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Abstract. Cloud storage offers convenient data access and sharing, but
security concerns remain. Existing secure cloud storage solutions of-
ten lack essential features like data integrity, multi-cloud support, user-
friendly file sharing, and efficient search. This paper proposes a novel
secure cloud storage system that addresses these limitations. Our sys-
tem uses distributed storage and attribute-based encryption to enhance
data availability, access control, and user experience. It also enables pri-
vate and efficient file search and data retrievability verification. This ap-
proach overcomes the trade-offs present in prior work, offering a secure
and user-friendly solution for cloud data management.

Keywords: Multi-cloud Storage · Attribute Based Encryption · Search-
able Encryption · Proof of Retrievability.

1 Introduction

The IT industry has witnessed a drastic rise in the reliance on cloud comput-
ing. The cloud offers a wide array of meaningful services to individuals and
organisations, ranging from computing and networking to file storage and data
processing. In this constantly evolving landscape of cloud services, cloud storage
has emerged as one of the key solutions. It allows users to store their data and
access it from anywhere at any time.

Classical cloud storage services offer data sharing features, empowering data
owners to grant access to other users on their stored data. While traditional
cloud storage services provide essential features to their costumers, they often
lack the security-centric approach necessary to provide meaningful protection
of users’ data. Namely, cloud storage service providers potentially have direct
access to such data when users rely on their services, which raises serious privacy
and confidentiality concerns. Also, various incidents such as hardware failures,
network congestion and malicious actions can lead to data loss or corruption.

To overcome limitations in data security, recent research has proposed several
secure cloud storage systems. Despite offering data privacy, many of these secure



cloud storage solutions lack essential features like guaranteeing data integrity,
working seamlessly with multiple cloud storages, or enabling user file sharing.
As cloud usage grows tremendously, allowing users to search for particular files
also becomes essential for efficient management of their data. This is particularly
important in the context of multi-user systems, where some parties might need
the ability to search for files shared by others. Ease of use is another crucial, yet
often neglected, factor. Ideally, users shouldn’t need to manage a secret key until
they want to retrieve their data. Unfortunately, a limited number of solutions
address these critical needs for secure, user-friendly cloud storage. Furthermore,
they often come with limitations such as requiring a trusted server or a single
cloud storage.

Our Contributions. In this paper, we propose a secure cloud storage system that
brings back together the essential features of the native cloud storage, while ef-
ficiently addressing the security issues outlined above. Our solution abstracts
the storage of data across multiple cloud storages by relying on a proxy that
interacts with the cloud storages on behalf of the data owner. By strategically
distributing the data across multiple cloud storages, we enhance retrievability
and ensure resilience against data loss, corruption, or deletion. Our protocol
provides a secure way to share data among multiple users, while ensuring that
only authorized parties can access the data. It frees the data owners from man-
aging secret keys, allowing for a keyless and more user-friendly experience. Our
construction also provides the ability to privately and efficiently search for files
stored in the cloud. Additionally, we provide a mechanism to periodically check
the retrievability of the stored data. We outline the main contributions of this
paper as follows:

Enhanced security of data. We build on various primitives to provide
a secure cloud storage system that ensures the confidentiality, integrity, and
retrievability of the stored data. Our scheme is secure against honest-but-curious
proxies and dishonest cloud storages trying to break privacy. In addition, we
provide efficient protection against data corruption attempts by the providers.

Focus on user experience. To bring back the user experience of native
cloud storage, we provide a keyless solution, where users do not need to manage
secret keys. Data-sharing is made easy to allow efficient collaboration among
users. By providing a private and efficient search mechanism, we offer an addi-
tional feature that facilitates data management, especially in multi-user systems.

The rest of this paper is organized as follows. In Section 2, we start by
introducing the primitives used in our solution. Then, we present the proposed
secure cloud storage protocol in Section 3. In Section 4, we provide the necessary
information to understand the security of our scheme. In Section 5, we present
our proof of concept of our protocol and evaluate its performance. Finally, we
provide an overview of related solutions in the literature in Section 6 before
concluding the paper.



2 Preliminaries

In this section, we review the main cryptographic primitives used in our proto-
col. We begin with attribute-based encryption, which enables fine-grained access
control over encrypted data. Next, we discuss identity-based signature, which
streamlines the process of verifying digital signatures. We then introduce search-
able encryption, allowing users to store encrypted data on a server while enabling
keyword searches over it. Finally, we cover proof of retrievability, a technique
that ensures users can retrieve and verify the retrievability of their data stored
remotely. The notations used in this paper are summarized in Table 2.

