
On Key Substitution Attacks against Aggregate
Signatures and Multi-Signatures

Yuuki Fujita1, Yusuke Sakai2, Kyosuke Yamashita1,2, and Goichiro Hanaoka2

1 Osaka University
2 National Institute of Advanced Industrial Science and Technology

Abstract. When we use signature schemes in practice, we sometimes
should consider security beyond unforgeability. This paper considers se-
curity against key substitution attacks of multi-signer signatures (i.e., ag-
gregate signatures and multi-signatures). Intuitively, this security prop-
erty ensures that a malicious party cannot claim the ownership of a
signature that is created by an honest signer. We investigate security
against key substitution attacks of a wide range of aggregate signature
schemes and multi-signature schemes: the Boneh-Gentry-Lynn-Shacham
aggregate signature scheme, the sequential aggregate signature scheme
by Lysyanskaya et al., the multi-signature scheme by Bellare and Neven,
MuSig2, and the ordered multi-signature scheme by Boldyreva et al.
Furthermore, if the scheme does not provide security against key substi-
tution attacks, then we modify the scheme to become secure against the
attacks.

1 Introduction

The most standard security requirement for signature schemes is unforgeability,
which guarantees it is infeasible to forge a signature without the corresponding
secret key. When proposing signature schemes theoretically, it is sufficient to
satisfy unforgeability in many cases.

However, if we want to use those schemes in practice, we should sometimes
pay attention to properties other than unforgeability. In particular, the prop-
erties that ensure the ownership of a signature have garnered significant at-
tention in recent years: security against key substitution attacks [5, 14] (a.k.a.
duplicate-signature key selection attack [4]), exclusive ownership [10, 18], and
claimability [17, 21]. Intuitively, these properties mean that no malicious party
can claim the ownership of a signature that an honest one creates. If these prop-
erties are violated, it becomes difficult for third parties (i.e., verifiers) to confirm
who created the signature, compromising the most fundamental requirement for
signature schemes.

Schemes not having security against key substitution attacks sometimes yield
real-world attacks: on X.509 Mutual Authentication used in secure SOAP ser-
vices [11] and an early version of Let’s Encrypt’s ACME protocol [19]. These
applications are widely used in the real world. Therefore, investigating security

2 Yuuki Fujita, Yusuke Sakai, Kyosuke Yamashita, and Goichiro Hanaoka

against key substitution attacks of signature schemes is meaningful not only
from a theoretical perspective but also for practical applications.

If we want to use multi-signer schemes to improve the security of the
above applications, the security against key substitution attacks for multi-signer
schemes should be considered. In server authentication with Let’s Encrypt, a sig-
nature is created on a server’s public key. There might be the case that we let the
certification be distributed to avoid the single point of failure, and multi-signer
signature schemes can be used in such a scenario. Therefore, in this paper, we
focus on security against key substitution attacks of aggregate signature schemes
and multi-signature schemes.

1.1 Our Contribution

We investigate security against key substitution attacks of a wide range of aggre-
gate signature schemes and multi-signer signature schemes, the Boneh-Gentry-
Lynn-Shacham aggregate signature scheme [7] (BGLS), the sequential aggre-
gate signature scheme from trapdoor permutation by Lysyanskaya et al. [13]
(SAfromTDP for short), the multi-signature scheme by Bellare and Neven [3]
(MS-BN), MuSig2 [16], and the ordered multi-signature scheme by Boldyreva
et al. [6] (BGOY). All of them are among the most representative multi-signer
schemes in theory, practice, or both.

We define security against key substitution attacks, named non-key substi-
tutability (NKS), for each of the above schemes as they have different syntax
and security definitions. We additionally introduce a weak variant of the security,
named weak non-key substitutability (wNKS), if necessary. Then, we investigate
if each scheme satisfies the security or not. If it does not, we modify the scheme
so that it satisfies (w)NKS.

Table 1 summarizes our results. If the original scheme satisfies NKS, then we
are done (SAfromTDP). If it only satisfies wNKS, then we upgrade the scheme
to gain NKS (MS-BN and MuSig2). Otherwise, we modify the scheme to achieve
(w)NKS (BGLS and BGOY).

