 publishes the task on the chain. The format of a

task is 𝜏𝑖 =< 𝑅𝑒𝑞𝑖 , 𝐴𝑐𝑐𝑖 ,C𝑖 , 𝐵𝑖 , exp𝑖 >, where 𝑅𝑒𝑞𝑖 is the statement

of requirements for the task, 𝐴𝑐𝑐𝑖 is the expectation for the model,

e.g. accuracy, C𝑖 is a list of constraints to the final model, such as

specified algorithms, training data types, etc, 𝐵𝑖 is the bonus set

by the task issuer for the task. The bonus will be automatically

distributed by the smart contract to all contributor nodes participat-

ing in the training after the final model reaches the corresponding

accuracy requirements. If the task result that satisfies 𝐴𝑐𝑐𝑖 has not

been returned before exp𝑖 , the deposit will be returned to 𝐼𝑖 . By

setting the expiration time of the task, the funds of 𝐼𝑖 will be pre-

vented from being permanently locked in the contract. When the

block containing 𝜏𝑖 is uploaded on the chain, all other nodes in

the network can see the task and decide whether to participate in

training. All published tasks are added to a pending set T .

C More Evaluation Results
We provide the rest of the evaluation results here. We evaluate the

test accuracy on MNIST and compare it with FedAvg, Median, and

FLOD, which can be seen in Table 6. The aggregation performance

of 13 aggregators and 19 aggregators can be found in Table 5.

D Proof of Theorem 1
Proof. Firstly, The poisoning robustness of FLock is supported

by the bootstrapped gradients 𝒈 (𝑠 ) and the Hamming distance-

based scoring with weighted aggregation.

• Since the gradients are quantized into binary values {−1, +1},
𝒈 (𝑠 ) effectively represents the element-wise median of the client

gradients 𝒈 (𝑙 )
𝑙∈[𝑚] . According to Theorems 1-3 of [64], median-

based SGD ensures robustness in the presence of an honest ma-

jority under reasonable assumptions regarding the loss functions,

gradients, and parameter space [64].

• According to the analysis and results of FLOD [19], the Ham-

ming distance-based scoring and weighted aggregation method

further strengthens resistance to common poisoning attacks.



Table 5: Aggregation efficiency with communication cost (MB) and run time (s) of Lenet (62K) and Resnet (273K)

# Agg. Model # Client ΠBoostrap ΠHM Π𝜆Score ΠWA Total
Comm. Run-time Comm. Run-time Comm. Run-time Comm. Run-time Comm. Run-time

13

Lenet

10 200.997 4.024 45.785 0.743 0.032 0.018 4.578 0.105 251.392 4.890

50 200.998 4.026 228.923 3.844 0.162 0.024 4.578 0.105 434.661 7.999

100 201.001 4.028 457.846 7.537 0.324 0.030 4.578 0.105 663.750 11.700

Resnet

10 885.027 18.377 201.6 3.281 0.032 0.018 20.16 0.664 1106.819 22.339

50 885.028 18.407 1008.0 15.196 0.162 0.024 20.16 0.664 1913.350 34.291

100 885.031 18.419 2016.0 31.080 0.324 0.030 20.16 0.664 2921.516 50.193

19

Lenet

10 301.442 6.131 68.135 1.211 0.049 0.025 6.813 0.228 376.438 7.596

50 301.442 6.136 340.673 6.170 0.243 0.028 6.813 0.228 649.172 12.562

100 301.448 6.340 681.347 12.439 0.486 0.031 6.813 0.228 990.095 19.038

Resnet

10 1327.305 28.469 300.012 4.943 0.049 0.025 30.001 1.006 1657.366 34.444

50 1327.305 28.590 1500.06 24.572 0.243 0.028 30.001 1.006 2857.610 54.197

100 1327.311 28.613 3000.12 49.497 0.486 0.031 30.001 1.006 4357.918 79.148

Table 6: Accuracy of LeNet over dataset MNIST.

𝛿 10% 20% 30% 40%

FedAvg [41] 0.1135 0.1135 0.1135 0.1135

Median [64] 0.9895 0.9786 0.9490 0.8807

FLOD [19] 0.9930 0.9938 0.9935 0.9928

FLock 0.9998 0.9972 0.9494 0.9122

Thus, our aggregation strategy ensures the poisoning robustness.

Moreover, the poisoning robustness is empirically validated in our

experiments (see § 6).

