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Abstract. Public key cryptography can be based on integer factorization and

the discrete logarithm problem (DLP), applicable in multiplicative groups and
elliptic curves. Regev’s recent quantum algorithm was initially designed for the

factorization and was later extended to the DLP in the multiplicative group.

In this article, we further extend the algorithm to address the DLP for elliptic
curves. Notably, based on celebrated conjectures in Number Theory, Regev’s

algorithm is asymptotically faster than Shor’s algorithm for elliptic curves.

Our analysis covers all cases where Regev’s algorithm can be applied. We
examine the general framework of Regev’s algorithm and offer a geometric

description of its parameters. This preliminary analysis enables us to certify

the success of the algorithm on a particular instance before running it.
In the case of integer factorization, we demonstrate that there exists an

infinite family of RSA moduli for which the algorithm [Reg23] always fails (as
opposed to a newer variant of Pilatte [Pil24]). In the case of discrete loga-

rithms, when the parameters align with the Gaussian heuristics, we prove that

Regev’s algorithm succeeds. By noting that the algorithm naturally adapts
to the multidimensional DLP, we proved that it succeeds for a certain range

of parameters. We make a precise parameter choice for its implementation to

specific NIST-listed elliptic curves. Notably, Bernstein’s Curve25519 has small
coefficients, which makes it vulnerable to Regev’s algorithm.

1. Introduction

The two most used primitives in public key cryptography are integer factorization
and discrete logarithm problem (DLP), which arises in two variants: multiplicative
groups and elliptic curves. While these problems are not known to be directly
linked, the methods employed to analyze them often reflect each other—for instance,
Pollard’s rho, the number field sieve (NFS), and Shor’s quantum algorithm each
have adaptations for both problems. However, this correspondence is not complete,
as some algorithms do not successfully carry over to elliptic curves. Specifically,
for identical group orders, solving the DLP on a classical computer is easier in
multiplicative groups than on elliptic curves because index calculus algorithms do
not effectively extend well to curves of small genus, in particular to elliptic curves.

In a recent article [Reg23], Regev introduced a quantum algorithm for inte-
ger factorization that requires fewer quantum gates than Shor’s algorithm. Eker̊a
and Gärtner [EG23a] later expanded this algorithm to solve discrete logarithms in
multiplicative groups, but its elliptic curve variant has remained unexplored. Our
research extends this algorithm to elliptic curves, and by analyzing its complexity,
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we demonstrate that its speedup with repect to Shor’s algorithm goes to infinity
with the size of the input. From the practical perspective, we identify elliptic curves
from the NIST list which are vulnerable to our adaptation of Regev’s algorithm.

In its original form, Regev’s factorization algorithm was based on an assumption
about the behavior of the quadratic residuosity of small prime numbers. In a very
recent development, Pilatte [Pil24] demonstrated that, with a slight modification to
Regev’s algorithm, specifically by selecting random primes from a somewhat larger
range.

From a cryptographic standpoint, an attacker will generally favor Regev’s ini-
tial variant due to its complexity of O(n3/2 log n) as opposed to O(n3/2 log3 n)
for Pilatte’s variant. Additionally, the hidden constants in Pilatte’s variant are
larger1, making it less attractive for practical attacks. This complexity difference
can significantly influence the efficiency of factorization attempts in cryptographic
applications, reinforcing the preference for the original algorithm.

We identify infinitely many RSA moduli that Regev’s variant fails to factor.
While Pilatte’s modified variant can asymptotically tackle these cases, the question
remains open on cryptographic sizes.

We examine the general framework of Regev’s algorithm and offer a geometric
description of its parameters. This preliminary analysis enables us to certify the
success of the algorithm on a particular instance before running it. Extensive exper-
imental testing of Regev’s heuristics (e.g., in [EG23b]) indicates that the algorithm
is likely to be successful in practice for a significant number of cases and our certi-
fication procedure is applicable to a large proportion of these successful instances.
This is crucial because when an implementation requires extensive research and
development, it is important to eliminate mathematical errors early, allowing the
focus to shift to detecting implementation issues.

Moreover, our general framework for Regev’s algorithm has enabled us to iden-
tify another problem where it can be successfully applied. In 1993, Brands [Bra93]
created the first cryptographic application based on an extension of DLP, called
multidimensional DLP (see Definition 7, which can have small variations). Over
time, the problem gained even greater significance in cryptography, as discussed
in [GR09, Section 6]. While there are several variants of the problem, the state-of-
the-art attacks remain the same. A natural question is whether the DLP solvers
can be extended to multidimensional DLP with the same complexity. Contrary to
Pollard’s rho algorithm for the DLP, which had an extension to the multidimen-
sional DLP by Galbraith and Ruprai [GR09], Shor’s algorithm is not known to have
an extension to this problem. We note that Regev’s algorithm applies to multidi-
mensional DLP and we find a range of the parameters where one can eliminate the
heuristics.

The main idea behind Regev’s algorithm can be summarized as follows. Re-
call that Shor’s algorithm is based on the quantum Fourier transform (QFT) and
computes in superposition elements of the form gz where g ∈ G and z is an n-bit
integer. Regev’s algorithm uses g1, . . . , gd ∈ G for a parameter d ≥ 2 and computes

in superposition elements of the form
∏d

i=1 g
zi
i where the zi are n/d-bit integers;

we call this product a multi-scalar product. Note that Regev’s algorithm can be
viewed as an adaptation of the Shor’s algorithm for DLP to the multidimensional
case. This is a non-trivial achievement because the hidden subgroup problem can

1Pilatte’s bound d1000d is larger than 2n for RSA moduli of less than 0.94 · 108 bits.
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be solved using Shor’s algorithm in polynomial time only when the dimension d is
independent of the size of the problem.

However, Regev’s approach goes beyond merely extending Shor’s algorithm: its
quantum procedure is roughly d times faster for all problems where the algorithms
applies successfully. To understand why, recall that on a classical, computer the
multi-scalar product can be computed in O(n/d) group operations (see Algorithm 2)
compared to O(n) operations for an n-bit scalar product. A key objective of this
article is to rigorously demonstrate the speed-up achieved by Regev’s algorithm.

Let us now list the problems addressed in this article where Regev’s algorithm
can be applied, specifying the group G and the possible values for g1, ..., gd.

• factorization of an integer N : G = Z∗
N and the gi’s are the squares of the

first d rational primes;
• DLP in the multiplicative group of a prime field Fp: G = F∗

p and the gi’s
are the first d rational primes;

• DLP in the multiplicative group of a field Fℓn for a small ℓ: G = F∗
ℓn and

the gi’s are the first d unitary irreducible polynomials;
• multidimensional DLP (see Definition 7) of given parameters g1, . . . , gd and
G: there is no choice for the gi’s as they are predetermined;

• DLP on a given elliptic curve E over Fp: G = E(Fp) and we show how to
search for the gi’s in Section 3;

• DLP with pre-computations (see [EG23a]), i.e. same as DLP but g1, . . . , gd−1

are given or computed in advance.

1.1. Regev’s algorithm in a nutshell. Although it can be presented in an inde-
pendent way, Regev’s algorithm can also be seen within the general framework of
the CHSP-solvers as described in [EHKS14, dBDF20]. Given a function that hides
a lattice of periods L, Regev’s algorithm and the CHSP-solver aim to compute L.
The two algorithms are composed of the following main steps:

(1) The quantum procedure (Algorithm 1). The quantum Fourier transform
(QFT) is used over the domain [−D/2, D/2]d with coefficients a Gaussian
distribution of standard deviation R, producing approximations of elements
from the dual lattice L∗, which are randomly sampled from L∗ /Zd with a
probability that is uniform up to error roughly of order 1/R;

(2) The post-processing. A classical algorithm is applied to the output of d+4
runs of the quantum procedure. This gives a linearly independent set of
vectors from L, which generates all vectors with lengths shorter than a
specified bound T .

It is important to note that the key difference between the two algorithms is that
Regev’s algorithm computes only a certain vector in L which is sufficient for solving
the desired problem. In contrast, the CHSP solver computes a full basis of the
period lattice.
In a recent paper, Ragavan and Vaikuntanathan [RV23] proposed a different post-
processing which can find the correct samples among a large number of samples
with errors.

1.2. Our contribution. Our main results are as follows:

• Theorem 2.3 proves that Regev’s algorithm [Reg23] fails to factor infinitely
many RSA moduli; this result is unexpected because a natural heuristics
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Algorithm 1 The quantum subroutine of Regev’s algorithm

Input: an integer d
Output: a vector of L∗ /Zd approximated O(d+ n/d) bits of precision, randomly

drawn according to the distribution Q below , which is close to uniform.
Set T = exp(Cn/d) for an absolute constant C. Set R = 2d+n/dT and D =
2⌈log2 R⌉.
Compute the quantum state

|φ1⟩ =
∑

z∈[−D/2,D/2]d
⋂

Zd

ϱR(z)|x⟩|0⟩

then in a multi-scalar manner (Algorithm 2) the state

|φ2⟩ =
∑

z∈[−D/2,D/2]d

ϱR(z)|x⟩|f(x)⟩.

Measure the register |f(x)⟩ to obtain, for a value e ∈ Zd,

|φ3⟩ =
∑

z∈(e+L)
⋂
[−D/2,D/2]d

ϱR(z)|z⟩.

Compute the quantum Fourier transform of |ψ3⟩ to obtain

|φ4⟩ =
∑

y∈(Z/DZ)d
e−2ie·y

 ∑
ℓ∈L

⋂
( 1
DZ/Z)d

e−2iπℓ·yϱR(e+ ℓ)

 |y⟩.

Measure |ψ4⟩ to obtain every y ∈ L∗ /Zd with probability Q(y) =
(detL)−1

∑
v∈L∗/Zd Qv(y), where

Qv(y) =
ϱ1/

√
2R(v + y + Zd)

ϱ1/
√
2R(v −D−1Zd)

would imply that Regev’s algorithm for integer factorization succeeds in all
the cases;

• Theorem 2.5 states that if the lattice in Regev’s algorithm does not contain
vectors shorter than predicted by the Gaussian heuristic, the algorithm will
succeed;

• Theorem 2.9 eliminates the heuristics in Regev’s algorithm for the multidi-
mensional DLP;

• Fact 3.4 provides a precise estimate of the cost of Regev’s algorithm for
specific curves on the NIST list; for instance, Bernstein’s Curve25519 has
small coefficients, which is not a random property of an elliptic curve of
its security level but it is a useful property for an attack with Regev’s
algorithm;

• Theorem 3.6 shows that celebrated conjectures in Number Theory imply an
asymptotic speed-up of Regev’s algorithm for elliptic curves compared to
Shor’s algorithm; however the speed-up is much smaller than that achieved
in the factorization case.

1.3. Organization of the paper. In Section 2.1, we outline the general frame-
work of the Continuous Hidden Subgroup Problem (CHSP), defining the period
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lattice and highlighting the presence of a ”trivial” period sublattice in Regev’s al-
gorithm. We formalize the concept of identifying nontrivial periods, which, in our
context, would address the cryptographic challenge. In Section 2.2, we introduce
a critical concept utilized in Regev’s algorithm—the requirement that the param-
eter T must exceed what we term the inter-lattice minimal distance, an extension
of the successive minima concept. Further, in Section 2.3 we discuss scenarios
where Regev’s approach to the factorization problem can’t succeed. The concept of
”Regev-friendly” groups is then explained in Section 2.4 using period lattices, and
we demonstrate the conditions under which Regev’s algorithm is successful, includ-
ing an estimation of its complexity. Additionally, we provide a practical criterion
for verifying the efficacy of Regev’s algorithm when pre-computations are involved.
Section 2.5 analyzes the multidimensional DLP, a natural application for Regev’s
algorithm, where we affirm its effectiveness for specific parameter choices. We also
assess the complexity of Regev’s algorithm in this multidimensional context and
include a comparative analysis with other algorithms which can be used to tackle
the multidimensional DLP.

