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Abstract. In 2020, Castryck-Decru-Smith constructed a hash function
using the (2, 2)-isogeny graph of superspecial principally polarized abelian
surfaces. In their construction, the initial surface was chosen from vertices
quite “close” to the square of a supersingular elliptic curve with a known
endomorphism ring. In this paper, we propose an algorithm for recovering
a collision on their hash function. Under some heuristic assumptions, the
time complexity and space complexity of our algorithm are estimated to
be Õ(p3/10) which is smaller than the complexity Õ(p3/2) the authors had
claimed necessary to recover such a collision, where p is the characteristic
of the base field. In particular case where p has a special form, then both
the time and space complexities of our algorithm are polynomial in log p.
We implemented our algorithm in MAGMA, and succeeded in recovering
a collision in 17 hours (using 64 parallel computations) under a parameter
setting the authors had claimed to be 384-bit secure. Finally, we propose
a simple countermeasure against our attack, which is expected to restore
the complexity required to recover a collision to Õ(p) currently.

Keywords: Hash function · Isogeny-based cryptography · Superspecial
abelian surface · Kani’s lemma

1 Introduction

Many authors have been investigating isogeny-based cryptosystems as one of the
candidates for post-quantum cryptography. In recent years, some isogeny-based
public key encryption and signature schemes utilizing not only isogenies between
elliptic curves but also ones between abelian surfaces have been proposed such as
(Q)FESTA [3,33], SCALLOP-HD [9], and SQIsign2D [2,34,14]. Specifically, these
schemes use Kani’s lemma [26] to compute non-smooth degree isogenies between
supersingular elliptic curves.

On the other hand, there are several studies on cryptographic hash functions
using isogenies. One example is the hash function introduced by Charles, Lauter,
and Goren [8], which is called CGL hash function. In its construction, they used
the ℓ-isogeny graphs of supersingular elliptic curves over Fp with a prime ℓ ̸= p.
The choice of the initial curve Estart in the CGL hash function is very important:
if the endomorphism ring of Estart is known, collisions can be found in polynomial
time (cf. [15]). In the case where Estart is properly chosen, the collision resistance
of the CGL hash function is considered to have the same security as its pre-image
resistance, which is solved in time complexity Õ(p1/2) and a polynomial memory
(see [16, §6.2]). We refer to [1] for how to generate the secure initial curve.
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Takashima [36] proposed a 2-dimensional version of the CGL hash function by
using the entire (2, 2)-isogeny graph of superspecial principally polarized abelian
surfaces defined over Fp. However, it was later pointed out by Flynn-Ti [19] that
this graph has many short cycles, which unfortunately indicates that Takashima’s
hash function is not collision-resistant. Castryck, Decru, and Smith [7] improved
it by imposing a restriction on the edges, and they proposed a new hash function
(we will call it CDS hash function hereafter).

The initial surface A0 in their hash function is determined via a deterministic
short path from E0×E0 where E0 is a supersingular elliptic curve with a known
endomorphism ring (see Section 3.2 for its specific construction) unlike the CGL
hash function. Nevertheless, it is believed that breaking the security of the CDS
hash function is hard. To be specific, the authors claimed in [7, Section 7.4] that
the collision resistance of the CDS hash function has the same levels of security
as its pre-image resistance, which are solved in complexity Õ(p3/2). We note that
a message causing an error can be found in time complexity Õ(p) and polynomial
space complexity, as pointed out by Costello-Smith [11, Section 6], but this does
not immediately result in a collision (see Remark 3.2 for details).

In this paper, we propose a collision attack for the CDS hash function, which
is more efficient than the existing attacks:
Theorem 1.1. Under either the heuristics in [20, Lemma 3] or the Generalized
Riemann Hypothesis (GRH) together with Assumptions 5.1 and 5.2, there exists
an algorithm for recovering a collision on the CDS hash function, with time and
space complexities Õ(p3/10) where p is the characteristic of the base field.

The key point of our algorithm is generating a (2e, 2e)-isogeny A0→ E1×E2 for
an integer 2e ≈ p log p where E1 and E2 are elliptic curves. For this purpose, we
use Kani’s lemma (Theorem 2.2). All the vertices adjacent to the product of two
elliptic curves induce a multiple edge, and hence such an isogeny A0 → E1×E2

causes a desired collision as shown in Corollary 2.1.
The complexity of our algorithm depends on the size of the field of definition

of the 2e-torsion points in the supersingular elliptic curve E0 : v
2 = u3+1 whose

j-invariant is 0. In particular, for the characteristic p such that E0[2
e]⊂E0(Fpk)

with k = O(1), we show that our collision attack is a polynomial-time and space
algorithm in Corollary 5.1. In fact, for such a 128-bit (resp. 256-bit) prime p, we
succeeded in recovering a desired collision on the CDS hash function within 3.02
hours (resp. 16.74 hours) through 64 parallel computations. For details of these
experimental results, see Section 6.

The rest of this paper is structured as follows: we begin by reviewing several
mathematical knowledge in Section 2, and the specific construction of the CDS
hash function in Section 3. In Section 4, we introduce an algorithm to recover a
collision on the CDS hash function. In Section 5, we estimate the time and space
complexities of our collision attack, and give a countermeasure against this. We
describe the computational results found by executing our collision attack using
Magma Algebra System [5] in Section 6. Finally, we summarize our results and
we briefly state future works in Section 7.
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2 Preliminaries

In this section, we summarize some mathematical background which will be used
in the later sections. All curves and abelian varieties in this section are assumed
to be defined over a field of characteristic p > 3.

2.1 Deuring correspondence

An elliptic curve is a (projective) curve E of genus 1 with the base point O ∈ E.
As is well known, the set of points on an elliptic curve E forms an abelian group
with its base point O as the identity. An isogeny of elliptic curves is a surjective
homomorphism between elliptic curves whose kernel is finite. The set End(E) of
all the isogenies from an elliptic curve E into itself together with the trivial map
is a ring, which is called the endomorphism ring of E. The structure of End(E)
varies significantly depending on whether E is supersingular or not:

Definition 2.1. An elliptic curve E is said to be supersingular if E does not
have any point of order p.

In the following, we consider the case where p ≡ 5 (mod 6). Then, the endo-
morphism ring of a supersingular elliptic curve defined over Fp2 is isomorphic to
a maximal order of the quaternion algebra

Bp,∞ := Q+Qi+Qj+Qk, where i2 = −3, j2 = −p, k = ij = −ji

ramified exactly at p and ∞. For α = x+ yi+ zj+wk ∈ Bp,∞, its reduced norm
equals to n(α) := αα = x2 + 3y2 + p(z2 + 3w2) ∈ Q.
Example 2.1. It is well-known (cf. [35, Example V.4.4]) that the elliptic curve

E0 : v
2 = u3 + 1, with j-invariant = 0

is supersingular if and only if p ≡ 5 (mod 6). The endomorphism ring End(E0)
is isomorphic to a maximal order

O0 := Z+ Z 1+ i

2
+ Z j+k

2
+ Z i+k

3

of the quaternion algebra Bp,∞.

Deuring [13] gave a correspondence between a supersingular elliptic curve E
defined over Fp2 and a maximal order O of the quaternion algebra Bp,∞. Under
this correspondence, a left O-ideal I corresponds to the isogeny φI with kernel⋂

α∈I
kerα = {P ∈ E | α(P ) = 0 for all α ∈ I}

whose degree equals to n(I) := gcd({n(α) | α ∈ I}).

Supersingular elliptic curves Quaternions
an endomophism ∈ End(E) a quaternion ∈ O
an isogeny φI : E → E′ a left O-ideal and right O′-ideal I
the degree of φI : E → E′ the (reduced) norm of I

Table 1. Deuring correspondence
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Algorithm 1 RepresentInteger
Input: An integer N > p
Output: A random endomorphism α ∈ Z+ Zi+ Zj+ Zk whose degree equals to N

1: Sample random integers z, w such that p(z2 + 3w2) ≤ N

2: Let m← N − p(z2 + 3w2) and find its 100-smooth part m′ using trial division
3: if m/m′ is not prime or Cornacchia(3,m) = ⊥ then
4: Go back to Step 1
5: end if
6: Let (x, y)← Cornacchia(3,m)
7: return the endomorphism α = x+yi+zj+wk with the notations in Example 2.1

Table 1 shows a summary of this correspondence. In addition, the codomains of
the isogenies corresponding to left O-ideals I and J are isomorphic to each other
if and only if there exists α ∈ (Bp,∞)× such that I = Jα. Such ideals I and J are
called equivalent, and denoted by I ∼ J .

