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Abstract

In parallel with the standardization of lattice-based cryptosystems, the research
community in Post-quantum Cryptography focused on non-lattice-based hard
problems for constructing public-key cryptographic primitives. The Linear Code
Equivalence (LCE) Problem has gained attention regarding its practical appli-
cations and cryptanalysis. Recent advancements, including the LESS signature
scheme and its candidacy in the NIST standardization for additional signatures,
supported LCE as a foundation for post-quantum cryptographic primitives. How-
ever, recent cryptanalytic results have revealed vulnerabilities in LCE-based
constructions when multiple related public keys are available for one specific code
rate. In this work, we generalize the proposed attacks to cover all code rates.
We show that the complexity of recovering the private key from multiple public
keys is significantly reduced for any code rate scenario. Thus, we advise against
constructing specific cryptographic primitives using LCE.

Keywords: Sample Complexity, Code Equivalence, Cryptanalysis, Post-quantum
Cryptography

1 Introduction

In view of the advent of quantum computers, post-quantum cryptography is currently
in the phase of being standardized for widespread use. In 2022, the National Institute

†This work was conducted during Andrea Natale’s internship at the Cryptography Research
Center, Technology Innovation Institute, UAE.

1



of Standards and Technology (NIST) announced the first set of post-quantum key-
agreement and signature schemes selected for standardization [1]. Subsequently, NIST
introduced a new competition to select additional signature schemes based on hard
problems that are different from those already chosen [2].

The Linear Code Equivalence (LCE) Problem has emerged as a robust hard prob-
lem to rely on for building new post-quantum schemes. Notably, the LESS signature
scheme [3], which relies on the computational hardness of solving LCE, is currently
a running candidate to the NIST’s ongoing standardization of additional digital sig-
nature schemes [4]. The development of LESS, along with advancements in group
action-based cryptography, has inspired researchers to develop signature schemes with
advanced functionalities based on LCE, such as threshold signatures [5], ring signa-
tures, and identity-based signatures [6]. However, recent works [7, 8] have shown that
LCE, due to its linear nature, is not suitable for securely constructing certain group
action-based primitives, e.g., the group action-based updatable encryption proposed
in [9]. They demonstrated that having access to several different LCE public keys
corresponding to a single private key allows efficient recovery of it in polynomial time.

Additionally, a new polynomial-time algorithm was introduced in [8] that, when the
code rate is 1/2 (i.e., when the code length is double its dimension), can retrieve an LCE
private key from just two related public keys. This result demonstrated a vulnerability
in certain cryptographic constructions relying on this assumption. In particular, it
impacted the key distribution of the threshold signature from [5]. Moreover, while
[6] discussed the possibility of adding the linkability property to their ring signature
scheme by relying on a variant of LCE, they explicitly refrained from proposing a
concrete construction due to concerns about this variant. The work of [8] confirms
that these concerns were well-founded, showing that such a construction is not secure
when instantiated with codes of rate 1/2. This leaves open the question of whether
codes with a different code rate could still be suitable for constructing such primitives.

This work addresses this question by generalizing the polynomial-time algorithm
from [8] to any code rate and any number of available LCE public keys. Then, we
compute the complexity of such an algorithm and compare it against the state-of-
art attack, i.e., the meet-in-the-middle attack introduced in [10] adapted to this case
scenario. We show that, regardless of the code rate, whenever one has access to more
than one LCE instance with the same secret, the complexity of retrieving it drops
significantly compared to having only one instance.

1.1 Overview of the Contribution

Background

In what follows, a monomial matrix is a matrix formed by the multiplication of a
permutation matrix and a full-rank diagonal matrix.

Definition 1 Let C and C′ two (n, k) linear codes over a finite field Fq. We say that C and
C′ are equivalent if there exists a monomial matrix Q ∈ Fn×n

q such that

C′ = CQ.

The Linear Code Equivalence (LCE) Problem consists of finding Q given two generators of C
and C′.

2



Consider the scenario where an adversary has access to (the generators of) t pairs
of equivalent codes (Ci, C′i)ti=1 via the same secret monomial matrix Q, i.e.,

C′i = CiQ, for i = 1, . . . , t.

We call the sample complexity of LCE the minimum t such that Q can be computed in
polynomial time. Note that this number strongly depends on the code rate r := k/n.
Indeed, it was shown in [8] that there exists an efficient algorithm able to recover the
monomial matrix Q if

t ≥
⌊

n2

k(n− k)

⌋
+ 1 =

⌊
1

r(1− r)

⌋
+ 1.

Notice that this result provides an upper bound for the sample complexity of LCE,
as it identifies a potential minimum value of t that enables an efficient recovery of
Q. However, such an upper bound is not necessarily optimal: there is no guarantee
that other polynomial-time algorithms capable of recovering Q for smaller values of
t do not exist. In fact, another finding from [8] shows that, when r = 1/2, only
t = 2 LCE samples are enough to efficiently recover Q. This result was achieved by
introducing a polynomial-time algorithm that exploits the permutation structure in
Q and sequentially guesses the positions of its non-zero entries. However, for r ̸= 1/2,
this algorithm is no longer effective, leaving the question of whether the provided
upper bound is optimal or not for other code rates.

Contribution

Our contribution to the topic is twofold:
i) we provide new tighter upper bounds for the sample complexity of LCE,
ii) we demonstrate that the complexity of solving LCE in the multiple samples setting

is significantly reduced compared to the single-sample case, for any code-rate and
number of samples available.

We achieve the above by generalizing the algorithm from [8] to make it effective
also when k ̸= n/2. Our generalization consists of relaxing both the condition of the
number of simultaneous guesses ℓ allowed and the number t of LCE samples available.
In particular, for a given rate r = k/n and t samples, then one must make ℓ > n− tk
simultaneous guesses at a time to make the algorithm successful. This increases the
complexity with respect to the version presented in [8] where ℓ = 1 always. However, we
were able to isolate the scenarios for which such an algorithm still runs in polynomial
time and make a comparison against the meet-in-the-middle attack introduced in [10]
adapted to the multi-sample case scenario. Specifically, we discover that our algorithm
is preferable when t = n/k, while the meet-in-the-middle attack is asymptotically
faster for the other cases.

In general, our result strengthens the thesis from [7, 8] that LCE in the multiple
sample setting is not secure and should not be used for cryptographic applications.
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Organization

In Section 2, we give the notation and the necessary preliminaries. In Section 3, we
present our new algorithm, which generalizes the one introduced in [8] for any code rate
and give its analysis. The cryptographic implication of our work and the comparisons
against the state-of-the-art attacks are discussed in Section 4. Finally, we give our
conclusions in Section 5.

2 Preliminaries

2.1 Notation and Linear Algebra

We denote by N the set of natural numbers. Given n ∈ N, we use [n] to denote the
set 1, 2, . . . , n. Matrices are denoted by uppercase bold letters (e.g., A), and column
vectors by lowercase bold letters (e.g., a). We denote by Fq a finite field of order q. The
tensor product (A⊗B) ∈ Fmr×ns

q of two matrices A ∈ Fm×n
q and B ∈ Fr×s

q is defined
as the Kronecker product of A and B. We work with the following sets of matrices:

– GLn(Fq), the set of all n× n invertible matrices with elements in Fq,
– Permn(Fq), the set of all permutation matrices of dimension n,
– Monon(Fq), the set of all n × n monomial matrices, i.e., matrices of the form
M = DP , where D ∈ Fn×n

q is diagonal with only non-zero entries, and P ∈
Permn(Fq).

