
Push-Button Verification for BitVM Implementations

HANZHI LIU, Nubit and University of California, Santa Barbara

JINGYU KE, Nubit
HONGBO WEN, Nubit and University of California, Santa Barbara

LUKE PEARSON, Polychain Capital

ROBIN LINUS, ZeroSync and Stanford University

LUKAS GEORGE, ZeroSync
MANISH BISTA, Alpen Labs

HAKAN KARAKUŞ, Chainway Labs

DOMO, Layer 1 Foundation
JUNRUI LIU, University of California, Santa Barbara

YANJU CHEN, University of California, Santa Barbara

YU FENG, Nubit and University of California, Santa Barbara

Bitcoin, while being the most prominent blockchain with the largest market capitalization, suffers from

scalability and throughput limitations that impede the development of ecosystem projects like Bitcoin Decen-

tralized Finance (BTCFi). Recent advancements in BitVM propose a promising Layer 2 (L2) solution to enhance

Bitcoin’s scalability by enabling complex computations off-chain with on-chain verification. However, Bitcoin’s

constrained programming environment—characterized by its non-Turing-complete Script language lacking

loops and recursion, and strict block size limits—makes developing complex applications labor-intensive,

error-prone, and necessitates manual partitioning of scripts. Under this complex programming model, subtle

mistakes could lead to irreversible damage in a trustless environment like Bitcoin. Ensuring the correctness

and security of such programs becomes paramount.

To address these challenges, we introduce the first formal verifier for BitVM implementations. Our approach

involves designing a register-based, higher-level domain-specific language (DSL) that abstracts away complex

stack operations, allowing developers to reason about program correctness more effectively while preserving

the semantics of the low-level program. We present a formal computational model capturing the semantics of

BitVM execution and Bitcoin script, providing a foundation for rigorous verification. To efficiently handle large

programs and complex constraints arising from unrolled computations that simulate loops, we summarize

repetitive "loop-style" computations using loop invariant predicates in our DSL. We leverage a counterexample-

guided inductive synthesis (CEGIS) procedure to lift low-level Bitcoin script into our DSL, facilitating efficient

verification without sacrificing accuracy. Evaluated on 78 benchmarks from BitVM implementations, our tool

successfully verifies 83% of cases within 12.55 seconds on average and identified one previously unknown

vulnerability, demonstrating its effectiveness in enhancing the security and reliability of BitVM.

Additional Key Words and Phrases: BitVM, Bitcoin Script, Formal Verification, Program Synthesis

1 Introduction

Bitcoin [23], introduced in 2009, is the first and most widely adopted blockchain platform, holding

the largest market capitalization among cryptocurrencies. Its robust security model, decentralized

governance, and proven resilience have established Bitcoin as a cornerstone in the digital asset

Authors’ Contact Information: Hanzhi Liu, hanzhi@ucsb.edu, Nubit and University of California, Santa Barbara; Jingyu Ke,

windocotber@riema.xyz, Nubit; Hongbo Wen, hongbowen@ucsb.edu, Nubit and University of California, Santa Barbara;

Luke Pearson, luke@polychain.capital, Polychain Capital; Robin Linus, roblinus@stanford.edu, ZeroSync and Stanford

University; Lukas George, lukas@zerosync.org, ZeroSync; Manish Bista, manish@alpenlabs.io, Alpen Labs; Hakan Karakuş,

hakan@chainway.xyz, Chainway Labs; Domo, domodata@proton.me, Layer 1 Foundation; Junrui Liu, junrui@ucsb.edu,

University of California, Santa Barbara; Yanju Chen, yanju@ucsb.edu, University of California, Santa Barbara; Yu Feng,

yufeng@ucsb.edu, Nubit and University of California, Santa Barbara.

2 Liu et al.

ecosystem. Recently, there has been a significant surge in interest in expanding Bitcoin’s capa-

bilities by building ecosystem projects such as Bitcoin Decentralized Finance (BTCFi), aiming to

introduce smart contracts and decentralized financial services directly onto the Bitcoin network.

However, Bitcoin’s inherent scalability and throughput limitations—processing approximately four

transactions per second—pose substantial challenges to such developments.

To address these limitations, and inspired by the success of Layer 2 (L2) solutions [30] in scaling

Ethereum [8], a promising approach is to leverage recent advancements in BitVM [21], which

enables complex computations to be executed off-chain while ensuring their correctness through

on-chain cryptography proof verification [6]. By facilitating off-chain computation and minimal

on-chain proof verification, BitVM has the potential to significantly enhance Bitcoin’s scalability

and functionality without requiring changes to the core protocol.

However, developing atop Bitcoin presents unique challenges not encountered in platforms like

Ethereum [8], which provides a Turing-complete programming model and built-in support for

common cryptographic primitives such as elliptic curves and hash functions, enabling developers

to write expressive smart contracts efficiently. In contrast, Bitcoin’s programming model is highly

constrained. The Bitcoin Script language [7] is not Turing-complete and lacks features like loops and

recursion, making it cumbersome to express even simple computations. For instance, implementing

a standard zero-knowledge SNARK verifier [6] that requires only 200 lines of Solidity code on

Ethereum could result in a Bitcoin script program with several gigabytes. Additionally, spatial

constraints arise because large Bitcoin script programs cannot fit within a single Bitcoin block

due to the 4MB block size limit, forcing developers to manually or semi-automatically partition

the program into smaller segments. Because programming on BitVM with Bitcoin script is so

complex, even small mistakes can result in catastrophic consequences, such as incorrect transaction

validation, loss of funds, or the ability for attackers to exploit flaws in the computation, leading to

irreversible damage in a trustless environment like Bitcoin. Ensuring the correctness and security

of BitVM through formal verification becomes imperative and paramount, as these issues can

undermine the integrity of the entire system.

However, directly verifying the correctness of low-level Bitcoin script is very difficult due to

two primary reasons. First, the complex low-level stack operations inherent in Bitcoin script make

reasoning about program behavior challenging. Second, the size of the programs, which are typically

large due to the unrolling of computations that simulate loops, leads to enormous formulas that

are difficult for off-the-shelf constraint solvers [12, 27] to handle.

Our key insight is based on two observations. First, although the low-level stack operations

are hard to reason about, many of them can be lifted to a higher-level domain-specific language

(DSL) that simplifies the reasoning process by replacing intricate stack manipulations with more

straightforward register-based operations and concise higher-order functions. Second, by studying

many complex benchmarks in this domain, we notice that many complex constraints are generated

from repetitive computations that simulate the functionality of loops in Bitcoin. Since Bitcoin

Script is Turing-incomplete and doesn’t support loops, all “loop-style” computations have to be

unrolled. If symbolic variables introduced before the loop do not get resolved, they propagate at

every iteration, thus bloating the resulting Satisfiability Modulo Theories (SMT) formulas quickly.

Based on the above insight, our solution, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡, is motivated by recent successes in program

lifting and synthesis [9]. First, we design a register-based, slightly higher-level DSL𝔊 that abstracts

away complex stack operations that are normally orthogonal to the verification tasks. To avoid

missing low-level bugs in BitVM, our DSL is carefully designed to maximally preserve the semantics

of the original Bitcoin script. Second, since repetitive “loop-style” computations lead to complex

constraints, our DSL provides loop invariant predicates to summarize the effect of the original

computations. Third, given the original BitVM implementation in Bitcoin script as the reference

Push-Button Verification for BitVM Implementations 3

implementation, we leverage a counterexample-guided inductive synthesis (CEGIS) procedure [33]

to synthesize an equivalent program in our DSL. In this process, low-level stack operations are lifted

to cleaner three-address code versions, and complex “loop-style” operations are summarized and

replaced using their loop invariants. The resulting program is then fed to a standard Hoare-style

verifier [18], which generates constraints that are much easier for off-the-shelf solvers to handle.

To evaluate our approach, we applied our formal verification tool to the entire BitVM implemen-

tation, using a suite of 78 benchmarks derived from various implementations of BitVM. Our tool

successfully verified 83% of the cases, demonstrating both its effectiveness and practicality. The

verification process is efficient, with an average runtime of 12.55 seconds per benchmark. Finally,

𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 identified one previously unknown bug and our ablation study also demonstrates the

benefit of our synthesis approach, especially on complex benchmarks.

In summary, our contributions are as follows:

• We propose the first tool that facilitates formal verification of BitVM implementations, enabling

developers to specify and verify correctness properties effectively.

• We design a higher-level DSL𝔊 that abstracts away complex stack operations and allows for

efficient reasoning about BitVM programs while preserving the semantics of the original program.

• We identify and utilize loop invariants to summarize repetitive “loop-style” computations, reduc-

ing the complexity of the generated SMT formulas.

• We leverage a counterexample-guided inductive synthesis procedure to lift low-level Bitcoin

script to our higher-level DSL, facilitating easier verification without sacrificing correctness.

• Through extensive evaluation, we demonstrate the tool’s scalability and its capability to uncover

critical vulnerabilities, contributing to the overall security of BitVM.

2 Background

Blockchain and Bitcoin. A blockchain is a decentralized, distributed ledger that records trans-

actions across multiple computers in such a way that the recorded transactions cannot be al-

tered retroactively. This ensures both transparency and security. Bitcoin [23], the first and most

well-known cryptocurrency, was introduced in 2008 by an anonymous entity known as Satoshi

Nakamoto. It operates on a Proof-of-Work (PoW) consensus mechanism, which ensures the security

and integrity of transactions through cryptographic computations performed by miners.

At a high level, Bitcoin’s design focuses on decentralization, immutability, and security. It relies

on a chain of blocks, where each block contains a list of transactions and a reference to the previous

block, forming a continuous chain. Bitcoin’s impact has been profound: as of 2024, Bitcoin handles

around 350,000 daily transactions, with a market cap exceeding $1.5 trillion, and an estimated

19 million BTC in circulation. Despite its strong security foundation, the system was primarily

designed for simple, trustless value transfers, which limits its capacity for more complex operations

and programmability, unlike blockchains like Ethereum [8].

Scaling Bitcoin through BitVM. Bitcoin’s original design comes with significant limitations

in terms of throughput and scalability. With an average block size of 4 MB and a block time of

roughly 10 minutes, Bitcoin can handle only about four transactions per second (TPS). This limited

throughput, combined with high transaction fees (which can spike during periods of network

congestion), makes Bitcoin less suitable for complex decentralized applications and financial use

cases. To address this, BitVM [21] was introduced in 2023 to bring complex programming capabilities

to Bitcoin without modifying its consensus rules. Unlike Ethereum, which is Turing-complete and

capable of running general-purpose applications directly on-chain, Bitcoin script is intentionally

limited for security reasons. BitVM leverages off-chain computation and a prover-verifier model,

4 Liu et al.

where complex transactions or computations are done off-chain, and only their validity is checked

on-chain. This approach minimizes on-chain workload without sacrificing Bitcoin’s security.

However, making BitVM production-ready involves significant complexity. One of the main

challenges is compiling high-level domain-specific languages (DSLs) to Bitcoin’s low-level, Turing-

incomplete script, which demands considerable rewriting of existing cryptographic protocols. For

instance, common cryptographic operations, which might be straightforward in languages like

Rust, need to be rewritten or optimized to fit Bitcoin’s limited capabilities and resource constraints.