2.2 Existing algorithms on quaternions

In this subsection, we review the existing two algorithms on quaternions, which
will be used in later sections. We continue to suppose p ≡ 5 (mod 6), and fix an
isomorphism End(E0) ∼= O0 as described in Example 2.1.

Firstly, we recall RepresentInteger proposed by Kohel-Lauter-Petit-Tignol [27].
It takes an integer N > p as input, and outputs an endomorphism of the form

α = x+ yi+ zj+ wk ∈ End(E0), with x, y, z, w ∈ Z (2.1)

whose degree is equal to N . For the reader’s convenience, we give a pseudocode
of RepresentInteger in Algorithm 1. We denote by Cornacchia(d,m) an algorithm
which returns a pair (x, y) of integers satisfying x2 + dy2 = m if it exists, or ⊥
otherwise (cf. [10, Algorithm 1.5.2]) provided we know the factorization of m.
Remark 2.1. In general, the factorization of an integer requires sub-exponential
time in the size of the input. Hence, we run Cornacchia(3,m) only for integers m
which can be written as the product of a smooth integer m′ > 0 and a prime in
line 3 of Algorithm 1. This makes Algorithm 1 a polynomial-time algorithm, but
as the trade-off, some endomorphisms may fail to output. By the Prime Number
Theory (e.g. [12, Theorem 1.1.4]), we can assume that at least 1/ logN of all the
endomorphisms in Z+ Zi+ Zj+ Zk whose degree = N could be the outputs of
Algorithm 1, as in the discussion in [33, §2.3].

Next, we consider algorithms for computing the codomain of an isogeny cor-
responding to a given left O0-ideal I. For this, we find a left O0-ideal J ∼ I such
that the reduced norm of J is power-smooth (i.e. written as ℓ1e1ℓ2e2 · · · ℓrer with
small primes ℓi and integers ei > 0). The isogeny φJ corresponding to J can be
decomposed into

φJ = φr ◦ · · · ◦ φ2 ◦ φ1, with degφi = ℓi
ei ,

and then the desired output is obtained by computing its codomain.
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By assuming some heuristics or the Generalized Riemann Hypothesis (GRH),
the complexity of the above algorithm can be estimated as follows:
Lemma 2.1. Let I be a left O0-ideal such that log(n(I)) = O(log p). Then, there
exists an algorithm for computing the isogeny φI corresponding to I, in expected
polynomial time in log p under the heuristics in [20, Lemma 3] or the GRH.
Proof. First, we assume the heuristics in [20, Lemma 3]. This implies that there
exists the algorithm which takes I as input, outputs a left O0-ideal J equivalent
to I of ( 7

2 +o(1)) log p-powersmooth norm, and runs in polynomial time in log p.
Second, we assume the GRH instead. Then [38, Theorem 6.4] implies that there
exists the algorithm which takes I as input, outputs a left O0-ideal J equivalent
to I of (log p)c -powersmooth norm where c ∈ Z is independent of p, and runs in
polynomial rime in log p.

In any case, we have a left O0-ideal J equivalent to I whose reduced norm is
bounded by a polynomial in log p. Then, it follows from [20, Lemma 4] that the
isogeny φJ can be computed in expected polynomial time in log p. ⊓⊔

We will refer to the above algorithms in Lemma 2.1 as IdealToIsogeny(I) without
distinguishing between them (implicitly choosing one or the other)⋆.

2.3 Abelian varieties and their isogenies

An abelian variety is a projective algebraic variety which is also a group variety.
The dimension of an abelian variety is its dimension as an algebraic variety. For
two abelian varieties A1 and A2 of dimensions g1 and g2, the product A1×A2 is
an abelian variety of dimension g1 + g2. Another example of abelian varieties is
the Jacobian variety of a curve:
Definition 2.2. Let g be a positive integer. The divisor classes of degree 0 over
a genus-g curve C form an abelian variety of dimension g. This abelian variety
is called the Jacobian variety of C, and denoted by Jac(C).

Torelli’s theorem (cf. [32, Corollary 12.2]) tells us that if the Jacobian varieties of
two genus-g curves are isomorphic to each other (as principally polarized abelian
varieties), then so are the underlying curves.

For an abelian variety A of dimension g and an integer ℓ > 0, we define

A[ℓ] := {P ∈ A | [ℓ]P = 0A},

called the ℓ-torsion subgroup of A.
Definition 2.3. An (ℓ, . . . , ℓ)-subgroup of A[ℓ] is a maximal subgroup of A[ℓ]
on which the ℓ-Weil pairing is trivial.

The number of (ℓ, . . . , ℓ)-subgroups of A[ℓ] is known (cf. [11, Lemma 2]) to be

Ng(ℓ) :=

g∏
k=1

(ℓk + 1). (2.2)

⋆ Recently, it is reported by [30, Theorem 6.2] that we can compute φI corresponding
to I in expected polynomial time in log p, assuming access to a factoring oracle.
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As in the case of elliptic curves, a surjective homomorphism between abelian
varieties which has a finite kernel is said to be an isogeny of abelian varieties. In
particular, we will consider the following type of isogenies:

Definition 2.4. An isogeny A→ B of abelian varieties is called an (ℓ, . . . , ℓ)-
isogeny if its kernel is an (ℓ, . . . , ℓ)-subgroup of A[ℓ].

Abelian varieties A and B are called isogenous if there exists an isogeny A→ B.
All the dimensions of isogenous abelian varieties are the same. Isogenies A→ B
with the same kernel are equivalent up to an automorphism of B, and therefore
they are identified (in particular, the codomains of isogenies with the same kernel
are isomorphic to each other). Then, we will denote the codomain of an isogeny
with a domain A and a kernel G as A/G.

Definition 2.5. Let ϕ1 : A0 → A1 and ϕ2 : A1 → A2 be two (ℓ, . . . , ℓ)-isogenies
of abelian varieties.

– If kerϕ2 = ϕ1(A0[ℓ]) holds, then ϕ2 is called the dual extension of ϕ1.
– If kerϕ2 ∩ ϕ1(A0[ℓ]) = 0 holds, then ϕ2 is called a good extension of ϕ1.
– Otherwise ϕ2 is called a bad extension of ϕ1.

Given an (ℓ, . . . , ℓ)-isogeny ϕ1 : A0 → A1 of abelian varieties of dimension g, the
number of its good extensions is known (e.g. [6, Lemma 2]) to be ℓg(g+1)/2. For
an integer n > 0, any (ℓn, . . . , ℓn)-isogeny ϕ : A→ B can be decomposed into

A = A0 A1 A2 · · · An−1 An = B,
ϕ0 ϕ1 ϕn−1

where ϕi is a good extension of ϕi−1 for all i ∈ {1, . . . , n}.

We are interested in superspecial abelian varieties, which are generalizations
of supersingular elliptic curves:

Definition 2.6. An abelian variety A is said to be superspecial when A is iso-
morphic to the product of supersingular elliptic curves (without polarizations).

The number of isomorphism classes of superspecial principally polarized abelian
varieties over Fp of dimension g is known (cf. [17, p. 159]) to be O(pg(g+1)/2). In
addition, a curve C is also said to be superspecial if the Jacobian variety of C is
a superspecial abelian variety.

Definition 2.7. For an integer g and a prime ℓ ̸= p, the superspecial isogeny
graph Gg(ℓ, p) is defined as

– The vertices are all isomorphism classes of superspecial principally polarized
abelian varieties of dimension g.

– The edges are all (ℓ, . . . , ℓ)-isogenies between two vertices, by identifying two
isogenies with the same kernel as the same edge.

One can see that Gg(ℓ, p) is an Ng(ℓ)-regular multigraph, where Ng(ℓ) is defined
in (2.2). In addition, the following important fact is known:

Theorem 2.1. The graph Gg(ℓ, p) is connected for all g ≥ 1 and ℓ ̸= p.

Proof. See [31, p. 223] for g = 1 and [25, Theorem 34] for g > 1. ⊓⊔
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2.4 Kani’s lemma

In this paper, we will mainly focus on abelian surfaces, that is, abelian varieties
of dimension 2. Any principally polarized abelian surface is isomorphic to either

(i) the product of two elliptic curves, or
(ii) the Jacobian variety of a (hyperelliptic) genus-2 curve.

