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Abstract. The search for optimal differential trails for ARX ciphers is
known to be difficult and scale poorly as the word size (and the branch-
ing through the carries of modular additions) increases. To overcome this
problem, one may approximate the modular addition with the XOR op-
eration, a process called linearization. The immediate drawback of this
approach is that many valid and good trails are discarded.
In this work, we explore different partial linearization trade-offs to model
the modular addition through the window heuristic, which restricts carry
propagation to windows of ws consecutive positions. This strategy en-
ables the exploration of full linearization (ws = 0), normal modelling
(ws = n), and all the different trade-offs between completeness and speed
in between.
We give the corresponding SAT and MILP model and their parallel ver-
sions, and apply them to ChaCha, SPECK, LEA, and HIGHT. Our method
greatly outperforms all previous modeling of modular addition. In par-
ticular, we find the first differential path for 4 rounds of ChaCha with a
probability greater than 2−256, and a corresponding 6 rounds boomerang
distinguisher. This indicates that purely differential-based attacks have
the potential to become competitive with differential-linear attacks, cur-
rently, the best-known attacks against ChaCha and other ARX ciphers.
On SPECK, we find many improvements over the state-of-the-art in terms
of speed of the differential trail search in the single-key setting and new
upper bound probabilities in the related-key setting.
Finally, we exhibit an improved key recovery attack on reduced LEA.

Keywords: differential cryptanalysis · modular addition · ARX · MILP · SAT

1 Introduction

Addition-Rotation-XOR (ARX) ciphers have become popular primitives in the
community for their good performances in software, as they are constructed
upon CPU-friendly components. Despite their relative simplicity, they can pro-
vide good resistance against well-known cryptanalysis. A famous example is the
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cipher ChaCha20 [9], which is widely used by several protocols such as SSH and
in the more recent version of the TLS protocol, TLSv1.3.

Together with linear cryptanalysis [36], differential cryptanalysis [10] is among
the most famous and powerful attack techniques against symmetric-key ciphers,
including ARX ones. The main preparation of a differential attack is to find a
differential path that will occur with a relatively high probability. Such differ-
ential paths can, in turn, be used to build a more advanced distinguisher, or a
global key-recovery attack (for example, using probabilistic neutral bits against
ChaCha [2]).

In the past decade, we have seen a strong push by the community towards the
usage of automated solvers, based on Boolean Satisfiability (SAT), its general-
ization to Modulo Theory (SMT), Mixed Integer Linear Programming (MILP),
or Constraint Programming (CP), to look for good differential paths [37, 26, 43].
The task of building a differential path search algorithm is essentially reduced
to the task of efficiently producing accurate modeling of the path search prob-
lem, and many recent works have been devoted to improving such modeling
[41, 51, 46, 35].

Compared to Substitution-Permutation Network (SPN) ciphers, in ARX ci-
phers the study of differential properties has been shown to be more complex.
This is mainly because of the usage of modular addition. In particular, the num-
ber of possible input/output differential pairs, i.e. the number of entries in the
Differential Distribution Table (DDT), of a nonlinear vectorial Boolean function
(such as an S-Box or a modular addition) is exponential in the input/output
bit length. A consequence of this is the exponential explosion of the tree of the
possible differential paths. To overcome this explosion, researchers try to discard
in advance paths that lead to low probability. This is achieved in essentially two
ways: (1) considering entries of the DDT that only have a probability above a
certain threshold [11, 14, 16]; (2) approximating the modular addition with the
XOR operation, a process called linearization [18, 50, 49, 25, 2]. The main draw-
back of both approaches is that good trails might be discarded. In the first case,
this can happen because a globally optimal path (i.e. with optimal probability)
might have local probabilities that are not optimal. In the second case, local
high probabilities might simply be missed.

In this paper, we focus on the second approach, and explore various levels
of linearization of the modular addition through a heuristic termed the window
heuristic. This heuristic provides a good and adaptable balance between the
retention of the non-linearity of the modular addition and the size of the search
tree. The idea is to let the modular addition behave non-linearly only for a fixed
number of consecutive bits. Throughout this paper, we refer to this limit as
the window size, denoted as ws. Applying our technique to a selection of notable
ARX ciphers, we obtain improvements over the state-of-the-art, by rediscovering
known differential trails faster and by finding new differential trails.
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1.1 Related works on automated differential path search tools for
ARX ciphers

The automation of differential characteristic search in cryptanalysis is crucial,
reducing both time and error for crypyanalysts. However, it remains challenging
to find efficient differential trails for ARX ciphers with large word sizes, such
as ChaCha, which has seen limited analysis against pure differential cryptanal-
ysis [1, 7]. Early methods relying on local constraint propagation [20, 31] were
restricted by engineering limitations, unlike later approaches using solvers like
SAT, SMT, MILP, and CP. Biryukov et al. [11, 14, 16] advanced the search
by approximating modular addition as a large S-Box and employing a partial
difference distribution table (pDDT), significantly enhancing the search process.

Subsequent research further integrated solver-based techniques. Mouha et
al. [37] used SAT solvers for ARX ciphers such as Salsa20, building on Lipmaa
and Moriai’s XOR-differential probability model [34]. Fu et al. [26] and Song et
al. [43] used MILP methods to uncover improved differential and linear trails
for SPECK, while Monte Carlo Tree Search techniques [24, 6] refined differential
path discovery for LEA. More recently, Sadeghi et al. [42] validated differen-
tial trails using MILP, and Liu et al. [35] split modular additions into smaller
parts to identify differential and linear trails for SPECK and HIGHT. Notably,
SAT-based improvements such as sequential encoding for Matsui’s bounding con-
dition [46, 17] and Laurent et al. ’s clustering technique [32] further optimized
differential cryptanalysis for ciphers like SIMON and Simeck.

Other approaches tried to tackle the modular addition component by lineariz-
ing it, essentially by replacing it with an XOR. This strategy was extensively used
for the cryptanalysis of the MD-SHA family of ARX hash functions [18, 50, 49].
Specifically, in those works the authors explore differential cryptanalysis meth-
ods for MD5, SHA-0, SHA-1 focusing on the linearization of modular addition.
They induce modular addition behave as a XOR linear operation under certain
conditions. This is achieved by strategically applying perturbations and correc-
tions to the input, ensuring that no carry propagation occurs during modular
addition.

In [25], Fischer et al. used this technique to improve the search for differ-
ential trails in Salsa20 and TSC-4. Similarly, [2] Aumasson et al. showed that
approximating the modular addition as an XOR improves the time complexity
of searching for collisions in Rumba. Interestingly, in both papers, the authors re-
marked that this technique worked well only when applied to the initial rounds.
Indeed, the approximation does not remain valuable after a few rounds, after
the diffusion property of the modular addition starts to kick in.

1.2 Our contributions

– The Window Heuristic We propose the window heuristic to partially lin-
earize modular additions in differential trails search, and the corresponding
SAT and MILP models and their parallel versions (https://anonymous.
4open.science/r/Improved-MILP-model-for-Modular-Addition-o
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n-ARX-ciphers-FA81). In the window heuristic, the carry propagation is
bounded to ws consecutive positions, with ws = −1 denoting no heuristic
used, ws = 0 corresponding to linearization, ws = n to regular modular
addition modelling, and the values in between being explored for the first
time. In other words, if the window heuristic is not used, it is equivalent to
the regular modular addition modeling.

– Differential Cryptanalysis of ChaCha We demonstrate the power of win-
dow heuristic by proposing the first 4-round single-key differential trail with
probability higher than 2−256, improving the state of the art from 2316 to
2217; for 3 rounds, we improve the known differential bounds from 2147 to 2120

for 3 rounds(Table 4). In addition, we propose a boomerang distinguisher for
6 rounds (Table 7);

– Single-Key Differential Cryptanalysis of SPECK Using the parallelized
version of the window heuristic, we retrieve known results with speedups of
up to 5x (and an outlier of 152x), using 5 cores, compared to the state of
the art (Table 1);

– Related-Key Differential Cryptanalysis of SPECK Using the window
heuristic, we improve the known bounds for related-key differential trails (Ta-
ble 3); in particular, we improve by a factor 212 for SPECK-32/64, propose
the first 16-round trail for SPECK-48/96, and improve the best 19-round
trail for SPECK-128/256 by a factor 219;

– Single-Key Differential Cryptanalysis of LEA Using the window heuris-
tic, we improve the known bound for 13 rounds of LEA-128 by a factor 211;
this differential trail is used to build a key recovery for 14 rounds, with time
and data complexity 2111.97; these results are summarized in Table 10.

– Single-key Differential Cryptanalysis of HIGHTUsing the window heuris-
tic, we improve the search speed for trails up to 11 rounds. On the other
hand, for 12 rounds, our tool with window sizes 0, 1, 2, and 3 do not retrieve
the state-of-the-art trails; in fact, the best known 12-round trail for HIGHT
contains a window size of 5, which is out of the capacities of our tool at the
moment.

In the main contributions cited above, our work is improving differential
probabilities by utilizing a window size of 0 or 1 in our heuristic approach. We
emphasize that this exploration into the value of 1 was previously unconsidered.
It enabled us to uncover more efficient differential trails in ARX ciphers, enhanc-
ing both the field’s understanding and the efficiency benchmarks of differential
cryptanalysis on ARX ciphers. For instance, using the window size 1, we improve
the best-known differential trail probability for ChaCha by an impressive factor
298. While extending the window size beyond 1, our research observed compa-
rable results to those of previous works, yet notably, our methodology achieved
these outcomes faster in most instances. This advancement not only prompts
a reassessment of existing differential search models for ARX ciphers but also
provides a strong basis for future research.

Finally, we would like to highlight that, when possible, the differential trails
found in this work were verified using the tool presented in [42].
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1.3 Outline

In Section 2, we first provide some preliminaries. We introduce our new strategy,
the window heuristic, in Section 3 and explain how to encode it in SAT and
MILP. We apply this new method to find XOR-differential trails and various
attacks on selected ARX ciphers in Section 4 and provide our conclusions and
future work in Section 5.

