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Abstract

Distributed mean estimation (DME) is a fundamental and important task as it serves as a subroutine in
convex optimization, aggregate statistics, and, more generally, federated learning. The inputs for distributed
mean estimation (DME) are provided by clients (such as mobile devices), and these inputs often contain
sensitive information. Thus, protecting privacy and mitigating the influence of malicious adversaries are
critical concerns in DME. A surge of recent works has focused on building multiparty computation (MPC)
based protocols tailored for the task of secure aggregation. However, MPC fails to directly address these
two issues: (i) the potential manipulation of input by adversaries, and (ii) the leakage of information
from the underlying function. This paper presents a novel approach that addresses both these issues. We
propose a secure aggregation protocol with a robustness guarantee, effectively protecting the system from
"faulty" inputs introduced by malicious clients. Our protocol further ensures differential privacy, so that the
underlying function will not leak significant information about individuals. Notably, this work represents
the first comprehensive effort to combine robustness and differential privacy guarantees in the context of
DME. In particular, we capture the security of the protocol via a notion of “usefulness” combined with
differential privacy inspired by the work of Mironov et al. (CRYPTO 2009) and formally analyze this security
guarantee for our protocol.

*This author is currently at SandboxAQ.
†This author is currently at Google Research.
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1 Introduction

In distributed mean estimation (DME), numerical data are spread over a large number of clients, and
the objective is to compute the mean of those data. This fundamental task serves as a core subroutine for
implementing gradient descent in convex optimizations, aggregate statistics, and, more generally, federated
learning. In most cases, individual data is sensitive and we need to perform aggregation in a privacy-
preserving manner. Distributed secure aggregation has become an active area of research with a surge of
works focusing on secure aggregation with varying security/privacy guarantees [26, 14, 11, 10, 63]. Secure
multiparty computation (MPC) serves as the right tool for DME as it enables distributed computation
of arbitrary tasks while simultaneously guaranteeing privacy where nothing beyond the output of the
computation is revealed and correctness where the output is correct according to the specified function.
Furthermore, MPC provides these guarantees even in the presence of an adversary that can control a subset
of the parties and launch a coordinated attack on the protocol. While MPC shows how to compute in a
distributed environment with the best possible security, there are two issues MPC fails to address: (1) it
does not automatically prevent adversaries from setting the inputs of corrupted parties arbitrarily thereby
affecting the accuracy of the computation and (2) it does not quantify what is leaked in the computation as in
many cases the underlying function (e.g. sum of the inputs) itself can leak information of parties’ inputs.

Toward mitigating the first of these concerns, Corrigan-Gibbs and Boneh [26] designed the Prio system, a
robust secure aggregation protocol. Prio is widely popular and has been incorporated in the works of Apple,
Google, Internet Services Research Group (ISRG), and Mozilla. For example, Mozilla uses a modified version
of Prio to collect web usage statistics privately. Apple and Google use Prio for their exposure notifications
express (ENX) system. In the Prio architecture, a set of clients holding private inputs delegates the task of
aggregation to a set of servers. The Prio protocol achieves privacy of an honest client’s input even in the
presence of a semi-honest (passive) adversary that corrupts an arbitrary subset of the servers. A key feature
of their work is the robustness guarantee that protects the system from “faulty” inputs. More precisely, given
some polynomial-time computable predicate P their system is able to discard bad inputs, i.e., those that do
not satisfy the predicate P via a input certification mechanism. Another attractive feature of their work is that
the clients only need to send a single (i.e. non-interactive) message to all the servers. This feature allows the
clients to participate over weak networks. The main drawbacks of their protocol are that they tolerate only
semi-honest or passive corruption of the servers and incur large communication cost between the clients and
servers.1 A follow-up work by Talwar [63], still in the semi-honest model, improves the efficiency of Prio
under the same threat model and architecture by making two relaxations. First, the robustness guarantee is
relaxed to approximate robustness where invalid inputs could be accepted with small (yet, non-negligible)
probability. Second, the security guarantee allows differentially private leakage of the honest clients’ inputs
in addition to the output of the computation.2

Another line of work, initiated by Bonawitz et al. [14] considers secure aggregation in the star topology
where the central node is connected with all the clients and learns the result of the secure aggregation. The
main feature of their construction, orthogonal to the Prio line of works, is that the protocol execution goes
to completion even when a subset (up to a threshold) of nodes drop out or behave maliciously. This is
referred to as guaranteed output delivery in the MPC literature. A series of works [11, 10, 7, 48] have refined
this approach to additionally achieve robustness. One drawback that persists in this line of works is that
they achieve security only against semi-honest corruption of the center node. A recent work shows how to
achieve security against malicious corruption of the center node but this comes at the price of trading the
guaranteed output feature for security with abort [10].

Finally, no prior work addresses information leakage from the underlying function. In particular, none
of the previous works incorporate the stronger guarantee of differentially privacy (DP) [30] with a formal
analysis on the impacts on accuracy (See Section B). In particular, no previous work shows how to use robust
aggregation in the context of differential privacy. This intersection is non-trivial to study because we must

1The communication between every client and each server is proportional to “circuit” size of the predicate P .
2In contrast, standard MPC security guarantees nothing beyond the output of the computation is revealed.
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account for manipulation attacks [23]. The output of any DP protocol has error due to noise and malicious
clients can always pretend to have input satisfying predicate P to add to that error—for example, increase
bias in a mean estimate by faking large-norm input—but there exist attacks that introduce even more error
in the outcome. We give a more rigorous definition later in our work. In summary, we are interested in the
following question:

Is it possible to achieve the best of all worlds: perform differentially private distributed mean estimation
while satisfying guaranteed output delivery and mitigating the threat of manipulation attacks, with a
malicious adversary?

In slightly more detail, our goal is to design a secure aggregation protocol in the Prio architecture that
meets the following desiderata:

(a) Privacy: A system is said to be private if the view of the adversary that launches a coordinated attack is
differentially private [30].

(b) Guaranteed output delivery: We require that the execution goes to completion with the honest parties
learning the output of the computation no matter how the adversary tries to sabotage the execution.

(c) Guaranteed input inclusion: The inputs of all honest parties should be included in the computation even
if the adversary tries to actively attack the system.3

(d) Input Certification (a.k.a. robustness w.r.t. predicate P ): In a robust secure aggregation system, corrupted
clients should be prevented from giving “artificial” inputs. If the underlying domain D can be captured
via a predicate P : F m→ {0,1}which outputs 1 on all inputs x ∈ D and 0 otherwise, then a simple form of
robustness allows aggregation of inputs if and only if the predicate on its input returns 1 [20, 15, 53].

(e) Enable lightweight clients on unreliable networks: In order to accommodate lightweight clients that
transmit information from unreliable networks, the system should impose minimal cryptographic operations
on the client side and avoid multiple rounds of interaction with the clients.

1.1 Our Contributions

In this work, we design a concretely efficient protocol in the Prio architecture that satisfies our desiderata.
We proceed in two modular steps. First, we build a client-server protocol for robust4 secure addition of
vectors that achieves full security in the presence of a malicious adversary that corrupts an arbitrary number
of clients and 1/3rd of the servers5.We remark that ours is the first concretely efficient protocol that guarantees
security against a malicious adversary. Roughly speaking, our overall communication is proportional to
sum of the best protocol for verifiable secret sharing and (succinct) zero-knowledge arguments for predicate P .
As a by-product, we also obtain a concretely efficient verifiable relation sharing scheme in the random oracle
model [4]. More formally, we obtain the following theorem.

Theorem 1.1 (Input Certified Secure Aggregation). Let ns, ts ∈N such that ts < ns/3 and P : F d → {0,1} be an
arbitrary predicate. Let FAgg be the ideal functionality given in Figure 4. The protocol ΠAgg, as outlined in Figure 10,
securely realizes FAgg among nc clients each holding input vectors of length d with elements in some finite field F , ns
servers, and an output party O, which is secure against a static, malicious rushing adversary that can maliciously
corrupt an arbitrary number of clients, up to ts servers and the output party and ensures guaranteed output delivery
where κ is the security parameter. Additionally, a client is required to engage in only a single round of communication.

3Typically, guaranteed output delivery implies guaranteed input inclusion. However, in scenarios where the input parties can join in
a permissionless way and the adversary controls who can join (as is the case in the single server setting described later), guaranteed
input inclusion does not hold.

4For some polynomial-time computable predicate P , robust secure addition only sums the inputs from users for which the predicate
returns true. In other words, P helps to weed out “bad” inputs.

5It is well known that full security cannot be achieved when there is no honest majority [25].
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Moreover, the total communication complexity between a client and each server is O(d +d log |P |+ log2(ns · d))
field elements where |P | and d are the size and depth (respectively) of the circuit associated with the predicate P . The
total amortized communication among the servers is O(nc · d · n3s ) field elements in the offline phase and O(nc · d · n2s )
field elements in the online phase for a sufficiently large d.

Second, we design a differentially private mechanism for DME that uses the secure aggregation protocol
from the first step as a black box. The mechanism is specified through algorithms PRE and POST along with
a predicate P for the secure aggregation protocol, denoted ΠAgg. Clients first pre-process their input using
PRE, then feed it as input to ΠAgg. The predicate P filters out inputs with an overly large norm. The output
party processes the aggregation using POST to obtain an estimate of the mean. Slightly more formally, we
obtain the following theorem:

Theorem 1.2 (Upper bound for DP DME (Informal)). Let (ε,δ) be target privacy parameters. Assume client data
Xi (i ∈ [n]) belongs to the Euclidean unit ball Bd . There is a predicate P and a way to pre-process Xi into Yi such that
the composition of ΠAgg and pre-processing is (ε,δ)-differentially private. Moreover, the output party can post-process
the aggregated value to obtain an unbiased estimate of the mean 1

n

∑
Xi , with variance O( d

ε2n2
log 1

δ ), asymptotically
the same as the classic Gaussian mechanism.

If t =O(n) clients are malicious, then we achieve (O(ε),O(δ))-differential privacy and the expected squared error
Õ( t

2

n2
· d
ε2n

).

As our final contribution we argue that a natural class of PRE,POST algorithms cannot have asymptoti-
cally better accuracy. More formally, we prove the following theorem.

Theorem 1.3 (A Lower bound for Wrapped DP DME (informal)). For any pair of pre- and post-processing
algorithms that preserves (ε,δ = o(1/n))-differential privacy where additionally the post-processing algorithm is affine,
the resulting system either produces biased estimates when there are no malicious clients or there is an explicit attack
by t malicious clients that results in t2

n2
· d
ε2n

expected squared error.

On Minimality of our Assumptions. Although robustness (i.e., input certification) can be achieved with-
out any assumptions through distributed zero-knowledge proofs, for the sake of efficiency (and enabling
lightweight clients), we utilize succinct non-interactive arguments that rely solely on symmetric-key prim-
itives. To achieve guaranteed output delivery6, we require an honest majority among the servers. While
n ≥ 2t +1 suffices, we adopt a stronger condition of n ≥ 3t +1 to enhance efficiency. Specifically, our protocol
relies on verifiable secret sharing7, which in the n ≥ 2t +1 setting often requires quadratic communication
complexity (in n) due to the reliance on bivariate polynomials [45, 54, 5] or involves a trusted setup that is
computationally expensive [44]. Such inefficiencies are undesirable in our context, given the unreliability of
network conditions. Lastly, our final protocol achieves only computational differential privacy as opposed to
information-theoretic differential privacy since we rely on zkSNARKs for efficiency that exist only based on
computational assumptions.

1.2 Our Techniques

In this section, we give a brief overview of our techniques. On a high level, we rely on differential privacy
to determine what to compute and secure multiparty computation to design how to compute.

Prior to outlining the techniques, we identify the types of attacks these techniques aim to counter.
Essentially, these can be classified into two main groups: attacks that compromise the integrity of the
computation and attacks that violate the privacy of the input.

6Guaranteed output delivery inherently takes into account security against malicious adversaries, since it trivially holds when only
semi-honest adversaries are present.

7More precisely, we utilize verifiable relation sharing.
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Privacy attacks can be further classified into two categories. The first captures the ability of the adversary
to learn “more” than the output of the pre-specified functionality. The MPC guarantees of our secure
aggregation protocol defends against this attack. The second privacy attack captures the ability of the
adversary to learn “more” by merely chosing the inputs of the controlled parties and observing the output.
Differential privacy is a tool to address this attack.

Integrity attacks, on the other hand, come in three varieties. The first is the denial of service attack: the
adversary prevents the protocol from producing output. The second is against simulation correctness: the
adversary tries to force the protocol to produce an output other than f (X) for pre-specified function f and
inputs held by the honest parties. Our secure aggregation protocol is additionally robust and hence can
defend against these two attacks, as it guarantees output even in the presence of a malicious adversary.
The third integrity attack is the manipulation attack: the adversary tries to force the protocol to produce
something more than α-far from g(X), for positive real α and g (in a metric space).

A straightforward approach to achieve our goals would be to rely on an MPC protocol (with guaranteed
output delivery) to securely realize a differentially private mechanism for secure aggregation. Robustness
can be incorporated into the functionality, where only inputs that satisfy the predicate will be included in the
computation. Although the resulting protocol will provide simulation-based security, a separate analysis is
needed on the accuracy of the functionality in the presence of a malicious adversary. Furthermore, getting a
concretely efficient protocol following this approach is hard because such a functionality is randomized and
the servers would have to generate the noise needed for DP mechanisms in a distributed way. The protocol
of Dwork et al. [29] gives an elegant mechanism for distributed generation of Gaussian noise, however,
incorporating robustness would still be a challenge. In this work, we take a different path. Instead of aiming
for a simulation-based security, we will consider a meaningful relaxation of the security that will be adequate
and lead to a more concretely efficient solution. We believe that this definition could be of independent
interest for combining differential privacy and MPC guarantees against malicious adversaries.

We capture our security requirements by defining usefulness and privacy in the presence of malicious
adversaries inspired by the work of Mironov et al. [50] who defined similar notions for semi-honest
adversaries. Capturing usefulness in the malicious setting is hard since accuracy can be identified only
w.r.t. honest party’s inputs. Our approach is to avoid identifying honest parties and target the goal of the
underlying task, namely, DME and we define a protocol useful if it can compute the sample mean assuming
the honest parties’ inputs come from a predefined distribution. Privacy, on the other hand, extends the
indistinguishability-based computational differential privacy notion from [50] and requires that the view of
the malicious adversary is (ϵ,δ) differentially private.

We will be able to modularly present our techniques for secure aggregation via MPC and DP. In slightly
more detail, our final protocol will be able to combine a robust protocol for secure summation with a DP
mechanism in essentially a black-box way that we explain next.

1.2.1 Secure Aggregation.

We present our input-certified secure aggregation protocol (in short, certified aggregation) where ns
servers S securely aggregate the inputs of nc clients U = {u1, . . . ,unc } that satisfy a predicate P (·). More
precisely, each client ui ∈ U has a private input vector Xi ∈ F d . At a high level, the goal of the protocol is
to compute

∑
ui∈U Xi · P (Xi) in a secure manner, i.e. an adversary maliciously corrupting up to a third of

the servers and any number of clients does not learn anything beyond the output. Our protocol follows
the standard template of MPC protocols to securely compute the aggregate where the clients secretly share
their inputs among the servers, and the servers perform the computation. To protect against a malicious
adversary, we need to ensure that the shares are well formed and the secret input of the client satisfies a
predicate P (·). Traditionally, verifiable secret sharing (VSS) schemes have been employed to guarantee that
the client secret-shares the input correctly.

Our starting point is the work of Zhang et al. [68] who provide a concretely efficient VSS scheme from a
polynomial commitment scheme. Here, the dealer commits to a polynomial and proves that the polynomial
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is evaluated correctly at n different evaluation points for each verifier. While their VSS scheme boasts
desirable properties like a lack of trusted setup and optimal prover time8, it poses two significant challenges
in our context.

First, in our setting, we point out that for robustness, the clients additionally have to prove that their
secret input satisfies a certain predicate. This primitive is referred to as a verifiable relation sharing scheme
(implicitly) introduced in the work of Gennaro et al. [37] and formally by Applebaum et al. [4]. Second, in
typical VSS (and existing VRS schemes [4]), the dealer needs to participate in more than one round. In our
setting, to address client dropouts, we impose the requirement that the clients send a single message (to each
of the servers).

To address the first issue, we need each client (acting as a prover) to share a vector (of secrets) to the
servers while proving to each of the servers in zero-knowledge that the shared data satisfies a pre-specified
predicate. As mentioned above, we will rely on a Verifiable Relation Sharing (VRS) scheme. We extend
the construction of Zhang et al. [68] to build the desired VRS scheme. In more detail, we first formalize
their generalized polynomial commitment scheme9 as a distributed commit and prove (dCP) functionality
and then instantiate it using a variant of the construction in [68]. At a high level, the dCP functionality is
parameterized by a tuple of relations (R1, . . . ,Rn) that allows a prover to commit to a value, say w, to a set of
verifiers in a commit phase and later in a prove phase prove to each verifier Vi that (xi ,w) ∈ Ri

10. A central
construction in this work is essentially a modular design of a VRS scheme built from a VSS scheme and a
dCP protocol.

Next, addressing the second challenge of reducing the dealer’s participation to a single round, we
propose a new approach inspired by protocols in the proactive secret-sharing literature [39, 16, 64] At a high
level, in our VRS scheme, the dealer participates in one round to secret-share its input and prove it satisfies
an underlying predicate via the dCP functionality. Subsequently, the verifiers interact among themselves to
verify if the dealer performed the sharing correctly, without the dealer’s involvement. If any of the verifiers
detect missing shares or fail to verify the proofs, they collectively decide whether to discard the prover
by raising complaints or recover the missing shares. If t or more verifiers raise complaints, the prover is
discarded; otherwise, if fewer than t verifiers complain, the shares are retained, and verifiers with malformed
shares or proofs seek to recover missing shares.

The share recovery process is triggered when there are fewer than t complaints against the prover. In
this situation, the verifiers holding valid input shares mask their shares with a (VSS) sharing of a random
(unknown) value. Next, the verifiers broadcast these masked shares. This allows any verifier with missing
shares to recover its share from the masked shares from all the other verifiers and its share of the random
(unknown) value. Lastly, we note that the sharing of the random values, utilized as masks in the share
recovery process, are generated by the verifiers using any standard Verifiable Secret Sharing (VSS) protocol
and can be precomputed in an offline phase. By introducing this share recovery process, the participation of
the client is limited to just the first round (to send the share and proof to each of the servers) and not the
recovery as is typical in known VSS schemes.

Comparison with Prio [26]. In Prio, one dishonest server can break robustness (although privacy holds
against malicious corruption of all but one). Our approach can be extended to the dishonest majority
scenario by using an IPS-style MPC-in-the-head approach where the client communication to each server is
proportional to size of the circuit, just as in Prio. However, our current work prioritizes guaranteed output
delivery, which requires an honest majority. We guarantee cDP, robustness and output delivery against
malicious adversaries. Our construction improves upon Prio by reducing the size of proofs sent from the

8Prover’s time is proportional to generating O(1) proof rather than n proofs.
9This generalized polynomial commitment scheme is referred to as a one-to-many zero-knowledge proof in [68]

10This is incomparable to the standard one-to-many commit and prove [] where the same relation is used for all the verifiers and all
the verifiers have the same output.
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client to the server to be sublinear (polylogarithmic) in the circuit size, compared to Prio’s linear size. By
using only symmetric key-based primitives, our computational costs remain comparable to Prio’s.

1.2.2 Differential Privacy.

As with secure aggregation, existing approaches to DP DME face challenges. One approach can be found
in the early work by Dwork, Kenthapadi, McSherry, Mironov, and Naor: identify a centrally private solution
like the Gaussian mechanism and develop an MPC protocol to sample the required noise in shares [29]11.

Alternatively, we could resort to DP protocols in the local model. In that setting, clients noise their own
data before sending them to the output party. The adversary here is able to corrupt all parties except a target
client. Local DP protocols avoid the overhead of collective noise generation from the previous approach
but are inherently less accurate than centrally private algorithms [9, 18, 43]. Moreover, malicious clients
have disproportionate sway on the computation. For example, consider the randomized response protocol
developed by Warner for counting [65]. A baseline attack is to perform the local randomization on an
adversarial value, but the literature has shown a malicious client can generate a message that introduces
greater bias [3, 51, 23]. Attacks against other local DP protocols have also been theoretically and empirically
studied [17, 67]. While those results concern specific protocols, Cheu, Smith, and Ullman show how to tailor
an attack for any given local DP protocol that performs a variant of DME [23].

The approach of wrapping DP around secure aggregation is established in the literature, e.g. work by
Kairouz, Liu, & Steinke and by Agarwal, Kairouz, & Liu [40, 2]. We review the approach for completeness.
Each client pre-processes their input by introducing a small amount of noise to their data. The noise is
discrete Gaussian for Kairouz et al. and Skellam for Agarwal et al. The output party only observes the
sum of the noised values. Assuming a bound on the number of malicious clients, the aggregation will have
sufficient noise for DP.12 Post-processing is done to obtain an estimate of the mean with the proper scaling.

Our construction has two significant differences with prior work. First, we utilize input-certified aggrega-
tors ΠAgg to bound the influence of malicious clients: only values that pass P will be added together. Second,
we utilize binomial noise for differential privacy instead of discrete Gaussian or Skellam noise. We quantify
the privacy-accuracy tradeoff by way of a novel technical lemma that relates binomial noise and Gaussian
noise.