We then pass to the case of elliptic curves. In Section 3.1 one provides two esti-
mates (Proposition 3.1 and Proposition 3.2), demonstrating that a randomly chosen
elliptic curve is not suited for a straightforward application of Regev’s algorithm
due to the absence of ”small” points. We then present in Section 3.2 a list of elliptic
curves that are suited to Regev’s algorithm. For each curve, we detail its rank and
the height of the largest linear combination of the Mordell-Weil generators, indicat-
ing their susceptibility to Regev’s approach. However, it’s important to note that
the aforementioned curves are not of cryptographic significance. Consequently, we
devise in Section 3.3 a strategy to adapt Regev’ algorithm to many NIST curves,
utilizing quadratic twists to generate small points. Section 3.4 includes an analysis
of the computational complexity of Regev’s algorithm on elliptic curves. The supe-
rior efficiency over Shor’s algorithm goes to infinity when the bit size of the elliptic
curve goes to infinity.

2. General results on Regev’s algorithm: definitions and proofs

2.1. General set-up. Let f : Zd → G be a homomorphism of groups defined by

(1) f(z1, . . . , zd) =

d∏
i=1

gzii ,

where S = {g1, . . . , gd} is a subset of G. Then the period lattice of f is the set

(2) L = L(G, S, f) :=
{
(z1, . . . , zd) ∈ Zd

∣∣∣ f(z1, . . . , zd) = 1G

}
,

where 1G is the neutral element of G.
In practical cryptographic contexts involving the CHSP, a ”trivial” sublattice

L0 is typically identified, defined by the ”obvious” relations upheld by elements
of S. Solving CHSP, i.e. finding a basis for the period lattice, finds in particular
a ’nontrivial period,’ which involves identifying a vector in L\L0. This often
resolves the cryptographic challenge associated to the CHSP. This paper examines
in particular two specific cryptographic challenges which fit in the framework of
the CHSP: the factorization problem and the discrete logarithm problem. Regev’s
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algorithm represents a pioneering approach in this area, as it can identify a period
in L\L0 without necessarily computing a basis for the period lattice L. Note that
the preceding discussion can be framed as the following general lattice problem:

Nontrivial Period Problem: Given f : Zd → X a function whose set of periods:

L := L(f) := {z ∈ Zd | f(a+ z) = f(a) ∀a ∈ Zd}

is a full-rank sublattice of Zd and a sublattice L0 of L (given possibly by an oracle),
find any z ∈ L\L0.

A stronger statement of the Nontrivial Period Problem would ask to find the short-
est vector in L\L0.

Given that we are focusing on two specific instances of the general setup described
above, we will present them separately.
The case of integer factorization. In this scenario, N is an m-bit integer that we
aim to factorize and g1, . . . , gd are some small O(log d)-bit integers (for instance,
let pi be the ith-prime) and gi = p2i . Then, we consider the lattice

(3) L =

(z1, . . . , zd) ∈ Zd
∣∣∣ ( d∏

i=1

pzii

)2

≡ 1 (mod N)


and its sublattice

(4) L0 :=

{
(z1, . . . , zd) ∈ Zd

∣∣∣ d∏
i=1

pzii ≡ −1 or 1 (mod N)}

}
.

If one puts gi = p2i then L = {z ∈ Zd |
∏d

i=1 g
zi
i ≡ 1 (mod N)}. Any element of L

outside L0 allows to find a non-trivial factor ofN by computing gcd(N,
∏d

i=1 g
zi
i −1).

The oracle which describes L0 consists in computing the previous gcd: a vector
z ∈ Zd is outside L0 if and only if it gives a factor of N other than 1 and N .
The case of discrete logarithms. Here G is a commutative group, H is a subgroup
of G of order r, where r is an n-bit prime. We denote by m the number of bits
needed to represent an element of G. If g is a generator of the subgroup H, then
the discrete logarithm problem asks to compute for any x ∈ H the smallest e ∈ Z≥0

such that x = ge. The difficulty of computing discrete logarithms is known to
depend on n = 1 + ⌊log2 r⌋ and m. The most important examples are G = Z∗

p and
G = E(Zp) for an elliptic curve E defined over Zp, where p is a prime. In most
cases, r is chosen to be as large as possible so that n ≈ log2 |G|.

Now, consider a set S = {g1 = g, g2, . . . , gd−1, gd = x} of elements of H, where

g is a generator, as above. If f : Zd → G is the map f(z1, . . . , zd) =
∏d

i=1 g
zi
i , so

that the period lattice of f is the set

(5) L = L(G, S) :=

{
(z1, . . . , zd) ∈ Zd

∣∣∣ d∏
i=1

gzii = 1G

}
,

where 1G is the neutral element of G. Consider the sublattice

(6) L0 = {(z1, . . . , zd) ∈ L | zd ≡ 0 (mod r)}.

Given that g is a generator, for any vector (z1, . . . , zd) of L, the following holds:
6



d∑
i=1

zi logg gi ≡ 0 (mod r).

For any (z1, ..., zd) ∈ L\L0 we have:

(7) logg x ≡ −z−1
d (

d−1∑
i=1

zi logg gi) (mod r).

Consequently, the solution to the discrete logarithm problem is found. The case
of the multiplicative group was treated in [EG23a] using gi = pi, the i-th rational
prime. The oracle which describes L0 is as follows: a vector z ∈ Zd is outside L0 if
and only if one fails to compute logg z using the equation above or equivalently if
zd ≡ 0 (mod r).
The case of multidimensional DLP.. The setup is identical to the DLP except that
d and g1, . . . , gd cannot be chosen and must be assumed small. The parameters n
is log2N instead of log2 r for a prime factor r of |G|. The lattices L and L0 are
identical to those of the DLP, i.e. given by Equations (5) and (6).
Final notations of the setup. Let us recall that the dual lattice of L is defined as

L∗ = {y ∈ Rd | ∀x ∈ L, xy ∈ Z}.

Also, if B is a generating matrix of L then (B−1)T is a generating matrix of L∗.
Additionally, for a set of integers {a2, . . . , ad} we set2

(8) knapsack(r, {a2, . . . , ad}) =


r a2 . . . ad

0 1 0
...

. . .

0 0 1

 .

Note that, in the discrete logarithm case, L is generated by the columns of
knapsack(r, {a2, . . . , ad}), where ai = − logg gi.

The lattice L is the main object in several quantum algorithms. In Shor’s algo-
rithm for factoring the number N , the group used is G = Z∗

N with d = 1, whereas
for computing the discrete logarithm the group is G = Z∗

p with d = 2. In quantum
algorithms for computing unit and class groups, and more generally in the quantum
algorithms for solving the CHSP [EHKS14, dBDF20, BS16], d increases with the
input size n. Finally, in Regev’s algorithm for factoring N one uses G = Z∗

N and
d = ⌈

√
n⌉, whereas in its discrete logarithm variant [EG23a] the group G = Z∗

p is

employed with the same number d = ⌈
√
n⌉. The parameter d is chosen to optimize

the number of quantum gates in Regev’s algorithm, while the set S is selected to

enable efficient computation of any element of the form
∏d

i=1 g
εi
i , for all tuples

(ε1, . . . , εd) ∈ {0, 1}d.

2This type of lattice was also studied in the context of Merkle and Hellman’s knapsack crypto-
system (see e.g. Equation (2.4) in [LO85]).
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2.2. On inter-lattice minimal distance. In this subsection, we introduce the
concept of inter-lattice minimal distance, which quantifies the Euclidean distance
between a sublattice and its complement. This proves to be the appropriate measure
for estimating the success of Regev’s algorithm.

For L ⊂ Zd a lattice of rank d and L0 a sublattice of L (not necessarily of the
same rank), we define:

λL0(L) := inf{T > 0|B(T )∩L ≠ B(T )∩L0} = inf{∥v∥ | v ∈ L\L0} = d(L0,L\L0),

where B(T ) is the closed ball of radius T in Rd, and d(A,B) is the usual Euclidian
distance between two subsets A and B of Rd. By convention, if a T satisfying the
above condition does not exist, we set λL0(L) = +∞. Since L is discrete with
respect to the Euclidian topology in Rd, both infima, when finite, are actually
minima.

Definition 1. Consider a lattice L in Zn and a sublattice L0 ⊆ L. The closure of
L0 in L is defined as the sublattice clL(L0) := Q < L0 > ∩L of L, where Q < L0 >
is the Q−vector space generated by L0 inside the ambient Q−vector space. The
sublattice L0 is called closed in L if clL(L0) = L0.

We mention the following easy remark:

Remark 1. The sublattice L0 is closed in L if and only if for all v ∈ L\L0 the
lattice spanned by L0 and v has rank rk(L0) + 1, i.e. v does not belong to the
Q−vector space generated by L0.

As usual, we denote the successive minima of L by λ1(L), . . . , λd(L). The follow-
ing result expresses successive minima in terms of inter-lattice minimal distance.

Proposition 2.1. For any i ∈ [1, d], λi(L) is the supremum of λL0(L), where L0

ranges over the sublattices of rank at most i − 1. Moreover, the supremum is a
maximum, i.e. there exists L0 a sublattice of L of rank i − 1 such that λi(L) =
λL0

(L).

Proof. Let L0 be a sublattice of rank at most i − 1. Since there exist i linearly
independent vectors in L of length at most λi(L), at least one of these vectors is
not in L0. For such a vector v, it follows that λL0

(L) ≤ ∥v∥ ≤ λi(L).
Now, let v1, ..., vi be linearly independent vectors in L such that ∥vj∥ = λj(L) for

all j ≤ i, and denote by L0 the closure in L of the lattice generated by v1, ..., vi−1.
Choose a vector v ∈ L\L0 such that ∥v∥ = λL0(L). Since L0 is closed in L, by
Remark 1, the set v1, ..., vi−1, v is linearly independent, so that ∥v∥ ≥ λi(L). Thus,
we have λL0

(L) ≥ λi(L). On the other hand, since v1, ..., vi are linearly independent
vectors, we get that vi ∈ L\L0 . In particular λi(L) = ∥vi∥ ≥ λL0

(L), which proves
that λi(L) = λL0

(L). □

We now list some useful properties of the inter-lattice minimal distance.

Proposition 2.2. Let L be a full-rank lattice in Zd, and L0 be a sublattice of L.
We have:

(1) L0 = L if and only if λL0(L) = ∞.
(2) If λ1(L0) > λ1(L) then λL0

(L) = λ1(L).
(3) If L′

0 is a sublattice of L with L0 ⊆ L′
0 ⊆ L, then λL0

(L) ≤ λL′
0
(L).

(4) Let v ∈ L⊥
0 and let L′

0 be the sublattice generated by L0 and v. If ∥v∥ ≥
λL′

0
(L), then λL0

(L) = λL′
0
(L).