The n × n identity matrix over Fq is denoted by In. Given an m × n matrix M ,
we denote its left and right kernels by kerL(M) = {w ∈ Fm

q : w⊤M = 0} and
ker(M) = {v ∈ Fn

q : Mv = 0}, respectively, and we denote its image by im(M) =
{Mv : v ∈ Fn

q }.
We assume that matrix multiplication and inversion can be performed using O(nω)

field operations for some ω ∈ [2, 3] (for instance, using Strassen’s algorithm, which
gives ω = log2(7) for large n). Therefore, performing Gaussian elimination to solve a
linear system Ax = b, with A ∈ Fn×n

q and b ∈ Fn
q , or to compute its rank, costs O(nω)

field operations (if the matrix is not square, we consider n = max{nrows, ncols}).

Proposition 1 ([8, Prop. 1]) Let A1,A2,B1,B2 ∈ Fk×(2k−1)
q be matrices, for k ≥ 2. Then

the rank of the matrix

M =

[
A1 ⊗B1

A2 ⊗B2

]
is strictly smaller than 2k2.

2.2 Linear Code Equivalence

An (n, k)-linear code C over Fq is a k-dimensional vector subspace of Fn
q . We say that

C has length n and dimension k. The rate of the code is the ratio r := k
n . A matrix

G ∈ Fk×n
q is called a generator matrix of C if its rows form a basis of C, that is,

C = {uTG : u ∈ Fk
q}. We say that G is in systematic form if G = ( Ik M ) for some

M ∈ Fk×(n−k)
q . The systematic form of a generator, when it exists, can be obtained in
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polynomial time by computing its row-echelon form, which provides a standard basis
for the vector space it spans. We denote this operation by SF(·). A parity-check matrix

for a code C is a full-rank matrix H ∈ F(n−k)×n
q such that for all c ∈ C, it holds that

Hc = 0.
Let G,G′ be the generator matrices of two (n, k)-linear codes C, C′. We say that

C and C′ are equivalent if there exist S ∈ GLk(Fq) and Q ∈ Monon(Fq) such that
G′ = SGQ.

Definition 2 (Linear Code Equivalence (LCE) Problem) Let G,G′ ∈ Fk×n
q be the generator

matrices of two (n, k)-linear codes C, C′, respectively. The Code Equivalence Problem is to
find matrices (if they exist) S ∈ GLk(Fq) and Q ∈ Monon(Fq) such that G′ = SGQ.

If the secret matrix Q is specifically a permutation matrix, then the problem is
known as Permutation Code Equivalence (PCE) Problem.

Remark 1 For efficiency reasons, LCE instances are given in practice with the generators in
systematic form [4]

(G,G′ = SF(GQ)).

In this case, the secret invertible matrix S is redundant, and the problem reduces to find
only Q.

2.3 On the Sample Complexity of LCE

To study the stronger cryptographic properties of linear code equivalence, a more
general definition of LCE where an adversary has access to multiple LCE samples for
the same secret monomial Q was introduced in [8].

Definition 3 ([8, Def. 5]) Let n, k, q be integers such that k < n and q is prime. Let Q ∈
Monon(Fq) be a secret monomial matrix. We denote by Ln,k,q,Q the probability distribution

on Fk×n
q × Fk×n

q obtained by sampling M ∈ Fk×(n−k)
q uniformly at random, setting G =

( Ik M ) ∈ Fk×n
q , and returning

(G,G′ = SF(GQ)).

Given t independent samples from Ln,k,q,Q, the t-samples LCE problem, denoted as t-LCE,
is to find Q.

In [8], the authors make a study on the necessary number of samples t that makes
t-LCE solvable in polynomial time, which we refer to as sample complexity of LCE.
Given an LCE instance (G,G′), let H ′ be a parity-check matrix for the code generated
by G′. Then we have that

GQH ′⊤ = 0.

Consequently, the following linear system of dimension k(n− k) in n2 variables

[G⊗H ′]x = 0. (1)
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has, among its solutions, the vector composed by the entries of Q unrolled row-by-row
[11, Definition 1.1.3 and Corollary 3.2.13]. It is shown in [8] that by stacking

t ≥
⌊

n2

k(n− k)

⌋
+ 1 (2)

systems as in Equation (1) derived from independent LCE samples (but with the
same secret unimodular Q), one obtains a (over)determined linear system allowing
an efficient retrieval of the unknown x (and so of Q) in polynomial time via Gaus-
sian elimination. Notice that Equation (2) provides an upper bound for the sample
complexity of LCE that is not necessarily optimal.

2.4 A Polynomial-time Algorithm for Solving 2-LCE when
k = n/2

For the parameter setting of k = n/2, a polynomial-time algorithm was given in [8]
that allows an efficient recovery of the secret monomial Q when only t = 2 samples
are provided (i.e., solving 2-LCE). The idea is to construct a linear system from two
LCE samples (Gι,G

′
ι), for ι = 1, 2, exploiting again Equation (1),

S :

A︷ ︸︸ ︷[
G1 ⊗H ′

1

G2 ⊗H ′
2

]
x = 0, (3)

and using the structure of the secret Q to reduce the number of variables. Indeed, the
2k(n−k)×n2 linear system in Equation (3) is underdetermined since 2k(n−k) < n2,
and A is full-rank with probability 1 − 1/q [8, Proposition 4]. However, the solution
vector corresponding to Q is significantly structured. In particular, every row and
column in Q contains only one non-zero entry. Suppose we know that the entry (i, j)
is non-zero. In that case, we also know that all the other entries on the ith row and
jth column are zero, as well as the corresponding variables. Hence, by guessing the
position of a non-zero entry, one can guess a total of 2n−1 unknowns. It was shown in
[8] that it is possible to distinguish correct from wrong guesses thanks to the following
observation.

Let Si,j be the k dimensional linear system with (n− 1)2 variables obtained when
guessing the entry (i, j) of Q to be non-zero. Then we have that

Si,j :

Ai,j︷ ︸︸ ︷[
(G1)−i ⊗ (H ′

1)−j

(G2)−i ⊗ (H ′
2)−j

]
x = bi,j , (4)

where (Gι)−i, (H
′
ι)−j ∈ Fk×(n−1)

q are the matrices Gι,H
′
ι punctured at positions i

and j respectively, for ι = 1, 2, and bi,j ∈ Fk(n−k)
q is the column of the original system

corresponding to the non-zero guessed position. Proposition 1 is used to show that,
surprisingly, rank(Ai,j) < 2k(n−k). So, one can distinguish correct from wrong guesses
as follows:
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• a correct guess is such that rank(Ai,j) = rank(Ai,j |bi,j) because, for the Rouché-
Capelli Theorem, a solution corresponding to Q always exists,
• a wrong guess is such that rank(Ai,j) ̸= rank(Ai,j |bi,j) = 2k(n − k) with

probability approximately 1− 1/q.
Following this observation, one defines Test 1 based on the Rouché-Capelli Theorem.
This test allows to rule out bad guesses with probability 1− 1/q, and always accepts
good guesses.