Bugs in BitVM implementations. The complexity of compiling high-level application logic

down to Bitcoin’s restrictive script introduces a significant risk of bugs and vulnerabilities, which

can lead to severe consequences, particularly in financial systems. Given the manual effort involved

in rewriting cryptographic protocols and fitting them into Bitcoin’s constraints, there is a high

chance of human error during development. These errors can result in vulnerabilities that malicious

actors may exploit, potentially leading to loss of funds.

Applying formal verification to BitVM presents several significant challenges. First, the pervasive

use of low-level stack operations intertwined with application logic creates complex and error-

prone reasoning paths. Second, the ubiquity of non-linear arithmetic, a notoriously difficult area

for formal methods, further complicates verification. Third, the limited expressiveness of Bitcoin

Script leads to verbose and expansive codebases, making the analysis both time-consuming and

resource-intensive. These factors combine to make formal verification of BitVM both technically

demanding and computationally costly.

3 Overview

In this section, we motivate our proposed approach, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡, with a motivating example.

Motivating example. The left-hand side of Figure 1 shows a (partial) Bitcoin script that performs

BigInt multiplication in BitVM. BigInt multiplication is a critical cryptographic operation used in

blockchain systems, but its implementation in a stack-based virtual machine like BitVM presents

several challenges. These difficulties arise from BitVM’s low-level stack manipulation and its use of

multi-limb arithmetic in loops, which are tricky to understand and verify.

A high-level overview. The Bitcoin script we analyze performs multi-limb multiplication, where

a “limb” represents a chunk or portion of a large integer, treated as a smaller number within a

larger BigInt. The script iterates through each limb of the multiplicand and multiplier, multiplying

them, adding partial products, and storing intermediate results on the stack.

In particular, the multiplication is handled in the following steps:

• Limb-Based Operations Each limb of the BigInt is processed separately. A limb is essentially

a segment of a large number, typically represented by a fixed number of bits (e.g., 16 or 29

bits). The script multiplies each limb of the first BigInt by corresponding limbs of the second

BigInt, with bitwise shifts simulating powers of two. Stack operations like OP_ROLL, OP_DUP,
OP_TOALTSTACK/OP_FROMALTSTACK and OP_PICK are used to retrieve, move, and copy limbs

between the main stack and alt stack. This makes understanding the operations challenging

because stack shuffling makes it hard to track which part of the number is being processed.

• Limb Multiplication and Accumulation For each bit in a given limb of the multiplier, the script

performs a bitwise check (OP_IF) to see if the bit is set to 1. If it is, the corresponding shifted

version of the multiplicand is added to the current result. The result and the multiplicand are

repeatedly shifted and accumulated on the stack. The intermediate result is updated and stored

on the alt stack, while carry values are propagated and handled during the addition of limbs.

Push-Button Verification for BitVM Implementations 5

OP_PUSHBYTES_1 11 OP_ROLL x9

OP_i OP_ROLL OP_DUP x9, i=8:17

OP_ADD OP_DUP OP_PUSHBYTES_4 00000020 OP_GREATERTHANOREQUAL
OP_TUCK OP_IF OP_PUSHBYTES_4 00000020 OP_SUB OP_ENDIF
OP_TOALTSTACK
OP_ADD x8

OP_ADD OP_DUP OP_PUSHBYTES_3 000040 OP_GREATERTHANOREQUAL OP_IF
OP_PUSHBYTES_3 000040 OP_SUB OP_ENDIF

OP_FROMALTSTACK x8

OP_PUSHBYTES_1 11 OP_ROLL x9

OP_FROMALTSTACK OP_IF

OP_PUSHBYTES_1 11 OP_PICK x9

OP_PUSHBYTES_1 11 OP_ROLL OP_PUSHBYTES_1 j OP_ROLL x9, j=0x9:0x12

OP_ADD OP_DUP OP_PUSHBYTES_4 00000020 OP_GREATERTHANOREQUAL
OP_TUCK OP_IF OP_PUSHBYTES_4 00000020 OP_SUB OP_ENDIF
OP_TOALTSTACK
OP_ADD x8

OP_ADD OP_DUP OP_PUSHBYTES_3 000040 OP_GREATERTHANOREQUAL OP_IF
OP_PUSHBYTES_3 000040 OP_SUB OP_ENDIF

OP_FROMALTSTACK x8

OP_ENDIF

mapto(main[9:18], “mv”, 0);

map(main[0:9], “repeat”, 2);

bigaddx(main[0:18], 0x20000000, 0x400000);

mapto(main[9:18], “mv”, 0);

zip(main[9:18], main[0:9], “flat”);

bigaddx(main[0:18], 0x20000000, 0x400000);

if (alt[0])

.

...

x253

1

2

3

4

5

6

...
 loop (253)

.
 ...

...

pre_a ← bigint.from(main[9:17]);
 pre_r ← bigint.from(main[0:9]);
 bit ← alt[0];

A

post_a ← bigint.from(main[9:17]);
 post_r ← bigint.from(main[0:9);
 assert(post_a = safe_mul(2, pre_a));
 assert(post_r = safe_add(pre_r, bit*post_a));

B

(a) Original Bitcoin Script

(c) 𝖇𝖎𝖙𝕲𝖚𝖆𝖗𝖉 Program (Synthesized) and Specification/Invariants

(d) Constraints (Optimized)

(b) Constraints (Unoptimized)

Big Integers A, BInput

Big Integer: A*BOutput

Fig. 1. A motivating example showing a partial Bitcoin script for computing big integer multiplication and
its corresponding𝔊 program synthesized by 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡. One then checks the correctness of the snippet by
providing specification written in𝔊, which produces optimized constraints.

A
B

Main Stack Alt Stack

[9]
[10]
...
[17]

[1]
[2]
[3]
[4]
...
...
[251]
[252]
[253]

R
[0]
[1]
...
[8]

1

B

Main Stack Alt Stack

[1]
[2]
[3]
[4]
...
...
[251]
[252]
[253]

R
[9]
[10]
...
[17]

A
[0]
[1]
...
[8] 2

B

Main Stack Alt Stack

[1]
[2]
[3]
[4]
...
...
[251]
[252]
[253]

R
[18]
[19]
...
[26]

...

...
A[8]
A[8]

AA

A[0]
A[0]
A[1]
A[1]

B

Main Stack Alt Stack

[1]
[2]
[3]
[4]
...
...
[251]
[252]
[253]

R
[9]
[10]
...
[17]

2A
[0]
[1]
...
[8]3

B

Main Stack Alt Stack

[1]
[2]
[3]
[4]
...
...
[251]
[252]
[253]

R
[0]
[1]
...
[9]

2A
[9]
[10]
...
[17]

B

Main Stack Alt Stack

[2]
[3]
[4]
[5]
...
...
[251]
[252]
[253]

R
[18]
[19]
...
[26]

...

...
2A[8]
 R[8]

2A[0]
 R[0]
2A[1]
 R[1]

B

Main Stack Alt Stack

[2]
[3]
[4]
[5]
...
...
[251]
[252]
[253]

R+2A
[0]
[1]
...
[8]

2A
[0]
[1]
...
[8]

B

Main Stack Alt Stack

[2]
[3]
[4]
[5]
...
...
[251]
[252]
[253]

R
[0]
[1]
...
[9]

2A
[9]
[10]
...
[17]

5 64

B[1] == 1

B[1] == 0

move repeat bigadd

move flatzip bigadd

(Initial State)

(Final State 1) (Final State 2)

R

R’ R’

A

A’ A’

(𝐑! == 𝐑+𝐁 𝟏 ∗ 𝟐 ∗ 𝐀)	∧ (𝐀! == 𝟐 ∗𝐀)Verification Condition (Current Step)

B

Fig. 2. Illustration of the operations within a single loop iteration of big integer multiplication.

This process is repeated for all bits in the multiplier’s limbs, and the results are combined to

form the final product.

Challenges. Although the high-level computation is not complicated, verifying the correctness

of this low-level Bitcoin script is particularly challenging for several reasons:

6 Liu et al.

• Complex Stack Operations The heavy reliance on low-level stack manipulations such as

OP_ROLL and OP_DUP obscures the arithmetic operations being performed. Understanding how

the data (limbs) is moved between the main stack and alt stack, and tracking which limb of the

BigInt is being operated on, requires careful analysis. Each stack operation shifts the focus to a

different part of the BigInt, making it difficult to follow the arithmetic flow.

• Non-Linear Constraints from Loop Iterations The script involves multiple loop iterations

that process the bits and limbs of the BigInts in sequence. Each iteration involves conditional

additions and bitwise shifts, resulting in complex interdependencies between stack operations

and arithmetic operations. When unrolled, these loops produce non-linear constraints that are

difficult for formal verification tools to resolve efficiently.

• Carry Propagation Managing the carry values between limbs adds another layer of complexity.

During the multiplication of limbs, intermediate results may produce a carry, which needs to

be propagated and added to the next set of operations. Tracking these carry values through the

stack-based manipulations makes verification even harder.

Key insights. To mitigate the above-mentioned challenges, we leverage two key insights:

• Lifting Complex Stack Operations to High-Level Register-Based Instructions One of the

main challenges in understanding the script comes from the intricate manipulation of the Bitcoin

stack. By lifting these low-level stack operations to higher-level register-based instructions, we

can abstract away the complexity of stack shuffling and directly represent operations in a way

that is easier to reason about and verify. For instance, operations like OP_ROLL and OP_DUP
that manipulate the stack can be lifted to simple register assignments and arithmetic operations,

significantly improving clarity.

• Lifting Loop Patterns to Higher-order Functions Upon analyzing the script, we observed

repetitive patterns where the same chunk of low-level code gets executed multiple times across

different iterations. By identifying these loop patterns and lifting them into explicit loop struc-

tures, we can avoid unrolling the loops and instead represent them using higher-order functions.
This allows us to reason about the loop’s behavior more effectively and simplifies the generation

of verification conditions. In fact, upon closer inspection, the main body of the original Bitcoin

script repeats 253 times, indicating a clear loop structure. By visualizing the core stack operations

in Figure 2, we can replace this complex sequence with a corresponding loop invariant that

effectively summarizes the key computations.

Our solution: lifting to a high-level DSL. To address these challenges, we propose lifting the

original low-level Bitcoin script to a high-level domain-specific language (DSL). Inspired by recent

successes in program synthesis [33], our key insight is to synthesize and lift the Bitcoin script into

its equivalent high-level representation. The program in the middle of Figure 1 shows the equivalent

version in our DSL𝔊. Note that this approach abstracts away the complexity of stack manipulation

and limb arithmetic by converting the original script into a cleaner, more understandable three-

address code format. This snippet also abstracts away the low-level manipulation of individual limbs

and carry-bits into a clean loop structure that is easy to verify. Similarly, the main multiplication

loop is implemented in higher-order functions such as map.

Applying Hoare logic for verification. Finally, using the synthesized loop invariant, we apply

standard Hoare logic to verify the correctness of the program. In particular, given a Hoare triple

{𝑃}𝑄{𝑅} where 𝑃 is the precondition, 𝑅 is the postcondition, 𝑄 is the program in our high-level

DSL, and loop invariants, we reduce the non-linear constraints generated by the original script

into simpler, tractable verification conditions as follows.

