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Abstract. Elliptic Curve Point Multiplication (ECPM) is a key component of the Elliptic
Curve Cryptography (ECC) hierarchy protocol. However, the specific estimation of resources
required for this process remains underexplored despite its significance in the cryptanalysis of
ECC algorithms, particularly binary ECC in GF (2

𝑚
). Given the extensive use of ECC algo-

rithms in various security protocols and devices, it is essential to conduct this examination to
gain valuable insights into its cryptanalysis, specifically in terms of providing precise resource
estimations, which serve as a solid basis for further investigation in solving the Elliptic Curve
Discrete Logarithm Problem. Expanding on several significant prior research, in this work, we
refer to as ECPM cryptanalysis, we estimate quantum resources, including qubits, gates, and
circuit depth, by integrating point addition (PA) and point-doubling (PD) into the ECPM
scheme, culminating in a Shor’s algorithm-based binary ECC cryptanalysis circuit. Focusing
on optimizing depth, we elaborate on and implement the most efficient PD circuit and incor-
porate optimized Karatsuba multiplication and FLT-based inversion algorithms for PA and
PD operations. Compared to the latest PA-only circuits, our preliminary results showcase
significant resource optimization for various ECPM implementations, including single-step
ECPM, ECPM with combined or selective PA/PD utilization, and total−step ECPM (2𝑛 PD
+2 PA).

Keywords: ECC · ECPM · Point Addition · Point Doubling · Quantum Cryptanalysis.

1 Introduction

Elliptic-curve cryptography (ECC), introduced by Koblitz and Miller in 1985, has become a corner-
stone of modern cryptography due to its ability to achieve equivalent security levels with significantly
smaller key sizes than traditional cryptosystems. This efficiency has led to widespread adoption in
various applications, including Transport Layer Security (TLS) 1.3 [13] and cryptographic stan-
dards set by the National Institute of Standards and Technology (NIST) [2]. However, the security
of ECC hinges on the difficulty of the elliptic curve discrete logarithm problem (ECDLP). While
ECC offers advantages in key size, Shor’s algorithm [15], proposed in 1994, poses a significant threat
to its long-term security. Extensive research has focused on the practical implementation of Shor’s
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algorithm for ECDLP on quantum computers, particularly targeting superconducting qubit archi-
tectures. These studies have explored both prime and binary elliptic curves, leading to significant
advancements in optimizing quantum circuits for ECDLP solving (e.g., [ [14], [4]]).

Building upon this prior work, this research delves deeper into the resource estimation of elliptic
curve point multiplication (ECPM), a critical operation within ECC protocols (as depicted in Level
3 of Figure 1). While classical implementations of ECPM have explored optimized architectures
utilizing Montgomery modular multiplication (e.g., [ [10] ]), our focus lies on building optimum
depth and estimating resource requirements for ECPM in a quantum context. Notably, this research
aims to estimate resources for ECPM as a building block for binary ECC cryptanalysis circuits based
on Shor’s algorithm, drawing inspiration from established works such as [ [14], [1], [12]].

Specifically, we elaborate on depth optimization within the first and second levels of the ECC
hierarchy by analyzing existing constructions in finite field arithmetic operations in GF(2𝑚) for
binary ECC circuits. These optimized operations are then employed in both point addition (PA)
and point doubling (PD) to construct a resource-efficient ECPM scheme (as the third level) that
can be integrated into a binary ECC cryptanalysis circuit. We propose and compare optimized
quantum circuit designs for these operations, focusing on a detailed comparative analysis of circuit
depth. The key contributions of this research include:

– We leverage recent advancements in finite field arithmetic for GF(2𝑚). Specifically, we incorpo-
rate the improved Karatsuba multiplication algorithm proposed by Putaranto et al. [12] and
the FLT-based inversion algorithm from Larasati et al. [9] (or incorporation research in [12])
into our quantum circuits for PA and PD. Additionally, we identify improved PA algorithm
from existing research [12] and integrate it into the ECPM circuit construction.

– We analyze three PD circuit versions from Larasati et al. [8] and select the most depth-efficient
model for inclusion within our ECPM scheme for binary ECC cryptanalysis based on Shor’s
algorithm. This choice deviates from the PD circuits employed in previous works by Roetteler
et al. [14], Banegas et al. [1], and Putranto et al. [12], prioritizing circuit depth optimization.