2.1 Attribute-Based Encryption

Attribute-Based Encryption (ABE) is a cryptographic primitive that allows fine-
grained access control on encrypted data. In ABE, decryption is possible only if
the user’s attributes satisfy the access policy.

We focus on Ciphertext-Policy Attribute-Based Encryption (CP-ABE) be-
cause the access policy is embedded in the ciphertext, while attributes are asso-
ciated with a decryption key. This eases data sharing, as a user can specify whom
they share the file with directly within the file. Previous work, such as [12, 26],
has also highlighted the advantages of this approach.

We first define an access structure (a.k.a access policy) and then we present
a CP-ABE scheme with decryption outsourcing.

Definition 1 (Access Structure). Let Att = {att1, att2, . . . , attm} be a finite
set of attributes. An access structure over Att is a family A ⊆ 2Att \ {∅}. A set
in A is said to be authorized; otherwise it is unauthorized.

Given a set of attributes Γ ⊆ Att, we write Γ ∈ A if and only if there exists
A ⊆ Γ such that A is authorized.

Ciphertext-Policy Attribute-Based Encryption (CP-ABE). We describe
a CP-ABE with decryption outsourcing, such as the one introduced by the
scheme of Green et al. [11]. The scheme consists of the following algorithms:

Setup(1λ) → (mpkABE,mskABE): The algorithm takes as input the security
parameter λ, it outputs the public parameters mpkABE and a master secret key
mskABE.

Encrypt(mpkABE,M,A) → CT: The algorithm takes as input the public pa-
rametersmpkABE, a messageM and an access structure A. It outputs a ciphertext
CT.

KeyGen(mskABE, Γ ) → (SK,TK): The algorithm takes as input the master se-
cret key mskABE and an attribute set Γ . It outputs a private key SK and a
transformation key TK.

Transform(TK,CT) → CT′ or ⊥: The algorithm takes as input a transfor-
mation key TK for a set of attributes Γ and a ciphertext CT that was encrypted
under an access structure A. It outputs the partially decrypted ciphertext CT′

if and only if Γ ∈ A and ⊥ otherwise.



Decrypt(SK,CT′) → M : The decryption algorithm takes as input a private
key SK and a partially decrypted ciphertext CT′ that was returned by the
Transform algorithm. It outputs the message M .

2.2 Identity-Based Signature

Shamir first introduced the concept of identity-based cryptography (IBC) in [24].
In an IBC system, a user’s public key is derived directly from their identity (e.g.,
an email address or name), eliminating the need for traditional certificates used
in public key infrastructure (PKI). A trusted entity, known as a private key
generator (PKG), computes private keys using a master secret and distributes
them to users. Since the introduction of IBC, numerous identity-based signature
(IBS) schemes have been proposed [10], offering various approaches to build
efficient and secure IBS systems.

An IBS scheme typically consists of the following four algorithms:

Setup(1λ) → (mpkIBS,mskIBS): This algorithm takes a security parameter λ
and outputs a master public key mpkIBS and a master secret key mskIBS.

Extract(mskIBS, ID) → sk: Given the master secret keymskIBS and a user iden-
tity ID, this algorithm generates a private key sk associated with the identity
ID.

Sign(sk, ID,m) → Σ = (σ, ID): Using the private key sk, the identity ID, and
the message m, this algorithm produces a signature Σ = (σ, ID).

Verif(mpkIBS,m,Σ = (σ, ID)) → {0, 1}: This algorithm takes the master pub-
lic key mpkIBS, a message m, and a signature Σ. It returns 1 if the signature is
valid and 0 otherwise.

2.3 Searchable Encryption

Searchable encryption is cryptographic primitive that allows a user to store its
data in an encrypted form on a server, while enabling keyword search over the
encrypted data. There are two branches of searchable encryption: Symmetric
Searchable Encryption (SSE) and Public key Encryption with Keyword Search
(PEKS). In SSE, only the secret key holder can encrypt data and perform
searches, while in PEKS, anyone with the public key can encrypt, but only
the private key holder can search. This work focuses on SSE.

Index based SSE scheme. In an index-based SSE scheme, the user first in-
dexes the data by extracting relevant keywords that can be searched later. The
user then creates an encrypted index and encrypts the data before sending it
to the server. There are two index types: (i) a direct index, which links docu-
ments to keywords and is efficient for updates, and (ii) an inverted index, which
links keywords to documents and is efficient for search. Since, in our case, users
gradually upload files to the server, the direct index is better suited to efficient
updates without reindexing.