Push-Button Verification for BitVM Implementations 7

BitVM
Verified
Lifting

BitVM Optimization &
Compilation

BITGUARD Verification Framework

Specification & Annotation

Constraints Verification
Safe

UnsafeBitcoin Script
BITGUARD IR

BITGUARD IR Unknown

BitVM

Verified
Lifting

BitVM Symbolic
Compilation

BITGUARD Verification Framework

Specification & Annotation

Constraints Verification

Safe

UnsafeBitcoin Script

BITGUARD IR

BITGUARD IR Unknown

Decomposition

Bitcoin Script

Transpilation

𝖇𝖎𝖙𝕲𝖚𝖆𝖗𝖉 Verification Framework

Specification & Annotation

Constraints Verification

Safe

Unsafe𝕲	 Queries Unknown

Decomposition Symbolic Evaluation
𝕲 Program

Bitcoin Script

Transpilation

𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 Verification Framework

Specification & Annotation

Constraints Verification

Safe

Unsafe𝕲	 Queries Unknown

Decomposition Symbolic Evaluation
𝕲 Program

Fig. 3. A high-level overview of the 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 verification framework.

• Precondition The precondition for the BigInt multiplication in BitVM could involve ensuring

that the inputs are valid BigInt values, and that the initial states of the registers (e.g., 𝑅 and 𝐴)

are correctly set: 𝐴 = BigInt(𝐴0) ∧ 𝑅 = 0.

• Postcondition The postcondition ensures that after the loop has completed, the program has

computed the correct product of 𝐴 and 𝐵. I.e., the postcondition describes the final state of 𝑅 and

A after all iterations have completed: 𝑅 = 𝐴 × 𝐵 ∧𝐴 = 2
𝑘𝐴0 .

• Loop Invariant After lifting the code to our high-level DSL, we leverage the Houdini algorithm

to synthesize the loop invariant—a logical condition that holds true before and after each iteration

of a loop. The loop invariant for this multiplication ensures that after each iteration: 𝑅′ =

𝑅 + 𝐵 [𝑖] × 2𝐴 ∧ 𝐴′ = 2𝐴. As shown in Figure 2, this loop invariant captures the relationship

between the intermediate result 𝑅, the 𝑖-th bit 𝐵 [𝑖] from the multiplier, and the multiplicand 𝐴

after the 𝑖-th iteration.

• Verification Condition (VC) The verification conditions are logical formulas that must hold

for the program to be considered correct. These conditions are generated from the Hoare triples

and are checked to ensure that: a) the precondition implies the invariant holds before the first

iteration of the loop:

𝐴 = BigInt(𝐴0) ∧ 𝑅 = 0 =⇒ 𝑅′ = 𝑅 + 𝐵 [1] × 2𝐴 ∧𝐴′ = 2𝐴,

b) invariant holds after each loop iteration, and c) invariant and the loop termination condition

imply the postcondition.

These simplified constraints can be verified efficiently by an off-the-shelf SMT solver [2, 12],

ensuring the correctness of the BigInt multiplication. Note that our approach significantly reduces

the complexity of the verification process compared to directly unrolling the original Bitcoin script,

making it feasible to tackle more complex cryptographic operations like BigInt.

4 The Verification Algorithm
In this section, we introduce the overall verification algorithm of 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡. We first describe a

high-level overview of the system, including its key procedures. Then we introduce the domain-

specific language𝔊 built within 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡, which can be used to summarize stack-based operations

in a verification-friendly way. As an improvement to verification,𝔊 can be further strengthened by

user-provided specification and loop invariants.

4.1 System Overview
As shown in Figure 3, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 takes inputs as a Bitcoin script that implements a full system

such as BitVM [21] and user-provided specifications. It then outputs whether the given system is

safe regarding the specification, in particular, in three potential outcomes: safe (✔), unsafe (✕) or

unknown (?). Specifically, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 contains two major phases:

8 Liu et al.

• Transpilation As stack-based computations from the original system are usually difficult to

reason about, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 addresses this problem by synthesizing its equivalent version that is

easier to verify. In particular, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 first decomposes the original system into independent

code snippets, and rewrites each of them into its equivalent snippet in the𝔊 language (i.e.,𝔊

snippet) via program synthesis. The𝔊 language of 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 provides a verification-friendly

interface that makes it easy and efficient for reasoning about the system’s behavior. Then by

assembly of the𝔊 snippets, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 gets a𝔊 program that is optimized for verification.

• Verification The user then provides a specification (e.g., precondition, postcondition, and

verification condition) within the synthesized𝔊 program using𝔊’s verification interface (e.g.,

assume and assert). For loops in the program, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 performs a Houdini-style algorithm for

loop invariant inference, which rewrites and summarizes loops in a more concise form. Thus, in

the verification phase, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 devises a set of symbolic evaluation rules that convert the given

𝔊 program into a set of logical constraints that an off-the-shelf solver can reason about.

We first elaborate on the verification procedure and defer a detailed discussion of the transpilation

phase to Section 5. Specifically, we give an introduction of the𝔊 language in Section 4.2, including

its core syntax for modeling program behavior and writing verification queries. Building on top of

𝔊, we then describe how an𝔊 program can be optimized for verification with an algorithm for

automatic inference of loop invariants. Finally, a set of symbolic evaluation and merging rules is

introduced in Section 4.3, which convert an𝔊 program into logical constraints, thus reducing a

verification task into constraint solving.

4.2 The𝔊 Language for Modeling Stack Operations
Figure 4 shows the syntax of our𝔊 language, for modeling stack-based computations in Bitcoin

script. From a high-level perspective,𝔊 is a functional programming language with higher-order
functions for batched stack operations and verification. The top level of an𝔊 program consists of a

sequence of statements from three different categories:

• Basic Types and Control Flows There are three basic types in𝔊, namely booleans, integers

and hashes. In addition to standard arithmetic operators for booleans (⊗) and integers (⊕),𝔊
also models cryptographic operations (⊙) such as sha1 and hash160, which compute hashes as

their output.𝔊 models standard control flows such as branches and loops. Note that a loop in𝔊

by default has a constant bound 𝑐 (i.e., bounded) due to the nature of stack-based scripts.

• Stack Operations 𝔊 incorporates higher-order functions that perform stack-based computa-

tions in a batched manner without exposing details of low-level data structures. Specifically:

– The append operator pushes to the top of the stack a new set of elements.

– The switch operator moves a subset of stack elements into another stack; e.g., if the specified

elements are in the main stack, then they will be moved to the alt stack; vice versa.
– The map operator is a higher-order operator, which selects a subset of stack elements, and

applies a function • with argument 𝑐 in place to each element in the subset.

– Themapsto operator performs a similar operation as the map operator does, except that

mapsto moves the resulting subset of elements to the top of the stack.

– The filter operator selects a subset of stack elements that satisfy the given condition, and

moves the results to the top of the stack.

– The fold operator is a higher-order operator that consumes a seed value 𝑐 and a subset of

stack elements and progressively constructs a result on top of the stack with the function •.
– The zip operator is a higher-order operator, which takes two subsets of stack elements and

applies a function • to each pair of them. The resulting set of elements is then pushed to the

top of the stack.

Push-Button Verification for BitVM Implementations 9

𝑠 ::= Statement:
| 𝑠∗ sequence

| 𝑒 ; expression

| 𝜎 ; stack operation

| if (𝑒) then 𝑝 else 𝑝. branch

| loop (𝑐) 𝑝. loop

| 𝑖 ← 𝑒 ; assignment

| assume(𝑒) ; assumption

| assert(𝑒) ; assertion

𝑒 ::= Expression:
| 𝑖 identifier

| 𝑐 constant

| ⋄ symbolic

| 𝑘 ≡ 𝜇 [𝑐∗] stack accessor

| 𝑏 | 𝑧 | ℎ arithmetic exprs.

𝜇 ∈ {main, alt} Stack Selectors

𝑏 ::= ¬𝑒 | 𝑒 ⊗ 𝑒 Boolean Expr.
𝑧 ::= −𝑒 | 𝑒 ⊕ 𝑒 Integer Expr.
ℎ ::= ⊙𝑒 Hashing Expr.
𝜎 ::= Stack Operation:

| append(𝑐∗) stack append

| switch(𝑘) move bt. stacks

| mapto(𝑘, •, 𝑐) stack mapto

| filter(𝑘, ⊗, 𝑐) stack filter

| map(𝑘, •, 𝑐) stack map

| fold(𝑘, •, 𝑐) stack fold

| zip(𝑘, 𝑘, •) stack zip

• ∈ {⊗, ⊕, ⊙, ⊖} Operators
⊗ ∈ {∧,∨,=,≠,<, ≤, ...} Boolean Ops.
⊕ ∈ {+, −, ∗, /, ...} Integer Ops.
⊙ ∈ {sha1, hash160, ...} Hashing Ops.
⊖ ∈ {mv, cp, flatzip, ...} Stack Ops.

Fig. 4. A representative set of the syntax of𝔊 programs.

• Verification Constructs 𝔊 incorporates two constructs for verification queries, namely assume
and assert, where assume takes a boolean expression 𝑒 and appends it to the current path
condition as additional assumption, and assert checks in place whether the given expression 𝑒

evaluates to true. In a𝔊 program, a verification query 𝑒 can be built from𝔊 expressions, and

tracked with the assignment construct 𝑖 ← 𝑒 in a dedicated environment besides the stacks.

Example 4.1 (A Program in𝔊). The following shows a𝔊 program:

map(main[0:3], +, 1); zip(main[0:3],main[3:6], ∗);

which first adds 1 to the first three elements, and then multiplies each pair of the first three and

second three elements. The results are pushed to the top of the stack.

Inference of Loop Invariants. For a loop statement, we implement a Houdini-style [13] inference

algorithm that generates conjunctive invariants. This baseline generates all possible atomic pred-

icates by unwinding the grammar that captures common templates in our domain up to a fixed

bound and generates the strongest conjunctive invariant over this universe in the standard way.

4.3 Symbolic Evaluation for the𝔊 Language
We then describe how 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 symbolically evaluates a𝔊 program and keeps track of program

states via a set of evaluation rules. We refer to a program state as a 4-tuple ⟨𝑝,𝛾, 𝛿, 𝜋⟩, where:
• 𝑝 is the program counter that points to the immediate next𝔊 statement.

• 𝛾 is the assertion store that tracks verification conditions generated during symbolic evaluation,

which can be implied by𝔊 language constructs or derived from user-provided specification.

• 𝛿 is the program store that provides access to the memory and stacks. Specially, a stack operation

𝜎 can access both themain and alt stacks by the form 𝛿 [main] and 𝛿 [alt]; besides, the verification
interface can access the memory with given identifier 𝑖 , in the form 𝛿 [𝑖].
• 𝜋 keeps track of the current path condition, which is a boolean value that evaluates to true in the

current program state, and remains true in order to reach the next program state; otherwise, the

next program state is said to be unreachable.
During transition of program states, if a value 𝑥 can only be accessed under certain path condition

𝜋 , we then say 𝑥 is guarded by 𝜋 , denoted by L𝜋M𝑥 . Thus, each slot 𝑖 of the program store 𝛿 , also

denoted as 𝛿 [𝑖], is mapped to a set of possible values guarded by different path conditions:

𝛿 [𝑖] = {L𝜋0M𝑥0, ..., L𝜋𝑛M𝑥𝑛}.