2 Background

In this section, we provide a brief description of differential and boomerang
distinguishers, and of existing SAT and MILP encoding techniques for searching
XOR-differential trails on ARX ciphers. The studied ciphers, ChaCha, SPECK,
LEA are very well-known, and described in Section B.

2.1 Differential and Boomerang distinguishers

Differential cryptanalysis is a well-established cryptanalytic technique intro-
duced by Biham and Shamir in the early 1990s [10]. It examines how differ-
ences in pairs of plaintexts propagate through the encryption process to pro-
duce differences in ciphertexts. The core concept involves analyzing an input
difference, denoted as ∆X = X ⊕X ′, where X and X ′ are two different plain-
texts. By observing how this input difference evolves into an output difference
∆Y = Y ⊕ Y ′, cryptanalysts aim to find high-probability differential charac-
teristics over multiple rounds of the cipher. The probability of a differential
characteristic (∆X → ∆Y ) is defined as:

Pr(∆X → ∆Y ) =
#pairs(X,X ′) such that E(X)⊕ E(X ′) = ∆Y

#all possible pairs(X,X ′)

where E represents the encryption function for the cipher. The goal is to identify
differentials with a higher-than-random probability.

In 1999, Wagner et al. developed a technique called the boomerang at-
tack [47], for ciphers where the differential probability is very small for long
differential trails, but high for shorter ones. The technique considers a cipher E
as two parts, the top part and the bottom part, denoted here as E0 and E1,
with respectively r0 and r1 rounds. Given a differential (∆in, ∆out) for E0 with
probability p, and another differential (∇in,∇out) for E1 with probability q, the
corresponding boomerang distinguisher for r0+r1 rounds has probability of p2q2,
assuming that E0 and E1 are independent.

In 2011, Murphy found that the aforementioned assumption causes some in-
valid boomerang distinguishers [38]. Many studies have been done to evaluate the
interaction between the differential of the top and bottom parts [12, 13, 23, 30],
with the majority of insights being integrated into the so-called sandwich attack
framework introduced in [23]. Within this perspective, a cipher is divided into
three parts: E = E1 ◦ Em ◦ E0. Here, Em can be seen as a small boomerang
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distinguisher of probability pm. For ciphers based on S-Boxes, and if Em covers
only a single round, the computation of this probability is reduced to analyzing a
sole S-Box. This idea was elucidated in [22], where the switching effect was rep-
resented using a table termed the Boomerang Connectivity Table (BCT), with
dimensions 2n × 2n. For components like modular addition, the table’s size can
grow considerably. If one interprets a modular addition component as an S-Box
M(x0, x1) = x0+x1 ∥ x1 of dimension m, this table can expand to a size of 2128,
as observed in the case of ChaCha. In [48], a suite of methods is presented to tackle
this challenge. Specifically, the authors have devised a technique that minimizes
the computation of this table by employing another table named the partial
boomerang connectivity table, inspired by [15]. Additionally, the authors inte-
grated their techniques into an automated tool designed to identify boomerang
distinguishers in ARX ciphers. In this paper, we used these techniques through
their automated tool to construct boomerang distinguishers against ChaCha in
Subsection 4.2.

2.2 Finding XOR-differential trails with MILP and SAT solvers

In this section, we review the existing MILP and SAT general modeling tech-
niques we will use to find the differential trails for ARX ciphers: [26] for MILP
and [46] for SAT.

MILP-based automatic search for differential trails As described in [26],
one can build a model for ARX ciphers using linear inequalities. In the following
paragraphs, we describe the inequalities used to model each component of the
ARX ciphers.

Constraints from a XOR operation. For every n-bit XOR operation with input
differences a ∈ Fn

2 and b ∈ Fn
2 and output difference c ∈ Fn

2 , the constraints at
bit level for j in {0, . . . , n− 1} are

d⊕[j] ≥ a[j], d⊕[j] ≥ b[j], d⊕[j] ≥ c[j],

a[j] + b[j] + c[j] ≥ 2d⊕[j], a[j] + b[j] + c[j] ≤ 2.
(1)

where d⊕[j] is a dummy variable used to verify that there are at least two
active terms in a[j]⊕ b[j] = c[j], every time that a[j] ̸= 0, b[j] ̸= 0, or c[j] ̸= 0.

Constraints from a modular addition. To construct the constraints of the n-bit
modular addition, we again follow [26]. We use 13 × (n − 1) + 5 inequalities to
model the modular addition operation modulo 2n with input differences a ∈ Fn

2

and b ∈ Fn
2 , and output difference c ∈ Fn

2 . These constraints are derived from
the differential propagation rules of modular addition [33]; each output bit is
the XOR of two input bit, and a carry difference bit. The carry difference bit at
position i can be: (1) 0 with probability 1 if a[i − 1] = b[j − 1] = c[j − 1] = 0;
(2) 1 with probability 1 if a[i − 1] = b[j − 1] = c[j − 1] = 1; (3) 0 or 1 with
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probability 1
2 otherwise. For j in {0, . . . , n− 2} these inequalities are described

in Section A. Besides that, the following inequalities are also needed

d+ ≥ a[0], d+ ≥ b[0], d+ ≥ c[0],

a[0] + b[0] + c[0] ≥ 2d+, a[0] + b[0] + c[0] ≤ 2.
(2)

where d+ is a dummy variable and d[j] in Equation (6) represents the prob-
ability weight variable [26].

Constraints from a rotation operation. Assume that Rot(·, α) is the rotation
operation whose rotation amount is α. Then, for every rotation operation where
the input difference is a ∈ Fn

2 and the output difference is b ∈ Fn
2 , the constraints

at bit level are Rot (a, α)j = b[j] for j in {0, . . . , n− 1}.

Objective function. Let R be the number of rounds that we are modeling. Also,
let d[r][j] be the variable representing the probability weight price at round r
and bit j if there is a difference in the carry bit. Then according to [26], we need

to minimize
∑R

r=1

∑n−2
i=0 d[r][j].

Finding XOR-differential trails with SAT solvers In this section, we recall
the methodology to model ARX ciphers with CNF clauses for the search of
differential trails from [46].

For every n-bit modular addition operation with input differences a ∈ Fn
2

and b ∈ Fn
2 and output difference c ∈ Fn

2 , we define the CNF clauses at the
bit level. For each bit position j ∈ {0, . . . , n − 2}, the relationship between the
input bit differences and the output bit differences is described using Boolean
expressions. These expressions, which include clauses representing valid possible
combinations of input and output differences, ensure that the modular addition
is correctly modeled using SAT techniques.

The full set of CNF clauses for this operation is presented in Appendix Sec-
tion A, where the individual conditions are detailed for clarity.

From the set of formulas described in Section A, −
∑n−2

j=0 w[j] represents the
exponent of the differential probability weight .

CNF clauses for the XOR operations. For every n-bit XOR operation with input
differences a ∈ Fn

2 and b ∈ Fn
2 and output difference c ∈ Fn

2 , the CNF clauses at
bit level for j in {0, . . . , n− 1} are:

a[j] ∨ b[i] ∨ ¬c[i] = 1, a[j] ∨ ¬b[i] ∨ c[i] = 1,

¬a[j] ∨ b[i] ∨ c[i] = 1, ¬a[j] ∨ ¬b[i] ∨ ¬c[i] = 1.
(3)

CNF clauses for the modular addition operations. For every n-bit modular ad-
dition operation with input differences a ∈ Fn

2 and b ∈ Fn
2 and output difference

c ∈ Fn
2 , the CNF clauses at bit level for j in {0, . . . , n − 2} are described in

Section A. From that set of formulas it is important to mention that
∑n−2

i w[i]
is the exponent of the differential probability multiplied by -1.
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In contrast to MILP modeling, SAT modeling lacks a built-in mechanism
to identify differential trails with minimal probability weight. An incremental
approach is taken instead. This approach involves assessing the satisfiability of a
problem representing the search for differential trails, with the probability weight∑

i w[i]
n−2 initially set to 0. If the result is satisfiable, the search ends; if not,

the search increments the probability weight to 1 and continues iteratively until
satisfiability is achieved. Following the method illustrated in [46], we utilize the
sequential encoding technique to depict

∑
i w[i]

n−2 ≤ k, where k encompasses
the potential values from the incremental procedure. This leads to an additional
2× k × n+ n− 3× k − 1 clauses.

2.3 Splicing and extending heuristics and linearisation technique

Within the existing literature, two primary heuristics emerge in the search for dif-
ferential trails using SAT or MILP solvers on ARX ciphers: the splicing heuristic
and the extending heuristic, as well as their combined approach. These heuris-
tics are elaborated upon in [26] and [43]. The motivation for these heuristics
comes from the fact that fixing some differential states reduces the complexity
of the search for differential trails. The word heuristic is used because the pro-
posed method in the following section, and others described in this section, only
explores part of the search space and may therefore miss optimal solutions.

The splicing heuristic divides the problem of finding a long differential char-
acteristic into the (easier) problem of finding two short matching differential
characteristic. In this technique, two differentials δa → δb and δb → δc (where
the output difference of the first differential matches the output difference of the
second one) are concatenated into δa → δc.

The extending heuristic is characterized by the expansion of a known dif-
ferential trail either m rounds upward or downward. These heuristics are fre-
quently cited in the literature and have proven to be efficient in determining
upper-bound probabilities of differential trails. For instance, to the best of our
knowledge from the literature, the best bound for the probability of the differ-
ential trail of SPECK-128-128 reduced to a 19-round was identified in [26] using
both heuristics.

In addition to these heuristics, the linearisation technique provides a pow-
erful method to simplify the analysis of non-linear operations such as modular
addition. The core idea of this technique is to transform modular addition, which
typically involves complex carry propagation, into a form that behaves similarly
to the XOR operation under certain conditions. By introducing restrictions on
the input differences (e.g., controlling the Hamming weight of the input differ-
ences or ensuring no carry propagation), modular addition can be linearized,
allowing it to behave like XOR. This linearization reduces the complexity of
modeling modular addition in differential cryptanalysis.
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3 The window heuristic

In this section, we introduce the window heuristic and describe its benefits. The
corresponding SAT and MILP models are derived from [26] for SAT and [46] for
MILP, which are described in Subsection 2.2.

