
Secure and Efficient Outsourced Matrix
Multiplication with Homomorphic Encryption

Aikata Aikata[0000−0003−0934−2982] and Sujoy Sinha Roy[0000−0002−9805−5389]

Graz University of Technology, Austria
{aikata,sujoy.sinharoy}@iaik.tugraz.at

Abstract. Fully Homomorphic Encryption (FHE) is a promising privacy-
enhancing technique that enables secure and private data processing on
untrusted servers, such as privacy-preserving neural network (NN) evalu-
ations. However, its practical application presents significant challenges.
Limitations in how data is stored within homomorphic ciphertexts and
restrictions on the types of operations that can be performed create com-
putational bottlenecks. As a result, a growing body of research focuses
on optimizing existing evaluation techniques for efficient execution in the
homomorphic domain.
One key operation in this space is matrix multiplication, which forms the
foundation of most neural networks. Several studies have even proposed
new FHE schemes specifically to accelerate this operation. The optimiza-
tion of matrix multiplication is also the primary goal of our work. We
leverage the Single Instruction Multiple Data (SIMD) capabilities of FHE
to increase data packing and significantly reduce the KeySwitch opera-
tion count— an expensive low-level routine in homomorphic encryption.
By minimizing KeySwitching, we surpass current state-of-the-art solu-
tions, requiring only a minimal multiplicative depth of two.
The best-known complexity for matrix multiplication at this depth is
O(d) for matrices of size d × d. Remarkably, even the leading tech-
niques that require a multiplicative depth of three still incur a KeySwitch
complexity of O(d). In contrast, our method reduces this complexity to
O(log d) while maintaining the same level of data packing. Our solution
broadly applies to all FHE schemes supporting Single Instruction Multi-
ple Data (SIMD) operations. We further generalize the technique in two
directions: allowing arbitrary packing availability and extending it to
rectangular matrices. This versatile approach offers significant improve-
ments in matrix multiplication performance and enables faster evaluation
of privacy-preserving neural network applications.

Keywords: Fully Homomorphic Encryption · Secure Outsourced Ma-
trix Multiplication · Arbitrary Packing · Privacy-enhancing Techniques

1 Introduction

The ability to process encrypted data without decryption has positioned Fully
Homomorphic Encryption (FHE) as the “Holy Grail” of privacy-preserving data

storage and computation [28]. However, this promising technique faces signifi-
cant challenges that hinder its widespread adoption, including substantial data
expansion and high computational requirements. These issues have sparked nu-
merous research directions aimed at addressing the computing limitations asso-
ciated with FHE, such as hardware acceleration approaches [17,1,27,4] that seek
to enhance server performance.

Most of the efficient and high-performing FHE schemes [12,7,15] are lattice-
based. A key limitation of these schemes is their linear slot-wise ciphertext en-
coding, which can be conceptualized as a one-dimensional array where each
plaintext element occupies a single index. This encoding restricts operations
requiring permutation, as elements cannot be easily extracted from the array,
unlike in plaintext operations. Consequently, performing permutations on homo-
morphic ciphertext necessitates costly multiplications with masks and rotations.
While this is manageable for operations like approximate function evaluation
that operate slot-wise, it poses a significant challenge for matrix multiplication.

Matrix multiplication is fundamental in advanced mathematics and is espe-
cially critical for secure data analysis and machine learning (ML), particularly
within neural networks (NN) [21,22,30,20,33]. Network components, such as fully
connected layers and filters/kernels, depend heavily on efficient matrix multipli-
cation. Although efficient algorithms like Strassen’s algorithm exist for plaintext
operations, conducting matrix multiplication in the encrypted domain remains
an emerging area of research. This field has garnered attention for its poten-
tial to facilitate encrypted ML training and inference using FHE schemes like
CKKS [10], which support approximate arithmetic.

1.1 Prior Works.

The authors in [18] introduced the first technique for multiplying encrypted ma-
trices and vectors, which was later extended to matrix-matrix multiplication by
[25] and [31]. However, these methods require a substantial number of homomor-
phic multiplications and rotation operations. The literature [25,31,30,21,22,20,33]
on encrypted matrix multiplication (referred to as matrix-matrix multiplication
from here on) can be broadly categorized into three types, as summarized in
Table 1.

The first type necessitates a multiplicative depth of two and employs a simple
row-wise encoding for the initial input data. The work in [30] exemplifies this
approach, presenting a technique for d3 packing availability in the ciphertext.
For a square matrix of dimensions d×d, this method requires 2 ·d+3 · log2(d)−2
rotations and one ciphertext-ciphertext (ct-ct) multiplication. Importantly, these
operations are costly, as a KeySwitch operation is required after each to maintain
that the ciphertext is decryptable with the same secret key. Thus, the total
KeySwitch complexity amounts to 2 · d+ 3 · log2(d)− 1. A significant limitation
of this approach is its requirement for d3 slots of packing availability, which
limits scalability for large matrices. Additionally, it does not generalize well for
lower packing availability.

2

Table 1. Comparison with secure d-dimensional matrix multiplication techniques. The
division of works is done based on the three types of works discussed in Section 1.1.
Key-Switches = # ct-ct Mult + # Rotations.

Methodology Packing # ct-ct Mult # Rotations Required Depth†

Naive 1 O(d3) - 2
[31,25] d O(d2) O(d2 log2 d) 2

This Work d2 O(d) O(d log2 d) 2
[30] d3 O(1) O(d) 2

This Work d3 O(1) O(log2 d) 2

[22] d2, d3‡ O(d) O(d) 3

[13,21,20,33] d2 O(d) O(d log2 d) 2

† This includes (Plaintext-Ciphertext) pt-ct and ct-ct multiplications, which consume
the same depth in Libraries like OpenFHE [2].
‡ With d× more packing, the number of rotations reduce from 3 · d+ 5 ·

√
d to

d+ 2 ·
√
d.

The second category, as described in [22], diverges slightly from previous
methods by utilizing diagonal-packing for matrix multiplication. In this ap-
proach, matrices are packed diagonally rather than row- or column-wise. While
this technique is highly complex for a multiplicative depth of two, it allows for
some pre-processing at a higher multiplicative depth of three, reducing the com-
plexity to 3d + 5

√
d rotations and d ct-ct multiplications. If d3 slot packing is

available, it can be further optimized to require d+2
√
d rotation computations.

However, a major drawback is the necessity for three multiplicative depths. Mul-
tiplicative depth is the currency in FHE schemes; the less spent, the better, as
more depth remains for remaining computations. Although the algorithms pro-
posed in [22] can be adjusted to operate within a multiplicative depth of two,
this significantly increases the number of rotations and ct-ct multiplications.

The third and final category of works, as discussed in [21,20,33], diverges
significantly from the previous two types. These studies leverage a multivariate
variant of the CKKS scheme (m-RLWE) [13], which enables the encoding of ma-
trices into a hypercube structure (tensor packing) instead of a linear array-like
structure typical of CKKS. This approach allows for more efficient rotations,
making row-wise or column-wise transformations cheaper. Matrix multiplication
using this scheme requires only a multiplicative depth of two, with the cost of
transformations reduced to 2·d+4

√
d rotations and d ct-ct multiplications. How-

ever, the multivariate CKKS [13] is incompatible with the original CKKS [10].
Furthermore, the parameters for multivariate CKKS are not standardized, and
its initial proposal [29] was found to be insecure [5], limiting its adaptability for
existing implementations.

This category also includes recent works [23,32] that propose altering the
initial encoding of ciphertexts to facilitate faster multiplication on the server.
Such modifications require changing the specifications of the FHE scheme or

3

necessitating client support for different encodings. When client data is already
encrypted and stored on the server, these techniques become impractical, as the
server would need to adjust the encoding to the desired form. For new compu-
tations, the FHE encoding that employs a Discrete Fourier Transform (DFT)
is already resource-intensive for the FHE client. Consequently, we opted not to
pursue this direction, as it merely shifts the computational burden from the
server to the client, which has even less computational capacity.

1.2 Contributions.

In this work, we restrict our solution to a multiplicative depth of two and build
on the first type of technique discussed above. We observe that the best-known
technique in this direction does not fully utilize the SIMD processing capabilities
and leaves significant scope for optimization. We bridge this gap and propose
a technique that improves with higher packing availability. For d3 packing, our
technique requires only 5 · log2 d rotation operations and one ct-ct multiplica-
tion. Thus, this work contributes an efficient homomorphic matrix-multiplication
framework for privacy-preserving applications. Its features are as follows.