10 Liu et al.

⟨𝑠0, 𝛾, 𝛿, 𝜋 ⟩ { ⟨∅, 𝛾0, 𝛿0, 𝜋0 ⟩ ... ⟨𝑠𝑛, 𝛾𝑛−1, 𝛿𝑛−1, 𝜋𝑛−1 ⟩ { ⟨∅, 𝛾𝑛, 𝛿𝑛, 𝜋𝑛 ⟩
⟨ (𝑠0, ..., 𝑠𝑛), 𝛾, 𝛿, 𝜋 ⟩ { ⟨∅, 𝛾𝑛, 𝛿𝑛, 𝜋𝑛 ⟩

(Seqn)

⟨𝑐,𝛾, 𝛿, 𝜋 ⟩ { ⟨𝑐,𝛾, 𝛿, 𝜋 ⟩
(Cnst)

⟨⋄, 𝛾, 𝛿, 𝜋 ⟩ { ⟨⋄, 𝛾, 𝛿, 𝜋 ⟩
(Symb)

⟨𝑖,𝛾, 𝛿, 𝜋 ⟩ { ⟨𝛿J𝑖K, 𝛾, 𝛿, 𝜋 ⟩
(Iden)

⟨𝑒,𝛾, 𝛿, 𝜋 ⟩ { ⟨𝑣,𝛾𝑒 , 𝛿𝑒 , 𝜋𝑒 ⟩
⟨𝑝0, 𝛾𝑒 , 𝛿𝑒 , 𝜋𝑒 ∧ 𝑣⟩ { ⟨∅, 𝛾0, 𝛿0, 𝜋0 ⟩
⟨𝑝1, 𝛾𝑒 , 𝛿𝑒 , 𝜋𝑒 ∧ ¬𝑣⟩ { ⟨∅, 𝛾1, 𝛿1, 𝜋1 ⟩
𝛾 ′ = 𝛾𝑒 ∪ 𝛾0 ∪ 𝛾1 𝛿 ′ = 𝛿𝑒 ⊎ 𝛿0 ⊎ 𝛿1

⟨if (𝑒) then 𝑝0 else 𝑝1, 𝛾, 𝛿, 𝜋 ⟩ { ⟨∅, 𝛾 ′, 𝛿 ′, 𝜋𝑒 ⟩
(Bnch)

⟨𝑒0, 𝛾, 𝛿, 𝜋 ⟩ { ⟨𝑣0, 𝛾0, 𝛿0, 𝜋0 ⟩
⟨𝑒1, 𝛾0, 𝛿0, 𝜋0 ⟩ { ⟨𝑣1, 𝛾 ′, 𝛿 ′, 𝜋 ′ ⟩
𝑣0, 𝑣1 ∈ booleans ∪ integers
◦ ∈ {⊗, ⊕} 𝑣 = 𝑣0 ◦ 𝑣1

⟨𝑒0 ◦ 𝑒1, 𝛾, 𝛿, 𝜋 ⟩ { ⟨𝑣,𝛾 ′, 𝛿 ′, 𝜋 ′ ⟩
(Bexp)

⟨𝑒,𝛾, 𝛿, 𝜋 ⟩ { ⟨𝑣,𝛾 ′, 𝛿 ′, 𝜋 ′ ⟩
𝑣 ∈ booleans ∪ integers ∪ hashes
◦ ∈ {⊙, −,¬} 𝑣′ = ◦𝑣
⟨◦𝑒,𝛾, 𝛿, 𝜋 ⟩ { ⟨𝑣′, 𝛾 ′, 𝛿 ′, 𝜋 ′ ⟩

(Uexp)

⟨𝑒,𝛾, 𝛿, 𝜋 ⟩ { ⟨𝑣,𝛾 ′, 𝛿0, 𝜋 ′ ⟩
𝛿 ′ = 𝛿0 ⊎ {𝑖 ↦→ {L𝜋M𝑣}}

⟨𝑖 ← 𝑒,𝛾, 𝛿, 𝜋 ⟩ { ⟨∅, 𝛾 ′, 𝛿 ′, 𝜋 ′ ⟩
(Asgn)

⟨𝑒,𝛾, 𝛿, 𝜋 ⟩ { ⟨𝑣,𝛾 ′, 𝛿 ′, 𝜋0 ⟩
𝜋 ′ = 𝜋0 ∧ 𝑣

⟨assume(𝑒), 𝛾, 𝛿, 𝜋 ⟩ { ⟨∅, 𝛾 ′, 𝛿 ′, 𝜋 ′ ⟩
(Asum)

⟨𝑒,𝛾, 𝛿, 𝜋 ⟩ { ⟨𝑣,𝛾0, 𝛿 ′, 𝜋 ′ ⟩
𝛾 ′ = 𝛾0 ∪ {𝜋 ′ ⇒ 𝑣}

⟨assert(𝑒), 𝛾, 𝛿, 𝜋 ⟩ { ⟨∅, 𝛾 ′, 𝛿 ′, 𝜋 ′ ⟩
(Asrt)

Fig. 5. A representative set of the symbolic evaluation rules (part 1) for the control flow constructs and
verification interface of𝔊.

Consider accessing a given slot 𝑖 in the program store 𝛿 , only those values guarded by 𝜋 ′ which
implies the current path condition 𝜋 can be successfully retrieved; we use the form 𝛿𝜋 J𝑖K (or 𝛿J𝑖K
for short) to denote access to program store 𝜋 under path condition 𝜋 :

𝛿J𝑖K = 𝛿𝜋 J𝑖K = {L𝜋 ′M𝑥 ∈ 𝛿 [𝑖] | 𝜋 ′ ⇒ 𝜋}.

Symbolic evaluation rules. Figure 5 shows a representative set of symbolic evaluation rules for

the control flow constructs and verification interface of𝔊. The following judgment:

⟨𝑝,𝛾, 𝛿, 𝜋⟩ { ⟨𝑞,𝛾 ′, 𝛿 ′, 𝜋 ′⟩

denotes a successful execution of the form 𝑝 in the program state ⟨𝑝,𝛾, 𝛿, 𝜋⟩ and results in the

return form 𝑞 in the program state ⟨𝑞,𝛾 ′, 𝛿 ′, 𝜋 ′⟩.
The evaluation process starts with the (Seqn) rule, which populates each statement 𝑠 within

the given sequence (𝑠0, ..., 𝑠𝑛) and evaluates them accordingly. Rules (Cnst), (Symb), and (Iden)

define three different ways to retrieve data via directly providing constant value, symbolic value,

and access to the program store 𝛿 . Note that each constant or symbolic value is typed; it’s either

a boolean, integer or hash. Thus, binary expression (Bexp) and unary expression (Uexp) require

operands to match the type requirement of the corresponding operators.

The (Bnch) rule denotes how a program state should be tracked for separate execution branches,

and merged afterward: The condition 𝑒 will first be evaluated and the resulting condition 𝑣 is then

conjoined with the current path condition 𝜋 for evaluation of the then-branch; for the else-branch,

the negation of the condition ¬𝑣 is conjoined instead. The two ending program states are then

merged. In particular, assertion stores are merged by disjunction, and program stores are merged

per each value mapping. Given program stores 𝛿0 and 𝛿1, their merged version 𝛿0 ⊎ 𝛿1 is given by:

𝛿0 ⊎ 𝛿1 = 𝐴 ∪ 𝐵 ∪𝐶,
where 𝐴 = {𝑖 ↦→ 𝛿0 [𝑖] | 𝑖 ∈ dom(𝛿0)\dom(𝛿1)}, 𝐵 = {𝑖 ↦→ 𝛿1 [𝑖] | 𝑖 ∈ dom(𝛿1)\dom(𝛿0)},
and 𝐶 = {𝑖 ↦→ 𝛿0 [𝑖] ∪ 𝛿1 [𝑖] | 𝑖 ∈ dom(𝛿0) ∩ dom(𝛿1)}.

Push-Button Verification for BitVM Implementations 11

𝑙 = {𝑐0, ..., 𝑐𝑛 } 𝑋 = 𝑙 ∪ 𝛿JmainK 𝛿 ′ = 𝛿 ∪ {main ↦→ 𝑋 }
⟨append(𝑙), 𝛾, 𝛿, 𝜋 ⟩ { ⟨∅, 𝛾, 𝛿 ′, 𝜋 ⟩

(Append)

𝜇′ = alt if 𝜇 ≡ main else main 𝑀 = 𝛿J𝜇K 𝑀 ′ = 𝛿J𝜇′K
𝐴 = 𝛿J𝜇KJ𝑙K 𝑋0 = 𝑀\𝐴 𝑋1 = 𝐴 ∪𝑀 ′
𝛿 ′ = 𝛿 ∪ {𝜇 ↦→ 𝑋0, 𝜇

′ ↦→ 𝑋1} 𝛾 ′ = 𝛾 ∪ 𝛾0
⟨switch(𝜇 [𝑙]), 𝛾, 𝛿, 𝜋 ⟩ { ⟨∅, 𝛾 ′, 𝛿 ′, 𝜋 ⟩

(Switch)

𝑀 = 𝛿J𝜇K 𝐴 = 𝛿J𝜇KJ𝑙K 𝐴′ = flatten({𝑣 • 𝑐 | 𝑣 ∈ 𝐴})
𝑋 = 𝐴′ ∪ (𝑀\𝐴) 𝛿 ′ = 𝛿 ∪ {𝜇 ↦→ 𝑋 } 𝛾 ′ = 𝛾 ∪ 𝛾𝑎

⟨mapto(𝜇 [𝑙], •, 𝑐), 𝛾, 𝛿, 𝜋 ⟩ { ⟨∅, 𝛾 ′, 𝛿 ′, 𝜋 ⟩
(Mapto)

𝑀 = 𝛿J𝜇K 𝐴 = 𝛿J𝜇KJ𝑙K 𝐴′ = {𝑣 | 𝑣 ⊗ 𝑐 = true ∧ 𝑣 ∈ 𝐴}
𝑋 = 𝐴′ ∪ (𝑀\𝐴) 𝛿 ′ = 𝛿 ∪ {𝜇 ↦→ 𝑋 } 𝛾 ′ = 𝛾 ∪ 𝛾0

⟨filter(𝜇 [𝑙], ⊗, 𝑐), 𝛾, 𝛿, 𝜋 ⟩ { ⟨∅, 𝛾 ′, 𝛿 ′, 𝜋 ⟩
(Filter)

𝑀 = 𝛿J𝜇K 𝑋 = {𝑀J𝑖K • 𝑐 if 𝑖 ∈ 𝑙 else𝑀J𝑖K | 0 ≤ 𝑖 ≤ |𝑀 | }
𝛿 ′ = 𝛿 ∪ {𝜇 ↦→ 𝑋 } 𝛾 ′ = 𝛾 ∪ 𝛾0

⟨map(𝜇 [𝑙], •, 𝑐), 𝛾, 𝛿, 𝜋 ⟩ { ⟨∅, 𝛾 ′, 𝛿 ′, 𝜋 ⟩
(Map)

𝑙 = {𝑐0, ..., 𝑐𝑛 } 𝑀 = 𝛿J𝜇K 𝐴 = 𝛿J𝜇KJ𝑙K 𝑣0 = 𝑐 •𝑀J𝑐0K
... 𝑣𝑛 = 𝑣𝑛−1 •𝑀J𝑐𝑛K 𝑋 = {𝑣𝑛 } ∪ (𝑀\𝐴)

𝛿 ′ = 𝛿 ∪ {𝜇 ↦→ 𝑋 } 𝛾 ′ = 𝛾 ∪ 𝛾𝑎
⟨fold(𝜇 [𝑙], •, 𝑐), 𝛾, 𝛿, 𝜋 ⟩ { ⟨∅, 𝛾 ′, 𝛿 ′, 𝜋 ⟩

(Fold)

𝑙𝑎 = {𝑐0, ..., 𝑐𝑛 } 𝑙𝑏 = {𝑑0, ..., 𝑑𝑛 } 𝑀 = 𝛿J𝜇K 𝐴 = 𝛿J𝜇KJ𝑙𝑎K
𝐵 = 𝛿J𝜇KJ𝑙𝑏K 𝑋 = {𝐴J𝑐𝑖K • 𝐵J𝑑𝑖K | 0 ≤ 𝑖 ≤ 𝑛} ∪ (𝑀\𝐴\𝐵)

𝛿 ′ = 𝛿 ∪ {𝜇 ↦→ 𝑋 } 𝛾 ′ = 𝛾 ∪ 𝛾𝑏
⟨zipwith(𝜇 [𝑙𝑎], 𝜇 [𝑙𝑏], •), 𝛾, 𝛿, 𝜋 ⟩ { ⟨∅, 𝛾 ′, 𝛿 ′, 𝜋 ⟩

(Zip)

A

Stack Stack

mapto

A’

A

Stack Stack

filter

A’

Stack

A

Stack

A

append

Alt Stack

A

switch

Main Stack

A

A

Stack

map

Stack

A’

A

Stack Stack

fold

A’

A

Stack Stack

zip C

B

Fig. 6. A representative set of the symbolic evaluation rules (part 2) for the stack operations of𝔊. We illustrate
changes to stacks before and after the corresponding stack operation to the right of each rule.