When searching for a keyword w, the user generates a trapdoor with their
private key and sends it to the server. The server then uses the trapdoor to



search and retrieve pointers to the relevant encrypted documents. Formally, a
searchable encryption scheme is defined by the following algorithms:

Setup(1λ) → Ksse: The algorithm takes a security parameter λ and outputs
a private key Ksse.

Build(M, I,Ksse) → CI : The algorithm takes a message M indexed by a set
of keywords I and the private key Ksse. It outputs the searchable ciphertext CI .3

TrapGen(w,Ksse) → Tw: The algorithm takes a keyword w and the private
key K. It outputs the trapdoor Tw for w.

Search(CI , Tw) → M or ⊥: The algorithm takes a searchable ciphertext CI
and a trapdoor Tw. It outputs the message M if w ∈ I, and ⊥ otherwise.

The private key Ksse is essential for constructing searchable ciphertext and
generating trapdoors. Therefore, in a multi-user setting, this key must be shared
among all users [7].

Security of SSE. The security of searchable encryption is typically charac-
terized as the requirement that nothing be leaked beyond the access pattern
and the search pattern [7, 9]. The access pattern refers to the result of a query
search, which is the set of documents that contain a keyword. If the server re-
turns the same document set for the same query search, then the access pattern
is leaked. The search pattern, in other hand, reveals whether the same search
was performed in the past or not.

2.4 Proof of Retrievability

The Proof of Retrievability (PoR) is a cryptographic primitive that allows an
entity to verify the retrievability and retrieve data stored in the cloud over time
without requiring a data download. It does this by challenging servers to prove
that the data is retrievable. PoR schemes are resilient to partial data corruption
or deletion. PoR schemes encompass a variety of techniques and contexts, as
outlined in the comprehensive survey by Tan et al. [27].

To enhance data retrievability, we focus only on PoR schemes using sev-
eral cloud storages. In our protocol, all responsibilities for the PoR scheme are
delegated to the proxy. Thus, only the proxy has to verify data retrievability.
Schemes where only one party is allowed to verify retrievability are referred to
as private PoR schemes.

The delegation is motivated by the fact that the user may not always have
regular access to the cloud. It also helps reduce the user’s computational load.
Since the proxy is assumed to be honest but curious, it poses no security threats.

A private PoR scheme run by the proxy can be described by the primitives:

KeyGen(1λ) → sk: Using the security parameters λ the proxy generates a
secret key sk.

3 The message M corresponds to the unique identifier of the document containing the
keyword w.



Encode(sk, f) → s1, . . . , sℓ: The proxy processes the original file f into f ′4.
Then f ′ is split into shares s1, . . . , sℓ where ℓ is the number of servers.

Check(sk, id) → (⊤,⊥): The proxy generates a challenge c for file identifier
id using sk and sends it to the servers. Each server computes a response r and
sends it to the the proxy. Finally, the proxy can verify if the file identified by id
is retrievable.

Retrieve(id) → f : The proxy retrieves the file f identified by id.

3 Our Construction

3.1 Protocol Overview

The protocol involves four key entities: a trusted authority, a proxy, cloud storages
and users. The trusted authority is responsible for generating and distributing
public keys, while users authenticate with the authority to obtain their private
keys. The proxy manages data storage across cloud storages and verifies data
retrievability. The cloud storages store the data and respond to the proxy’s chal-
lenges during the proof of retrievability phase. Users include both data owners,
who upload their data, and data users, who download it. Figure 1 illustrates the
interactions and roles of these entities within the protocol.

Our protocol securely stores data across ℓ cloud storages, enabling authorized
users to download it, even if they did not initially upload it. Users are not
required to store cryptographic material to upload or retrieve data.

The protocol consists of the following algorithms:

Setup(1λ): The algorithm takes a security parameter λ and generates the
cryptographic parameters for the system.

KeyGen(ID, Γ ): The trusted authority generates a signature key sk using the
user’s ID, and a decryption key dk using the user’s attributes Γ . The signature
key is required for the upload operation, while the decryption key is needed
for the download operation. The user requests the corresponding key before
uploading or downloading a file.

Upload(f, I,A): The user uploads a file f , associated with a set of keywords
I and an access policy A. The file is uploaded to a proxy, which forwards it to
cloud storages. The file can be retrieved using the keywords in I, and only users
whose attributes satisfy the access policy A are allowed to download it.

Download(w): This algorithm takes a keyword w and retrieves all files asso-
ciated with that keyword that have been shared with the current user.

RetrievabilityCheck(idf ): The proxy verifies if the file f identified by idf is
retrievable.

3.2 Detailed Protocol

In the following sections, we describe in details the setup, key generation, upload,
download, and proof of retrievability phases of the protocol.