Test 1 ([8, Test 1]) For the guess on the (i, j)-th entry of Q to be non-zero, construct a
reduced system Sij from S (as in Equation (4)) with (n− 1)2 variables by setting Q(i, j) = 1
and Q(i, µ),Q(η, j) = 0, for µ ∈ {1 . . . n} \ {j} and η ∈ {1 . . . n} \ {i}. Accept the guess if the
system Sij accepts at least one solution; reject otherwise.

If a guess on the position (i, j) to be non-zero does not pass Test 1, then certainly
that entry, and the corresponding variable in Equation (3), must be equal to zero.
Performing Test 1 on all entries of Q allows to set to zero enough variables such that
the remaining ones are < 2k(n − k). Finally, one obtains a reduced and determined
linear system Sred, which allows efficient recovery of the non-zero entries via Gaussian
elimination. The algorithm summarizing such procedure is reported in Algorithm 1.
The estimated complexity is O(n2+2ω).

Algorithm 1 Solving 2-LCE

Input: a 2-LCE instance
Output: a monomial matrix Q

1: Construct S as in Equation (3)
2: Set L = [x1,1, x1,2, ..., xn,n] the list of variables in S
3: for i = 1 to n do
4: for j = 1 to n do
5: if Test 1 on (i, j) fails then
6: Remove xi,j from L
7: end if
8: end for
9: end for

10: Construct the reduced system Sred with only the variables in L
11: if Sred is underdetermined then
12: return ⊥
13: end if
14: Compute a solution matrix R for Sred
15: return R
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3 A Generalized Algorithm for Solving t-LCE

The algorithm presented in [8, Section 4] allows the retrieval of a solution with a
monomial structure from an underdetermined but structured linear system as detailed
in Proposition 1. Specifically, when constructing a linear system as in Equation (3),
the conditions in Proposition 1 are satisfied only when k = n/2. In this section, we
generalize the approach from [8, Section 4] to any k ∈ (0, n/2] and t not necessarily
equal to 2. By making a relaxation on the number of simultaneous guesses ℓ allowed
and on the number t of samples available, we derive a generalization of Proposition 1
that highlights the parameter settings for which the monomial solution can be retrieved
in a similar fashion as in Algorithm 1.

We begin by giving the details on multiple guessing and the corresponding gen-
eralized test in Section 3.1 and Section 3.2. Then, we introduce our algorithm in
Section 3.3.

3.1 Multiple Guessing

In this section, we explain how to extend Test 1 to the scenario of multiple guessing.
Once again, we take advantage of the structure of Q as follows. Instead of guessing
the position of only one non-zero entry, we consider guessing the position of ℓ non-zero
entries of Q as follows.

Let us consider a generalized version of the system in Equation (3) for t samples
of LCE

S :

A︷ ︸︸ ︷
G1 ⊗H ′

1

G2 ⊗H ′
2

. . .
Gt ⊗H ′

t

x = 0, (5)

where t <
⌊

n2

k(n−k)

⌋
+ 1, (i.e. below the bound given in Equation (2)), and x =

(x1,1, x1,2, . . . , xn,n)
⊤ is a vector of unknowns made by the unrolling of the entries of

Q.
Since every row and every column in Q has only one non-zero entry, if we know

that a set of ℓ entries {(i1, j1), . . . , (iℓ, jℓ)} is non-zero, then all the other entries on
the ith1 , . . . , ithℓ rows and on the jth1 , . . . , jthℓ columns are zero. Hence, we cannot have
two guesses on the same row or column because it would yield a solution matrix with
a row or a column made only of zeroes, which contradicts the structure of Q. So, we
need the indexes i1, . . . , iℓ to be pairwise different as well as the indexes j1, . . . , jℓ.

Let us analyze how many variables get removed when making ℓ simultaneous
guesses in a linear system as in Equation (5). Although with one guess we are able to
remove 2n − 1 variables, we do not remove ℓ · (2n − 1) of them when we perform ℓ
guesses. Indeed, the row-column sets of removed variables overlap. For instance, if we
consider a guessing of two entries (i1, j1) and (i2, j2), they produce two sets of erased
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variables:

{xi1,µ, xν,j1 : µ, ν ∈ [n]} and {xi2,µ, xν,j2 : µ, ν ∈ [n]}.

However, the intersection of these two sets is {xi1,j2 , xi2,j1}, so they overlap and we
remove only 2(2n− 1)− 2 variables. Every successive guessing decreases the number
of variables we remove because we have more overlaps.

We must point out an observation before giving the explicit number of variables
that we can remove. In the single guessing case, we are able to set the variable of
the non-zero entry to be 1, only implying that the monomial matrix Q is a multiple
of the solution of the system. This is not possible for the multiple guessing case. In
fact, if we set all the non-zero entries to 1 we assume that all of the guessed non-zero
entries have the same value in the monomial matrix, which is not necessarily true.
Hence, it might yield reduced systems that do not admit the monomial matrix Q as
a solution. However, we can still set one (and only one) of the non-zero entries to 1,
say the one corresponding to xi1,j1 . In what follows, we call extra columns the other
ones corresponding to the other guessed positions, in this case, xi2,j2 , . . . , xiℓ,jℓ .

In total, ℓ simultaneous guesses allow to remove 2(n−1)+2(n−2)+. . .+2(n−ℓ)+1 =
2ℓn − ℓ(ℓ + 1) + 1 variables from the system S, obtaining a reduced linear system of
the form

SL : ALx = bL,

where bL is given by the column in A corresponding to the variable set to 1, and the
total number of remaining unknowns is

n2 − (2ℓn− ℓ(ℓ+ 1) + 1) = (n− ℓ)2 + ℓ− 1.

In Test 2, we formalize the procedure to make ℓ guesses simultaneously.

Test 2 Let S be the system constructed from a t-LCE instance. For the multiple guess on the
entries L = {(i1, j1), (i2, j2), . . . , (iℓ, jℓ)} we construct a reduced system SL with (n−ℓ)2+ℓ−1
variables by doing the following on the unknowns of S:

– xi1,j1 = 1

– xik,µ = xν,jk = 0 for every µ ∈ {1, . . . , n} \ {jk} and ν ∈ {1, . . . , n} \ {ik}, for every
k = 1, . . . , ℓ

– xi2,j2 , . . . , xiℓ,jℓ are left unchanged and the relative columns in the matrix are called
“extra columns”

Accept the guess on the entries in L if SL admits at least one solution; reject otherwise.

In order to check whether the system admits a solution, we use the Rouché-Capelli
Theorem, i.e., we accept the guess if rank(AL) = rank(AL|bL), reject it otherwise.

Remark 2 In practice, we always consider ℓ < n − k because, as the authors of [8] already
highlighted, guessing a non-zero entry corresponds to puncturing the two equivalent codes.
In our framework, codes have length n and dimension k, meaning the redundancy is n−k. If
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we guess n−k entries, then we are puncturing n−k columns of the codes; in other words, we
are removing its redundancy. Without redundancy, all linear codes collapse to the identity
matrix and do not provide any useful information for distinguishing good from bad guesses.
Therefore, guessing becomes equivalent to a brute-force attack on the permutation P such
that Q = PD.