Table 1. Summary of our results. “NKS” (resp., “wNKS”) means that it satisfies NKS
(resp., wNKS). “No” means that it does not satisfy even wNKS. “-” means that it is
not necessary to modify the scheme.

Scheme Original Modified

BGLS [7] No NKS
SAfromTDP [13] NKS -
MS-BN [3] wNKS NKS
MuSig2 [16] wNKS NKS
BGOY [6] No wNKS

Some of our countermeasures against key substitution attacks highlight an-
other usefulness of the protections against other attacks already implemented

On Key Substitution Attacks against AS and MS 3

in deployed implementations of the BGLS signatures and MuSig2. As explained
in Section 1.4, our key-substitution attacks against these schemes are already
avoided by forbidding the trivial identity-element public key (in the BGLS sig-
natures and MuSig2) and also by forbidding repeated messages (in the BGLS
signatures). While to the best of our knowledge, these protections were not im-
plemented to avoid key-substitution attacks, these protections also manage to
prevent key-substitution attacks. This fact highlights another importance of im-
plementing these protections.

1.2 Overview of the Definition of NKS and wNKS

Here, we briefly explain the definition of security against (weak) key substitution
attacks. We note that, while we define security against key substitution attacks
for each scheme, the underlying concept remains the same.

We first explain wNKS. Given a set of public keys {pk∗i }i, the adversary first
chooses messages {m∗

i }i to be signed on by the secret keys that correspond to
{pk∗i }i. Given the signatures, the adversary is asked to output a tuple of messages
and public keys, say (m∗∗

i , pk
∗∗
i)i, that differs from the aforementioned messages

and public keys as a multiset but verifies with respect to the given aggregate
signature. This definition captures the scenario where a malicious party sees
an aggregate signature of other parties and claims that it was created by the
malicious party.

Whereas the practical scenario is already captured by wNKS, we consider
stronger security, NKS. In the experiment of NKS, the adversary is allowed to
choose (m∗

i , pk
∗
i)i and an aggregate signature in addition to (m∗∗

i , pk
∗∗
i)i, and it

wins if the aggregate signature is valid under both tuples. NKS ensures there is
theoretically no room for performing key substitution attacks.

1.3 Related Work

Menezes and Smart [14] proposed key substitution attacks against signature
schemes. They proved that existing signature schemes, such as the Schnorr sig-
nature scheme and ECDSA, are secure against key substitution attacks. Later,
Bohli et al. [5] demonstrated that several signature schemes are insecure against
key substitution attacks in a different setting. To the best of our knowledge,
while key substitution attacks are proposed in [14], it is Bohli et al. [5] who
formalized it. Further, it is known that key substitution attacks are possible on
Ed25519 which is used in many applications such as TLS1.3 and ssh [9].

An et al. [2] considered key substitution attacks against lattice-based signa-
ture schemes. Namely, they demonstrated key substitution attacks against GPV,
Lyubashevsky’s signature scheme, and BLISS, and showed how to fix them.

Cremers et al. [10] claimed that three properties should be considered for sig-
nature schemes in practice beyond unforgeability; exclusive ownership, message-
bound, and non re-signability. We note that security against key substitution

4 Yuuki Fujita, Yusuke Sakai, Kyosuke Yamashita, and Goichiro Hanaoka

attacks is a generalization of exclusive ownership. While we only focus on secu-
rity against key substitution attacks in this paper, we might be able to consider
message-bound and non re-signability of multi-signer signature schemes.

Sakai et al. [20] pointed out that several group signature schemes are insecure
against signature hijacking, which is similar to key substitution attacks. They
formalized the notion of opening soundness, and demonstrated that some of
the dynamic group signature schemes are secure against the attack, but several
schemes should be fixed.

1.4 Ethical Consideration

We assess the effect of some of the deployed implementations of the crypto-
graphic scheme which we found not satisfying our key substitution security. We
found that (1) the BGLS aggregate signature does not satisfy weak non-key
substitution security, (2) the MS-BS multi-signature scheme does not satisfy
non-key substitution security, (3) the MuSig2 multi-signature scheme does not
satisfy non-key substitution security, and (4) the BGOY ordered multi-signature
scheme does not satisfy weak non-key substitution security. We describe how
these facts affect some of the deployed implementations.