We build intuition here. Assume for now that ΠAgg could operate on real-valued numbers. Clients could
pre-process their data vectors by adding independent Gaussian noise N(0, (σ2/n)I), where I is the identity
matrix and n is the total number of clients. If all n clients are honest, the aggregated vector observed by the
output party has noise distributed as N(0,σ2I). It is well-established that this ensures a target parameter ε of
differential privacy when σ2 ≈ 1/ε2. If t > 0 clients are malicious, the aggregated vector has less variance
than targeted. As a result, the effective privacy parameter will not be the same as the target parameter ε but
it will follow a smooth function of t, roughly ε ·

√
n/(n− t).13

In reality, we will only be able to operate with finite-precision values. So instead of Gaussian noise with
parameter σ2/n for each coordinate, each client samples binomial noise with parameter h/n which means
the aggregate noise in any coordinate is Bin(h,1/2). Clients simply need to discretize their data in order to
match the discrete nature of binomial noise. We describe this pre-processing in more detail in Subsection 3.2.

We prove that the protocol is private by quantifying how well the binomial approximates the distribution
formed by rounding a Gaussian to the nearest integer. The De Moivre-Laplace theorem asserts that, as h→∞,
Bin(h,1/2)−h/2 approaches round(N(0,σ2 = h/4)). But it does not tell us how to choose h for a target level of
approximation. So we derive a version of De Moivre-Laplace that does: to ensure the binomial is (ε,δ)-close
to the rounded Gaussian—where “(ε,δ)-close” is the condition that appears in approximate differential
privacy—we require h ≈ 1

ε2
log 1

δ (Theorem 3.4). The upshot is that greater fidelity of approximation requires

11A comparison of our work with [29] is discussed in Remark 1.2.2.
12For intuition, the reader can assume an honest majority of clients.
13Clients could instead sample from N(0, (σ2/(n− t0))I) and thereby ensure a target level of privacy for all t ≤ t0. But the price of such

pessimism is larger variance than needed.
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a greater scale of noise.
To prevent their signal from being drowned out, clients re-scale their data to match the scale of noise.

When there are no malicious clients, the output party obtains an unbiased estimate of the mean by undoing
the scaling that the clients performed. The presence of t malicious clients naturally introduces bias but this is

bounded by Õ( tn ·
√
d

ε
√
n
). This guarantee is made possible by input certification: we only add vectors whose

Euclidean norms are below a threshold. The threshold is obtained by bounding the tails of the pre-processing
algorithm’s distribution.

Section 5 contains a proof that the term t
n ·
√
d

ε
√
n

in our bias bound is unavoidable for a large class of
wrappings around input-certified secure aggregation. The intuition is as follows. Any DP solution for
mean estimation (including distributed ones) must have expected squared error ≈ d/ε2n. If the estimate is
unbiased, this is a lower bound on the variance. Now, for a wrapped protocol Π = (PRE, P ,POST) where
POST is affine, this implies a lower bound on the variance of PRE. The upshot is that malicious clients can
contribute an extreme value inside the support of PRE.

Statistical vs. Computational DP. Like prior wrappings around secure aggregation, our proofs of dif-
ferential privacy operate under the assumption of an ideal functionality that performs secure aggregation.
Because the adversary in this setting only views the noisy output of secure aggregation, the wrapping offers
protection against even a computationally unbounded adversary. But we will ultimately use a real-world
protocol for aggregation whose security guarantees are proved to hold against a bounded adversary. Specifi-
cally, we leverage zkSNARKs to efficiently achieve robustness guarantees within our aggregation protocol.
While it is indeed possible to construct an information-theoretic protocol with guaranteed output delivery
using generic MPC protocols for honest majority settings, such protocols often come with trade-offs. They
may require clients to engage in multiple rounds, be communication-intensive, or necessitate a trusted
setup. Given these considerations, our protocol opts for efficiency by relying on symmetric-key primitives.
Hence, in that case, we are left with the weaker guarantee of computational differential privacy [50]. Refer to
Definitions A.1 and A.2 for more detail.

Comparison with "Our Data, Ourselves" (ODO) [29]. This work by Dwork, Kenthapadi, McSherry,
Mironov, and Naor [29] identifies a private solution in the central DP model, such as the Gaussian mechanism,
and proposes an MPC protocol to sample the required noise in shares. A primary challenge of this generic
approach is enabling servers to sample noise in a distributed manner while ensuring simulation-based
security. Although ODO offers a method for generating distributed noise, it does not establish the necessary
simulation-based security.

To achieve robustness, ODO employs interactive MPC, whereas our approach utilizes more efficient
zkSNARKs. Additionally, ODO requires each server to perform VSS on three values and conduct multiple
interactive checks to generate noise shares. In contrast, our clients add noise locally, which is verified
through zkSNARKs, leading to a significant reduction in communication overhead and the number of
rounds required. Furthermore, ODO treats all parties equally, involving both clients and servers in the
computation and not minimizing client participation. In our protocol, however, we require only a single
round of client involvement. Overall, our approach reduces the number of VSS sharings, improves the
efficiency of robustness checks, and supports more generic robustness checks.

2 Security Defintion

We introduce some notation to describe our multiparty computation protocols. In this work, we only
consider static corruptions, i.e. the adversary needs to decide which party it corrupts before the execution
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begins. We use the following security parameters in our definition. We denote by κ a computational security
parameter and by ϵ,δ statistical security parameters that captures statistical errors. Let Π = ⟨P1, P2, . . . , Pn⟩
denote a n-party protocol, where each party is given an input (xi for Pi) and security parameters 1s and 1κ.
We allow honest parties to be PPT in the entire input length (this is needed to ensure correctness when no
party is corrupted) but bound adversaries to time poly(κ) (this effectively means that we only require security
when the input length is bounded by some polynomial in κ). We denote by EXECΠ,I ,A(z)(x1, . . . ,xn,κ,ϵ,δ)
the random variable representing an execution of Π with adversary A controlling parties in I , where z is
the auxiliary input, xi is Pi ’s initial input, κ is the computational security parameter and s is the statistical
security parameter. We denote by outPi (e) and VIEWA(e) as functions that take an input an instance of the
execution e and outputs the output of the honest party Pi and view of the adversary A respectively in the
execution e. In some of our protocols the parties have access to ideal model implementation of certain
cryptographic primitives G which we refer as a protocol in the G-hybrid. The definitions below extend to
protocols in G-hybrid. The canonical protocol in the G hybrid described the protocol in which all honest parties
take their inputs and send them to G and finally output whatever G returns.

Definition 2.1. (DME-Usefulness). Given X = (x1, . . . ,xn), let µX be the sample mean of a distribution D i.e.,
µX ← 1

n

∑
i∈[n] xi where xi are sampled from D. We say that the protocol Π satisfies ν(t)-DME-usefulness

w.r.t D if for any adversary A controlling up to t clients and Pn receiving the output,

E

[{
xi ←D;e← EXECΠ,I ,A(z)(x1, . . . ,xn,κ,ϵ,δ) :

∥∥∥outPn(e)−µX∥∥∥2
2

}]
≤ ν(t)

Definition 2.2. A protocol Π is said to satisfy (ϵ,δ)-IND-CDP if it holds that the randomized algorithm,
on input vector (x1, . . . ,xn), samples an execution e of Π with adversary Awhere Pi ’s input is set to xi and
outputs VIEWA(e) offers (ϵ,δ)-approximate computational differential privacy (see Definition A.2).

Definition 2.3. A protocol Π is said to be (ϵ,δ,ν)-Differentially-Private Distributed Mean Estimation protocol
(DP-DME) for distribution D if it satisfies the following two properties: (1) (ϵ,δ)-IND-CDP and (2) ν-DME-
Usefulness w.r.t D.

Remark 2.4 (Comparison with simulation-based security). Our security definition captures correctness and
privacy through game-based definitions of usefulness and differential privacy. While we gain efficiency, this is strictly
weaker from a privacy standpoint than an MPC protocol that realizes, via the standard simulation-based security
notion, an ideal functionality that implements (the same) differentially private mechanism with robustness (i.e., input
certification) to compute the mean. This is because the latter, in addition to implying (ϵ,δ)-IND-CDP, would also
guarantee that the view is simulatable from the output and inputs of the corrupted parties. In fact, we demonstrate
that our protocol satisfies these game-based properties by considering a slightly weaker ideal functionality (which is
sufficient for the guarantees) and securely realizing it via an MPC protocol in the standard simulation-based paradigm.

3 Differentially-Private Distributed Mean Estimation

Basic notations. We denote the security parameter by λ. We say that a function µ :N→N is negligible if for
every positive polynomial p(·) and all sufficiently large λ’s it holds that µ(λ) < 1

p(λ) . We use the abbreviation
PPT to denote probabilistic polynomial-time and denote by [n] the set of elements {1, . . . ,n} for some n ∈N.
BC(·) denotes the communication over the broadcast channel.

We will use nc, tc to denote the total number of clients and the number of malicious clients, respectively,
but will drop the subscript when we describe how we enforce DP in Sections 3 and 5 (but keep the subscripts’
in Section 4). This is because we focus solely on client behavior in those sections, so there is no need to
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disambiguate clients from servers. Tables 2 and 3 list the variables used in this paper along with their
definitions.

Distributed Mean Estimation via Wrapped Protocols. In this section, we will describe our differentially-
private mechanism modularly by assuming that the parties i.e., clients U = {U1, . . . ,Unc }, have access to a
input-certified secure aggregation (in short, certified aggregation) ideal functionality FAgg, described in
Figure 4. Specifically, we construct a “wrapping” around the certified aggregation functionality, which
consists of (PRE, P ,POST), where PRE represents a randomized pre-processing algorithm, P is the input-
certification predicate, and POST is the post-processing algorithm. The wrapped protocol operates as
follows.

1. Each client Ui with input Xi pre-processes its inputs as Yi = PRE(Xi).

2. The certified aggregation functionality FAgg is invoked on the pre-processed inputs {Yi}Ui∈U using P as
the certification predicate.

3. The output party receives the aggregated result Yagg from the FAgg functionality, which is subsequently
post-processed using POST and designated as the final output.

Differential Privacy for Wrappings. The classic notion of differential privacy makes the implicit assump-
tion that the privacy adversary only has access to the output of an algorithm. In our setting, the adversary
has a view that potentially contains more information than the outcome of input-certified aggregation.

Definition 3.1. A wrapping Π around certified secure aggregation functionality satisfies (ε,δ)-computational
differential privacy if the algorithm that generates the adversary’s view jointly with the protocol’s output
satisfies (ε,δ)-computational differential privacy.

We now focus on instantiating the wrapping Π = (PRE, P ,POST). Depending on how we instantiate Π,
we obtain different variants of our protocol. In this regard, we propose a specific variant of our protocol,
referred to as Distributed Binomial Mechanism (DBM). As the name suggests, each client in the DBM adds
binomial noise to a discretized version of their input (i.e. PRE). Subsequently, the clients invoke an instance
of certified aggregation on the pre-processed inputs. This calls for transforming the input-certification
predicate over the actual inputs to a new predicate over the pre-processed inputs. This new predicate, say
P , should not exclude any honest clients who honestly generate and pre-process their inputs. The output
party’s view is the outcome of a DP algorithm because the aggregate vector has noise sourced from all honest
clients. The view is usable as a mean estimate, after a post-processing step (i.e., POST).

We compare our DBM with other instantiation of wrappings in Table 1. These include analysis of a
different wrapping around ΠAgg by Chen, Özgür, and Kairouz [19]. Unlike the DBM, their Poisson-Binomial
mechanism (PBM) requires shared randomness. More significantly, small constants are challenging to obtain
in the version that Chen et al. explicitly give (“Kashin-PBM” in Table 1). We are able to obtain a better leading
constant for a variant but cannot avoid an extra logarithmic term (“Rotation-PBM”). Refer to Appendix G for
more detail.

Observe that all of our upper bounds on mean-squared error have a t2

n2
· dn term. In Section 5, we prove

that this term is unavoidable for a natural class of protocols that wrap around certified aggregation.
For simplicity, we use n to denote the total number of clients and t to denote the number of corrupt

clients (rather than nc and tc respectively).

3.1 Building Blocks: Binomial and Gaussian Mechanisms

Let f be any ∆-sensitive function over the integers Zd , meaning that ∥f (W )− f (W ′)∥2 ≤ ∆ for matrices
W,W ′ differing on one row. Let BMf ,m be the algorithm that takes some W as input and reports f (W ) + η

9



D.P. Field Shared Bound on Expected ℓ22 error
Type Size Randomness with t corruptions

DBM (ε,δ) Õ
(
nd log d

δ None O
(
t2

n2
· d
ε2n

log2 eεnd
δ + n−t

n ·
d

ε2n2
log eε

δ

)
(our work) Approx. +d2

ε2
log2 d

δ

)
Theorem 3.6

Kashin-PBM d × d matrix O
(
t2

n2
· αℓdεn + n−t

n ·
αd
εn2

)
by Chen et al. [19] (α,ε) n · ℓ Theorem G.9

Rotation-PBM Rényi O(d) angles O
(
log(nd) ·

(
t2

n2
· αℓdεn + n−t

n ·
αd
εn2

))
implicit in [19] Theorem G.14

Gaussian Mech. Approx. N/A N/A O
(
t2

n2
+ d

ε2n2
log 1

δ

)
(centralized DP [30]) Rényi N/A N/A O

(
t2

n2
+ dα

εn2

)
Table 1: Comparison of solutions for mean estimation of data in Bd . “Centralized DP” refers to the setting
where a single party receives all client data in the clear. We assume d ≥ n to simplify some bounds. The
value ℓ ∈N is a positive integer parameter of the Poisson-Binomial Mechanism (PBM). Refer to Appendix G
for more information on the PBM and Rényi DP.

where η[j] ∼i.i.d. Bin(m,1/2)− h/2 for all j ∈ [d]. Let the Gaussian mechanism GMf ,σ2 be the algorithm that
reports f (W ) + η where η[j] ∼i.i.d. N(0,σ2) for all j ∈ [d].

The Gaussian mechanism is a classic building block for differentially private algorithms. We reproduce
one statement of its privacy guarantees below.

Theorem 3.2 (From Dwork & Roth [31]). Fix ε,δ ∈ (0,1). If σ2 ≥ 2∆2

ε2
ln 5

4δ , then GMf ,σ2 is (ε,δ)-differentially
private.

Due to the discrete nature of computation and communication, we will deal with a discrete version of the
Gaussian mechanism. Let G̃Mf ,σ2 be the algorithm that reports f (W ) + round(η), where round is the function
that rounds a real number to the nearest integer and η[j] ∼i.i.d. N(0,σ2) for all j ∈ [d].

Rounding a real-valued η before adding it to an integer is interchangable with rounding the sum of η
and that same integer. Hence,

Lemma 3.3. On any input W , G̃Mf ,σ2 is identically distributed with round ◦GMf ,σ2 .

Now, we show that the noise in G̃Mf ,σ2 is well-approximated by binomial noise with the same variance
(σ2 = h/4). The textbook De Moivre-Laplace theorem asserts this is the case as the variance approaches
infinity, but we require a way to quantify the distance between the distributions for a finite value of h. This is
done in the following theorem.

Theorem 3.4 (Finite-value De Moivre-Laplace). Fix any ε ∈ (0,1), δ ∈ (0,2e−6) and any even m > 12
ε2

ln2 2
δ .

round(N(0,σ2 =m/4)) ≈ε,δ Bin(m,1/2)−m/2

A proof can be found in Appendix C. Now we can transfer the privacy analysis of the Gaussian mecha-
nism to the binomial mechanism: G̃Mf ,σ2 inherits the privacy of GMf ,σ2 by closure under post-processing
and BMf ,m inherits the privacy of G̃Mf ,σ2 via Theorem 3.4.

Theorem 3.5 (Privacy of BM). Let f be any ∆-sensitive function over the integers Z
d , let W,W ′ be matrices

differing on one row. Fix any ε0, ε1, δ0, and δ1 in the interval (0,1). If m is an even integer such that m >

max
(
12
ε20

ln2 2
δ0
, 8∆2

ε21
ln 5

4δ1

)
, then for any event E,

P

[
BMf ,m(W ) ∈ E

]
≤ exp(2dε0 + ε1) ·P

[
BMf ,m(W

′) ∈ E
]

+2exp(dε0 + ε1) · dδ0 + exp(dε0) · δ1
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A proof can be found in Appendix D. For any fixed ε,δ ∈ (0,1), it is of course possible to choose the
parameters in such a way that BM satisfies (ε,δ)-differential privacy. But we leave the theorem in its
four-parameter state to ease analysis further down the line.

3.2 Distributed Binomial Mechanism (DBM) for DP-DME

We are now ready to present the distributed binomial mechanism (DBM) for differentially private mean
estimation. A “wrapping” around certified aggregation, Πg,b,τ,r is specified by a randomized pre-processing
algorithm PREg,b,τ , a predicate inBallr , and a post-processing function POSTg .

1. Honest clients run PREg,b,τ locally to generate inputs to the certified aggregator. It performs two main
operations. First, it maps the client’s data—a vector of continuous values—to a vector of discrete
values. g is a parameter that determines granularity. Second, it generates a vector of independent
binomial noise: each entry is the number of heads after b tosses of a fair coin. The client’s input for
Σ is the sum of the two vectors. If a party added all n of these sums, the output would be identical
to an execution of the binomial mechanism, which we showed is differentially private for the right
parameters.

2. inBallr is the predicate that takes any client vector Yi ∈ F d
q as input and outputs 1 if and only if it is

inside the ball of radius r (∥Yi∥2 ≤ r).

3. The output party’s post-processing function POSTg produces an estimate of the mean by compensating
for discretization: POSTg (yagg) =

2
ng · yagg

Algorithm 1: Local pre-processor PREg,b,τ for DBM

Input: Xi ∈ Bd
Output: Yi ∈ F d

/* Step 1: map each coordinate to integer ∈ [−g/2,+g/2]... */
For j ∈ [d]

X̂i[j]← g · Xi [j]
2

Wi[j]← ⌊X̂i⌋+Ber(X̂i − ⌊X̂i⌋)
/* Step 2: sample binomial noise */
For j ∈ [d]

ηi[j] ∼ Bin(b,1/2)− b/2
/* Step 3: Truncate noise vector if overly large */
If

∥∥∥ηi∥∥∥2 > τ :
ηi ← 0⃗

Return Yi ←Wi + ηi

We give pseudocode for PREg,b,τ in Algorithm 1. Note that it has a truncation step: if the noise vector
exceeds a norm bound τ , the randomizer resets it to zero. While this slightly complicates our privacy
analysis, it allows the aggregator to filter out overly large vectors sent by malicious clients.

This filtering defends against manipulation attacks (see Figure 5). Each attack K is specified by a set of
corrupt clients C ⊂ [n] (with |C| = t) and a joint distribution T over {y ∈ F d

q |
∥∥∥y∥∥∥

2
≤ r}t . The malicious clients

send messages {yKi }i∈C sampled from T; due to the certified aggregation, the malicious clients are only able
to contribute vectors in a restricted set. While they may deviate from PREg,b,τ , we prove that the error they
introduce will be bounded.
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Theorem 3.6. For ε ∈ (0,9/10) and δ ∈ (0,2e−6), there are choices of parameters g,b,τ, r such that Πg,b,τ,r =
(PREg,b,τ , inBallr ,POSTg ) ensures (ε,δ)-DP and solves DME with variance O( d

ε2n2
log eε

δ ) when there are no malicious

clients. When under any attack by t ≤ n/6 clients, it ensures
(
ε ·

√
n
n−t , δ · exp

(
ε ·

√
n
n−t − ε

))
-differential privacy and

solves DME with mean-squared error

t2

n2
·O

(
1+

√
d

ε
√
n
log

eεnd
δ

)2
+
n− t
n
·O

(
d

ε2n2
log

eε

δ

)
Bias is only present due to attacks. It suffices for certified aggregation to operate on numbers in a field of size

n · (g + b) = Õ

(
nd log

d
δ
+
d2

ε2
log2

d
δ

)
We note that the t ≤ n/6 condition is arbitrary: any other constant fraction bound can be substituted, at

the cost of adjusting the range of ε. Appendix D contains a proof of the theorem. The proof will depend
on sub-claims that the rest of this section will elaborate. Proofs of these sub-claims are also provided in the
appendix. Also, we visualize the error bound in Figure 6 of Appendix D, in a regime where d < n and a
regime where d > n.

Remark 3.7 (Servers Adding Noise). An alternative to clients adding noise to their inputs, we could consider the
servers adding the noise by simply using our PRE algorithm with an all zero input. However, this requires both servers
and clients to submit proofs as we still need robustness, whereas our protocol only requires client proofs. The upside
when the servers add noise is that we can obtain slight improvements in the mean-squared error since we assume strong
honest-majority among servers (i.e., n ≥ 3t + 1). The downside is that such an approach is mainly applicable when
PRE adds “additive” noise to clients’ input, as in our work for DPDME. For more generic functions applied by PRE,
as in the work of Chen et al. [1], incorporating server-added noise is non-trivial (need distributed noise generation
mechanism), but our approach remains applicable. However, we leave it as future work to further analyze such an
approach.

3.2.1 Properties of Pre-Processing Algorithm

In order to analyze the protocol’s privacy and accuracy guarantees, we first establish key properties of
the pre-processing algorithm PREg,b,τ . First, its output is a re-scaled but unbiased representation of the input
vector:

Lemma 3.8. For any Xi ∈ Bd , if Yi ← PREg,b,τ (Xi), then E [Yi[j]] =
g
2 ·Xi[j]

Second, the output vector lies in a ball of predetermined size:

Lemma 3.9. For any Xi ∈ Bd , if Yi ← PREg,b,τ (Xi), then ∥Yi∥2 ≤ g/2+
√
d + τ with probability 1.

An immediate consequence of this result is that we can assign r ← g/2 +
√
d + τ and thereby bound

the influence of malicious clients. Similar algebra also implies a bound on the ℓ2 sensitivity of Wi ,W
′
i , the

discrete representation of Xi ,X
′
i :

Lemma 3.10. For any Xi ,X
′
i ∈ B

d , if we construct Wi[j],W ′i [j] according to PREg,b,τ for every j ∈ [d], then∥∥∥Wi −W ′i
∥∥∥
2
≤ g +2

√
d with probability 1.

Finally, we can bound the maximum magnitude of any entry in the output vector. This will allow us to
determine the field size in an instantiation of ΠAgg.