– We construct an ECPM circuit within a quantum environment and perform a comprehensive
resource estimation, including the number of qubits, gates, and circuit depth. Notably, we
compare our findings with concrete binary ECC cryptanalysis previous studies that solely utilize
PA circuits (e.g., [ [1] [12]]). This comparison highlights the depth optimization achieved through
our work.

– We report our preliminary results, based on comparisons with the most recent PA-only circuit
from [12], demonstrating the resource efficiency achieved through our approach. These compar-
isons encompass single-step ECPM, ECPM with combined or selective PA/PD utilization, and
total-step ECPM (2𝑛 PD +2 PA).

2 Related Works

Shor’s groundbreaking in 1994 addressed two fundamental problems: integer factorization and com-
puting discrete logarithms in finite fields [15]. Building on this foundation, Proos and Zalka made
significant strides by translating Shor’s high-level ECDLP algorithm into a format suitable for quan-
tum circuit implementation for specific elliptic curve groups [11]. This paved the way for a surge of
research on the practical application of Shor’s algorithm for ECDLP in quantum cryptanalysis.

Pioneering work by Roetteler et al. [14] and Haner et al. [4] refined quantum cryptanalysis
techniques for ECC over prime fields. More recently, Banegas et al. [1] directed their efforts towards
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optimizing Shor’s algorithm for binary elliptic curves in a concrete quantum cryptanalysis circuit.
Their work centered on optimizing the algorithm’s critical multiplication and division circuits,
proposing space-efficient techniques like Van Hoof’s Karatsuba multiplication to reduce the required
qubits and Toffoli gates [5]. The performance of two inversion circuits (GCD-based and FLT-based)
was compared to calculate the resource cost of PA. Their primary objective was to minimize the
number of qubits and Toffoli gates needed [1]. Complementing these binary field studies, Putranto
et al. [12] and Larasati et al. [9] investigated depth-reduction techniques for implementing Shor’s
algorithm on quantum cryptanalysis binary elliptic curves. This focus on efficiency reflects the
ongoing quest to improve the practicality of quantum cryptanalysis for ECC.

Fig. 1: General Hierarchy of ECC Protocol Implementation. We illustrate levels 1 through
4 as detailed in prior works [9], [12], and [8]. Specifically, this research focuses on levels 1 through 3
to construct the Elliptic Curve Point Multiplication (ECPM) based on several notable prior works.

Figure 1 illustrates a widely adopted hierarchy for ECC implementations. The base layer (Level
1) comprises finite field arithmetic operations in either prime or binary fields (GF(𝑝) or GF(2𝑚)),
including addition, subtraction, multiplication, and division. These operations serve as building
blocks for higher-level ECC functionalities. Level 2 utilizes these operations to construct PA and
PD circuits. Finally, Level 3 achieves elliptic curve point multiplication, refer as ECPM in this study.
Optimization of the underlying quantum arithmetic circuits is crucial for the efficient execution of
quantum algorithms like Shor’s [12]. This optimization primarily focuses on minimizing circuit width
or depth, especially for computationally expensive operations like multiplication and inversion. This
becomes particularly critical for intricate circuits like PA, which forms the foundation of scalar
multiplication as ECPM– the most resource-intensive step in circuits designed.

This study leverages efficient finite field arithmetic operations in GF(2𝑚) for binary ECC. Specif-
ically, we examine the improved Karatsuba multiplication algorithm from Putranto et al. [12], and
the FLT-based inversion technique from Larasati et al. [9] [12] for constructing second-level quan-
tum circuits for PA and PD scheme. These choices aim to minimize the resource requirements
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of the circuits. PA and PD’s fundamental operations in ECC are crucial, as is scalar multiplica-
tion ECPM construction. Scalar multiplication, in turn, is essential for various cryptographic tasks
such as generating public and private keys, encrypting and decrypting data, and verifying digital
signatures.

3 Finite Field Arithmetic in GF (𝟐
𝒎
) Binary ECC Operations

Elliptic curves defined over a binary field, denoted as 𝔽2
𝑛 , are a specific type of elliptic curve

used in cryptography. Figure 1 depicts a wide hierarchy for implementing finite field arithmetic in
ECC. This hierarchy highlights the importance of underlying field operations like modular addition,
subtraction, multiplication, squaring, and inversion for optimal ECC implementations, regardless
of whether the field is prime (𝔽𝑝) or binary (𝔽2

𝑛) [1]. This subsection provides a brief introduction
to binary elliptic curve cryptography.