3.2 Analysis of Test 2

3.2.1 Robustness

Since we use the Rouché-Capelli Theorem to distinguish between good and bad
guesses, we need to prove that the framework of Test 2 is robust. Recall that the test re-
jects a guess L = {(i1, j1), (i2, j2), . . . , (iℓ, jℓ)} if and only if rank(AL) < rank(AL|bL).
This means that we need the rank of the matrix of coefficients to decrease after the
guess, in particular

rank(AL) < rank(A). (6)

Indeed, if rank(AL) = rank(A), then the span of the columns of AL is the same one
of A. So, if we augment the matrix AL of the vector bL, the rank cannot increase
because bL is a column of A. Therefore, we always get rank(AL) = rank(AL|bL) and
the test is passed, giving us no meaningful information on the variable. This scenario
is not functional since we want to erase as many variables as possible. As a matter of
fact, Equation (6) is a necessary condition for the test to work, and we have to ensure
that the rank of the matrix of coefficients always decreases after the guess. We prove
that the condition is satisfied in two steps: (i) we prove that matrix AL is never
full-rank, and (ii) we prove that matrix A is full-rank with overwhelming probability.

(i) The first step is achieved by means of Proposition 2. If we have a t-LCE instance
{
(
Gi,G

′
i

)
}ti=1 with parameters n, k such that t ≥ 2, k ≤ n/2 and n ≥ tk, then

we can set ℓ = n− tk+1. If ℓ < n−k, then the hypothesis tk > n− ℓ is satisfied,
too. Indeed,

n− ℓ = n− (n− tk + 1) = tk − 1 < tk.

Therefore, according to Proposition 2, the matrix AL defined in Equation (5) is
not full-rank.

Proposition 2 (Generalization of Proposition 1) Let q be a prime and let n, k, t, ℓ be
positive integers such that t ≥ 2, ℓ < n− k, k ≤ n/2 and n ≥ tk. Let us consider a set

of t pairs of matrices Ai ∈ Fk×(n−ℓ)
q ,Bi ∈ F(n−k)×(n−ℓ)

q for i = 1, . . . , t. If tk > n− ℓ,
then the rank of the matrix

C =


A1 ⊗B1

A2 ⊗B2

. . .
At ⊗Bt


is strictly less than tk(n− k) and

dim
(
kerL(C)

)
≥ (tk − n+ ℓ)(ℓt+ n− ℓ− tk).
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Proof First of all, let us define two matrices

A =


A1

A2

. . .
At

 ∈ Ftk×(n−ℓ)
q and B =


B1

B2

. . .
Bt

 ∈ Ft(n−k)×(n−ℓ)
q .

We observe that A admits a vector in its left kernel because the number of its rows is
larger than the number of its columns. This is ensured by the hypothesis tk > n−ℓ. Let
us call α = (α1, . . . ,αt) a non-zero vector in kerL(A). Now, we want to prove that the
intersection of the vector subspaces

⋂t
i=1 im(Bi) is positive dimensional. Towards this

direction, we can assume that dim(im(Bi)) = n − k, for any i = 1, . . . , t. Indeed, if it
was less than n− k for one of them, let us say Bj , then Bj would not be full-rank, and
neither would C. We can bound from below the dimension of this intersection using
Grassmann’s formula∗:

dim

( t⋂
i=1

im(Bi)

)
≥

t∑
i=1

dim(im(Bi))− (t− 1)(n− ℓ)

= t(n− k)− (t− 1)(n− ℓ) = ℓt+ n− ℓ− tk.

Thanks to the hypothesis n ≥ tk, we can lower bound the last expression as

ℓt+ n− ℓ− tk ≥ ℓt+ tk − ℓ− tk = ℓ(t− 1),

which is greater than zero because t ≥ 2 and ℓ > 0 by hypothesis. As a result, we
have dim

(⋂t
i=1 im(Bi)

)
> 0 so there exists a non-zero vector y ∈ Fn−ℓ

q such that

∀i = 1, . . . , t there is βi ∈ Fn−k
q satisfying βiBi = y. Let us now define a new vector v

as
v = (α1 ⊗ β1,α2 ⊗ β2, . . . ,αt ⊗ βt).

Then we have that

vC = (α1 ⊗ β1,α2 ⊗ β2, . . . ,αt ⊗ βt)


A1 ⊗B1

A2 ⊗B2

. . .
At ⊗Bt

 =

= α1A1 ⊗ β1B1 +α2A2 ⊗ β2B2 + . . .+αtAt ⊗ βtBt =

= α1A1 ⊗ y +α2A2 ⊗ y + . . .+αtAt ⊗ y =

=
(
α1A1 +α2A2 + . . .+αtAt

)
⊗ y = αA︸︷︷︸

=0

⊗y = 0.

As a matter of fact, v ∈ kerL(C) which implies that the rank(C) must be strictly less
than tk(n− k). In particular, we have that

kerL(A)⊗
t⋂

i=1

im(Bi) ≤ kerL(C).

By the property of the Kronecker product, the dimension of the tensor product of two
vector spaces is the product of their dimensions, so

dim
(
kerL(A)

)
· dim

( t⋂
i=1

im(Bi)

)
≤ dim

(
kerL(C)

)
.

We conclude the proof by noting that dim
(
kerL(A)

)
≥ tk − n+ ℓ. □

∗Let V be a finite-dimensional vector space and U,W ≤ V two subspaces. Then, we have dim(U∩W ) =
dim(U) + dim(W ) − dim(U + W ) ≥ dim(U) + dim(W ) − dim(V )
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Remark 3 An immediate consequence of choosing ℓ = n − tk + 1 is that the multiple
guessing approach does not affect the single sample case, i.e., LCE. Indeed, when t = 1,
we should take ℓ = n−k+1, which is strictly bigger than n−k. According to Remark 2,
this is equivalent to a brute-force attack.

Remark 4 The hypothesis k ≤ n/2 is used implicitly throughout the proof of Proposi-
tion 2. In fact, if we allow k > n/2, then t would necessarily be set to 1 so as not to
clash with the hypothesis n ≥ tk. When t = 1 is combined with the last hypothesis
tk > n− ℓ, it produces ℓ > n− k (which is pathological, as we discussed in Remark 2).
However, the case k > n/2 can be covered as well. We just need to adapt the hypothe-
sis: n ≥ tk becomes n ≥ t(n− k) and tk > n− ℓ becomes t(n− k) > n− ℓ. The proof is
almost identical to the one of Proposition 2, “swapping A with B”: we first show that
there is a non-zero vector in kerL(B) and then we prove that

⋂t
i=1 im(Ai) is positive

dimensional.

Now, we apply Proposition 2 to our scenario. We recall that performing a
guess on an entry (i, j) is equivalent to reducing the system (G ⊗ H ′)x = 0
by puncturing the code generated by G in i and the code generated by H ′ in
j. Similarly, performing a multiple guess is equivalent to puncturing the codes
generated by G and H ′ in several entries ∀i. In particular, the first coordinate
of the set of entries is the punctured columns of G, while the second coordinate
of the set of entries is the punctured columns of H ′.
So, let us define I = {i1, . . . , iℓ} and J = {j1, . . . , jℓ}, and let us call Ġi the

matrix Gi punctured in I and Ḣ ′
i the matrix H ′

i punctured in J , ∀i = 1, . . . , t.
If we call

Ȧ =


Ġ1 ⊗ Ḣ ′

1

Ġ2 ⊗ Ḣ ′
2

. . .

Ġt ⊗ Ḣ ′
t

 and M =


Ġ1

Ġ2

. . .