Lemma 3.11. For any Xi ∈ Bd , if Yi ← PREg,b,τ (Xi), then ∥Yi∥∞ ≤ g/2+ b/2 with probability 1.
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3.2.2 Guarantees of Protocol

We will first bound the error of the DBM’s mean estimate in terms of the parameters g,b,τ :

Lemma 3.12 (Mean Squared-Error of DBM). Fix any attack K for t malicious clients. If µK ←ΠK
g,b,τ,r (X), then

the mean squared-error of µK with respect to µ← 1
n

∑
i∈[n]Xi is

E

[∥∥∥µK −µ∥∥∥2
2

]
≤ 4t2

n2
· (1 +

√
d/g + τ/g)2 +

d

n2
· h(b+1)

g2

When all clients are honest (h = n, t = 0), this simplifies to d
4ng2 · (b+1)

It remains to identify parameter choices that guarantee differential privacy. Specifically, we will choose
g,b,τ such that the process that generates the output party’s view—which we denote as ΣinBallr ◦PRE

K
g,b,τ (X)—

satisfies DP. The privacy parameters will depend on the number of malicious clients but in the ideal case
where there is no attack—which we denote as ΣinBallr ◦PREg,b,τ (X)—the parameters will equal a target (ε,δ)
pair.

As mentioned previously, we will argue that ΣinBallr ◦PRE
K
g,b,τ (X) simulates the binomial mechanism

BM(X) and then invoke the privacy analysis of BM(X) (Theorem 3.5). One small hurdle in our analysis is that
our pre-processing algorithm PREg,b,τ truncates noise that exceeds norm τ . This means even an execution
without attack will not be identical to the output of the binomial mechanism BM(X). Hence, we cannot
immediately invoke Theorem 3.5. But we can bound the statistical distance between PREg,bτ and PREg,b,∞,
which never resets the noise it samples to 0⃗.

Lemma 3.13. If τ ≥
√

db
2 ln 2nd

δ , then for any input X, PREg,b,∞(X) is within statistical distance δ of PREg,b,τ (X)

Proof. We use Hoeffding’s inequality to bound the probability that any noise sample ηi[j]2 exceeds b
2 ln

2nd
δ

by δ/nd. A union bound over all clients and dimensions completes the proof.

We can factor this slack into the analysis from the preceding section and then choose g,b,τ such that
ΣinBallr ◦PREg,b,τ (X) satisfies (ε,δ)-DP.

Lemma 3.14 (Parameters for DBM’s Privacy). Fix t ≤ n/6, ε ∈ (0,9/10), and δ ∈ (0,2e−6). Let εpriv← 99ε/100,

εsim ← ε/200d, δpriv ← δ/5eε, and δsim ← δ/5deε. When b ≥ 12
nε2sim

ln2 2
δsim

, g ≤ εpriv
√

nb
8ln(5/4δpriv)

− 2
√
d, and

τ ≥
√

db
2 ln(2nd/δpriv), Πg,b,τ,r is

(
ε ·

√n
h , δ · exp

(
ε ·

√n
h − ε

))
-differentially private. When all clients are honest

(h = n), this simplifies to (ε,δ)-DP.

Appendix D contains a proof that lemmas 3.12 & 3.14 collectively imply Theorem 3.6. We provide a
privacy accounting analysis when the protocol is repeated R times in Appendix E.

3.3 Protocol and Main Theorem

Consider a protocol (i.e., wrapping) Π′ = (PRE, P ,POST) in the FAgg-hybrid: the clients pre-process their
inputs as per PRE and send it to FAgg. Upon receiving the output from FAgg , send this output to the output
party, who then post-processes it as per POST and sets it as the output. Let ΠDBM be the protocol obtained
by taking Π′ and replacing all calls to the FAgg-functionality with our input-certified secure aggregation
protocol ΠAgg. For completeness, our main theorem includes the costs of our secure aggregation protocol,
with details in Section 4. We defer the proof of the main theorem to Appendix M.

Theorem 3.15 (Main Theorem). Let ns, ts ∈N such that ts < ns/3. Given a distribution D with support contained
in a Euclidean unit ball, Protocol ΠDBM is a (ϵ,δ,ν)-Differentially-Private Distributed Mean Estimation (DP-DME)
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protocol for D among nc clients each holding input vectors of length d with elements in some finite field F , ns servers,
and an output party O, which is secure against a static, malicious rushing adversary that can maliciously corrupt
an arbitrary number of clients, up to ts servers and the output party and ensures guaranteed output delivery. This
protocol achieves (ε,δ)-DP and solves DME with variance O( d

ε2n2
log eε

δ ) when there are no malicious clients. When

under any attack by t ≤ n/6 clients, it ensures
(
ε ·

√
n
n−t , δ · exp

(
ε ·

√
n
n−t − ε

))
-differential privacy and solves DME

with mean-squared error

t2

n2
·O

(
1+

√
d

ε
√
n
log

eεnd
δ

)2
+
n− t
n
·O

(
d

ε2n2
log

eε

δ

)
Bias is only present due to attacks. It suffices for certified aggregation to operate on numbers in a field of size

n · (g + b) = Õ

(
nd log

d
δ
+
d2

ε2
log2

d
δ

)
Moreover, the total communication complexity between a client and each server is O(d +d log |P |+ log2(ns · d))

field elements where |P | and d are the size and depth (respectively) of the circuit associated with the predicate P . The
total amortized communication among the servers is O(nc · d · n3s ) field elements in the offline phase and O(nc · d · n2s )
field elements in the online phase for a sufficiently large d. Additionally, a client is required to engage in only a single
round of communication.

4 Input-Certified Secure Aggregation

We present our main protocol for Input-Certified Secure Aggregation in this section. We provide a
brief overview and then provide our constructions for Distributed Commit-and-Prove (dCP) and Verifiable
Relation Sharing (VRS).

At a high level, we identify Verifiable Relation Sharing (VRS) introduced in the work of Applebaum et al.
[4] as the key tool for robust secure aggregation. Recall that VRS with respect to some predicate P allows
a dealer to share a secret to a set of servers with the guarantee that honest servers receive valid shares of
a secret that satisfies the predicate P or rejects the dealer. Given a VRS scheme an input-certified secure
aggregation proceeds as follows: Each client acting as the dealer shares its secret using the VRS to the servers.
The honest servers at the end of the sharing phase aggregate their shares and deliver the output to the output
party that reconstructs the final result. In order to achieve guaranteed output delivery, the secret shares need
to satisfy an error-recovery mechanism (obtained using standard error-correcting code based sharing) so
that the output party can reconstruct the final result even if the malicious server provide incorrect values to
the output party.

A key contribution of this work is to design a VRS scheme that meets our requirement that the client
speaks only once and is concretely efficient. Toward this, we first design a VSS scheme inspired by the
proactive secret sharing scheme [39, 38] and incorporate input certification relying on an extension of the
distributed polynomial commitment scheme of Zhang et al. [68]. We abstract this primitive as distributed
commit and prove (dCP). We next describe our dCP and VRS protocols.

4.1 Distributed Commit-and-Prove (dCP)

We present our distributed commit-and-prove (dCP) protocol, which involves a prover and n verifiers.
Given n relations R1, . . . ,Rn, the prove, with input w, aims to prove to each verifier Vi that (xi ,w) belongs to
Ri for each i ∈ [n]. Our focus is on designing a dCP protocol for specific types of relations, which we specify
via a circuit. First, we define what it means for a relation to be specified via a circuit, and then we detail the
types of circuits for which we will construct a dCP.
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Functionality FdCP

FdCP runs among the Prover P and n Verifiers V = {V1, . . . ,Vn} and an adversary Sim. It is parameterized by n
relations (R1, . . . ,Rn):

• Commit Phase: Upon receiving a message (commit,sid,P ,w) from the prover P , record the values w and P ,
and send the message (receipt,sid,P ) to the verifiers in V and Sim. (If a commit message has already been
received, then ignore any other messages with the same sid.)

• Prove Phase: Upon receiving a message (dCP-prover,sid,xj ,Vj ) from the prover P compute Rj (xj ,w). If
Rj (xj ,w) = 1, then send the message (dCP-proof,sid,xj ,accept) to the verifier Vj and S , and Vj outputs
(xj ,accept). Otherwise, send (dCP-proof,sid, reject) to the verifier Vj and Vj outputs reject.

Figure 1: Ideal Functionality for Distributed Commit-and-Prove

Definition 4.1 (Relation Specification via Circuits). Consider a circuit C : F deg+1→ F
n that receives an input

in and outputs (out1, . . . ,outn), where outj = [C(in)]j is the jth output of the circuit given input in. A pair
(outj , in) belongs to Rj if the evaluation by C(in) does not output (⊥, . . . ,⊥). Furthermore, we say that the
distributed relation (R1, . . . ,Rn) is specified by a circuit C if (outj , in) belongs to Rj for each j ∈ [n].

In this work, we consider specific types of circuits that take as input a polynomial and output the
evaluation of the polynomials at predetermined points, depending on whether the input to the circuit
satisfies certain criteria. Formally, consider a circuit C : F deg+1→ F

n that receives an input in, which is a
polynomial f of degree deg and outputs (out1, . . . ,outn), where each outj = f (αj ) provided that P (f (0)) = 1;
if not, outj is set to ⊥ for every j ∈ [n]. Here, P : F → {0,1} denotes a predicate, and α1, . . . ,αn represent
predetermined evaluation points. The circuit C comprises two parts: (1) to check if P (f (0) = 1 and (2)
evaluate the polynomial f at n evaluation points. The latter portion of the circuit can be instantiated via the
butterfly circuit for the FFT algorithm, similar to [68].

Our Distributed Commit-and-Prove protocol is based on the transparent polynomial commitment scheme
given by Zhang et. al. [68]. . The ideal functionality for Distributed Commit-and-Prove (dCP), represented
by FdCP, is provided in Figure 1. The corresponding protocol ΠdCP, which securely implements FdCP, is
detailed in Figure 9 within Appendix J. The formal theorem is presented below, with a sketch of the proof
provided in Appendix J.

Theorem 4.2. Given (R1, . . . ,Rn), which are specified by a circuit C : F t+1→ F
n in accordance with Definition 4.1,

the ΠdCP protocol involving a prover P and n verifiers V1, . . . ,Vn, securely realize the FdCP functionality against a
static malicious adversary A who controls at most t verifiers. The complexities are as follows:

• The prover’s time is O(|C|+n logn).

• Each verifier’s time is O(d log |C|+ log2n).

• The proof size is O(d log |C|+ log2n) field elements for each verifier.

Here, d represents the depth of the circuit C.

Efficiency. The above complexities follow from Theorem 3 of [68] where t =O(n). For simplicity, we have
considered the case where the prover’s input is a single field element, x ∈ F . To extend this to the case where
the prover’s input is a vector, say X ∈ F d , we consider a larger circuit Cd : F d·(t+1)→ F

d·n which takes as
input d t-degree polynomial and outputs evaluations of each of the d polynomials at n points. The above
costs can be adapted for d input vector by considering Cd (instead of circuit C).
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4.2 Verifiable Relation Sharing (VRS) from dCP

We present our verifiable relation sharing (VRS) scheme in which the prover has an input x and aims to
secret-share x among the verifiers while proving that the input satisfies a certain predicate P i.e., P (x) = 1.
The VRS scheme is stronger than the dCP because it ensures that all verifiers either output accept along with
their respective shares if P (x) = or they all output reject if the P (x) , 1 (unlike a dCP, where some verifiers
can accept while others reject).

The ideal functionality for VRS, represented by FVRS, is provided in Figure 2. The corresponding protocol
ΠVRS, which is securely implemented FVRS, is detailed in Figure 3. The formal theorem is given below.

Functionality FVRS

The functionality FVRS communicates with a prover P , a set of n verifiers V = {V1, . . . ,Vn}, and an adversary A.
It is parameterized by a verifier corruption-threshold t and predicate P : F → {0,1}. Let (α1, . . . ,αn) be publicly
known elements in F .

Share Phase. The share phase proceeds as follows.

1. The Prover P has input f which is a t-degree polynomial and sends the message (Input,sid,P , f ) to
FVRS. The verifiers V do not have any inputs.

2. Upon receiving the input from P , FVRS checks if f is a t-degree polynomial and P (f (0)) = 1. Then,
FVRS proceeds as follows:

– If both checks pass, send (Output,sid,Vi , f (αi ), accept) to each verifier Vi , who then outputs
(f (αi ), accept), for all i ∈ [n].

– Otherwise, send (Output,sid,Vi ,⊥, reject) to all the verifiers and the verifiers output reject.

Figure 2: Ideal FVRS Functionality for Reed Solomon encoding

Theorem 4.3. Let t,n ∈N such that t < n/3 and P is a predicate. Then, the protocol ΠVRS between a prover P
and n verifiers V1, . . . ,Vn described in Figure 3 securely realizes FVRS functionality in the FdCP-hybrid model. The
complexities are as follows:

• The prover’s communication is O(d log |C|+ log2n) field elements for each verifier.

• The total communication complexity for all of the verifiers is

– Offline phase: n ·O(n2 +BC(n2)) field elements

– Online phase: n ·O(d log |C|+ log2n+BC(1)) field elements

Here, d represents the depth of the circuit C.

Efficiency. The complexities in the above theorem are for the case when the prover’s input is a single field
element. In this case, the prover sends to each of the verifiers the dCP proof, which costs O(d log |C|+ log2n)
and an input share of size O(1). The offline phase, run among the verifiers, involves n parallel invocations of
VSS to secret-share one field element. We use the VSS scheme from [5], which has a communication cost of
O(n2 +BC(n2)) to secret-share a single field element among n parties. Thus, the total offline communication
is n times the cost of a single VSS. In the online phase, each verifier receives a proof, which costs O(d log |C|+
log2n), and broadcasts a masked share, which costs BC(1).

We now extend to the case where the prover’s input is a vector of d field elements. Similar to the efficiency
for d input vector in dCP, the costs are computed with respect to a larger circuit Cd : F d·(t+1)→ F

d·n. More
precisely, the complexities are as follows14:

14Recall that the circuit Cd takes as input d t-degree polynomial and outputs evaluations of each of the d polynomials at n points.
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Protocol ΠVRS

This protocol allows a prover P to verifiably secret share a value x ∈ F among n verifiers V = {V1, . . . ,Vn} and prove
that P (x) = 1. It is parameterized by a bound n ≥ 3t + 1 where n is the number of verifiers, t is the number of
corrupt verifiers and a predicate P : F → {0,1}. Given predicate P , we can obtain a circuit C : F t+1→ F

n and n
relations (R1, . . . ,Rn) as per Definition 4.1. All the parties have access to an distributed commit-and-prove ideal
functionality FdCP, which is parameterized by (R1, . . . ,Rn). Let λ be the security parameter.

Input & Output. P has a t-degree polynomial f and the verifiers V have no inputs. If P (f (0)) = 1 holds, then each
verifier Vi ∈ V outputs (f (αi ), accept); Otherwise, all verifiers output reject.

Offline Phase. The parties interactively generate an RRS encoding of a random value r where (rsh1, . . . , rshns )←
Enc(r) and each verifier Vi receives shares rshi for all i ∈ [n]. Each verifier Vi ∈ V proceeds as follows:

1. Sample a random value ri ∈ F and secret-share it among the other verifiers using a VSS scheme such

that Vj receives rsh(i)j .

2. Upon the completion of all n VSS instances, Vi computes and ouptuts the random share rshi =∑
j∈[n] rsh

(j)
i .

Sharing Phase.

1. [Input Sharing] Prover P with a secret x proceeds as follows.

(a) Sample a t-degree polynomial f (·) such that f (0) = x and compute shi = f (αi ) for all i ∈ [n]. Then,
invoke the Commit Phase of FdCP as the Prover with input (Commit,sid,P , f ).

(b) Invoke the Prove phase of FdCP as a Prover with input (dCP-prover,sid,P ,shi ,Vi ).

2. Upon receiving the message (dCP-Proof,sid,shi ,happyi ) from FdCP, if happyi = accept, then broadcast
(valid-proof,Vi ,mshi ) where the masked share mshi := shi + rshi , otherwise set mshi :=⊥ and broadcast
nothing.

3. [Consistency Check] Let the broadcasted message from each verifier Vi ∈ V be denoted by
(valid-proof,Vi ,msh′i ). If the masked shares obtained from verifiers’ broadcasts, denoted by
(msh′1, . . . ,msh′n), form a valid RSF ,n,t+1 code with at most t errors (i.e., decoding succeeds on the
masked shares).

4. [Share Recovery] Each verifier Vi locally computes its output as follows:

(a) If the consistency check fails, then set Sharei :=⊥ and output (reject,⊥).
(b) If the consistency check passes, then each verifier Vi ∈ V outputs (accept,Sharei ) where Sharei is

computed as follows:

(i) Keep Existing Share: If happyi = accept, then set Sharei := shi , or

(ii) Recover Share: If happyi = reject, then Vi needs to recover its share by computing Sharei :=
msh′′i − rshi where (msh′′1 , . . . ,msh′′n ) is obtained by error-correcting (msh′1, . . . ,msh′n).

Figure 3: A VRS Protocol for predicate P

• The prover’s communication is O(d log |Cd |+ log2(d ·n)) field elements for each verifier.

• The total communication complexity for all of the verifiers is

– Offline phase: n · d ·O(n2 +BC(n2)) field elements

– Online phase: n ·O(d log |Cd |+ log2(d ·n) +BC(d)) field elements
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4.3 Input-Certified Secure Aggregation From VRS

We present our input-certified secure aggregation protocol, which utilizes verifiable relation sharing
(VRS) scheme as a building block. At a high level, the output party wants to aggregate the inputs Xi ∈ F d

of each client cUi , while ensuring that only well-formed inputs are included in the aggregation. In our
setting, well-formedness of the inputs is captured via a predicate P (·) : F d → {0,1}. We say that an input is
well-formed if and only if P (Xi) = 1. Formally, the output party wants to compute ΣUiP (Xi) ·Xi .

To achieve this, we require that each client secret-share their input among the servers. The servers can
then aggregate the shares and reconstruct the aggregated shares towards the output party. To tolerate an
adversary corrupting clients maliciously, we need to ensure that the clients verifiably secret share their
input among the servers and also prove that their input are well-formed. The VRS scheme described in the
previous section provides this exact functionality. Hence, each client can use the VRS scheme to secret-share
and prove the well-formedness of their inputs to the verifiers. Essentially, the secure aggregation protocol
involves three main steps: (1) Each client shares their input using the VRS scheme, (2) the servers aggregate
the shares of all well-formed inputs, and (3) The aggregated shares are sent to the output party, who can then
reconstruct the aggregate from the shares. A detailed description of the protocol ΠAgg is given in Figure 10
within Appendix L.

Theorem 4.4. Let ns, ts ∈N such that ts < ns/3 and P : F d → {0,1} be an arbitrary predicate. Let FAgg be the ideal
functionality given in Figure 4. The protocol ΠAgg, as outlined in Figure 10, securely realizes FAgg in the FVRS-hybrid
model among nc clients each holding input vectors of length d with elements in some finite field F , ns servers, and an
output party O, which is secure against a static, malicious rushing adversary that can maliciously corrupt an arbitrary
number of clients, up to ts servers and the output party and ensures guaranteed output delivery where κ is the security
parameter. Additionally, a client is required to engage in only a single round of communication.

The complexities are as follows:

• The communication between a client and each server is O(d log |C|+ log2 ns) field elements.

• The total amortized communication complexity of the ns servers for a suffienctly large d is

– Offline phase: nc · ns ·O(n2s · (d/ns) + (d/ns) · n3s ) =O(nc · d · n3s ) field elements.

– Online phase: nc · ns · d ·O(d log |C|+ log2 ns + ns) field elements.

Here, d represents the depth of the circuit C.

Efficiency. The complexity for the ΠAgg are the cost of running nc VRS instances, one per client, where
the client has a d-dimensional vector as input. We highlight two optimizations. Firstly, when the input
vector length d is large, broadcast extension protocols [36, 52] can be employed. Specifically, broadcasting a
sufficiently long message comprising L field elements costs O(ns ·L). Secondly, we improve the offline phase
of the VRS protocol, which results in a reduction of the server’s communication by ns. Given that there are
nc invocation to VRS, the servers needs to generate random sharing of nc · d values in the offline phase of the
vRS. Previously, each server shared a random value using a VSS, which were then aggregated to generate a
single random sharing. To obtain nc · d random sharing, each server needs to invoke nc · d VSS instances
in the offline phase. Instead of aggregating, we employ a randomness extraction technique [55, 34, 27] to
extract O(ts) random sharing from the ns VSS invocations. This reduces the overall cost by a factor of ns.

5 A Lower Bound for Wrapped DP DME

As mentioned in the Introduction, it is possible to design other protocols for DP DME by wrapping pre-
and post-processing algorithms around certified secure aggregation. These alternative “wrapped protocols”
could asymptotically improve on our bound on error. But in this section we argue this is impossible for
a large class of wrapped protocol. Specifically, our lower bound applies to any Π = (PRE, P ,POST) where
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(a) the post-processing function POST is a linear transformation of the aggregated value yagg and (b) any
coordinate in its estimate of the population mean has bias dominated by its standard deviation. Repeated
usage of DP DME (e.g. in gradient descent) will accumulate bias over time so constraint (b) is practical.
And, as far as we are aware, all prior work that use a secure aggregation primitive for DP DME satisfy (a)
[40, 2, 19].

We note that our lower bound takes place in a stochastic setting, where data is drawn independently
from a probability distribution and the quantity to estimate is the mean of that distribution. Protocols that
compute the empirical mean (like ours) can be used for the stochastic setting, so the lower bound applies.