3.1 The window heuristic using MILP and SAT constraints

We conducted an analysis of the differential trails obtained using the model de-
lineated in Subsection 2.2. Our observations indicated that, for high-probability
differential trails, the carry difference stops propagating beyond a certain point.
Specifically, for most of the analyzed differential trails, the number of carry-bit
differences involved in the propagation is usually less than or equal to 3. For
instance, this pattern is evident in all differential trails outlined in [26], with
the exception of SPECK-96-96. A comparable pattern was noted in the trails for
LEA-128 from [43]. Notably, the upper-bound probabilities in the trails from [26]
have remained unchanged for over six years.

Based on these insights, we propose the window heuristic. This involves cre-
ating a few new constraints to control the propagation of differences in the carry.
We describe these new constraints below, but first, we formalize the terms carry
difference and carry propagation in Definition 1 and Definition 2, respectively.

Definition 1 (ith carry difference). Let a ∈ Fn
2 and b ∈ Fn

2 be input differ-
ences propagating to the output difference c ∈ Fn

2 of the modular addition 2n

with certain probability. Then the ith carry of this modular addition is given by
C[i] = a[i]⊕ b[i]⊕ c[i], for i = 0, · · · , n− 2.

Definition 2 (m-window carry propagation). With a,b, c as above, we say
that the carry difference C[i] propagates to the next m bits if C[i + j] = 1 for
j = 1, ...,m.

Using a window heuristic with smaller window sizes, ws, prioritizes speed
rather than precision. For words of size n, the carry differences can propagates
up to k = ⌈(n/(ws + 1))⌉ times, which reduces the search area exponentially by
a factor of k. When it comes to precision, a window of ws consecutive carries
offers, at most, a probability bounded by 2−ws/2. Given that the most favorable
transitions involve few carries (as outlined in Theorem 4 of [33]), cutting out
lengthy sequences of carries is a practical strategy, albeit not the most accurate
one for precision.

Let us see an example. Consider a modular addition component with input
differences of 0x080000001e4a0848 and 0x08000000000e0808, where the Most
Significant Bit (MSB) is on the left. Assume its resulting output difference is
0x00000000f2400040. This leads to carry differences (with background yellow)
of 0xec040000=11101100000001000000000000000000 (i.e., the last active carry
is at position 31). Observations from this example reveal a 1-window carry prop-
agation at the 18th-bit position, a 2-window carry difference propagation at the
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26th-bit position, and a 3-window carry difference propagation at the 29th-bit
position.

As we said, based on the observation that a carry difference C[i] does not
propagate to a large number of their subsequent differences, we added constraints
in the SAT and MILP models with the aim of fixing the propagation of C[i] to
their m subsequent carry differences.

The window heuristic using MILP techniques. For every modular addition with
input differences a and b and output difference c, the constraints for the m-
window carry propagation are

m+1∑
i=1

C[j − i] ≤ m for all j in m+ 1, · · · , n− 1. (4)

In other words, we are adding n− 1−m new constraints for every modular
addition. Adding the new constraints to those described in Section 2.2 gives us
a total of R× ((14× n− 9−m)× ar + 5× n× xr + n× rr) constraints.

The window heuristic using CNF formulas. For every modular addition with
input differences a and b and output difference c, the clauses for the m-window
carry propagation presented in Definition 2 are derived from

n−1∧
j=m+1

m+1∨
i=1

¬(a[j − i]⊕ b[j − i]⊕ c[j − i]) (5)

For every j the expression
∨m+1

i=1 ¬(a[j− i]⊕ b[j− i]⊕ c[j− i]) generates 22(m+1)

clauses. In other words, we are adding 22(m+1)(n− 1−m) new clauses for every
modular addition. Adding these new clauses to those described in Section 2.2
gives us a total of R(xr(4(k−1)n))+(13(n−1)+22(m+1)(n−1−m))Rar clauses.

A different model for Equation 5, using the xor-exclusive CNF clauses pro-
posed by Cryptominisat [44], was implemented as well; however, it did not yield
a significant advantage, so that we only report the more generic CNF model.

We explored the possibility of constructing more heuristics centered around
carry differences with the aim of uncovering novel upper-bound probabilities for
the differential trail search of ARX ciphers. Regrettably, these heuristics did
not yield the anticipated results. For instance, one of these heuristics was con-
ceived after noting the clustering pattern in the carry difference variables. With
clustering pattern we mean the number of sequences that contains consecutive
active carry differences for example: 10101010111 and 10000011111 have 7 clus-
ters. We observed the cluster generated by the active differences. We noticed
that the number of these clusters in high-probability differential trails was rela-
tively small. Consequently, we incorporated constraints into our SAT and MILP
models to limit the number of clusters present in the carry difference variables.
One other attempt was to devise a heuristic that restricted the total number of
active differences within the carry bits. This attempt, too, was unsuccessful.
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3.2 Model-level Parallelism Through the Window Heuristic

Solvers supporting parallel resolution sometimes allow to solve problems signif-
icantly faster; for instance, the optimal trail for 10 rounds of SPECK-128-128
was found using the parallel SAT solver ParKissat [5]. However, the speedup
obtained by solver-level parallelization techniques is often weaker than that ob-
tained through informed decomposition into sub-problems, as in [27]; such de-
compositions have however rarely been used for ARX ciphers.

Our window heuristic enables straightforward model-level parallelism, as each
window size ws can be solved as an independent sub-problem: an instance of the
solver is started for each window size ws between zero and an upper bound
provided by the user. An instance with a special window size ws = −1, denoting
no window heuristic, can be started in parallel.

We combined this model-level parallelism with solver-level, using 16 cores for
each window size, from -1 to 3, in the corresponding MILP model, resulting in
80 cores being used in total.

Furthermore, more subproblems can be built by fixing the number of “full
windows”, i.e., windows that actually contain exactly ws carries. For instance, in
the 9-round differential trail for SPECK-32-64 presented in Table 16 the carries
for every modular addition in each round, represented as binary numbers for each
round are as follows: 0, 11000000, 1000001000000110, 1000000000000, 1100000,
0, 0, 0, 0. Thus, there are three “full windows” with ws = 2, which are highlighted
in yellow for illustration.

4 Applications of the window heuristic

The models were solved on a machine running Ubuntu 20.10 and using 80 parallel
Intel(R) Xeon(R) Platinum 8280 CPUs clocked at 2.70GHz. The MILP models
were implemented in MiniZinc [39] and solved with OR-Tools [40]3; the SAT
models were solved with CadiCal. Unless stated otherwise in the text, all our
experiments were run with a 24 hours timeout, so that the solutions for each
instance may not be optimal.

In the following sections, we distinguish between “Timing Results” (the cu-
mulative time it takes to complete a specific experiment across for all considered
window sizes) and “Individual Timing Results.”, denoting the time our tool re-
quires to solve a particular experiment using a single, specific window size value.

4.1 Application to SPECK

Search for differential trails in the single-key scenario. In the single-key scenario,
optimal (or close to optimal) bounds for many versions of SPECK are already
known (e.g., [43, 26, 35] and Table 10 of [46]).

3 The more popular Gurobi did not perform as well on our problems, though we did
not run a detailed comparison as it was out of scope.

11



Our parallel SAT implementation retrieved these results, albeit significantly
faster. For instance, compared to [46], our tool is 152 times faster for SPECK-128-128
reduced to 8 rounds (Table 1). Our parallel MILP model achieves similar results,
and the detailed timings are given in Tables 16, 18, 20, 22 and 24 in Section D.

Number [46] 5 cores
Pr

of rounds Time (s)

1 0.02 0.02 0

2 0.03 0.03 1

3 0.05 0.05 3

4 0.27 0.27 6

5 1.82 0.95 10

6 8.65 1.19 15

7 10.49 10.49 21

8 264.55 1.73 30

9 6685.22 1876.24 39

Table 1: Timing comparison between the tool developed in [46] and a parallelized
version of the tool presented in this paper for SPECK-128-128, with a window size
ranging from -1 to 3 using SAT techniques. In the parallel version, the search is divided
into five parts, each solved by a different core, using distinct window size. Probability
is denoted as − log2(·). For rounds 1 to 4 and round 7, the results are nearly identical,
with no significant timing differences (this pattern is very similar also to the results
obtained with MILP techniques, see Table 24). Thus, the results we obtained with
the tool developed in [46] for these rounds were copied in the corresponding cells. For
rounds 5, 6, 8, and 9, the timings diverge, especially in rounds 8 and 9.

Window heuristic and splicing heuristic. For more difficult problems, where the
known bounds still diverge significantly from the block sizes, the basic parallel
tool was not sufficient, even increasing the timeout to over two week. However,
by combining it with splicing heuristics, we were able to match known results
considerably faster. In particular, to recreate the 19-round differential trail cited
in [43], we used the splicing heuristic described in [26] and [43]. Specifically, we
set all bits to 0, with the exception of the bit at position 71 in the internal state
at round 15. Relying solely on the splicing heuristic, we determined a probability
weight of 119 for SPECK-128-128 reduced to 19 rounds, accomplishing this in 45
minutes. When we combined a window size of ws = 3 with the splicing heuristic
in the same 15th round and using the parallel SAT version, we achieved the
identical probability weight in a mere 300 seconds. While one might argue that
we were already privy to the intermediate value at round 15, where the single-bit
difference should be placed, the time taken to pinpoint this intermediate value
is indeed the same for both methods.

For differential trail searches, utilizing both the window and splicing heuris-
tics, coupled with the parallel MILP version, the timings were comparable.
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Window Heuristic constraining the number of “full windows”. Inspection of the
obtained trails shows that the length of carry propagations rarely reaches the
allowed window size. For instance, the 13 round trail on SPECK-128-128 given
in Section C has window size 3, but only one series of consecutive carries reaches
this length through the entire trail.

Therefore, the number of full windows, i.e., the number of times the max-
imum allowed length of carry propagation appears, can be used to divide into
additional sub-problems, where the number of full windows is set to be lower
than, equal to or greater than a fixed value k.