In particular, the latter is often called a simple abelian surface. It is well-known
(cf. [35, TheoremV.4.1]) that the number of isomorphism classes of supersingular
elliptic curves is p/12+O(1), and then there exist about (p/12)2×1/2 = p2/288
non-simple superspecial abelian surfaces up to isomorphism. On the other hand,
Ibukiyama-Katsura-Oort [22, Theorem 3.3] shows that there exist

p3 + 24p2 + 141p

2880
+O(1)

simple superspecial abelian surfaces, up to isomorphism.

From the above discussion, the number of vertices in G2(ℓ, p) is about p3/2880,
and among them, approximately 10/p of the total is decomposed into a product
of elliptic curves. This implies that it is “rare” to reach such a vertex when doing
a random walk on G2(ℓ, p) for large p. Nevertheless, we can generate a path from
the product vertex of two supersingular elliptic curves to another product vertex
in the graph G2(ℓ, p) by using Kani’s lemma: let E0, E1, E2, E3 be elliptic curves
connected by the following commutative diagram

E0 E2

E1 E3

φ2

φ1
f

ψ1

ψ2

where φ1, ψ1 are N1-isogenies and φ2, ψ2 are N2-isogenies with gcd(N1, N2) = 1.
In this setting, the following result (based on Kani’s paper [26]) is known.

Theorem 2.2 ([29, Theorem 1]). With the notations above, the isogeny

Φ =

(
φ1 −ψ̂2

φ2 ψ̂1

)
: E0 ×E3 → E1 ×E2

is an (N1+N2, N1+N2)-isogeny with the set {([N1]P, f(P )) | P ∈ E0[N1+N2]}
as its kernel.

If we are given an isogeny f : E0 → E3 of degree = N1N2 such that N1+N2 = ℓn

and gcd(N1, N2) = 1, then the codomain of the isogeny Φ starting from E0×E3

which has a kernel
{([N1]P, f(P )) | P ∈ E0[ℓ

n]}

decomposes into the product of two elliptic curves by Theorem 2.2. In a partic-
ular case where both E0 and E3 are supersingular, the isogeny Φ constructed in
this way provides a path from E0×E3 to another product in the graph G2(ℓ, p),
as desired.
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2.5 Vertices around the product of two elliptic curves

Florit-Smith [18] studied the structure of the superspecial isogeny graph G2(2, p).
In this subsection, let us briefly review some of their results.

Definition 2.8. The reduced automorphism group of an abelian surface A
is defined to be

RA(A) := Aut(A)/⟨[−1]⟩

where [−1] denotes the multiplication-by-(−1) map.

We use the following three “types” notations for the classes of vertices in G2(2, p)
borrowed from [4, §2] and [18, §3].
– Type-A: a genus-2 Jacobian with trivial reduced automorphism group.
– Type-I : a genus-2 Jacobian with reduced automorphism group ∼= Z/2Z.
– Type-

∏
: an elliptic product with reduced automorphism group ∼= Z/2Z.

Remark 2.2. In other words, a Type-
∏

vertex is written as E ×E′ with E ̸∼= E′,
where the j-invariants of E and E′ are neither 0 nor 1728.

Recall from [18, Figure 5] that the neighbourhoods of Type-
∏

and Type-I vertices
are illustrated as follows:

∏ ∏
∏I

I
∏∏∏

I

I ∏ ∏ ∏
I

I

∏ I
∏

I

I
I

A

A

A

A

I
I

I

2
2

2
2

Fig. 1. Neighbourhoods of the general Type-
∏

and Type-I vertices

In Fig. 1, the solid vertices have definite types, while the dotted vertices have an
indicative type. In short, the reduced automorphism group of each dotted vertex
could be larger (but this occurs with a negligible probability for large p).

Remark 2.3. It follows from [22, Theorem 3.3] or [18, Table 3] that

(the number of all the Type-A vertices) =
p3 − 36p2 + 381p

2880
+O(1),

(the number of all the Type-I vertices) =
p2 − 18p

48
+O(1).

On the other hand, the number of all the vertices whose reduced automorphism
group ⊋ Z/2Z is given as 7p/24 +O(1).
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Each Type-I vertex is isomorphic to the Jacobian variety of a genus-2 curve

CI : v
2 = (u2 − 1)(u2 − λ)(u2 − µ)

with λ, µ ̸= 0, 1 and λ ̸= µ. This curve has an automorphism σ : (u, v)→ (−u, v)
of order 2, and the induced automorphism of JI := Jac(CI) will be also denoted
by σ (though this is an abuse of the notation). For a (2, 2)-subgroup G of JI [2],
we have the commutative diagram

JI JI/G

JI JI/σ(G)

σ ∼=

since σ(G) is also a (2, 2)-subgroup of JI [2]. In particular case where G = σ(G),
one can see that σ induces an order-2 automorphism of JI/G distinct from [−1].
This shows us that JI/G is a Type-A vertex only if G ̸= σ(G). For our purpose,
we show the following statements:
Proposition 2.1. Under the notations above, let G be a (2, 2)-subgroup of JI [2]
such that G ̸= σ(G). Then, we have that G ∩ σ(G) = {0}.
Proof. All the 2-torsion points of JI is written as Di,j := [Pi]− [Pj ] with i < j,
where we write

P1 = (1, 0), P2 = (
√
λ, 0), P3 = (

√
µ, 0)

P4 = (−1, 0), P5 = (−
√
λ, 0), P6 = (−

√
µ, 0).

It follows from (2.2) that there exist 15 distinct (2, 2)-subgroups G of JI [2], but
only 8 of them satisfy G ̸= σ(G) as follows:

K8 := {0, D1,5, D2,6, D3,4}, K9 := {0, D1,6, D2,4, D3,5},
K10 := {0, D1,3, D2,4, D5,6}, K11 := {0, D1,5, D2,3, D4,6},
K12 := {0, D1,6, D2,3, D4,5}, K13 := {0, D1,2, D3,4, D5,6},
K14 := {0, D1,3, D2,6, D4,5}, K15 := {0, D1,2, D3,5, D4,6}.

We remark that σ(K8) = K9, σ(K10) = K11, σ(K12) = K13, and σ(K14) = K15

(the notations are consistent with [18, §4.5]). Then, for each G ∈ {K8, . . . ,K15},
one can check that G ∩ σ(G) = {0} by a straightforward computation. ⊓⊔
Corollary 2.1. Let γ : JA → JI be an edge in G2(2, p) from a Type-A vertex to
a Type-I vertex. Then, there exists a good extension γ′ : JI → JA of γ.

Proof. Let γ̂ : JI → JA be the dual extension of γ, and we write its kernel as G.
By the definition of the dual extension, we obtain that G = γ(JA[2]). Moreover,
since JI/G = JA is a Type-A vertex, the condition G ̸= σ(G) holds. Hence, there
exists the other (2, 2)-isogeny γ′ : JI → JA with setting its kernel to σ(G). Then,
it follows from Proposition 2.1 that

ker γ′ ∩ γ(JA[2]) = σ(G) ∩ G = {0},

which shows that γ′ is a good extension of γ, as desired. ⊓⊔



10 Ryo Ohashi and Hiroshi Onuki

3 Castryck-Decru-Smith’s hash function

In this section, we review the construction of a cryptographic hash function which
was proposed by Castryck-Decru-Smith [7] (see Algorithm 2 for its pseudocode).
We also discuss the original security of their hash function in Section 3.3.

3.1 Construction

In isogeny-based cryptography, the most famous hash function would be the one
by Charles, Lauter, and Goren [8]. Their hash function, often referred to as “CGL
hash function”, is constructed by using the graph G1(ℓ, p). Castryck, Decru, and
Smith [7] introduced a variant of the CGL hash function using the graph G2(2, p)
instead. Let us review the construction of their function (we call this “CDS hash
function” for simplicity).
Set-up We fix an initial (2, 2)-isogeny ϕ0 : A−1 → A0 between two superspecial

principally polarized abelian surfaces (we explain later how to choose this).
Express a message m ∈ {0, 1}∗ as mn · · ·m2m1 in octal with mi ∈ {0, . . . , 7}.