– The proposed framework fully exploits the SIMD processing capabilities pro-
vided by FHE schemes and their routines. It is generalized for various packing
availabilities, ranging from d2 to d3 for square matrices of dimension d, with
benefits increasing with increasing packing availability in the homomorphic
ciphertext.

– The KeySwitch operation in FHE is the most resource-intensive low-level
routine and serves as a benchmark for assessing the performance overhead of
our proposed techniques. We demonstrate that for d3 packing, our technique
achieves the lowest KeySwitch complexity (O(log2 d)) compared to all prior
works in the literature. This is also illustrated in Table 1.

– While our initial proposal focuses on square matrices, we further general-
ize it to accommodate rectangular matrices. To this end, we introduce two
techniques based on padding and divide-and-conquer strategies, enhancing
the versatility of our framework for various neural network applications and
layers, such as filter layers.

– Alongside our proposal, we provide validation artefacts for our technique,
which can be accessed at 1. Our approach leverages the open-source FHE li-
brary OpenFHE [2], allowing researchers and practitioners to easily integrate
our matrix multiplication framework into their own projects.

1.3 Roadmap

The paper is organized as follows: In Section 2, we provide an overview of the
FHE routines and decribe prior state-of-the-art matrix multiplication techniques.
Section 3 details our proposed technique, explaining how it achieves improved
1 https://anonymous.4open.science/r/MatMul-0568

4

https://anonymous.4open.science/r/MatMul-0568

runtime complexity. This section also discusses the generalized approach for
arbitrary packing availability within the range of d2 to d3. In Section 4, we ex-
tend this technique to accommodate arbitrary rectangular matrix multiplication.
The experimental evaluation is presented in Section 5, where we assess the per-
formance of our approach. Section 6 explores scenarios involving simultaneous
matrix multiplications, and Section 7 concludes the paper.

2 Background

Notations Let ZQ represent the ring of integers in the [0, Q−1] range. RQ,N =
ZQ[x]/(x

N + 1) refers to polynomial ring containing polynomials of degree at
most N − 1 and coefficients in ZQ. In the Residue Number System (RNS) [16]
representation, Q is a composite modulus comprising co-prime moduli, Q =∏L−1

i=0 qi. The RNS representation divides a big computation modulo Q into
much smaller computations modulo qi such that the small computations can be
carried out in parallel. With the application of RNS, a polynomial a ∈ RQ,N

becomes a vector, say a, of residue polynomials. Let the i-th residue polynomial
within a be denoted as ai ∈ Rqi,N . ⟨, ⟩ denotes the dot-product between two ring
elements. Matrices are denoted using capital letters. For simplicity, we assume
throughout that the values in fractions are divisible.

2.1 FHE Schemes and Routines

Several Fully Homomorphic Encryption (FHE) schemes are documented in the
literature, including BFV [15], BGV [7], CGGI [14], CKKS [12,11]. While BGV
and BFV encrypt integers, CKKS is designed for fixed-point numbers, making it
particularly well-suited for machine learning applications [19,24]. Consequently,
this work focuses on the RNS (Residue Number System) variant of CKKS [11].
Below, we briefly outline the main procedures within the RNS CKKS frame-
work [11], where ciphertexts operate at level l (indicating a multiplicative depth
of l − 1), with l < L. A CKKS ciphertext is represented as c = (c0, c1), where
c0 and c1 are polynomial vectors.

Two important terms- Depth and Packing, are used throughout the paper to
assess the importance of this work. Multiplicative depth refers to the complex-
ity of the computations that the FHE scheme can support. More specifically,
it denotes the maximum number of operations (like multiplications) that can
be performed on encrypted data before noise in the ciphertext grows too large
and prevents decryption. Understanding depth is crucial for assessing the prac-
ticality of FHE in computational tasks. Every ciphertext initially starts with
full-depth L. After multiple computations, the noise growth is significant, and
scaling is done to reduce the noise, which also reduces the computational depth.
Thus, the lower the computation depth of a function the more computation
can be performed on the data, before the depth is refreshed via the expensive
Bootstrapping operation.

5

Table 2. CKKS Parameters

Parameter Definition
N,n (≤ N

2
) Polynomial size, maximum slots packed

Q, qi Coefficient modulus, RNS bases Q =
∏L

i=0 qi
L, l Multiplicative depth (#RNS bases - 1) l < L
P , pi Special modulus and its RNS base
Lboot, Leff Multiplicative depth of/after bootstrapping

Packing, also known as batching, is a technique that significantly improves
the efficiency of FHE schemes, particularly those based on RLWE (Ring Learn-
ing with Error). Instead of encrypting a single plaintext value into a single ci-
phertext, packing allows multiple plaintext values to be encoded into a single
ciphertext. This is especially valuable for applications requiring parallel compu-
tations (SIMD), such as matrix operations, machine learning, or data analytics.
In RLWE-based schemes, packing leverages the structure of the underlying ring.
Typically, plaintexts are elements of a polynomial ring, and packing encodes
several plaintext slots into a single polynomial. Each slot can then store an
individual message, enabling the system to simultaneously perform parallel ho-
momorphic operations (like addition and multiplication) across all packed slots.
This reduces the number of ciphertexts needed and increases throughput. The
CKKS parameters are summarized in Table 2.

1. CKKS.KeyGen(): This routine generates secret key sk = (1, s), public key
pk = (−a ·s+e, a) ∈ R2

QL,N , and several key-switching keys kski = (−a ·s+
e + P · s′, a) ∈ R2

PQL,N for i ∈ [0, L), where a is uniformly random and s′

is a secret polynomial square or permutation, depending on the type of key.
2. CKKS.Enc(m, pk): It encrypts messagem , and returns ciphertext c = (c0, c1) =
v · pk+ (m+ e, e) ∈ R2

QL,N , where e is refreshed after every computation.
3. CKKS.Dec(c, sk): The ciphertext c is decrypted using the secret key sk to

return message m′ = ⟨c, sk⟩.
4. CKKS.Add(c, c′): It takes two input ciphertexts c and c′ and adds them to

compute cadd = (d0,d1) = (c0 + c′0, c1 + c′1).
5. CKKS.Mult(c, c′): It multiplies the two input ciphertexts (c, c′), and com-

putes the non-linear ciphertext d = (d0,d1,d2) = (c0 · c′0, c0 · c′1+c1 · c′0, c1 · c′1).
Subsequently, CKKS.KeySwitch is employed to transform d into a linear ci-
phertext. It is the most expensive routine.

6. CKKS.KeySwitch(d, ksk): It uses a KeySwitch or ‘evaluation key ksk to ho-
momorphically transform a ciphertext decryptable under one key into a
new ciphertext decryptable under another key. It computes c′′ where c′′0 =∑l−1

i=0 d
i
2 ·ksk

i
0 ∈ RPQl,N and c′′1 =

∑l−1
i=0 d

i
2 ·ksk

i
1 ∈ RPQl,N . This is followed

by c =
(
(d0, d1)+(CKKS.ModDown(c′′)

)
∈ R2

Ql,N
. CKKS.ModDown() scales down

the modulus (PQl to Ql).
7. CKKS.Rotate(c, rot, kskrot): It rotates the plaintext slots within c by rot.

First, a permutation ρ is applied to the ciphertext polynomial coefficients.
This permutation is called automorphism and is determined by the Galoi

6

element gle = 5rot mod 2N . Finally, the permuted ciphertext is processed by
CKKS.Keyswitch using the rotation key kskrot.

8. CKKS.Bootstrap: It refreshes a noisy ciphertext [6,8,9] by producing a new
ciphertext with a higher depth or lower noise. As bootstrapping itself con-
sumes a certain number of depths, the depth of a bootstrapped ciphertext,
say Leff, is smaller than the initial depth L after fresh encryption.

The fundamental FHE operations include addition, multiplication, and rota-
tion. Among the low-level routines, ModDown and KeySwitch, the KeySwitch
operation is the most resource-intensive and is required after every rotation and
ct-ct multiplication. Consequently, the frequency of these routines significantly
influences the complexity of matrix multiplication. In contrast, bootstrapping is
a high-level routine that employs all basic and low-level routines.