In these additional experiments, we searched for differential trails using four
configurations and two SAT solvers: a sequential SAT solver and a parallel SAT
solver (16 cores). The configurations were: 1) window size without “full win-
dows”; 2) window size with “full windows” and the “exactly” constraint; 3) win-
dow size with “full windows” and the “at least” constraint; and 4) window size
with ”full windows” and the “at most” constraint. The corresponding timings
are given in Section C).

Constraining the number of “full windows” significantly helps in the search
for trails (Figure 2 of Section C); in particular, we successfully find a new 19-
round differential trail for SPECK-128-128, available in the repository accompa-
nying this paper. Interestingly, we did not use the splicing heuristic to perform
this search like in previous papers. This was achieved in approximately six hours
using a window size of 3 and constraining the number of “full windows” to be
at most 1. This result is notable because our previous attempts using ParKissat
or CadiCal and similar window sizes ran for weeks without success.

However, the results using sequential SAT solver, shown in Figure 3, were
less consistent. Out of 11 versions of SPECK, the sequential solver was beneficial
in only 5 cases. It appears that the sequential solver is effective when there is
more than one full window, but less so when there is only one. This phenomenon
requires further investigation to fully understand.

Search for differential trails in the related-key scenario. We conducted several
experiments applying the window size heuristic to search for differential trails in
the related-key scenario. Given that the key schedule round function of SPECK
mirrors its permutation round function, the diffusion characteristics of both pro-
cesses align closely. Consequently, drawing parallels with studies such as [42] and
[41], our search for differential trails will lead to differential distinguishers in the
weak-key setting. This implies that, in line with earlier research, the differential
distinguishers generated from our differential trails are effective for only a subset
of the key space.

In Table 3, we present our related-key results compared with the state-of-the-
art; the full trails and timing informations are given in https://anonymous.4o

pen.science/r/Improved-MILP-model-for-Modular-Addition-on-ARX-ci

phers-FA81. As shown in Table 3, the results were obtained with ws = 0. Similar
results can be achieved for other values of ws, but they are not included here
because the time required to discover these trails with larger ws was greater
than for ws = 0. In Table 3, the log2(PD) represents the probability weight
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for the internal permutation, and log2(PK) represents the probability weight
for the key schedule process. Similar to previous works, we set the objective
function in the MILP and in the SAT models as the minimum of log2(PDK) =
log2(PD) + log2(PK); our results improve the upper-bound probabilities for all
the versions of SPECK in the related-key scenario.

On related-key boomerang distinguishers and hash distinguishers on SPECK. Us-
ing our newly found related-key differential trails for SPECK to build related-
key (boomerang) distinguishers covering a larger number of rounds might seem
promising at first sight. However, as SPECK has a quite strong key schedule
compared to many other lightweight block ciphers (basically a repetition of the
internal cipher round function), this is not quite the case. One can observe from
Tables 16, 18, 20, 22 and 24 in Section D that for a given number of rounds,
a related-key differential path for SPECK is not really better than a single-key
one. It can actually be much worse, especially for SPECK versions for which the
key size is the same as the block size, for larger versions of SPECK, and when
the number of rounds increases. Therefore, except for small SPECK versions on a
small number of rounds, the related-key (boomerang) distinguishers have little
chance to improve over single-key (boomerang) distinguishers, while requiring a
much less realistic attack setting in practice.

However, another interesting scenario is the chosen-key model, or when SPECK

is used as an internal component to building a block-cipher-based compres-
sion/hash function, as proposed for example in [45] with the classical Davies-
Meyer (DM), Matyas-Meyer-Oseas (MMO), and Miyaguchi-Preneel (MP) con-
figurations. In this setting, the adversary can attack the internal state and the
key schedule parts independently, and the cost of a related-key differential trail
reduces from PD×PK to PD+PK . We have conducted experiments to search for
differential trails in this setting. Specifically, we looked for related-key differential
trails that minimizes max{PD, PK} instead of PDK and we get improvements
compared to single-key ones.

Table 2 shows the differential trail probabilities found in the related-key
scenario for SPECK minimizing max{PD, PK} and that can be used to mount
distinguishers in the chosen-key model. We started by selecting the lowest prob-
abilities between PD and PK for every specific version of SPECK in the related-key
scenario, i.e., those presented in Table 3. Using these values as lower bounds,
we launch experiments to search for related-key differential trails, but instead of
minimizing PD×PK , we minimize PD+PK . This way, we discovered differential
trails for SPECK-48/96 and SPECK-64/128. In this setting, different from the
results obtained for Table 3, where all trails were found with ws = 0, we manage
to find a better differential trail for SPECK-48/96 reduced to 15 rounds only by
using ws = 1. In this setting, for other versions SPECK we did not manage to find
better trails than those that we already presented in Table 3.

The differential trails obtained in Table 2 can lead to simple distinguishers
in the chosen-key model. However, these results can be enhanced using more
sophisticated strategies such as the start-from-the-middle technique and the ap-
plication of truncated differences at the extremities to identify limited-birthday
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distinguishers [28, 29]. Implementing this approach requires a different mini-
mization function for the MILP encoding and a unique counting method for the
SAT encoding.

We employ the start-from-the-middle strategy to derive new distinguishers
on SPECK. In this strategy, the attacker gains access to certain rounds in the
“middle” of the cipher, specifically within the key-schedule process and the per-
mutation process. These rounds are referred to as controlled rounds. This strat-
egy is based on the observation that higher probability weights are generally
concentrated in a sequence of cipher rounds. By identifying these rounds, the at-
tacker can leverage the degrees of freedom within them, allowing the extremities
to be verified probabilistically.

Different configurations of the window heuristic can be applied to each round
of ARX ciphers. Using the start-from-the-middle approach, we find distinguish-
ers by enabling the attacker to search for differential trails with the controlled
rounds set to ws = −1, permitting higher values in these rounds while restricting
the window size to be less than or equal to 0, 1, 2, or 3 for the other rounds.
This choice is based on the observation that the best probability weights for
differential trails in SPECK occur with window sizes not exceeding 3. We create
a window for the controlled rounds and move it across the rounds to determine
where the best distinguishers can be found.

As the controlled rounds are manipulated by the attacker, the probability
weight of the distinguisher is calculated only from the rounds outside the con-
trolled rounds. To select the number of controlled rounds, we consider the pa-
rameter m of the SPECK cipher (refer to Section 2). Since the attacker can select
m words, each assigned to a different round, we choose a number of controlled
rounds close to m. Specifically, we select the following pairs for the key-schedule
and permutation controlled rounds: (4, 1), (5, 2), and (6, 3).

We encode all the described constraints and configurations into SAT CNF
clauses and apply them to SPECK-48/96. We select this version of SPECK due
to its higher m value and because it provides results for constructing distin-
guishers in the chosen-key model without considering the start-from-the-middle
approach (see Table 2). We discovered a distinguisher for 19 rounds with a
probability weight of 43, with ws = 0, and 5 controlled rounds in the key-
schedule and 2 in the permutation. Namely, we are able to produce a pair of
plaintexts/ciphertexts/keys (P,C,K) and (P ′, C ′,K ′) such that the exact dif-
ferences predicted by the differential path (P ⊕ P ′, C ⊕ C ′,K ⊕K ′) is present.
As described in [28, 29], in the generic case the attacker can’t use the birthday
search strategy (since all differences are fixed) and will require to use 248 cipher
calls to achieve the same goal. One can find this distinguisher in the repository
accompanying this paper.

Interpretation of some “timing jumps” in the experiments. Throughout our ex-
periments searching for differential trails in SPECK within the single-key scenario,
a notable spike in timings can be observed starting around round 6 to round 8.
This is evident in Table 1 as well as in Tables 16, 18, 20, 22 and 24 in Sec-
tion D. We attribute this timing anomaly to the diffusion properties inherent
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Table 2: Differential trail probabilities in the related-key scenario for SPECK found
minimizing max{PD, PK} and that can be used to mount distinguishers in the chosen-
key model.

Version Rounds min{log2(PD), log2(PK)} log2(PD) log2(PK) ws

SPECK-48/96 14 −33 −33 −32 0
SPECK-48/96 15 −38 −38 −37 1
SPECK-64/128 15 −40 −40 −37 0

Version Rounds log2(PDK) log2(PD) log2(PK) Ref.

SPECK-32/64

15 -94.0 −32.0 −62.0 [42]
15 -85.0 −32.0 −53.0 [41]
15 -73.0 −31.0 −42.0 ws = 0

SPECK-48/96

14 -68.0 −43.0 −25.0 [42]
14 -66.6 −43.0 −23.6 [41]
14 -65.0 −34.0 −31.0 ws = 0
15 -89.0 −46.0 −43.0 [42]
15 -83.5 −42.0 −41.5 [41]
15 -75.0 −41.0 −34.0 ws = 0
16 -86.0 −43.0 −43.0 ws = 0

SPECK-64/128

14 -88.0 −37.0 −51.0 [42]
14 -72.0 −35.0 −37.0 [41]
14 -66.0 −32.0 −34.0 ws = 0
15 -105.0 −45.0 −60.0 [42]
15 -89.0 −42.0 −47.0 [41]
15 -76.0 −33.0 −43.0 ws = 0
16 -103.0 −60.0 −43.0 [42]
16 -85.0 −39.0 −46.0 ws = 0
17 -112.0 −62.0 −50.0 [42]

SPECK-128/256

16 -121.0 −76.0 −45.0 [42]
16 -96.0 −52.0 −44.0 ws = 0
19 -190.0 −111.0 −79.0 [42]
19 -171.0 −102.0 −69.0 ws = 0

Table 3: Upper-bound comparison on the differential trails probability in the related-
key scenario for SPECK variants. ws denotes the window size. PD represents the proba-
bility of the differential trail for data encryption. PK represents the probability of the
differential trail for the key-schedule process, while PDK = PD × PK .

to SPECK. Taking SPECK-128-128 as an example, its Avalanche Factor (AF) be-
comes prominent around rounds 7 and 8, as detailed in Table 1 of [19]. This
diffusion characteristic of SPECK likely accounts for the observed jump in the
timings. Furthermore, when juxtaposing our timings with those from two other
studies, a consistent pattern emerges. This congruent behavior can be seen, for
instance, in Tables 18-20 of [46].
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4.2 Application to ChaCha

Search for differential trails in the single-key scenario. Differential cryptanalysis
of ChaCha is notoriously difficult; not only is the choice of input difference po-
sitions restricted to one row out of four in the single-key scenario, but the high
number of modular addition results in a combinatorial explosion that renders the
search of long trails difficult. Therefore, ChaCha is a valuable benchmark to as-
sess the strength of our heuristic. The main point of comparison is the single-key
trails for ChaCha reduced to 1, 2, 3, and 4 rounds documented [7].