Walking There are 8 good extensions of ϕ0, and we label them ϕ0
(0), . . . , ϕ0

(7)

in a deterministic order. Then, define the next isogeny ϕ1 = ϕ0
(m1) : A0 → A1

and let ϕ1(0), . . . , ϕ1(7) be its 8 good extensions. Next, by setting ϕ2 = ϕ1
(m2),

repeat this procedure until the last isogeny ϕn : An−1 → An is obtained.
Output The last vertex An must be isomorphic to the Jacobian variety of some

genus-2 curve Cn with a very high probability. Then, we output the absolute
Igusa invariants (j1, j2, j3) of Cn (see [23] for invariants). We note that j1, j2,
and j3 all belong to Fp2, since superspecial Cn has a model defined over Fp2.

In the construction of the CDS hash function, we explain why we must choose
next isogenies from the 8 good extensions rather than all the 15 edges in G2(2, p).
Let ϕi : Ai−1 → Ai be a (2, 2)-isogeny between superspecial principally polarized
abelian surfaces. If the dual extension of ϕi were chosen as the next isogeny ϕi+1,
then we have the diagram in the left of Fig. 2 which leads to a cycle of length 2.
Furthermore, if a bad extension of ϕi were chosen as the next isogeny ϕi+1, then
we have the diagram in the right of Fig. 2 which leads to a cycle of length 4.

Ai−1 Ai

ϕi

ϕi+1

Ai−1 Ai Ai+1

ϕi ϕi+1

Fig. 2. Dual extension and bad extensions

The existence of such a trivial cycle can easily break the collision resistance of a
hash function, and thus this is why we are only allowed choose a good extension
of ϕi as the next isogeny.
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Algorithm 2 CDSd
Input: A message m ∈ {0, 1}∗
Output: The hash value of m, or ⊥ (failure)
1: Let ϕ−d : E0×E0 → A−d be the (2, 2)-isogeny defined as in Section 3.2
2: Add 3d zeros from the right to m, and write it as mn · · ·m1m0 · · ·m−d+1 in octal
3: for i = −d+1, . . . , 0, 1, . . . , n do
4: Let ϕi : Ai−1 → Ai be the mi-th good extension of ϕi−1 in the graph G2(2, p)
5: if the codomain Ai is isomorphic to a product of elliptic curves then
6: return ⊥
7: end if
8: end for
9: return the absolute Igusa invariants of the underlying genus-2 curve of An

3.2 Choice of initial isogeny

How to choose the initial (2, 2)-isogeny ϕ0 : A−1 → A0 is an important problem,
just as with the CGL hash function. Let us review the choice of ϕ0 in the original
paper: we suppose that p ≡ 5 (mod 6), then E0 : v

2 = u3 + 1 is a supersingular
elliptic curve over Fp2 as stated in Example 2.1. One can check that

G0 := {(O0, O0), (P0, P0), (Q0, R0), (R0, Q0)},
with P0 := (−1, 0), Q0 := (1 + ω, 0), R0 := (−ω, 0) ∈E0

is one of the (2, 2)-subgroups of (E0×E0)[2] where ω is a primitive cube root of
unity. The codomain of the (2, 2)-isogeny ϕstart with the kernel G0 is isomorphic
to the Jacobian variety of the superspecial genus-2 curve

v2 = u(u− 1)(u+ 1)(u− 2)(u− 1/2).

Although we would like to set ϕstart as the initial isogeny, it is known [18, §4.13]
that among the 8 good extensions of ϕstart, they have only 3 distinct codomains
up to isomorphism, which leads to a trivial collision.

To fix this defect, Castryck-Decru-Smith claimed in [7, §7.3] that all we have
to do is pad the input m ∈ {0, 1}∗ with 30 zeros from the right. In the following,
we generalize their setting by padding the input m with 3d zeros for fixed d ∈ N.
In other words, we consider the deterministic chain of good extensions

E0×E0 A−d A−d+1 · · · A−1 A0,
ϕ−d ϕ−d+1 ϕ0 (3.1)

with setting ϕ−d := ϕstart, ϕi := ϕi−1
(0) for each i ∈ {−d+1, . . . , 0}, and finally

define ϕ0 : A−1 → A0 to be the initial isogeny. For the reader’s convenience, we
give a pseudocode of (generalized) CDS hash functions in Algorithm 2. Remark
that CDS10 is the original CDS hash function itself.

Remark 3.1. In Castryck-Decru-Smith’s original settings, their function returns
an error if we pass through a vertex corresponding to the product of two elliptic
curves while walking on the graph (the probability of this happening is negligible
for sufficiently large p, as mentioned in the middle of Section 2.4). The authors
also presented two alternatives against this in [7, §7.2].
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3.3 Original estimate of security

With the same notation in Section 3.1, the pre-image resistance and the collision
resistance of the CDS hash function are equivalent to the following mathematical
problems, respectively:
Problem 3.1 (Pre-image problem). Given a superspecial genus-2 curve C, find a
path of good extensions

A−1 A0 A1 · · · An−1 Jac(C)
ϕ0

in the graph G2(2, p), where all Ai are simple abelian surfaces.

Problem 3.2 (Collision problem). Find a superspecial genus-2 curve C and two
distinct paths of good extensions

A−1 A0 A1 · · · An−1 Jac(C)
ϕ0

and
A−1 A0 B1 · · · BN−1 Jac(C)

ϕ0

in the graph G2(2, p), where all Ai and Bi are simple abelian surfaces.

In the original paper [7, §7.4], the authors claimed that the time complexity
and space complexity needed for solving the above problems are Õ(p3/2). Indeed,
there are 8n codomains of all the (2n, 2n)-isogenies starting from A0 and the size
of G2(2, p) is asymptotically O(p3), and therefore we can expect that there exists
a (2n, 2n)-isogeny A0 → Jac(C) for n such that 8n ≈ p3. Such an isogeny can be
computed in time and space complexities Õ(p3/2), using the meet-in-the-middle
algorithm since we need to compute and store O(8n/2) = O(p3/2) vertices.

Remark 3.2. If paths passing through the product of elliptic curves are allowed
in the above two problems, then these can be solved in the time complexity Õ(p)
and polynomial space complexity, using Costello-Smith’s method [11, Section 6].
As stated in Remark 3.1, the CDS hash function returns an error when passing
through any such vertex, hence their attack is not directly available.

With a quantum computer, we can solve the above two problems using Grover’s
algorithm [21] with time and space complexities Õ(p3/2). It is known that Tani’s
algorithm [37] find a solution to these problems in the time complexity Õ(p), but
Jaques-Schanck [24] reported that Tani’s algorithm requires much more quantum
memory taking data structures into account. For this reason, the time and space
complexities required for solving Problem 3.1 and Problem 3.2 are estimated in
the original paper [7, §7.4] to be Õ(p3/2), even when using quantum algorithms.

4 Our collision attack

In this section, we explain the algorithm of our collision attack on the CDS hash
function. In other words, our aim is finding two distinct paths of good extensions
in Problem 3.2. We will first outline how to compute these paths in Section 4.1,
followed by its specific algorithm in Algorithm 3.
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4.1 Overview

The key to our attack lies in generating a path of good extensions

E0 ×E0 · · · A−1 A0 · · · E1×E2,
ϕ−d ϕ−1 ϕ0 (4.1)

such that each Ai is a simple abelian surface and E1, E2 are elliptic curves. This
can be computed in the following procedure: we let e be the smallest (or slightly
larger) positive integer satisfying

N1N2

logN1N2
>

15 · 23d−1

π2
p with N1 := 2e−1 + 1, N2 := 2e−1 − 1. (4.2)

We will explain why we take e in this way in Section 5.1. Using RepresentInteger
algorithm, one can find an endomorphism α of E0 whose degree equals to N1N2.
Since N1+N2 = 2e and gcd(N1, N2) = 1, the codomain of the (2e, 2e)-isogeny Φ
with the kernel {([N1]P, α(P )) | P ∈E0[2

e]} is isomorphic to an elliptic product,
as mentioned in Section 2.4. Repeating Algorithm 1 a sufficient number of times,
one should obtain a path of good extensions from E0×E0 to E1×E2 such that
its first d+ 1 steps are given (3.1), for some elliptic curves E1 and E2.
Remark 4.1. The probability that any Ai decomposes into the product of elliptic
curves is negligible. Even if that were to happen, one could replace simply (4.1)
with the chain up to Ai.

In this way, we obtain a desired chain (4.1) of length = e. Here, we write the
vertices and edges after the initial isogeny ϕ0 : A−1 → A0 as follows:

A−1 A0 · · · Ae−d−3 Ae−d−2 E1×E2.
ϕ0 ϕ1 ϕe−d−3 ϕe−d−2 ϕe−d−1

Generically, the two elliptic curves E1, E2 above are not isomorphic to each other
and do not have a special automorphism (this means E1×E2 is a Type-

∏
vertex).