This experimental study adopts a polynomial representation for 𝔽2
𝑛 similar to Banegas et al. [1]

and Putranto et al. [12]. Elements are represented as polynomials of degree less than 𝑛 with coeffi-
cients in 𝔽2. Computations leverage the isomorphism 𝔽2

𝑛 ≅ 𝔽2[𝑧]/𝑚(𝑧), where 𝑚(𝑧) is an irreducible
polynomial of degree 𝑛 in 𝔽2[𝑧] in all computations are done modulo 𝑚(𝑧) [1]. For defining polyno-
mial 𝑚(𝑧) used, Table 1 shows a list of irreducible polynomials in a curve over binary fields that are
standardized in [6].

Table 1: List of standardized irreducible polynomials suitable for defining the binary field
𝔽2

𝑛 used in elliptic curve cryptography (ECC) implementations. These polynomials are referenced
in prior works by Banegas et al. [1], Putranto et al. [12], and are also employed in this study.

Degree (n) Irreducible polynomial Source

8 𝑥
8
+ 𝑥

4
+ 𝑥

3
+ 𝑥 + 1 [3]

16 𝑥
16
+ 𝑥

5
+ 𝑥

3
+ 𝑥 + 1 [3]

127 𝑥
127

+ 𝑥 + 1 [3]
163 𝑧

163
+ 𝑧

7
+ 𝑧

6
+ 𝑥

3
+ 1 [6]

233 𝑧
233

+ 𝑧
74
+ 1 [6]

283 𝑧
283

+ 𝑧
12
+ 𝑧

7
+ 𝑧

5
+ 1 [6]

409 𝑧
409

+ 𝑧
87
+ 1 [12]

571 𝑧
571

+ 𝑧
10
+ 𝑧

5
+ 𝑧

2
+ 1 [6]

A binary elliptic curve is defined by the equation 𝑦
2
+𝑥𝑦 = 𝑥

3
+𝑎𝑥

2
+𝑏, where 𝑎 ∈ 𝔽2 and 𝑏 ∈ 𝔽

∗

2
𝑛 .

Points on this curve are represented as tuples 𝑃 = (𝑥, 𝑦) ∈ 𝔽
2

2
𝑛 that satisfy the curve equation.

Additionally, a special point denoted by 𝑂 serves as the ”point at infinity” and acts as the neutral
element for PA. The negative of a point 𝑃1 = (𝑥1, 𝑦1) is defined as −𝑃1 = (𝑥1, 𝑦1 + 𝑥1), such that
𝑃1 + (−𝑃1) = 𝑂.

PA on the curve is defined as follows. For two distinct points 𝑃1 = (𝑥1, 𝑦1) and 𝑃2 = (𝑥2, 𝑦2),
their sum, 𝑃1 + 𝑃2 = 𝑃3 = (𝑥3, 𝑦3), is calculated using specific formulas: 𝑥3 = 𝜆

2
+ 𝜆 + 𝑥1 + 𝑥2 + 𝑎 and

𝑦3 = (𝑥2 + 𝑥3)𝜆 + 𝑥3 + 𝑦2 where 𝜆 =
𝑦1+𝑦2

𝑥1+𝑥2

. Similarly, PD, denoted as [2]𝑃1, where 𝑃1 ≠ −𝑃1, is achieved

using: 𝑥3 = 𝜆
2
+ 𝜆 + 𝑎 and 𝑦3 = 𝑥

2

1
+ (𝜆 + 1)𝑥3 with 𝜆 = 𝑥1 +

𝑦1

𝑥1

.
Elliptic Curve Diffie-Hellman (ECDH) is a key exchange protocol based on elliptic curves. The

sender and receiver agree on a public curve with a secret point 𝑃 (having a large prime order) in
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this protocol. Each party then chooses a secret integer, 𝛼 for the sender and 𝛽 for the receiver.
The shared secret key is established by calculating shared points 𝑃𝛼𝛽. These shared points can be
computed in two equivalent ways: 𝑃𝛼𝛽 = [𝛼𝛽]𝑃 = [𝛼]𝑃𝛽 = [𝛽]𝑃𝛼 where 𝑃𝛼 = [𝛼]𝑃 and 𝑃𝛽 = [𝛽]𝑃 each
shared chosen by the sender and the recipient. The security of ECDH relies on the difficulty of the
ECDLP. Given a point 𝑃𝛼 and the public base point 𝑃 , the ECDLP problem asks for the secret
integer 𝛼 used to compute 𝑃𝛼. The complexity of finding or computing 𝛼 from 𝑃𝛼 and P is the basic
concept of the ECDLP, which Peter Shor addressed to compute 𝛼 in time polynomial in 𝑜𝑟𝑑(𝑃) in
his major work in [15].