2.2 Matrix Multiplication Technique

In this section, we will introduce the state-of-the-art technique for matrix multi-
plication at multiplicative depth two, presented in [30]. This technique leverages
the available packing capability of d3. To simplify this, let us take an example of
a processing system which only operates on the array. The proposal in the work
utilizes arrays which can store d3 elements, where each matrix to be multiplied
is d × d. In this approach, the first step is to decide how to effectively pack a
matrix in the array so that it facilitates multiplication. Suppose we have two
matrices, A and B, of dimension 4 × 4 (d = 4) for multiplication. This means
our array must accommodate 64 elements.

A=


a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15

 B=


b0 b1 b2 b3
b4 b5 b6 b7
b8 b9 b10 b11
b12 b13 b14 b15


Packing Strategy. To facilitate efficient multiplication, the authors needed to
adopt a packing strategy that organizes the elements of matrices A and B into
the array. One common approach is to fill the array in a row-major or column-
major order, depending on the operations we intend to perform. They chose a
row-major order, where the elements of matrix A would be packed into the first
16 slots of the array. Similarly, matrix B would be packed in the first 16 slots of
another array, as shown below.

A = [a0a1 a2a3 a4a5 a6a7 a8a9 a10a11 a12a13 a14a15] (1)
B = [b0b1 b2b3 b4b5 b6b7 b8b9 b10b11 b12b13 b14b15] (2)

Matrix Multiplication Strategy. The authors in [30] employ an efficient
multiplication technique that enhances the performance of matrix multiplication
in the homomorphic setting. In this approach, the elements of matrix A are

7

duplicated column-wise, while the elements of matrix B are duplicated row-wise.
For example, the first column of A and the first row of B are as follows.

A1=


a0
a4
a8
a12

 B1=
[
b0 b1 b2 b3

]

Once the rows and columns are duplicated, the proposed technique gives the
multiplied result A·B as follows.

A·B=


a0 a0 a0 a0
a4 a4 a4 a4
a8 a8 a8 a8
a12 a12 a12 a12

⊙


b0 b1 b2 b3
b0 b1 b2 b3
b0 b1 b2 b3
b0 b1 b2 b3

+


a1 a1 a1 a1
a5 a5 a5 a5
a9 a9 a9 a9
a13 a13 a13 a13

⊙


b4 b5 b6 b7
b4 b5 b6 b7
b4 b5 b6 b7
b4 b5 b6 b7


+


a2 a2 a2 a2
a6 a6 a6 a6
a10 a10 a10 a10
a14 a14 a14 a14

⊙


b8 b9 b10 b11
b8 b9 b10 b11
b8 b9 b10 b11
b8 b9 b10 b11

+


a3 a3 a3 a3
a7 a7 a7 a7
a11 a11 a11 a11
a15 a15 a15 a15

⊙


b12 b13 b14 b15
b12 b13 b14 b15
b12 b13 b14 b15
b12 b13 b14 b15



This technique requires d column-wise and row-wise duplications of the ma-
trices. With d3(= 64) packing available, the matrices are stored as follows (their
matrix form visualization is provided afterwards in Equation 4). Notably, if we
assume that matrices A and B can be packed into two ciphertexts (one for A
and one for B), as illustrated in Equation 3, then only one ct-ct multiplication
is needed.

A ·B =[a0 a0 a0 a0 a4 a4 · · · a15 a15]⊙ [b0 b1 b2 b3 b0 b1 · · · b14 b15] (3)

There are two challenges associated with the packing format assumption.
The first is transforming the input data into the required form. In prior works,
all inputs (matrices A and B) are encoded in a row-wise format (row_enc), as
shown in Equations 1 and 2. Therefore, it is necessary to convert this row-wise
packing into the desired encoding for our approach. The second challenge is how
to accumulate the resulting multiplication results. The methods for addressing
these two challenges distinguish the work presented in [30] from our proposal,
which is discussed in the next section. The technique proposed in [30] is detailed
in Algorithm 1.

8

A ·B =



a0 a0 a0 a0
a4 a4 a4 a4
a8 a8 a8 a8
a12 a12 a12 a12
a1 a1 a1 a1
a5 a5 a5 a5
a9 a9 a9 a9
a13 a13 a13 a13
a2 a2 a2 a2
a6 a6 a6 a6
a10 a10 a10 a10
a14 a14 a14 a14
a3 a3 a3 a3
a7 a7 a7 a7
a11 a11 a11 a11
a15 a15 a15 a15



⊙



b0 b1 b2 b3
b0 b1 b2 b3
b0 b1 b2 b3
b0 b1 b2 b3
b4 b5 b6 b7
b4 b5 b6 b7
b4 b5 b6 b7
b4 b5 b6 b7
b8 b9 b10 b11
b8 b9 b10 b11
b8 b9 b10 b11
b8 b9 b10 b11
b12 b13 b14 b15
b12 b13 b14 b15
b12 b13 b14 b15
b12 b13 b14 b15



(4)

Plaintext Masks. The authors define two plaintext masks πi and ψi, such
that multiplication with πi causes all expected elements of column i to become
zero, while multiplication with ψi results in all expected elements of row i be-
coming zero, as illustrated above. This is achieved by placing ‘1’ and ‘0’ in the
desired positions within another array of size d2. Although this multiplication
is plaintext-to-ciphertext (pt-ct), it requires an additional multiplicative depth.
Consequently, the total multiplicative depth for the overall technique is two.

cMult(A, π0) = [a00 00 a40 00 a80 00 a120 00]

cMult(A, π1) = [0a1 00 0a5 00 0a9 00 0a13 00]

cMult(A, π2) = [00 a20 00 a60 00 a100 00 a140]

cMult(A, π3) = [00 0a3 00 0a7 00 0a11 00 0a15]

cMult(B,ψ0) = [b0b1 b2b3 00 00 00 00 00 00]

cMult(B,ψ1) = [00 00 b4b5 b6b7 00 00 00 00]

cMult(B,ψ2) = [00 00 00 00 b8b9 b10b11 00 00]

cMult(B,ψ3) = [00 00 00 00 00 00 b12b13 b14b15]

After obtaining these results, the values are first right-aligned using the ro-
tations specified in Step 3 and Step 10 for matrices A and B. Once aligned,
these matrices are appended next to each other, which requires d − 1 rotations
for both A and B (Steps 4-5 and 11-12). A duplication step is then performed
to replicate these values and fill in the zeros in the ciphertexts, as shown in
Steps 6-7 and 13-14. After multiplication, the results are accumulated again us-
ing log2 d rotations, detailed in Steps 16-17. Overall, this technique requires 2 ·d

9

Algorithm 1 Matrix.Mult [30]
Require: A,B ← row_enc(Ad×d, Bd×d)
Out: C = row_enc(Ad×d × Bd×d)

// Preprocess A
1: for j = 0 to d− 1 do
2: Ã[j]← cMult(A, πj) ▷ Splitting A cols
3: Ã[j]← Rot(Ã[j],−j) ▷ Right align all cols
4: for i = 1 to d− 1 do ▷ Add the cols
5: Ã[0]+ = Rot(Ã[j],−i(d2 − i))
6: for i = 0 to log2 d− 1 do ▷ Replicate cols
7: Ã[0]+ = Rot(Ã[0],−2i)

// Preprocess B
8: for j = 0 to d− 1 do
9: B̃[j]← cMult(B,ψj) ▷ Splitting B rows

10: B̃[j]← Rot(B̃[j],−j · d) ▷ Top align all rows
11: for i = 1 to d− 1 do ▷ Add the rows
12: B̃[0]+ = Rot(B̃[j],−(d2 − d)
13: for i = 1 to d− 1 do ▷ Replicate the rows
14: B̃[0]+ = Rot(B̃[0],−d · 2i)

// Compute C
15: C = Mult(Ã[0], B̃[0])
16: for j = 0 to log2 d do ▷ Result Accumulation
17: C = C + Rot(C, d3/2i)

pt-ct multiplications, one ct-ct multiplication, and 2 · d+ 3 log2 d− 2 rotations,
while consuming a multiplicative depth of two. The authors limit this proposal
to square matrices and do not extend it to rectangular matrices or arbitrary
packing.

In contrast, other techniques in the field [22] that utilize diagonal-based pack-
ing for matrix multiplication incur significantly higher rotation costs due to the
required transformations. These techniques perform poorly at a multiplicative
depth of two. However, by employing some pre-generation at the expense of
additional multiplicative depth, they can reduce the complexity to O(d) rota-
tions for lower packing availability O(d2); unfortunately, this advantage does not
translate effectively to higher packing availabilities.