Theorem 5.1. Fix arbitrary d̂ ∈N. Suppose Π = (PRE, P ,POST) is an (ε,δ)-DP protocol that wraps around certified
secure aggregation ΠAgg and POST(y) := yQ for some public matrix Q ∈ Rd̂×d . If Π(Dn) is an estimate of E [D]
whose standard deviation of error in any coordinate j exceeds the bias in j, then there is an attack K such that

E

[∥∥∥ΠK (Dn)−E [D]
∥∥∥2
2

]
≥ c ·min

(
t2

n2
· d

ε2n
,
t2

n

)
.

where c is a universal constant.

Proof. We first recall a prior result in the DP literature: any differentially private algorithm that performs
mean estimation must have ≈ d/ε2n2 expected squared error [42, 61].15

Theorem 5.2 (Adapted from [42, 61]). For every n,d ∈N, ε > 0, and δ < 1/96n, letMε,δ denote the class of all
(ε,δ)-private algorithms and let D denote the class of all product distributions on {±1/

√
d}d . There is a constant κ

where

min
M∈Mε,δ

max
D∈D

E

X∼Dn,M

[
∥M(X)−E [D]∥22

]
≥ κ ·min

(
d

ε2n2
,1

)
We use this theorem to prove, by way of a probabilistic argument, the existence of a strategy that

introduces Ω( t
2

n2
· d
ε2n

) squared bias. We defer details and analysis to Appendix F, but sketch the intuition
here. If Π produces low-bias estimates when all clients are honest, the preceding theorem is effectively
a lower bound on variance. Moreover, if POST is linear, each of the honest clients must contribute a 1/n
fraction of that variance. This means the set of inputs an honest client can compute via PRE must be large
enough to include an extreme value ṽ.

Lemma 5.3. Fix arbitrary d̂ ∈N. Suppose Π = (PRE, P ,POST) is a protocol that wraps around certified secure
aggregation ΠAgg and POST(y) := yQ for some public matrix Q ∈Rd̂×d . If Π(Dn) is an estimate of E [D] such that
the standard deviation of error in any coordinate j exceeds the bias in j, then there exists a vector ṽ ∈ F d̂ such that∥∥∥∥∥∥f (ṽ) · ṽQ − E

v∼PRE(D)
[P (v) · vQ]

∥∥∥∥∥∥2
2

≥ κ
2
·min

(
d

ε2n3
,1/n

)
where κ is the constant from Theorem 5.2.

Malicious clients can use that ṽ as input to certified secure aggregation instead of executing PRE on a
sample from D.

To argue that our protocol matches this lower bound, we perform case analysis over d. In the regime
where d = O(ε2n), the bound simplifies to Ω(t2/n2). This is the same up to logarithmic factors as the first
term in Theorem 3.6. In the regime where d = ω(ε2n) but d =O(ε2n2), the lower bound is dominated by a
t2/n2 · d/ε2n term. Once again, this is the same as the first term in Theorem 3.6.

15We remark that lower bounds in this section assume that data is drawn i.i.d. and the output party desires a mean of the underlying
distribution. Although our DBM only estimates the mean of the data, it can be used as a proxy for the distribution’s mean, so our
asymptotic bounds will match up to log factors.
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A Preliminaries

A.1 Secure Aggregation

For any predicate P : F d
q → {0,1}, let FAgg be the ideal functionality that takes a finite sequence of Zd

q

values X1,X2, . . . ,Xnc as input and reports the sum of the values on which the predicate evaluates to 1.
Formally, it outputs Yagg =

∑
i P (Xi) ·Xi . The ideal functionality is given in Figure 4.

Functionality FAgg

The functionality FAgg communicates with the set of clients U = {u1, . . . ,unc }, an output party O and an adversary
A. It is parameterized by P : F d

q → {0,1}, nc and d, where P is the predicate used for certify the inputs, nc is the
number of clients and d denotes the size of client’s input vector.

1. Upon receiving input ("Input",sid,ui ,Xi ) from some new client ui ∈ U where Xi ∈ F d , then store the client’s
input Xi .

2. Upon receiving ("Output",O) from the output party O, proceed as follows:

– Compute the aggregate Yagg =
∑

ui∈U P (Xi ) ·Xi (note that this is equivalent to aggregating only inputs
of clients that satisfy the predicate P ).

– Send ("Output",sid,Yagg ) to the output party O and halt.

Figure 4: Ideal Functionality for Secure Aggregation with Input Certification

A.2 Differential Privacy

We say that two distributions P,Q are (ε,δ)-close—shorthanded as P ≈ε,δ Q—if, for all events E,

P

η∼P
[η ∈ E] ≤ eε · P

η∼Q
[η ∈ E] + δ

P

η∼Q
[η ∈ E] ≤ eε · P

η∼P
[η ∈ E] + δ
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Definition A.1 (Approximate DP [30, 29]). A randomized algorithm M satisfies (ε,δ)-approximate differential
privacy if, for any two datasets X,X ′ that differ on one client’s data, M(X) ≈ε,δ M(X ′).

Note that small parameter values imply a stronger privacy guarantee: at the limiting value of 0, the
algorithm’s output is completely independent of the input.

Let {Pλ}, {Qλ} be two sequences of distributions. We say that the sequences are (ε,δ = negl(λ))-computationally
close—shorthanded as {Pλ} ≈cε,δ {Qλ}—if, for any PPT distinguisher A, every advice string zλ of length
poly(λ), and sufficiently large λ,

P

η∼Pλ

[
A(1λ, zλ,η) = 1

]
≤ eε · P

η∼Qλ

[
A(1λ, zλ,η) = 1

]
+ δ

P

η∼Qλ

[
A(1λ, zλ,η) = 1

]
≤ eε · P

η∼Pλ

[
A(1λ, zλ,η) = 1

]
+ δ

Definition A.2 (Computational DP [50]). A randomized algorithm M parameterized by security parameter
λ satisfies (ε,δ)-IND-CDP (also referred to as (ε,δ)-approximate computational differential privacy) if, for
any two sequences of datasets {Xλ}, {X ′λ}where |Xλ| = |X ′λ| = poly(λ) and Xλ,X

′
λ differ on on one client’s data,

{Mλ(Xλ)} ≈cε,δ {Mλ(X ′λ)}

A.3 Distributed Mean Estimation

Inspired by earlier work by Cheu, Smith, and Ullman [23], we define distributed mean estimation in the
context of a generic manipulation game played between protocols and adversaries attempting to skew the
outcome.

The Manipulation Game

Elements: nc clients, ns servers, an output party O, a protocol Π they are meant to run, and an attack K .
Game Parameters: Number of corrupted clients tc and corrupted servers ts.

1. The environment gives each client ui some data Xi

2. The adversary chooses tc clients (denoted C) and ts servers to corrupt

3. The honest clients (denotedH) and honest servers follow the protocol, while the adversary compels the rest
to launch attack K

4. O receives (or computes) the output ΠK (X)

Figure 5: A game played between a protocol and an adversary who wishes to reduce accuracy

In the case of DME, the environment chooses data Xi from Bd , the Euclidean unit ball in d dimen-
sions. We say that a protocol Π solves distributed mean estimation (DME) with mean-squared error α if,
for any choice of input X and attack K , the manipulation game results in output ΠK (X) that satisfies
E

Π,K

[
(ΠK (X)− 1

nc

∑
i∈[nc]Xi)2

]
≤ α.

We will perform DME by wrapping pre- and post-processing functions around input-certified secure
aggregation. The pre-processing injects noise that will ensure differential privacy.

B Related Work

Differentially Private Distributed Mean Estimation (DP-DME) and Secure Aggregation. As previously
discussed, Kairouz et al. and Agarwal et al provide wrappings around secure aggregation that ensure
DP. Unlike our work, they do not consider malicious clients and they do not add binomial noise to client
data. The Poisson-Binomial mechanism (PBM) by Chen, Özgür, and Kairouz also differs with ours in those
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Variable Meaning
n number of clients
t number of malicious clients 0 ≤ t < n
h number of honest clients
d dimensionality
Bd unit ball in d dimensions

Π = (PRE, P ,POST) protocol that wraps around FAgg
FAgg Ideal function which computes

∑
P (Yi) ·Yi on input Y1,Y2, . . .

K = (C,T) attack where C is set of malicious clients and T determines strategy
H honest clients

Xi[j] j-th element of row i (client i’s data)
η sample of noise

α,ε,δ privacy parameters
µ,σ2 mean, variance

g,b,τ, r parameters of DBM (our protocol)
m parameter of binomial mechanism
κ,S constants
c,ℓ,θ parameters of PBM (Chen et al. [19])

Table 2: Table of variables used in our DP DME (Sections 3 & 5, Appendix G).

Variable Meaning
nc number of clients
tc number of malicious clients 0 ≤ tc < nc
ns number of servers
ts number of malicious servers
ds number of dropped out servers
d dimensionality
ℓs packing parameter for packed secret sharing
mp Number of blocks
β number of columns per server in Share

X1, . . . ,Xnc Client’s inputs
Yagg Output of secure aggregation
λ Security Parameter

Table 3: Table of variables used in our Input Certified Secure Aggregation (Section 4)

respects [19]. But unlike Kairouz et al. and Agarwal et al., the PBM’s clients feed finite values into the secure
aggregator. This makes it possible to choose a predicate P that culls malicious values without disturbing
the existing privacy analysis; we do so in Appendix G. There, we find large constants and extra logarithmic
factors in the error bound are challenging to avoid simultaneously. In Figure 8, we compare the error
bounds of our protocol with those of the PBM. Chen et al. argue the PBM satisfies Rényi DP (RDP) so to
ensure an appropriate comparison, we employ a conversion from RDP to approx DP by Mironov [49]. The
conversion can conceivably be improved but technical hurdles stand in our way. Appendix G.2.2 contains
more information.

The three prior works discussed above ensure Rényi DP (RDP) and concentrated DP (CDP). Approximate
DP, the guarantee of our protocol, does not have a counterpart to the state-of-the-art composition results for
RDP and CDP. So on the face of it, our approximate DP protocol appears deficient. But we argue it is still
competitive.
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• Because each execution of our protocol is analyzed as a simulation of the Gaussian mechanism, we can
partially leverage composition theorems that apply to the Gaussian mechanism. Roughly speaking, we
can increase fidelity of Gaussian noise simulation without impacting the output party’s estimate. The
upshot is that approximate DP composition only determines the granularity of discretization while
Gaussian-based composition determines error. We give more details in Section E.0.1.

• If we were to upgrade the standard secure aggregator in Kairouz et al.’s protocol with an input-certified
one, we will be forced to use approximate DP anyway. This is because each client places nonzero
probability on every integer, so any nontrivial predicate P would erase a client’s contribution with
nonzero probability δ. The same holds for the protocol by Agarwarl et al. Similar to our protocol, we
can factor out the accumulation of δ from the consumption of privacy budget.

Protocols that wrap around secure aggregation resemble protocols in the shuffle model of DP. These are
wrappings around a primitive that permutes values uniformly at random (see e.g. [22, 32, 6, 21]). Cheu,
Joseph, Mao, and Peng describe a shuffle protocol for DP DME that uses binomial noise like we do [21].
There, the authors treat each of the d dimensions as a separate private protocol and employ an advanced
composition theorem to bound the overall privacy parameter. We instead prove that it is possible to transfer
privacy analysis of d-dimensional Gaussian noise to d-dimensional binomial noise. Our method results in
an error bound that avoids a logd factor that appears in Cheu et al.’s work.

Talwar presents a client-server protocol for distributed mean estimation with input certification [63].
Security is ensured against semi-honest servers. Clients prove their contributions belong to a Euclidean
ball with differentially zero knowledge proof: changing inputs to the protocol causes a change in the transcript
distribution that is bounded in terms of the divergence that appears in the approximate differential pri-
vacy definition (see Definition A.1). But this is the sole appearance of differential privacy in the explicit
construction, as the output party observes the aggregation of valid data without any noise. Furthermore, the
presented protocol assumes parties can communicate real-valued numbers. Talwar does briefly discuss DP
wrappings and sketches an argument that the protocol can be accurately approximated with finite precision,
but we emphasize that our work treats finite precision and differential privacy as first-order concerns.

Several works combine secure aggregation with differential privacy. Keeler et al. (2023) introduces
DPrio, a system that augments the well-known Prio system with differential privacy, achieving high utility
comparable to centralized differential privacy. Like Prio, DPrio’s threat model tolerates malicious corruption
of clients and semi-honest corruption of all but one server. Additionally, it assumes the adversary can control
the noise generated by only a small, constant number of clients. In contrast, our work is designed to tolerate
malicious corruption of both clients and a fraction of the servers, and tolerates the adversary corrupting a
larger number of clients.

In contrast, the work by Stevens et al. [62] tolerates a malicious adversary and operates within a model
with a single central server, similar to classic secure aggregation protocols like those by Bonawitz et al. and
Bell et al. Our approach differs by relying on an honest majority in the number of servers which gives us
guaranteed output delivery. Additionally, in Stevens et al.’s model, clients are required to participate in
multiple rounds even for a single iteration of secure aggregation, whereas our protocol aims to minimize
client participation to just one round.

Beyond secure aggregation, other works such as [13, 12] study differentially private median protocol.
Also, the works of [41, 58] explore combining general multiparty computation with differential privacy.

Manipulation Attacks against DP Protocols. Though studied on a per-protocol basis in earlier work, the
concept of manipulation attacks against DP protocols was formalized by Cheu, Smith, and Ullman [23]. In these
attacks, adversaries seek to distort the result of a computation (e.g. introduce bias to a mean estimate). Our
DP protocol upper bounds the success of such attacks. We take advantage of multi-party computation while
Cheu et al. restrict themselves to the local model, where the transcript of all plaintext messages from any
client must satisfy DP. There, the skew of an estimate can worsen with smaller privacy budget ε and larger
dimension d. A similar phenomenon can be found in our lower bound, though it is tempered by an 1/nc
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factor. Another point of difference is that we focus on data in the ℓ2 unit ball, while the prior work’s primary
results concern the ℓ1 unit ball.

Verifiable Secret/Relation Sharing (VSS/VRS). Verifiable Secret Sharing (VSS) was initially introduced
by Chor et al. [24] and has remained a significant research area in cryptography over the past two decades
[39, 45, 46, 54, 59, 56, 57, 37, 35, 33, 16, 1]. However, these schemes often require the dealer to perform more
work compared to the non-verifiable variant of secret-sharing. When it comes to verifiable secret-sharing
among n parties, the dealer’s efficiency may be hindered due to several factors.

Firstly, the dealer needs to engage in multiple rounds of interaction with the parties, some of which are
broadcast rounds. In classical VSS schemes, the dealer needs to participate in multiple rounds to resolve
any potential conflicts that may arise among the parties, some of the rounds may involve a broadcast. This
requirement eliminates the straightforward use of many existing VSS schemes, as we aim to ensure that the
dealer only needs to engage in one point-to-point round with the parties.

Second, the dealer may incur communication complexity quadratic in n, typically due to using bivariate
polynomials [45, 54, 5].

Third, some schemes require a trusted setup and are computationally expensive [44]. These aspects pose
limitations, particularly when considering the unreliability of clients who may drop out at any point during
the execution.

Our techniques are closely related to the share recovery mechanisms that appear in the context of
Proactive Secret Sharing (PSS) [38, 39] and Asynchronous VSS [16]. Both PSS and BFT-SMR involve parties
that possess shares of some private value, with share recovery processes triggered if any party’s share is
missing. Unlike VSS, a notable advantage is that the dealer is not involved in the recovery process. However,
a drawback is that the dealer may need to share additional polynomials to enable share recovery [8, 64] and
a separate random polynomial may need to be generated for recovery of each share. But these techniques
extend beyond the synchronous setting and parties can trigger share recovery at any point of time. In
contrast, our focus is on the synchronous setting and share recovery may be triggered only at the end of
the first round (after the dealer shares the secret among the parties). This simplifies the problem and it is
sufficient to use any existing VSS to secret-share the random recovery polynomials among the parties.

Lastly, our interest extends beyond verifiably secret sharing data to also proving that the secret-shared
data satisfies certain properties. This aligns with the Verifiable Relation Sharing (VRS) functionality intro-
duced by Applebaum et al. [4]. However, their VRS construction is hindered by similar way to classical VSS
as mentioned above, as it incurs multiple rounds dealer participation, high communication complexity for
the dealer (due to the use of bivariate polynomials), and the need for a trusted setup.

C De Moivre-Laplace Theorem for finite variance

Theorem 3.4 (Finite-value De Moivre-Laplace). Fix any ε ∈ (0,1), δ ∈ (0,2e−6) and any even m > 12
ε2

ln2 2
δ .

round(N(0,σ2 =m/4)) ≈ε,δ Bin(m,1/2)−m/2

Proof. Our goal is to show, for any event E, that

P [round(N (0,m/4)) ∈ E] ≤ eε ·P [Bin(m,1/2)−m/2 ∈ E] + δ (1)

P [Bin(m,1/2)−m/2 ∈ E] ≤ eε ·P [round(N (0,m/4)) ∈ E] + δ (2)

We prove (1) first. Define T0 :=
[
−
√

m
2 ln 2

δ , +
√

m
2 ln 2

δ

]
. By using a Chernoff bound, we have the con-

centration inequality P [N (0,m/4) < T0] ≤ δ. The concentration inequality for the rounded Gaussian must
concern a wider interval, as rounding could move mass out from T0. It can be easily shown that for δ < 2e−6

and m > 10ln 2
δ ,

√
3m
5 ln 2

δ > 1 +
√

m
2 ln 2

δ so T =
[
−
√

3m
5 ln 2

δ , +
√

3m
5 ln 2

δ +1
]

is big enough to contain the

rounded-up values.
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Now we express the left-hand side of (1) in terms of T :

P [round(N (0,m/4)) ∈ E]
≤ P [round(N (0,m/4)) ∈ E ∩ T ] + δ

=
P [round(N (0,m/4)) ∈ E ∩ T ]
P [Bin(m,1/2)− h/2 ∈ E ∩ T ]

·P [Bin(m,1/2)−m/2 ∈ E ∩ T ] + δ

So it will suffice to upper-bound the ratio by exp(ε′).
Our first step is to find an expression for the PMF of the rounded Gaussian distribution. By definition of

rounding, the mass placed at distance s from the mean is the change in the Gaussian CDF from s − 0.5 to
s+0.5:

P [round(N (0,h/4)) = s] =
1
2

[
erf

(
s+1/2

σ
√
2

)
− erf

(
s − 1/2
σ
√
2

)]
(3)

If (u0,v0) is a point on erf(u), the tangent line at (u0,v0) has equation v−v0 = derf
du (u0) · (u−u0) = 2√

π
exp(−u2

0 ) ·
(u −u0). Given a second point (u1,v1) on erf(u), we have

v1 − v0 =
2
√
π
exp(−u2

0 ) · (u −u0)−
2
√
π
exp(−u2

1 ) · (u −u1)

=
2
√
π
exp(−u2

0 ) · (u −u0) +
2
√
π
exp(−u2

1 ) · (u1 −u)

=
2
√
π
· u1 −u0

2
·
(
exp(−u2

0 ) + exp(−u2
1 )
)

(for u = (u0 +u1)/2)

Thus,

(3) =
1
2
·
[

1

σ
√
2π
·
(
exp

(
− s

2 − s+1/4
2σ2

)
+ exp

(
− s

2 + s+1/4
2σ2

))]
=

1
√
2πh

·
(
exp

(
− s

2 − s+1/4
h/2

)
+ exp

(
− s

2 + s+1/4
h/2

))
∈
[ √

2
√
πh
· exp

(
−2s2 − 2s − 1/2

h

)
,

√
2

√
πm
· exp

(
−2s2 +2s − 1/2

h

)]
(4)

Now we find an expression for the binomial’s mass function: for any integer s ∈
[
0,

√
m
2 ln 2

δ +1
]
,16

P

Bin(m,1/2) =m/2+ s︸  ︷︷  ︸
k


≥

√
m

2πk(m− k)
·
( m
2k

)k ( m
2(m− k)

)h−k
· exp

(
− m
12k(m− k)

)
(from [60])

=
√

m
2πk(m− k)

· exp
(
−k ln 2k

m
+ (k −m) ln

2(m− k)
m

− m
12k(h− k)

)
=

√
1

2π(1/2+ s/m)(m/2− s)
· exp

(
−k ln 2k

m
+ (k −m) ln

2(m− k)
m

− 1
12(1/2+ s/m)(m/2− s)

)
=

√
1

2π(m/4− s2/m)
· exp

(
−k ln

(
1+

2s
m

)
+ (k −m) ln

(
1− 2s

m

)
− 1
12(m/4− s2/m)

)
(5)

16The distribution of interest is symmetric about m/2, so upper and lower bounds for the mass at m/2+ s also hold for h/2− s.
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We focus on the two terms involving logarithms. We use the identity ln(1 + z) = z − z2/2+ z3/3− . . . :

− k ln
(
1+

2s
m

)
+ (k −m) ln

(
1− 2s

m

)
= − k ·

(
2s
m
− 1
2

(2s
m

)2
+ . . .

)
+ (k −m) ·

(
−2s
m
− 1
2

(
−2s
m

)2
+
1
3
·
(
−2s
m

)3
. . .

)
=

(
−m
2
− s

)
·
(
2s
m
− 1
2

(2s
m

)2
+ . . .

)
−
(m
2
− s

)
·
(
−2s
m
− 1
2

(
−2s
m

)2
+
1
3
·
(
−2s
m

)3
. . .