3.1 Improved Karatsuba Multiplication

Putranto et al. [12] proposes modifying the Karatsuba multiplication algorithm used in prior work
by Banegas et al. [1]. Their key improvement lies in eliminating the CONSTMODMULT−1 func-
tion, which relies heavily on Linear Universal Problem (LUP) decompositions and a high number
of CNOT gates. This modification also involves restructuring the function within the algorithm,
leading to a reduction in circuit depth, CNOT gates, and Toffoli gates compared to Banegas et al.’s
approach. The core idea of Putranto et al.’s [12] improvement involves achieving the same Karatsuba
multiplication result with fewer resources by utilizing more efficient operations like MODSHIFT−1,
a binary shift function, and free swap/relabeling functions. These functions rely on the irreducible
polynomial defining the field rather than the field extension degree (𝑛). The details of enhanced
Karatsuba base algorithm are provided below [12]:

– Three calls to KMULT𝑛: two for multiplying 𝑘−by−𝑘, and one for multiplying (𝑛−𝑘)−by−(𝑛−𝑘).
– 2𝑘 calls to MODSHIFT𝑚(𝑥) for multiplication by 𝑥

𝑘, once in reverse.
– One call to CONSTMODMULT𝑓 (𝑥),𝑚(𝑥), with the same polynomial 1 + 𝑥

𝑘 being multiplied each
time.

– 4 (𝑛 − 𝑘) CNOT gates, with the ability to execute half of them simultaneously.

3.2 Improved FLT-based Inversion with Improved Karatsuba Multiplication

Larasati et al. [9] present a depth-reduction technique for the existing quantum circuit implementing
Fermat’s Little Theorem (FLT)−based inversion in the binary finite field. Their approach revolves
around a ”complete waterfall” strategy for translating Itoh−Tsujii’s variant of FLT into the corre-
sponding quantum circuit. This eliminates the need for inverse squaring operations in Banegas et
al.’s work [1]. As detailed in [9], this modification significantly reduces the number of CNOT gates
(CNOT count) and slightly decreases the circuit’s T-depth. Consequently, the overall circuit depth
and gate count are reduced, improving efficiency. This optimization complements adopting the en-
hanced Karatsuba multiplication algorithm proposed by Putranto et al. [12]. Their work, explained
in detail within [12], demonstrates how these combined optimizations significantly reduce the overall
resource requirements for quantum cryptanalysis circuits used in binary ECC. This study utilizes
the work of Putranto et al. [12] on reconstructing improved FLT-based inversion with improved
Karatsuba multiplication to develop an efficient circuit for binary elliptic curve cryptanalysis.

4 ECPM

This research builds upon established methodologies for quantum cryptanalysis of binary elliptic
curves within the framework of Shor’s algorithm. These methodologies draw inspiration from foun-
dational works by Proos and Zalka [11], Roetteler et al. [14], Banegas et al. [1], and Putranto et
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Fig. 2: The Quantum Circuit for Binary Elliptic Curve Cryptanalysis utilizes the Shor
Approach and integrates Point Doubling (PD) for Elliptic Curve Point Multiplication (ECPM). We
developed a quantum circuit for binary ECC cryptanalysis using a Shor-based approach, modified
to include PD. This work builds on the original research by Roetteler et al. [14] and Banegas et
al. [1] and incorporates additional PD optimizations as utilized in the study by Putranto et al. [12].

al. [12]. Besides elaborating on improved level 1-2 operations, the main contribution of this research
is to integrate the most efficient variant of the PD design from previous work by [8] to quantum
cryptanalysis of binary elliptic curves, which are currently only based on PA in [14], [1], and [12].
Figure 2 illustrates PD incorporation within a SHOR-based binary ECC cryptanalysis circuit in this
study, which was previously explored without the application of PD. This modification is hypothe-
sized to reduce the required quantum resource depth, thereby enhancing computational capabilities.
As noted in [8]’s research, quantum computers are susceptible to various sources of error, including
gate errors, decoherence, and crosstalk. Reducing circuit depth correlates with fewer gates and op-
erations, minimizing the potential for error accumulation. Minimizing error rates is crucial in the
context of error-corrected quantum computing.