Ġt

 ,

then w.l.o.g. AL can be considered as the matrix Ȧ augmented of the extra
columns i.e. AL = (Ȧ|K), with K being a tk(n − k) × (ℓ − 1) matrix obtained
by sticking together the extra columns.
By applying Proposition 2 to Ȧ we get that dim

(
kerL(Ȧ)

)
≥ (tk− n+ ℓ)(ℓt+

n− ℓ− tk). Since AL = (Ȧ|K), we have that dim
(
kerL(AL)

)
≥ dim

(
kerL(Ȧ)

)
−

(ℓ− 1). Hence, the rank of matrix AL is

rank(AL) = rank(Ȧ)+ ℓ−1 ≤ tk(n−k)− (tk−n+ ℓ)(ℓt+n− ℓ− tk)+ ℓ−1. (7)

For our purposes, we need dim
(
kerL(AL)

)
≥ 1 which is ensured if

dim
(
kerL(Ȧ)

)
≥ ℓ. Therefore, we conclude that the first step holds true if

dim
(
kerL(Ȧ)

)
≥ ℓ. (8)

12



Under the hypothesis ℓ = n− tk+1, Equation (8) reduces to ℓ(t− 1) ≥ 1, which
always holds true since ℓ ≥ 1 and t ≥ 2.

(ii) For the second step, we need to introduce one more result tailored for t-LCE
instances.

Proposition 3 Let q ≥ 2 be a prime, let n, k, t be integers such that n ≥ 2, t ≥ 2 and
tk ≤ n and let {(

Gi,G
′
i

)}t
i=1

be a t-LCE instance with secret monomial matrix Q. Let us construct the matrices A
and M as

A =


G1 ⊗H ′

1

G2 ⊗H ′
2

. . .
Gt ⊗H ′

t

 and M =


G1

G2

. . .
Gt

 ,

H ′
i being the parity check matrices of G′

i.
Then, A is full-rank if and only if M is full-rank.

Proof See Appendix A. □

An immediate consequence of Proposition 3 is that we can reduce the study of
rank(A) to rank(M), with M being the same matrix defined in the statement of
Proposition 3. Since the matrices Gi are random ∀i, then we can consider M as
a matrix sampled randomly in Ftk×n

q . Recalling that the probability of a random

matrix in Fr×s
q being full-rank is 1− 1

q1+s−r , we can conclude that

P
(
A is full-rank

)
= P

(
rank(M) = tk

)
= 1− 1

q1+n−tk
. (9)

3.2.2 False Positives

Now that we have proved the robustness of Test 2, we can move to discuss its proba-
bility of giving false positives. From now on, if not specified, we assume the value of
ℓ to be

ℓ = n− tk + 1. (10)

Indeed, according to Proposition 2, this is the minimum value of ℓ that ensures us
that Test 2 works.

Similarly to Test 1, a correct multiple guess always passes Test 2 because the
reduced system admits a solution by construction. On the other hand, a wrong multiple
guess may or may not be accepted. Using an argument similar to the one used in [8,
Section 4.1], we can estimate the probability of Test 2 giving a false positive. Let us
consider a t-LCE instance, the relative linear system S : Ax = 0 and a set of ℓ entries
L = {(i1, j1), . . . , (iℓ, jℓ)} supposedly not corresponding to a set of non-zero entries in
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the monomial matrix. If we perform the multiple guesses on the variables in L, then
we obtain a reduced system

SL : ALx̄ = bL,

where x̄ is the new vector of variables according to Test 2.
Since we use Rouché-Capelli Theorem as a distinguisher between good and bad

guesses, we need to compute the probability that rank(AL) = rank(AL|bL). Thanks
to Proposition 3 and Equation (9), we know that rank(A) = tk(n − k) with high
probability. On the other hand, performing ℓ simultaneous guesses (with ℓ = n−tk+1)
reduces the rank of the system by a certain value d as already explained above, i.e.,
rank(AL) = tk(n− k)− d.

Let us now consider X = kerL(AL) and Y = kerL(bL). Their dimensions are

dim(X) = tk(n− k)− rank(AL) = d and dim(Y ) = tk(n− k)− 1.

Modelling X and Y as random vector sub-spaces, we can estimate the probability
of Test 2 to pass as follows. According to Rouché-Capelli Theorem, the test passes
if rank(AL|bL) = rank(AL) which is equivalent to X ⊂ Y . In order to compute
P(X ⊂ Y ) we recall that given a (finite-dimensional) Fq-vector space V and a subspace
W ≤ V , then a random vector v lies in W with probability qdim(W )−dim(V ). If we
consider a basis BX = {v1, . . . ,vd} for X then

P(vi ∈ Y ) =
qtk(n−k)−1

qtk(n−k)
=

1

q
, ∀i = 1, . . . , d.

Assuming that the events “vi ∈ Y ” are independent ∀i, we conclude that the prob-
ability of a false positive for Test 2 is approximately the product of the probabilities
above, which is 1

qd
.

From Proposition 2, we know that d = (tk − n + ℓ)(ℓt + n − ℓ − tk) − (ℓ − 1),
therefore we can state that for Test 2 we have the following probability

P(Test 2 gives a false positive) =
1

q(tk−n+ℓ)(ℓt+n−ℓ−tk)−(ℓ−1)
=

1

qd
. (11)

Experimental Validation. We conducted two experiments. The first experiment
validates our analysis of rank(AL). In each of the 1000 test trials, we generated random
t-LCE instances and performed a random multiple guess of ℓ entries. We computed
rank(AL) for each instance and averaged the results over all trials, as reported in
Table 1. Sometimes, the average rank is slightly lower than the upper bound estimated
in our analysis using Equation (7) as, for small q, some additional random linear
dependencies appear between the rows.

The second experiment tests the probability of false positives given by
Equation (11). Our experiment generates a t-LCE instance and then performs Test 2
on 10000 random guesses for some values of n, k, q, t, and ℓ. In addition, we discarded
degenerate cases where the matrix A was not full-rank. Each of the random guesses
was performed on the first ℓ rows of the monomial matrix. We do not perform the
guesses on random rows because of the design of Algorithm 2 (defined below). In fact,
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n k t ℓ q Average Rank Predicted Rank (Eq.7)

40
19 2 3

29
795.000 795

12 2 3 997.999 998

60
19 3 4

29
2329.000 2329

13 4 9 2417.000 2417

80
30 2 21

11
2978.935 2979

21 3 18 3680.944 3681

Table 1: In each experiment, we compute 1000 t-LCE instances and a random multiple
guess of ℓ entries and then we compute the rank of the matrix AL. The second-last
column reports the arithmetic mean of the 1000 ranks. The last column reports the
predicted rank according to the analysis following Proposition 2.

at line 2, a set I of ℓ rows is fixed, and then the guesses are performed only on entries
lying on those rows. In Table 2, we compare the average number of false positives
measured over 10 repetitions of the experiment against the expected number of false
positives according to Equation (11). One can observe that the data in the last col-
umn follows the trend of the experimental data, meaning that our estimation matches
the experiments. The code to reproduce the experiments is available at [12].

n k t ℓ q
False

Positives
Found

False
Positives
Expected
(Eq. 11)

5 481 400

33 16 2 2 7 197 204

11 76.7 82.6

5 22.8 16.0

33 15 2 4 7 3.80 4.16

11 1.50 0.68

5 112 80.0

30 14 2 3 7 37.5 29.1

11 8.60 7.51

5 4.00 3.20

30 13 2 5 7 0.50 0.59

11 0.10 0.06

Table 2: In each experiment, we run 10000 times Test 2 and record how many
false-positives are accepted. The second-last column reports the arithmetic mean
of 10 experiments. The last column reports the expected number of false-positives
according to Equation (11). ℓ was computed as n− tk + 1.
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3.3 A Generalization of Algorithm 1

To make Test 2 viable, we must perform it on all the combinations produced by a set
of ℓ rows (or, equivalently, ℓ columns). In other words, we have to choose a set of ℓ
rows (or columns) of the monomial matrix and then try all the possible combinations
of ℓ guesses that can be done on those rows (or columns). This means that for an
ℓ-multiple guess we have to check n!