3 Proposed Matrix Multiplication Technique

In this work, we optimize the technique outlined in [30]. We still perform ct-ct
multiplication using Equation 3 (as discussed in Section 2). However, what sets
our approach apart is how we achieve the packing format required for Equation 3.
Before presenting our technique for d3 packing, we note a gap in the literature:
no existing technique addresses matrix multiplication complexity using Equa-

10

tion 3 for d2 packing. This requirement highlighted in [30] poses a limitation for
medium- to large-sized matrices.

Furthermore, prior techniques are constrained to specific packing availabili-
ties and do not generalize to accommodate arbitrary slot availability. This limi-
tation restricts their applicability, particularly when the available packing varies
with the matrix size across different layers. This flexibility is essential for effec-
tively handling diverse matrix dimensions in practical applications.

For instance, in a CKKS ciphertext, the available packing ranges from 213 −
215 depending on the polynomial degree. Consequently, the technique from [30]
can only be applied to matrices of dimensions upto 25. This limitation makes it
unsuitable for processing larger datasets, such as high-resolution images of size
64× 64 [3,26] or 100× 100 [26]. In contrast, a technique that utilizes d2 packing
could facilitate fast matrix multiplications for data sizes up to 27. Therefore, we
begin with a technique designed for d2 packing and demonstrate how it can be
extended to accommodate higher packing availability up to d3. While packing
more than d3 is possible, it does not enhance the complexity of a single matrix
multiplication.

3.1 Technique for d2 packing

+ + ++

Fig. 1. Matrix Column and Row duplication for A and B respectively.

Each matrix consists of d2 elements, which means that one ciphertext which
has d2 packing capability, can only pack a single matrix entirely. To ensure
compatibility with previous works, we assume these ciphertexts are initially row-
wise encoded and that d is a power of two.

Our proposed algorithm is outlined in Algorithm 2. We initiate the process of
multiplying by splitting matrix A column-wise in Step 2, which allows for more
efficient handling of its elements. This is followed by immediate left-alignment

11

in Step 3 to ensure that the data is properly structured for subsequent opera-
tions. Similarly, matrix B is split row-wise in Step 7 and left-aligned in Step 8,
maintaining consistency in data organization. The duplication of these matrices
necessitates log2 d steps, as depicted in Figure 1. This duplication process occurs
in Steps 4-5 for matrix A and Steps 9-10 for matrix B, allowing us to leverage
the SIMD capabilities of the encryption scheme. Since we create a distinct ci-
phertext for each row/column split, we can perform multiplication and addition
separately, as shown in Steps 11-12.

Algorithm 2 Matrix.Mult_d2

Require: A,B ← row_enc(Ad×d, Bd×d)
Out: C = row_enc(Ad×d × Bd×d)

// Preprocess A
1: for j = 0 to d− 1 do
2: Ã[j]← cMult(A, πj) ▷ Splitting A cols
3: Ã[j]← Rot(Ã[j], j) ▷ Right align all cols
4: for i = 0 to log2(d)− 1 do ▷ Replicate cols
5: Ã[j]+ = Rot(Ã[j],−2i)

// Preprocess B
6: for j = 0 to d− 1 do
7: B̃[j]← cMult(B,ψj) ▷ Splitting B rows
8: B̃[j]← Rot(B̃[j], j · d) ▷ Top align all rows
9: for i = 0 to log2(d)− 1 do ▷ Replicate the rows

10: B̃[j]+ = Rot(B̃[j],−2i · d)

// Compute C
11: for j = 0 to d− 1 do
12: C+ = cMult(Ã[j], B̃[j])

Since one ciphertext can only pack data from one row-wise or column-wise
split, a post-multiplication transform is unnecessary, streamlining the process.
Notably, no left alignment is required in the algorithms when j = 0. As a result,
this technique demands 2 · d pt-ct multiplications for the necessary transforma-
tions, d ct-ct multiplications to combine the results, and 2 · d(1 + log2 d) − 2
rotations to align the data correctly for the final multiplication. This efficient
use of resources reduces the overall computational complexity. These details are
clearly summarized in Table 3.

3.2 Technique for 2 · d2 packing.

In the previous case, we focused on d2 packing, where one ciphertext could only
encode a single matrix. However, for smaller matrices, it is possible that more
slots are available— specifically, 2 · d2, which allows for packing two matrices
within the same ciphertext. To accommodate this scenario, we modify the algo-
rithm outlined in the previous section and describe it in Algorithm 3.

12

Algorithm 3 Optimized.Matrix.Mult_2 · d2

Require: A,B ← row_enc(Ad×d, Bd×d)
Out: C = row_enc(Ad×d × Bd×d)

// Preprocess A
1: A+ = Rot(A,−d2 + 1)
2: for j = 0 to (d/2)− 1 do
3: Ã[j]← cMult(A, πj) ▷ Splitting A cols
4: Ã[j]← Rot(Ã[j], 2j) ▷ Right align all cols
5: for i = 0 to log2(d)− 1 do ▷ Replicate cols
6: Ã[j]+ = Rot(Ã[j],−2i)

// Preprocess B
7: B+ = Rot(B,−d2 + d)
8: for j = 0 to (d/2)− 1 do
9: B̃[j]← cMult(B,ψj) ▷ Splitting B rows

10: B̃[j]← Rot(B̃[j], 2 · j · d) ▷ Top align all rows
11: for i = 0 to log2(d)− 1 do ▷ Replicate the rows
12: B̃[j]+ = Rot(B̃[j],−2i · d)

// Compute C
13: for j = 0 to (d/2)− 1 do
14: C+ = cMult(Ã[j], B̃[j])

15: C+ = Rot(c, d2)

+

x

Fig. 2. Matrix duplication and alignment done in one step using rotation. First, Matrix
A is rotated and added to the original A. Then, a mask is multiplied to remove the
unwanted elements for the upcoming column-wise duplication step.

13

Table 3. Complexity of the proposed secure d-dimensional matrix multiplications

Packing # pt-ct Mult # ct-ct Mult # Rotations Required Depth†

d2 2 · d d 2 · d(1 + log2 d)− 2 2
2 · d2 d d

2
d(1 + log2 d) + 1 2

4 · d2 d
2

d
4

d
2
(1 + log2 d) + 4 2

d3 2 1 5 · log2 d 2
d3‡ 1 1 3 · log2 d 2

† This includes pt-ct and ct-ct multiplications, which consume the same depth in
Libraries like OpenFHE [2].
‡ If one of the matrix is unencrypted and can be defined n any form by the server.

Instead of directly initiating row-wise or column-wise matrix decomposition,
we propose packing two copies of the matrices within the same ciphertext. This
critical step (Steps 1 and 7) is where our technique diverges from all prior works.
The key innovation here is that rather than simply duplicating matrix A, the
second ciphertext is shifted by one value to the left, as illustrated in Figure 2.

After performing multiplication with the plaintext mask, we achieve dupli-
cated and left-aligned columns as required for the subsequent steps, eliminating
the need for an additional rotation for left alignment. Thus, this adjustment
allows us to obtain two columns with a single multiplication and rotation. Sim-
ilarly, the B matrix is duplicated by keeping d values to the left, ensuring a
seamless integration of the matrices. Consequently, this technique requires only
d pt-ct multiplications, d

2 ct-ct multiplications, and d · (1+ log2 d) + 1 rotations,
as outlined in Table 3. A final rotation is necessary for accumulating the two
partial results packed in the same ciphertext (Step 15).

3.3 Generalization to arbitrarily high packing complexity (> d2)

If we estimate the cost for 4 · d2 packing availability, we can initially pack four
matrices per ciphertext. Hence, the required pt-ct and ct-ct multiplications, as
well as the rotations for duplication and alignment, will decrease by a factor of
four. This complexity is also outlined in Table 3. For generalization we observe
that we can quantify the complexities based on the required steps and packing
availability. Let s be the number of matrices that can be packed in a ciphertext.
We can formulate the complexity in five parts, as follows.

1. Matrix Duplication. This part consists of matrix duplication depending
on s. The duplication of this type has logarithmic complexity, as illustrated in
Figure 1. The cost of each matrix duplication is log2 s rotations and additions.
For example, when s = 1, no duplication is possible, resulting in a cost of 0. When
s = 2, one duplication is possible per matrix, yielding a cost of 1. Therefore, the
total cost for this step is 2 log2 s rotations and additions for both matrices.