Here, dom(𝛿) denotes the set of identifiers in the program store 𝛿 .

The (Asgn), (Asum), and (Asrt) rules denote how the verification interface interacts with the

program state. The assignment rule (Asgn) binds a location in the program store 𝛿 to an identifier

𝑖 . The assumption rule (Asum) adds the resulting value 𝑣 of evaluation of the expression 𝑒 into

the current path condition 𝜋 by conjunction. Similarly, the assertion rule (Asrt) appends 𝑣 to the

assertion store 𝛾 . During the evaluation, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 terminates when the current path condition 𝜋

evaluates to false, or the conjunction of all clauses from the assertion store 𝛾 can not be satisfied.

The symbolic evaluation rules of the higher-order constructs for modeling batched stack opera-

tions of𝔊 are shown in Figure 6. To provide a high-level intuition, each rule is accompanied by a

visualization that depicts the stack’s state before and after the corresponding operation is applied,

highlighting its side effects. Specifically, the (Append) and (Switch) rules do not change the values

of the input elements. The (Append) rule moves the input elements to the top of the main stack,

while the (Switch) rule moves the selected elements between main and alt stacks. The rules for

12 Liu et al.

Algorithm 1 Synthesis-Powered Transpilation

1: procedure Transpile(𝔊, 𝑃)

2: input: domain-specific language𝔊, decomposed Bitcoin snippet 𝑃

3: output: transpiled𝔊 program 𝑃 ′ or ⊥ if not found

4: S𝜙 ← SEval(𝑃) ⊲ symbolically evaluates original snippet into logical specification

5: sample 𝐸 ∼ { (𝑒in, 𝑒out) | 𝑃 (𝑒in) = 𝑒out} ⊲ samples input-output examples from snippet 𝑃

6: 𝜅 ← ⊤ ⊲ initializes knowledge base

7: while 𝑃 ′ ← Enumerate(𝔊, 𝐸, 𝜅) do
8: S′ ← SEval(𝑃 ′) ⊲ symbolically evaluates candidate program into logical constraints

9: 𝑟 ← sat(S′ ̸ |= S𝜙) ⊲ check for counterexample

10: if 𝑟 then
11: (𝑒′in, 𝑒

′
out) ← cex(𝑟) , 𝐸 ← 𝐸 ∪ (𝑒′in, 𝑒

′
out) ⊲ gets the counterexample and adds to example set

12: 𝜅 ← 𝜅 ∧ block(𝑃 ′) ⊲ blocks the current candidate program

13: else return 𝑃 ′ ⊲ no counterexample is found; returns the program

14: return ⊥ ⊲ exhausted

the remaining four higher-order operations, namely the rules of (Mapto), (Filter), (Map), (Fold)

and (Zip), accept an operator • that is used to transform the input elements into new ones. Since

the selected elements could be guarded by path conditions, the result of applying an operator • on
the guarded values 𝑔0 and 𝑔1 is given by:

𝑔0 • 𝑔1 = L𝜋0 ∧ 𝜋1M(𝑥0 • 𝑥1),

where 𝑔0 = L𝜋0M𝑥0 and 𝑔1 = L𝜋1M𝑥1.

5 Synthesis-Powered Transpilation
In this section, we introduce the transpilation algorithm that converts a decomposed Bitcoin snippet

into its equivalent𝔊 program via a counterexample-guided inductive synthesis (CEGIS) loop. The

synthesized𝔊 program will then be used for reasoning in the verification phase as mentioned in

Section 4. We first give an overview of the synthesis algorithm in Section 5.1, and explain in detail

the synthesis procedure (Section 5.2) and the equivalence checking (Section 5.3).

5.1 Algorithm Overview
As shown in Algorithm 1, given the domain-specific language𝔊 and a decomposed Bitcoin script

𝑃 , 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 starts by obtaining the synthesis specification S𝜙 via symbolic evaluation (i.e., the

SEval procedure) of 𝑃 (line 4). It then samples an initial set 𝐸 of input-output examples from the

original snippet 𝑃 (line 5). Each example (𝑒in, 𝑒out) consists of an input 𝑒in and an output 𝑒out that

correspond to the status of the stacks before and after applying the snippet 𝑃 respectively, i.e.,

𝑃 (𝑒in) = 𝑒out. 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 then continuously constructs candidate𝔊 programs via the Enumerate

procedure (line 7-14) until a solution is found. Specifically for each proposed candidate program

𝑃 ′, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 obtains its representation S′ in constraints (line 8) and checks if there exists an

input-output example (i.e., a counterexample) from S′ that violates the synthesis specification S𝜙
(line 9). The candidate program 𝑃 ′ is not the solution if such a counterexample (𝑒′in, 𝑒′out) exists (line
10). In this case, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 retrieves the exact counterexample and adds it to the example set 𝐸 (line

11) while blocking the program 𝑃 ′ (line 12); otherwise, if no counterexample is found, the candidate

program 𝑃 ′ is then returned since it proves to be equivalent to the original snippet 𝑃 (line 13).

5.2 The Enumeration Procedure
Given a domain-specific language, which here refers to𝔊 = (𝑉 , Σ, 𝑅, 𝑆), where𝑉 , Σ, 𝑅 and 𝑆 denote

the non-terminals, terminals, productions and start symbol respectively, the enumeration procedure

Push-Button Verification for BitVM Implementations 13

Operator Description Logical Summary

append(𝑥) pushes new elements to the top of stack (𝜎𝑚′ = 𝜎𝑚 + 𝜎𝑥) ∧ (𝜎𝑎′ = 𝜎𝑎)
switch(𝑥) moves elements between stacks (𝜎𝑚′ = 𝜎𝑚 − 𝜎𝑥) ∧ (𝜎𝑎′ = 𝜎𝑎 + 𝜎𝑥)

mapto(𝑥, _, _) applies a function to each selected elements and

moves results to the top of stack

(𝜎𝑚′ ≥ 𝜎𝑚) ∧ (𝜎𝑎′ = 𝜎𝑎)

filter(𝑥, _, _) selects a subset of elements with conditions and

moves results to the top of stack

(𝜎𝑚′ ≤ 𝜎𝑚) ∧ (𝜎𝑎′ = 𝜎𝑎)

map(𝑥, _, _) applies a function to each selected elements in place (𝜎𝑚′ = 𝜎𝑚) ∧ (𝜎𝑎′ = 𝜎𝑎)
fold(𝑥, _, _) progressively constructs a result to the top of stack (𝜎𝑚′ = 𝜎𝑚 − 𝜎𝑥 + 1) ∧ (𝜎𝑎′ = 𝜎𝑎)
zip(𝑥0, 𝑥1, _) applies a function to each pair of two sets of elements

and pushes results to the top of stack

(𝜎𝑚′ = 𝜎𝑚 − 𝜎𝑥0) ∧ (𝜎𝑎′ = 𝜎𝑎)∧
(𝜎𝑥0 = 𝜎𝑥1)

if 𝑒 then 𝑝0 else 𝑝1 . branch statement 𝜙𝑝0 ∨ 𝜙𝑝1

loop (𝑐) 𝑝. loop statement

∧
𝑐 𝜙𝑝

Table 1. A representative set of logical summary of𝔊. 𝑥 denotes the input.𝑚 and 𝑎 denote the main and
alt stack respectively. 𝜎𝑝 denotes the size of 𝑝 , and 𝜙𝑝 retrieves the logical summary of 𝑝 . We differentiate a
stack’s status before and after an operation with ′, e.g.,𝑚 (before) and𝑚′ (after).

finds a feasible program 𝑃 in 𝔊, such that for all given input-output examples (𝑒in, 𝑒out) ∈ 𝐸,

execution of 𝑃 over each input 𝑒in results in the corresponding output 𝑒out.

There are three steps in the enumeration procedure, namely derivation, encoding and pruning.
The derivation step constructs a well-typed𝔊 program, which is then encoded with the given

input-output examples into a logical summary. The enumeration procedure prunes a program if its

logical summary proves unsatisfiable and returns it otherwise. We elaborate on the three steps in

detail as follows.

Derivation. To derive a well-typed program 𝑃 from𝔊 by construction, we model 𝑃 as a sequence

of terminals 𝑉 and non-terminals Σ in𝔊: 𝑃 ∈ (𝑉 ∪ Σ)∗, such that 𝑃 can be derived from 𝑆 via a

sequence of productions from 𝑅:

𝑆
𝑟∗
⇁ 𝑃 where 𝑟 ∈ 𝑅.

A program that contains non-terminals is partial, and such non-terminals are also referred to as

holes. Starting from 𝑆 , by gradually filling in a partial program’s holes, the enumeration procedure

eventually derives a well-typed and complete program without any non-terminals.

Example 5.1 (Partial Program Derivation). The following shows a partial program written in𝔊:

mapto(𝑘0, “mv”, 0); zip(𝑘1, 𝑘2, “flat”);

where 𝑘0, 𝑘1 and 𝑘2 are non-terminals. With the productions 𝑘 ::= 𝜇 [𝑐∗], 𝜇 ::= main and 𝑐 ::= 9,

we can fill in the hole 𝑘0 and thus derive a new partial program:

mapto(main[9], “mv”, 0); zip(𝑘1, 𝑘2, “flat”);

Encoding. For a given program 𝑃 , the enumeration procedure performs a quick checking of its

feasibility over the given set of examples 𝐸 via its logical summary. We refer to a logical summary

as a set of logical formulas that describes the behavior of a language construct in an abstract way.
For example, Table 1 shows the logical summary for each of the stack operators of𝔊, where 𝑥

and 𝑦 denotes the input and output stack of an operator, with certain type of stack specified by

subscript (e.g.,𝑚 formain stack and 𝑎 for alt stack). Each summary quantifies the relation between

the size properties of the input and output stacks. For example, in the logical summary of append,
the size of the main stack becomes larger in the output than input but alt stack remains the same;

for switch, the main stack shrinks and the alt stack grows.