4.1 Point Addition

For PA operation, our circuit construction employed an optimized Karatsuba multiplication algo-
rithm (level 1) from Putranto et al. [12] and an improved FLT-based inversion technique (level 1)
for efficiency. Putranto et al. evaluated these optimizations in Qiskit for 𝑛 = 8 due to the lengthy
output generated by Qiskit simulations for larger values of 𝑛 [12]. In contrast, resource estima-
tions for larger circuits (up to 𝑛 = 512) were performed using simulation capabilities. This study
elaborates on the integration of PA within binary ECC cryptanalysis circuit; we reconstruct prior
work [12] to optimum PA in the Qiskit environment, as depicted in Figure 3 with specifications,
utilizing an x64-based desktop PC (Intel i7-8700, six-core CPU) running Windows 10 Pro with
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Fig. 3: Point Addition (PA) Circuit. The point addition circuit utilized in this study is derived
from the research on [12], which incorporates an enhanced Karatsuba multiplication technique for
level 1 operations and employs FLT-based inversion sourced from [12] [9].
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64GB of RAM. Our software environment includes Python 3.9.7 and Qiskit version 0.30.0. The
resulting gate resource estimation data is presented in a benchmarking table due to the significant
size of the simulated circuits for single-step and total-step PA in Table 4.

4.2 Point Doubling

Recent research by Larasati et al. [8] emphasizes the significance of PD, particularly when the scalar
𝑘 leads to 𝑃 = 𝑅 (point coincidence). Unlike PA, which combines two distinct points on the elliptic
curve, PD adds a point to itself (𝑃 + 𝑃) to yield a new point (2𝑃). This operation plays a crucial
role in scalar multiplication (𝑘𝑃), which necessitates a series of PA, as exemplified in the binary
elliptic curve cryptanalysis circuit (Figure 2) [ [14], [1], [12]]. This work delves into the analysis of
PD operations presented by Larasati et al. [8] to establish the foundation for the ECPM circuit
model that utilizes PD along with PA. We utilize Qiskit to simulate three model PD circuits on
an x64-based desktop PC with an Intel i7-8700 six-core CPU running Windows 10 Pro, 64GB of
RAM, Python 3.9.7, and Qiskit version 0.30.0.

Fig. 4: Three-Model Point-Double (PD) Circuit. The circuits utilized in this study are based
on the research presented in [7], which proposed three versions of PD circuit designs. This paper
refers to these designs as Models 1 through 3. Model 1 features a design with one cleared ancilla
register; Model 2 omits the uncomputation process; and Model 3 incorporates a complete uncom-
putation process.

We compared the design circuit proposed by Larasati et al. [8] regarding resource requirements
and performance relative to existing PA-only-based circuits. Figure 4 depicts the Larasati et al.
model implemented in our Qiskit environment. We comprehensively compared resource require-
ments for optimal PA and the three PD versions (number of qubits, depth, width, size, CCX
(Toffoli) count, and CX (CNOT count) in Table 2.

Regarding formula complexity comparison, depicted in Table 3 Model 3 requires computations
up to formula line 15, while Models 1 and 2 conclude at lines 12 and 10, respectively. In this work,
we decompose the Point Addition (PA) step based on the foundational work of Banegas et al. [1]
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Table 2: Resource Estimation for Point Addition (PA) and Three Models of Point
Doubling (PD): Quantification of quantum resources required for a single operation of PA and
each PD version, including Depth (number of sequential operations), Width (number of qubits
involved), Size (number of quantum states), CCX (Toffoli) gates, and CX (CNOT) gates.