2. RC Extraction. Once the matrices have been duplicated, their row/column-
wise (RC) extraction requires plaintext multiplication with the appropriate masks,

14

Fig. 3. The adder tree depicting final result accumulation within a ciphertext. Every
stage with t elements performs an addition (in SIMD) and results in t

2
resultant el-

ements, which are then added in the next stage. This process continues until all the
elements are accumulated.

πi and ψi. This extraction is performed d
s× per matrix, as duplication within

the ciphertext offers s times more rows/columns per multiplication. Thus, the
total pt-ct multiplication count amounts to 2·d

s . While the first extraction does
not require alignment, every subsequent extraction necessitates left alignment
via rotations. Therefore, the total number of required rotations for alignment is
2(ds − 1) for both the rows and columns of matrices A and B.

3. RC Duplication. After alignment, the rows and columns require duplication.
Each duplication incurs a fixed cost of log2 d rotations and additions. However, its
frequency changes depending on the number of duplications needed, 2·d

s . Thus,
the total number of required rotations and additions for this step is 2·d

s (log2 d)
for both row and column duplications.

4. Multiplication. We proceed to their multiplication once we have the row and
column-wise duplicated matrices. This process is directly related to the number
of ciphertexts that must be multiplied, resulting in d

s ct-ct multiplications.

5. Accumulation. Finally, we must accumulate the results packed within a ci-
phertext. This accumulation process is not an issue for d2 packing since no ma-
trix copies can be stored in a single ciphertext. However, accumulation becomes
necessary for any higher packing availability. The accumulation is analogous to
duplication but in the reverse direction, as depicted in Figure 3. It is important
to note that elements cannot be accessed prior to rotation in an FHE cipher-
text; hence, each log2 s stage in the addition tree requires a rotation. Overall,
the complexity of this stage is log2 s rotations and additions.

Finally, we arrive at the following generalized operation requirements for
matrix multiplication at depth two. The algorithm for this process is outlined
in Algorithm 4. By substituting the appropriate value of s into the formulas
below, we can derive the operation complexities listed in Table 3. As previously
mentioned, Key Switching is only necessary following the ct-ct multiplications
and rotations. Therefore, while pt-ct multiplication reduces the multiplicative
depth, it does not significantly impact the overall time consumption.

15

Algorithm 4 Generalized.Matrix.Mult (for arbitrary s matrix packing)
Require: A,B ← row_enc(Ad×d, Bd×d)
Out: C = row_enc(Ad×d × Bd×d)

// Preprocess A
1: for i = 0 to log2 s− 1 do
2: A+ = Rot(A,−d2 · 2i + 2i) ▷ Matrix Duplication

3: for j = 0 to d
s
− 1 do

4: Ã[j]← cMult(A, πj) ▷ Extracting A column-wise
5: Ã[j]← Rot(Ã[j], s · j) ▷ Left align all ciphertexts
6: for i = 0 to log2(d)− 1 do ▷ Column Duplication
7: Ã[j]+ = Rot(Ã[j],−2i)

// Preprocess B
8: for i = 0 to log2 s− 1 do
9: B+ = Rot(B,−d2 · 2i + d · 2i) ▷ Matrix Duplication

10: for j = 0 to d
s
− 1 do

11: B̃[j]← cMult(B,ψj) ▷ Extracting B row-wise
12: B̃[j]← Rot(B̃[j], s · j · d) ▷ Left align all ciphetexts
13: for i = 0 to log2(d)− 1 do ▷ Row Duplication
14: B̃[j]+ = Rot(B̃[j],−2i · d)

// Compute C
15: for j = 0 to d

s
− 1 do

16: C+ = cMult(Ã[j], B̃[j]) ▷ Matrix Multiplication

17: for i = 0 to log2 s− 1 do
18: C+ = Rot(C, d2 · 2i) ▷ Accumulation

– # pt-ct Multiplications: 2·d
s

– # ct-ct Multiplications: d
s

– # Rotations: 2·d
s (log2 d) + 2(ds − 1) + 3 · log2 s

The d3 Packing Case.

For d3 packing, we note that s = d, resulting in two required pt-ct multiplications
and one ct-ct multiplication, yielding a constant time complexity. Additionally,
the number of rotations required is 5 log2 d, which is logarithmic in terms of the
matrix dimension d. This performance surpasses all prior works, including those
operating at multiplicative depth three [22].

In specific scenarios where the server has control over the model, and only
one matrix is encrypted, this operation count can be further reduced to 3 log2 d
rotations (as shown in Table 3). If we assume that the client can format the data
as needed during the encoding step before encryption, the rotation operations
can be minimized to log2 d, and the multiplicative depth requirement becomes

16

50 100 150 200 250

50

100

150

200

816 32 64 128

Matrix dimension d

#
M

ul
ti

pl
ic

at
io

ns

This Work
[22]
[30]

Fig. 4. Graph comparing the rotation count reduction for d3 packing.

one. Therefore, the proposed technique is versatile and can be optimized for
various scenarios.

A comparison of actual operation counts for encrypted matrix-matrix mul-
tiplication with prior works is illustrated in Figure 4, specifically for d3 packing
availability. It underscores the efficiency and effectiveness of our approach in
enhancing secure matrix multiplication tasks within untrusted environments.

4 Generalization to Rectangular Matrices

4.1 Padding based technique

The above technique can also be adapted for rectangular matrices of the form-
Al×d · Bd×t. Previous works [30] employ zero-padding to the rows and columns
of the matrices, transforming them into square matrices. This approach allows
them to leverage techniques designed specifically for square matrices. We extend
this idea to our method as well. By adding appropriate padding to the matrices
A and B, we can ensure they fit the necessary dimensions for our algorithm.

+

+

Fig. 5. The A2×4 matrix duplication transformation considering padding. The rectan-
gular matrix undergoes two rotated accumulations to result in the middle ciphertext.
This ciphertext behaves like a square matrix with zero padding. The grey elements are
not needed and are removed via multiplication with the mask. After this step, column-
wise duplication follows.

17

This transformation can be incorporated into the application logic, ensuring
that shifts consistently account for the factor d, as shown in Figure 5. Notably,
most complexities remain unchanged except for row-wise and column duplication
steps. Specifically, the columns of A will now need to be duplicated t times, while
the rows of B require l duplications. Thus, the complexity for the RC Duplication
step is adjusted to d

s (log2 l+log2 t). This allows us to perform the same efficient
operations while accommodating the rectangular structure of the matrices. The
zero-padding process does not significantly impact the overall complexity, as it
effectively maintains the logarithmic characteristics of our approach.

The technique discussed can also be generalized for rectangular matrices by
adopting the approach from [30]. Specifically, when d < t, t − d zero-padding
columns are added to matrix A, and conversely, when d > t, zero-padding
columns are appended to matrix B. This method is bounded by the naive tech-
nique that ensures both matrices become square, with dimensions k × k, where
k = max(l, d, t). As a result, the final rotation complexity for this approach is
5 · log2 k, necessitating k3 packing.

4.2 Common Divide-and-Conquer Technique

The previous technique necessitates high packing availability, a requirement that
becomes increasingly challenging when there is a significant difference between d
and l or t. To address this, we explore an alternate matrix-splitting and divide-
and-conquer approach that can be applied in all cases, irrespective of whether
l ̸= d or t ̸= d. This method is illustrated in Figure 6, showcasing two scenarios:
one where d < l, t and another where d > l, t.

x x

Fig. 6. Rectangular matrices division for the divide-and-conquer technique.

The essence of this technique lies in dividing the larger matrix into smaller
d × d matrices, which mitigates the need for excessive padding. For instance,
in the first scenario (where l = 4, d = 2, and t = 6), instead of requiring
63 packings, we only need 6 · 22 slots per ciphertext. This reduces the overall
packing requirement significantly. Additionally, the prior rotation complexity of
5 · log2 6 simplifies to 5 · log2 2, as no accumulation is necessary. In the second
scenario (where l, t = 2, d4), instead of needing 43 packing, we again require only
4 · 22 slots per ciphertext. Here, the rotation requirement changes from 5 · log2 4

18

to 5 · log2 2 + log2 2, as one accumulation is required. Consequently, the overall
packing requirement can be generalized as k · p2, where k = max(l, d, t) and
p = min(l, d, t). This alternate approach reduces the need for extensive padding.