(n−ℓ)! ≈ nℓ combinations.

Algorithm 2 Procedure for ℓ multiple guess

Input: a t-LCE instance, an integer ℓ and a list V containing the variables of the
system
Output: a list of surviving variables

1: Let L = {(ι1, ι2, . . . , ιℓ) ∈ [n]ℓ : ιµ ̸= ιν , ∀µ ̸= ν} and choose I = (i1, . . . , iℓ) ∈ L
2: Let W = [xi1,1, . . . , xiℓ,n] be a list containing all the variables related to the ℓ rows

i1, . . . , iℓ
3: for ω ∈ L do
4: if Test 2 with L = {(i1, ω[1]), . . . , (iℓ, ω[ℓ])} is accepted then
5: Remove the variables xi1,ω[1], . . . , xiℓ,ω[ℓ] from W
6: end if
7: end for
8: Remove from V all the variables that are stored in W
9: return V

Moreover, we recall that the number of surviving variables depends on the
probability of false positives. In particular,

#{surviving variables} = n!

(n− ℓ)!
P(Test 2 gives a false positive) =

=
n!

(n− l)!

1

qd
≈ nℓ

qd
.

One should notice the following observation regarding this quantity: if it is too high,
it might be that for every variable xiα,β ∈ W there exists at least one combination
ω ∈ L such that xiα,β ∈ L = {(i1, ω[1]), . . . , (iℓ, ω[ℓ])} and L is accepted by Test 2.
According to the design of Algorithm 2, this scenario does not allow the removal of any
variable from V, resulting in a failure. On the other hand, the best scenario is when
only one combination is accepted by Test 2: the correct one, i.e., the one corresponding
only to the non-zero entries of the selected ℓ rows. This happens when the number of
combinations is less than the inverse of the probability of a false positive, i.e., when

nℓ < qd. (12)

As long as this last condition holds, the procedure leads to a very small number of
surviving variables. Afterward, one can repeat the procedure on another set of rows
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(or columns) until the total number of surviving variables is less than the number
of equations in the system and then solve it with Gaussian elimination. The whole
strategy is outlined in Algorithm 3.

Algorithm 3 Solving t-LCE with multiple guess

Input: a t-LCE instance and an integer ℓ
Output: a monomial matrix M that solve Equation (5)

1: Let V =
[
xi,j : i, j ∈ [n]

]
be a list containing all the variables of the system

2: while #V > tk(n− k) do
3: Let W be the output of Algorithm 2 with inputs ℓ and V.
4: V←W
5: end while
6: Let x be a column vector with the entries of V
7: Solve Ax = 0 and let M be a solution
8: return M

Analysis of Algorithm 3. First, we prove that the algorithm terminates. The
core of the algorithm is represented by the while loop at lines 2-5. The condition nℓ <
qd ensures us that the number of surviving variables at each execution of Algorithm 2
is approximately ℓ. Thus, every time one iteration of the while loop is executed, the
number of variables decreases. So, the algorithm enters the loop only a finite number
of times, ensuring it terminates within a finite amount of time.

We now give the complexity of Algorithm 3. If we assume that at every iteration
of the while loop, the set I chosen in line 2 of Algorithm 2 contains only rows that
have not been considered by previous iterations, then every iteration removes ℓ(n−1)
variables. So, the number r of iterations of the while loop must be such that

tk(n− k) > n(n− rℓ) + rℓ.

We rearrange the equation as

tk(n− k)− n2 > rℓ(1− n) ⇐⇒ r <
tk(n− k)− n2

ℓ(1− n)
,

which means that r ∈ O(n). The complexity of Algorithm 2 is O(nℓ+2ω) because it
consists of O(nℓ) rank computation, whose cost is O(n2ω) each. We conclude that the
time complexity of Algorithm 3 is

O(nℓ+2ω+1).

This formula justifies Equation (10): choosing the minimum value for ℓ improves
drastically the complexity of Algorithm 3.
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Finally, given that it is possible to not store the whole list L in memory by com-
puting it on the fly, then the algorithm is polynomial in memory.

In order to test the correctness of Algorithm 3, we implemented it in SageMath

[13], and the code is available at [12]. As an example, we solved an instance with
n = 26, k = 12, q = 61, t = 2, ℓ = 3 in 162 seconds on a MacBook Pro with processor
2.4 GHz 8-Core Intel Core i9, 64 GB of RAM, and running it on a single core.

4 Cryptographic Implications

4.1 Implications on the Sample Complexity of LCE

We now discuss how Algorithm 3 improves the sample complexity of LCE given in [8,
Section 3], i.e., the smallest t such that t-LCE is solvable in polynomial time. We recall
that, for any integers n, k with k ≤ n, it is always possible to recover efficiently the
secret monomial matrix Q if the number of samples is

t ≥
⌊

n2

k(n− k)

⌋
+ 1.

Indeed, it was shown in [8, Section 3] that in this case, the system S : Ax = 0 in
Equation (5) becomes determined, allowing us to retrieve the vector of entries of the
monomial matrix Q via Gaussian elimination. However, for smaller values of t, the
system is underdetermined, and this approach does not work anymore. In fact, in this
case, the space of solutions has dimension larger than one, and retrieving the monomial
solution out of a basis becomes hard: formally, the complexity is exponential in the
dimension of ker(A). Therefore, solving a t-LCE instance with this approach would
not be efficient.

Equation (2) gives us an upper bound on the number of variables sufficient to
retrieve the monomial matrix Q in polynomial time. However, it was shown in [8,
Section 4] that for k = n/2, there exists an algorithm that recovers the monomial
matrix for t = 2 only and with polynomial-time complexity O(n2+2ω). Now, thanks to
Algorithm 3, we improve the bound for a whole new class of parameters. Let k = n−c

t ,
with c being a constant integer. Given t samples, the complexity of Algorithm 3 is

O
(
nℓ+2ω+1

)
= O

(
nn−tk+2ω+2

)
= O

(
nn−tn−c

t +2ω+2
)
= O

(
nc+2ω+2

)
.

Since c is constant, then the algorithm runs in polynomial time. In this case, the value
of t is

t =
n− c

k
≤ n

k
<

n

k
· n

n− k︸ ︷︷ ︸
>1

=
n2

k(n− k)
.