14 Liu et al.

Thus, let 𝔗𝑃 be the AST representation of 𝑃 , we can then encode a program 𝑃 with given input

𝑒in and output 𝑒out into its logical summary Ψ(𝑃 (𝑒in) = 𝑒out):
Ψ(𝑃 (𝑒in) = 𝑒out) =

∧
𝑁 ∈Nodes(𝔗𝑃)

𝜙 (𝑁),

where 𝜙𝑛 denotes the logical summary of the node 𝑛.

Example 5.2 (Logical Summary). Consider the following partial program:

mapto(main[0:3], •0, 𝑐0); zip(main[0:3],main[3:6], •1);
Let 𝑥0 be the input of mapto, and 𝑥1𝑎 , 𝑥1𝑏 be the inputs of zip. The above program is then encoded

to the following logical summary:

(𝜎𝑚1
≥ 𝜎𝑚0

) ∧ (𝜎𝑎1 = 𝜎𝑎0) ∧ (𝜎𝑚2
= 𝜎𝑚1

− 𝜎𝑥1𝑎) ∧ (𝜎𝑎2 = 𝜎𝑎1) ∧ (𝜎𝑥1𝑎 = 𝜎𝑥1𝑏),

where𝑚0 and 𝑎0 correspond to the initial stacks,𝑚1 and 𝑎1 are stacks after the first operation

mapto,𝑚2 and 𝑎2 are the final stacks after the second operation zip.

Pruning. For each given input-output pair (𝑒in, 𝑒out) ∈ 𝐸, if its logical encoding Ψ(𝑃 (𝑒in) = 𝑒out)
is unsatisfiable, then 𝑃 can be safely pruned. Therefore, the enumeration procedure returns the

program 𝑃 , if the following query yields true:∧
(𝑒in,𝑒out) ∈𝐸

SAT(Ψ(𝑃 (𝑒in) = 𝑒out)).

5.3 Equivalence Checking
Once a candidate program 𝑃 ′ has been proposed by the enumeration procedure, it is essential

to ensure that it is semantically equivalent to the original snippet 𝑃 . However, verifying this

equivalence is non-trivial, as there is no off-the-shelf equivalence checker for comparing Bitcoin

script with programs in𝔊. We thus implemented equivalence checking to address this challenge.

The core idea is to symbolically evaluate (via the SEval procedure) both programs on a common

input state and check if their resulting output states are the same. To build the checker, we adapted

existing symbolic evaluation rules for Bitcoin script from existing work [19] with those already

defined in Section 4 for𝔊. The checker was built on top of the rosette framework [35] and leverages

its SMT encoding facilities as well as its symbolic evaluation engine.

6 Implementation

We have implemented 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 in Racket/Rosette with a back-end constraint solver (Bitwu-

zla [25] version 0.4.0). The total codebase comprises 2,574 lines of Racket code. This includes all

implementation components and benchmarks of verified Bitcoin scripts. Below, we elaborate on

various aspects of our implementation.

Modeling big integers with symbolic limbs. Bitcoin Script represents integers using sign-

magnitude representation, where the highest bit serves as the sign bit. During arithmetic operations,

numbers are converted to two’s complement representation and then converted back after the

operation.

To accurately model operations involving big integers (i.e., BigInts) in 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡, we introduced

a new symbolic operator called PUSH_BIGINT_X. This operator allows us to push a large integer

onto the symbolic stack, defined by the following parameters:

• N : The total number of bits of the BigInt.

• L: The number of bits per segment (limb).

• l: The base name for each limb, with 𝑙𝑖 representing the 𝑖-th limb.

Push-Button Verification for BitVM Implementations 15

• v: The identifier for the entire BigInt, with 𝑣𝑖 representing the 𝑖-th BigInt.

For example, PUSH_BIGINT_0 254 29 𝑠 𝑣0 creates a 254-bit BitInt, split into limbs of 29 bits each,

named 𝑠0, 𝑠1 etc., with a symbolic identifier 𝑣0 for the whole BigInt. The variable 𝑣0 is constrained

to be equal to the sum of its limbs, each shifted by its position:

𝑣0 =

𝑛∑︁
𝑖=0

𝑠𝑖 · 2L·𝑖 , where 𝑛 =

⌈
N
L

⌉
− 1.

After this operation, the stack will have 𝑠0, 𝑠1, ..., 𝑠𝑛 pushed onto it, where each 𝑠𝑖 is a symbolic

bitvector of size L (except possibly the highest limb, which may be smaller if N is not a multiple

of L.

Handling sign bits. In our modeling, we handle the sign bit and limb representations carefully.

Since in Bitcoin’s implementation, each limb of a BigInt is represented as a positive number (with

the sign bit being 0 under normal circumstances), we model each limb as a bitvector of size L and

constrain it to be within the range [0, 2L − 1].
For the highest limb, we adjust the limb size to account for any remainder bits:

Lℎ = N mod L .

The highest limb is of size L if Lℎ = 0.

To ensure that the sign bit is correctly modeled, we constrain the most significant bit of the

highest limb to be 0 by default. The position of the sign bit within the highest limb is:

sign =

{
Lℎ − 1 if Lℎ > 0,

L − 1 if Lℎ = 0.

We then apply the following constraint to the highest limb 𝑠𝑛 : 𝑠𝑛 [sign] = 0, where 𝑠𝑛 [𝑖] denotes the
𝑖-th bit of 𝑠𝑛 . By modeling BigInts in this way, we avoid issues related to sign bits during arithmetic

operations. Each limb is treated as an unsigned bitvector, and the entire BigInt is assembled from

these limbs.

Abstraction of cryptographic primitives. Cryptographic operations introduce complex non-

linear constraints that are difficult for SMT solvers to handle efficiently. We abstracted these

primitives using uninterpreted functions with essential properties captured as axioms. For example,

hash functions (e.g.,OP_SHA256) are modeled as injective functions without specifying their internal

workings. This allows the solver to reason about the high-level behavior without dealing with

underlying complexities.

7 Evaluation

In this section, we describe the setup and results for our evaluation, which are designed to answer

the following key research questions:

• RQ1 (Performance) How does 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 perform in verification for Bitcoin scripts?

• RQ2 (Ablation) How does the key design of 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 affect its performance?

• RQ3 (Zero-Days) Is 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 useful for detecting previously unknown vulnerabilities?

Benchmarks. We collect a total of 78 verification tasks from the two major open-source reposi-

tories written using Bitcoin script, which contains the usage of a wide coverage of Bitcoin script

language constructs in various computational tasks, libraries, and components, as follows:

16 Liu et al.

Total Avg. Time Solved Safe (✔) Unsafe (✕) Unknown (?)
BSE 67 14.43s 54 (81%) 53 (79%) 1 (2%) 13 (19%)

BSV 11 3.49s 11 (100%) 11 (100%) 0 (0%) 0 (0%)

Overall 78 12.55s 65 (83%) 64 (82%) 1 (1%) 13 (17%)

Table 2. Summarized experimental result for performance evaluation of 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡.

• bitcoin-scriptexec1(or BSE for short) implements BitVM2 [21], the official implementation from

the original authors. It also comes with a library of functions written in Bitcoin script for various

computations and operations in arithmetics, cryptography, stack, bitvector, etc.

• Bitcoin circle STARK verifier2(or BSV for short) implements a circle plonk [14] verifier in Bitcoin

script. It also comes with reusable cryptographic components written in Bitcoin script.

Among our 78 benchmarks, 67 benchmarks are from BSE and 11 from BSV. Each benchmark has

on average 269,739 lines of code, with a maximum of 5,780,711 lines. The computations implemented

in the benchmarks mainly fall into several categories:

• Big integer operations, including standard bitwise conversion, comparison, arithmetics, etc.

• Elliptic curve (BN254) operations, including standard arithmetics over the curves.

• Merkle tree implementation, including folding and hashing operations used as its building blocks.

Experimental setup. All experiments are conducted on a system with an AMD Ryzen 9 5950X

16-Core Processor and 64 GB of memory, running Ubuntu 20.04. 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 encodes semantics of

bitcoin script in bitvector theory [4] and leverages Bitwuzla [25] as its default backend constraint

solver. The default timeout for evaluation of each benchmark is set to 15 minutes.

Evaluation metrics. We use two key metrics to evaluate the performance of 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡:

• Number of Benchmarks Solved There are three potential outcomes that 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 can produce

for verification of a benchmark:

– Safe (“✔”), meaning that the program conforms with the specification;

– Unsafe (“✕”), meaning that a counterexample that violates the specification is found;

– Unknown (denoted by “?”), meaning that 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 cannot terminate within a given time

limit, due to various reasons such as complex benchmarks, running out of resource allocation,

backend solver giving up, etc.

To evaluate the effectiveness of our approach, we measure the number of benchmarks with a

known result (both safe and unsafe are counted) produced by 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 as solved, as this gives a
concrete proof or counterexample as an answer to the given query in the specification. Note that

for the benchmarks where loop invariants are inferred, we implement the refinement procedure

mentioned in Section 4.2 that validates the counterexample proposed by the tool, due to the fact

that the initial loop invariant might not be strong enough to imply the desired post-condition.

Specifically, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 iteratively strengthens the candidate invariant and continues with the

verification process until a definite conclusion is reached.

• Solving Time To evaluate the efficiency of our approach, we measure the solving time of

benchmarks. In particular, to reduce variance, only the time spent for benchmarks solved are

taken into consideration.

7.1 Performance of 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 in Verification for Bitcoin scripts (RQ1)
We start by showing the summarized experimental result in Table 2. Overall, out of 78 benchmarks,

𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 solves 65 (83%) of them, with 64 (82%) of them proven safe (✔) and 1 (1%) of them having

counterexamples found, i.e., proven unsafe (✕). 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 takes an average of 12.55s to solve a

1
https://github.com/BitVM/rust-bitcoin-scriptexec

2
https://github.com/Bitcoin-Wildlife-Sanctuary/bitcoin-circle-stark

https://github.com/BitVM/rust-bitcoin-scriptexec
https://github.com/Bitcoin-Wildlife-Sanctuary/bitcoin-circle-stark

Push-Button Verification for BitVM Implementations 17

File Benchmark LOC Result Time (s)

bigint/

std

(BSE)

zip 36 ✔ 2.03

copy 18 ✔ 2.02

roll 36 ✔ 2.02

drop 5 ✔ 2.00

is_zero_ke 37 ✔ 2.16

is_one_ke 38 ✔ 2.21

toaltstack 9 ✔ 1.99

fromaltstack 18 ✔ 2.01

is_negative 4 ✔ 2.16

is_positive 4 ✕ 2.16

resize 12 ✔ 1.92

overall 18 100% 2.06

bigint/

add

(BSE)

add 173 ✔ 3.58

double_allow_overflow_ke 134 ✔ 3.58

double_prevent_overflow 133 ✔ 3.54

lshift_prevent_overflow 3,713 ✔ 5.54

add_ref_with_top 164 ✔ 4.03

overall 863 100% 4.05

bigint/

bits

(BSE)

convert_to_be_bits 3,297 ✔ 4.38

convert_to_le_bits 3,297 ✔ 4.35

convert_to_be_bits_ta 3,081 ✔ 4.34

convert_to_le_bits_ta 3,535 ✔ 4.36

limb_from_bytes 121 ✔ 2.14

overall 2,666 100% 3.91

bigint/

inv

(BSE)

div2 4,157 ✔ 6.26

div2rem 4,156 ✔ 6.48

div3 5,057 ✔ 2.29

div3rem 5,056 ✔ 2.40

inv_stage1 4,992,182 ? TO

overall 1,002,121 80% 4.36

bigint/

cmp

(BSE)

equalverify 45 ✔ 2.13

lessthanorequal 183 ✔ 2.13

overall 114 100% 2.13

bn254/

curves

(BSE)

push_generator 27 ✔ 1.95

push_zero 15 ✔ 1.96

is_zero_ke 37 ✔ 2.17

add 2,180,126 ? TO

double 947,166 ? TO

equalverify 1,089,148 ? TO

into_affine 5,780,711 ? TO

overall 1,428,176 43% 2.03

(BSE) bigint/mul 102,932 ✔ 452.10

File Benchmark LOC Result Time (s)