4 This can be done using an error-correcting code such as Reed-Solomon codes.
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(a) Upload: When uploading a file, the user au-
thenticates himself to the authority to obtain
their private key. Using this key, they generate
the ciphertext and send it to the proxy, which
processes the data and distributes shares to cloud
storages.
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(b) Download: To download files matching key-
word w, the user authenticates with the authority
to obtain their private key dk = (SK,TK), Ksse.
The user sends a trapdoor for w and transforma-
tion key (Tw,TK) to the proxy, which handles the
search, partial decryption, and file retrieval from
cloud storages. The user finalizes the decryption
of the files using SK.

Fig. 1: Information exchange during the upload and download phases of the protocol.

Setup. This algorithm is executed by the trusted authority and proceeds as
follows:

– Execute the setup algorithms for both the ABE and IBS schemes to gen-
erate the public parameters and master secret keys, (mpkABE,mskABE) and
(mpkIBS,mskIBS).

– Generate a random symmetric keyKsse for the searchable encryption scheme.
– Select a collision-resistant hash function H.
– Select a symmetric encryption scheme SKE.

The authority keeps the master secret keys mskABE and mskIBS secret. It
shares the symmetric key Ksse with users upon their request for private keys.
The public parameters {mpkABE,mpkIBS, H, SKE} are made publicly available.

Key Generation. The authority runs this algorithm to generate the private
keys for a user U . The algorithm requires the master secret key mskABE, the user’s
identity ID, and the user’s attributes Γ . The process involves the following steps:

– Generate the decryption key dk = {SK,TK} by invoking the algorithm
ABE.KeyGen(mskABE, Γ ) of the ABE scheme.

– Generate the user private key sk by invoking the IBS.Extract(mskIBS, ID)
algorithm of the IBS scheme.

The authority outputs the user’s private key as
{
dk, sk,Ksse

}
and shares the

searchable encryption key Ksse with the user.



Note that users are not required to store their private keys. They can generate
them on-demand based on their needs. Additionally, they can request only their
signature keys or decryption key from the authority, depending on whether they
want to upload or download a file.

Upload. The algorithm consists of two steps. First, on the user side, the user
encrypts his data and generates the secure indexes. Then, the user sends the
encrypted data to the proxy for storage. The second step is executed by the proxy.
It invokes the PoR protocol to encode the encrypted data into shares and stores
them among the cloud storages. The proxy stores some relevant informations in
its database.

User Side. Consider a user U with a unique identifier ID, who wishes to upload
a file f associated with a set of keywords I. We denote idf the unique identifier
for the file f . The user shares this file with a list of users which is specified by
an access policy A. Then the user proceeds with the following steps:

– Requests the authority for their signature key sk and the searchable encryp-
tion key Ksse ( 1 and 2 in Figure 1a).

– Generates a random symmetric key K and computes the encryption Cf =
SKE.Encrypt(f,K).

– Encrypts the symmetric key K using ABE encryption algorithm and the
access policy A: CTA = ABE.Encrypt(mpkABE,K,A).

– Computes the searchable ciphertext CI = SSE.Build(M, I,Ksse), where the
message M = r∥idf , is a concatenation of a random bitstring r and the file
identifier idf .

– Computes the signature Σ = IBS.Sign(sk, ID,m), where the message m is
obtained by first computing m0 = H(Cf∥r) and then m = H(m0∥K).

The user sends the ciphertext CT =
{
(CTA, CI , Σ), Cf

}
to the proxy for storage

( 3 in Figure 1a).

Proxy Side. Upon receiving a ciphertext CT, the proxy performs the following
actions:

– Parses the ciphertext CT =
{
(CTA, CI , Σ), Cf

}
and stores in its database the

ABE ciphertext, the searchable ciphertext and the signature (CTA, CI , Σ).

– Executes the setup algorithm of PoR, if not executed before, to generate the
public and secret parameters: skPoR = PoR.KeyGen(1λ).

– Applies the encode algorithm of PoR to convert the encrypted file into shares:
s1, . . . , sℓ = PoR.Encode(skPoR, Cf ).

Subsequently, the proxy dispatches the share si to the corresponding i-th cloud
storage ( 4 in Figure 1a).



Download. Similar to the upload phase, the download phase also consists of
two steps. Initially, the user executes a query search for files containing a specific
keyword, ensuring they have the necessary access rights. Subsequently, the proxy
retrieves the encrypted files from the cloud storages and forwards them to the
user. The user then verifies the signature and decrypts the files if the signature
is valid.