Next, the p× p matrix chunks are appended. These chunks need to be dupli-
cated t

d× for A and l
p× for B. After the initial duplication, all the p×p matrices

are packed in one ciphertext. Hence, 3 · (log2 p) rotations are required for row-
wise and column-wise duplication and result accumulation for a p × p matrix.
log2

d
p rotations are required for the final accumulation if d is greater than l, t

(the second case in Figure 6). There is no increase in ct-ct multiplications, and
the multiplicative depth stays at two. The rotation complexity for this approach
can be expressed as: (l

p + t
p) log2 p+ (log2

t
p + log2

l
p) + 3 · (log2 p) + log2

d
p . The

breakdown of each component is as follows.

– Initial Matrix Duplication. The term (l
p + t

p) log2 p accounts for the number
of rotations required to duplicate the initial matrices. This arises from the
need to replicate the smaller matrix chunks across the dimensions of l, t.

– Duplicationp×p. The p× p matrix chunks need to be duplicated t
d× for ma-

trix A and l
p× for matrix B. This contributes to the subsequent rotation

complexity of log2
t
p + log2

l
p operations.

– Accumulationp×p. Once the p×p matrices are packed into a single ciphertext,
an additional 3 · (log2 p) rotations are required for the row-wise and column-
wise duplication and the accumulation of results for all the packed p × p
matrix separately.

– Final Accumulation. The term log2
d
p is included if d exceeds both l and t,

indicating the rotations required for the final accumulation of results.

There is no increase in ct-ct multiplications throughout this process, and the
multiplicative depth remains at two. This method effectively optimizes both the
packing requirements and the rotation complexity.

5 Experimental Evaluation

We utilize the CKKS [12] FHE scheme for our experimental evaluation. Prior
works also adopt this scheme due to its ability to perform computations over
approximate arithmetic, making it suitable for various applications, including
Neural Networks. For our benchmarks, we employ the open-source OpenFHE [2]
library, ensuring compatibility with the setup provided by the FHERMA ma-
trix multiplication challenge2. Our proposed matrix multiplication technique was
tested in this challenge, where the available packing was 2 · d2, yielding the best
results3. Our artefacts for the general solution are available at4.

We take ring-degree N = 216, which enables us to fully pack 32×32 matrices,
duplicated 32 times. For our benchmarks, we evaluate matrix sizes ranging from
2 https://fherma.io/challenges/652bf669485c878710fd020b/overview
3 Winner of the competition.
4 https://anonymous.4open.science/r/MatMul-0568

19

https://fherma.io/challenges/652bf669485c878710fd020b/overview
https://anonymous.4open.science/r/MatMul-0568

Table 4. Runtime evaluation of privacy-preserving matrix multiplication.

Matrix Dimension Utilized Packing Runtime Slot Usage
A B (s)

2× 2 2× 2 d3 = 23 1.54 0.02%
2× 4 4× 4 d3 = 26 1.79 0.20%
4× 4 4× 2 d3 = 26 1.80 0.20%
4× 4 4× 4 d3 = 26 1.94 0.20%
8× 8 8× 4 d3 = 29 2.21 1.56%
8× 8 8× 8 d3 = 29 2.31 1.56%

16× 16 16× 4 d3 = 212 3.12 12.5%
16× 16 16× 16 d3 = 212 3.23 12.5%
32× 32 32× 8 d3 = 215 7.54 100%
32× 32 32× 32 d3 = 215 7.88 100%
64× 64 64× 64 8 · d2 = 215 17.42 100%

128× 128 128× 128 2 · d2 = 215 157.1 100%

2× 2 to 128× 128 to demonstrate the scalability and efficiency of the technique.
We observe that the proposed method is highly parallelizable. Therefore, we
leverage the available parallelization using the ‘pragma omp parallel ’ routine.
The runtimes reported in Table 4 are based on benchmarks executed on a 12th
Gen Intel® Core™ i7-1260P processor with 16 threads and 32 GB RAM. We
also provide benchmarks for the rectangular matrix case (Case 1) where padding
is used. Additionally, the runtime for the divide-and-conquer approach can be
extrapolated from the results reported for square matrices.

6 Discussion on the Case of Packed Multiplications.

The proposed technique and results may raise the question: for an application
requiring several simultaneous matrix multiplications (r), is it more efficient to
duplicate a matrix within the same ciphertext or pack r distinct matrices for
separate multiplications? In the case of d2 packing, our technique necessitates
2 · d(1 + log2 d − 2) rotations. If s packing slots are available, we could pack
s distinct matrices into one ciphertext instead of duplicating the same matrix.
This approach can be applied r

s times if r > s. The ct-ct multiplication count
remains d, and the number of rotations required for processing s packed matrix
multiplications is 2 ·d(1+log2 d)−2. However, packing s distinct matrices in one
ciphertext requires s−1 additional rotations and additions per matrix. Therefore,
the total rotation requirement for r > s becomes- r

s (2 · d(1 + log2 d) + 2 · s− 4).
For r ≤ s, the complexity simplifies to:

2 · d(1 + log2 d) + 2 · r − 4

In the prior work [30], similar to our technique for d3 packing, the approach
involves packing (or duplicating) the same matrix s times within a single cipher-
text. The total number of rotations required to process r ≤ s matrix multiplica-

20

5 10 15 20 25 30

200

400

600

800

2 4 8 16 32

Distinct Matrix Multiplications Required r

#
M

ul
ti

pl
ic

at
io

ns

Utilizing d2 packing
Utilizing 2 · d2 packing
Utilizing d3 packing

Fig. 7. Graph comparing the rotation count for d3(d = 32) packing available peer
ciphertext with increasing distinct simultaneous matrix multiplication requirement r.

tions using this technique are as follows.

2 · r · d(1 + log2 d) + 2 · r(d
s
− 1) + 3 · r · log2 s

For the case where r = s = 1, both our proposed technique and the technique
from [30] offer the same computational complexity. However, as r increases, the
complexity of the latter technique grows much more rapidly. This makes our pro-
posed technique for d2 packing more suitable for scenarios where multiple matrix
multiplications need to be performed simultaneously, as it lowers computational
costs. The choice of technique ultimately depends on the available matrix pack-
ing capacity (s) and the required number of matrix multiplications (r). Users can
make informed decisions that align with their specific application requirements
by providing a detailed complexity breakdown regarding these values.

In Figure 7, we illustrate the number of required rotations for the above two
techniques for matrices of dimension d = 32 and packing availability d3 = 215.
When required r is 15 or higher, the former technique, utilizing d2 packed com-
putation with distinct matrix packing, results in a lower rotation requirement.
However, the d3 packing technique per ciphertext is better for lower simultane-
ous matrix multiplication requirements. A similar analysis can be done for more
combinations of s and r with different packing utilization per matrix multipli-
cation to make it comprehensive.

7 Conclusion

In this work, we introduced a novel technique for secure matrix multiplication
using homomorphic encryption that significantly outperforms all previous ap-
proaches. By optimizing the required key-switch operation complexity from O(d)

21

to O(log2 d) for square matrices of dimension d, our approach enhances compu-
tational efficiency. We also extended this technique to handle rectangular ma-
trices by proposing two methods: one based on padding and another employing
a divide-and-conquer strategy. These methods generalize our approach beyond
square matrices, making it adaptable to arbitrary packing between d2 and d3.
This adaptability is particularly beneficial in secure neural network applica-
tions, where the matrix dimensions and the available packing per matrix change
at each layer. By thoroughly analyzing the complexities and trade-offs of these
techniques, we offer insights that can guide future research in privacy-preserving
computation. This work lays a strong foundation for future exploration in opti-
mizing secure matrix operations using homomorphic encryption.

Acknowledgement

This work was supported by the State Government of Styria, Austria – Depart-
ment Zukunftsfonds Steiermark. We also extend our gratitude to the organizers
of the FHERMA challenges for motivating this work.