)
= − 2s2

m
+ s

∞∑
i=1

(2s
m

)2i+1 ( 1
i +1

− 1
2i +1

)
= − 2s2

m
+ s

(
−m
2s

ln
(
1− 4s2

(m)2

)
− tanh−1 2s

h

)
∈

[
−2s

2

m
, − 2s2

m
+
s
2

(2s
m

)3]
(6)

The lower bound comes from the fact that each term in the series is positive. The upper bound is derived

from the fact that 2s/m ≤
√

12
5m ln 2

δ < 4/5 for all m > 10ln2/δ.
So by combining (4), (5), and (6), we finally have

P [round(N (0,m/4)) ∈ E ∩ T ]
P [Bin(m,1/2)− h/2 ∈ E ∩ T ]

≤ 2
√
1/4− s2/h2 · exp

(
−2s2 +2s − 1/2

m
−
(
−2s

2

m
− 1
12(m/4− s2/m)

))
= 2

√
1/4− s2/m2 · exp

(2s − 1/2
m

+
1

3m− 12s2/m

)
≤ exp


√

12
5m

ln
2
δ
+

1
3m− 36ln(2/δ)/5


If m > 5

ε2
ln 2

δ , then

exp


√

12
5m

ln
2
δ
+

5
15m− 36ln(2/δ)


≤ ε

√
12
25

+
5ε2

75ln(2/δ)− 36ε2 ln(2/δ)

< ε ·

√

12
25

+
5

39ln(2/δ)

 (ε < 1)

< ε

It remains to prove (2). We use very similar steps as in the proof of (1). Hoeffding’s inequality implies the
binomial random variable lies outside of T with probability ≤ δ. Then we set out to upper bound the ratio

P [Bin(m,1/2)−m/2 ∈ E ∩ T ]
P [round(N (0,m/4)) ∈ E ∩ T ]

We previously lower bounded the binomial mass function, so now we upper bound that function. We repeat
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the analysis from before but apply upper bounds to the numerator instead of the denominator:

P

Bin(m,1/2) =m/2+ s︸  ︷︷  ︸
k


≤

√
1

2π(1/2+ s/m)(m/2− s)
· exp

(
−k ln

(
1+

2s
h

)
+ (k − h) ln

(
1− 2s

h

)
+

1
12h

)
(from [60])

≤
√

1
2π(1/2+ s/m)(m/2− s)

· exp
(
−2s

2

m
+
s
2

(2s
m

)3
+

1
12m

)
(via (6))

and therefore, by way of (4),

P [Bin(m,1/2) ∈ E ∩ T ]
P [round(N (m/2,m/4)) ∈ E ∩ T ]

≤ 1
2

√
1

(1/2+ s/m)(1/2− s/m)
· exp

(
−2s

2

m
+
4s4

m3 +
1

12m
+
2s2 +2s+1/2

m

)
=

√
1

1− 4s2/m2 · exp
(
4s4

m3 +
7

12m
+
2s
m

)

Now we substitute s ≤
√

3m
5 ln 2

δ :

≤
√

1
1− 12ln(2/δ)/5m

· exp
36ln2(2/δ)25m

+
7

12h
+

√
12
5m

ln
2
δ


= exp

12 ln
5m

5m− 12ln(2/δ)
+
36ln2(2/δ)

25h
+

7
12m

+

√
12
5m

ln
2
δ


≤ exp

 6ln(2/δ)
5m− 12ln(2/δ)

+
36ln2(2/δ)

25m
+

7
12m

+

√
12
5m

ln
2
δ


If m > 12

ε2
ln2(2/δ), then

6ln(2/δ)
5m− 12ln(2/δ)

+
36ln2(2/δ)

25m
+

7
12m

+

√
12
5m

ln
2
δ

<
6ε2 ln(2/δ)

60ln2(2/δ)− 12ε2 ln(2/δ)
+

3
25

ε2 +
7

144
ε2 + ε

√
1
5

<
6ε2 ln(2/δ)
48ε ln(2/δ)

+
3
25

ε2 +
7

144
ε2 + ε

√
1
5

< ε ·
18 +

3
25

+
7

144
+

√
1
5

 < ε

D Proofs for Binomial Mechanism and DBM

We now present proofs deferred from Sections 3.1 and 3.2

Theorem 3.5 (Privacy of BM). Let f be any ∆-sensitive function over the integers Z
d , let W,W ′ be matrices

differing on one row. Fix any ε0, ε1, δ0, and δ1 in the interval (0,1). If m is an even integer such that m >
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max
(
12
ε20

ln2 2
δ0
, 8∆2

ε21
ln 5

4δ1

)
, then for any event E,

P

[
BMf ,m(W ) ∈ E

]
≤ exp(2dε0 + ε1) ·P

[
BMf ,m(W

′) ∈ E
]

+2exp(dε0 + ε1) · dδ0 + exp(dε0) · δ1

Proof. We bound the left-hand probability by a probability involving GM.

P

[
BMf ,m(W ) ∈ E

]
= P

η[j]∼Bin(m,1/2)−m/2

[
η ∈ Ef ,m,W

]
≤ exp(dε0) · P

η[j]∼round(N(0,m/4))

[
η ∈ Ef ,m,W

]
+ dδ0 (Basic composition & Thm. 3.4)

= exp(dε0) ·P
[
G̃Mf ,m/4(W ) ∈ E

]
+ dδ0 (Defn. of G̃Mf ,m/4)

= exp(dε0) ·P
[
round(GMf ,m/4(W )) ∈ E

]
+ dδ0 (7)

The last equality comes from our version of De Moivre-Laplace (Lemma 3.3).
Recall that differential privacy is closed under post-processing. Because round is a data-independent

function and Theorem 3.2 asserts that GMf ,m/4 is (ε1,δ1)-differentially private,

(7) ≤ exp(dε0 + ε1) ·P
[
round(GMf ,m/4(W

′)) ∈ E
]
+ dδ0 + exp(dε0) · δ1

= exp(dε0 + ε1) ·P
[
G̃Mf ,m/4(W

′) ∈ E
]
+ dδ0 + exp(dε0) · δ1 (Lemma 3.3)

= exp(dε0 + ε1) · P

η[j]∼round(N(0,m/4))

[
η ∈ Ef ,h,W ′

]
+ dδ0 + exp(dε0) · δ1 (Defn. of G̃Mf ,m/4)

≤ exp(2dε0 + ε1) · P

η[j]∼Bin(h,1/2)

[
η ∈ Ef ,h,W ′

]
+ exp(dε0 + ε1) · dδ0 + dδ0 + exp(dε0) · δ1 (Basic composition & Thm. 3.4)

= exp(2dε0 + ε1) ·P
[
BMf ,h(W

′) ∈ E
]

+ exp(dε0 + ε1) · dδ0 + dδ0 + exp(dε0) · δ1
< exp(2dε0 + ε1) ·P

[
BMf ,h(W

′) ∈ E
]

+2exp(dε0 + ε1) · dδ0 + exp(dε0) · δ1

This concludes the proof.

Lemma 3.9. For any Xi ∈ Bd , if Yi ← PREg,b,τ (Xi), then ∥Yi∥2 ≤ g/2+
√
d + τ with probability 1.

Proof. Clients enforce
∥∥∥ηi∥∥∥2 ≤ τ , so it will suffice to upper bound ∥Wi∥2 and then invoke the triangle
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inequality.

∥Wi∥22 =
∑
j∈[d]

Wi[j]
2

≤
∑
j∈[d]

(X̂i[j] + 1)2

=
∑
j∈[d]

X̂i[j]
2 +2X̂i[j] + 1

=
g2

4

∑
j∈[d]

Xi[j]
2

+ g

∑
j∈[d]

Xi[j]

+ d

≤
g2

4
+ g

∑
j∈[d]

Xi[j]

+ d (Xi ∈ Bd)

≤
g2

4
+ g ∥Xi∥1 + d

≤
g2

4
+ g
√
d + d

Thus, ∥Wi∥2 ≤ g/2+
√
d so that

∥∥∥Yi =Wi + ηi
∥∥∥ ≤ g/2+

√
d + τ .

Lemma 3.14 (Parameters for DBM’s Privacy). Fix t ≤ n/6, ε ∈ (0,9/10), and δ ∈ (0,2e−6). Let εpriv← 99ε/100,

εsim ← ε/200d, δpriv ← δ/5eε, and δsim ← δ/5deε. When b ≥ 12
nε2sim

ln2 2
δsim

, g ≤ εpriv
√

nb
8ln(5/4δpriv)

− 2
√
d, and

τ ≥
√

db
2 ln(2nd/δpriv), Πg,b,τ,r is

(
ε ·

√n
h , δ · exp

(
ε ·

√n
h − ε

))
-differentially private. When all clients are honest

(h = n), this simplifies to (ε,δ)-DP.

Proof. For all attacks K , we need to show that the composite algorithm ΣinBallr ◦PRE
K
g,b,τ is differentially

private with the desired parameters. Because addition is commutative and the honest clients’ coins are
independent of the malicious clients’ coins, we can interpret ΣinBallr ◦PRE

K
g,b,τ (X) as a post-processing of

ΣinBallr ◦PREg,b,τ (XH) which is the sum of the honest clients’ messages that pass the inBallr norm test. Due
to the closure of differential privacy under post-processing, it will suffice to prove ΣinBallr ◦ PREg,b,τ is
differentially private with the desired parameters.

Let Σ be the algorithm that takes a sequence of F d values as input and reports their sum (aggregation
without input certification). Because we have set r to be the maximum value

∥∥∥PREg,b,τ∥∥∥2 can take, observe
that (ΣinBallr ◦PREg,b,τ )(XH) is identically distributed with (Σ ◦PREg,b,τ )(XH) for all inputs XH.

Now,

P

[
(Σ ◦PREg,b,τ )(XH) ∈ E

]
≤ P

[
(Σ ◦PREg,b,∞)(XH) ∈ E

]
+ δpriv (Lemma 3.13)

= P

[
BMΣ,h=hb(WH) ∈ E

]
+ δpriv (8)

The second step comes from the fact that, for every i ∈ H, the randomizer execution PREg,b,∞(Xi) is the
addition of Bin(b,1/2) noise to the encoding Wi . Adding all of these up results in Bin(hb,1/2) noise.

We will show that for ε0← εsim ·
√n

h , ε1← εpriv ·
√n

h , δ0← δsim, and δ1← δpriv, the following inequality
holds:

hb ≥max
(
12

ε20
ln2

2
δ0

,
8∆2

ε21
ln

5
4δ1

)
,
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Because of our bounds on t = n− h and ε, both ε0, ε1 lie within (0,1). Theorem 3.5 can now be invoked:

(8) ≤ exp(2dε0 + ε1) ·P
[
BMΣ,h=hb(W

′
H) ∈ E

]
+2exp(dε0 + ε1) · dδ0 + exp(dε0) · δ1 + δpriv

≤ exp(2dε0 + ε1) ·P
[
(ΣinBallr ◦PREg,b,τ )(X

′
H) ∈ E

]
+2exp(dε0 + ε1) · dδ0 + exp(dε0) · δ1 + exp(2dε0 + ε1) · δpriv + δpriv (Lemma 3.13)

< exp
(√

n
h
· ε

)
·P

[
(ΣinBallr ◦PREg,b,τ )(X

′
H) ∈ E

]
+2exp(2dε0 + ε1) · dδsim +3exp(dε0) · δpriv (Choices of ε0, ε1,δ0,δ1)

< exp
(√

n
h
· ε

)
·P

[
(ΣinBallr ◦PREg,b,τ )(X

′
H) ∈ E

]
+ exp(2dε0 + ε1 − ε) · δ (Choices of δsim,δpriv)

= exp
(√

n
h
· ε

)
·P

[
(ΣinBallr ◦PREg,b,τ )(X

′
H) ∈ E

]
+ exp(ε ·

√
n
h
− ε) · δ (Choices of ε0, ε1)

which is the desired privacy guarantee.
Now, we prove hb ≥ 12

ε20
ln2 2

δ0
.

hb

=
h
n
·nb

≥ h
n
· 12
ε2sim

ln2
2

δsim
(Range of b)

=
12

ε20
ln2

2
δ0

We finally prove hb ≥ 8
ε21
ln 5

4δ1
:

hb

=
h
n
·nb

=
h
n
· (
√
nb)2

=
h
n
·

εpriv
√

nb
8ln(5/4δpriv)


2

· 8

ε2priv
· ln 5

4δpriv

=
h
n
·

εpriv
√

nb
8ln(5/4δpriv)

− 2
√
d +2

√
d


2

· 8

ε2priv
· ln 5

4δpriv

≥ h
n
·
(
g +2

√
d
)2
· 8

ε2priv
· ln 5

4δpriv
(Range of g)

=
h
n
· 8

ε2priv
· ln 5

4δpriv
(Lemma 3.10)

=
8

ε21
· ln 5

4δ1

This concludes the proof.
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Lemma 3.12 (Mean Squared-Error of DBM). Fix any attack K for t malicious clients. If µK ←ΠK
g,b,τ,r (X), then

the mean squared-error of µK with respect to µ← 1
n

∑
i∈[n]Xi is

E

[∥∥∥µK −µ∥∥∥2
2

]
≤ 4t2

n2
· (1 +

√
d/g + τ/g)2 +

d

n2
· h(b+1)

g2

When all clients are honest (h = n, t = 0), this simplifies to d
4ng2 · (b+1)

Proof. When Π is under attack K = (C,T), recall that {yKi }i∈C ∼ T while honest clients independently sample
yKi ∼ PRE(Xi). Linearity of expectation implies

E

PREg,b,τ ,T

[∥∥∥µK −µ∥∥∥2
2

]
=

∑
j∈[d]

E

[
µK [j]−µ[j]

]2
+Var

[
µK [j]

]
(9)

so we bound the bias and variance separately. Let yKagg denote the output of (ΣinBallr ◦PRE
K
g,b,τ )(X). Because

POSTg (yKagg) =
2
ng · y

K
agg, the variance is

Var
[
µK [j]

]
=

4
n2g2

·Var
[
yKagg[j]

]
=

4
n2g2

·Var

∑
i∈[n]

inBallr (Y
K
i ) ·Y K

i [j]

 (Defn. of ΣinBallr )

=
4

n2g2
·

Var
∑
i∈C

inBallr (Y
K
i ) ·Y K

i [j]

+Var

∑
i∈H

inBallr (Y
K
i [j]) ·Y K

i [j]


 (10)

The last step follows from the independence of the honest clients from the malicious clients.
By Lemma 3.9 and our choice of r← g/2+

√
d + τ , inBallr (Y K

i ) = 1 for any honest Yi . Hence,

(10) =
4

n2g2
·

Var
∑
i∈C

inBallr (Y
K
i ) ·Y K

i [j]

+∑
i∈H

Var[Wi[j] + ηi[j]]


≤ 4

n2g2
·

Var
∑
i∈C

inBallr (Y
K
i ) ·Y K

i [j]

+ h
4
(b+1)


We unpack the last step. Wi[j] is the sum of g bits but only one of them is random, so its variance is at most
1/4. Var[ηi[j]] is bounded by the variance of the binomial noise before truncation, b/4.

Meanwhile, the bias is

E

[
µK [j]−µ[j]

]
= E

∑
i∈[n]

2
ng
· inBallr (Y K

i ) ·Y K
i [j]−

∑
i∈[n]

1
n
·Xi[j]

 (Defn. of µ,µK )

= E

∑
i∈C

2
ng
· inBallr (Y K

i ) ·Y K
i [j]− 1

n
·Xi[j]


The last equality comes from the lack of bias in any honestly generated message (Lemma 3.8) and the fact
that every honestly generated message will have norm ≤ r.
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By substituting our variance and bias bounds into (9), we have

E

PREg,b,τ ,T

[∥∥∥µK −µ∥∥∥2
2

]
≤

∑
j∈[d]

E


∑
i∈C

2
ng
· inBallr (Y K

i ) ·Y K
i [j]− 1

n
·Xi[j]

2
+ d

n2
· h(b+1)

g2

= E


∥∥∥∥∥∥∥∑i∈C

2
ng
· inBallr (Y K

i ) ·Y K
i −

1
n
·Xi

∥∥∥∥∥∥∥
2

2

+ d

n2
· h(b+1)

g2

≤ E



∥∥∥∥∥∥∥∑i∈C

2
ng
· inBallr (Y K

i ) ·Y K
i

∥∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥1n ∑
i∈C

Xi

∥∥∥∥∥∥∥
2


2 (Triangle ineq.)

≤ t2

n2
·
(
2r
g

+1
)2

+
d

n2
· h(b+1)

g2

In the above, we used the definition of inBallr and the fact that |C| = t. Our proof is complete by substituting
our choice of r.

Theorem 3.6. For ε ∈ (0,9/10) and δ ∈ (0,2e−6), there are choices of parameters g,b,τ, r such that Πg,b,τ,r =
(PREg,b,τ , inBallr ,POSTg ) ensures (ε,δ)-DP and solves DME with variance O( d

ε2n2
log eε

δ ) when there are no malicious

clients. When under any attack by t ≤ n/6 clients, it ensures
(
ε ·

√
n
n−t , δ · exp

(
ε ·

√
n
n−t − ε

))
-differential privacy and

solves DME with mean-squared error

t2

n2
·O

(
1+

√
d

ε
√
n
log

eεnd
δ

)2
+
n− t
n
·O

(
d

ε2n2
log

eε

δ

)
Bias is only present due to attacks. It suffices for certified aggregation to operate on numbers in a field of size

n · (g + b) = Õ

(
nd log

d
δ
+
d2

ε2
log2

d
δ

)

Proof. We follow Lemma 3.14 and assign g← ⌊εpriv
√

nb
8ln(5/4δpriv)

−2
√
d⌋, and τ←

⌈√
db
2 ln(2nd/δpriv)

⌉
. Finally,

we set b← 8+ ⌈ 12
nε2sim

ln2 2
δsim
⌉.

We make the observation that the error bound in Lemma 3.12 has multiple terms with g in the denominator.
So to obtain an upper bound on the error, we will derive a lower bound on g.

g = ⌊εpriv

√
nb

8ln(5/4δpriv)
− 2
√
d⌋

≥ εpriv

√
nb

8ln(5/4δpriv)
− 2
√
d − 1

=
99
100

εpriv

√
nb

8ln(5/4δpriv)︸                          ︷︷                          ︸
T1

+
1

100
εpriv

√
nb

8ln(5/4δpriv)
− 2
√
d − 1

︸                                        ︷︷                                        ︸
T2

37



We now show that T2 > 0, so that g > T1:

T2 ≥
εpriv

100εsim

√
3ln2(2/δsim)
2ln(5/4δpriv)

− 2
√
d − 1

≥ εpriv ·
2d
ε
− 2
√
d − 1

=
99
100
· 2d − 2

√
d − 1

=
99
50

d − 2
√
d − 1

> 0 (d > 1)

We finally bound τ/g,
√
d/g, and (b+1)/g2 to substitute into Lemma 3.12.

τ
g
≤ 1

g
·


√

db
2

ln
2nd
δpriv

+1


≤ 100

99εpriv
·

√
8
nb

ln
5

4δpriv
·


√

db
2

ln
2nd
δpriv

+1


<

100
99εpriv

·

2
√
d
√
n

ln
2nd
δpriv

+

√
8
nb

ln
5

4δpriv


<

300
99εpriv

·
√

d
n
· ln 2nd

δpriv
(b > 8)

=
3 · 104

992ε
·
√

d
n
· ln 10eεnd

δ

The last inequality comes from our choice of εpriv,δpriv. Meanwhile,

√
d
g
≤ 100

99εpriv
·

√
8d ln(5/4δpriv)

nb

≤ 100εsim
99εpriv

·

√
2d ln(5/4δpriv)

3ln2(2/δsim)

=
ε

99 · 2εpriv
·

√
2ln(5/4δpriv)

3d ln2(2/δsim)

=
50
992
·

√
2ln(5/4δpriv)

3d ln2(2/δsim)

<
50
992
·
√

2
3d
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Finally,

b+1
g2
≤ 1002

992ε2priv
·
8ln(5/4δpriv)

nb
· (b+1)

=
1002

992ε2priv
·
8ln(5/4δpriv)

n
+

1002

992ε2priv
·
8ln(5/4δpriv)

nb

<
1002

992ε2priv
·
9ln(5/4δpriv)

n
(b > 8)

=
1004

994ε2
· 9ln(25e

ε/4δ)
n

we visualize the error bound in Figure 6 below, in a regime where d < n and a regime where d > n.

Figure 6: Visualization of our bound on mean-squared error of our distributed binomial mechanism (DBM)
as a function of privacy parameter ε (smaller is better). We plot the corresponding bound for the Gaussian
mechanism for comparison.

E Composition of DBM

E.0.1 Repeated Executions of the DBM

We have presented a bound on the expected squared error of one usage of the DBM for private mean
estimation. But an application like gradient descent will require many executions of the DBM. Although its
guarantee of differential privacy will remain, the parameters will grow over time. Re-scaling parameters
to account for this unavoidable phenomenon will inflate the expected squared error of any given mean
estimate. The field size will also increase. Bounding the rate(s) of growth is therefore of practical importance.

Fortunately, our protocol is structured in a way that is amenable to privacy accounting over R rounds.
At a high-level, we use a two step process: we apply composition theorems for the Gaussian mechanism
over R rounds and then argue R executions of our protocol is a good simulation thereof. Approximate
DP composition is only used to account for the fidelity of the Gaussian noise simulation: increasing the
standard deviation σ compensates for loss in fidelity accumulated over the R repetitions but does not impact
estimation error, as we always match the granularity of discretization to σ and the output party re-scales by
the granularity.
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In this Appendix, we provide tools to analyze the privacy guarantee of the R-fold composition of the DBM.
For clarity, we repeat the intuition given in the main text. We use a two step process: we apply composition
theorems for the Gaussian mechanism over R rounds and then argue R executions of our protocol is a good
simulation thereof. Approximate DP composition is only used to account for the fidelity of the Gaussian
noise simulation: increasing the standard deviation σ compensates for loss in fidelity accumulated over the
R repetitions but does not impact estimation error, as we always match the granularity of discretization to σ
and the output party re-scales by the granularity.

More precisely, we first derive a variant of Theorem 3.2: R repetitions of the Gaussian mechanism GMf ,σ2

will satisfy (ε,δ)-DP provided that σ2 is linear in R. This result is obtained by utilizing the composition
theorem for Gaussian Differential Privacy—see Dong Roth and Su [28]—and then translating into approx-
imate differential privacy. Next, we invoke our version of De Moivre-Laplace (Theorem 3.4) to obtain an
approximate DP guarantee for R-fold composition of the binomial mechanism BMf ,h. The result is a variant

of Theorem 3.5 where d increases to d ·R and 8∆2

ε21
ln 5

4δ1
increases to 8R∆2

ε21
ln 5

4δ1
. The rest of our analysis can

be replicated with these re-scaled values.