Group Operation 𝑛
Qubit
Counts

Overall
Depth

Toffoli
Depth

Overall
Gate Count

Toffoli
Count

CNOT
Count

Point Addition

8 81 2,853 33 3,326 348 2968
16 209 6,372 57 18,514 1,344 17,160
127 2,668 9,672 498 1,624,081 57,143 1,566,928
163 3,261 218,114 498 2,391,927 96,363 2,295,554
233 4,894 1,259,306 708 4,961,503 152,099 4,809,394
283 6,510 734,129 858 8,123,381 267,179 7,856,092
409 9,408 293,0002 1,236 16,011,803 445,085 15,566,708
571 14,847 1,716,035 1,722 35,775,039 935,947 34.839.082

Point Doubling

Model 1

8 89 1,235 24 2,224 232 1992
16 225 4,262 40 11,536 842 10,694
127 2,795 59,769 262 947,250 33,029 914,221
163 3,424 134,043 334 1,419,228 57,357 1,361,871
233 5,127 784,917 474 2,907,971 88,988 2,818,983
283 6,793 427,698 574 4,691,980 154,661 4,537,319
409 9,817 1,791,019 826 9,261,328 257,333 9,003,995
571 15,418 9,988,487 1,150 20,287,244 531,049 19,756,195

Model 2

8 89 1,089 23 1,969 205 1,764
16 225 3,845 39 10,449 761 9,688
127 2,795 146,313 261 2,465,023 85,469 2,379,554
163 3,424 124,226 333 1,313,879 52,970 1,260,909
233 5.127 724,650 473 2,703,752 82,665 2,621,087
283 6,793 402,941 573 4,388,894 144,388 4,244,506
409 9,817 1,663,168 825 8,651,040 240,232 8,410,808
571 15,418 939,686 1,149 19,114,233 499,878 18,614,355

Model 3

8 89 2,561 26 4,988 502 4,486
16 225 9,296 42 27,772 1,976 25,796
127 2,795 55,772 264 884,740 33,029 853,896
163 3,424 340,122 336 3,622,619 145,097 3,477,522
233 5,127 1,905,876 476 7,495,234 228,094 7,267,140
283 6,793 1,101,299 576 12,252,297 401,213 11,851,084
409 9,817 4,422,595 828 24,116,751 667,757 23,448,994
571 15,418 2,512,026 1,149 53,815,007 1,403,837 52,411,170

Fig. 5: Comparative Analysis of the Depth of Operations for Point Addition and three
variations of Point Doubling. We calculate the interpolation of the value 𝑛 and the sum value
depth required for estimating the resource.
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Table 3: Comparative analysis of formula complexity for point addition and three
variations of point doubling.

Step
Point Addition Point Doubling model 1 Point Doubling model 2 Point Doubling model 3