User Side. Consider a user who wishes to download files containing a specific
keyword w and possesses the necessary access rights. The user proceeds as fol-
lows:

– Requests the symmetric key for searchable encryption Ksse and their decryp-
tion key dk = {SK,TK} from the authority ( 1 and 2 in Figure 1b).

– Generates the trapdoor Tw = SSE.TrapGen(w,Ksse).

The user then keeps SK secret and submits a query search by sending Q =
(Tw,TK), the trapdoor and the transformation key, to the proxy ( 3 in Fig-
ure 1b).

Proxy Side. Upon receiving a search query Q = (Tw,TK), the proxy processes
each entry (CTA, CI , Σ) in the database as follows:

– Computes M = SSE.Search(CI , Tw). If M ̸= ⊥, it retrieves the random
bitstring and the identifier of the file containing the word w, denoted by
M = r∥idf . Otherwise, it proceeds to the next entry.

– Invokes the ABE transformation algorithm to partially decrypt the cipher-
text CTA. If CT′

A = ABE.Transform(TK,CTA) is successful, then it exe-
cutes the PoR protocol to retrieve the corresponding encrypted file Cf =
PoR.Retrieve(idf ) ( 4 and 5 in Figure 1b). Otherwise, it continues to the
next entry.

– Computes the first part of the signature message m0 = H(Cf∥r) and ap-
pends the tuple (CT′

A,m0, Σ,Cf ) to the set of results R.

Finally the proxy sends the result set R to the user ( 6 in Figure 1b).

User Side. Upon receiving the set of results R, the user processes each tuple
(CT′

A,m0, Σ,Cf ) in the following manner:

– Decrypts the transformation ciphertext CT′ to retrieve the encapsulated key:
K = ABE.Decrypt(CT′,SK).

– Constructs the signature message m = H(m0∥K) and verifies the signature
Σ using IBS.Verif(mpkIBS,m,Σ).

– If the signature is valid, the user decrypts the encrypted file Cf to obtain
f = SKE.Decrypt(Cf ,K).

This completes the user’s process of retrieving and validating the desired files.



Retrievability Check. This phase focuses on verifying the retrievability of
stored data, without involving the user. The proxy runs the Check algorithm on
the file identified by idf using its PoR private key skPoR.

Proxy Side. The proxy uses Check with the given idf .

– It uses skPoR and idf to generate a challenge c.
– Sends the challenge and file identifier to the cloud storages.
– Receive the responses (r1, . . . , rℓ) from the cloud storages.
– Verifies whether the file is retrievable based on the responses.

Storage Side. The cloud storages wait for challenges and respond accordingly.

– Receive a challenge c along with the file identifier idf
– Reply to the challenge with r.

The proxy can run this algorithm at any time and must perform it regularly
to ensure data retrievability.

4 Security Proofs

4.1 Threat Model

In this paper, we assume two types of adversaries: an honest-but-curious proxy
and dishonest cloud storages. The honest-but-curious proxy is assumed to follow
the protocol, but tries to learn as much information as possible from the data
they handle. This is a reasonable assumption in real world, as a proxy, often a
company, risks its reputation if caught acting maliciously. Some cloud storage
providers may be dishonest and are assumed to deviate from the protocol by
altering the data they store. If all of them do so, the privacy property remains
intact, but the user won’t be able to retrieve their data. We also consider the
case of a colluding adversary, where a set of dishonest cloud storages and an
honest-but-curious proxy work together to learn more information about the
stored data. Users, on the other hand, are assumed to be honest.

Communications between the different entities are assumed to be performed
over secure channels, so that external adversaries cannot eavesdrop on the data.

4.2 Security Analysis

In this section, we provide a security analysis of our proposed secure cloud storage
system. We first define the security properties we aim to achieve, and then we
provide a proof of security for our system.

Security Properties Our secure cloud storage system aims to provide the
following security properties:

Privacy: The data stored in the cloud should remain confidential. Only au-
thorized users should be able to access the data. Moreover, the search mechanism
should not reveal any information about the stored data to unauthorized users.



Integrity: The data stored in the cloud should remain intact. Attempts to
alter the data should be detected.

Retrievability: The definition of retrievability property varies among PoR
schemes. In general, there are two types of security properties: the first focuses
on resilience against pollution or corruption attacks, as in Network Coding -
Dispersal Coding PoR (ND-POR) [19], while the second ensures that data can
be retrieved as long as a certain fraction of verification challenges are successful,
as introduced in the Compact Proof of Retrievability scheme [22].

Proof of Security We prove the security of our system by showing that it
satisfies the security properties defined above.