While the Internet Draft draft-irtf-cfrg-bls-signature-05 [8] defines BGLS ag-
gregate signature algorithms, these algorithms are not affected by our algorithms
for key substitution attacks. Our first algorithm uses the trivial public key of
the identity element. This trivial public key is not allowed in the verification
algorithm of the Internet Draft. The AggregateVerify of the Basic scheme
and the Verify and AggregateVerify algorithms of the message augmentation
scheme all check the validity of public keys by the KeyValidate algorithm. This
KeyValidate algorithm rejects the identity element as a public key. Then our
first algorithm does not affect the security of the schemes. Our second algorithm
uses repeated messages in the scheme without key prefixing. The basic scheme,
which is the scheme without key prefixing in the Internet Draft, does not accept
repeated messages as valid (regardless of the given aggregate signature). Then
our second algorithm does not affect the security of the basic scheme.

As for the MS-BN multi-signature scheme and the BGOY ordered multi-
signature scheme, we are not aware of any deployment of the schemes. Hence we
do not think that our findings of these schemes not satisfying non-key substitu-
tion security affect real-world deployments.

While BIP327 [15] defines MuSig2 multi-signature algorithms, these algo-
rithms are again not affected by our algorithm for key substitution attacks. Our
algorithm again uses the trivial public key of the identity element. This trivial
public key is not allowed by KeyAgg. This KeyAgg algorithm uses cpoint al-
gorithm to decode public keys as a byte string to an elliptic-curve point. This
cpoint algorithm fails if the input byte string encodes the identity element.
Therefore, our algorithm does not affect the security of the scheme defined in
BIP 327.

On Key Substitution Attacks against AS and MS 5

2 Preliminary

We let λ denote a security parameter. A polynomial function and a negligible
function are denoted by poly(λ) and negl(λ), respectively. For an integer n, we
let [n] := {1, 2, · · · , n}. We abbreviate probabilistic polynomial time as PPT.
For two strings x and y, we denote their concatenation by x||y. We denote by

c
U←− S setting c to an element chosen uniformly randomly from a set S. We

denote by G∗ the set of the generators of a group G. A multiset is denoted by
{{}}. For sequence of elements x1, . . . , xn, we denote by x|ni the concatenation of
xi, xi+1, · · · , xn−1, xn. An interactive algorithm is denoted by ⟨{Ai(si)}ni=1⟩(p)
where si denotes the input given to each algorithm, and p denotes the common
input given to all algorithms.

Security is defined by an experiment between a challenger and a (PPT) ad-
versary. We let the experiment output 1 if the adversary breaks the security. In
such a case, we say the adversary wins the experiment (or the game).

Next, we introduce a trapdoor one-way permutation (TDP). TDP is a per-
mutation computable in polynomial time but the inverse of that is not efficiently
computable without the trapdoor.

Definition 1 (Trapdoor One-way Permutation). A trapdoor one-way
permutation family Π over D consists of the three PPT algorithms
(Generate, Evaluate, Invert):

Generate(1λ)→ (s, t): Given a security parameter 1λ, it outputs the description
s of a permutation and the corresponding trapdoor t.

Evaluate(s, x) → y: Given the description s of a permutation and a group
element x, it outputs another group element y.

Invert(s, t, y)→ x: Given the description s of a permutation, the corresponding
trapdoor t, and a group element y, it computes the inverse x of the image y
under s, and outputs x.

where it holds that Pr[x = A(s, Evaluate(s, x)) : (s, t) ← Generate(1λ);x
U←−

D] ≤ negl(λ) for any PPT algorithm A, and Pr[x = Invert(s, t, Evaluate(s, x)) :

(s, t)← Generate(1λ);x
U←− D] = 1.