8



(5) If λL0
(L) > λd(L), then λi(L0) = λi(L) for all i ≤ d.

(6) Let L0 ⊆ L be a sublattice such that [L : L0] > d!, then λL0(L) ≤ λd(L).

Proof. (1) It is a tautology.
(2) Since B(λ1(L))

⋂
L0 = ∅ while the same ball contains the shortest vector

of L, it follows that λL0
(L) = λ1(L).

(3) Indeed, if w ∈ L\L′
0 is such that ∥w∥ = λL′

0
(L), then clearly w ̸∈ L0 so

λL0
(L) ≤ ∥w∥ = λL′

0
(L).

(4) Since L0 ⊆ L′
0, the preceding result implies that λL0(L) ≤ λL′

0
(L). Let

w ∈ L\L0 be such that ∥w∥ = λL0
(L). If w ̸∈ L′

0, then we have λL′
0
(L) ≤

∥w∥ = λL0
(L), which proves our result. Otherwise, consider w = w0+a·v ∈

L′
0, where w0 ∈ L0 and a ∈ Z\{0}. Then ∥w∥2 = ∥w0∥2+a2∥v∥2 ≥ ∥v∥2 ≥

λL′
0
(L)2, which also proves the claim.

(5) Assume by contradiction that λi(L0) > λi(L) for some i, and consider a
linearly independent set of vectors v1, ..., vi in L such that ∥v1∥ ≤ ... ≤
∥vi∥ = λi(L). Then there exists j ≤ i with vj ∈ L\L0, so that λL0

(L) ≤
∥vj∥ ≤ λi(L) ≤ λd(L).

(6) Assuming, for the sake of contradiction, that λL0
(L) > λd(L), we derive

from the previous result that λi(L0) = λi(L) for all i ≤ d. By the second
Minkowski theorem we have that

2d

d!
Vol(L) ≤ Vol(B(1)) ·

∏
i

λi(L) = Vol(B(1)) ·
∏
i

λi(L0) ≤ 2d Vol(L0).

This leads to a contradiction by using the relation Vol(L)
Vol(L0)

= [L : L0].

□

2.3. A brief discussion about the factorization case.
In this section, we demonstrate that a modification of Regev’s initial algorithm,

such as that proposed by Pilatte, is necessary by presenting a family of RSA moduli
that violate Regev’s assumption. Unfortunately, we currently lack a method to
address these moduli within the cryptographic range while maintaining the same
complexity. First, we introduce the concept of admissible integers, defined as those
integers for which Regev’s initial algorithm is proven to succeed and achieve the
desired complexity (see [Reg23, Th 1.1]). The formal definition is as follows:

Definition 2. Let c and K be positive constants. An n-bit integer N is admissible
with respect to c and K if, for d = ⌊

√
n⌋, there exist c log2 n-bit integers g1, . . ., gd

such that the lattices L and L0 defined in Equations (3) and (4) satisfy λL0
(L) ≤

exp(K
√
n).

Regev’s algorithm achieves the desired complexity when factoring integers N
that are admissible with respect to two constants c and K. Note however that
the constants don’t play any role because they are hidden in the big-Oh of the
complexity.

For every prime p, let np be the least non-quadratic residue modulo p. In a
footnote on page 3 of [Reg23], Regev mentions that the proven upper bounds on np
are O((log p)2), which is insufficient for achieving a speed-up compared to Shor’s
algorithm

Let us elaborate this discussion. It is not clear whether the heuristics states that
the set of non-admissible integers is either negligible or empty. In simple words
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the heuristics is that the integers g1, . . ., gd which are taken to be small behave as
randomly chosen integers in the interval [1, N ]. In particular, it states that not all
of g1, . . ., gd are squares.

More precisely the footnote is as follows: in a RSA moduli N = PQ the values
log2 P , log2Q and log2N are equal up to a multiplicative constant. Regev’s algo-

rithm uses d = ⌊
√
log2N⌋ ≈

√
log2 P ≈

√
log2Q primes g1, . . ., gd. It is necessary

to prove that nP = Õ(
√
log2 P ). Since in the literature one has np = O((log2 P )

2),
we can’t prove that g1, . . ., gd are not all squares.

We noted that the literature contains results to show that not all integers are
admissible, i.e. Regev’s algorithm doesn’t succeed to factor some integers. Indeed,
Salié [Sal49] and Fridlender [Fri49] independently proved that there are infinitely
many primes P such that nP > C log2 P for a constant C. More recently, Lau and
Wu [LW08] proved that such primes are numerous enough so that one can multiply
two of them together to obtain RSA moduli, i.e. the primes have aproximatively
the same bit size.

We widen the definition and call RSA modulus an integer of the form N = PQ
such that Q1/2 ≤ P ≤ Q. Indeed, such integers cannot be factored with the
algorithms which take advantage of small factors, namely p − 1, p + 1 and ECM.
Hence they can only be factored with algorithms of the same cost as the most
restricted definition of RSA moduli: integers of the form N = PQ where P and Q
have the same bit size.

Theorem 2.3. Infinitely many RSA moduli are not admissible.

Proof. By a result of Lau and Wu (Proposition A.1 in the appendix), there exist a
constant c > 0 and a sequenceQm → ∞ such that for everym, the number of primes
P such that 1

2 log2Qm ≤ log2 P ≤ log2Qm, P ≡ 3 (mod 4) and nP > c log2 P goes
to infinity. In particular, for every sufficiently largem there exist two primes P < Q

in the interval [Q
1/2
m , Qm] satisfying

nP > c log2 P and nQ > c log2Q.

We define Nm = PQ which is an RSA moduli because the quotient log2Q/ log2 P ≤
2.

We claim that for large enough m we have L0 = L for the lattices defined in
Equations (3) and (4). After proving the claim, we apply point 1 of Proposition 2.2
to conclude that N is not admissible.

To prove the claim, we first note that p1, . . . , pd are squares in Z/NZ∗. Cheby-
shev proved that pd ≤ Cd log d for an explicit constant C. We have that n :=
log2N = log2 P + log2Q < 3 log2 P and, since m is large enough,

pd ≤ Cd log d ≤ C
√
n log n/2 < cn/3 < c log2 P.

By the construction of P and Q we have further that pd < nP and pd < nQ, so the
first d rational primes, i.e. p1, . . . , pd, are squares in Z/PZ∗ and Z/QZ∗.

Let us now prove that L ⊂ L0. For this let (z1, . . . , zd) be such that
∏d

i=1(p
2
i )

zi ≡
1 (mod N). Since P ≡ 3 (mod 4) (respectively Q ≡ 3 (mod 4)), the order of
Z/PZ∗ (respectively Z/QZ∗) is 2 times an odd number. Since p1, . . . , pd are squares,

their orders are odd in Z/PZ∗ and Z/QZ∗. Therefore, the order of g =
∏d

i=1 p
zi
i is

odd in Z/PZ∗ and Z/QZ∗, and also in Z/NZ∗. Since g has odd order in Z/NZ∗

and g2 ≡ 1 (mod N), we conclude that g ≡ 1 (mod N), so (z1, . . . , zd) ∈ L0. □
10



2.3.1. Moduli that present challenges for Regev’s algorithm. Contrary to Shor’s al-
gorithm which applies to all RSA moduli PQ, the performance of Regev’s algorithm
depends on the size of the least non-quadratic residues nP and nQ. As a counter-
measure to Regev’s algorithm, this suggests to select RSA moduli PQ with large
nP and nQ.

Nonetheless, two significant drawbacks arise. First, there is no known efficient
method to find such primes; for instance, Table 1 in [MT19] provides data but lacks
an algorithm for rapid computation. Second, Paszkiewicz [Pas09] proved that the
proportion of primes P such that nP > pk is 1/2k. When factoring RSA moduli
of n bits, one must take d =

√
n, which means the proportion of suitable primes

P is 1/2
√
n. This severely limits the number of cryptographic keys that can resist

Regev’s algorithm.

2.4. Regev-friendly groups. In this section, we introduce the concept of a Regev
pseudo-basis, which is essential for understanding the structure and properties of
Regev-friendly groups. Specifically, we define a Regev pseudo-basis with respect to
a parameter T as follows:

Definition 3. Let L be a full-rank lattice in Zd and let T > 0 be a parameter. A
Regev pseudo-basis with respect to T is a liniarly independent set {z1, . . . , zk} ⊂ L
for some k ≤ d such that:

(1) ∥ zi ∥ ≤
√
d 2d/2 T for all i ≤ k,

(2) every z ∈ L of norm less than T is a linear combination with integer coef-
ficients of z1, . . . , zk.

It is important to recall that there is an efficient classical algorithm that given
a basis of a lattice L and a norm bound T > 0, outputs a Regev pseudo-basis of L
with respect to T (see Claim 5.1 in [Reg23]). In particular, a Regev pseudo-basis
exists for any L and any norm bound T > 0. Let us note that λk+1(L) ≥ T , where
by convention λd+1(L) = +∞; however, this fact will not be utilized in the article.
To see why, assume by contradiction that there exists a rank k+ 1 sublattice L′ of
L with a basis consisting of vectors shorter than T . Since, by definition, a Regev
pseudo-basis z1, . . . , zk generates this basis of L′, it must also generate L′. This is
a contradiction, as k vectors cannot span a lattice of rank k + 1.

We will show that when the Regev pseudo-basis is a full basis, the algorithm
benefits from increased speed and the elimination of heuristics. This motivates the
following definition:

Definition 4. Let K > 0 be a constant. We say that a full-rank lattice L of Zd is K-
balanced if it has a basis in which all vectors have length less than T = exp(Kn/d),
where n is the binary size of VolL.

Since the lattices encountered in Regev’s algorithm are knapsack lattices (see Equa-
tion (8)), we are interested in how frequently these lattices are K−balanced. To
investigate this, we conducted an experiment using Sage, where we considered
n−bit random integers r for n = 50, 75, . . . , 200. We also chose d random residues
a1, . . . , ad modulo r for d = 20, 30 and 40. Table 1 summarizes the percentage of
trials in which the knapsack lattice L :=knapsack(r, {a1, . . . , ad}) was 1-balanced.
One notices that when n ≫ d a large proportion of such knapsack lattices are 1-
balanced. Since in Regev’s algorithm d ≈

√
n, the experiments indicate that nearly

all lattices employed in Regev’s algorithm are 1-balanced.
11



HHH
HHd
n

50 75 100 125 150 175 200

20 100% 100% 100% 100% 100% 100% 100%

30 19% 100% 100% 100% 100% 100% 100%

40 0% 0% 37% 98% 100% 100% 100%

Table 1. Proportion of randomly chosen knapsack lattices which
are 1-balanced.

Lemma 2.4. If a lattice L is K-balanced then any Regev pseudo-basis with respect
to T = exp(Kn/d) is a basis.

Proof. Let z1, . . . , zk be a Regev pseudo-basis with respect to T = exp(Kn/d).
Since these vectors span all vectors of length less than T and any basis is composed
of such vectors, {z1, . . . , zd} therefore form a basis. □

Determining whether a lattice L is K−balanced is generally challenging. However,
the following result establishes a connection between this property and another
property that is comparatively easier to verify.

Theorem 2.5. Any full-rank lattice L in Zd with volume Vol(L) = r (where r is
an n-bit integer) and λ1(L) ≥ r1/d admits a basis {v1, . . . , vd} that satisfies

max
i

∥ vi ∥ ≤ 2((d−1) log(d)+n
d ).