Privacy: when a user outsources the storage of a file to the multi-cloud using
our system, a search index is first built on the file, and the file is then encrypted
using the symmetric encapsulated key K. The generic construction provided in
[31] is such that no polynomial time adversary can decrypt a ciphertext without
satisfying the access policy (see Theorems 3.1, 5.2, 6.2). This ensures that the
proxy (or colluding cloud storages) cannot learn the stored data.

When the proxy receives the ciphertext, it parses it to extract the ABE
ciphertext CT, the symmetric encryption of the file Cf , the secure search index CI
and the signature Σ. By the security of the ABE scheme, the proxy cannot learn
anything about the file from CT. The symmetric encryption and the signature
also do not reveal any informations about the file. Therefore, the data handled
by the proxy remains confidential.

After the proxy invokes the encoding algorithm of the PoR scheme, the gen-
erated shares are send to the cloud storages. This encoded data is a ciphertext
created under a key unknown to both the cloud storages and the proxy. There-
fore, recovering it, even through collusion, would be pointless for the cloud stor-
ages as they cannot decrypt it. Even if all the cloud storages are dishonest, they
would not be able to access the data. In such a case, the user would not be able
to retrieve the original file, but the data would remain confidential.

A similar analysis can be made for the operations performed during the
download phase, to conclude that our scheme provides privacy.

Integrity/Authenticity: The integrity of the stored data is ensured by the
IBS scheme used to sign the data. The signature Σ is computed on the file
f , and verified by the user when downloading the file, to ensure that it has not
been altered by the cloud storages. Morevover, the secure keyword search scheme
garantees that the results returned to the user are indeed the files that match
the search query, providing authenticity.

Retrievability: The proxy is assumed to be honest-but-curious. This implies
that, although the proxy may observe and collect data, it follows the protocol
correctly. Consequently, if the proxy retrieves the encrypted file, the user will
successfully retrieve the file as well.

Thus, to ensure retrievability, it is sufficient to demonstrate that the proxy,
when following the Proof of Retrievability (PoR) scheme, adheres to the PoR
security properties. This guarantee is inherent to the PoR scheme itself. There-



fore, the level of retrievability we achieve is equivalent to that guaranteed by the
underlying PoR scheme used.

The proxy remains a single point of failure in our protocol. However, only
minimal information is stored on the proxy. Therefore, regular backups of the
metadata stored by the proxy can help prevent its failure.

5 Implementation

We implemented a Proof of Concept (PoC) of our protocol. The project is avail-
able at https://anonymous.4open.science/r/poms-8040/README.md5.

5.1 Proof of Concept

This implementation is built upon the widely recognized RELIC cryptography
library [1], which provides the cryptographic primitives necessary for secure and
efficient operation. Symmetric primitives come from OpenSSL. The PoC is a
library written in C++. Moreover, our project includes a comprehensive example
of the protocol.

We use Docker [17] to enhance portability and ease to reproduce. Actors of
the protocol are deployed with a script that handles all different parameters.
Then we can run as many users as wanted. Each user is a CLI program allowing
upload and download on the file. The example uses the user’s name as an at-
tribute. While our library supports various types of attributes, using the name
simplifies the example.

This approach not only enhances the reproducibility of our results but also
simplifies the setup process for users who wish to explore or build upon our work.
The use of Docker ensures that all dependencies are encapsulated, allowing for
a consistent execution environment across various systems.

5.2 Cryptographic Scheme Selection

To create the PoC, we had to select one scheme for each requirement of the
protocol.

The PoR scheme we chose is the private version of Compact Proof of Re-
trievability (CPoR) [22]. Tan et al. [27] propose several private schemes utilizing
various storage methods, with CPoR highlighted as a reference model. However,
public implementations were lacking, except for the CPoR scheme. It was helpful
to have some sources of inspiration, although we could not use the available code
as a dependency.

Regarding the Attribute-Based Encryption (ABE) scheme, there are several
alternatives available [38]. We chose the CP-ABE scheme with outsourcing in-
troduced by Green et al. [11]. We instancied the scheme using an asymmetric
pairing-friendly setting.

5 Anonymous git is employed for the review. If the paper is accepted, the final project
will be released publicly on GitHub.

https://anonymous.4open.science/r/poms-8040/README.md


For the Identity-Based Signature (IBS) scheme, many existing constructions
rely on bilinear pairing [10], which are computationally expensive for the user.
We opted for the scheme proposed by Bellare et al. [3], which is also based on
elliptic curves and avoids the need for pairings.

Finally, for the searchable encryption scheme, we prioritize simplicity and
efficiency while the only restriction was a scheme using forward indexes. Conse-
quently, we selected the symmetric scheme proposed by Waters et al. [32].