𝑞 = 1 𝑞 = 0 𝑞 = 1 𝑞 = 0 𝑞 = 1 𝑞 = 0 𝑞 = 1 𝑞 = 0

1 𝑥 = 𝑥1 + 𝑥2 𝑥 = 𝑥1 + 𝑥2 𝑎𝑛𝑐1 =
𝑦1

𝑥1

𝑎𝑛𝑐1 =
𝑦1

𝑥1

𝑎𝑛𝑐1 =
𝑦1

𝑥1

𝑎𝑛𝑐1 =
𝑦1

𝑥1

𝑎𝑛𝑐1 =
𝑦1

𝑥1

𝑎𝑛𝑐1 =
𝑦1

𝑥1

2 𝑦 = 𝑦1 + 𝑦2 𝑦 = 𝑦1 𝑦 = 0 𝑦 = 𝑦1 𝑦 = 0 𝑦 = 𝑦1 𝑦 = 0 𝑦 = 𝑦1

3 𝜆 =
𝑦1+𝑦2

𝑥1+𝑥2

𝜆 =
𝑦1

𝑥1+𝑥2

𝑎𝑛𝑐1 =
𝑦1

𝑥1

+ 𝑥1 = 𝜆 𝑎𝑛𝑐1 =
𝑦1

𝑥1

+ 𝑥1 = 𝜆 𝑎𝑛𝑐1 =
𝑦1

𝑥1

+ 𝑥1 = 𝜆 𝑎𝑛𝑐1 =
𝑦1

𝑥1

+ 𝑥1 = 𝜆 𝑎𝑛𝑐1 =
𝑦1

𝑥1

+ 𝑥1 = 𝜆 𝑎𝑛𝑐1 =
𝑦1

𝑥1

+ 𝑥1 = 𝜆

4 𝑦 = 0 𝑦 = 0 𝑦 = 𝜆
2

𝑦 = 𝑦1 𝑦 = 𝜆
2

𝑦 = 𝑦1 𝑦 = 𝜆
2

𝑦 = 𝑦1

5 𝑦 = 𝜆
2

𝑦 = 𝜆
2

𝑦 = 𝜆
2
+ 𝜆 𝑦 = 𝑦1 𝑦 = 𝜆

2
+ 𝜆 𝑦 = 𝑦1 𝑦 = 𝜆

2
+ 𝜆 𝑦 = 𝑦1

6 𝑥 = 𝑥2 + 𝑥3 𝑥 = 𝑥1 + 𝑥2 𝑦 = 𝜆
2
+ 𝜆 + 𝑎 = 𝑥3 𝑦 = 𝑦1 𝑦 = 𝜆

2
+ 𝜆 + 𝑎 = 𝑥3 𝑦 = 𝑦1 𝑦 = 𝜆

2
+ 𝜆 + 𝑎 = 𝑥3 𝑦 = 𝑦1

7 𝑥 = 𝑥2 + 𝑥3 𝑥 = 𝑥1 + 𝑥2 𝑎𝑛𝑐1 = 𝜆 + 1 𝑎𝑛𝑐1 = 𝜆 + 1 𝑎𝑛𝑐1 = 𝜆 + 1 𝑎𝑛𝑐1 = 𝜆 + 1 𝑎𝑛𝑐1 = 𝜆 + 1 𝑎𝑛𝑐1 = 𝜆 + 1

8 𝑥 = 𝑥2 + 𝑥3 𝑥 = 𝑥1 + 𝑥2 𝑎𝑛𝑐2 = (𝜆 + 1)𝑥3 𝑎𝑛𝑐2 = (𝜆 + 1)𝑦1 𝑎𝑛𝑐2 = (𝜆 + 1)𝑥3 𝑎𝑛𝑐2 = (𝜆 + 1)𝑦1 𝑎𝑛𝑐2 = (𝜆 + 1)𝑥3 𝑎𝑛𝑐2 = (𝜆 + 1)𝑦1

9 𝑦 = 0 𝑦 = 0 𝑥 = 𝑥
2

1
𝑥 = 𝑥1 𝑥 = 𝑥

2

1
𝑥 = 𝑥1 𝑥 = 𝑥

2

1
𝑥 = 𝑥1

10 𝑦 = (𝑥1 + 𝑥2) + 𝜆 𝑦 = 𝑦1 𝑥 = 𝑥
2

1
+ (𝜆 + 1)𝑥3 = 𝑦3 𝑥 = 𝑥1 𝑥 = 𝑥

2

1
+ (𝜆 + 1)𝑥3 = 𝑦3 𝑥 = 𝑥1 𝑥 = 𝑥

2

1
+ (𝜆 + 1)𝑥3 = 𝑦3 𝑥 = 𝑥1

11 𝜆 = 0 𝜆 = 0 𝑎𝑛𝑐2 = 0 𝑎𝑛𝑐2 = 0 − − 𝑎𝑛𝑐2 = 0 𝑎𝑛𝑐2 = 0

12 𝑥 = 𝑥3 𝑥 = 𝑥1 𝑠𝑤𝑎𝑝 ∶ 𝑥 = 𝑥3.𝑦3 𝑛𝑜𝑛𝑒 ∶ 𝑥 = 𝑥1.𝑦1 − − 𝑠𝑤𝑎𝑝 ∶ 𝑥 = 𝑥3.𝑦3 𝑛𝑜𝑛𝑒 ∶ 𝑥 = 𝑥1.𝑦1

13 𝑦 = 𝑦2 𝑦 = 𝑦1 − − − − 𝑎𝑛𝑐1 = (𝜆 + 1) − 1 = 𝜆 𝑎𝑛𝑐1 = 𝜆

14 − − − − − − 𝑎𝑛𝑐1 = 𝜆 𝑎𝑛𝑐1 = 𝜆 − 𝑥1 =
𝑦1

𝑥1

15 − − − − − − 𝑎𝑛𝑐1 = 𝜆 𝑎𝑛𝑐1 = 0

on reversible PAs, as the basis in [12]. Conversely, for Point-Doubling (PD), we present a high-
level overview of the steps involved in the approach proposed by Larasati et al. [7]. This analysis
facilitates a comparison of the complexity of each method for elliptic curve points. An elliptic curve
point 𝑃1 is represented as two binary polynomials 𝑥1, 𝑦1 stored in 𝑥, 𝑦 of size 𝑛 (where 𝑞 denotes
qubit control, 𝜆 array calculation with initialization state |0⟩ and 𝑎𝑛𝑐 refer to ancillary qubit).