Proof. Indeed, apply Mahler’s Theorem on lattices (see [TV06, Theorem 3.34]) to
show that it exists a basis v1, . . . , vd for L such that |v1| = λ1 and vi ≤ iλi

2 for all

2 ≤ i ≤ d. In particular, this basis satisfies the bound maxi∥vi∥ ≤ dλd

2 . We get by
Minkowski Second Theorem that:

max
i

∥vi∥ ≤ dλd
2

≤ d

2

∏
i λi

λd−1
1

≤ d2d−1r

r(d−1)/d
= d2d−1r1/d = 2((d−1) log(d)+n

d ).

□

Corollary 2.6. Consider a full-rank lattice L in Zd with volume Vol(L) = r, where

r is an n-bit integer, λ1(L) ≥ r1/d. If d ≤ n1/2−δ such that δ ≥ log log(n)−K0

2 log(n) , where

K0 = log(2 log(e)− 2) ≃ −0.1756, the lattice L is 1−ballanced.

Proof. The condition δ ≥ log log(n)−K0

2 log(n) implies the inequality:

d log(d) +
n

d
<
n

d
log(e).

Since d − 1 < d, by applying Theorem 2.5, we get that the lattice L is indeed
1-ballanced. □

Remark 2. In [EG23a, Section 2.3] one discusses a bad choice of the generators:
gi = gi for i = 1, . . . , d. It is a natural example of a lattice L with many small
vectors:

(0, . . . , j, . . . ,−i, . . . , 0), ∀ i < j

where the j value is in the i-th coordinate and the −i value in the j-th coordinate.
The authors conclude that λn(L) is too large and makes Regev’s algorithm slow.
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In short, they had the intuition that the existence of small vectors makes Regev’s
algorithm slow. Theorem 2.5 shows that the converse is also true: the absence of
small vectors in L makes Regev’s algorithm succeed and have a better complexity
than Shor.

We are now prepared to introduce Regev-friendly groups.

Definition 5. A group G is K-Regev-friendly with respect to a function d = d(n)
if there exists a generating set S = {g1, . . . , gd} such that the following conditions
are satisfied:

(1) The lattice L = L(G, S) defined in Equation (5) is K-balanced.

(2) One can compute in classical time o(n) the product
∏d

i=1 g
εi
i for any tuple

(ε1, . . . , εd) ∈ {0, 1}d.

For instance, when G = Z/NZ∗ and S consists of the smallest d primes for a
parameter d ≤

√
n,, then the second condition of the definition above holds. Let

p1, . . . , pd be these primes. The discussion after Equation (5) in [Reg23] shows that

one can compute in time Õ(d) any product
∏d

i=1 p
εi
i with εi = 0 or 1.

2.4.1. Regev’s algorithm is fast in Regev-friendly groups. We recall the main result
about the complexity and correctness of Regev’s algorithm. We reproduce here the
proofs from the literature in order to distinguish the parameters m and n, as well
as letting d have any value less than

√
n.

Proposition 2.7 (Th 1.1 in [Reg23], Lemma 5 in [EG23a]). Let G be a commutative
group of cardinality r, and let n be the bit size of r. Assume that the elements of G
can be represented using O(m)-bits, and the group operation can be done in classical
M(m)-bit operations. We consider u1, . . . , uk elements in G, where k = O(1). Let
d ≤

√
n be a parameter, and consider g1, ..., gd−k elements of G such that we are

given an algorithm, called tab, that computes tab(ε1, . . . , εd−k) =
∏d−k

i=1 g
εi
i for any

(ε1, . . . , εd−k) ∈ {0, 1}d−k in Õ(d) classical operations. Then we have:

(1) Each run of Regev’s algorithm (see Algorithm 1) uses (d+n
d )M(m) quantum

gates.
(2) Assuming that G is K-Regev-friendly for a constant K > 0, Regev’s al-

gorithm succeeds in finding the discrete logarithms in G with probability
≥ 1/4. The algorithm uses d+ 4 independent runs of the quantum subrou-
tine (Algorithm 1), followed by a classical post-processing step that runs in
polynomial time in m.

(3) Let G = (Z/NZ)∗ with N a composite integer, and consider the lattices
L and L0 as defined in equations (3) and (4). Assuming that λL0(L) ≤
exp(K

√
n) for a constant K > 0 (i.e. N is admissible), then Regev’s algo-

rithm succeeds in factoring N with probability ≥ 1/4. The algorithm uses
d+4 independent runs of the quantum subroutine (Algorithm 1), followed by
a classical post-processing step that runs in polynomial time in m = log2N .

Proof. 1. We recall the parameters used in the Regev’s algorithm as follows: T =
exp(K

√
n), R = 2n/dT and D = 2⌈log2 R⌉. Note that

O(log2R) = O(log2 T ) = O(log2D) = O(d+
n

d
) = O(

n

d
).

The computation of |ψ1⟩ can be performed with a 1/ poly(n) approximation in
d(logD+poly(d)) quantum gates (see [Reg23, page 4]). The cost of computing |ψ2⟩
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is that of a multi-scalar product (Algorithm 2) when the products with exponents
0 and 1 are evaluated on the fly. Note that the lines 3, 4 and 5 are repeated n/d
times, and the dominant steps are 3 and 5 which have a cost of O(M(m)), because
they use a constant number of operations in G. By contrast, in line 4 one uses
arithmetic in Z and uses

Õ(d) ≤ Õ(
√
n) ≤ Õ(

√
m) = o(M(m)),

so it is negligible. To summarize, the computation of |ψ2⟩ uses O(ndM(m)) quantum
gates. The measurement done to obtain |ψ3⟩ doesn’t use quantum gates.

Finally, the quantum Fourier transform to obtain |ψ4⟩ is done with an approx-
imation of ϵ := 1/ poly(d) using Coppersmith’s method (see [Reg23, page 5]). It
has a cost

O (d logD · (log logD + log d)) = O
(
d · n

d · (log n
d + log d)

)
= O(n log n) ≤M(n) ≤M(m).

Adding all costs, the complexity is dominated by the evaluation of |ψ2⟩, which uses
(ndM(m)) gates.

2. The definition of K-balanced lattices corresponds to the property required
in Assumption 1 of [EG23a]. By [EG23a, Lemma 5] one obtains a basis of L (see
also Lemma 2.4). Since VolL ≠ VolL0, we get that L ≠ L0. In particular, one of
the elements of this basis is in L\L0, and, as discussed after Equation (6), such a
vector enables the computation of the desired discrete logarithm.

3. From [Reg23, Appendix A] we know that each run of Regev’s algorithm
outputs a vector w ∈ Rd of the form w = v + ϵ, where v is randomly frawn

from L∗ /Zd with uniform probability and ϵ is less than δ :=
√
d√
2R

with probability

1 − 1/ poly(d). Regev’s algorithm is run d + 4 times, and with probability ≥ 1/4,
a generating set w1, . . . , wd+4 is obtained. This allows to write a matrix as in
[Reg23, Lemma 4.4], whose columns are a basis of lattice L′ in the same lemma.
By [Reg23, Claim 5.1] there is an efficient classical algorithm which outputs a

Regev-pseudobasis of L′ with respect to
√
2T : a list of vectors z1, . . . , zk of norm√

2k2k/2T which generate all vectors of norm less than
√
2T .

By the assumption on N , λL0(L) ≤ T , so there exists a vector t ∈ L\L0 such
that ∥ t ∥ ≤ T . By [Reg23, Lemma 4.4] there exists a vector z ∈ L′ such that t are

the first d coordinates of z and ∥ z ∥ ≤ (1 + (d + 4)δ4)1/2)T <
√
2T . Hence z is

generated by z1, . . . , zk so, for one of the indices i ∈ [1, k], the first d coordinates of
zi form a vectors which is in L\L0.
Finally, one obtains a vector in L\L0, and the discussion after Equation (4) shows
that the algorithm succeeds in factoring N . □

Remark 3. Note the importance of the parameter T = λL0(L). Indeed, the cost
of the algorithm depends on log2D whereas the correction of the algorithm requires
O(log2D) = O(log2 T ). Also note that in [Reg23] one takes T = 2dr1/d which is of
the form exp(K

√
n) for a constant K.

2.4.2. Guaranties that Regev’s algorithm succeeds on a specific instance of discrete
logarithm problem. In the context of Regev’s algorithm with pre-computations, as
proposed in [EG23a], we give a method to certify that Regev’s algorithm succeeds
in finding discrete logarithms.
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Recall that G is a cyclic group with a given generator g. In the pre-computation
stage, the following quantities ai = − logg gi for i = 2, . . . , d− 1 are computed (for
instance, using Shor’s algorithm). The challenge in our notations will be gd = x,
while g1 = g, and the problem is to compute ad = − logg(gd) in short time. Let us
assume that we are in the case d = nα, for some α < 1.

It is clear that, the following two matrices:

(9) L :


r a2 · · · ad

1
. . .

1

 L0 :


r a2 · · · 0

1
. . .

r


generate L and L0, respectively.

Note now that L0 doesn’t depend on the challenge x, so one can compute a basis
during the pre-computations. Since d = nα and SVP can be solved in exponential
time with respect to d (see e.g. [HS07]), one can find the shortest vector in L0

in sub-exponential time with respect to n. On the other hand, Regev’s algorithm
guaranties to find at least one vector, call it z, with norm at most T , for the chosen
parameter T . Thus, if λ1(L0) > T , then z is guaranteed to be outside L0.

It is important to note that, according to Gaussian heuristics, the expected first

minimum of the lattice L0 is given by λ1(L0) ≈
√

d−1
2πe r

1/(d−1) (notice that the

shortest vector in L0 has the same length as the shortest vector in the d − 1-
dimensional full-rank lattice generated by the first d − 1-coordinates of the first
d − 1 vectors in the considered basis of L0), while for L it holds that λ1(L) ≈√

d
2πer

1/d. Hence, heuristically one can hope that the lattice L0, which is known

in advance, allows to prove that the algorithm will succeed. This discussion leads
to the following:

Definition 6. If λ1(L0) ≥ exp(Kn/d) we say that L is K-Regev-certified.

Given the above conventions, we have:

Lemma 2.8. If d < 0.41
√
n and L is 1-Regev-certified then Regev’s algorithm with

respect to the parameter T = exp(n/d) is correct.

Proof. Regev’s algorithm computes a Regev pseudo-basis with respect to T . By

the LLL theorem λ1(L) ≤ 2
d−1
4 r1/d. Then

2
d−1
4 r1/d ≤ exp((0.3 + loge 2)n/d) ≤ exp(n/d) = T.

Therefore Regev’s algorithm with respect to T outputs at least a nonzero vector
z with norm |z| < T. Since λ1(L0) > T , we conclude that such z is not in L0 .
Finally, by Equation (7) we solve the discrete logarithm. □

Note that in practice it is fast to certify a lattice.

Experiment 1. Let n = 10000, d = 40 < 0.41
√
n and r the next prime after 2n.

Let a1 = 1415 · · · 940 be the first n decimal digits of π after the dot, a2 the next n
digits and so on until ad. Using SageMath one finds in 6.56 seconds the shortest
vector of L0 :=knapsack(r, {a1, . . . , ad−1}). Hence, solving SVP in dimension d is
fast for cryptographic sizes.
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We take K = 1 so that T = exp(n/d) < 1.8 · 1075. One has λ1(L0) > 3.0 · 1075
so λ1(L0) > T . Hence L is K-Regev-certified. By Lemma 2.8, Regev’s algorithm
will succeed on this instance of DLP.