Thus, Algorithm 3 improves the sample complexity of LCE with respect to the bound
in Equation (2). We can also notice that the case k = n/2 addressed in [8, Section
4] is no more than the specific case t = 2 and c = 0 of our class of parameters. To
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highlight such an improvement, we compare in Table 3 the sample complexity from
[8] against the one provided by Algorithm 3 for a range of code rates.

k Sufficient t by [8]
Sufficient t by
Algorithm 3

128 2 2
127 5 2
126 5 2

85 5 3
84 5 3
83 5 3

64 6 4
63 6 4
62 6 4

51 7 5
50 7 5
49 7 5

Table 3: Comparison between sample complexity of Algorithm 3 and sample com-
plexity resulting from [8] for n = 256.

4.2 Comparisons with CF-MitM

We now compare Algorithm 3 with state-of-the-art solvers for t-LCE. At the moment,
the fastest solver for LCE is represented by the Canonical Form Meet-in-the-Middle
(CF-MitM) attack from [10] whose complexity is

O

(√(
n

n− k

))
= O

(√(
n

k

))
. (13)

This complexity is referred to the scenario with only one sample. Yet, if we assume
k < n/2, we can show that more samples can improve the complexity of the algorithm.
Indeed, every sample is a pair of codes C, C′ with generating matrices Gi,G

′
i ∈ Fk×n

q

such that G′
i = GiQ for i = 1, . . . , t. Notice that if we join together two linear codes

with parameters (n, k), their union is again a code but with parameters (n, k′), with
k′ being an integer in the interval [k, 2k]:[

G1

G2

]
Q =

[
G1Q
G2Q

]
=

[
G′

1

G′
2

]
∈ F2k×n

q .

Remark 5 The value of k′ cannot be known a priori because it depends on the two original
codes, which might have some linear dependency. However, for random codes, the dimension
of the combined code is highly likely to equal the sum of the dimensions of the individual
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codes for large values of q, as overlaps in random spaces are rare. In fact, the probability of
a linear dependence between the two linear codes is roughly

P(k′ < 2k) =
k∑

d=1

P(k′ = 2k − d) ≈ 1

qn−2k+1
+ o

(
1

qn−2k+2

)
. (14)

For the union of t codes, Equation (14) can be generalized by replacing 2 with t, and k′ < tk.
Since in applications (e.g., [4]) we deal with random codes and relatively big primes (for small
values of q the LCE problem is vulnerable to other types of attack [14]), the probability of
linear dependence is small – however, not always negligible. In the following, we assume that
the dimension of the union of two random codes is the sum of their dimensions. However,
we will also show how the complexity changes when this event occurs.

By induction, we can join together an arbitrary amount s of codes with s ≤ t, thus
producing a (n, sk) code. In this way, we have just proved that we can reduce t-LCE
with parameters (n, k) to LCE with parameters (n, sk) for any s ≤ t. Therefore, the
complexity of CF-MitM becomes

min

{
O

(√(
n

sk

))
: s = 1, . . . , t and sk < n

}
. (15)

Note that if we join together too many codes, then the reduction does not work. In
fact, if s ≥ n/k then the union of s codes is (with high probability according to
Remark 5) the whole vector space Fn

q since

s · k ≥ n

k
· k ≥ n.

Therefore, we would reduce to a trivial instance of LCE whose solution does not give
any information on the monomial matrix Q. For this reason, Equation (15) also
checks that sk is strictly less than n. Moreover, this also means that from the point of
view of the CF-MitM attack, although the number of samples is greater than ⌊n/k⌋,
the hardness of the problem is the same as that of ⌊n/k⌋-LCE. Hence, we restrict our
analysis to the regime t = ⌊n/k⌋.

The complexity of Algorithm 3 is O
(
nn−tk+2ω+2

)
and we observe that it is signifi-

cantly bigger than the complexity of CF-MitM in most of cases (see Table 4). Even
in the case k = n−c

t explained in Section 4.1, CF-MitM outperforms the polynomial-
time complexity of Algorithm 3. Indeed, if k = n−c

t with c > 0 being a constant, then
the complexity of CF-MitM is

min

{
O

(√(
n

sk

))
: s = 1, . . . , t

}
= O

(√(
n

tk

))
=

O

(√(
n

n− c

))
= O

(√(
n

c

))
≈ O(n

c
2 ),
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according to Equation (15). In contrast, the time complexity of Algorithm 3 when
k = n−c

t is O(nc+2ω+2).

4.2.1 Special case of n = tk

There is a case when Algorithm 3 is a better solver than CF-MitM. Indeed, if n = tk,
the reduction from t-LCE to LCE with parameters (n, tk) does not work. In this case,
if we join together all the generators Gi (resp. G′

i), we end up with a (n, n) linear
code, i.e., the whole vector space Fn

q (at least with high probability, as pointed out
in Remark 5). Therefore, we would reduce to a trivial instance of LCE whose solution
does not give any information on the monomial matrix Q. Hence, since we cannot join
together all the generators, we can select a number s < t of generators. The complexity
in this case is

min

{
O

(√(
n

sk

))
: s = 1, . . . , t− 1

}
= O

(√(
n

k

))
.

The last equality holds because binomial coefficient
(
n
x

)
is smaller when x is closer to

either n or 0. So, the smallest values occur when s = 1 or s = t− 1. Since k divides n
and, by the properties of the binomial coefficient, we have that(

n

(t− 1)k

)
=

(
n

n− k

)
=

(
n

k

)
.

Thus, in the case k divides n, having more samples from the same monomial matrix
does not decrease the cost of the CF-MitM attack. On the other hand, the case n = tk
is of the type k = n−c

t in particular with c = 0, then Algorithm 3 runs in polynomial
time and outperforms asymptotically CF-MitM.

Table 4 shows the comparison between the complexity in bits of Algorithm 3 and
CF-MitM with n = 256 and several values of t and k. As we can see, the complexity
of Algorithm 3 rapidly increases with ℓ while the complexity of CF-MitM spikes
sharply when k divides n.

As highlighted in Remark 5, there is a non-negligible probability that the union of
the codes is not full-rank. When this happens, the complexity of the CF-MitM attack
changes. In the regime k < n/t with t samples the cost increases, indeed√(

n

kt− d

)
>

√(
n

tk

)
, d ∈

{
0, 1, 2, . . . ,

n

2

}
.

On the other hand, in the regime k = n/t the cost decreases sharply because in this
case the reduction leads to a non-trivial LCE instance. Table 4 reports only the most
likely complexity, i.e. the full-rank case.
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t k ℓ = n− tk + 1
Complexity

of
Algorithm 3

Complexity
of CF-MitM

128 1 60.9 125.8

127 3 76.9 7.5

2 126 5 92.9 13.7

125 7 108.9 19.2

124 9 124.9 24.3

110 37 348.9 73.1

85 2 68.9 4

3 84 5 92.9 13.7

83 8 116.9 21.8

64 1 60.9 101.8

4 63 5 76.9 13.7

62 9 124.9 24.3

51 2 68.9 4

5 50 7 108.9 19.2

49 12 148.9 31.2

Table 4: Comparison between Algorithm 3 and CF-MitM [10]. The complexities
of the two algorithms are given in log2 scale and n = 256.