We leverage the work by Dong et al. on functional17 differential privacy and Gaussian differential privacy.
Except for the final two theorems, all statements in this appendix come from Dong et al.

Definition E.1 (Tradeoff Functions). For any distributions P,Q, the tradeoff function between them is

TP,Q(α) := inf
θ
{βθ | αθ ≤ α}

where αθ ,βθ are the type I and type II error rates of rejection rule θ when hypothesis testing between P,Q.

Definition E.2 (Functional and Gaussian DP). Let g : [0,1] → [0,1] be a convex, continuous, and non-
increasing function. Algorithm M satisfies g-DP if, for all neighboring X,X ′ , TM(X),M(X′)(α) ≥ g(α). In the
case where g = TN(0,1),N(µ,1), we say M satisfies µ-Gaussian DP.

Theorem E.3 (Theorem 2.7 in [28]). For ∆-sensitive function f , the Gaussian mechanism GMf ,σ2 satisfies ∆/σ -GDP.

Lemma E.4 (Corollary 3.3 in [28]). The R-fold composition of a µ-GDP algorithm satisfies
√
R ·µ-GDP.

Let GMR
f ,σ2 be the R-fold composition of the Gaussian mechanism GMf ,σ2 . From the preceding two

statements, we know that GMR
f ,σ2 satisfies

√
R ·∆/σ -GDP. But in order to obtain a privacy guarantee for the

R-fold composition of the binomial mechanism, we require an approximate DP guarantee.

Theorem E.5. For ∆-sensitive function f and σ2 ≥ R · 2∆2

ε2
ln 5

4δ , GMR
f ,σ2 satisfies (ε,δ)-DP.

Proof. As established, GMR
f ,σ2 satisfies

√
R ·∆/σ -GDP. By definition, this means its tradeoff curve lies above

T (N(0,1),N(
√
R ·∆/σ ,1)). Observe that this second tradeoff curve is that of the Gaussian mechanism for a

function f̂ with sensitivity
√
R ·∆/σ and with variance σ̂2 = 1. Due to our lower bound on σ2 and Theorem

3.2, we know that GMf̂ ,σ̂2 satisfies (ε,δ)-dp.
We rely on the following technical lemma:

Lemma E.6 (From [66]). Define gε,δ(α) := max(0,1−δ−eεα,e−ε(1−δ−α)). An algorithm satisfies (ε,δ)-differential
privacy if and only if it satisfies gε,δ-DP.

Hence T (N(0,1),N(
√
R ·∆/σ ,1)) lies above gε,δ. Transitivity implies that the tradeoff curve for GMR

f ,σ2 lies
above gε,δ, which in turn means our protocol is (ε,δ)-DP.

We combine the above result with our version of De Moivre-Laplace (Theorem 3.4) to obtain a privacy
guarantee for R-fold composition of BMf ,h.

17Called “f”-differential privacy by the authors.
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Theorem E.7 (Privacy of BMR
f ,h). Fix any ε0, ε1, δ0, and δ1 in the interval (0,1). If h is an even integer such that

h >max
(
12
ε20

ln2 2
δ0
, 8R∆2

ε21
ln 5

4δ1

)
, then for any event E,

P

[
BMR

f ,h(W ) ∈ E
]
≤ exp(2dRε0 + ε1) ·P

[
BMf ,h(W

′) ∈ E
]

+2exp(dRε0 + ε1) · dδ0 + exp(dε0) · δ1
The derivation is almost identical to that of Theorem 3.5, except that we need to invoke Theorem 3.4 dR

times instead of d times—as there are more Gaussians that need to be simulated—and invoke Theorem E.5
instead of Theorem 3.2.

F Proofs for Lower Bound

Lemma 5.3. Fix arbitrary d̂ ∈N. Suppose Π = (PRE, P ,POST) is a protocol that wraps around certified secure
aggregation ΠAgg and POST(y) := yQ for some public matrix Q ∈Rd̂×d . If Π(Dn) is an estimate of E [D] such that
the standard deviation of error in any coordinate j exceeds the bias in j, then there exists a vector ṽ ∈ F d̂ such that∥∥∥∥∥∥f (ṽ) · ṽQ − E

v∼PRE(D)
[P (v) · vQ]

∥∥∥∥∥∥2
2

≥ κ
2
·min

(
d

ε2n3
,1/n

)
where κ is the constant from Theorem 5.2.

Proof. Our argument will be probabilistic: we will prove that, when u is drawn from PRE(D), the expected

value of

∥∥∥∥∥∥P (u) ·uQ − E

v∼PRE(D)
[P (v) · vQ]

∥∥∥∥∥∥2
2

exceeds the threshold so there must exist some ṽ where the desired

inequality holds. In the following, random variables are generated in an execution of Π (absent an attack) on
input X ∼Dn. yagg =

∑
yi · P (yi) is the certified aggregation received by the analyst.

κ ·min
(

d

ε2n2
,1

)
≤ E

yagg

[
∥Π(Dn)−E [D]∥22

]
(Theorem 5.2)

= E
yagg

[∥∥∥yaggQ −E [D]
∥∥∥2
2

]
(Assumption on A)

=
∑
j∈[d]

E
yagg

[(
(yaggQ)[j]−E [D][j]

)2]
(Linearity of expectation)

≤
∑
j∈[d]

2Var
[
(yaggQ)[j]

]
(Assumption on Π’s estimate)

= 2n ·
∑
j∈[d]

Var
u∼PRE(D)

∑
ȷ̂∈[d̂]

u[ȷ̂] · P (u) ·Qȷ̂[j]

 (Each yi ∼iid PRE(D))

By dividing by 2n and expanding the definition of variance,

κ
2
·min

(
d

ε2n3
,1/n

)

≤
∑
j∈[d]

E

u∼PRE(D)


∑
ȷ̂∈[d̂]

u[ȷ̂] · P (u) ·Qȷ̂[j]− E

v∼PRE(D)

∑
ȷ̂∈[d̂]

v[ȷ̂] · P (v) ·Qȷ̂[j]



2

= E

u∼PRE(D)

∥∥∥∥∥∥P (u) ·uQ − E

v∼PRE(D)
[P (v) · vQ]

∥∥∥∥∥∥2
2


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By definition of expected value, there must be some ṽ which satisfies the desired inequality. This completes
the proof.

Theorem 5.1. Fix arbitrary d̂ ∈N. Suppose Π = (PRE, P ,POST) is an (ε,δ)-DP protocol that wraps around certified
secure aggregation ΠAgg and POST(y) := yQ for some public matrix Q ∈ Rd̂×d . If Π(Dn) is an estimate of E [D]
whose standard deviation of error in any coordinate j exceeds the bias in j, then there is an attack K such that

E

[∥∥∥ΠK (Dn)−E [D]
∥∥∥2
2

]
≥ c ·min

(
t2

n2
· d

ε2n
,
t2

n

)
.

where c is a universal constant.

Proof. Suppose t malicious clients each send the ṽ message identified in Lemma 5.3. Formally, P is the
distribution that places all mass on ṽ, . . . , ṽ and corrupt clients C is an arbitrary subset of [n] with size t.

We will use yKagg) to denote the object received by the analyst in the attacked execution. The mean squared
error of Π’s output is

E

[∥∥∥ΠK (Dn)−E [D]
∥∥∥2
2

]
=

∑
j∈[d]

E

[
⟨yKagg,Q[j]⟩ −E [D][j]

]2
(Assumption on A)

=
∑
j∈[d]

E

yi∼iidPRE(D)

〈∑
i∈H

P (yi) · yi ,Q[j]
〉
+
〈∑
i∈C

P (ṽ) · ṽ,Q[j]
〉
−E [D][j]


2

(Construction of K = (C,P))

=
∑
j∈[d]

E

yi∼iidPRE(D)


〈∑
i∈[n]

P (yi) · yi −
∑
i∈C

P (yi) · yi ,Q[j]
〉
+
〈∑
i∈C

P (ṽ) · ṽ,Q[j]
〉
−E [D][j]


2

=
∑
j∈[d]

E

〈∑
i∈C

P (ṽ) · ṽ − P (yi) · yi ,Q[j]
〉

2

(Π is unbiased)

=
∑
j∈[d]

E

∑
ȷ̂∈[d̂]

∑
i∈C

(P (ṽ) · ṽ[ȷ̂]− P (yi) · yi[ȷ̂])Qȷ̂[j]


2

= t2
∑
j∈[d]

E

v∼PRE(D)

∑
ȷ̂∈[d̂]

(P (ṽ) · ṽ[ȷ̂]− P (v) · v[ȷ̂])Qȷ̂[j]


2

(yi are i.i.d.)

= t2
∥∥∥∥∥∥P (ṽ) · ṽQ − E

v∼PRE(D)
[P (v) · vQ]

∥∥∥∥∥∥2
2

≥ κ
2
·min

(
t2

n2
· d

ε2n
,
t2

n

)
The last step comes from our preceding lemma.

G Analysis of the Poisson-Binomial Mechanism (PBM)

In this Appendix, we analyze the privacy and accuracy guarantees of the PBM. The protocol was
originally presented by Chen et al. [19] but we study its guarantees the presence of malicious clients. Much
like the DBM, the PBM wraps around a generic certified aggregation protocol so it is specified by a client
pre-processing algorithm, a predicate for the certified aggregation, and a post-processing algorithm run by
the analyst.
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As discussed in the introduction, the PBM ensures Rényi differential privacy assuming an ideal function-
ality that performs secure aggregation. The privacy definition is based upon the order-α Rényi divergence
between distributions P,Q:

Dα(P,Q) :=
1

α − 1
log E

x∼Q

[(
P(x)
Q(x)

)α]
M is (α,ε)-Rényi differentially private if Dα(M(X),M(X ′)) ≤ ε and Dα(M(X ′),M(X)) ≤ ε for any neighbor-

ing X,X ′ .
Before we describe the PBM for data belonging to the unit ball, we establish guarantees for data belonging

to the interval [−c,+c]. These guarantees will extend to the higher-dimensional case in one of two different
ways.

G.1 Poisson-Binomial Mechanism for Scalar Data

At a high level, the pre-processor samples a value from a binomial distribution whose maximum value is
ℓ and whose expected value is a linear function of Xi . The certified aggregation Σ∈[0,ℓ] will only add values
in the range [0, ℓ]. The post-processor can easily recover the mean of data from the mean of the pre-processed
values by performing an inverse linear transformation.

The formal specification of the pre- and post-processing algorithms are below:

PREc,θ,ℓ(Xi) = Bin(ℓ,p) for p :=
1
2
+θ · Xi

c
(11)

POSTc,θ,ℓ(yagg) =
c

ℓnθ

(
yagg −

ℓn
2

)
(12)

Our main result concerning the PBM for scalar data is the following theorem:

Theorem G.1. For any ε,α, there exist choices for ℓ ∈N and θ ∈ (0,1/2) such that Πc,θ,ℓ = (PREc,θ,ℓ ,∈ [0, ℓ],POSTc,θ,ℓ)
ensures (α, ε · n

n−t )-RDP and solves DME with mean-squared error

O

(
c2t2

n2
· ℓα
εn

+
n− t
n
· c

2α

εn2

)
under any attack by t clients. It suffices for certified aggregation to operate on nmbers in a field of size n · ℓ.

G.1.1 Privacy Analysis

As with the DBM, we will focus on privacy offered against the analyst. When there is no attack, its
view is formed by adding up n values generated by PREc,θ,ℓ . The prior work shows that this has privacy
guarantees improving with n. Formally,

Theorem G.2 (Implicit in Chen et al. [19]). There is a constant κ such that, for ε(α,n) := κ · ℓθ2

n ·
1

(1−2θ)4α the
composition of Σ[0,ℓ] and n executions of PREc,θ,ℓ satisfies (ε(α,n),α)-RDP.

Although Chen et al. do not bound κ, they give an algorithm to compute ε(α,n). When α = 2, we show
that we can avoid divisions between small numbers. Refer to Appendix H for more detail.

We argue that the theorem extends to the malicious case. That is, the view of the analyst is simply the
outcome of an RDP algorithm whose parameters depend on the number of malicious clients t.

Claim G.3. If the number of malicious clients is t, then for any attack K the composed algorithm Σ[0,ℓ] ◦RK
c,θ,ℓ satisfies

(ε(α,n− t),α)-RDP.

Proof. Because addition is commutative and honest clients’ coins are independent of malicious clients, we
can interpret the contribution of malicious clients as a post-processing of the sum of honest clients’ messages.
The claim follows from Theorem G.2 and closure of differential privacy under post-processing.
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G.1.2 Accuracy Analysis

We now bound the mean-squared error in terms of the protocol’s parameters, so that we can later
substitute the parameters that target a certain level of privacy.

Claim G.4. For any input X ∈ [−c,c]n, let µ← 1
n

∑
Xi . For any attack K , if µ̃←ΠK

c,θ,ℓ(X) then

E

[
(µ̃−µ)2

]
≤ c2t2

n2θ2

(1
2
+θ

)2
+
n− t
n
· c2

4ℓnθ2

In the special case where t = 0, the estimate is unbiased and the variance is ≤ c2

4ℓnθ2

Proof. We use µ̂ to denote the estimate generated by an honest execution of the protocol (no attack). Chen et
al. proved that E [µ̂] = µ, so

E

P,PREc,θ,ℓ

[µ̃−µ] = E

P,PREc,θ,ℓ

[µ̃− µ̂]

=
c

ℓnθ
·

 E

P,PREc,θ,ℓ

∑
i<H

ỹi +
∑
i∈H

yi −
ℓn
2

− E

PREc,θ,ℓ

 n∑
i=1

yi −
ℓn
2


 (Defn. of POSTc,θ,ℓ)

=
c

ℓnθ
·

EP
∑
i<H

ỹi

−E
∑
i<H

yi




=
c

ℓnθ
·

EP
∑
i<H

ỹi

−∑
i<H

ℓ ·
(1
2
+θ · Xi

c

) (Defn. of PREc,θ,ℓ)

=
c

ℓnθ
·E
P

∑
i<H

ỹi − ℓ ·
(1
2
+θ · Xi

c

)
Now we derive the variance:

Var[µ̃] =
c2

ℓ2n2θ2

VarP
∑
i<H

ỹi

+∑
i∈H

Var
PREc,θ,ℓ

[yi]

 (Independence)

=
c2

ℓ2n2θ2

VarP
∑
i<H

ỹi

+ ℓ ·
∑
i∈H

1
4
−θ2 ·

X2
i

c2

 (Defn. of PREc,θ,ℓ)

=
c2

ℓ2n2θ2VarP

∑
i<H

ỹi

+ c2

ℓn2θ2 ·
∑
i∈H

1
4
−θ2 ·

X2
i

c2

Thus, the mean squared error is, for any input X,

E

[
(µ̃−µ)2

]
= Var[µ̃] +E [µ̃−µ]2

=
c2

ℓ2n2θ2 ·

VarP
∑
i<H

ỹi

+E

P

∑
i<H

ỹi − ℓ ·
(1
2
+θ · Xi

c

)
2+ c2

ℓn2θ2 ·
∑
i∈H

1
4
−θ2 ·

X2
i

c2

=
c2

ℓ2n2θ2EP


∑
i<H

ỹi − ℓ ·
(1
2
+θ · Xi

c

)2
+ c2

ℓn2θ2 ·
∑
i∈H

1
4
−θ2 ·

X2
i

c2
(13)

Now, we find an input X and choices for ỹi to maximize the above quantity. We maximize each term in
the left-hand series by setting ỹi ← ℓ and Xi∈[m]←−c. We maximize each term in the right-hand series by
setting Xi ← 0. So,
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(13) ≤ c2

ℓ2n2θ2EP


∑
i<H

ℓ
2
− ℓθ · Xi

c



2

+
c2

ℓn2θ2 ·
∑
i∈H

1
4
−θ2 ·

X2
i

c2

≤ c2

ℓ2n2θ2

(
mℓ
2

+mℓθ

)2
+

c2

ℓn2θ2 ·
n− t
4

=
c2t2

n2θ2

(1
2
+θ

)2
+
n− t
n
· c2

4ℓnθ2

G.2 Poisson-Binomial Mechanism for Data in Euclidean Unit Ball

The PBM for scalar data can be used to estimate the mean of vectors inside Bd by simply executing the
mechanism on every coordinate (setting c = 1). But the privacy parameter degrades:

Theorem G.5 (Mironov [49]). If M is (α,ε)-RDP, then the composition M(X[1]), . . . ,M(X[d]) is (α,d · ε)-RDP.

To achieve a target level of privacy in an honest protocol execution, the term ℓθ2 needs to be shrunk
by ≈ d (see Theorem G.2). This impacts our bound on the squared error. To compensate, we present two
methods of reducing global sensitivity by ≈

√
d, as measured in ℓ∞ norm. Both variants assume there is a

matrix U accessible to all parties. We will use U [t] to denote the t-th column vector. Meanwhile, Uj denotes
the j-th row vector.

G.2.1 The Kashin Representation method

In this subsection, we review the way Chen et al. extend the PBM from the scalar case to the Bd case.
The authors propose that each client maps their data Xi to a new point Wi whose number of dimensions
is D > d and whose ℓ∞ norm is c = Θ(1/

√
d). Then the clients simply execute the scalar Poisson-Binomial

mechanism on each of the coordinates in Wi . The mapping is done with the Kashin representation algorithm
by Lyubarskii and Vershynin [47].

Definition G.6 (Kashin Representations [47]). A matrix U ∈Rd×D with orthonormal rows admits a S-Kashin
representation of x ∈Rd if there is some column vector w ∈RD where x =Uw and ∥w∥∞ ≤ S√

D
· ∥x∥2. Matrix U

is S-Kashin if it admits a S-Kashin representation of all x ∈Rd .

Theorem G.7 (Computing Kashin Representations [47]). There exists a S =O(1)-Kashin matrix with D =O(d)
and there is an algorithm to obtain Kashin representations in O(d2 logd) time.

Chen et al. integrate Kashin representations with the PBM. We reproduce the pseudocode for the
randomizer (Algorithm 2) and the analyst (Algorithm 3).

Algorithm 2: PBM Pre-processor PREθ,ℓ;S,U for unit ball data

Public Parameters: θ ∈ (0,1/2), ℓ ∈N; S > 0, U ∈Rd×D

Input: Client data Xi ∈ Bd
Output: Message vector Yi ∈ {0, . . . , ℓ}D
Compute Wi ∈RD by running the Kashin rep. alg. by Lyubarskii & Vershynin on Xi and U
c← S/

√
D

Clamp the entries of Wi to [−c,+c] /* Not run if U is Kashin */
Yi ← (PREc,θ,ℓ(Wi[1]), . . . ,PREc,θ,ℓ(Wi[D]))
Return Yi
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Algorithm 3: PBM Post-processor POSTθ,ℓ;S,U for unit ball data

Public Parameters: θ ∈ (0,1/2), ℓ ∈N; S > 0, U ∈Rd×D

Input: Aggregated message vector yagg ∈ {0, . . . ,nℓ}D
Output: An estimate of the mean µ̃2
c← S/

√
D

µ̃∞← (POSTc,θ,ℓ(yagg[1]), . . . ,POSTc,θ,ℓ(yagg[D]))
µ̃2←Uµ̃∞
Return µ̃2

Claim G.8. For any data X ∈ (Bd
2)

n, let µ2 = 1
n

∑n
i=1Xi . Let U be a S-Kashin matrix. For any P, if µ̃2 ←

(POSTθ,ℓ;K,U ◦Σ[ℓ] ◦MP)(x⃗) then

E

[∥∥∥µ̃2 −µ2∥∥∥22] ≤ S2 ·
(

t2

n2θ2

(1
2
+θ

)2
+
n− t
n
· c2

4ℓnθ2

)
.

Proof. Define µ∞ := 1
n

∑n
i=1Wi . We first fix any realization of µ̃2, which also fixes µ̃∞. In their work, Chen et

al. showed that
∥∥∥µ̃2 −µ2∥∥∥22 ≤ ∥∥∥µ̃∞ −µ∞∥∥∥2

2
.

Now we factor in the randomness of the protocol (and attack). Taking expectations on either side,

E

[∥∥∥µ̃2 −µ2∥∥∥22] ≤ E

[∥∥∥µ̃∞ −µ∞∥∥∥2
2

]
≤D · c2 ·

(
t2

n2θ2

(1
2
+θ

)2
+
n− t
n
· 1
4ℓnθ2

)
(Claim G.4)

= S2 ·
(

t2

n2θ2

(1
2
+θ

)2
+
n− t
n
· 1
4ℓnθ2

)
If we re-scale ℓθ2 according to Theorem G.5, then we arrive at the following:

Theorem G.9. For any ε,α and attack K , there exist parameter choices such that Σ∈[0,ℓ] ◦PREKθ,ℓ;S,U (X) satisfies
(α, ε · n

n−t )-RDP. For any input X ∈ (Bd)n, if µ← 1
n

∑
Xi and µ̃←ΠK

θ,ℓ;S,U (X) then

E

[∥∥∥µ̃−µ∥∥∥2] =O

(
t2

n2
· αℓd
εn

+
n− t
n
· αd
εn2

)
We note that the protocol and its guarantees hinges on knowing U and the values of S,D. Chen et

al., like Lyubarskii & Vershynin before them, only derive asymptotic bounds. In Appendix I, we obtain a
S = 100-Kashin matrix with overwhelming probability. We leave improvements to the constant for future
work.

G.2.2 The Rotation Method

Here, we describe an approach to transform vectors such that the new ℓ∞ norm is O(
√
log(nd)/d).