One can ask whether it is likely for a lattice to be 1−Regev-certified. We also
conducted the following:

Experiment 2. We fix d = 40 and take random integers r of n bits for n =
50, 75, . . . , 150. We draw d random integers a1, . . . , ad and found with SageMath
the percentage of knapsack lattices knapsack(r, {a1, . . . , ad}) which are 1-balanced
respectively 1-Regev-certified.

n 50 75 100 125 150 175

1−balanced 0 0 0 37 98 100

Regev−certified 100 100 100 100 100 100

One notes that Regev’s algorithm succeeds and can be certified in advance that it
succeeds in a much larger proportion of cases than when the lattice is 1-balanced.

2.5. Eliminating the heuristics in a multi-dimensional DLP variant of
Regev.

We start by recalling the definition of the multi-dimensional DLP:

Definition 7 (multidimensional DLP -see e.g. [GR09])). Let G be a commutative
group and let P1, . . . , Pd ∈ G and N1, . . . , Nd ∈ N be given. The multidimensional
discrete logarithm problem is to find (if they exist) the integers ni ∈ [−Ni, Ni],
1 ≤ i ≤ d such that

[n1]P1 + · · · [nd]Pd = 0G and nd ̸= 0.

The size of the problem is the integer N =
∏d

i=1(2Ni + 1).

The state of the art attacks on the multidimensional DLP express the security
as a function of the size N . We can take N slightly smaller than |G| so that:

the classical cost of the problem is divided by a factor between one and m (i.e.
less than log2m bits of security) whereas it makes possible to prove that Regev’s
algorithm succeeds and has a smaller cost than Shor.

More precisely, we tackle the multidimensional DLP in the following setting:

• G = F∗
pe where p is a prime and e = p2 such that G has a subgroup of prime

order r such that log2 r ∼ log2 |G|; we write Fpe = Fp(y) for a y ∈ Fpe and
we call φ the minimal polynomial of y;

• N = ⌊2m−log2 m⌋ where m = log2 |G|;
• d is set to a value equivalent to e/2 = p2/2, which will be made precise
later.

• g1 = y, gd is a random element of Fp(y) and g2, . . . , gd−1 are unitary qua-
dratic irreducible polynomials over Fp, evaluated in y;

• N1 = . . . = Nd = (N1/d − 1)/2 < 2m/d/m.

Note that

(10) N1 + · · ·+Nd ≤ d

m
2m/d ≤ 1

log p
2m/d <

1

2
2m/d < p2/2.

On a classical computer the cost of an exponential, sub-exponential or quasi-
polynomial algorithm for DLP in G has the same cost up to an exponent 1 + o(1)
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as a DLP in a group of size N . Hence we compare the cost of a multidimensional
DLP with Regev for a parameter N to the DLP with Shor in the group G.

We prove now an upper bound on λL0(L) for the lattices L0 and L of Equa-
tions (6) and (5). In addition, the bound is small enough so that Regev is asymp-
totically faster than Shor. Then we recall complexity of the best classical algorithms
on the same problem, including heuristic algorithms. We will conclude that Regev
is both proven and the fastest.

Theorem 2.9. The multidimensional DLP, as applied in the aforementioned set-
ting, succeeds and has complexity O(p2M(m)).

Proof. We set d = (p2 − p+4)/2, which is equivalent to e/2. We note that d− 2 is
the number of irreducible unitary quadratic polynomials in Fp[X], evaluated in y:

i = 2, . . . , d− 1, gi = y2 + αiy + βi.

We claim that λL0
(L) < e/2. For this we prove that λ1(L) < e/2 and λ1(L0) ≥ e/2.

Here, we make the clarification that we shall work with the L1 norm instead of the
L2 norm.

Assume by contradiction that λ1(L0) < e/2. Let z ∈ Zd\{0} be such that zd = 0
and ∥ z ∥1 < e/2. This is equivalent to

yz1
d−1∏
i=2

(y2 + αiy + βi)
zi = 1.

We set ν(X) := numerator
(
Xz1

∏d−1
i=2 (X

2 + αiX + βi)
zi − 1

)
in the polynomial

ring Fp[X]. We assumed that ν(y) = 0 or equivalently that φ(X) is a multiple of
φ(X), the modulus of Fpe . If ν(X) = 0 then

Xmax(z1,0)
∏

2 ≤ i ≤ d− 1

zi > 0

(X2 + αiX + βi)
zi = Xmax(−z1,0)

∏
2 ≤ i ≤ d− 1

zi < 0

(X2 + αiX + βi)
|zi|,

which is impossible because the polynomials gi(X) are irreducible and z ̸= 0. Also
deg ν(X) ≤ 2∥ z ∥1 < e = degφ(X) so ν(X) is not a multiple of φ(X), which is a
contradiction.

Now, by the definition of the multidimensional DLP there exists z = (z1, . . . , zd)
such that ∥ z ∥1 ≤ N1 + · · · +Nd. By Equation (10) we obtain ∥ z ∥1 < p2/2. We
combine with the result above that λ1(L0) ≥ e/2 and obtain

λ1(L) < p2/2 ≤ λ1(L0),

so λL0
(L) ≤ p2/2. In other words, there exist a vector z ∈ L\L0 such that

∥z∥1 < p2/2. Since ∥z∥2 ≤ ∥z∥1, we also get that ∥z∥2 < p2/2. Consequently,
we can run Regev’s algorithm with T = p2/2 = e/2 and it will succeeds because
T ≥ λL0

(L). By Proposition 2.7 we obtain that its complexity is

O((d+ log2 T )M(m)) = O((p2 + 2 log2 p)M(m)) = O(p2M(m)).

□

Let us now compare Regev to the other algorithms. The state-of-the-art algo-
rithms for the multidimensional DLP are adaptations of the DLP algorithms. In
a generic group an on elliptic curves the best algorithm is Pollard’s rho, whose
complexity is O(

√
N), where N is the cardinality of the group. It was extended to
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algorithm reference classical quantum

complexity complexity

Shor [Sho94] none O(p2 log pM(m))

Pollard’s rho/Galbraith & Ruprai [GR09] O(pp
2/2) Grover speedup

quasi-polynomial [BGJT14] pO(log p) no speedup

Regev Theorem 2.9 none O(p2M(m))

Table 2. Comparison of Regev for multidimensional DLP to
other algorithms. When multidimensional variants exist we idicate
the name of the algorithms, otherwise we write the DLP algorithm
and indicate its complexity.

arbitrary dimensions d ≥ 2 by Galbraith and Ruprai [GR09], and it has complexity

O(
√
N), whereN is the parameter in the definition of the multidimensional DLP. To

our knowledge, the other DLP algorithms don’t have multidimensional versions, so
we use the DLP complexities for a comparison. Note that the complexity of Shor’s
algorithm is O(log2 rM(m)) = O(mM(m)) = O(p2 log pM(m)), which is asymp-
totically slower than Regev. Any classical algorithm can be applied on a quantum
one and Grover obtains a speedup by a constant in the exponent, so Pollard’s rho
remains exponential in n. Finally, the quasi-polynomial algorithm [BGJT14] has
complexity pO(log e) = pO(log2 p). This complexity corresponds to classical comput-
ers. It can be emulated on a quantum computer but it is not known to have a
speed-up. We summarize the various complexities in Table 2.

3. Extending Regev to elliptic curves

The aim of this section is to investigate the discrete logarithm problem on elliptic
curves. A key aspect of this investigation is the number of bits needed to represent
a point of an elliptic curve over a prime field and what it means to be ”small”. For
this we recall the naive height of a point of an elliptic curve over the rationals and
also over a prime field. We start with the height of a nonzero rational u/v which is
defined by h(u/v) = max(log |u|, log |v|), where log denotes the logarithm in base e.
The naive (or Weil) height of a rational point (x, y) of an elliptic curve is

(11) h(x, y) = max(h(x), h(y)).

Clearly, the naive height of a point is between one fourth and one half of the bit
size representation of the point.

Given a prime p and an integer a ∈ [1, p − 1], the rational reconstruction of a
modulo p is the rational number u/v, where u, v ∈ Z, with the smallest height
such that u ≡ va (mod p). This can be computed in polynomial time in the bit
size of p by reducing a two-dimensional lattice (see [Wan81] or more recent books
of computer arithmetics). The height of an element of Fp is the height of its
corresponding rational reconstruction.

Recall that the discrete logarithm problem on elliptic curves over finite fields
involves two Fp points P and Q on an elliptic curve E defined over Fp. The goal is
to find the positive integer a such that Q = [a]P , which we denote as logP Q = a.
In Regev’s algorithm one uses auxiliary points P2, . . . , Pd−1 for a parameter d and
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sets P1 = P and Pd = Q. The algorithm is efficient if the points can be represented
using a small number of bits, and if the cost to evaluate all linear combinations∑d

i=1[εi]Pi with ε = (ε1, . . . , εd) ∈ {0, 1}d remains computationally feasible (see
Section 3.4). By analogy with the multiplicative case, we seek d − 2 points Pi =
(xi, yi) for i = 2, . . . , d− 1, whose coordinates can be expressed using O(

√
n) bits,

where n = ⌊log2 p⌋ (here n is approximately the same size as log2 |E(Fp)|). This
is significantly fewer than m = 2n bits required to represent arbitrary points on
the curve. Since Regev’s algorithm offers a speed-up by a factor of d compared to
Shor’s algorithm (Prop. 2.7), we aim to make d as large as possible.

Since we are interested in elliptic curves that possess at least two small points,
we shall restrict to the case where the coefficients of the elliptic curve are bounded
by a polynomial in log2 n (see Proposition 3.2 bellow). From a cryptographic per-
spective, this restriction is not a hindrance, as most elliptic curves chosen for cryp-
tographic implementation already meet this condition.

Notice that, in this case, the Õ complexity of the algorithm is the same as in
the multiplicative case. Indeed, the addition law of the elliptic curve is defined
by rational functions and requires one inversion along with a constant number of
multiplications (less than 10) in the coefficient field. The complexity of adding two
points P = (xP , yP ) and Q = (xQ, yQ) is that of multiplying two of the coordinates,
e.g. xP and yQ, or a product of coordinates by a coefficient of E. Since the cost
of the multiplication is quasi-linear, the complexity of adding two points of height
O(

√
n) is Õ(

√
n), which is negligible compared to n. The rest of the algorithm and

analysis is identical to the multiplicative case (Proposition 2.7).
The remaining obstacle is to find points with coefficients that can be written

on O(
√
n) bits. Bellow, we shall prove two negative results (Proposition 3.1 and

Proposition 3.2 stating that such points are very few on random elliptic curves.
In one direction we show that some classical conjectures in number theory imply

that there exist elliptic curves with d = log2 n. In practice we give a list of elliptic
curves of high rank which are good examples to be tackled in early simulations or
implementations of Regev’s algorithm. In Theorem 3.6 we prove that the speed-
up of Regev with respect to Shor is log2 n. This is less than the speed-up in the
multiplicative case, but it also tends to infinity with n.