References

1. Aikata, Mert, A.C., Kwon, S., Deryabin, M., Roy, S.S.: REED: chiplet-based scal-
able hardware accelerator for fully homomorphic encryption. IACR Cryptol. ePrint
Arch. p. 1190 (2023), https://eprint.iacr.org/2023/1190

2. Al Badawi, A., Bates, J., Bergamaschi, F., Cousins, D.B., Erabelli, S., Genise, N.,
Halevi, S., Hunt, H., Kim, A., Lee, Y., Liu, Z., Micciancio, D., Quah, I., Polyakov,
Y., R.V., S., Rohloff, K., Saylor, J., Suponitsky, D., Triplett, M., Vaikuntanathan,
V., Zucca, V.: OpenFHE: Open-Source Fully Homomorphic Encryption Library.
In: Proceedings of the 10th Workshop on Encrypted Computing & Applied Homo-
morphic Cryptography. pp. 53–63. WAHC’22, Association for Computing Machin-
ery, New York, NY, USA (2022). https://doi.org/10.1145/3560827.3563379,
https://doi.org/10.1145/3560827.3563379

3. angelolmg: Textile texture database (tilda) for defect detection (2023), https:
//www.kaggle.com/datasets/angelolmg/tilda-400-64x64-patches

4. Beirendonck, M.V., D’Anvers, J., Turan, F., Verbauwhede, I.: FPT: A fixed-point
accelerator for torus fully homomorphic encryption. In: Meng, W., Jensen, C.D.,
Cremers, C., Kirda, E. (eds.) Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2023, Copenhagen, Denmark,
November 26-30, 2023. pp. 741–755. ACM (2023). https://doi.org/10.1145/
3576915.3623159, https://doi.org/10.1145/3576915.3623159

5. Bootland, C., Castryck, W., Vercauteren, F.: On the security of the multivari-
ate ring learning with errors problem. IACR Cryptol. ePrint Arch. p. 966 (2018),
https://eprint.iacr.org/2018/966

6. Bossuat, J., Mouchet, C., Troncoso-Pastoriza, J.R., Hubaux, J.: Efficient Boot-
strapping for Approximate Homomorphic Encryption with Non-sparse Keys. In:
Canteaut, A., Standaert, F. (eds.) Advances in Cryptology - EUROCRYPT 2021
- 40th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Zagreb, Croatia, October 17-21, 2021, Proceedings, Part

22

https://eprint.iacr.org/2023/1190
https://doi.org/10.1145/3560827.3563379
https://doi.org/10.1145/3560827.3563379
https://doi.org/10.1145/3560827.3563379
https://www.kaggle.com/datasets/angelolmg/tilda-400-64x64-patches
https://www.kaggle.com/datasets/angelolmg/tilda-400-64x64-patches
https://doi.org/10.1145/3576915.3623159
https://doi.org/10.1145/3576915.3623159
https://doi.org/10.1145/3576915.3623159
https://doi.org/10.1145/3576915.3623159
https://doi.org/10.1145/3576915.3623159
https://eprint.iacr.org/2018/966

I. Lecture Notes in Computer Science, vol. 12696, pp. 587–617. Springer (2021).
https://doi.org/10.1007/978-3-030-77870-5_21, https://doi.org/10.1007/
978-3-030-77870-5_21

7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption
without bootstrapping. Electron. Colloquium Comput. Complex. p. 111 (2011),
https://eccc.weizmann.ac.il/report/2011/111

8. Chen, H., Chillotti, I., Song, Y.: Improved Bootstrapping for Approximate Ho-
momorphic Encryption. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptol-
ogy - EUROCRYPT 2019 - 38th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-
23, 2019, Proceedings, Part II. Lecture Notes in Computer Science, vol. 11477,
pp. 34–54. Springer (2019). https://doi.org/10.1007/978-3-030-17656-3_2,
https://doi.org/10.1007/978-3-030-17656-3_2

9. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for Approximate
Homomorphic Encryption. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryp-
tology - EUROCRYPT 2018 - 37th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3,
2018 Proceedings, Part I. Lecture Notes in Computer Science, vol. 10820, pp. 360–
384. Springer (2018). https://doi.org/10.1007/978-3-319-78381-9_14, https:
//doi.org/10.1007/978-3-319-78381-9_14

10. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full RNS variant of ap-
proximate homomorphic encryption. In: Cid, C., Jr., M.J.J. (eds.) Selected Ar-
eas in Cryptography - SAC 2018 - 25th International Conference, Calgary, AB,
Canada, August 15-17, 2018, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 11349, pp. 347–368. Springer (2018). https://doi.org/10.1007/
978-3-030-10970-7_16, https://doi.org/10.1007/978-3-030-10970-7_16

11. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full RNS variant of ap-
proximate homomorphic encryption. In: Cid, C., Jr., M.J.J. (eds.) Selected Ar-
eas in Cryptography - SAC 2018 - 25th International Conference, Calgary, AB,
Canada, August 15-17, 2018, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 11349, pp. 347–368. Springer (2018). https://doi.org/10.1007/
978-3-030-10970-7_16, https://doi.org/10.1007/978-3-030-10970-7_16

12. Cheon, J.H., Kim, A., Kim, M., Song, Y.S.: Homomorphic encryption for arithmetic
of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology -
ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications
of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 10624, pp. 409–
437. Springer (2017). https://doi.org/10.1007/978-3-319-70694-8_15, https:
//doi.org/10.1007/978-3-319-70694-8_15

13. Cheon, J.H., Kim, A., Yhee, D.: Multi-dimensional packing for HEAAN for
approximate matrix arithmetics. IACR Cryptol. ePrint Arch. p. 1245 (2018),
https://eprint.iacr.org/2018/1245

14. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomor-
phic encryption over the torus. Journal of Cryptology 33(1), 34–91 (2020)

15. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptol. ePrint Arch. p. 144 (2012), http://eprint.iacr.org/2012/144

16. Garner, H.L.: The Residue Number System. IRE Trans. Electron. Comput.
8(2), 140–147 (1959). https://doi.org/10.1109/TEC.1959.5219515, https://
doi.org/10.1109/TEC.1959.5219515

23

https://doi.org/10.1007/978-3-030-77870-5_21
https://doi.org/10.1007/978-3-030-77870-5_21
https://doi.org/10.1007/978-3-030-77870-5_21
https://doi.org/10.1007/978-3-030-77870-5_21
https://eccc.weizmann.ac.il/report/2011/111
https://doi.org/10.1007/978-3-030-17656-3_2
https://doi.org/10.1007/978-3-030-17656-3_2
https://doi.org/10.1007/978-3-030-17656-3_2
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://eprint.iacr.org/2018/1245
http://eprint.iacr.org/2012/144
https://doi.org/10.1109/TEC.1959.5219515
https://doi.org/10.1109/TEC.1959.5219515
https://doi.org/10.1109/TEC.1959.5219515
https://doi.org/10.1109/TEC.1959.5219515

17. Geelen, R., Beirendonck, M.V., Pereira, H.V.L., Huffman, B., McAuley, T., Sel-
fridge, B., Wagner, D., Dimou, G.D., Verbauwhede, I., Vercauteren, F., Archer,
D.W.: BASALISC: programmable hardware accelerator for BGV fully homomor-
phic encryption. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(4), 32–57
(2023). https://doi.org/10.46586/TCHES.V2023.I4.32-57, https://doi.org/
10.46586/tches.v2023.i4.32-57

18. Halevi, S., Shoup, V.: Algorithms in helib. In: Garay, J.A., Gennaro, R. (eds.) Ad-
vances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I. Lecture Notes in Com-
puter Science, vol. 8616, pp. 554–571. Springer (2014). https://doi.org/10.1007/
978-3-662-44371-2_31, https://doi.org/10.1007/978-3-662-44371-2_31

19. Han, K., Hong, S., Cheon, J.H., Park, D.: Logistic regression on homomorphic
encrypted data at scale. In: The Thirty-Third AAAI Conference on Artificial In-
telligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intel-
ligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 -
February 1, 2019. pp. 9466–9471. AAAI Press (2019). https://doi.org/10.1609/
aaai.v33i01.33019466, https://doi.org/10.1609/aaai.v33i01.33019466

20. Huang, H., Zong, H.: Secure matrix multiplication based on fully homomorphic
encryption. J. Supercomput. 79(5), 5064–5085 (2023). https://doi.org/10.1007/
S11227-022-04850-4, https://doi.org/10.1007/s11227-022-04850-4