2.1 Bilinear Group and Assumptions

We here introduce bilinear groups. Let G(1λ)→ (p,G1, G2, GT , g1, g2, e, ψ) be a
PPT algorithm that takes as input a security parameter 1λ and outputs a tuple
of a prime p, multiplicative groups G1, G2, and GT , generators g1 and g2 of G1

and G2, respectively, a bilinear map e : G1 × G2 → GT , and an isomorphism
ψ : G2 → G1 satisfying ψ(g2) = g1. We call this G a bilinear group generator. We
assume that every algorithm is given gk = (p,G1, G2, GT , g1, g2, e, ψ) ← G(1λ)
even if it is not mentioned explicitly. A bilinear map e : G1 × G2 → GT is a
efficiently computable map that satisfies the following two conditions:

– Bilinearity: ∀u ∈ G1,∀v ∈ G2 and ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab.

6 Yuuki Fujita, Yusuke Sakai, Kyosuke Yamashita, and Goichiro Hanaoka

– Non-degenerateness: ∀g1 ∈ G∗
1 and ∀g2 ∈ G∗

2, e(g1, g2) ̸= 1GT
.

We note that if the isomorphism ψ is not efficiently computable, then we call
such a setting the type-III setting. If the isomorphism ψ is efficiently computable,
then the setting is called the type-II setting. If G1 = G2, then we refer to the
setting as the type-I setting. For simplicity, we write G1 and G2 simply as G in
type-I or type-II setting.

In this paper, we use several assumptions relative to bilinear groups, the CDH
assumption, the DDH assumption, the co-CDH assumption, and the DBP as-
sumption. However, due to the space limitation, we introduce these assumptions
in Appendix A.

2.2 Aggregate Signatures

An aggregate signature is a cryptographic primitive in which multiple signatures
can be aggregated into a single signature.

Definition 2 (Aggregate Signature Scheme). An aggregate signature
scheme consists of the six PPT algorithms (Setup,KeyGen,Sign,Vrf,Agg,AggVrf)
that work as follows:

Setup(1λ)→ pp: Setup is the setup algorithm that takes a security parameter 1λ

as input, and outputs a public parameter pp.
KeyGen(pp)→ (pk, sk): KeyGen is the key generation algorithm that takes a pub-

lic parameter pp as input, and outputs a public/secret key pair (pk, sk).
Sign(pp, sk,m)→ σ: Sign is the signing algorithm that takes a public parameter

pp, a secret key sk, and a message m as input, and outputs a signature σ.
Vrf(pp, pk,m, σ)→ 1/0: Vrf is the verification algorithm for individual signa-

tures: It takes a public parameter pp, a public key pk, a message m, and a
signature σ as input, and outputs 1 (valid) or 0 (invalid).

Agg(pp, ((pki,mi, σi))i)→ τ : Agg is the aggregation algorithm that takes as in-
put a public parameter pp, a sequence of triplets of a public key, a message,
and a signature ((pki,mi, σi))i, and outputs an aggregate signature τ .

AggVrf(pp, ((pki,mi))i, τ)→ 1/0: AggVrf is the verification algorithm for aggre-
gate signatures: It takes a public parameter pp, a sequence of pairs of a public
key and a message ((pki,mi))i, and an aggregate signature τ as input, and
outputs 1 (valid) or 0 (invalid).

Aggregate signature schemes should satisfy correctness and unforgeability
(EUF-CMA). However, due to the space limitation, we put their definitions in
Appendix B.

2.3 Sequential Aggregate Signatures

A sequential aggregate signature is a cryptographic primitive where each signer
receives the current cumulative signature as input and generates a new signature
in sequence, progressively extending the aggregate.

On Key Substitution Attacks against AS and MS 7

Definition 3 (Sequential Aggregate Signatures). A sequential aggregate
signature consists of the four algorithms (Setup,KeyGen,AggSign,AggVrf) that
work as follows:

Setup(1λ) → pp: Setup is the setup algorithm that takes a security parameter
1λ as input, and outputs a public parameter pp.

KeyGen(pp) → (pk, sk): KeyGen is the key generation algorithm that takes a
public parameter pp as input, and outputs a public/secret key pair (pk, sk).