In the second direction we use Goldfeld’s conjecture to prove that one can apply
Regev’s algorithm to all elliptic curves with coefficients of size polynomial in log2 n.
We don’t make a complexity analysis in this case but we apply it to some of the
curves in the NIST curves.

3.1. Obstacle to a direct extension of Regev to elliptic curves. The main
result of this section asserts that only an exponentially small fraction of elliptic
curves defined over a prime field possess points that can be represented using O(

√
n)

bits. Such points will henceforth be referred to as small points. More precisely, we
provide an upper bound on the probability that an elliptic curve

Ea,b : y
2z = x3 + axz2 + bz3

has small points. In the next proposition we sample random elliptic curves by
randomly selecting the pair (a, b), rather than considering isomorphism classes of
elliptic curves, as this would introduce unnecessary technicalities without impacting
the conclusion of our negative result.
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Proposition 3.1. Let p be an odd prime, and let α be such that 0 < α < 1/3. If in-

tegers a and b are drawn randomly with uniform probability from ((−p/2, p/2)
⋂

Z)2,
then the expected value of the number of points with height less than αn is bounded
as follows:

E

#

{
(x, y, z) ∈

(
(−pα, pα)

⋂
Z
)3} ∣∣∣ a, b random in F2

p

uniform

4a3 + 27b2 ̸= 0

 ≤ 8p3α

p− 2
.

In particular, the probability that a random elliptic curve has points of height less

than αn is less than 8p3α

p−2 .

Proof. Let X0 := {(a, b) ∈ ((−p/2, p/2)
⋂
Z)2 | 4a3+27b2 ̸= 0} and X1 := {(a, b) ∈

((−p/2, p/2)
⋂
Z)2 | 4a3 + 27b2 = 0}. For each (a, b) ∈ ((−p/2, p/2)

⋂
Z)2, let

Ra,b :=

{
(x, y, z) ∈

(
(−pα, pα)

⋂
Z
)3 ∣∣∣ (x : y : z) ∈ Ea,b(Fp) \ {∞}

}
be the set of points of height less than αn on the curve y2z = x3 + axz2 + bz3, and
set ra,b := |Ra,b|. Then, the expected value will be (

∑
(a,b)∈X0

ra,b)/|X0|.
Since for each value of a there exist at most 2 values of b such that (a, b) ∈ X1,

we have |X1| ≤ 2p. Therefore, |X0| ≥ p2 − 2p. On the other hand, we can upper-
bound the numerator

∑
(a,b)∈X0

ra,b by summing over all pairs (a, b) ∈ X0 ∪X1, as

follows:
∑

(a,b)∈X0∪X1
ra,b ≤ 8p1+3α.

Indeed, since there is exactly one value of b for each quadruple (x, y, z, a), the

total number of quintuples is at most 8p3α × p. Hence, we obtain:
∑

(a,b)∈X0
ra,b

|X0| ≤
8p1+3α

p2−2p = 8p3α

p−2 . Finally, since ra,b is a natural number, we get
#{(a,b)∈X0|ra,b ̸=0}

|X0| ≤∑
(a,b)∈X0

ra,b

|X0| ≤ 8p3α

p−2 . □

Remark 4. Even though a triple (x, y, z) may, in fact, correspond to the same
point (x : y : z) on the elliptic curve, the conclusion remains correct.

Observe that by choosing α = O( 1√
n
) in Proposition 3.1, the points of height

less than αn are those that can be represented using O(
√
n) bits. Therefore, the

probability that a random elliptic curve has small points is less than 1
2n−O(

√
n) .

Proposition 3.2. Let c > 0 be a constant, p a prime, and n its bit size. Let
(a, b) ∈ Fp such that 4a3 + 27b2 ̸= 0. If Ea,b has two affine points P1, P2 with
P1 ̸= ±P2 for which max(h(P1), h(P2)) ≤ c

√
n, then a and b have heights less than

3c
√
n+ 2 and 4c

√
n+ 3, respectively.

Proof. Let P1(x1 : y1 : 1) and P2(x2 : y2 : 1) be two affine points as described in
the statement. Since P1 ̸= ±P2, we get that x1 ̸= x2. Then we have

a =
(y2

1−x3
1)−(y2

2−x3
2)

x1−x2

b = y21 − x31 − ax1.

The first equation bounds the height of a and then the second bounds the height
of b. □

We conclude that only curves with small coefficients can have two or more small
points. Such curves are even less frequent than the probability given in Proposition
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Figure 1. Distribution of
√
x3 + ax+ b when x = 1, 2, . . . , X for

a bound X (see Experiment 3).

5, which shows that most curves possessing a small point cannot have two such
points. In practice, for Regev’s algorithm, more than one point is required to
achieve observable efficiency, so in the search for Regev-friendly curves, we are
compelled to focus on curves with small coefficients. Fortunately, this is the case
for all the curves proposed on the NIST list.

To reinforce the conclusion of the above results, we considered an experiment
in which we search for affine points (x, y, 1) that can be represented using O(

√
n)

bits. To do this, one enumerates all possible values of the x-coordinate and retains
randomly one of the two possible values of y :=

√
x3 + ax+ b. The results of this

experiment show that the values of y are uniformly distributed.

Experiment 3. We fix a random elliptic curve: y2 = x3 + ax+ b with a = 3 and
b = 11. We also fix a randomly drawn 50-bit prime: p = 234094748715283. We
enumerate x = 1, 2, . . . , X = 105, take a random value among the two square roots
of x3 + ax + b and place them in one of the intervals [1, p/10], [p/10, 2p/10], . . .,
[9p/10, p]. We summarize the distribution in Figure 1. Repeating the process on a
sample of 100 primes of 50 bits, the maximum value of the statistical distance to
uniform distribution was 0.00648.

3.2. Some examples of Regev-friendly curves. In this section we search for
instances of the discrete logarithm for elliptic curves where Regev’s algorithm re-
quires few quantum resources. Due to the lack of large quantum computers to run
the algorithm, we apply the definition of Regev-friendliness to choose the elliptic
curves on which the algorithm performs most efficiently. More specifically, we seek
elliptic curves along with d points on them, aiming for d to be as large as possible,

such that the points of the form
∑d

i=1 εiPi can be represented using a small number
of bits for all tuples (ε1, . . . , εd) ∈ {0, 1}d.

In what follows, we will examine two scenarios: elliptic curves over large char-
acteristic prime fields and those over small characteristic finite fields.

3.2.1. Elliptic curves over prime fields. Our strategy is to use elliptic curves
E[a1,a2,a3,a4,a6] : y

2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 defined over Q with small

coefficients which have many points with small coordinates. Then, we find a prime
p large enough such that E(Fp) provides strong security against classical computer

21



rank curve (ε1, . . . , εr) h(
∑r

i=1 εiPi)

1 [0, 0, 0, 1, 1] (1) 1

2 [0, 1, 1,−2, 0] (1, 1) 3

3 [0, 6, 5, 5,−6] (0, 1, 0) 5

4 [1,−1, 6,−82, 280] (0, 1, 1, 1) 14

5 [0, 0, 1,−79, 342] (0, 1, 0, 1, 0) 18

5 [1, 0, 0,−22, 219] (1, 1, 0, 0, 1) 25

6 [1, 1, 0,−2582, 48720] (0, 1, 1, 1, 0, 1) 42

6 [0, 0, 1,−7077, 235516] (1, 1, 0, 1, 1, 1) 45

6 [1,−1, 0,−16249, 799549] (1, 1, 1, 0, 0, 1) 45

7 [1, 0, 1,−14733, 694232] (1, 1, 1, 1, 0, 1, 1) 75

8 [1,−1, 0,−71899, 5522449] (1, 1, 1, 1, 1, 0, 1, 0) 76

9 [0, 0, 1,−3835819, 2889890730] (1, 1, 1, 1, 0, 1, 1, 0, 0) 95

10 [1,−1, 0,−1536664, 648294124] (0, 0, 0, 1, 1, 0, 0, 1, 1, 1) 110

11 [0, 0, 1,−16359067, 26274178986] (0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1) 147

12 [0, 0, 1,−6349808647, 193146346911036] (1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1) 202

Table 3. A short list of curves of small discriminant and high
rank. We list the bit size h(P ) where P is the point of the form∑r

i=1[εi]Pi of the highest bit size in the set (ε1, . . . , εr) ∈ {0, 1}r.
Here h is as defined in Equation (11).

attacks on the discrete logarithm problem, while still allowing Regev’s algorithm to
be implemented with a relatively small number of quantum gates. Therefore, these
curves can be classified as insecure for the discrete logarithm problem.

In Table 3 we list some elliptic curves of small height and large rank. We end
the list at rank 12 because the height of the points is over 200 bits but we include
in the additional files curves of rank up to 29. All the curves are taken from the
literature, the ones up to rank 11 are due to Elkies, the one of rank 12 to Mestre
and the others to a list of authors listed in [Duj24].

3.2.2. Small characteristic curves. The idea of using elliptic curves defined over Q
is well-suited for generating weak elliptic curves defined over Fp. By analogy, to
produce elliptic curves over Fpn for a small prime p, we use elliptic curves defined
over Fp(t). We summarize in Appendix B examples of elliptic curves suited for
Regev in small characteristic.

3.3. A list of NIST curves that are Regev-friendly. None of the examples
of Regev-friendly curves in Section 3.2 are used in cryptography, in particular they
are not part of the curves recommended by the NIST [Nat23], referred below as
the NIST list. Recall that being Regev-friendly essentially means having small
coefficients and many points with small coordinates. Many of the curves in the
NIST curve have very small coefficients. This is not a coincidence because this
allows to speed up the crypto-systems without introducing any known attacks on
a classical computer. The main issue will be the second required property: the
presence of many small points.

Recall also that researchers have previously discussed the scenario where the
standards can be prone to attacks that are only known to the emitting authority,
e.g. [BCC+15],[FPRE15]. We investigate which curves in the NIST list use fewer
quantum resources than other curves of the same key size.
Main strategy: We lift a curve E defined over a finite field Fp for a prime p (resp.

F2n for an integer n) to the curve E defined over Q with coefficients in (−p/2, p/2]
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equation name standard applications

y2 + x3 + 7 secp256k1 [Nat23] Bitcoin3, Etherium4

y2 = x3 + 486662x2 + x Curve25519 [Nat23] OpenSSH5

x2 + y2 = 1 + (21665/121666)x2y2 Ed25519 identical to Curve25519

y2 = x3 + 4 BLS12-381 [Cer10] BLS signatures6

y3 = x3 + 3 BN-254 no longer recommended

y2 + xy = x3 + 1 Koblitz curves [Nat23] hardware implementation7

Table 4. Examples of some of the most used elliptic curves in
cryptography.

(resp. over F2(t) with coefficients polynomials of degree at most n/2). Then we
search for a twist Eδ of E by a δ ∈ Q (resp. δ ∈ F2(t)) so that:

• δ is a square in Fp (resp. F2n)

• Eδ has large rank.

The rationale for adopting this strategy is based on the following straightforward
yet important lemma.

Lemma 3.3. A curve E is Regev-friendly if there exists a square δ in its base field
so that the twist of E by δ is Regev-friendly.

Proof. A twist by a square is an isomorphism ϕ : E → Eδ, so that if P and Q are
two points of E then logP Q = logϕ(P ) ϕ(Q). □

We tried our strategy on all the curves of the NIST list and we summarize below
the short list where we succeeded.