5 Conclusions

In this work, we extended the Linear Code Equivalence problem analysis in the mul-
tiple sample setting, generalizing previous results to any code rate and number of
available LCE public keys. In addition to providing new tighter upper bounds on the
sample complexity of LCE, our results demonstrate that irrespective of the code rate,
the complexity of solving LCE significantly decreases when multiple LCE instances
with the same secret are available, compared to when only one instance is accessible.
We introduced a generalized algorithm that adapts to different code rates and com-
pared it against the CF-MitM algorithm. Despite our algorithm is more efficient in
memory, CF-MitM has a better time complexity in most scenarios than our algorithm.
Nevertheless, we discovered some cases in which our algorithm outperforms CF-MitM.
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A Proof of Proposition 3

Proposition 3 Let q ≥ 2 be a prime, let n, k, t be integers such that n ≥ 2, t ≥ 2 and tk ≤ n
and let {(

Gi,G
′
i

)}t
i=1

be a t-LCE instance with secret monomial matrix Q. Let us construct the matrices A and M
as

A =


G1 ⊗H ′

1

G2 ⊗H ′
2

. . .
Gt ⊗H ′

t

 and M =


G1

G2

. . .
Gt

 ,

H ′
i being the parity check matrices of G′

i.
Then, A is full-rank if and only if M is full-rank.

Proof For the sake of simplicity, we prove the result in the case that every matrix Gi and
H ′

i are in systematic form. This does not come with any loss of generality. Indeed, let us call
Ui ∈ GLk(Fq) and Vi ∈ GLn−k(Fq) the matrices that turn Gi and H ′

i in systematic form,
respectively for i = 1, . . . , t. Then, the block diagonal matrix

S =


U1 ⊗ V1 0 · · · 0

0 U2 ⊗ V2 · · · 0
...

...
. . .

...
0 0 · · · Ut ⊗ Vt


turns every matrix in A in its systematic form, viz.

Ã = SA =


(U1 ⊗ V1)(G1 ⊗H ′

1)
(U2 ⊗ V2)(G2 ⊗H ′

2)
...

(Ut ⊗ Vt)(Gt ⊗H ′
t)

 =


U1G1 ⊗ V1H

′
1

U2G2 ⊗ V2H
′
2

...
UtGt ⊗ VtH

′
t

 =


( Ik M1 )⊗ (−M ′⊤

1 In−k )

( Ik M2 )⊗ (−M ′⊤
2 In−k )

...

( Ik Mt )⊗ (−M ′⊤
t In−k )

 .

Moreover, S is full rank since it is made out of blocks in the linear group. Hence, rank(Ã) =
rank(A). We can continue the proof focusing on Ã instead of A because we have proved they
have the same rank. In the following, every occurrence of A must be thought of as Ã. With
a similar argument, we can consider the matrices in M as in systematic form. Thus,

M =


( Ik M1 )
( Ik M2 )

...
( Ik Mt )

 .
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Let us assume that A is not full-rank. So, rank(A) < tk(n − k) there exists a vector

v ∈ Ftk(n−k)
q such that vA = 0. We can think of it as a concatenation of vectors in Fn−k

q

v = (v1
1 , . . . ,v

1
k,v

2
1 , . . . ,v

2
k, . . . ,v

t
1, . . . ,v

t
k).

If we focus only on the columns related to ( Ik Mi )⊗ In−k we get

(v1
1 , . . . ,v

1
k,v

2
1 , . . . ,v

2
k, . . . ,v

t
1, . . . ,v

t
k)



In−k 0 . . . 0 | m1
1,1In−k . . . m1

1,n−kIn−k

0 In−k . . . 0 | m1
2,1In−k . . . m1

2,n−kIn−k

. . .

0 0 . . . In−k | m1
k,1In−k . . . m1

k,n−kIn−k

In−k 0 . . . 0 | m2
1,1In−k . . . m2

1,n−kIn−k

. . .

0 0 . . . In−k | mt
k,1In−k . . . mt

k,n−kIn−k


=

(∑
i

vi
1,
∑
i

vi
2, . . . ,

∑
i

vi
t,
∑
i,j

vj
im

j
i,1,

∑
i,j

vj
im

j
i,2, . . . ,

∑
i,j

vj
im

j
i,n−k

)
= 0,

which yields a vector in Ftkq in the left kernel of M (for instance, one could take the first

entry of each vj
i ). So, rank(M) < tk.

For the second implication, let us assume that w = (w1,w2, . . . ,wt) ∈ kerL(M).
First, we prove that there exists a vector y ∈ Fn−k

q such that y(−M ′⊤
1 In−k ) =

y(−M ′⊤
2 In−k ) = . . . = y(−M ′⊤

t In−k ). We consider two cases:

Case n
t+1 < k < n

t : let us consider the following kernels

ker
(
(−M ′⊤

1 In−k )− (−M ′⊤
2 In−k )

)
= ker

(
M ′⊤

2 −M ′⊤
1

)
,

ker
(
(−M ′⊤

2 In−k )− (−M ′⊤
3 In−k )

)
= ker

(
M ′⊤

3 −M ′⊤
2

)
,

...

ker
(
(−M ′⊤

t−1 In−k )− (−M ′⊤
t In−k )

)
= ker

(
M ′⊤

t −M ′⊤
t−1

)
.

It is trivial to notice that any vector in the intersection of all kernels above is a valid y. We
can show that they have non-trivial intersection by looking at their dimensions. Each kernel
is a vector subspace in Fn−k

q and has dimension at least (n− k)− k = n− 2k. So,

dim

( t−1⋂
i=1

ker(M⊤
i+1 −M⊤

i )

)
≥ (n− 2k)(t− 1)− (n− k)(t− 2) = n− kt.

Since we assumed k < n/t, we can conclude that the dimension is strictly positive. So, it
contains at least one non-zero vector that can be the vector y we require.

Case k = n
t : let us consider the matrix

N =


( Ik M ′

1 )
( Ik M ′

2 )
...

( Ik M ′
t )

 .
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We can observe that N can be obtained from M by means of multiplying by the monomial
matrix Q and computing the systematic forms of the codes (which is multiplying each chunk
of rows by an invertible matrix Xi ∈ Fn−k×n−k

q ):

N =


X1( Ik M1 )
X2( Ik M2 )

...
Xt( Ik Mt )

Q.

Let w = (w1, . . . ,wt) ∈ Ftkq be the vector such that wM = 0, then the vector w̃ =

(w1X
−1
1 , . . . ,wtX

−1
t ) ∈ kerL(N). The details of the computation are left to the reader.

Since we assumed k = n/t, then N is a square matrix, and it is not full-rank. Therefore, its
transpose is not full-rank either, i.e., there is a vector (x,y) ∈ Fnq such that

(x, y) ·

[
Ik Ik . . . Ik

M ′⊤
1 M ′⊤

2 . . . M ′⊤
t

]
=

(
x+ yM ′⊤

1 ,x+ yM ′⊤
2 , . . . ,x+ yM ′⊤

t

)
= 0.

Thus, (x, y) = y(−M ′⊤
1 In−k ) = y(−M ′⊤

2 In−k ) = . . . = y(−M ′⊤
t In−k ).

Now, by direct computations and exploiting the properties of tensor product and of the
vectors, we get

(v ⊗ y)A =
t∑

i=1

vi( Ik Mi )⊗ y(−M ′⊤
i In−k ) =

( t∑
i=1

vi( Ik Mi )

)
⊗ x = vM︸︷︷︸

=0

⊗x = 0.

Therefore, v ⊗ y lies in the left kernel of A whose rank is strictly less than tk(n− k). □
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