21. Jang, J., Lee, Y., Kim, A., Na, B., Yhee, D., Lee, B., Cheon, J.H., Yoon, S.: Privacy-
preserving deep sequential model with matrix homomorphic encryption. In: Suga,
Y., Sakurai, K., Ding, X., Sako, K. (eds.) ASIA CCS ’22: ACM Asia Conference on
Computer and Communications Security, Nagasaki, Japan, 30 May 2022 - 3 June
2022. pp. 377–391. ACM (2022). https://doi.org/10.1145/3488932.3523253,
https://doi.org/10.1145/3488932.3523253

22. Jiang, X., Kim, M., Lauter, K.E., Song, Y.: Secure outsourced matrix computa-
tion and application to neural networks. In: Lie, D., Mannan, M., Backes, M.,
Wang, X. (eds.) Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19,
2018. pp. 1209–1222. ACM (2018). https://doi.org/10.1145/3243734.3243837,
https://doi.org/10.1145/3243734.3243837

23. Ju, J.H., Park, J., Kim, J., Kim, D., Ahn, J.H.: Neujeans: Private neural
network inference with joint optimization of convolution and bootstrapping.
CoRR abs/2312.04356 (2023). https://doi.org/10.48550/ARXIV.2312.04356,
https://doi.org/10.48550/arXiv.2312.04356

24. Kim, A., Song, Y., Kim, M., Lee, K., Cheon, J.: Logistic regression model training
based on the approximate homomorphic encryption. BMC Medical Genomics 11
(10 2018). https://doi.org/10.1186/s12920-018-0401-7

25. Lu, W., Kawasaki, S., Sakuma, J.: Using fully homomorphic encryption for statis-
tical analysis of categorical, ordinal and numerical data. In: 24th Annual Network
and Distributed System Security Symposium, NDSS 2017, San Diego, California,
USA, February 26 - March 1, 2017. The Internet Society (2017)

26. Mavi, A.: Sign language digits dataset (2017). https://doi.org/10.34740/
KAGGLE/DSV/11071, https://www.kaggle.com/dsv/11071

27. Mert, A.C., Aikata, Kwon, S., Shin, Y., Yoo, D., Lee, Y., Roy, S.S.: Medha: Mi-
crocoded Hardware Accelerator for computing on Encrypted data. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2023(1), 463–500 (2023). https://doi.org/10.

24

https://doi.org/10.46586/TCHES.V2023.I4.32-57
https://doi.org/10.46586/TCHES.V2023.I4.32-57
https://doi.org/10.46586/tches.v2023.i4.32-57
https://doi.org/10.46586/tches.v2023.i4.32-57
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1609/aaai.v33i01.33019466
https://doi.org/10.1609/aaai.v33i01.33019466
https://doi.org/10.1609/aaai.v33i01.33019466
https://doi.org/10.1609/aaai.v33i01.33019466
https://doi.org/10.1609/aaai.v33i01.33019466
https://doi.org/10.1007/S11227-022-04850-4
https://doi.org/10.1007/S11227-022-04850-4
https://doi.org/10.1007/S11227-022-04850-4
https://doi.org/10.1007/S11227-022-04850-4
https://doi.org/10.1007/s11227-022-04850-4
https://doi.org/10.1145/3488932.3523253
https://doi.org/10.1145/3488932.3523253
https://doi.org/10.1145/3488932.3523253
https://doi.org/10.1145/3243734.3243837
https://doi.org/10.1145/3243734.3243837
https://doi.org/10.1145/3243734.3243837
https://doi.org/10.48550/ARXIV.2312.04356
https://doi.org/10.48550/ARXIV.2312.04356
https://doi.org/10.48550/arXiv.2312.04356
https://doi.org/10.1186/s12920-018-0401-7
https://doi.org/10.1186/s12920-018-0401-7
https://doi.org/10.34740/KAGGLE/DSV/11071
https://doi.org/10.34740/KAGGLE/DSV/11071
https://doi.org/10.34740/KAGGLE/DSV/11071
https://doi.org/10.34740/KAGGLE/DSV/11071
https://www.kaggle.com/dsv/11071
https://doi.org/10.46586/tches.v2023.i1.463-500
https://doi.org/10.46586/tches.v2023.i1.463-500
https://doi.org/10.46586/tches.v2023.i1.463-500
https://doi.org/10.46586/tches.v2023.i1.463-500

46586/tches.v2023.i1.463-500, https://doi.org/10.46586/tches.v2023.i1.
463-500

28. Micciancio, D.: A first glimpse of cryptography’s holy grail. Commun. ACM
53(3), 96 (2010). https://doi.org/10.1145/1666420.1666445, https://doi.
org/10.1145/1666420.1666445

29. Pedrouzo-Ulloa, A., Troncoso-Pastoriza, J.R., Pérez-González, F.: Multivariate
lattices for encrypted image processing. In: 2015 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, ICASSP 2015, South Brisbane,
Queensland, Australia, April 19-24, 2015. pp. 1707–1711. IEEE (2015). https:
//doi.org/10.1109/ICASSP.2015.7178262, https://doi.org/10.1109/ICASSP.
2015.7178262

30. Rizomiliotis, P., Triakosia, A.: On matrix multiplication with homomorphic en-
cryption. In: Regazzoni, F., van Dijk, M. (eds.) Proceedings of the 2022 on Cloud
Computing Security Workshop, CCSW 2022, Los Angeles, CA, USA, 7 Novem-
ber 2022. pp. 53–61. ACM (2022). https://doi.org/10.1145/3560810.3564267,
https://doi.org/10.1145/3560810.3564267

31. Wang, S., Huang, H.: Secure outsourced computation of multiple matrix mul-
tiplication based on fully homomorphic encryption. KSII Trans. Internet Inf.
Syst. 13(11), 5616–5630 (2019). https://doi.org/10.3837/TIIS.2019.11.019,
https://doi.org/10.3837/tiis.2019.11.019

32. Zheng, X., Li, H., Wang, D.: A new framework for fast homomorphic matrix multi-
plication. IACR Cryptol. ePrint Arch. p. 1649 (2023), https://eprint.iacr.org/
2023/1649

33. Zhu, L., Hua, Q., Chen, Y., Jin, H.: Secure outsourced matrix multiplication with
fully homomorphic encryption. In: Tsudik, G., Conti, M., Liang, K., Smaragdakis,
G. (eds.) Computer Security - ESORICS 2023 - 28th European Symposium on
Research in Computer Security, The Hague, The Netherlands, September 25-29,
2023, Proceedings, Part I. Lecture Notes in Computer Science, vol. 14344, pp. 249–
269. Springer (2023). https://doi.org/10.1007/978-3-031-50594-2_13, https:
//doi.org/10.1007/978-3-031-50594-2_13

25

https://doi.org/10.46586/tches.v2023.i1.463-500
https://doi.org/10.46586/tches.v2023.i1.463-500
https://doi.org/10.46586/tches.v2023.i1.463-500
https://doi.org/10.46586/tches.v2023.i1.463-500
https://doi.org/10.46586/tches.v2023.i1.463-500
https://doi.org/10.46586/tches.v2023.i1.463-500
https://doi.org/10.46586/tches.v2023.i1.463-500
https://doi.org/10.46586/tches.v2023.i1.463-500
https://doi.org/10.1145/1666420.1666445
https://doi.org/10.1145/1666420.1666445
https://doi.org/10.1145/1666420.1666445
https://doi.org/10.1145/1666420.1666445
https://doi.org/10.1109/ICASSP.2015.7178262
https://doi.org/10.1109/ICASSP.2015.7178262
https://doi.org/10.1109/ICASSP.2015.7178262
https://doi.org/10.1109/ICASSP.2015.7178262
https://doi.org/10.1109/ICASSP.2015.7178262
https://doi.org/10.1109/ICASSP.2015.7178262
https://doi.org/10.1145/3560810.3564267
https://doi.org/10.1145/3560810.3564267
https://doi.org/10.1145/3560810.3564267
https://doi.org/10.3837/TIIS.2019.11.019
https://doi.org/10.3837/TIIS.2019.11.019
https://doi.org/10.3837/tiis.2019.11.019
https://eprint.iacr.org/2023/1649
https://eprint.iacr.org/2023/1649
https://doi.org/10.1007/978-3-031-50594-2_13
https://doi.org/10.1007/978-3-031-50594-2_13
https://doi.org/10.1007/978-3-031-50594-2_13
https://doi.org/10.1007/978-3-031-50594-2_13

	Secure and Efficient Outsourced Matrix Multiplication with Homomorphic Encryption