Then, the left in Fig. 1 tells us that Ae−d−2 is generically a Type-I vertex. Also,
since ϕ̂e−d−2 ◦ ϕ̂e−d−1 is a (4, 4)-isogeny, it follows from [18, §4.5] that Ae−d−3 is
generically a Type-A vertex. To sum up the discussions, the isogeny ϕe−d−2 is an
edge from a Type-A vertex to a Type-I vertex, with a very high probability.
Remark 4.2. It follows from Remark 2.3 that the probability that ϕe−d−2 is not
an isogeny from a Type-A vertex to a Type-I vertex is O(1/p), which is negligible.
Even if that were to happen, one could generate another chain (one may replace
an integer e if necessary).

By applying Corollary 2.1 to the edge ϕe−d−2, we see that there exists a good
extension ϕ′e−d−1 : Ae−d−2 → Ae−d−3 of it. Then, we have a path

A−1 A0 · · · Ae−d−3 Ae−d−2 E1×E2
ϕ0 ϕ1 ϕe−d−3 ϕe−d−2

ϕ′
e−d−1

of good extensions, where all Ai are simple abelian surfaces. Therefore, we finally
obtain two distinct paths from A0 to Ae−d−2 of good extensions

ϕe−d−3 ◦ · · · ◦ ϕ2 ◦ ϕ1 and ϕ′e−d−1 ◦ ϕe−d−2 ◦ ϕe−d−3 ◦ · · · ◦ ϕ2 ◦ ϕ1

in Problem 3.2. This causes a collision of the CDS hash function, as desired.
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4.2 How to generate the desired chain

In Section 4.1, we generated a (2e, 2e)-isogeny Φ : E0×E0 → E1×E2 which can
be decomposed as in (4.1) with ϕi = ϕi−1

(0) for all i ∈ {−d+1, . . . , 0}. However,
in practice, it is not necessary to compute itself thanks to the following lemma:
Lemma 4.1. Let ϕ, ψ : A→ A′ be multiple edges in G2(2, p). If ϕ′ : A′ → A′′ is
a good extension of ϕ, then there exists a good extension ψ′ : A′ → A′′ of ψ.
Proof. It is known [18, §3.1] that multiple edges ϕ, ψ are induced by a non-trivial
automorphism ρ of the domain A such that kerψ = ρ(kerϕ). Then, there exists
an automorphism ρ′ : A′ → A′ which makes the following diagram commute:

A A′

A A′

ϕ

ρ ρ′

ψ

For any good extension ϕ′ : A′ → A′′ of ϕ, we define ψ′ := ϕ′ ◦ ρ′−1 : A′ → A′′.
Then, one can see that

kerψ′ ∩ ψ(A[2]) = ρ′(kerϕ′) ∩ (ρ′ ◦ ϕ ◦ ρ−1)(A[2])

= ρ′(kerϕ′ ∩ ϕ(A[2])) = ρ′({0}) = {0},
which means that ψ′ is a good extension of ψ. ⊓⊔
Lemma 4.1 tells us that, for multiple edges ϕi, ψi : Ai−1 → Ai, the codomains of
their good extensions are common. In short even if ϕi = ϕi−1

(mi) : Ai−1 → Ai is
obtained where mi ̸= 0, one can consider it as ϕi = ϕi−1

(0) instead.

From the above discussion, our task is to find an endomorphism α ∈ End(E0)
of degree = N1N2 such that the (2d+1, 2d+1)-isogeny with the kernel

⟨([N1]P0, α(P0)), ([N1]Q0, α(Q0))⟩, where E0[2
d+1] = ⟨P0, Q0⟩ (4.3)

passes through A−d, . . . , A−1, A0 in order. For the purpose, we sample endomor-
phisms α← RepresentInteger(N1N2) of E0 again and again, but it is not efficient
to compute the induced isogeny by each α. Instead, we check whether α induces
the desired (2d+1, 2d+1)-isogeny using the following procedure:
– Step 1: Collect (2d+1, 2d+1)-isogenies from E0×E0 which passes through all

the vertices A−d, . . . , A−1, A0 and denote the list of them by L .
– Step 2: For each φ ∈ L , find c11, c12, c21, c22 ∈ Z/2d+1Z such that

kerφ = ⟨([N1]P0, [c11]P0 + [c12]Q0), ([N1]Q0, [c21]P0 + [c22]Q0)⟩

and define γφ := (cij)i,j .
– Step 3: Sample α← RepresentInteger(N1N2), and let Mα be the matrix of α

with respect to the basis (P0, Q0), that is,

Mα

(
P0

Q0

)
=

(
α(P0)
α(Q0)

)
, where each entry in Mα belongs to Z/2d+1Z.

If Mα belongs to {γφ | φ ∈ L }, output α; otherwise, go back to Step 3.
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In the case where Mα = γφ holds, then this implies that

kerφ = ⟨([N1]P0, α(P0)), ([N1]Q0, α(Q0))⟩,

and therefore α induces the desired (2d+1, 2d+1)-isogeny φ. We denote the above
algorithm by FindEndomorphismd(N1,N2, P0,Q0).

4.3 How to compute the desired chain

Once the desired endomorphism α is obtained as in Section 4.2, we then need to
compute the entire (2e, 2e)-isogeny Φ from E0×E0 to an elliptic product which
has the kernel {([N1]P, α(P )) | P ∈E0[2

e]}. The computational cost depends on
the size of the field of definition of E0[2

e] and is dominant in our collision attack.
In this subsection, we describe a method to reduce the time and space complexity
for this (a detailed complexity analysis will be provided in Section 5.2).

First of all, let us recover the codomain of Φ without computing Φ. Since we
are given an endomorphism α ∈ End(E0) =: O0 of degree N1N2, there exist two
elliptic curves E1, E2 which make the following diagram commute:

E0 E2

E1 E0

φ2

φ1
α

ψ1

ψ2

with degφi = degψi = Ni for each i ∈ {1, 2}. It follows from [2, Lemma 6] that
the left O0-ideal Ii := O0α+NiO0 corresponds to φi, and then we can compute
these two elliptic curves by Ei ← IdealToIsogeny(Ii). Moreover, by Theorem 2.2,
we conclude that we have obtained E1×E2, which is the codomain of Φ.

Then, let L ≥ 0 be the smallest integer such that

there is a model of E0 whose 2e−2L-torsion subgroup is Fpr -rational (4.4)

with r := 23L+1, and we also denote by E0 this model although it is an abuse of
notation. We compute the induced chain by α using the following procedure:

– Former step: We compute the (2e−2L, 2e−2L)-isogeny E0×E0 → Ae−2L−d−1

with the kernel {([N1]P, α(P )) | P ∈E0[2
e−2L]}.

– Latter step: We find a path of good extensions from Ae−2L−d−1 to E1×E2,
using the meet-in-the-middle algorithm. In this step, we do not use informa-
tion of the kernel, thus we can compute it over Fp2.

Their composition gives the desired chain.

· · ·

· · ·

E0 ×E0 A−d · · · Ae−2L−d−1 · · · E1 ×E2

· · ·︸ ︷︷ ︸
direct computation from its kernel ︸ ︷︷ ︸

meet-in-the-middle algorithm
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Algorithm 3 An collision attack for the CDS hash function
Input: A positive integer d

Output: Messages m ̸=m′ ∈ {0, 1}∗ such that CDSd(m) = CDSd(m
′)

1: Let e > 0 be the smallest integer satisfying (4.2) and N1 ← 2e−1+1, N2 ← 2e−1−1
2: Let L ≥ 0 be the integer as in (4.4)
3: Let (P,Q) be a basis of E0[2

e−2L] and P0 ← [2e−2L−d−1]P, Q0 ← [2e−2L−d−1]Q
4: Let α← FindEndomorphismd(N1,N2,P0,Q0)
5: Let I1, I2 be the left O0-ideals such that I1 = O0α+N1O0 and I2 = O0α+N2O0

6: Let E1 ← IdealToIsogeny(I1), E2 ← IdealToIsogeny(I2)
7: Let DP ← ([N1]P, α(P )), DQ ← ([N1]Q, α(Q)) ∈ E0 ×E0