Based on those analyses, including visualized the depth comparison of PA and PD circuits (in
Figure 5), in this study, we chose version 2 (lowest depth) for integration into the ECPM circuit to
achieve optimal depth efficiency.

4.3 ECPM Results

By utilizing recent developments in finite field arithmetic for GF(2𝑚), specifically optimized algo-
rithms for Karatsuba multiplication [12] and FLT-based inversion (Larasati et al. [9] or an alter-
native approach in [12]), we have incorporated these advancements into our quantum circuits for
PA and PD. This integration results in an improved PA and model 2 of PD, with depth opti-
mization. This study performed a comprehensive resource estimation, including qubits, gates, and
circuit depth, comparing these findings with existing concrete binary ECC cryptanalysis studies
that solely utilize PA circuits [12].

Table 4 presents a comprehensive comparison of the resource required for different ECPM im-
plementations. This table compares our work, based on Qiskit simulations and resource estimation,
and the work conducted by Putranto et al. [12] for 𝑛−bit ECC. The comparison specifically examines
the qubits in columns ii and iii. The single-step ECPM comparison is presented in columns v and
vi, where ECPM with combined PA or PD is compared against the single-step PA algorithm (from
PUT). The result from our recent study on total-step ECPM (2𝑛 PD + 2 PA) revealed reduced
quantum resource usage in column vii, and we compared it to recent PUT results in column viii in
scenarios that exclusively utilize point addition (2𝑛 + 2 PA).
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Table 4: Comparison of Resource Analysis of Single Step ECPM (PA or PD) and Point
Addition (1 PA) and in Total Step ECPM(2𝑛 PD +2 PA) Point Addition (2𝑛 + 2 PA)
for n bit ECC with Previous Work. In both Toffoli and CNOT gates, qubit and Depth, This
Work Based on Qiskit Simulation Result. Note that, PUT (Point Addition algorithm by Putranto
et al. [12]).

𝑛
Ours
qubits

PUT
qubits Toffoli

Ours (1 ECPM (PA or PD))
CNOT depth Toffoli

PUT (1 PA)
CNOT depth

Ours (2𝑛PD + 2PA)
Toffoli

PUT (2𝑛 + 2 PA)
Toffoli

i ii iii v vi vii viii

8 89 74 205 1,764 23 348 2,734 210 3,976 6,264
16 225 194 761 9,688 39 1,344 15,924 623 27,040 45,696
127 2,795 2,320 85,469 2,379,554 261 52,773 1,352,497 7,010 21,823,412 13,509,888
163 3,424 2,805 52,970 1,260,909 333 96,299 2,137,063 14,632 17,460,946 31,586,072
233 5,127 4,228 82,665 2,621,087 473 152,067 4,480,745 46,702 38,826,088 71,167,356
283 6,793 5,694 144,388 4,244,506 573 267,115 7,376,571 34,792 82,257,966 151,721,320
409 9,817 8,214 240,232 18,410,808 825 445,021 14,565,173 111,858 197,399,946 364,917,220
571 15,418 13,167 499,878 18,614,355 1,149 935,883 32,888,178 93,142 572,732,570 1,070,650,152

5 Conclusion

This work advances resource estimation for Elliptic Curve Point Multiplication (ECPM) in the
context of quantum cryptanalysis of binary ECC. We leveraged recent advancements in finite field
arithmetic for GF(2𝑚) by incorporating the improved Karatsuba multiplication algorithm from
Putaranto et al. [12] and the FLT-based inversion algorithm from Larasati et al. [9] (or the com-
bination approach presented in [12]) into our quantum circuits for both point addition (PA) and
point doubling (PD). Additionally, we integrate an optimized PA algorithm from prior research [12]
into the ECPM construction. Furthermore, we analyzed three PD circuit versions by Larasati et
al. [8] and selected Model 2 as the most depth-efficient model for our binary ECC cryptanalysis
scheme based on Shor’s algorithm. Finally, we performed a comprehensive resource estimation,
including qubits, gates, and circuit depth. In the final comparisons, we compared ECPM as single-
step, ECPM with combination or selection in PA/PD utilization, and total-step ECPM (2𝑛 PD
+2 PA). We compare these findings with existing concrete binary ECC cryptanalysis studies that
solely utilize PA circuits [12], highlighting the depth optimization achieved through the proposed
approach.
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