Although this is asymptotically worse than what is possible with Kashin representations, we show that the
client-side operations can be reduced to O(d) time. And for a wide range of parameters,

√
log(nd) is smaller

than the Kashin constant we were able to obtain.

The idea is for clients to simply rotate their data in the same direction, then privately compute the mean
of the rotated points, and finally rotate back. Rotation does not distort distances and we show that the
rotated vectors all likely have ℓ∞ norm bounded by O(

√
log(nd)/d). This follows from a tail bound and a

union bound over all users and coordinates.
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Definition G.10. A matrix U ∈Rd×d is S-good for input X ∈ (Bd)n if, for all Xi , ∥UXi∥∞ ≤ S/
√
d.

Claim G.11. Suppose d > 16ln(200n). If U ∈ Rd×d is a uniformly random rotation matrix, then with probability

≥ 99/100 it is S-good for any fixed X ∈ (Bd2 )n, where S =
√
4ln(200nd) + 4

√
ln(200nd) + 2.

Proof. Consider any user i. Wi ← UXi is distributed as a uniformly random vector of norm ∥Xi∥2. If
η[1], . . . ,η[d] are standard normal random variables, the j-th coordinate of Wi has the same distribution as

∥Xi∥2 ·
η[j]√∑

j′∈[d] η[j ′]2
. Put differently, Wi[j]2 is equal in distribution to ∥Xi∥22 ·

η[j]2∑
j′∈[d] η[j ′]2

where the numerator

and denominator are chi-squared random variables.
We will make use of the following technical lemma regarding chi-squared random variables:

Lemma G.12 (Laurent-Massart). If u ∼ χ2
d then

P

[
u > d +2

√
d∆+2∆

]
≤ exp(−∆)

P

[
u ≤ d − 2

√
d∆

]
≤ exp(−∆)

By Lemma G.12 and union bounds, we know that

max
j

η[j]2 < 1+2
√
∆+2∆

and
∑
j∈[d]

η[j]2 > d/2

except with probability ≤ d exp(−∆) + exp(−d/16).
By a union bound over all i ∈ [n], the following holds except with probability ≤ n(d exp(−∆)+exp(−d/16)):

max
i,j

Wi[j]
2 <

4∆+4
√
∆+2

d

For ∆ = ln(200nd), this tail bound is equal to S. Our lower bound on d implies a failure probability of
≤ 1/100.

We are now ready to present the three main components of the rotation-based PBM Πθ,ℓ;S,U . The pre-
processing algorithm is PREθ,ℓ;S,U , whose pseudocode is virtually identical to Algorithm 2 except that Wi

is obtained by Wi ← UXi . The predicate ∈ [0, ℓ] is the same as before: it simply checks if the given value
is an integer between 0 and ℓ. The analyst’s post-processing algorithm POSTθ,ℓ;S,U is likewise identical to
Algorithm 3 except that we simply revert the transformation that the clients performed (µ̃2←UT µ̃∞).

The following claim is immediate from substituting our value of c into Claim G.4.

Claim G.13. Suppose U is the matrix in Claim G.11. For any attack K , if µ̃2←Π
K
θ,ℓ;S,U (X), then

E

[∥∥∥µ̃2 −µ2∥∥∥22] ≤ (
4ln(200nd) + 4

√
ln(200nd) + 2

)
·
(

t2

n2θ2

(1
2
+θ

)2
+

1
ℓn2θ2 ·

n− t
4

)
Finally, we express the expected squared-error in terms of target privacy parameters. Identical to the

Kashin-based protocol, this is achieved by combining Claim G.13 with the privacy analysis in the scalar case
(Claim G.3) and RDP composition (Theorem G.5).

Theorem G.14. For any ε,α, there exist choices for ℓ ∈N and θ ∈ (0,1/2) such that (a) the algorithm P i
K
θ,ℓ;S,U

satisfies (α, ε · n
n−t )-RDP and (b) for any input X ∈ (Bd)n and attack K , if µ̃←Π

K
θ,ℓ;S,U (X) then

E

[∥∥∥µ̃−µ∥∥∥2] =O

(
log(nd) ·

(
t2

n2
· αℓd
εn

+
n− t
n
· αd
εn2

))
where µ← 1

n

∑
Xi .
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Figure 7: Visualization of our bound on mean-squared error of the rotation-based PBM as a function of Rényi
ε.

Visualizing our Bounds In Figure 7, we plot the outcome of Theorem G.14 as a function of the Rényi
privacy parameter ε. This is done by fixing ℓ = 25, varying θ, and computing a bound on ε (via Theorem
G.2). Naively doing so involves divisions between small numbers; the next Appendix sketches the technique
we used to avoid such instability.

Due to the different privacy guarantees, we cannot immediately compare the privacy-accuracy tradeoff
curve of the PBM (Figure 7 with the curve for the DBM (Figure 6). So we transform RDP ε into an approximate
DP ε by applying a result by Mironov (Proposition 3 in the work that introduced RDP [49]). As shown in
Figure 8, the resulting curve for the PBM (gray) is worse than the existing curve for our DBM (black).

Lemma A.1 in Chen et al.’s work could yield tighter bounds on ε after conversion. But it requires the
computation of ε(α), the Rényi DP parameter as a function of the order α. As previously stated, Chen et al.’s
closed-form bound does not have a concrete leading constant. We can numerically bound ε(α) for any given
α but, aside from instability issues, we will need a bound that holds for every α.

Optimizing Running Time As written, Rθ,ℓ;U takes O(d2) time. However, this can be improved to O(d)
time if we change coordinate systems.

Instead of accessing a rotation matrix U , suppose clients accessed a shared random vector r ∈Rd whose
coordinates are i.i.d. standard Gaussians. Note that the d angles

{
a[j] = sin−1 r[j]

∥r∥2

}
j∈[d]

uniquely determine

the uniformly random unit vector r
∥r∥2

and vice versa. We can interpret r
∥r∥2
↔ a as a uniformly random

rotation of the basis vector (1,0, . . . ,0)↔ (π/2,0, . . . ,0).
A client can perform the same Cartesian-to-angular transformation to their data vector. They compute

a− (π/2,0, . . .0) and add it to their angular representation, before converting back to Cartesian coordinates.
There are a constant number of conversions and each takes O(d) time.

H Stably Computing the Privacy Parameter of PBM

In this Appendix, we derive a bound on ε(α,n) in the case where α = 2 that permits stable computation.
We first review the analysis for the general case given by Chen et al.: for any neighboring inputs X,X ′ , the
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Figure 8: Comparison of error bounds for Poisson-Binomial and Distributed Binomial mechanisms under
approximate DP. Privacy parameter for PBM obtained via RDP-to-approximate-DP conversion in [49].

Rényi divergence of order α > 1 between (Σ∈[0,ℓ] ◦PREc,θ,ℓ)(X) and (Σ∈[0,ℓ] ◦PREnc,θ,ℓ)(X
′) is bounded by

ℓ ·max
[
Dα

(
Ber(

1
2
−θ) ∗Bin(n′ , 1

2
+θ)︸                            ︷︷                            ︸

P1

∥ Bin(n′ +1,
1
2
+θ)︸                ︷︷                ︸

Q1

)
,

Dα

(
Bin(n′ +1,

1
2
−θ)︸                ︷︷                ︸

P2

∥ Ber(1
2
+θ) ∗Bin(n′ , 1

2
−θ)︸                            ︷︷                            ︸

Q2

)]

where n′ = ⌈(n− 1)/2⌉. Thus, computing ε(α,n) can be done by evaluating the above expression.
Naively evaluating the Rényi divergence between P ,Q involves computing the mass function ratio

P (v)/Q(v) for every point v. Because Q(v) can be very small, this approach is generally unstable. In the case
where α = 2, we can express the Rényi divergence in a way that avoids this ratio.

For any value v and k ∈ {1,2}, let Pk(v),Qk(v) be the probability masses placed on v by Pk ,Qk . We express
the order-2 divergences in these terms:

Dα=2 (Pk∥Qk)

=
1

2− 1
ln E

v∼Qk

( Pk(v)Qk(v)

)2
= ln

∑
v

Pk(v)2

Qk(v)

= ln E

v∼Pk

[
Pk(v)
Qk(v)

]
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We now expand the ratio between probability masses for k = 1:

P1(v)
Q1(v)

=

(
1
2 −θ

)
·P

[
Bin(n′ , 12 +θ) = v − 1

]
+
(
1
2 +θ

)
·P

[
Bin(n′ , 12 +θ) = v

]
P

[
Bin

(
n′ +1, 12 +θ

)
= v

]
=

(
1
2 −θ

)
· n′ !
(v−1)!(n′−v+1)!

(
1
2 +θ

)v−1
·
(
1
2 −θ

)n′−v+1
+
(
1
2 +θ

)
· n′ !
v!(n′−v)!

(
1
2 +θ

)v
·
(
1
2 −θ

)n′−v
(n′+1)!

v!(n′+1−v)! ·
(
1
2 +θ

)v
·
(
1
2 −θ

)n′+1−v
=
v ·

(
1
2 +θ

)v−1
·
(
1
2 −θ

)n′−v+2
+ (n′ − v +1) ·

(
1
2 +θ

)v+1
·
(
1
2 −θ

)n′−v
(n′ +1) ·

(
1
2 +θ

)v
·
(
1
2 −θ

)n′+1−v
=
v ·

(
1
2 −θ

)2
+ (n′ − v +1) ·

(
1
2 +θ

)2
(n′ +1) ·

(
1
2 +θ

)
·
(
1
2 −θ

)
=

1
(n′ +1)(1/4−θ2)

(
(n′ +1) ·

(1
2
+θ

)2
+ v

((1
2
−θ

)2
−
(1
2
+θ

)2))
Therefore

E

v∼P1

[
P1(v)
Q1(v)

]
=

1
(n′ +1)(1/4−θ2)

(
(n′ +1) ·

(1
2
+θ

)2
− 2θ E

v∼P1
[v]

)
=

1
(n′ +1)(1/4−θ2)

(
(n′ +1) ·

(1
2
+θ

)2
− 2θ

(
n′ +1
2

+ (n′ − 1)θ
))

=
1

(n′ +1)(1/4−θ2)

(
(n′ +1) ·

(1
2
+θ

)2
− (θ +2θ2)n′ −θ +2θ2

)
=

1
(n′ +1)(1/4−θ2)

(
(1/4+θ +θ2)n′ + (1/4+θ +θ2)− (θ +2θ2)n′ −θ +2θ2

)
=

1
(n′ +1)(1/4−θ2)

(
(1/4−θ2)n′ +1/4+3θ2

)
= 1+

4θ2

(n′ +1)(1/4−θ2)

so that D2 (P1∥Q1) ≤ 4θ2

(n′+1)(1/4−θ2)
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For k = 2,

P2(v)
Q2(v)

=
P

[
Bin(n′ +1, 12 −θ) = v

](
1
2 +θ

)
·P

[
Bin(n′ , 12 −θ) = v − 1

]
+
(
1
2 −θ

)
·P

[
Bin(n′ , 12 −θ) = v

]
=

(n′+1)!
v!(n′+1−v)! ·

(
1
2 −θ

)v
·
(
1
2 +θ

)n′+1−v
(
1
2 +θ

)
· n′ !
(v−1)!(n′−v+1)! ·

(
1
2 −θ

)v−1
·
(
1
2 +θ

)n′−v+1
+
(
1
2 −θ

)
· n′ !
v!(n′−v)! ·

(
1
2 −θ

)v
·
(
1
2 +θ

)n′−v
=

(n′ +1) ·
(
1
2 −θ

)
·
(
1
2 +θ

)
v ·

(
1
2 +θ

)2
+ (n′ +1− v) ·

(
1
2 −θ

)2
=

(n′ +1) ·
(
1
4 −θ

2
)

2θv + (n′ +1) ·
(
1
4 −θ +θ2

)
which means D2 (P2∥Q2) = ln E

v∼P2

[
(n′+1)·( 14−θ2)

2θv+(n′+1)·( 14−θ+θ2)

]

I Computing Kashin Representations

Here, we revisit the analysis of Lyubarskii & Vershynin in order to obtain concrete parameters of a Kashin
matrix. We first re-state their notion of uncertainty principle.

Definition I.1 (Uncertainty Principle [47]). A matrix U ∈Rd×D satisfies the (η,δ)-uncertainty principle if, for
all x ∈RD with ≤ δD nonzero entries, ∥Ux∥2 ≤ η ∥x∥2

The authors of [47] prove that this property is a sufficient condition for a Kashin matrix:

Lemma I.2 (Implicit in [47]). Given a matrix U ∈Rd×D that satisfies the (η,δ)-uncertainty principle, there exists an
O(logd)-round algorithm to generate a S = 2(1− η)−1δ−1/2-Kashin representation of any x, where each round takes
O(d ·D) time.

We now give an algorithm to generate a matrix that satisfies the uncertainty principle:

Lemma I.3 (Satisfiability of Uncertainty Principle). Fix even integer d and define D := 4d. Let U be the matrix
formed by removing the bottom D − d rows of a uniformly random D ×D rotation matrix. Except with probability
exp(−0.047d), U satisfies the (η = 4/5,δ = 1/100)-uncertainty principle.

Proof. This analysis is a concrete version of the sketch originally given by Lyubarskii & Vershynin [47]. The
intuition is to combine the Johnson-Lindenstrauss lemma with an epsilon-net argument, where the net is
drawn over the δ-sparse vectors.

Let S ⊂R
D be those unit vectors where the number of nonzero entries is ≤ δD. LetN be a maximal set of

points in S such that every pair of points in N is at least ε from one another in ℓ2 distance. Lyubarskii &

Vershynin show that |N | ≤
(
3e
εδ

)δD
[47].

We invoke a variant of the Johnson-Lindenstrauss lemma.

Claim I.4. Sample U as in Lemma I.3. For any set of unit vectorsN ⊂R
D and real value s > 0,

P

U

[
∃x ∈ N ∥Ux∥22 >

es − es/2

es − 1

]
< |N | · exp((−D/2+ d − 1) · s/2)
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We prove this statement shortly. For now, substitution implies that the following likely occurs:

∀x ∈ N ∥Ux∥22 <
es − es/2

es − 1

Now, fix any y ∈ S. Because N is maximal, there is some x ∈ N where
∥∥∥y − x∥∥∥

2
≤ ε. Hence, the triangle

inequality implies

∀y ∈ S
∥∥∥Uy

∥∥∥
2
<

√
es − es/2
es − 1

+ ε

Meanwhile, the failure probability is

|N | · exp((−D/2+ d − 1) · s/2)

≤
(3e
εδ

)δD
· exp((−D/2+ d − 1) · s/2)

= exp
(
δD ln

3e
εδ

+ (−D/2+ d − 1) · s/2
)

We choose s = 1 and ε = 1/100. It is easy to verify that the norm bound is√
e − e1/2
e − 1

+1/100 < 4/5 = η

and the failure probability is

exp
(
4δd ln

300e
δ

+ (−d − 1)/2
)

< exp
(
d(4δ ln

300e
δ
− 1/2)

)
= exp

(
d(

1
25

ln30000e − 1/2)
)

< exp(−0.047d)

which concludes the proof.

We now prove the Johnson-Lindenstrauss variant.

Proof of Claim I.4. Let ∆ = D − d. By the construction of U , Ux is identically distributed with the vector
formed by selecting the first d coordinates of a random unit vector v ∈RD . Hence, for all t ∈ (0,1),

P

U

[
∥Ux∥22 > t

]
= P

v

 d∑
i=1

v2i > t

 (14)

But a random unit vector v ∈ RD is itself obtained by normalizing a spherical Gaussian: if the entries of
η = (η1, . . . ,ηD ) are normally distributed with mean 0 and variance 1, then vi = ηi /

∥∥∥η∥∥∥
2
. Hence,

P
v

 d∑
i=1

v2i > t

 = P
η


∑d

i=1η
2
i∑D

j=1η
2
j

> t


= P

a∼χ2(d),b∼χ2(∆)

[ a
a+ b

> t
]

(15)

= P

c∼β(d/2,∆/2)
[c > t] (16)

= 1− It(d/2,∆/2) (CDF of β)

= I1−t(∆/2,d/2)
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(15) comes from the definition of the chi-square distribution. Meanwhile, (16) comes from the definition of
the beta distribution. Now, we invoke the identity

P

c′∼Bin(n,p)

[
c′ ≥ k

]
= Ip(k,n− k +1)

for the parameter values p = 1− t, k = ∆/2, n =D/2− 1 to conclude

P

U

[
∥Ux∥22 > t

]
= P

c′∼Bin(D/2−1,1−t)

[
c′ > ∆/2

]
Our claim will now come from a Chernoff bound. For any s > 0,

P

c′∼Bin(D/2−1,1−t)

[
c′ > ∆/2

]
≤ exp(−∆s/2) · E

c′∼Bin(D/2−1,1−t)

[
exp(sc′)

]
(Markov’s)

= exp(−∆s/2) · E

c′′1 ,...,c
′′
D/2−1

exp(sD/2−1∑
j=1

c′′j )

 (if c′′j ∼ Ber(1− t))

= exp(−∆s/2) ·
D/2−1∏
j=1

E

c′′j

[
exp(sc′′j )

]
(Independence)

= exp(−∆s/2) · (t + (1− t)es)D/2−1 (MGF of Bernoulli)

= exp(−∆s/2+ (D/2− 1)s/2) (17)

We obtain the last step by solving t + (1− t)es = es/2 for t. Substituting ∆ =D − d and a union bound overN
completes the proof.

J Proof Sketch of Theorem 4.2.

The description of the protocol is presented in Figure 9 and the proof sketch of Theorem 4.2 is given
below.

Let A be the static adversary who maliciously corrupts parties in protocol ΠdCP. Let C be the subset of
verifiers corrupted by Awhere |C| ≤ t.

We now describe the simulator Sim. Sim internally invokes the adversary A with some auxiliary input z.
We consider two cases depending on whether A corrupts the prover or not.

Simulating the case where the Prover is not corrupted. We first describe how to simulate the Commit
Phase. Whenever an honest prover P commits to an unknown value w, Sim receives a message (receipt,sid,P ).
Upon receiving the receipt message, Sim generates a commitment c̃om via zkMVPC’s simulator Sim′ i.e.,
(c̃om,pp, trap)← Sim′(1λ, t) and broadcasts a commitment c̃om on behalf of honest P .

Next, the simulation of the Prove Phase proceeds as follows. Whenever an honest P sends the (dCP-prover,sid,xj ,Vj )
message to FdCP, Sim receives the message (dCP-proof,sid,xj ,accept) from FdCP. If Vj ∈ C, then Sim internally
sends the message (xi , π̃j ) to A on behalf of P where π̃j is the simulated proof which can be simulated using
the same simulator as the one used for one-to-many argument system in [68].

Simulating the case where the Prover is corrupted. The simulation of Commit Phase is as follows. When-
ever A (controlling P ) wants to commit to a value, Sim obtains the commitment comVd

that A broadcasts
to all verifiers. Then, Sim extracts the input in from the commitment and externally sends the message
(commit,sid,P ,w) to FdCP where w = in. Also, Sim records the value w.

Next, the Prove Phase is simulated as follows. WheneverAwant to prove a statement to a verifier Vj , Sim
receives the message (outj ,πj ) on behalf of the honest verifier Vj . Then, Sim first verifiers the proof πj (as per
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Protocol ΠdCP

Protocol ΠdCP runs between the Prover P and n Verifiers V = {V1, . . . ,Vn}. It is parameterized by n relations
(R1, . . . ,Rn), which are specified via circuit C as per Notation 4.1. Given a d-depth layered arithmetic circuit
C : F t+1→ F

n associated with relations (R1, . . . ,Rn), the prover P needs to convince Vj that outj = [C(in)]j , ⊥,
where [C(in)]j is the j-th output of the circuit given input in, and outj is the claimed result for Vj . In other words,
P needs to Vj that (outj , in) ∈ Rj .
Without loss of generality, assume that the lengths of the input and output to C are both powers of 2, and we can
pad them if not. Let ρ be a random oracle and λ be the security parameter.

Commit Phase. Set pp ← zkMVPC.KeyGen(1λ, t). P invokes zkMVPC.Commit(Ṽd ,pp) to generate com
Ṽd

and
broadcasts com

Ṽd
to all verifiers. Ṽd is the multilinear extension of in, as defined in the GKR protocol.

Prove Phase. The Open phase is as follows.

1. For each j ∈ [n], P setsV0(j) as outj for all i ∈ [n].

2. For each j ∈ [n], P runs the sumcheck protocol on:

Ṽ0(j̃) =
∑

x⃗∈{0,1}logn
β̃(j⃗ , x⃗)Ṽ0(x⃗)

where j⃗ is the binary string of j. For i = 1, . . . , logn:

• Suppose Mi,j is the i-th univariate polynomial P sends to Vj in the sumcheck. If i = 1, set

ri,j = ρ(com
Ṽd
||V0(j)||M1,j ). If i > 1, set ri,j = ρ(g

(0)
i−1||Mi,j ).

• P builds a Merkle tree on the vector r⃗(i) = (ri,0, . . . , ri,N−1). Let g(0)i = MT.Commit(r⃗(i)). Then P

assigns g(0)i as the common random challenge in the i-th round.

• P attaches (ri,j ,pathi,j )←MT.Open(j,g
(0)
i ) in the proof associated with verifier Vj i.e., πj .

In the last round of the sumcheck, P attached Ṽ0(g⃗(0)) to each Vj ’s proof πj (as the all the verifiers
share the same random vector g⃗(0)).

3. P invokes the GKR protocol with Ṽ0(g⃗(0)). In each round, P generates the random challenges by
querying ρ on the last round’s challenge and message. For all Vj , the random challenges and the
transcript would be exactly the same because they share the same claim about Ṽ0(g⃗(0)) and the same
random vector g⃗(0) from the first round of this step.