The summarized results are presented in Table 4. We managed to identify
differential trails spanning up to four rounds with ws = 1. Remarkably, our 3-
round distinguisher outperforms the best known pure differential distinguisher
by a factor 227 (Table 26). Even more remarkably, we outperformed by a factor
298 the 4-round distinguisher presented in [7].

Number MILP +
SAT + window
heuristic + “full
window size”

MILP S-function

of window heur. [7] [7]
rounds Pr ws Pr Pr Pr

1 3 3 3 3 3

2 37 3 37 37 37

3 120 1 120 147 157

4 218 1 217 316 349

Table 4: Comparative results of differential trail weight probabilities with [7] for
ChaCha in a single-key scenario. Probability is denoted in − log2(·).

These trails were found with a combination of sequential and parallel SAT
and MILP implementations of the heuristic. More specifically, for 1 and 2 rounds,
we allocated 16 cores to MILP (with ws = 3) and 1 to SAT. For 3 and 4 rounds,
we did could not find new bounds with the MILP model, even though the search
used 80 cores (16 for each ws value, from -1 to 3). The same bounds were found
for ChaCha reduced to 3 rounds by using the parallel implementation of our
tool for SAT. Surprisingly, the bound 2−218 for ChaCha reduced to 4 rounds
was found using the parallel MILP implementation of our heuristic, but was
not found in either the sequential or the parallel SAT versions of our tool. This
might be a sign that our encoding method of the proposed heuristic still has
room for improvement. We leave this as future research since exploring deeply
how internal algorithms of MILP, or SAT, solvers are not in the scope of this
paper. Individual timings and results for MILP and SAT can be found in Table 5
and Table 6 respectively. In Table 6, the symbol (-) indicates that we were unable
to determine the probability weights listed in the fifth column even after one day.
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Single-key

r no-condition conditions

Time Pr Time Pr

1 2.17s 3 1.62s 3

2 13.2s 37 3.30s 37(0)

3 13.6s 147 319s 120(0)

4 36728s 316 48745s 218(1)

Table 5: Individual timing results for
ChaCha-512-256 using MILP. Probability
is denoted in − log2(·). Between parenthe-
sis is given the window size for this result.

Single-key

r no-condition conditions

Time Pr Time Pr

1 0.62s 3 0.3s 3

2 108s 37 1.81s 37(0)

3 - - 95.0s 120(0)

4 - - - 218(1)

Table 6: Individual timing results for
ChaCha-512-256 using SAT. Probability
is denoted in − log2(·). Between parenthe-
sis is given the window size for this result.

Window Heuristic constraining the number of “full windows”. We conducted
experiments similar to those described in Subsection 4.1, utilizing the window
heuristic with constraints on the number of “full window sizes”. This time, we
constrained the number of “full window sizes” to be at most 7 to search for
differential trails on ChaCha reduced to four rounds. Using ParKissat (with 16
cores), we found a trail in approximately 4.5 hours with a probability weight of
217 (see Table 27), which is better than the one found using MILP. The details
of this trail are available in the repository accompanying this paper.

Boomerang distinguishers. In order to showcase the potential of the window
heuristic, we applied it to the search of boomerang distinguishers, as defined in
Subsection 2.1. In particular, we extended the ARX-oriented automatic search
tool of [48], which adapts the notion of BCT table and its derivatives to ARX, to
include the window heuristic. More specifically, we build boomerang distinguish-
ers for 2 to 6 rounds of ChaCha. In the single-key scenario, the input difference
is constrained to the last row of the state; in contrast, the difference in interme-
diate rounds is unconstrained, leaving more freedom in the bottom part of the
distinguisher. Therefore, the choice of the middle round is crucial to the quality
of the distinguisher.

We wanted to see how the probabilities shifted with different round numbers
after cutting the cipher into top and bottom parts. If the probabilities were
balanced, it meant a good split point. Our tests showed that the best places to
split ChaCha are as follows: after the first round for 2 and 3 rounds, and after the
second for 4, 5, and 6 rounds distinguishers. To make these distinguishers even
better, we applied the BCT methods from [48] to the first modular addition in
the bottom part. In Figure 1, we show an example of where we applied the BCT
method for rounds 2, 3.

A summary of our results by using these techniques and the window heuristic
is presented in Table 7. The details and differentials used in that table can be
found in https://anonymous.4open.science/r/Improved-MILP-model-for-

Modular-Addition-on-ARX-ciphers-FA81.
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Table 7: New boomerang distinguishers for ChaCha.

Number Theoretical Experimental

of rounds probability probability

2 2−6 (ws = −1, bottom part starting round 2) 2−0.05

3 2−10 (ws = −1, bottom part starting round 2) 2−1.41

4 2−90 (ws = 0, bottom part starting round 3) -

5 2−154 (ws = 1, bottom part starting round 3) -

6 2−228 (ws = 1, bottom part starting round 3) -

xi
0 xi

5 xi
10 xi

15

≪ 16

≪ 12

≪ 8

≪ 7

xi+1
0 xi+1

5 xi+1
10 xi+1

15

xi
1 xi

6 xi
11 xi

12

≪ 16

≪ 12

≪ 8

≪ 7

xi+1
1 xi+1

6 xi+1
11 xi+1

12

xi
2 xi

7 xi
8 xi

13

≪ 16

≪ 12
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≪ 7
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2 xi+1

7 xi+1
8 xi+1

13
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14
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≪ 7
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4 xi+1
9 xi+1

14

Fig. 1: The dotted lines highlight the BCT utilized to create the boomerang distin-
guishers in ChaCha for an odd round.

4.3 Application to LEA

We use the window heuristic to search for differential trails on LEA-128, im-
proving the state-of-the-art differential characteristic for LEA-128 reduced to 13
rounds, by a factor of 211 without taking into consideration the differential ef-
fect, and by a factor of 24 taking into account the differential effect. Individual
timings and results for MILP can be found in Table 8

We used the aforementioned trail for LEA-128 and the strategy proposed in
[21, 43], to mount a key recovery attack against LEA-128 reduced to 14 rounds.
Specifically, given a r-round differential characteristic of LEA-128 with probabil-
ity p > 2× 2−128, the attack recovers the key LEA-128 reduced to (r+1) rounds
with 2 × p−1 plaintexts, in expected time complexity of 2 × p−1 encryptions.
Using the probability p = 2−123 of our distinguisher and r = 13, we have a dis-
tinguisher with an expected time complexity of 2111.97 after taking into account
the differential effect similar to how it was done in [43] (see Table 9). This com-
plexity outperforms the previously pure differential known key-recovery attack
for LEA-128 reduced to 14 rounds by a factor 211. A summary, of our distin-
guishers and key-recovery attack against LEA can be found in Table 10.
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Window Others

r size

Pr ws Pr Ref. Pr Ref.

12 107 9 112 [43] 107 [3]

13 123 1 134 [43] 127 [3]

Single-key

r no-condition conditions

Time Pr Time Pr

12 100709s 107/(-1) 73405s 107/(9)

13 609.53s 143/(-1) 7985s 123/(1)

Table 8: Differential trails weight proba-
bilities results and comparisons for LEA-128
(top) and individual timing results using
MILP (bottom). Probability is denoted in
− log2(·). Between parenthesis is given the
window size for this result.

weight #sol. Pr. Σacc

123 22 -118.54 -118.54

124 167 -116.62 -116.28

125 720 -115.51 -114.84

126 2783 -114.56 -113.69

127 5926 -114.47 -113.03

128 30785 -113.09 -112.06

129 79668 -112.72 -111.35

130 124094 -113.08 -110.97

Table 9: Differential effect of the 13-round
differential trail of LEA-128. Pr. and Σacc

are denoted in log2(·).

Distinguisher Key recovery

Rounds Pr Ref. Rounds Complexity Ref.

13 2−123.79 [43] 14 2124.79 [43]

13 2−110.97 Ours (ws = 1) 14 2111.97 Ours (ws = 1)

Table 10: Upper-bound probabilities and key-recovery complexities comparison on
LEA using pure differentials. ws denotes the window size.

4.4 Application to HIGHT

We applied the window heuristic to HIGHT-64-128; the corresponding results
are given in Table 11, and the individual timings in Table 12, where (-) denotes
no results within 24 hours.

A window size of 7 was used to identify the differential trail 11 rounds with
the MILP model. Interestingly, this window size significantly deviates from the
typical values we have adopted when seeking enhanced trails for other ciphers
discussed in this paper. Yet, with a window size of three and through the appli-
cation of SAT techniques, we the best documented trail in the existing literature.

5 Discussions, conclusions and future work

In this work, we proposed a generalization of the linearization technique used to
find differential trails in ARX ciphers. Our technique allows us to significantly
decrease the space size during a tree-like search for good differential trails, by
focusing on those trails that have a small number of consecutive carry-bit dif-
ferences. As observed in the literature and in our experiments, and with few
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Number Single-key

of ours ours
heuristic

rounds (MILP) (SAT)

11 45/(7) 45/(3) 45/([35])

12 54/(7) - 53/(splicing [3])([35])

Table 11: Differential paths probabilities results (denoted in − log2(·)) and compar-
isons for HIGHT-64-128. Between parenthesis is given the window size for this result.