Fact 3.4. The following curves in the NIST list are Regev-friendly:

(1) The Montgomery curves, By2 = x3+Ax2+x, the recommended curves have
B = 1 and small A. Some examples are: Curve25519, Curve383187, M-
221, M-383, M-511. The twisted Edwards curves, ax2+ay2 = 1+dx2y2, the
recommended curves have a = 1 and small d. They are different equations
for the Montgomery curves and can be treated together when evaluating
their security. Some examples are: Curve1174 (bi-rationally equivalent to
Curve25519), Curve41417, E-222, E-382, Ed448-Goldilocks and E-521.

(2) The elliptic curves of the form y2 = x3 + ax+ b with a and b small. They
include the curve sec256k1.

(3) The elliptic curves in the pairing-based cryptography which have small equa-
tions, in particular the BN and the BLS12-381 curves. Note that for the
BLS12 curve, the equation is independent on the bit size of p. See para-
graphs secp256k1 and BLS12-381 at the end of this list.

(4) The Koblitz curves have equation y2 + xy = x3 + 1 and are seen as defined
over F2n where n is the bit size, e.g. the Koblitz curve K-233 has n = 233.

Before giving the justification, note that the Regev-friendly curves are among
the most used ones in cryptography (Table 4).
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justification: 1. 1. The Montgomery and twisted Edwards curves. Bernstein’s
curve

E = Curve25519 : y2 = x3 + 486662x2 + x.

has the B-twist with B = 9282 of rank 4:

EB : By2 = x3 + 486662x2 + x

P1 = (17793594 : 17793594 : 2650183726878506)

P2 = (434841177498 : −3148775574127 : 99509057901162)

P3 = (245681894294428907406 : −1779134065187933378821 : 23892963464408987193336)

P4 = (2634676586421829950 : −19151161818923118455 : 6489881247255884478)

max{h(
∑3

i=1 εiPi)) : ε ∈ {0, 1}3} = 162.9.

2. The curves with small Weierstrass equations include secp256k1 whose equation
is E : y2 = x3 + 4. Its twist Eδ : y2 = x3 + 7δ3 for δ = 942 has rank 3:

Eδ/Q : y2 = x3 + 7 · 9423

P1 = (−41919/25 : 4214979/125 : 1)

P2 = (1570 : 98596 : 1)

P3 = (1794 : 107820 : 1)

max{h(
∑3

i=1 εiPi)) : ε ∈ {0, 1}3} = 41.8

3. Many of the pairing-friendly curves have very small coefficients. For the
curves BN and BLS 12 we have twists of rank 3:

• E=BLS12-38 with δ = 24531

Eδ/Q : y2 = x3 + 4 · 24533

P1 = (−375453727/131044 : 8940748216367/47437928 : 1)

P2 = (31889/4 : 6017209/8 : 1)

P3 = (9225733/9 : 28022142313/27 : 1)

max{h(
∑3

i=1 εiPi)) : ε ∈ {0, 1}3} = 88.7

• E=BN with δ = 298

Eδ/Q : y2 = x3 + 3 · 2983

P1 = (−2343770/6241 : −2534554964/493039 : 1)

P2 = (−263 : 7823 : 1)

P3 = (745 : 22201 : 1)

max{h(
∑3

i=1 εiPi)) : ε ∈ {0, 1}3} = 38.6

4. The Koblitz curves, in particular K-233, have the equation E/F2(t) : y2 +
xy = x3 + 1. We set x, y ∈ F2[t] (e.g. y = t and x = 1) and use the twist
Eδ : y2 + xy = x3 + δx2 + 1 with δ = (y2 + xy + x3 + 1)/x2.

Using Magma we obtained that the analytic rank of all the twists associated to
polynomials x and y of degree less than 12 is always 1. In conclusion we use
Eδ/F2(t) : y

2 + xy = (t2 + t)x2 + 1 and P1 = (1 : t : 1).

Note however that our strategy has its limits. We couldn’t find any argument
that the following curves are Regev-friendly:

a) the curves in short Weierstrass form y2 = x3 + ax + b with a = −3 and b
an arbitrary element of Fp. Examples include: P-224, P-256, P-384, brain-
poolP256t1, brainpoolP384t1 and FRP256v1. Note that P-n are denoted
W-n by some authors.
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b) binary curves other than Koblitz’s curves; they have equation y2 + xy =
x3 + x2 + b with large degree b ∈ F2[t] representing an element of F2n .
Examples include: B-233, B-283, B-409, B-571.

3.3.1. More on quadratic twists. The strategy used in the beginning of this section
can be applied to any elliptic curve E/Fp. One searches for squares δ ∈ Fp such
that the δ-twist of E has a lift of high rank. We refer to it as a strategy rather
than an algorithm because we do not know whether such twists exist or how to find
them systematically if they do. Hence, we pose the following problem.

Problem 1. Given an elliptic curve E with rational coefficients, find a twist of
high rank.

A classical conjecture (Conjecture C.3) states than there exist elliptic curves with
arbitrarily large rank. One can ask whether the same is true when restricted to the
twists of a given elliptic curve. The following example of an elliptic curve which
has been studied in the literature supports the heuristics that twists of large rank
exist and are numerous enough to be found by enumerating possible values of δ.

Example 1. Watkins et al. [WDE+14] tackle the problem for E : y2 = x3 − x,
which is not one of the NIST curves. For this curve Goldfeld’s conjecture is proven
(see [Kri20]), and they obtained experimentally that there are many twists of large
rank. More experiments about the densities of high rank twists are in [RS01].

A second argument that twists of high rank exist is that the average value of the
rank is the same among the twists of a curve as in the set of all elliptic curves (see
the following conjecture and [KS98]).

Conjecture 3.5 (Goldfeld’s Conjecture [BH12]). Let E/Q (resp. E/Fq(t) for
some prime power q with (q, 6) = 1 be a fixed elliptic curve. For an elliptic curve
E : y2 = f(x) we denote by Eδ the twist δy2 = f(x). We have

lim
D→∞

∑
δ<D r(Eδ)

#{δ | |δ| < D}
=

1

2
,

where r(Eδ) is the analytic rank, i.e. the order of vanishing at s = 1 of the L-
function of the quadratic twist Eδ/Q (resp. Eδ/Fq(t)).

We remark that Goldfeld’s Conjecture is implied by the moment conjectures as
suggested by Katz-Sarnak philosophy [KS98]. Those conjectures have been recently
proved over the function field Fq(t) in the easier case of Dirichlet characters in
[BDPW24], and their method is believed to adapt also to twists of elliptic curves.

3.4. Asymptotic complexity. In order to conclude that Regev’s algorithm has an
elliptic curve version, we prove, under the conjectures of Appendix C, that Regev’s
algorithm is faster than Shor’s algorithm by a factor which tends to infinity.

Theorem 3.6. Let E/Fq be an elliptic curve. Assume Lang’s conjecture, Hall’s
conjecture, and the rank conjecture (Conjectures C.1, C.2 and C.3). Regev’s al-
gorithm is implemented on E with d − 2 = τ points P2, . . ., Pd−1 of canonical
height as in Conjecture C.1. The computation of the linear combinations

∑
ϵiPi

with ϵi ∈ {0, 1} is treated as part of pre-computation. Assume also that the lattice
L defined as in Equation (5) is K-balanced for a parameter K > 0. Let α and c
be as in Conjecture C.3 and let ε > 0 be a constant which can be taken arbitrarily
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small. Then Regev’s algorithm with parameter K uses (log n)2/(4α+1)−ϵ times less
quantum gates than Shor.

Proof. As before, r is the cardinality of the group of discrete logarithm and n is its
binary size. In the following ϵ > 0 is an arbitrary constant. We set

N := exp

(
2

4α+ 1
(log n log log n)2/(4α+1)−ϵ

)
and d−2 = τ := min(1, c)

(
logN

log logN

)α

,

which implies logN
log logN ≤ (log n)2/(4α+1)−ϵ.

Since ĥ is a positive quadratic form (see e.g. [Zim76]), we can view the Neron-
Tate pairing ⟨, ⟩ as an inner product on the curve modulo the torsion subgroup.
Hence, the triangle inequality holds:√

ĥ(
∑1+τ

i=2 [εi]Pi) ≤
∑1+τ

i=2

√
ĥ(Pi) ≤ τ

√
ĥ(Pτ )

≤ exp 1
2

(
2 log τ + 1

12 logH(E) + ϵ(N) log logN +
√

logN
log logN

τ2−τ
2

)
≪ exp( 12 (

logN
log logN )1/2τ2)

≪ exp( c
2

4 (log n)
1−ε(log log n)O(1)) ≪ n1/4+ϵ′ ,

for a constant ε′ < 1/4. In the last three lines we used Conjectures C.1, C.2 and C.3.

By [Zim76, Section 2] we have that for all P , |h(P )−ĥ(P )| = O(max(log |a|, log |b|)).
Observe that the right hand side is O(logH(E)) which is bounded from above by
Hall’s conjecture by O((logN)(log logN)2) = o(n). Hence, we obtained for all

P =
∑τ+1

i=1 [εi]Pi,

h(P ) ≤ ĥ(P ) + o(n) = o(n).

We have shown that G is K-Regev-friendly. By Proposition 2.7, Regev’s algorithm
with parameter K is correct for E(Fp) and uses O((d + n

d )M(n)) gates. This
represents a reduction by a factor d with respect to Shor. Finally,

d = 2+min(1, c)

(
logN

log logN

)α

= (log n)2α/(4α+1)+o(1) =

{
(log n)1/3+o(1), if α = 1/2

(log n)2/5+o(1), if α = 1.

□
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Appendix A. Extending the theorem of Lau and Wu to the primes ≡ 3
(mod 4)

For a = 1 or 3 we define

P (a)
y = {p : p ≡ a (mod 4), and χp(q) = 1 for all q ≤ y}.

Proposition A.1 (minor extension of Th 1.2 in [LW08]). Let δ > 0 be a constant
and let a = 1 or 3. There exists a sequence Qm → ∞ such that∑

x1/2 < p < x log x

p ∈ P
(a)
y

1 ≫m Qme
−c logQm/ log logQm .
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y2 + xy + y = x3 + (t2 + t+ 1)x2 + (t3 + t2 + t)x+ (t2 + t) [(t+ 1 : t : 1), (0 : t : 1)]

y2 + xy + y = x3 + x2 + (t2 + t+ 1)x [(t+ 1 : 1 : 1), (0 : 1 : 1)]

Table 5. Examples of elliptic curves over F2(t) of rank 2

(x, y) ∈ F31(t)× F31(t)

(19t2 + 2t+ 6, 15t3 + 3t2 + 10t+ 17)

(7t2 + 16t+ 6, 23t3 + 6t2 + 18t+ 17)

(14t2 + 4t+ 6, 27t3 + 12t2 + 20t+ 17)

(28t2 + t+ 6, 29t3 + 24t2 + 5t+ 17)

(2t2 + 10t+ 30, 15t3 + 3t2 + 10t+ 17)

Table 6. Elliptic curve E : y2 = x3+ t5+11 of rank 5 for discrete
logarithm in F31n . Among the points

∑5
i=1[εi]Pi with εi ∈ {0, 1}

all the maximum degree in the form (x : y : z) with x, y, z ∈ F31[t]
is 9.