(BSE) bigint/sub 180 ✔ 2.14

bn254/

fp254impl

(BSE)

toaltstack 9 ✔ 1.96

push_modulus 9 ✔ 1.97

fromaltstack 18 ✔ 1.99

div2 4,547 ✔ 4.85

div3 5,845 ✔ 95.41

convert_to_be_u4 4,007 ✔ 28.13

convert_to_be_bits 3,297 ✔ 4.22

convert_to_be_bits_ta 3,081 ✔ 4.28

convert_to_le_bits 3,297 ✔ 4.31

convert_to_le_bits_ta 3,535 ✔ 4.39

push_zero 5 ✔ 1.96

push_one_not_mtg 6 ✔ 1.98

sub 396 ✔ 15.12

double 350 ✔ 2.30

is_zero_ke 37 ✔ 2.14

is_one_ke 52 ✔ 2.13

is_one_ke_not_mtg 95 ✔ 2.12

is_one_not_mtg 77 ✔ 2.18

inv 5,235,924 ? TO

mul_by_constant 101,871 ? TO

square 133,523 ? TO

mul 136,960 ? TO

mul_bucket 71,852 ? TO

decode_mtg 63,322 ? TO

convert_to_be_bytes 67,363 ? TO

mul_by_constant_bucket 67,745 ? TO

overall 227,201 69% 10.08

folding

(BSV)

check_0_or_1 8 ✔ 2.11

decompose_positions_g 436 ✔ 11.95

skip_one_and_ext_bits_g 361 ✔ 7.14

overall 268 100% 7.07

utils

(BSV)

limb_to_le_bits 376 ✔ 2.48

ltbbt_exc_low2b 351 ✔ 2.13

ltbbt_common 349 ✔ 2.40

qm31_reverse 3 ✔ 2.00

ltbbt_exc_low1b 351 ✔ 2.09

dup_mv_g 64 ✔ 2.05

mv_from_bottom_g 96 ✔ 2.05

cta_top_item_first_in_g 28 ✔ 2.00

overall 202 100% 2.15

Table 3. Statistics and breakdown of 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡’s performance for the full set of benchmarks. “TO” means
timeout. For each small category, we show the averaged LOC, percentage of benchmarks solved and averaged
time in the “overall” row.

benchmark. Only 13 (17%) of the benchmarks cannot be answered by 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡; our analysis shows

that the top reasons for producing unknown (?) results are: 1) complex constraints (e.g., mul in
bigint), and 2) excessive resource consumption (e.g., sub in bn254/fp254impl).
Table 3 shows more details about the status of each benchmark and category. For two of the

more complex categories, bigint/bits and bigint/inv, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 demonstrates its efficiency. In the

bigint/bits category, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 successfully solved 100% of the benchmarks with an average time

of 3.91s. Even for programs in the bigint/inv category, which have an average of 1,002,121 LOCs,

𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 still managed to solve 80% of the benchmarks, with an average time of 4.36s. There are

also some cases that are worth noting, for example, bigint/mul, which contains the most loops, but

𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 solves it within 452.10s, despite its complexity and the introduction of computationally

expensive operations that generate non-linear constraints. However, even though inv_stage1
contains only 1 loop, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 fails to solve it due to the complicated loop invariants.

Failure analysis. For the 13 benchmarks that 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 fails to solve, we perform a manual

analysis to identify the root causes. A vast majority of them (12 out of 13) could not be solved

within the given time limit due to the complex constraints generated by multiple factors, such

as the introduction of non-linear operations, complex loop unrolling, and loop invariants. The

backend solver gives up on all 13 of them based on its internal strategy. Even after relaxing the

18 Liu et al.

0 10 20 30 40 50 60 70

0

200

400

600

800

1,000

1,200

Number of Benchmarks Solved

C
u
m
u
l
a
t
i
v
e
T
i
m
e
(
S
e
c
o
n
d
s
)

𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 (Bitwuzla)

Baseline (Bitwuzla)

Baseline (cvc5/−ff)

Fig. 7. A comparison between 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 and its baselines without transpilation, where x-axis denotes the
total number of benchmarks solverd, and y-axis denotes the cumulative time spent in seconds.

time limit to 24 hours, none of these benchmarks could be solved, as they continued to face the

same issues related to complex constraints.

Result for RQ1: 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 is able to solve a significant portion (65 out of 78, i.e., 83%) of

benchmarks with a 12.55s averaged solving time. Therefore, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 is both effective and

efficient, and we believe that this answers RQ1 in a positive way.

7.2 Ablation Study (RQ2)
Since there is no publicly available tool for verification of Bitcoin scripts, to evaluate the effectiveness

of 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡’s key design in Section 5.1, we conduct an ablation study that compares 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡

with its baseline version, where a Bitcoin script is compiled directly into constraints according

to the rules presented in previous work [19]. That is, the baseline version doesn’t perform any

transpilation nor optimization. While it still shares the backend solver (Bitwuzla) with the default

𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡, we refer to this version as Baseline (Bitwuzla).

A subset of benchmarks (42.3%, especially in the category of bn254) is intended for elliptic curve

computations over finite fields. Solving such benchmarks generally poses challenges for backend

solvers that rely on integer/bitvector theories, as shown in previous works [29]. To explore whether

a finite field solver could improve performance, we introduce a second ablative version, Baseline

(cvc5/−ff). This version uses cvc5 [2] with specialized finite field theory [27] (i.e., cvc5−ff) as its
backend solver. Specifically, for the 21 benchmarks that assume finite field inputs/outputs, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡

compiles them into finite field constraints and invokes cvc5−ff; for other benchmarks, cvc5 with
default bitvector theory is used.

Figure 7 shows the result for ablation study, where the x-axis represents the total number of

benchmarks solved, and the y-axis shows the cumulative time spent. All three configurations show

an increase in cumulative time as more benchmarks are solved. However, cvc5−ff underperforms

compared to both 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 and Baseline (Bitwuzla). This is because most benchmarks do not

involve direct finite field operations but rather use Bitcoin scripts to simulate these operations. As

a result, the finite field optimizations in cvc5−ff do not provide a significant advantage and may

even introduce overhead, making it less efficient than the Bitwuzla baseline for this particular set of

benchmarks. Compared to Baseline (Bitwuzla), 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 demonstrates a clear advantage in 25.64%

of benchmarks, thanks to the high-level DSL and the synthesis procedure discussed in Section 5.1.

Baseline (cvc5/−ff) initially performs similarly to 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 for the first 30 benchmarks but falls

behind as more benchmarks are added, with 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 ultimately solving 28.20% more benchmarks.

Push-Button Verification for BitVM Implementations 19

pub fn is_positive(depth: u32) -> Script {
 script! {

{ (1 + depth) * Self::N_LIMBS - 1 } OP_PICK

 { Self::HEAD_OFFSET >> 1 }
 OP_LESSTHAN

 }
}

(a) the buggy snippet

1
2
3
4
5
6
7
8
9

10

pub fn is_positive(depth: u32) -> Script {
 script! {

{ (1 + depth) * Self::N_LIMBS - 1 } OP_PICK
 { Self::is_zero_keep_element(depth) } OP_NOT

{ (1 + depth) * Self::N_LIMBS } OP_PICK
 { Self::HEAD_OFFSET >> 1 }
 OP_LESSTHAN
 OP_BOOLAND
 }
}

1
2
3
4
5
6
7
8
9

10

(b) the fixed snippet

Fig. 8. An example code snippet demonstrating a bug in BitVM’s implementation (a) and its fixed version (b).

Result for RQ2: 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 performs significantly better than its ablative versions, with notable

efficiency gains in 25.64% - 43.60% of cases. Thus, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡’s design is important for its overall

performance, and we believe that this answers RQ2 in a positive way.

7.3 Detecting Previously Unknown Vulnerabilities (RQ3)
Recall that Table 2 shows a benchmark (is_positive) that could not be successfully verified. Further

analysis revealed that the verification failure is due to a subtle, previously undocumented issue in

the implementation.

As shown in Figure 8(a), the is_positive function used OP_LESSTHAN with the threshold

HEAD_OFFSET >> 1 to check if a bigint was “not negative”. Here, HEAD_OFFSET >> 1 serves as

a midpoint: if the most significant limb of the bigint is less than this threshold, it indicates

the sign bit is 0, meaning the number is non-negative. However, this approach mistakenly

classified an all-zero number as positive because zero also has a most significant limb below

HEAD_OFFSET >> 1. To correct this, in Figure 8(b), the revised code adds an explicit zero check

(Self::is_zero_keep_element(depth)) and uses OP_NOT to exclude zero values from being posi-

tive. The final check combines OP_LESSTHAN with the inverted zero check using OP_BOOLAND,
ensuring that only non-zero, non-negative numbers are considered positive.

In this example, a seemingly minor mistake in the arithmetic logic could have led to significant

financial losses, depending on how the function was integrated into the broader system. For

instance, in the original code, zero could incorrectly pass the check, potentially allowing unintended

validations where zero should have been excluded.

We promptly informed the developers of the affected libraries, and our finding was confirmed by

the team. These results highlight the critical role of 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡’s verification design in identifying

logical flaws that might otherwise lead to security vulnerabilities by allowing the acceptance of

invalid proofs.

Result for RQ3: 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 detected a previously unknown vulnerability in widely-used Bitcoin

scripts, which could allow invalid proofs to be mistakenly accepted as valid.

8 Related work

Formal methods for cryptography. There is extensive research on applying formal verification

techniques to cryptographic protocols. For example, Corin et al.[10] utilized a variant of probabilistic

Hoare logic to verify the security of ElGamal, while Gagne et al.[15] applied similar methods

to analyze the security of CBC-based MACs, PMAC, and HMAC. Tiwari et al. [34] employed

component-based program synthesis to automatically generate padding-based encryption schemes

20 Liu et al.

and block cipher modes of operation. EasyCrypt [5] offers a toolset for specifying and proving the

correctness of cryptographic protocols.

In addition to the rich literature on the intersection of cryptography and formal methods, there

is emerging research on the formal verification of zero-knowledge proofs (ZKPs). Almeida et al.[1]

developed a certifying compiler for Σ-protocols, which includes zk-SNARKs, using Isabelle/HOL

[26] for formal correctness proofs. Sidorenco et al.[32] produced the first machine-checked proofs

for ZK protocols using the Multi-Party Computation-In-The-Head paradigm with EasyCrypt. More

recent work has focused on building specialized solvers for polynomial equations over finite fields.