8: for i ∈ {1, . . . , e− 2L} do
9: Compute ϕi−d−1 be the (2, 2)-isogeny with a kernel ⟨[2e−2L−i]DP , [2

e−2L−i]DQ⟩,
and let Ai−d−1 be the codomain of ϕi−d−1

10: Let DP ← ϕi−d−1(DP ), DQ ← ϕi−d−1(DQ) ∈Ai−d−1

11: end for
12: Let ϕn ◦ ϕn−1 ◦ · · · ◦ ϕe−2L−d ← MeetInTheMiddle(ϕe−2L−d−1, E1×E2, L)
13: for i = 1, . . . , n− 1 do
14: Choose mi ∈ {0, . . . , 7} such that the codomain of ϕi−1

(mi) is isomorphic to Ai

15: end for
16: Choose mn ∈ {0, . . . , 7} such that the codomain of ϕn−1

(mn) is isomorphic to An−2

17: Let m← mn−2 · · ·m2m1 and m′ ← mnmn−1mn−2 · · ·m2m1

18: return the binary representations of m and m′

Summarizing the above discussions, a pseudocode of our collision attack can
be described in Algorithm 3. For an edge ϕ : A→ B and a vertex B′ in G2(2, p),
we denote by MeetInTheMiddle(ϕ,B′, n) the meet-in-the-middle algorithm which
returns a path B → B′ of good extensions of ϕ of length ≤ 2n as follows:
– Step 1: We compute all the paths of good extensions of ϕ of length ≤ n and

store them together with their codomains in the table T .
– Step 2: We compute (2•, 2•)-isogenies starting from B′ of length ≤ n, then

check whether their codomains exist in the table T or not. Repeat this proce-
dure until two paths ψ′ : B → B′′, ψ : B′ → B′′ with isomorphic codomains
are obtained.

– Step 3: For ψ,ψ′ obtained in Step 2, return ψ̂′ ◦ ψ : B → B′′→ B′ if it is a
(2•, 2•)-isogeny. Otherwise, go back to Step 2.

Since there is a (22L, 22L)-isogeny Ae−2L−d−1 → E1×E2 which is a good exten-
sion of ϕe−2L−d−1 by the choice of α, line 12 of Algorithm 3 terminates.
Remark 4.3. To determine whether two abelian surfaces are isomorphic to each
other, it suffices to verify whether their (absolute) Igusa invariants of the under-
lying genus-2 curves are the same.

The computational cost of Algorithm 3 heavily depends on the computation
of a (2e, 2e)-isogeny E0×E0 → E1×E2 in lines 8–12. We have defined L ≥ 0 as
the smallest integer satisfying (4.4) in order to balance the computational costs
of the former step (lines 8–11) and the latter step (line 12). See Section 5.2 for
a detailed complexity analysis of Algorithm 3.
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5 Complexity analysis

In this section, we discuss the termination of our collision attack (Algorithm 3),
and then we estimate its computational complexity. Also, a simple countermea-
sure for this attack will also be proposed in Section 5.3.

5.1 Termination

In Algorithm 3, the termination is non-trivial only in line 4, and in this section,
we will illustrate the reason why we believe that FindEndomorphismd terminates
in a finite number of iterations. First, we make the following heuristic assumption
about the RepresentInteger algorithm (Algorithm 1).
Assumption 5.1. For an integer N > p, the RepresentInteger(N) outputs at least

π2

3

N

p logN

distinct endomorphisms α ∈ Z+ Zi+ Zj+ Zk whose degree = N .

We explain the reasoning behind why we assume that Assumption 5.1 holds.
To sample α← RepresentInteger(N), recall from the first half of Section 2.2 that
we find integers x, y, z, w ≥ 0 satisfying

x2 + 3y2 + p(z2 + 3w2) = N. (5.1)

The equation (5.1) implies that p(z2+3w2) ≤ N , and one can estimate that the
number of (z, w) satisfying this inequality is approximately

π√
3

N

p
,

by considering the area of the region p(z2+3w2) ≤ N . For each pair (z, w), since
the number of (x, y) satisfying (5.1) is on average π/

√
3, one can estimate that

the number of (x, y, z, w) satisfying (5.1) is approximately
π2

3

N

p
,

which is an estimate of the number of all endomorphisms α ∈ Z+ Zi+ Zj+ Zk
whose degree = N . However, as stated in Remark 2.1, some endomorphisms are
not output by RepresentInteger(N) due to the failure of the integer factorization.
Since we can assume that at least 1/ logN of them could be the outputs, we can
generate at least

π2

3

N

p logN

distinct endomorphisms α ∈ Z+Zi+Zj+Zk whose norm = N . This is why we
expect that Assuption 5.1 holds.

Remark 5.1. If we take z = w = 0 in (5.1), we obtain an endomorphism α of E0

corresponding to a quaternion ∈ Z[
√
−3]. It can be shown (see Proposition A.1)

that paths induced by such α via Kani’s lemma do not pass through any simple
abelian surface. Therefore, we can exclude the case where z = w = 0 in fact.
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Next, let e be the smallest (or slightly larger) positive integer satisfying (4.2),
and define N1 := 2e−1+1, N2 := 2e−1−1. Sample α← RepresentInteger(N1N2),
and consider the (2d+1, 2d+1)-isogeny φα such that

kerφα = ⟨([N1]P0, α(P0)), ([N1]Q0, α(Q0))⟩, where E0[2
d+1] = ⟨P0, Q0⟩.

In this situation, we make the following heuristic assumption:
Assumption 5.2. The φα defined as above is uniformly distributed among all of
the (2d+1, 2d+1)-isogenies starting from E0×E0.

Under the two heuristic assumptions above, we show that FindEndomorphismd

terminates in a finite number of iterations:
Lemma 5.1. For two integers N1,N2 as above and a basis (P0, Q0) of E0[2

d+1],
the FindEndomorphism(N1, N2, P0, Q0) outputs a solution in expected

≈ (5 · 23d−1) logN1N2

iterations, under Assumptions 5.1 and 5.2.

Proof. For a sampled endomorphism α← RepresentInteger(N1N2), we estimate
the probability that φα passes through all A−d, . . . , A−1, A0 in order:

– A first step: there exist 15 edges ϕ−d from E0×E0 in the graph G2(2, p), of
which 3 have A−d as their codomains (the remaining 12 have the product of
two elliptic curves as their codomain, see [18, §4.13] for details). Hence, the
probability that ϕ−d passes through A−d equals to 1/5.

– A second step: there exist 8 good extensions ϕ−d+1 of ϕ−d among which the
edges to a Type-I vertex have multiplicity 6, and the other (Type-IV ) vertex
have multiplicity = 2 from [18, §4.13]. Which of the two is the target A−d+1

depends on how the pre-computed edge ϕ−d,0 was chosen, but in any case,
the probability that ϕ−d+1 passes through A−d+1 is at least 1/4.

– After a third step: for i ∈ {−d+2, . . . , 0}, there exist 8 good extensions ϕi
of ϕi−1 : Ai−2 → Ai−1, and hence the probability that ϕi passes through Ai
is at least 1/8.

Therefore, the probability that a random (2d+1, 2d+1)-isogeny φα passes through
all A−d, . . . , A−1, A0 is estimated to be ≥ 1/5 · 1/4 · (1/8)d−1 = 1/(5 · 23d−1).

Now, recall from Assumption 5.1 and (4.2) that RepresentInteger(N1N2) can
generate at least

π2

3

N1N2

p logN1N2
> 5× 23d−1

random endomorphisms, thus we can expect that one of them will be output by
FindEndomorphismd(N1, N2, P0, Q0). Taking into account the failure of factoriza-
tion, the number of iterations required is ≈ (5 · 23d−1) logN1N2, as desired. ⊓⊔
Remark 5.2. Although there are several methods to generate the desired α other
than the one described in Section 4.2, these are expected to induce much longer
isogenies, see Appendix B for details. As will be discussed in Section 5.2 below,
such isogenies worsen the computational complexity of our collision attack. This
is why we adopt the method described in Section 4.2 to find the desired α.
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5.2 Efficiency

In the following, we estimate the computational complexity of Algorithm 3 and
give the proof of our main theorem (Theorem 1.1). The soft O-notation Õ means
ignoring logarithmic factors of p.
Theorem 5.1. Let d > 0 be an integer in O(log p). Then, Algorithm 3 can solve
Problem 3.2 for CDSd with
– the time complexity Õ(23d) and Õ(29d/10p3/10),
– the space complexity Õ(29d/10p3/10)

under either the heuristics in [20, Lemma 3] or the GRH together with Assump-
tions 5.1 and 5.2.
Proof. For e,N1,N2 chosen in line 1 of Algorithm 3, we have

22e−2 − 1 = N1N2 ≈
15 · 23d−1

π2
p log

(
15 · 23d−1

π2
p

)
,

which means 22e = Õ(23dp). Now, let us define f : N→ N as

n 7→ (the smallest integer k > 0 such that there is a model of E0

whose 2n-torsion subgroup is Fpk -rational).