Number Single-key (MILP) Single-key (SAT)

of no-condition conditions no-condition conditions

rounds Time Pr Time Pr Time Pr Time Pr

11 1635s 46 24408s 45(7) 703s 45 374s 45(3)

12 42s 55 13s 54(7) - - - -

Table 12: Individual timing results for HIGHT-64-128 using MILP. Probability is de-
noted in − log2(·). Between parenthesis is given the window size for this result.

exceptions, this property seems to be enough to quickly spot trails with the
best (often optimal) probability. We demonstrate this claim by showcasing novel
results in the case of ChaCha, SPECK, and LEA.

We would like to emphasize that our method is different from [32]. While
both use the word “window”, this article’s strategy is very different and has a
different goal from ours. The technique presented in [32], forces the differences
to only appear in a small window of the state words of the differential trail to
exploit the strong clustering effect in SIMON and SPECK (because of the structure
of these ciphers). In our case, the differences in the state can appear anywhere.
We are restricting the consecutive carry-bit differences in the modular additions.
Our technique is relevant for any ARX cipher (it would actually not apply to
SIMON as it is not ARX).

Looking ahead, our techniques open several possibilities for future research
in automated cryptanalysis tools. In particular, one could try different heuris-
tics, such as limiting the total number of carries, not necessarily consecutive or
by limiting the total number of window heuristic sizes summing to n. Another
research direction could be to investigate the effect of the window heuristic on
the search for other types of trails, such as linear trails or truncated differential
trails. Regarding the applications, interestingly, we could push the boundaries of
the basic boomerang distinguishers against ChaCha, now competing with known
differential-linear distinguishers. Another application we explore in this work is
to use SAT encoding to search for good differential paths on ARX ciphers to be
used in the chosen-key scenario. This require taking into account the possibility
for the attacker to start from the middle of the path. The window heuristic’s
flexibility enabled us to discover distinguishers in this setting. A future research
in this direction is the usage of truncated differences on both extremities of the
differential path (to be used as limited-birthday distinguishers [28, 29]). This
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would basically boil down to building a new and much more involved minimiza-
tion function in the SAT/MILP encoding.
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Supplementary material

This supplementary section provides additional materials that support the main
text. It includes extended analyses, detailed data tables, additional figures, or
other relevant information that complements the results and discussions pre-
sented in the main part of this paper.

A Finding differential trails using SAT and MILP
techniques

For each bit position j ∈ {0, . . . , n − 2}, the inequalities used to model the
propagation of differences in a modular addition with input differences a and b
and output difference c are given as follows:

a[j + 1] + b[j + 1]− c[j + 1] + a[j] + b[j] + c[j] + d[j] ≥ −0

a[j + 1]− b[j + 1] + c[j + 1] + a[j] + b[j] + c[j] + d[j] ≥ −0

−a[j + 1] + b[j + 1] + c[j + 1] + a[j] + b[j] + c[j] + d[j] ≥ −0

−a[j + 1]− b[j + 1]− c[j + 1] + a[j] + b[j] + c[j]− d[j] ≥ −3

a[j + 1] + b[j + 1] + c[j + 1] + a[j] + b[j] + c[j]− d[j] ≥ −0

a[j + 1] + b[j + 1] + c[j + 1]− a[j]− b[j]− c[j] + d[j] ≥ −6

−a[j + 1]− b[j + 1]− c[j + 1] + a[j]− b[j]− c[j] + d[j] ≥ −6

−a[j + 1]− b[j + 1]− c[j + 1]− a[j] + b[j]− c[j] + d[j] ≥ −6

−a[j + 1]− b[j + 1]− c[j + 1]− a[j]− b[j] + c[j] + d[j] ≥ −6

a[j + 1] + b[j + 1] + c[j + 1] + a[j] + b[j]− c[j] + d[j] ≥ −0

a[j + 1] + b[j + 1] + c[j + 1] + a[j]− b[j] + c[j] + d[j] ≥ −0

a[j + 1] + b[j + 1] + c[j + 1]− a[j] + b[j] + c[j] + d[j] ≥ −0

a[j + 1] + b[j + 1]− c[j + 1] + a[j] + b[j] + c[j] + d[j] ≥ −0.

(6)

Here d[j] is used to model the probability weight variable of the differential (see
Section 2).

For each bit position j ∈ {0, . . . , n − 2}, the CNF clauses to model the
propagation of differences in a modular addition with input differences a and b
and output difference c are given as follows:
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a[j] ∨ b[j] ∨ ¬c[j] ∨ a[j + 1] ∨ b[j + 1] ∨ c[j + 1] = 1,

a[j] ∨ ¬b[j] ∨ c[j] ∨ a[j + 1] ∨ b[j + 1] ∨ c[j + 1] = 1,

¬a[j] ∨ b[j] ∨ c[j] ∨ a[j + 1] ∨ b[j + 1] ∨ c[j + 1] = 1,

¬a[j] ∨ ¬b[j] ∨ ¬c[j] ∨ a[j + 1] ∨ b[j + 1] ∨ c[j + 1] = 1,

a[j] ∨ b[j] ∨ c[j] ∨ ¬a[j + 1] ∨ ¬b[j + 1] ∨ ¬c[j + 1] = 1,

a[j] ∨ ¬b[j] ∨ ¬c[j] ∨ ¬a[j + 1] ∨ ¬b[j + 1] ∨ ¬c[j + 1] = 1,

¬a[j] ∨ b[j] ∨ ¬c[j] ∨ ¬a[j + 1] ∨ ¬b[j + 1] ∨ ¬c[j + 1] = 1,

¬a[j] ∨ ¬b[j] ∨ c[j] ∨ ¬a[j + 1] ∨ ¬b[j + 1] ∨ ¬c[j + 1] = 1,

¬a[j + 1] ∨ c[j + 1] ∨ w[j] = 1,

b[j + 1] ∨ ¬c[j + 1] ∨ w[j] = 1,

a[j + 1] ∨ ¬b[j + 1] ∨ w[j] = 1,

a[j + 1] ∨ b[j + 1] ∨ c[j + 1] ∨ ¬w[j] = 1,

¬a[j + 1] ∨ ¬b[j + 1] ∨ ¬c[j + 1] ∨ ¬w[j] = 1.

Here w[j] is used to model the probability weight variable of the differential
(see Section 2).

B Description of ChaCha, SPECK and LEA

B.1 Description of ChaCha

In [9], Bernstein presented ChaCha, now one of the most famous ARX ciphers.
This stream cipher works with a 128-bit or 256-bit key and was constructed
to improve the diffusion properties of Salsa [8] while using about the same
amount of operations. ChaCha works on a (4×4) matrix of 32-bit words (denoted
x0, . . . , x15 as seen in Table 13b), and its initial state comprises four constants
words c1 = 0x61707865, c2 = 0x3320646e, c3 = 0x79622d32, c4 = 0x6b206574,
one counter word, three nonce words, and eight key words for the 256-bit key.
The distribution of these words is presented in Table 13a.

c1 c2 c3 c4

key 1 key 2 key 3 key 4

key 5 key 6 key 7 key 8

counter nonce 1 nonce 2 nonce 3

(a) Initial state of ChaCha.

xi
0 xi

1 xi
2 xi

3

xi
4 xi

5 xi
6 xi

7

xi
8 xi

9 xi
10 xi

11

xi
12 xi

13 xi
14 xi

15

(b) xi state of ChaCha.
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ChaCha is an iterative stream cipher with 20 rounds, where each round up-
dates the ith state presented in Table 13b using the following equations, called
quarter round (QR).

a = a+ b, d = d⊕ a, d = d ≪ 16, c = c+ d;

b = b⊕ c, b = b ≪ 12, a = a+ b, d = d⊕ a;

d = d ≪ 8, c = c+ d, b = b⊕ c, b = b ≪ 7;

If the round number is even, then the QR equations are applied to each
column of the (4× 4) word matrix. Thus, the state xi+1 can be written as:

(xi+1
0 , xi+1

4 , xi+1
8 , xi+1

12 ) = QR(xi
0, x

i
4, x

i
8, x

i
12),

(xi+1
1 , xi+1

5 , xi+1
9 , xi+1

13 ) = QR(xi
1, x

i
5, x

i
9, x

i
13),

(xi+1
2 , xi+1

6 , xi+1
10 , xi+1

14 ) = QR(xi
2, x

i
6, x

i
10, x

i
14),

(xi+1
3 , xi+1

7 , xi+1
11 , xi+1

15 ) = QR(xi
3, x

i
7, x

i
11, x

i
15)

If the round number is odd, then the QR equations are applied to each diagonal
of the (4× 4) word matrix. Thus, in that case the state xi+1 can be written as:

(xi+1
0 , xi+1

5 , xi+1
10 , xi+1

15 ) = QR(xi
0, x

i
5, x

i
10, x

i
15),

(xi+1
1 , xi+1
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11 , xi+1

12 ) = QR(xi
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i
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i
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i
12),

(xi+1
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(xi+1
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i
14)

B.2 Description of SPECK

SPECK and SIMON are two families of lightweight block ciphers proposed by the
National Security Agency in 2013 [4], with the former being of ARX type in
order to obtain good performances in constrained software architectures. The
SPECK family has several instances, depending on the block and key sizes. If the
block size is 2n and the key size is mn, the cipher is denoted as SPECK-2n/mn
(see Table 14 for the various versions).

SPECK is a Feistel cipher, where the round function works with two halves
as follows. Let (Li−1, Ri−1) be the input of the ith round, ki be the ith round
subkey, the output of the ith round (Li−1, Ri−1) is then computed as follows:

Li = F (Li−1, Ri−1)⊕ ki, Ri = (Ri−1 ≪ β)⊕ Li,

where F (x, y) = (x ≫ α) + y, α = 7 and β = 2 if the block size is 32-bit and
α = 8 and β = 3 otherwise. The key schedule part follows a similar process, and
we refer you to [?] to see the details.

B.3 Description of LEA

LEA is a block cipher designed by Hong et al. [?], for high-speed encryption. This
cipher has a block size of 128 bits and the key size could be 128, 192, or 256 bits.