Secondly, we prove the security of ΠBoostrap, ΠHM, Π𝜆Score, and
ΠWA described in § 4.3.1-§ 4.3.4.

• In ΠBoostrap, the security is fully based on the Shamir secret

sharing scheme and LT, except that we remove the degree reduc-

tion with local computation of ⟨𝒄𝑙 ⟩2𝑡 and ⟨𝜎 (ℓ ) ⟩2𝑡 , along with

the opening of 𝜎 (𝑙 ) in the Test-then-Open phase. Since we only

change the order of these computations, the modification itself

only involves some local computation and thus does not affect

security.

• InΠHM, the security is fully based on the Shamir secret sharing

scheme, except that we exploit a Sum-then-DegReduce technique to
optimize the communication. In Sum-then-DegReduce, we change
the order of addition and multiplication, which has no affect the

security as well.

• In Π𝜆Score, the security is fully based on the Shamir secret shar-

ing scheme since the protocol only involves some secret sharing

multiplications and comparisons.

• In ΠWA, the security is fully based on the Shamir secret sharing

scheme, except that we make the sum of the scoresV public and

exploit a Sum-then-DegReduce technique. As mentioned before,

Sum-then-DegReduce does not affect security. The sum of the

scores V does not reveal the concrete score and gradients of

each honest client. With the communication and computation

improvements, it is a reasonable trade-off between efficiency and

privacy.

Third, we prove the security of PMSBFT.

Theorem 2. ΠPMSBFT satisfies safety described in Definition 1 un-
der a partially synchronous network with 𝛿PMSBFT ≤ Δ and corrupted
participants 𝑓 < 𝑛/3.

Proof. We consider the normal process with a stable leader. For

any epoch 𝑒 , there should be only one valid aggregated signature, s.t.

MulVer(Σ) = 1. The unforgeability of the signature is guaranteed

by the BLS signature scheme [10]. A valid aggregated signature Σ is

output means that at least 2𝑓 +1 participants constructed the voting

message msg.vote𝑒 . If there are two different valid aggregated sig-

natures Σ and Σ′ with respect to mag.commit𝑒 and mag.commit′𝑒

within epoch 𝑒 , then at least 2 · (2𝑓 +1)−𝑛 = 𝑓 +1 participants voted

for both Σ and Σ′. Honest participants will only vote on onemessage

in the same epoch, and the adversary A can corrupt at most 𝑓 par-

ticipants. Thus, there will only be one valid commit message in the

same epoch 𝑒 , i.e. Σ = Σ′ and mag.commit𝑒 = mag.commit′𝑒 . □

Theorem 3. ΠPMSBFT satisfies liveness described in Definition
1 under a partially synchronous network with 𝛿PMSBFT ≤ Δ and
corrupted participants 𝑓 < 𝑛/3.

Proof. Similarly, we consider the normal process with a stable

leader. For any epoch 𝑒 , a valid request message req sent by time 𝑡

will be processed within a time period. That is, there will be at least

2𝑓 + 1 honest participants who vote for msg = (Proposal, req)
and construct vote.msg𝑒 = (Vote, 𝑒, 𝛿,msg) before the end of the

current epoch 𝑒 . Then the leader L constructs an aggregated sig-

nature Σ← MulAgg({𝛿} |2𝑓 +1 | ) with 2𝑓 + 1 valid signature shares.

The participants receive the new proposal before 𝑡 + 𝛿PMSBFT and

verify the validity of Σ𝑒−1
by MulVer(Σ𝑒−1) = 0/1. Then the pro-

posal of msg will be processed into the next phase since it has

been approved by 2𝑓 + 1 participants. Leader L receives at least

2𝑓 + 1 votes at time 𝑡 + 2𝛿PMSBFT. Then L constructs the aggregate

signature and changes the state of the message into the next phase.

All participants receive the Σ𝑒 at time 𝑡 + 3𝛿PMSBFT. Then they

verify the aggregated signature and construct the commit messages

msg.commit𝑒 . Leader L receivesmsg.commit𝑒 from at least 2𝑓 + 1

participants at time 𝑡 + 4𝛿PMSBFT. Finally, the state of messagemsg
will be set to msg.𝑠𝑡 := 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑 at time 𝑡 + 5𝛿PMSBFT.

Therefore, a valid message req submitted by time 𝑡 must be

committed by all honest participants before time 𝑡 + TPMSBFT with

TPMSBFT = 5𝛿PMSBFT. □

Thus, we complete the security analysis of FLock. □
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