We prioritize simplicity in implementation as our goal was to deliver a Proof
of Concept and minimize development time. As a result, performance could be
further optimized.

(a) Encryption time (b) Encoding time

Fig. 2: Upload phase: coefficient of determination for linear regression R2 are
above 0.9999

5.3 Performance

We evaluated the performance of our proof of concept (PoC) in terms of stor-
age and computation. We conducted a series of microbenchmarks using Google
benchmark library to measure the time taken by the different operations. The ex-
periments were conducted on an Ubuntu 22.04.05 system with a 12-core Intel(R)
Core(TM) i5-11500H CPU running at 2.90GHz and 32GB of RAM.

Implementation details. For our implementation, we use the BLS12-381 ellip-
tic curve [2] for both the ABE and IBS schemes. We chose the BLS12-381 curve
(which is pairing-friendly) due to its widespread use in projects like Zcash and
Ethereum 2.0, its proven security, and its alignment with IETF recommenda-
tions for 128-bit security [21]. For symmetric primitives, we use AES-256-GCM
for encryption and SHA-256 as the hash function.

Computation. The computations on the storage involve simple calculations.
Given the computational power of cloud storages, we focus on the client and
proxy. As Figure 2a shows, the client’s computation grows linearly with the



number of friends the file is shared with. Furthermore, the computations are
very fast and can be performed on any computer in an acceptable amount of
time, even when sharing the file with an entire organization.

In contrast, the proxy performs heavier computations due to the PoR scheme,
which scales linearly with file size (see Figure 2b). Performance can be improved
by using more modern PoR schemes that do not rely on the error-correcting
codes responsible for the slowdown.

The proxy also processes the search operation, and we assessed its perfor-
mance using a dataset of 10,300 files. When no files match the trapdoor, the
average search time is about 4754 ms. If some match but none meet the policy,
it increases slightly to 5151 ms. If at least one file satisfies the policy, the time
increases to 5196 ms due to partial decryption.

Finally, the user’s overall process, including ABE decryption and signature
verification, is highly efficient, with a mean time of only 3.66 ms. These results
underscore the system’s ability to manage search and decryption tasks effectively,
even with large datasets. Delegating computation to the proxy significantly re-
duces the user’s computational load, allowing users to remain lightweight while
only the proxy needs to be powerful.

Storage. We focus on the proxy and cloud storages because the client does not
store any information. The proxy’s storage requirement increases linearly with
the number of people the file is shared with and it does not depend on the file
size as highlighted by Figure 3a. Therefore, storage on the proxy side remains
lightweight.

Table 1: Upload – Proxy side (PoR)
File Size in MB 1 256 1024

Storage overhead in MB 0.214 (21%) 59 (23%) 238 (23%)

Time 0.58 s 2 min 28s 9 min 52s

Regarding storage, the required storage size grows linearly with the file size as
highlighted by Table 1, which was made for resilience to up to 9% data deletion
or corruption. Most of the storage overhead is due to the error-correcting codes
used by the PoR scheme. While the overhead in the current benchmark is not
too significant, it could increase substantially if we aim to recover the file despite
heavy corruption or errors. More recent PoR schemes reduce this overhead but
they do not fully resolve the issue.

The performance aligns well with the presented use case, enabling a lightweight
user experience supported by a more powerful proxy. Although the PoR scheme
adds time for protocol operations and storage overhead on cloud servers, these
can be seen as opportunities for optimization.

6 Related Work

Shen et al. [25] proposed a protocol involving three parties (Data Owner (DO),
Cloud Service Provider (CSP), and Trusted-Party Auditor (TPA)), enabling the
data owner to verify the integrity of a part of the file while maintaining privacy.



Yet, Li et al. [14] identified flaws in Shen et al.’s protocol, questioning its privacy
guarantees. Similarly, Zhan et al. [37] presented an identity-based protocol with a
Trusted-Party Auditor, claiming resistance to three types of attacks introduced
by Yang et al. [34]. The replace attack, where adversaries attempt to replace
a data block with another valid, uncorrupted block to pass TPA’s audit. The
forgery attack, where adversaries forge TPA’s audit proof targeting the soundness
of the auditing process. The replay attack, where adversaries replay a previously
valid proof in an attempt to pass TPA’s audit.