27



Version block size (2n) key size (mn) rounds (T )

SPECK-32/64 32 64 22

SPECK-48/72 48 72 22

SPECK-48/96 48 96 23

SPECK-64/96 64 96 26

SPECK-64/128 64 128 27

SPECK-96/92 96 96 28

SPECK-96/144 96 144 29

SPECK-128/128 128 128 32

SPECK-128/192 128 192 33

SPECK-128/256 128 256 34

Table 14: Variants of the SPECK family of block ciphers.

In this paper, we denote these instances by LEA-128, LEA-192, and LEA-256,
respectively. The ith state of this cipher comprises four 32-bit words. Its round
function is composed of modular additions (modulus 232), XORs, and rotations.
Let xi

0, x
i
1, x

i
2, x

i
3 be the inputs words at round i, then the output words can be

described as:

xi+1
0 = ((xi

0 ⊕ ki0) + (xi
1 ⊕ ki1)) ≪ 9, xi+1

1 = ((xi
1 ⊕ ki2) + (xi

2 ⊕ ki3)) ≫ 5,

xi+1
2 = ((xi

2 ⊕ ki4) + (xi
3 ⊕ ki5)) ≪ 3, xi+1

3 = xi
0.

where ki0, k
i
1, k

i
2, k

i
3, k

i
4, k

i
5 are the subkey words of the round i. We refer to [?]

for details on the key schedule process. Regarding the number of rounds, it is 24
for LEA-128, 28 for LEA-192, and 32 for LEA-256.
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C Window size heuristic constraining the number “Full
window”

Table 15: Differential Trail Results and number of “full window sizes”

Number of Full Block Key Window Pr

Rounds Window Size (k) Size Size Size Weight

9 3 32 64 2 30

10 1 32 64 3 34

11 3 48 96 2 45

12 3 48 96 2 49

11 1 64 128 3 42

12 1 64 128 3 46

13 1 64 128 3 50

16 1 64 128 3 71

11 1 96 96 3 58

12 1 128 128 3 68

13 1 128 128 3 78

Fig. 2: Comparison of the average of the solving time in seconds (on a log2 scale) to
search for differential trails on different versions of SPECK using the window heuristic
constraining the number of “full window size” and using ParKiSat SAT solver.
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Fig. 3: Comparison of the average of the solving time in seconds (on a log2 scale) to
search for differential trails on different versions of SPECK using the window heuristic
constraining the number of “full window size” and using CaDiCal SAT solver.

D Result tables for SPECK

The following tables show the timing results we get for

Number Single-key Related-key
of no-condition conditions no-condition conditions

rounds Time Pr Time Pr Time Pr Time Pr

1 0.11s 0 0.11s 0(0) 0.10s 0 0.09s 0(0)
2 0.23s 1 0.25s 1(0) 0.17s 0 0.18s 0(0)
3 0.35s 3 0.40s 3(0) 0.24s 0 0.24s 0(0)
4 0.48s 5 0.55s 5(0) 0.31s 0 0.33s 0(0)
5 0.69s 9 0.72s 9(0) 0.37s 1 0.40s 1(0)
6 0.80s 13 0.80s 13(0) 0.83s 4 0.56s 4(0)
7 1.46s 18 0.91s 18(0) 0.90s 8 0.70s 8(0)
8 1.05s 24 0.75s 24(0) 5.65s 12 1.59s 12(0)
9 9.05s 30 172879s 30(2) 7.33s 17 0.93s 17(0)
10 420s 34 259589s 34(3) 6.81s 24 1.10s 24(0)
11 - - - - 1217s 34 1.21s 35(0)

Table 16: Timing results for SPECK-32-64. Probability is denoted in − log2(·). Between
parenthesis is given the window size for this result.

D.1 Differential trails for ChaCha
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Number Single-key Related-key
of no-condition conditions no-condition conditions

rounds Time Pr Time Pr Time Pr Time Pr

1 0.11s 0 0.11s 0(0) 0.10s 0 0.09s 0(0)
2 0.23s 1 0.25s 1(0) 0.17s 0 0.18s 0(0)
3 0.35s 3 0.40s 3(0) 0.24s 0 0.24s 0(0)
4 0.48s 5 0.55s 5(0) 0.31s 0 0.33s 0(0)
5 0.69s 9 0.72s 9(0) 0.37s 1 0.40s 1(0)
6 0.80s 13 0.80s 13(0) 0.83s 4 0.56s 4(0)
7 1.46s 18 0.91s 18(0) 0.90s 8 0.70s 8(0)
8 1.05s 24 0.75s 24(0) 5.65s 12 1.59s 12(0)
9 9.05s 30 70.3s 30(2) 7.33s 17 0.93s 17(0)
10 420s 34 115s 34(3) 6.81s 24 1.10s 24(0)
11 - - - - 1217s 34 1.21s 35(0)

Table 17: Individual timing results for SPECK-32-64. Probability is denoted in
− log2(·). Between parenthesis is given the window size for this result.

Number Single-key Related-key
of no-condition conditions no-condition conditions

rounds Time Pr Time Pr Time Pr Time Pr

1 0.13s 0 0.13s 0(0) 0.12s 0 0.11s 0(0)
2 0.29s 1 0.35s 1(0) 0.21s 0 0.23s 0(0)
3 0.52s 3 0.52s 3(0) 0.33s 0 0.34s 0(0)
4 0.70s 6 0.84s 6(0) 0.44s 0 0.47s 0(0)
5 1.14s 10 0.99s 10(0) 0.55s 1 0.62s 1(0)
6 1.32s 14 1.02s 14(0) 0.79s 4 0.74s 4(0)
7 1.44s 19 1.15s 19(0) 1.36s 8 1.22s 8(0)
8 24.7s 26 1.26s 26(0) 8.52s 12 1.36s 12(0)
9 16.6s 33 86404s 33(1) 115s 18 86425s 18(1)
10 584s 40 86410s 40(1) 67.2s 25 4.85s 25(0)
11 5442s 45 1828875s 45(2) - - - -
12 30164s 49 197512s 49(2) - - - -

Table 18: Timing results for SPECK-48-96. Probability is denoted in − log2(·). Between
parenthesis is given the window size for this result.
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Number Single-key Related-key
of no-condition conditions no-condition conditions

rounds Time Pr Time Pr Time Pr Time Pr

1 0.13s 0 0.13s 0(0) 0.12s 0 0.11s 0(0)
2 0.29s 1 0.35s 1(0) 0.21s 0 0.23s 0(0)
3 0.52s 3 0.52s 3(0) 0.33s 0 0.34s 0(0)
4 0.70s 6 0.84s 6(0) 0.44s 0 0.47s 0(0)
5 1.14s 10 0.99s 10(0) 0.55s 1 0.62s 1(0)
6 1.32s 14 1.02s 14(0) 0.79s 4 0.74s 4(0)
7 1.44s 19 1.15s 19(0) 1.36s 8 1.22s 8(0)
8 24.7s 26 1.26s 26(0) 8.52s 12 1.36s 12(0)
9 16.6s 33 2.77s 33(1) 115s 18 19.3s 18(1)
10 584s 40 6.36s 40(1) 67.2s 25 4.85s 25(0)
11 5442s 45 10069s 45(2) 198s 36 5.00s 36(0)
12 30164s 49 24591s 49(2) - - - -

Table 19: Individual timing results for SPECK-48-96. Probability is denoted in
− log2(·). Between parenthesis is given the window size for this result.

Number Single-key Related-key
of no-condition conditions no-condition conditions

rounds Time Pr Time Pr Time Pr Time Pr

1 0.18s 0 0.16s 0(0) 0.38s 0 0.39s 0(0)
2 0.43s 1 0.32s 1(0) 0.82s 0 0.97s 0(0)
3 0.72s 3 0.50s 3(0) 1.56s 0 1.58s 0(0)
4 0.96s 6 1.04s 6(0) 2.01s 0 2.18s 0(0)
5 1.35s 10 1.35s 10(0) 2.67s 1 2.78s 1(0)
6 1.77s 15 1.79s 15(0) 3.24s 4 3.33s 4(0)
7 3.56s 21 2.16s 21(0) 3.77s 8 4.10s 8(0)
8 5.71s 29 2.02s 29(0) 5.62s 12 6.39s 12(0)
9 24.4s 34 2.82s 34(0) 60.2s 18 7.62s 18(0)
10 10229s 38 5.93s 38(0) 236s 26 105s 26(0)
11 81.6s 42 312312s 42(3) 454s 38 26.7s 38(0)
12 7938s 46 262350s 46(3) 137s 52 2477s 49(0)
13 29566s 50 280784s 50(3) 35160s 57 240s 57(0)
14 59787s 56 264460s 56(4) 27021s 81 612s 66(0)
15 13931s 62 286405s 62(4) - - - -

Table 20: Timing results for SPECK-64-128. Probability is denoted in − log2(·). Be-
tween parenthesis is given the window size for this result.
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Number Single-key Related-key
of no-condition conditions no-condition conditions

rounds Time Pr Time Pr Time Pr Time Pr

1 0.18s 0 0.16s 0(0) 0.38s 0 0.39s 0(0)
2 0.43s 1 0.32s 1(0) 0.82s 0 0.97s 0(0)
3 0.72s 3 0.50s 3(0) 1.56s 0 1.58s 0(0)
4 0.96s 6 1.04s 6(0) 2.01s 0 2.18s 0(0)
5 1.35s 10 1.35s 10(0) 2.67s 1 2.78s 1(0)
6 1.77s 15 1.79s 15(0) 3.24s 4 3.33s 4(0)
7 3.56s 21 2.16s 21(0) 3.77s 8 4.10s 8(0)
8 5.71s 29 2.02s 29(0) 5.62s 12 6.39s 12(0)
9 24.4s 34 2.82s 34(0) 60.2s 18 7.62s 18(0)
10 10229s 38 5.93s 38(0) 236s 26 105s 26(0)
11 81.6s 42 1046s 42(3) 454s 38 26.7s 38(0)
12 7938s 46 2903s 46(3) 137s 52 2477s 49(0)
13 29566s 50 8409s 50(3) 35160s 57 240s 57(0)
14 59787s 56 5260s 56(4) 27021s 81 612s 66(0)
15 13931s 62 27205s 62(4) - - - -
16 25905s 72 285105s 71(3) - - -

Table 21: Individual timing results for SPECK-64-128. Probability is denoted in
− log2(·). Between parenthesis is given the window size for this result.