AggSign(pp, ski,mi, σi−1, (mj)j∈[i−1], (pkj)j∈[i−1])→ σi: AggSign is the signing
algorithm that takes a public parameter pp, a secret key ski, a message mi, a
signature σi−1, a sequence of messages (mj)j∈[i−1], and a sequence of public
keys (pkj)j∈[i−1] as input, and outputs a signature σi.

AggVrf(pp, σi, (mj)j∈[i], (pkj)j∈[i]) → {0, 1}: AggVrf is the verification algo-
rithm that takes a public parameter pp, a signature σi, a sequence of mes-
sages (mj)j∈[i], and a sequence of public keys (pkj)j∈[i] as input, and outputs
1 (valid) or 0 (invalid).

We do not introduce unforgeability of sequential aggregate signature schemes
because it is not discussed in this paper.

2.4 Multi-signatures

A multi-signature is a cryptographic primitive in which multiple signers sign the
same message and produce a single signature.

Definition 4 (Multi-signature). A multi-signature consists of four algo-
rithms (Setup,KeyGen,Sign,Vrf) that work as follows:

Setup(1λ) → pp: Setup is the setup algorithm that takes a security parameter
1λ as input, and outputs a public parameter pp.

KeyGen(pp) → (pk, sk): KeyGen is the key generation algorithm that takes a
public parameter pp as input, and outputs a public/secret key pair (pk, sk).

⟨{Sign(ski)}ni=1⟩(pp, {{pki}}i∈[n],m) → σ : Sign is an interactive signing algo-
rithm that takes a public parameter pp, a secret key ski, a multiset of public
keys {{pki}}i∈[n] and a message m as input, and interacts with the other
signers and finally outputs a signature σ.

Vrf(pp, {{pki}}i∈[n],m, σ)→ {0, 1}: Vrf is the verification algorithm that takes
a public parameter pp, a multiset of public keys {{pki}}i∈[n], a message m
and a signature σ as input, and outputs 1 (valid) or 0 (invalid).

Multi-signatures should satisfy correctness and unforgeability (UF-MS). How-
ever, due to the space limitation, we introduce it in Appendix C.

2.5 Ordered Multi-signatures

An ordered multi-signature is a cryptographic primitive in which multiple users
sign the same message and the order of signing is guaranteed.

8 Yuuki Fujita, Yusuke Sakai, Kyosuke Yamashita, and Goichiro Hanaoka

Definition 5 (Ordered multi-signature). An ordered multi-signature
scheme consists of the four algorithms (Setup,KeyGen,OSign,OVrf) that work
as follows:

Setup(1λ)→ pp: Setup is the setup algorithm that takes a security parameter λ
as input, and outputs a public parameter pp.

KeyGen(pp) → (pki, ski): KeyGen is the key generation algorithm that takes a
public parameter pp as input, and outputs a public/secret key pair (pki, ski).

OSign(pp, ski,m, σi−1, (pkj)j∈[i−1]) → σi: OSign is the signing algorithm that
takes a public parameter pp, a secret key ski, a message m, a signature σi−1

and a sequence of public keys (pkj)j∈[i−1], and outputs σi.

OVrf(pp,m, σi, (pkj)j∈[i])→ {0, 1}: OVrf is the verification algorithm that takes
a public parameter pp, a message m, a signature σi, and a sequence of public
keys (pkj)j∈[i] as input, and it outputs 1 (accept) or 0 (reject).

Ordered multi-signatures should satisfy correctness and unforgeability (UF-
OMS). However, due to the space limitation, we put its formal definition in
Appendix I.

3 Key Substitution Attacks on Aggregate Signatures

In this section, we first formalize security against key substitution attacks for
(standard) aggregate signatures. Then, we recap the construction of the BGLS
signature scheme [7], and demonstrate that it is not secure against key substi-
tution attacks without the modification of the construction. Finally, we modify
the BGLS signature scheme so that it becomes secure against the attacks.

3.1 Non-Key Substitutability

We define non-key substitutability (NKS) and weak non-key substitutability
(wNKS) of aggregate signature schemes as follows.