Proof. By a verbatim copy of the proofs of Equation (5.5) in [LW08], we have for
a = 1 or 3,∑

x1/2 < p < x log x

p ∈ P
(a)
y

1 ≫ 1

(log x)2π(y)+2

∑
m∈P

(a)
y

(Sx(m) + (−1)aSx(4m)) +O(
x1/2

log x
)).

where Sx is an expression such that

Sx(ℓm) = δℓm,1x−O(x1−ϵy2) +O(x1/2 log x),

for a constant ϵ > 0 which depends on the potential exceptional zeros of the L(s, χ)

and δj,1=1 if j = 1 and 0 otherwise. We conclude that for a = 1 and a = 3, P
(a)
y

admits the same lower bound, which is the one of the main theorem of [LW08]. □

Appendix B. Examples of elliptic curves with many small points

Table 5 makes a list of elliptic curves whose generators were computed with
Magma.
Elliptic curves in characteristic 31. See Table 6 for curves over fields of characteristic
31.
Elliptic curves in characteristic 7 and 11. See Table 7 for curves obtained with
Ulmer’s work [Ulm14, Example 4.6(3))].
Elliptic curves over F25(t) of rank 30. In [Elk94, proof og Prop 3], Elkies gives
explicit generators P = (xP , yP ) of the Mordell-Weil group of E/F25(t) : y

2 + y =
x3 + t33 by setting

(12) xP = a−1t12 + a2t9 + a5t6 + a8t3 + c
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E/F7(t) : y
2 + (2t4 + 2t2)xy = x3 + (5t6 + 6t4 + 1)x2 + t8x

P1 = (2t6 + 4t5 + 6t4 + 4t3 + 2t2 : 4t7 + 6t6 + t5 + 6t4 + 4t3 + 2t2 : 1)

P2 = (2t6 + 3t4 + 2t2 : 2t6 + 5t2 : 1)

P3 = (2t6 + 3t5 + 6t4 + 3t3 + 2t2 : 3t7 + 6t6 + 6t5 + 6t4 + 3t3 + 2t2 : 1)

P1, P2, P3 ∈ E(F7(t))

max{deg(
∑3

i=1 εiPi)) : ε ∈ {0, 1}3} = 12

E/F11(t) : y
2 + (9t6 + 8t4)xy = x3 + (8t10 + 6t8 + 1)x2 + t12x

P1 = (3t10 + 2t9 + 8t7 + 8t6 + 8t5 + 2t3 + 3t2 :

8t13 + 3t11 + t10 + 3t9 + 3t8 + 8t7 + 2t6 + 8t5 + t4 + 9t3 + 8t2 : 1)

P1 = (3t10 + 4t9 + 5t8 + 7t7 + 6t6 + 7t5 + 5t4 + 4t3 + 3t2 :

5t13 + 3t12 + 5t11 + 3t10 + 9t9 + 5t8 + 2t7 + 4t6 + 8t5 + 4t4 + 4t3 + 3t2 : 1)

P3 = (3t10 + 2t8 + 10t6 + 2t4 + 3t2 : 10t12 + 6t10 + 6t8 + 7t6 + 10t4 + 8t2 : 1)

P4 = (3t10 + 7t9 + 5t8 + 4t7 + 6t6 + 4t5 + 5t4 + 7t3 + 3t2 :

6t13 + 3t12 + 6t11 + 3t10 + 2t9 + 5t8 + 9t7 + 4t6 + 3t5 + 4t4 + 7t3 + 3t2 : 1)

P5 = (3t10 + 9t9 + 3t7 + 8t6 + 3t5 + 9t3 + 3t2 :

3t13 + 8t11 + t10 + 8t9 + 3t8 + 3t7 + 2t6 + 3t5 + t4 + 2t3 + 8t2 : 1)

max{deg(
∑5

i=1 εiPi)) : ε ∈ {0, 1}5} = 28

Table 7. Examples of curves adapted for Regev in Fpn for p = 7
and 11.

and computing yP using the equation of E. For example, if F25 = F2(ω)

P1 = ((ω4 + ω)t12 + ω2t9 + (ω2 + 1)t6 + (ω3 + ω2 + 1)t3 + ω4 + ω3 :

(ω4 + ω3 + ω2 + 1)t18 + (ω4 + ω3 + 1)t12 + ωt9 + (ω2 + 1)t6 + (ω2 + ω)t3 + ω3 + 1 : 1).

By direct computations one checks that

max

{
h

(
20∑
i=1

[εi]Pi

)
: εi ∈ {0, 1}20 ∀i

}
= 414.

y2 = x3 + 2(t8 + 2t4 + 1)x− 4t2(t8 − 6t4 + 1).

Naskrkecki’s rank 4 elliptic curves over Fp(t) with p ≡ 5, 7, 13, 15 (mod 16). Naskrkecki [Nas16]
gives examples of curves in characteristic 5, 7 and 11, which we list in Table 8.

Appendix C. Classical conjectures that suggest the existence of
asymptotic families of Regev-friendly curves

In this appendix we recall a list of conjectures about the existence of infinite
families with arbitrarily many small points. Recall that the naive and the canonical
heights (see the beginning of Section 3) are equal up to an additive constant, as
described in [Zim76, Section 2].

Conjecture C.1 (Lang’s conjecture on the heights of points, Conj 3 in [Lan83]).
Let E be an elliptic curve defined over Q or rank τ . Call H(E) = max(|a|3, |b|2)
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E/F5(t) : y
2 = x(x− (t2 − 1)2)(x− 4t2)

w2 + 4w + 2 = 0

P1 = ((3w + 3)t3 + (4w + 4)t2 + (3w + 3)t : (w + 1)t5 + (w + 3)t4 + (w + 2)t3 + (w + 3)t2 + (w + 1)t : 1)

P2 = (2t2 + t+ 2 : 2t4 + 2t2 + 3t+ 3 : 1)

P3 = ((w + 2)t4 + (4w + 4)t3 + (w + 2)t2 + 3wt : (w + 3)t6 + 4wt5 + (3w + 3)t4 + (3w + 3)t3 + (2w + 2)t2 + 4wt : 1)

P4 = (t4 + 4t2 : t5 + 4t3 : 1)

max{deg(
∑4

i=1[εi]Pi) : ε ∈ {0, 1}4} = 7

E/F7(t) : y
2 = x(x− (t2 − 1)2)(x− 4t2)

w2 − 3 = 0

P1 = (t3 + 5t2 + t : (6w + 4)t5 + (w + 3)t4 + (w + 3)t2 + (6w + 4)t : 1)

P2 = (2t2 + 3t+ 2 : 2t4 + 6t2 + t+ 5 : 1)

P3 = (t2 + t : (5w + 1)t4 + (4w + 5)t3 + (5w + 1)t2 + (6w + 4)t : 1)

P4 = (1 : 2t3 + 3t : 1)

max{deg(
∑4

i=1[εi]Pi) : ε ∈ {0, 1}4} = 7

Table 8. Naskrkecki’s rank 4 elliptic curves over Fp(t) with p ≡
5, 7, 13, 15 (mod 16)

the height of E and let ĥ be the Néron-Tate height. There exists a basis P1, . . ., Pτ

of E(Q) divided by the Q-torsion such that ĥ(P1) ≤ · · · ≤ ĥ(Pτ ) and for one has

ĥ(P1) ≤ H(E)1/(12τ)N ϵ(N)/τ log(N)c(r−1)/2,

ĥ(Pτ ) ≤ H(E)1/12N ϵ(N) log(N)cτ(τ−1)/2,

with c an universal constant8 and ϵ(N) is of the form ϵ(N) = c′·(log(N) log log(N))−1/2.
Here N = NE is the conductor of E.

Note that the statement of the conjecture cannot be significantly improved, see
e.g. [Dav97].
Since the previous conjecture makes use of H(E) it is worth mentioning Hall’s
conjecture.

Conjecture C.2 (Hall’s conjecture, page 160 of [Lan83]). H(E) ≪ ∆(E)6+ϵ. In
particular, E has a minimal model with logH(E) ≪ logN(log logN)2.

Finally, we have a conjecture about the size of τ .

Conjecture C.3 ([EW04] summary of the heuristic discussion in Sec 5). The maxi-

mum rank among the elliptic curves of conductor less than N is equal to c( logN
log logN )α

for two constants c > 0 and α = 1 or 1/2.

Appendix D. A multi-twist variant of fast-exponentiation

For completeness we reproduce here the multi-scalar variant of fast-exponentiation.

Algorithm 3 is a minor modification of Algorithm 2. We write it here for a
precise statement of the parameters.

8We don’t use the exact value of c which can be taken equal to c = 2/
√
3 and similarly for c′.
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Algorithm 2 Fast multi-scalar exponentiation

Input:
• a commutative group G with elements represented on O(m) bits having
an n-bit prime order r

• a parameter d ≤ n
• a parameter T > 1
• a constant k and u1, . . . , uk ∈ G or an algorithm, called tab, to compute
them on the fly in negligible complexity

• g1, . . . , gd−k ∈ G which have coordinates represented on at most O(d) bits

• zi =
∑⌈log2 T⌉−1

j=0 zi,j2
j for i = 1, 2, . . . , d integers of ⌈log2 T ⌉ bits

Output:
∏d

i=1 g
zi
i

1: result = 1G
2: for j = 0, 1, . . . , ⌈log2 T ⌉ do
3: result = result ∗ result
4: result = result ∗ tab(z1,j , . . . , zd−k,j)
5: result = result ∗uz1,j1 ∗ . . . ∗ uzk,j

k

6: end for
7: return result

Algorithm 3 A multi-twist variant of fast multi-scalar exponentiation

Input: • an elliptic curve E defined over a finite field Fq where q has m bits
• a parameter d ≤ n
• a parameter T > 1
• an integer k and a list of points U1, . . . , Uk on E
• a list of integers d1 = 1, d2, . . . , dt for a parameter t ≥ 0
• and, for each 1 ≤ i ≤ t a list of rational points Pi,1 = (xi,1, yi,1), . . . , Pi,ri =
(xi,ri , yi,ri) on the di-twist of E, such that r1 + · · ·+ rt = d− k

• (g1, . . . , gd−k) =
(
(x1,1,

√
d1y1,1), . . . , (x1,r1 ,

√
d1y1,r1), (x2,1,

√
d2y2,1), . . . , (xt,rt ,

√
dtyt,rt)

)
• a list of ⌈log2 T ⌉-bits integers (z1, . . . , zd) = (z1,1, . . . , z1,r1 , z2,1, . . . , zt,rt).
We denote zµ,ν,j the j-th bit of zµ,ν .

• a flag ”look-up table” = true/false to decide whether the sums of points
with coefficients 0 and 1 are stored in a look-up table or are recomputed
on the fly whenever needed.

Output:
∑d−k

i=1 [zi]gi +
∑k

µ=1[zd−k+µ]Uµ

1: result = OE

2: for j = 0, 1, . . . , ⌈log2 T ⌉ do
3: result = result+ result
4: for µ = 1, . . . , t do
5: Qµ = (Xµ, Yµ) =

∑rµ
ν=1[zµ,ν,j ]Pµ,ν ▷ Computations done in the

dµ-twist of E
6: Q′

µ = (Xµ,
√
µYµ) ▷ Q′

µ belongs to E
7: result = result+Q′

µ

8: end for
9: result = result+

∑k
ν=1[zd−k+ν,j ]Uν

10: end for
11: return result
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