Number Single-key Related-key
of no-condition conditions no-condition conditions

rounds Time Pr Time Pr Time Pr Time Pr

1 0.16s 0 0.17s 0(0) 0.21s 0 0.18s 0(0)
2 0.40s 1 0.40s 1(0) 0.35s 0 0.49s 0(0)
3 0.77s 3 0.66s 3(0) 0.59s 2 0.84s 2(0)
4 1.06s 6 0.98s 6(0) 1.02s 5 1.28s 5(0)
5 1.46s 10 1.22s 10(0) 4.77s 9 1.83s 9(0)
6 13.3s 15 1.66s 15(0) 9.22s 15 2.05s 15(0)
7 49.5s 21 1.66s 15(0) 247s 24 2.80s 24(0)
8 46.2s 30 2.39s 30(0) 1644s 34 10.2s 34(0)
9 512s 39 2.93s 39(0) 11897s 46 7.78s 46(0)
10 3978s 49 2.94s 49(0) 2423s 62 6.46s 62(0)
11 98416s 58 261915s 58(3) 44827s 78 435s 76(0)
12 83754s 62 - - 831s 97 37s 92(0)
13 26181s 67 - - 1927s 114 1439s 108(0)
14 107671s 75 - - - - - -
15 107671s 81 86088s 80(7) - - - -
16 65553s 90 running 87(11) - - - -

Table 22: Timing results for SPECK-96-96. Probability is denoted in − log2(·). Between
parenthesis is given the window size for this result.
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Number Single-key Related-key
of no-condition conditions no-condition conditions

rounds Time Pr Time Pr Time Pr Time Pr

1 0.16s 0 0.17s 0(0) 0.21s 0 0.18s 0(0)
2 0.40s 1 0.40s 1(0) 0.35s 0 0.49s 0(0)
3 0.77s 3 0.66s 3(0) 0.59s 2 0.84s 2(0)
4 1.06s 6 0.98s 6(0) 1.02s 5 1.28s 5(0)
5 1.46s 10 1.22s 10(0) 4.77s 9 1.83s 9(0)
6 13.3s 15 1.66s 15(0) 9.22s 15 2.05s 15(0)
7 49.5s 21 1.66s 15(0) 247s 24 2.80s 24(0)
8 46.2s 30 2.39s 30(0) 1644s 34 10.2s 34(0)
9 512s 39 2.93s 39(0) 11897s 46 7.78s 46(0)
10 3978s 49 2.94s 49(0) 2423s 62 6.46s 62(0)
11 98416s 58 2715s 58(3) 44827s 78 435s 76(0)
12 83754s 62 - - 831s 97 37.0s 92(0)
13 26181s 67 - - 1927s 114 1439s 108(0)
14 107671s 75 86088s 74(7) - - - -
15 107671s 81 86088s 80(7) - - - -

Table 23: Individual Timing results for SPECK-96-96. Probability is denoted in
− log2(·). Between parenthesis is given the window size for this result.

Number Single-key Related-key
of no-condition conditions no-condition conditions

rounds Time Pr Time Pr Time Pr Time Pr

1 0.37s 0 0.41s 0(0) 0.67s 0 0.70s 0(0)
2 0.87s 1 0.86s 1(0) 1.76s 0 1.83s 0(0)
3 1.38s 3 1.47s 3(0) 2.96s 2 3.12s 2(0)
4 2.34s 6 2.17s 6(0) 91.9s 24 7.18s 5(0)
5 3.73s 10 2.39s 10(0) 20.8s 9 8.70s 9(0)
6 6.5s 15 2.81s 15(0) 27.1s 15 12.5s 15(0)
7 506s 21 5.07s 21(0) 1206s 24 19.9s 24(0)
8 742s 30 11.4s 30(0) 2673s 38 720s 34(0)
9 4253s 39 5.72s 39(0) 5335s 58 499s 46(0)
10 55704s 49 23.9s 49(0) 420s 77 140s 62(0)
11 42204s 59 7.19s 59(0) 133s 146 108s 76(0)
12 3360s 68 286811s 66(3) 3818s 164 235s 92(0)
13 39539s 78 300421s 77(3) 1127s 112 13847s 109(0)
14 37.7s 99 20190s 96(2) 48003s 197 48698s 131(0)
15 709s 97 75.8s 120(0) 8988s 140 - -
16 87493s 108 87472s 108(1) 95072s 324 74354s 181(0)
17 449s 134 89482s 114(1) 353s 503 1750s 206(0)
18 46794s 146 97867s 121(1) - - - -
19 20827s 154 90757s 128(1) - - - -

Table 24: Timing results for SPECK-128-128. Probability is denoted in − log2(·). Be-
tween parenthesis is given the window size for this result.
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Number Single-key Related-key
of no-condition conditions no-condition conditions

rounds Time Pr Time Pr Time Pr Time Pr

1 0.37s 0 0.41s 0(0) 0.67s 0 0.70s 0(0)
2 0.87s 1 0.86s 1(0) 1.76s 0 1.83s 0(0)
3 1.38s 3 1.47s 3(0) 2.96s 2 3.12s 2(0)
4 2.34s 6 2.17s 6(0) 91.9s 24 7.18s 5(0)
5 3.73s 10 2.39s 10(0) 20.8s 9 8.70s 9(0)
6 6.50s 15 2.81s 15(0) 27.1s 15 12.5s 15(0)
7 506s 21 5.07s 21(0) 1206s 24 19.9s 24(0)
8 742s 30 11.4s 30(0) 2672s 38 720s 34(0)
9 4253s 39 5.72s 39(0) 5335s 58 499s 46(0)
10 55704s 49 23.9s 49(0) 420s 77 140s 62(0)
11 42204s 59 7.19s 59(0) 133s 146 108s 76(0)
12 3360s 68 26988s 66(3) 3818s 164 235s 92(0)
13 39539s 78 16162s 77(3) 1127s 112 13847s 109(0)
14 37.7s 99 20190s 96(2) 48003s 197 48698s 131(0)
15 710s 97 75.8s 120(0) 8988s 140 - -
16 87493s 108 200s 108(1) 95072s 324 87169s 178(1)
17 449s 134 2458s 114(1) 353s 503 1750s 206(0)
18 46794s 146 11467s 121(1) - - - -
19 20827s 154 43571s 128(1) - - - -

Table 25: Individual timing results for SPECK-128-128. Probability is denoted in
− log2(·). Between parenthesis is given the window size for this result.

Round Difference

-

0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x80088008, 0x00000000, 0x80088008, 0x00000000

1

0x88008800, 0x00000000, 0x88008800, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x88008800, 0x00000000, 0x88008800, 0x00000000,
0x08080808, 0x00000000, 0x08080808, 0x00000000

2

0x88008800, 0x80808080, 0x88008800, 0x80808080,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x80808080, 0x00000000, 0x80808080,
0x88888888, 0x00000000, 0x88888888, 0x00000000

3

0x08080808, 0x80808080, 0x08080808, 0x80808080,
0x44004400, 0x00000000, 0x44004400, 0x00000000,
0x80808080, 0x00000000, 0x80808080, 0x00000000,
0x80088008, 0x00000000, 0x80088008, 0x00000000

Table 26: ChaCha differential trail over 3 rounds with a probability weight of 217. The
trail was derived using the ws = 0 and MILP techniques.
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Round Difference

-

0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x80088008, 0x00000000, 0x80088008, 0x00000000

-

0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x88008800, 0x00000000, 0x88008800, 0x00000000,
0x88008800, 0x00000000, 0x88008800, 0x00000000,
0x80088008, 0x00000000, 0x80088008, 0x00000000

1

0x88008800, 0x00000000, 0x88008800, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x88008800, 0x00000000, 0x88008800, 0x00000000,
0x08080808, 0x00000000, 0x08080808, 0x00000000

-

0x88008800, 0x00000000, 0x88008800, 0x00000000,
0x80808080, 0x00000000, 0x80808080, 0x00000000,
0x00000000, 0x08080808, 0x00000000, 0x08080808,
0x08080808, 0x88008800, 0x08080808, 0x88008800

2

0x88008800, 0x80808080, 0x88008800, 0x80808080,
0x00000000, 0x00000000, 0x00008000, 0x00000000,
0x81808080, 0x00000000, 0x80808180, 0x00000000,
0x88888888, 0x00000000, 0x88888888, 0x00000000

-

0x08008800, 0x80808080, 0x08008800, 0x80808080,
0x88088808, 0x00000000, 0x88088808, 0x00000000,
0x80088008, 0x00000000, 0x80088008, 0x00000000,
0x88808880, 0x80808080, 0x88008880, 0x80808080

3

0x80080008, 0x81808080, 0x80008800, 0x80808080,
0xc4000400, 0x00008000, 0x04004400, 0x00008000,
0x80090008, 0x00000001, 0x00088008, 0x00000000,
0x08080808, 0x00000001, 0x08080808, 0x00000000

-

0x80080088, 0x818480c4, 0x00880088, 0x04480840,
0x00c100c0, 0x00800080, 0x01400040, 0x00000000,
0x00000000, 0x000400c5, 0x00800000, 0x04401040,
0x04401048, 0x00900080, 0x0400c400, 0x88800800

4

0x80000080, 0x809081c0, 0x00880088, 0x4090804c,
0x2a24a204, 0x44444444, 0x6862c06a, 0xc0004000,
0x01800080, 0x44944458, 0x8008880d, 0x4c4c584d,
0x480c4800, 0x18000804, 0x49044808, 0x88808880

Table 27: ChaCha differential trail over 4 rounds with a probability weight of 217. The
trail was derived using the “full window size heuristic” described in Section 3. The
table contains 9 rows, as it also includes the half-round state of ChaCha.
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