It is known that there is a model of E0 whose 4-torsion subgroup is Fp2 -rational,
then we have that f(n) ≤ 2n−1 for all n ∈ N. This fact tells us that L defined
in line 2 satisfies the inequality 3L+ 1 ≤ e− 2L, which implies L ≤ e/5. Based
on these parameters, we evaluate the computational complexity of each part of
Algorithm 3 in the following:
– In line 4, we get an endomorphism α← FindEndomorphismd(N1,N2, P0, Q0)

in approximately
(5 · 23d−1) logN1N2 = Õ(23d)

iterations (requires only integer arithmetics), as shown in Lemma 5.1.
– In line 6, we can recover elliptic curves E1, E2 in expected polynomial time,

thanks to Lemma 2.1 together with the fact that logN1, logN2 = O(log p).
– In lines 8–11, the algorithm requires e−2L = O(log p) times of (2, 2)-isogeny

computations over Fpr with r := 23L+1. This can be done in complexity

Õ(23L+1) = Õ(23e/5) = Õ(29d/10p3/10)

from the fact (cf. [12, §9.6]) that operations on Fpr can be done in Õ(r).
– In line 12, recalling that the number of good extensions of a (2, 2)-isogeny is

equal to 23 = 8, we need to compute and store a total of O(8L) edges. Then,
this can be done in time and space complexities

O(8L) = O(8e/5) = Õ(29d/10p3/10)

since all the (2, 2)-isogeny computations are performed in Fp2.
– In lines 13–16, at most 8e = O(log p) times of the (2, 2)-isogeny computations

over Fp2 are required, which can be done in polynomial time.
From the above discussions, we obtain the statement of this theorem. ⊓⊔
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Finally, we provide the proof of Theorem 1.1.

(Proof of Theorem 1.1) Recall from Section 3.2 that the authors set d := 10 in
the original proposal of the CDS hash function. Here, Theorem 5.1 tells us that
both the time and space complexities of Algorithm 3 in the case where d = O(1)

are Õ(p3/10), which completes the proof of Theorem 1.1. ⊓⊔

In addition, we give a condition under which our collision attack on the CDS
hash function is a polynomial-time and space algorithm.
Corollary 5.1. If the 2e-torsion subgroup of E0 is Fpk-rational with k = O(1),
then a collision on the CDS hash function can be found in polynomial time and
polynomial space with respect to log p.
Proof. In Algorithm 3 with d = 10, all lines except for lines 8–11 and line 12 run
in polynomial-time and space. Moreover, one can take L = O(1) by the assump-
tion, and thus all the (2, 2)-isogeny computations in lines 8–12 can be performed
in polynomial time and space with respect to log p. ⊓⊔
Remark 5.3. From the same perspective as Castryck-Decru-Smith, it can be con-
sidered that the quantum computational complexity of our collision attack is not
different from its classical computational complexity. This is based on the belief
by the authors that the “best” claw-finding algorithm for a graph of size =N has
the complexity Õ(N1/2) with a quantum computer, as in the last of Section 3.3.
Since we do not have any idea to optimize the meet-in-the-middle part by using
quantum algorithms, we will not explore this further.

5.3 Countermeasures

The main reason why our collision attack on the CDS hash function is applicable
is that there are too few zeros appended to messages m ∈ {0, 1}∗. In other words,
by setting the initial isogeny ϕ0 : A−1 → A0 further “away” from the square of a
supersingular elliptic curves with a known endomorphism ring, one can increase
the computational complexity of our attack. In particular, if ϕ0 is put sufficiently
far away, then our polynomial-time algorithm will no longer be applicable.

However, it seems inevitable that the computational complexity required for
solving Problem 3.2 reduce to Õ(p) no matter how ϕ0 : A−1 → A0 is set. Indeed,
we should adopt the following strategy like the Costello-Smith’s method:
– Random walk: Perform a random walk on the graph G2(2, p) such that ϕi is

a good extension of ϕi−1 for all i ≥ 1 until the codomain of ϕi is isomorphic
to the product of elliptic curves.

– Collision finding: For the path A−1 → E1×E2 obtained as described above,
collisions can be found using a method similar to that in Section 4.1.

As stated in Remark 3.2, such a path A−1→ E1×E2 is obtained with the time
complexity Õ(p) and polynomial memory⋆⋆.

⋆⋆ Using a quantum computer, such a path can be found with time complexity Õ(p1/2)
and a polynomial memory, according to [11, Theorem 2].
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From these reason, we propose to put the initial surface A0 from the product
of elliptic curves by at least d > (1/3) log2 p. If we set d ≈ (1/3) log2 p, then our
collision attack requires time complexity Õ(p) and space complexity Õ(p3/5) by
Theorem 5.1. Therefore, such a modification does not allow us to claim that our
collision attack is more efficient than the Costello-Smith’s method.

If one wants to avoid such an attack, it might be valuable to consider, as sug-
gested by [28], the (2, 2)-isogeny graph of supersingular non-superspecial abelian
surfaces over Fp4 instead of G2(2, p). Since their alternative graph does not have
vertices corresponding to the products of elliptic curves, Costello-Smith’s method
and our collision attack would no longer applicable by making this modification.

6 Computational results

In this section, we will give some computational results found, by executing our
algorithm (Algorithm 3). We implemented this algorithm with Magma V2.28-4,
and ran it on a machine with an AMD EPYC 7742 CPU and 2TB of RAM.

In the following experiments, we chose two parameters in which our collision
attack works in polynomial time (to be more precise, we have chosen p such that
all the (2, 2)-isogenies appeared through the computations are defined over Fp2).
Under these parameters, the dominant step is the FindEndomorphism10 part, and
performed 64 parallel computations only for this part by changing the seed value.
Our implementation is available at

https://github.com/Ryo-Ohashi/CDScollision.

(Result for a 128-bit prime) We choose a 128-bit prime p = 286 · 3 · f − 1 with a
cofactor f = 6397·229172347 as the characteristic of the base field (the security of
the CDS hash function was originally considered to be 192-bit in this parameter).
We set e := 86 and found a collision
m1 = 5720C642EC34DB2C62639590384D92E3124A6F032AEE11650D4BFE0,
m2 = AD720C642EC34DB2C62639590384D92E3124A6F032AEE11650D4BFE0.

It took 10861.3 seconds in total to find the collision as a single parallel instance,
of which 10819.6 seconds were spent on the FindEndomorphism10 part, requiring
the 4253856 iterations of trying random endomorphisms.
(Result for a 256-bit prime) We choose a 256-bit prime p = 2150 ·3 · f −1 with a
cofactor f = 5 · 19 · 199 · 45153169 · 639964709 · 49503663809 as the characteristic
of the base field (the security of the CDS hash function was originally considered
to be 394-bit in this parameter). We set e := 150 and found a collision
m1 = 3ABE8C61C4CAAD5E4C127D76278AB541C8A27F627793A1BF7DD9452E

C73CCC987DBBA0EA4AB98521C459F31B6FBFFF42C89C11C,
m2 = 143ABE8C61C4CAAD5E4C127D76278AB541C8A27F627793A1BF7DD9452E

C73CCC987DBBA0EA4AB98521C459F31B6FBFFF42C89C11C.

It took 60239.1 seconds in total to find the collision as a single parallel instance,
of which 60198.4 seconds were spent on the FindEndomorphism10 part, requiring
the 9315093 iterations of trying random endomorphisms.

https://github.com/Ryo-Ohashi/CDScollision
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7 Concluding remarks

In this paper, we proposed an explicit algorithm (Algorithm 3) to find a collision
on the CDS hash function. Our collision attack uses the property that the initial
surface A0 is too “close” to the square of a supersingular elliptic curve E0 with a
known endomorphism ring. Indeed, when we put the initial surface A0 sufficiently
far away, it is considered that the CDS hash function remains secure.