While finite field arithmetic can theoretically be encoded using integer or bitvector theories, solving

the resulting constraints with off-the-shelf solvers is often impractical. To address this, Hader et

al. [17] developed a custom decision procedure for solving polynomial equations over finite fields

by combining a quantifier elimination procedure with Groebner basis computation. Ozdemir et

al. [28] recently proposed a finite field solver that does not scale well in our benchmarks due to

too many complex constraints. Finally, Coda [22] proposed the first verifier for the functional

correctness of ZKP circuits. However, compared to 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡, it requires a significant amount of

manual effort to write interactive theorem proofs in Coq, which makes it less practical to reason

about large programs in bitVMs.

Bug finders for cryptography programs. Writing correct yet efficient cryptography programs

requires specialized domain expertise. A Static analyzer called Circomspect [11] was designed to

find bugs in Circom programs. Circomspect looks for simple syntactic patterns such as using the

<-- operator when <== can be used. Such a syntactic pattern-matching approach generates many

false positives and can also miss real bugs. In contrast, Zkap [37] significantly improves the prior

work by reasoning about semantic violations in zero-knowledge circuits. However, those tools are

effective in detecting common vulnerabilities with known patterns and can not detect functional

violations in cryptography programs, including the benchmarks in our evaluation.

Constraint solving. Satisfiability Modulo Theories (SMT)[24] has become an essential tool for

symbolic reasoning, driven by the availability of practical, high-performance solvers like Z3[12],

CVC4[3], and Gurobi[16]. The programming languages community has extensively explored the use

of solvers for both verification and synthesis [20, 31, 33]. Traditional SMT-based tools often rely on

either custom-built constraint solvers or manual translation of problems into constraints for existing

solvers. In contrast, solver-aided domain-specific languages (DSLs)[35, 36] automatically generate

these constraints through symbolic compilation. One example is the Rosette framework[35], which

leverages Racket’s meta-programming capabilities to provide a high-level interface to multiple

solvers. Building on top of Rosette, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 employs a specialized compilation strategy in Section 3

to produce highly efficient constraints, resulting in a significant reduction in solving time.

9 Conclusion

We have introduced the first formal verification tool tailored for BitVM implementations, address-

ing the challenges of Bitcoin’s constrained programming environment. By designing a higher-level

domain-specific language (DSL) that abstracts away complex stack operations while preserving

the original semantics, we bridge the gap between low-level execution and effective program

reasoning. Our formal computational model and the use of loop invariant predicates, combined

with a counterexample-guided inductive synthesis (CEGIS) procedure, efficiently handle large

programs and complex constraints that standard SMT solvers struggle with.

Our evaluation confirms the practicality and effectiveness of our approach. Applied to 78 bench-

marks from BitVM implementations, our tool successfully verified 83% of the cases efficiently and

Push-Button Verification for BitVM Implementations 21

identified one previously unknown vulnerability. These findings underscore the tool’s potential

to significantly enhance the security and reliability of BitVM and pave the way for more secure

blockchain applications built on Bitcoin.

References
[1] J. Almeida, E. Bangerter, M. Barbosa, S. Krenn, A.-R. Sadeghi, and T. Schneider. A certifying compiler for zero-knowledge

proofs of knowledge based on sigma-protocols. volume 6345, pages 151–167, 09 2010.

[2] H. Barbosa, C. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann, A. Mohamed, M. Mohamed, A. Niemetz, A. Nötzli,

A. Ozdemir, M. Preiner, A. Reynolds, Y. Sheng, C. Tinelli, and Y. Zohar. cvc5: A versatile and industrial-strength SMT

solver. In D. Fisman and G. Rosu, editors, Tools and Algorithms for the Construction and Analysis of Systems, pages
415–442, Cham, 2022. Springer International Publishing.

[3] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King, A. Reynolds, and C. Tinelli. Cvc4. In Proceedings
of the 23rd International Conference on Computer Aided Verification, CAV’11, pages 171–177, Berlin, Heidelberg, 2011.
Springer-Verlag.

[4] C. W. Barrett, D. L. Dill, and J. R. Levitt. A decision procedure for bit-vector arithmetic. In Proceedings of the 35th
Annual Design Automation Conference, DAC ’98, page 522–527, New York, NY, USA, 1998. Association for Computing

Machinery.

[5] G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt, and P.-Y. Strub. Easycrypt: A tutorial. In FOSAD, 2013.
[6] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Succinct Non-Interactive zero knowledge for a von neumann

architecture. In 23rd USENIX Security Symposium (USENIX Security 14), pages 781–796, San Diego, CA, Aug. 2014.

USENIX Association.

[7] Bitcoin. Bitcoin script. https://en.bitcoin.it/wiki/Script, 2022.

[8] V. Buterin et al. A next-generation smart contract and decentralized application platform. white paper, 3(37):2–1, 2014.
[9] A. Cheung, A. Solar-Lezama, and S. Madden. Optimizing database-backed applications with query synthesis. In

H. Boehm and C. Flanagan, editors, ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pages 3–14. ACM, 2013.

[10] R. Corin and J. den Hartog. A probabilistic hoare-style logic for game-based cryptographic proofs (extended version),

2005. To appear in ICALP 2006 Track C corin@cs.utwente.nl 13264 received 23 Dec 2005, last revised 26 Apr 2006.

[11] F. Dahlgren. It pays to be circomspect. https://blog.trailofbits.com/2022/09/15/it-pays-to-be-circomspect/, 09 2022.

[12] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Tools and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer Berlin Heidelberg, 2008.

[13] C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for ESC/java. In Proceedings of the International
Symposium of Formal Methods Europe on Formal Methods for Increasing Software Productivity, FME ’01, page 500–517,

Berlin, Heidelberg, 2001. Springer-Verlag.

[14] A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK: Permutations over lagrange-bases for oecumenical noninter-

active arguments of knowledge. Cryptology ePrint Archive, Paper 2019/953, 2019.

[15] M. Gagné, P. Lafourcade, and Y. Lakhnech. Automated security proofs for almost-universal hash for mac verification.

Cryptology ePrint Archive, Paper 2013/407, 2013. https://eprint.iacr.org/2013/407.

[16] L. Gurobi Optimization. Gurobi optimizer reference manual, 2019.

[17] T. Hader. Non-linear smt-reasoning over finite fields, 2022.

[18] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–580, 1969.

[19] R. Klomp and A. Bracciali. On symbolic verification of bitcoin’s script language. In J. Garcia-Alfaro, J. Herrera-

Joancomartí, G. Livraga, and R. Rios, editors, Data Privacy Management, Cryptocurrencies and Blockchain Technology,
pages 38–56, Cham, 2018. Springer International Publishing.

[20] K. R. M. Leino. Dafny: An automatic program verifier for functional correctness. In Proceedings of the 16th International
Conference on Logic for Programming, Artificial Intelligence, and Reasoning, LPAR’10, pages 348–370, Berlin, Heidelberg,
2010. Springer-Verlag.

[21] R. Linus, L. Aumayr, A. Zamyatin, A. Pelosi, Z. Avarikioti, and M. Maffei. BitVM2: Bridging bitcoin to second layers,

Aug. 2024.

[22] J. Liu, I. Kretz, H. Liu, B. Tan, J. Wang, Y. Sun, L. Pearson, A. Miltner, I. Dillig, and Y. Feng. Certifying zero-knowledge

circuits with refinement types. In IEEE Symposium on Security and Privacy, SP 2024, San Francisco, CA, USA, May 19-23,
2024, pages 1741–1759. IEEE, 2024.

[23] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Satoshi Nakamoto, 2008.
[24] G. Nelson and D. C. Oppen. Fast decision procedures based on congruence closure. J. ACM, 27(2):356–364, Apr. 1980.

[25] A. Niemetz and M. Preiner. Bitwuzla. In C. Enea and A. Lal, editors, Computer Aided Verification, pages 3–17, Cham,

2023. Springer Nature Switzerland.

https://en.bitcoin.it/wiki/Script
https://blog.trailofbits.com/2022/09/15/it-pays-to-be-circomspect/
https://eprint.iacr.org/2013/407

22 Liu et al.

[26] T. Nipkow, M. Wenzel, and L. C. Paulson. Isabelle/hol: A proof assistant for higher-order logic. 2002.

[27] A. Ozdemir. Cvc5-ff. https://github.com/alex-ozdemir/CVC4/tree/ff, 2022.

[28] A. Ozdemir, G. Kremer, C. Tinelli, and C. W. Barrett. Satisfiability modulo finite fields. In C. Enea and A. Lal, editors,

Computer Aided Verification - 35th International Conference, CAV 2023, Paris, France, July 17-22, 2023, Proceedings, Part
II, volume 13965 of Lecture Notes in Computer Science, pages 163–186. Springer, 2023.

[29] S. Pailoor, Y. Chen, F. Wang, C. Rodríguez, J. V. Gaffen, J. Morton, M. Chu, B. Gu, Y. Feng, and I. Dillig. Automated

detection of underconstrained circuits for zero-knowledge proofs. Cryptology ePrint Archive, Paper 2023/512, 2023.

https://eprint.iacr.org/2023/512.

[30] Polygon. Scalable payments, with zero-knowledge rollups. https://hermez.io, 2022.

[31] E. Schkufza, R. Sharma, and A. Aiken. Stochastic superoptimization. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’13, pages 305–316,
New York, NY, USA, 2013. ACM.

[32] N. Sidorenco, S. Oechsner, and B. Spitters. Formal security analysis of mpc-in-the-head zero-knowledge protocols. In

2021 IEEE 34th Computer Security Foundations Symposium (CSF), pages 1–14, 2021.
[33] A. Solar-Lezama. Program Synthesis by Sketching. PhD thesis, Berkeley, CA, USA, 2008. AAI3353225.

[34] A. Tiwari, A. Gascon, and B. Dutertre. Program synthesis using dual interpretation. In Automated Deduction - CADE-25
- 25th International Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings, volume 9195 of

LNCS, pages 482–497, 2015.
[35] E. Torlak and R. Bodik. A lightweight symbolic virtual machine for solver-aided host languages. In Proceedings of the

35th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’14, page 530–541, New
York, NY, USA, 2014. Association for Computing Machinery.

[36] R. Uhler and N. Dave. Smten with satisfiability-based search. In Proceedings of the 2014 ACM International Conference
on Object Oriented Programming Systems Languages & Applications, OOPSLA ’14, pages 157–176, New York, NY, USA,

2014. ACM.

[37] H. Wen, J. Stephens, Y. Chen, K. Ferles, S. Pailoor, K. Charbonnet, I. Dillig, and Y. Feng. Practical security analysis of

zero-knowledge proof circuits. In D. Balzarotti and W. Xu, editors, 33rd USENIX Security Symposium, USENIX Security
2024, Philadelphia, PA, USA, August 14-16, 2024. USENIX Association, 2024.

https://github.com/alex-ozdemir/CVC4/tree/ff
https://eprint.iacr.org/2023/512
https://hermez.io

	Abstract
	1 Introduction
	2 Background
	3 Overview
	4 The Verification Algorithm
	4.1 System Overview
	4.2 The G Language for Modeling Stack Operations
	4.3 Symbolic Evaluation for the G Language

	5 Synthesis-Powered Transpilation
	5.1 Algorithm Overview
	5.2 The Enumeration Procedure
	5.3 Equivalence Checking

	6 Implementation
	7 Evaluation
	7.1 Performance of bitguard in Verification for Bitcoin scripts (RQ1)
	7.2 Ablation Study (RQ2)
	7.3 Detecting Previously Unknown Vulnerabilities (RQ3)

	8 Related work
	9 Conclusion
	References