4. In the last round of the GKR protocol, all verifiers have the same claim about Ṽd (g⃗(d)). P invokes
(ygkr ,πgkr )← zkMVPC.Open(Ṽd , g⃗

(d),pp) (to generate the proof for the claim) and attaches its output
(ygkr ,πgkr ) to each of the proofs πj for all j ∈ [n]. For each Vj , P sends the message (outj ,πj ) to Vj .

5. (Verification) For each j ∈ [n], Vj outputs (outj ,accept) if the all of the following checks pass; otherwise
outputs reject.

• checks the proof πj with random challenges provided by P and zkMVPC.Verify(ygkr ,πgkr )

• checks all authenticated paths in the Merkle tree proof by MT.Verify.a

• ri,j = g
(0)
i

• queries the random oracle ρ to check the generation process of random challenges.

aIn particular, given pathi,j = (ν1, . . . ,νlogn), for k = 1, . . . , logn: If ji = 0, Vj computes ri,j = ρ(ri,j ||νi ||(i − 1)(logn + 1) + k);
otherwise, Vj computes ri,j = ρ(νi ||ri,j ||(i − 1)(logn+1) + k).

Figure 9: Distributed Commit and Prove Protocol

the verification steps described in Figure 9). Sim aborts if the proof verification passes but Rj (outj ,w) , 1. If
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Sim does not abort, then Sim sets xj := outj if the proof verification passes; otherwise set xj to some arbitrary
value x′j such that Rj (x′j ,w) , 1. Finally, Sim externally sends the message (dCP-prover,sid,xj ,Vj ) to FdCP.
Finally, Sim outputs whatever A outputs and halts.

We now prove that the real world view is computationally indistinguishable from the ideal world
view. When the prover is uncorrupted, the key difference between the ideal and real executions is that the
commitment c̃om and proof {π̃j }Vj∈C are both simulated in the former and generated as per the protocol in
the latter. It follows from the zero-knowledge property of zkMVPC and the zero-knowledge property of the
one-to-many argument system18 of [68] that the REAL and IDEAL distributions are indistinguishable (when
the prover is not corrupted).

When the prover is corrupted, we first claim that Sim aborts with negligible probability. More precisely,
we claim that if Rj (outj ,w) , 1, then the proof verification on input (outj ,πj ) corresponding to an honest
verifier Vj fails, except with negligible probability. This follows from the soundness of the one-to-many
argument system of [68].

Assuming that Sim does not abort, we next claim that the outputs of the honest verifiers are the same in
both the real execution with A and the ideal execution with Sim. If an honest verifier Vj outputs (xj ,accept)
in the real execution, we show that Vj also outputs the same. If Vj accepts, then the proof verification of
(outj ,πj ) passed. This in turn impliesRj (xj ,w) = 1 (as we assumed Sim does not abort), where xj := outj and
w is extracted from the commitment. In the ideal execution, upon receiving (outj ,πj ) internally from A, Sim
will send (dCP-Prove,sid,xj ,Vj ) to FdCP. This causes Vj to output (xj ,accept), same as the real execution. A
similar reasoning can be used to show that an honest verifier Vj outputs reject in real execution, then we
show that Vj also outputs reject in the ideal execution.

K Proof of Theorem 4.3.

Let A be an adversary in the real world. We show the existence of a simulator Sim such that for any set
of corrupted verifiers C ⊂ V and for all inputs, the REAL and IDEAL distributions are indistinguishable.
We separately deal with the case where the Prover P is honest and the case that the Prover P is corrupted.
Roughly, when the prover is honest, we show that the honest verifiers always accept the dealt shares, and in
particular that the adversary cannot falsely generate complaints that will interfere with the result.

Case I: The Prover is Honest. In this case, in an ideal execution, the Prover sends a t-degree polynomial f
to the functionality FVRS and each honest verifier Vi ∈ H receives (Sharei ,accept) from FVRS, outputs it and
never outputs reject, where Sharei := f (αi). Observe that the adversary cannot influence the output as none
of the corrupted parties have inputs. We first show that this holds in the real execution as well i.e., in a real
execution each honest verifier always output (Sharei ,accept) and never outputs reject.

Since the Prover is honest, it executes the input sharing with input f as prescribed by the protocol. In
this case, we show that an honest verifier always outputs (f (αi),accept). This follows from the claim that
each honest verifier Vi ∈ H keep their existing share sh′i (which is equal to f (αi)) they received from the honest
prover P in the first round and output it (i.e., Sharei := sh′i as per step 4(b)i in Figure 3). Hence, it is sufficient
to show that all honest verifiers execute step 4(b)i. This occurs because each honest verifier Vi ∈ H satisfies
the following conditions:

1. happyi = accept: Since the prover P is honest, this follows ideal functionality FdCP.

2. Consistency check (described in step 3 in Figure 3) passes: Since P is honest, the masked shares broad-
casted by all honest verifiers are correctly computed and there can be at most t errors corresponding to
the masked shares broadcasted on behalf of corrupted verifiers. Decoding procedure applied to the
masked shares succeeds as there are at most t errors.

18The one-to-many argument system is detailed in Section 3 of [68].
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Since the outputs of the honest verifiers are fully determined by the honest prover’s input, it remains to
show the existence of an ideal model adversary/simulator Sim that can generate the view of the adversaryA
in an execution of the real protocol, given only the outputs of the corrupted verifiers C. The description of
Sim is as follows:

1. Sim internally invokes the adversary A.

2. Interaction with the ideal functionality FVRS: Sim receives the output shares {Sharei}Vi∈C of corrupted
verifiers.

3. Generating the view of the corrupted parties: Sim generates the view of A in the offline phase by running
the honest parties as per the real protocol. Next, Sim chooses a polynomial f ′(·) such that f ′(αi) = Sharei
for all corrupted verifiers Vi ∈ C and (f ′(αi), f ′) ∈ Ri . Then, Sim runs all honest parties (both prover
and all honest verifiers) in an interaction with Awhere the prover’s input is f ′(·). In more detail, Sim
emulates the FdCP functionality by invoking the commit and prove phases with prover’s input f ′ .

4. Sim outputs whatever A outputs and aborts.

Informally, the ideal world differs from the real world in that the shares {Sharei}Vi∈C are generated based
on polynomial f (·) in the real world or the simulator-chosen polynomial f ′(·) in the ideal world. The
indistinguishability of the views in the real world and the ideal world follows from the security of the
secret-sharing scheme. In more detail, the adversary can only get up to a threshold of shares corresponding
to the inputs of the honest prover and these are distributed uniformly at random over the underlying field.
We state the correctness of the simulation in the following lemma.

Lemma K.1. The following two distribution ensembles are computationally indistinguishable,{
REALΠVRS,A,C((p,w),n)

}
n∈N
≈c

{
IDEALFVRS,Sim(z),C((p,w),n)

}
n∈N

.

where f (·) is t-degree polynomial.

Towards proving this indistinguishability, we consider a sequence of intermediate hybrid experiments
and apply a standard hybrid argument. For each hybrid experiment Hybrid Hi , we define the random
variable hybi(n) that denotes the output of the experiment.

Hybrid H0: This hybrid is the real world execution of the protocol ΠVRS. By construction, we have that
hyb0(n) ≡ REALΠVRS,A,C .

Hybrid H1: This hybrid is similar to Hybrid H0 with the exception that the masked input shares, denoted
by {m̂sh1, . . . ,m̂shn}, are randomly sampled such that these shares satisfy the constraints: (i) it forms a t-
degree codeword RS

F ,n,t+1 and (ii) are consistent with the view of the adversary i.e., m̂shi = Share′i +rshi
for all Vi ∈ C. These randomly sampled masked input shares are broadcast during step 2 of the protocol
ΠVRS.

Lemma K.2. {hyb0(n)}n∈N and {hyb1(n)}n∈N are identically distributed.

Proof. Hybrids H0 and H1 only differ with respect to how the masked input shares are computed during
the share recovery phase. In hybrid H0, the random shares {rshi,1, . . . , rshi,n} are sampled first such that
they form a codeword RS

F ,n,t+1 and then the masked input shares are computed as m̂shi = Share′i + rshi ,
which makes the resulting masked shares uniformly distributed such that they form a codeword and
are consistent with the view of the adversary. Whereas, in hybrid H1, the masked input shares are
first sampled as per the two constraints (i) form a t-degree codeword RS

F ,n,t+1 and (ii) are consistent
with the view of the adversary. This fixes the random shares to be rshi = m̂shi − Share′i . These two
approaches of computing the masked input shares result in identical distributions, hence hybrids H0
and H1 are identically distributed.
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Hybrid H2: This hybrid is similar to the previous hybrid with the exception that the output shares of honest
verifiers are computed as per the simulation where Sim chooses the t-degree polynomial f ′(·) and
witness w′ that is consistent with the corrupted verifiers’ shares i.e. f ′(·) = Sharei and (f ′(αi), f ′) ∈ Ri

for all Vi ∈ C.

Lemma K.3. {hyb1(n)}n∈N and {hyb2(n)}n∈N are statistically indistinguishable.

Proof. Note that the adversary’s view is generated in the same way in both hybrids {hyb1(n)}n∈N and
{hyb2(n)}n∈N except for the output shares.

We first claim that the output party O receives output shares that encode the same output Yagg in both
the hybrid H1 and H2. Specifically, in hybrid H1, the honest verifiers aggregate the input shares of all
verifiers in V to obtain the output shares and send these output shares to the output party. The output
shares held by the honest verifiers determine the output Yagg .

During the course of execution of the protocol, the adversary corrupts at most nc − 1 clients, t verifiers,
and the output party O. The adversary’s view comprises of at most t input shares, the proof and
masked input shares of each honest client. It follows from the privacy property of the packed secret-
sharing scheme ( based on RS

F ,n,t+1 encoding) that the adversary cannot learn any information about
the inputs by honest clients from these t shares. On the other hand, the proofs and masked input shares
do not reveal any information as they have been simulated independent of the honest clients’ inputs.
Thus, the hybrids {hyb1(n)}n∈N and {hyb2(n)}n∈N are indistinguishable.

Hybrid H3: This hybrid is similar to the hybrid H4 except that the masked input shares associated with
honest clients are simulated as per H2.

Lemma K.4. {hyb2(n)}n∈N and {hyb3(n)}n∈N are statistically indistinguishable.

Proof. The proof is analogous to the arguments in Lemma K.2.

Hybrid H4: This is an ideal execution of the protocol, where the simulator described above interacts with
the adversary and the ideal functionality for FVRS.

Lemma K.5. {hyb3(n)}n∈N and {hyb4(n)}n∈N are statistically indistinguishable.

Proof. The proof is analogous to the arguments in Lemma K.3.

Case II: The Prover is Corrupted. In this case, A controls the prover and corrupt verifiers C. Roughly, Sim
plays the role of all the honest verifiers. Recall that the prover is the only party with an input and each of
the verifier has output that is fully determined by the prover’s input. If the simulated execution is such
that the verifiers output ⊥, then the simulator Sim sends an invalid polynomial, say f ′(x) = x2t+2, to FVRS
functionality. Otherwise, the simulator

The description of the simulator Sim is as follows:

1. Sim invokes A on its auxiliary input z.

2. Sim plays the role of all the honest verifiers interacting with A as per the protocol ΠVRS, running until
the end. This includes emulating FdCP functionality with A (that plays the role of the prover) during
commit and prove phases. Let the input sent by A (on behalf of P ) during the Commit Phase of FdCP
be (Input,sid,P , f̂ ). Let Share′i be the output share of Vi ∈ V at the end of ΠVRS protocol.
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3. Interaction with FVRS: Depending on the output of honest verifiers during the emulation of the Prove
phase of FdCP functionality, Sim proceeds as follows:

(a) If the consistency check fails, then Sim sends (Input,sid,P , f ′) as the prover’s input to FVRS where
f ′(·) is an arbitrary polynomial of degree greater than t (say f ′(x) = x2t+2). This causes FVRS to
send (Output,sid,Vi , reject) to all the verifiers Vi ∈ V in the ideal world.

(b) If the consistency check passes, then Sim aborts if either of the following check holds for some
honest verifier Vi ∈ H:

(i) f̂ (αi) , Share
′
i

(ii)
(
Share′i , f̂

)
<Ri

where Share′i is computed as per step 4(b)ii in Figure 3. If Sim does not abort, then Sim sends
(Input,sid,P , f̂ ) to FVRS on behalf of the P . This causes FVRS functionality to send the output
(Output,sid,Vi , f̂ (αi),accept) to each verifiers Vi ∈ V in the ideal world.

4. Sim outputs whatever A outputs and halts.

First, observe that Sim plays the role of all the honest verifiers in the ideal execution as per the specification
of the protocol. The honest verifiers do not have any inputs and only samples random values during the
offline phase. Sim samples the random values needed for the offline phase on behalf of the honest verifiers
in the ideal executions. Since the Sim follows the exact specification of protocol ΠVRS, the messages sent
by Sim during the ideal execution are identically distributed as those sent by the honest verifiers in the real
execution of protocol ΠVRS.

Next, we claim that the outputs of corrupt verifiers are the same in both the real and ideal executions.
This follows from the fact that the output of the verifiers only depends on the prover’s input (and not on the
randomness sampled by the verifiers in the offline phase). Since the prover’s input is determined by A and
A is determinitic19, the output of corrupt verifiers is fully determined and are the same both in the real and
ideal executions.

Now, it remains to be shown that the outputs of the honest verifiers are also same in the real and ideal
executions. We consider two cases.

1. There exists an honest verifier that outputs reject in the real execution. An honest verifier outputs
reject if the consistency check fails i.e., the decoding of the broadcasted masked shares fails. Since all
the honest verifiers receives the same broadcasted masked shares, they also output reject in the real
execution. In the ideal execution, if the consistency check fails, Sim sends an invalid polynomial, say
f ′(x) := x2t+2, to FVRS. As a result, all the honest verifiers receive reject from FVRS and output it.

2. There exists an honest verifier that does not output reject in the real execution. We first observe that
whether an honest verifier outputs accept or reject depends on the consistency check in both the real
and ideal executions. Further, since the consistency check is based on values broadcast by the verifiers
(i.e., broadcasted masked shares), all the verifiers make the decision. If the consistency check passes,
then all the honest verifiers output accept along with their respective output shares in both real and
ideal executions. It suffices to show that, in both the real and ideal executions, if an honest verifier
Vi ∈ H outputs (Output,sid,Vi ,Share′i ,accept), then it holds that Share′i = f̂ . In the ideal execution, this
holds because Sim sends f̂ as input to the FVRS functionality (since the consistency check passes). This
results in honest verifiers outputting accept along with the share Share′i = f̂ (αi).

Next, we show that this also holds for the real execution.

Lemma K.6. If an honest verifier Vi ∈ V outputs (Output,sid,Vi ,Share′i ,accept), then it holds that Share′i =
f̂ (αi) in the real execution.

19We assume A is deterministic as its auxiliary inputs can contain the "best“ random coins for its attack.
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Proof. We first show that there exists a set of at least n− 2t > t +1 honest verifiers, denoted by the set
T1, such that Share′i = f̂ (αi) for Vi ∈ T1. Since we assumed that the consistency check passed, there
must be at most t honest verifiers Vi ∈ Hwith happyi = reject (otherwise, decoding of (msh′1, . . . ,msh′n)
would fail as more t of the masked shares would have been set to ⊥). It follows that there exist at least
n− 2t ≥ t +1 honest verifiers, denoted by the set T1, such that happyi = accept and hence the keep their
existing share i.e., Share′i := shi . It follows from the FdCP functionality that shi = f̂ (αi). Hence, we have
Share′i = f̂ (αi) for Vi ∈ T1.

Next, we show that {Share′i}Vi∈H should form a valid RS
F ,n,t+1 codeword. We focus on honest verifiers

with happyi = reject i.e., denoted by the set T2 :=H\T1. For all Vi ∈ T2, Share′i is recovered as follows:
Share′i :=msh′′i + rshi = (f̂ (αi) + rshi)− rshi = f̂ (αi). Now, it suffices to show that msh′′i = (f̂ (αi) + rshi) for
all Vi ∈ T2. For all Vi ∈ T1, we have msh′′i = msh′i = shi + rshi = f̂ (αi) + rshi (follows from the protocol
description). Note that (f̂ (α1), . . . , f̂ (αn)) and (rsh1, . . . , rshn) are RS

F ,n,t+1 codewords. Thus, by the
linearity of the coding scheme and the fact that (msh′′1 , . . . ,msh′′n ) is an RS

F ,n,t+1 codeword, we have that
msh′′i = f̂ (αi) + rshi for all honest verifiers Vi ∈ H.

Together, we obtain that Share′i = f̂ (αi) for all honest verifiers Vi ∈ H.

This completes the proof for the corrupt prover case.

L Input-Certified Secure Aggregation Protocol

The description of the protocol is presented in Figure 10.

M Proof of Theorem 3.15

First, we claim that the canonical protocol in the FDBM-hybrid is DP-DME protocol (as per Definition 2.3).
Second, we show that the protocol ΠDBM described above securely realizes FDBM. Finally, by standard
composition we can conclude that ΠDBM is as a DP-DME protocol.

Lemma M.1. The canonical protocol in the FDBM-hybrid (described in Figure 11) is a DP-DME protocol.

Proof. As demonstrated in Theorem 3.6, FDBM adheres to the (ϵ,δ)-IND-CDP. Furthermore, according to
Theorem 3.12, FDBM also fulfills the property of ν-DME-Usefulness. Thus, FDBM is a DP-DME functionality.

Lemma M.2. Protocol Π′ in the FAgg-hybrid securely realizes FDBM.

Proof. The main difference between the protocol Π′ and functionality FDBM is the way in which the inputs of
honest clients to FAgg are pre-processed and the output of FAgg is post-processed (for an honest output party).
More specifically, in FDBM, the pre-processing of honest clients is done by the ideal functionality. Whereas in
ΠDBM, the honest clients pre-process their own inputs and send it to FAgg. This results in the same effect
as honest clients perform the pre-processing do not deviate from the specification of PRE. Similarly, if the
output party is honest, then the post-processing of output received from FAgg is executed as per POST in Π′ .
Hence, Π′ in the FAgg-hybrid securely realizes FDBM.

Lemma M.3. If any protocol Π in G-hybrid is DP-DME-protocol and Π̃ securely realizes G, then the protocol Π̂
obtained from Π by replacing the calls to G with the protocol Π̃ is a DP-DME-protocol.

Proof. Observe that the properties (ϵ,δ)-IND-CDP and ν(t)-DME-Usefulness are properties over the view
of the adversary VIEWA(·) and the output outPn(·). Since protocol Π is a DP-DME-protocol, it holds
(VIEWA(e′),outPn(e

′)) and (VIEWA(e),outPn(e)) are computationally indistinguishable where e′ is obtained
from the execution of Π̂ and e is obtained from the execution of Π. Hence, Π̂ is a DP-DME protocol.
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Input-Certified Secure Aggregation Protocol ΠAgg

Public parameters. Security parameter λ, field F , server corruption threshold ts, predicate P : F → {0,1}. Let
pp← KeyGen(1λ,ts, P ).

Parties. Clients U = {U1, . . . ,Unc } , servers S = {S1, . . . ,Sns } and an output party O.

Input & Output. {x1, . . . ,xns }where xi ∈ F is client Ui ’s input. The output party O receives
∑
Ui∈U P (xi ) · xi .

Setup. Each client has a point-to-point private, authenticated channel with every server. Also, the servers have
point-to-point, private authenticated channels with all other servers and a broadcast channel.

Input Sharing. [U → S] The sharing is as follows.

1. Each client Ui with input xi ∈ F samples a set of d polynomials f (·) of degree ts such that f (0) = xi .

2. Each client Ui invokes the share phase of FVRS as a prover by sending the tuple (Input,sid,Ui , f ) to
FVRS.

3. The servers participate in the above invocations of FVRS as verifiers. Each server Sj receives(
Output,sid,Sj ,Share

(i)
j , happy

(i)
j

)
from FVRS invoked by client Ui and outputs

(
Share

(i)
j , happy

(i)
j

)
,

for all i ∈ [nc]. As per the properties of the FVRS, all servers output the same happy bit i.e.,

happy
(i)
j = happy

(i)
j ′ for j, j′ ∈ [ns]. So, we drop the subscript j while referring to the happy bit.

Output Reconstruction. [S →O]

1. At the end of all the invocations to FVRS, the servers define a set Valid to comprise of all clients Ui
such that happy(i) = accept.

2. Each server Sj sums the shares it received from all clients in the set Valid i.e., oshj =
∑
Ui∈ValidShare

(i)
j

and sends its output share oshj to the output party.

3. The output party collects shares of the output oshj from each server Sj ∈ S . If no share is received from
the server Sj , then the output party sets oshj :=⊥. Finally, the output party error-corrects the vector
(osh1, . . . ,oshns ) to reconstruct Yagg and sets Yagg as the output.

Figure 10: An Input-Certified Secure Aggregation Protocol from VRS

Functionality FDBM

The functionality FAgg communicates with the set of clients U = {u1, . . . ,unc }, an output party O and an adversary
A. It is parameterized by nc,d ∈N and P ′ : F d

q → {0,1}, where P ′ is the predicate used for certify the inputs, nc is
the number of clients and d denotes the size of client’s input vector. The ideal functionality is as follows:

1. The inputs are processed as follows.

– Upon receiving input (Input,sid,ui ,Xi ) from a new honest client ui ∈ U where Xi ∈ F d , pre-process
ui ’s inputs as Yi = PRE(Xi ) and store Yi .

– Upon receiving input (Input,sid,ui ,Yi ) from the adversary on behalf of some new malicious client
ui ∈ U where Xi ∈ F d , then store Yi .

2. Compute the aggregate Yagg =
∑

ui∈U P
′(Yi ) ·Yi (note that this is equivalent to aggregating only inputs of

clients that satisfy the predicate P ′).

3. Upon receiving (Output,sid,O) from the output party O, send (Output,sid,POST(Yagg )) to the output party
O and halt.

Figure 11: Ideal Functionality for Differentially-Private Distributed Mean Estimation
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