Regarding searchable encryption, a solution based on Searchable Symmetric
Encryption is proposed in [30], capable of performing keyword search and con-
trolled updates in a multi-user context without a shared secret key. However, a
key feature absent in their solution is the controlled updates with partial data
recovery while maintaining integrity. Sun et al. [26] introduced attribute-based
keyword search with efficient revocation. However, their protocol is designed for
a single server scenario where multiple data owners permit multiple users to
search their outsourced data. In contrast, Li et al. [13] proposed a mechanism
using erasure code to enhance the reliability of outsourced searchable encrypted
data, which is more relevant to our multi-cloud setting.

For the multi-cloud environment side, significant research has been conducted
to address its unique challenges [4, 5, 8, 15, 18, 28, 29, 33, 35]. DepSky, introduced
by [4], mitigates the limitations of individual clouds through a combination of
Byzantine quorum protocols [16], secret sharing [23] composed with erasure
codes [20], and the use of multiple clouds to ensure diversity and robustness.
However, DepSky requires a maximum of two communication round-trips per
operation and typically stores only approximately half of the data in each cloud.
There are several approach like [8, 29] focused on the encryption algorithm of
the data storage in the multi-cloud environment, but the integrity of the out-
sourced data is not guaranteed. In [15], the authors introduced an enhanced data
fragmentation framework for multi-cloud storage environments, focusing on data
privacy and consistency. This framework efficiently manages data fragments by
dynamically updating and resolving conflicts when a data is already existing in
the multi-cloud.

One of the initial schemes for cloud storage utilizing attribute-based encryp-
tion was introduced in [6]. In this approach, a trusted authority generates the
master keys for the system and issues private keys to each user. This scheme al-
lows semi-authorized users to collaborate and access encrypted data. However, it
is not appropriate for multi-cloud environments as it only considers a single cloud
in the protocol. Additionally, in [36], the authors proposed a fine-grained autho-
rized keyword secure search scheme using ciphertext policy attribute-based en-
cryption (CP-ABE). This scheme supports privacy-preserving keyword searches
over encrypted data. Specifically, the data owner build secure indexes for en-
abling the data users to search over encrypted data. However, in addition to
the fact that it’s not suitable for multi-cloud, communication between the data
owner and the data user is required for authentication.



7 Conclusion

In this paper, we designed and implemented a secure multi-cloud storage system
that incorporates keyword search. This system enables data owners to upload
files and authorizes data users to download files that match their attributes in
a secure and verifiable manner.

To achieve this, we leveraged several advanced cryptographic techniques, such
as attribute-based encryption to control access to the files, symmetric searchable
encryption to allow data users to search for the files, proof of retrievability to en-
sure the files’ retrievability to the delegated proxy, and identity-based encryption
to verify the integrity of the files.

To the best of our knowledge, ours is the first to provide all these features
together in a unified framework compared to existing systems. Our system is not
only effective and robust but also prioritizes user privacy. We have implemented a
user-friendly proof-of-concept that demonstrates the system’s capabilities under
the honest-but-curious adversary model. Since our protocol is built on top of well-
established cryptographic primitives, the security of our system is as strong as the
security of these underlying cryptographic primitives. Therefore, it guarantees a
comfortable user experience.

In the future, we plan to extend our system to support additional features,
such as handling file modifications, enabling verifiable deletions, and preventing
file duplication across cloud storages.
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(a) Searchable ciphertext size. This is the size
of the ciphertext stored on the proxy, and used
for secure keyword search. It grows linearly with
the number of friends in the access structure.

(b) Storage overhead. As explained in Section 5,
the storage overhead is primarily due to the
CPoR scheme that ensures retrievability by us-
ing error-correcting codes for resilience against
data loss. It grows linearly with the size of the
original file.

Fig. 3: Storage cost. We report the storage cost of the system, in terms of the
size of the searchable ciphertext stored on the proxy and the storage overhead
on the cloud providers.

(a) Time taken by the authority to generate de-
cryption keys for users, which grows with the
number of users the file is shared with.

(b) Size of the decryption key generated by the
authority and sent to the user. Like the gener-
ation time, this size grows with the number of
users the file is shared with.

Fig. 4: Decryption key generation. The authority generates decryption keys which
are then sent to the users. We present the time taken by the authority to generate
these keys and their size with respect to the number of users the file is shared
with.



A.2 Notations

Table 2: Notations and descriptions.
Notation Description

λ Security parameter
ℓ number of storages

mpk Master public key
msk Master secret key
A Access structure
Γ Set of attributes

CTA Ciphertext with access structure A
CI Searchable ciphertext
TK Transformation key of ABE scheme
SK Secret key of ABE scheme
dk Decryption key associated with a user, consisting of SK and TK
sk Private key of signature scheme

Ksse SSE Private Key
Tw Trapdoor associated with w
idf Id of the file f
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