This situation differs significantly from that of the CGL hash function: if we
know a path from a vertex with a known endomorphism ring to the initial curve,
the CGL hash function is no longer safe. Even in the case of CDS hash function,
we believe that the path E0×E0 → A0 should be concealed, but further analysis
of the security of the CDS hash function is a future work.
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A In the case where α belongs to Z[ω]

Let p ≡ 5 (mod 6) be a prime and consider the supersingular elliptic curve

E0 : v
2 = u3 + 1, with j-invariant = 0

defined over Fp2. The curve E0 has an automorphism (u, v) 7→ (ωu, v) of order 3
where ω is a primitive cube root of unity, and we denote by ω the automorphism
even though it may be considered an abuse of notation.
Lemma A.1. If α ∈ Z[ω], then the codomain of the (2, 2)-isogeny whose kernel
is G0 := {(P0, α(P0)) | P0 ∈E0[2]} is isomorphic to E0 ×E0.
Proof. We can write α = x+ yω ∈ Z[ω] with x, y ∈ Z since ω2 = −(1 + ω).
– If x and y are even, then α(P0) = O for all P0 ∈E0[2]. In this case G0 is not

maximal 2-isotropic, which contradicts our assumption.
– If x is odd and y is even, then α(P0) = P0 for all P0 ∈E0[2]. In this case(

1 −1
1 1

)
: E0 ×E0 → E0 ×E0

gives the (2, 2)-isogeny with the kernel G0.
– If x is even and y is odd, then α(P0) = ω(P0) for all P0 ∈E0[2]. In this case(

1 −ω
ω2 1

)
: E0 ×E0 → E0 ×E0

gives the (2, 2)-isogeny with the kernel G0.
– If x and y are odd, then α(P0) = P0 + ω(P0) for all P ∈E0[2]. In this case(

1 −ω2

ω 1

)
: E0 ×E0 → E0 ×E0

gives the (2, 2)-isogeny with the kernel G0.
The codomains for the last three cases are isomorphic to E0×E0, as desired. ⊓⊔
Proposition A.1. If α ∈ Z[ω], then the codomain of the (2e, 2e)-isogeny whose
kernel is G := {(P, α(P )) | P ∈E0[2

e]} is isomorphic to E0×E0 for all e ≥ 1.
Proof. We give a proof by induction on e. The case where e = 1 is no other than
Lemma A.1, and hence true. Next, we suppose that the assertion holds for e− 1
and let Φ be the (2e, 2e)-isogeny with ker Φ = G. Decomposing this as Φ = ψ ◦ ϕ
where ϕ is a (2e−1, 2e−1)-isogeny and ψ is a (2, 2)-isogeny, we can write

ϕ =

(
β11 β12
β21 β22

)
: E0 ×E0 → E0 ×E0

with β11, β12, β21, β22 ∈ Z[ω] by the induction hypothesis. Moreover, we have

kerψ = {(β11P + β12α(P ), β21P + β21α(P )) | P ∈ E0[2
e]}

= {(β1(P0), β2(P0)) | P0 ∈E0[2]}, with β1, β2 ∈ {1, ω, ω2}.

This can be rewritten as kerψ = {(P0, β(P0)) | P0 ∈E0[2]} with β ∈ Z[ω], since
any β1 ∈ {1, ω, ω2} is a unit in Z[ω]. Applying Lemma A.1 again, the codomain
of ψ is isomorphic to E0 ×E0, as desired. ⊓⊔
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B Alternative methods for computing α

In Algorithm 3, we first fix a degree of an endomorphism α of E0 and then search
for α randomly until its restriction on E0[2

d+1] satisfies the “desired” conditions.
In this appendix, we consider alternative methods for computing α which take a
converse approach to the original method. In other words, we firstly compute an
endomorphism α0 of E0 such that its restriction on E0[2

d+1] satisfies the desired
conditions. Then, we find an endomorphism α whose degree satisfies the desired
conditions and α ≡ mα0 (mod 2d+1) for some integer m (we will discuss how to
choose m later). Unfortunately, we cannot find an alternative method finding α
whose degree is as small as in the original method. However, some techniques on
quaternion could be applied to reduce the degree of α, and therefore we present
alternative methods for future research.

We use the same notation as in Algorithm 3. Our task is to find an endomor-
phism α of E0 and positive integers e,N1, N2 satisfying
– the (2d+1, 2d+1)-isogeny with kernel (4.3) passes through A−d, . . . , A−1, A0,
– the degree of α equals to N1N2 with N1 +N2 = 2e and gcd(N1, N2) = 1.

First, let us compute an endomorphism α0 ∈ End(E0) such that the (2d+1, 2d+1)-
isogeny with kernel ⟨(P0, α0(P0)), (Q0, α0(Q0))⟩ passes throughA−d, . . . , A−1, A0

in order. This can be done as follows:
– Step 1: Let (β1, β2, β3, β4) be a Minkowski reduced basis of O0 := End(E0),

and M1,M2,M3,M4 ∈ Z/2d+1Z be the matrices of β1, β2, β3, β4 with respect
to the basis (P0, Q0).

– Step 2: Find c11, c12, c21, c22 ∈ Z such that the (2d+1, 2d+1)-isogeny φ with

kerφ = ⟨(P0, c11P0 + c12Q0), (Q0, c21P0 + c22Q0)⟩

passes through all the vertices A−d, . . . , A−1, A0 in order.
– Step 3: Solve the linear equation

x1M1 + x2M2 + x3M3 + x4M4 ≡
(
c11 c12
c21 c22

)
(mod 2d+1)

and define α0 := x1β1 + x2β2 + x3β3 + x4β4.

Since x1, x2, x3, x4 are approximately 2d+1, we have degα0 ≈ 22d+2p.

The remaining task is to find positive integers e,N1, N2 such that
degα = N1N2,
N1 +N2 = 2e,
gcd(N1, N2) = 1,
α ≡ N1α0 (mod 2d+1).

Then, we have that
⟨(N1P0, α(P0)), (N1Q0, α(Q0))⟩ = ⟨(P0, α0(P0)), (Q0, α0(Q0))⟩,

which implies that α is the desired endomorphism.
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We can mitigated the congruence condition to α ≡ mα0 (mod 2d+1) for some
integer m. The reason is as follows: assume α satisfies the condition with m ∈ Z.
Since ⟨(P0, α0(P0)), (Q0, α0(Q0))⟩ is isotropic with respect to the 2-Weil pairing,
we have degα0 ≡ −1 (mod 2d+1). Therefore, we have degα ≡ −m2 (mod 2d+1).
On the other hand, we have

degα = N1N2 ≡ −N1
2 (mod 2d+1),

which means m ≡ N1u (mod 2d+1) for a square root u of 1 modulo 2d+1. In the
case d ≥ 2, there are 4 possible values of u. If u ≡ 1 (mod 2d+1), then we use α.
If u ≡ −1 (mod 2d+1), then we use −α. Otherwise, we may rerun the algorithm
for finding α.

There are two possible approaches to find e,N1, N2 and α. The first is to find
endomorphisms α from Zα0 + 2d+1O0. However, as far as our knowledge, there
is no efficient method to take an endomorphism α ∈ Zα0 + 2d+1O0 of a desired
degree. The second is to find α1 ∈ Z+2d+1O0 such that α := α1α0 satisfies the
desired conditions.

The second approach cannot find α whose degree is as small as in the original
method. We explain the reason as follows: since we require that degα is smaller
than or equal to approximately 23d+3p which is the degree of endomorphisms in
the original method, the degree of α1 should be ≈ 2d+1. In our collision attack, we
assume that 2d+1< p, otherwise our attack is less efficient than Costello-Smith’s
method in Section 5.3. Therefore, we obtain α0 ∈ Z[ω] ⊂O0. The number of all
endomorphisms ∈ Z[ω] whose degree is less than or equal to is at most 4 · 2d+1.
For a fixed positive integer N , there are at most log2N divisors of N . Therefore,
for a fixed α1, we have at most 2d+1 log2(2

3d+3p) chances to test whether degα
decomposes into the product of N1 and N2 such that N1+N2 is a power of two.
On the other hand, the ratio of the number of positive integers which is a power
of two and is less than or equal to 23d+3p is ⌊log2(23d+3p)⌋/(23d+3p). Therefore,
the probability that we find N1 and N2 is at most

2d+1 log2(2
3d+3p) · ⌊log2(2

3d+3p)⌋
23d+3p

≤ (log2(2
3d+3p))2

22d+2p
.

This probability is too small to expect to exist α1 as we want.
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