Definition 6. An aggregate signature scheme ΣAS =
(Setup,KeyGen,Sign,Vrf,Agg,AggVrf) satisfies non-key substitutability (NKS)
if for any PPT adversary A, it holds that Pr[ExpASNKS

ΣAS,A(λ) = 1] ≤ negl(λ),

where ExpASNKS
ΣAS,A(λ) is defined as follows:

ExpASNKS
ΣAS,A(λ)

pp← ΣAS.Setup(1
λ);

(((pk∗i ,m
∗
i))i∈[n∗], ((pk

∗∗
i ,m

∗∗
i))i∈[n∗∗], τ)← A(pp) :

Output 1 if ΣAS.AggVrf(pp, ((pk
∗
i ,m

∗
i))i∈[n∗], τ) = 1

∧ΣAS.AggVrf(pp, ((pk
∗∗
i ,m

∗∗
i))i∈[n∗∗], τ) = 1

∧{{(pk∗i ,m∗
i) | i ∈ [n∗]}} ≠ {{(pk∗∗i ,m∗∗

i) | i ∈ [n∗∗]}} (as multisets);
Otherwise output 0

On Key Substitution Attacks against AS and MS 9

Definition 7. An aggregate signature scheme ΣAS =
(Setup,KeyGen,Sign,Vrf,Agg,AggVrf) satisfies weak non-key substitutabil-
ity (wNKS) if for any PPT adversary A, it holds that Pr[ExpASwNKS

ΣAS,A (λ) =

1] ≤ negl(λ), where ExpASwNKS
ΣAS,A (λ) is defined as follows:

ExpASwNKS
ΣAS,A (λ)

n∗ ← A(pp);
(pk∗i , sk

∗
i)← KeyGen(pp) for all i ∈ [n∗];

(m∗
i)i∈[n∗] ← A((pk∗i)i∈[n∗]);

σi ← Sign(pp, ski,mi) for all i ∈ [n∗]; τ ← Agg(pp, ((pki,mi, σi))i∈[n∗]);
(pk∗i ,m

∗
i)i∈[n∗] ← A(τ) :

Output 1 if ΣAS.AggVrf(pp, ((pk
∗∗
i ,m

∗∗
i))i∈[n∗∗], τ) = 1;

∧{{(pk∗i ,m∗
i) | i ∈ [n∗]}} ≠ {{(pk∗∗i ,m∗∗

i) | i ∈ [n∗∗]}} (as multisets);
Otherwise, output 0;

3.2 The BGLS Signature Scheme

Let H : {0, 1}∗ → G1 be a random oracle. The BGLS signature scheme [7] is the
following:

Setup(1λ): Given a security parameter 1λ, it generates gk =
(p,G1, G2, GT , g1, g2, e, ψ)← G(1λ) and sets pp := gk. It outputs pp.

KeyGen(pp): Given a public parameter pp, it chooses x ← Zp, and outputs
pk := gx2 and sk := x.

Sign(pp, sk,m): Given a public parameter pp, a secret key sk, and a message m,
it computes h← H(m) and outputs σ := hx.

Vrf(pp, pk,m, σ): Given a public parameter pp, a public key pk, a message m,
and a signature σ, it outputs 1 if e(σ, g2) = e(H(m), pk), otherwise 0.

Agg(pp, ((pki,mi, σi))i∈[n]): Given a public parameter pp, a sequence of tuples
of a public key, a message, and a signature ((pki,mi, σi))i∈[n], it outputs an
aggregate signature τ :=

∏n
i=1 σi ∈ G1.

AggVrf(pp, ((pki,mi))i∈[n], τ): Given a public parameter pp, a sequence of pairs
of a public key and a message ((pki,mi))i∈[n], and an aggregate signature,
it outputs 1 if e(τ, g2) =

∏n
i=1 e(H(mi), pki), otherwise 0.

Theorem 1 ([7]). If the co-CDH assumption holds with respect to G, then the
BGLS signature scheme is EUF-CMA secure.

Key Substitution Attacks on BGLS. We demonstrate that the BGLS
signature scheme is insecure against weak key substitution attacks. Let Σ
be the BGLS scheme. We first observe what will happen if an adversary
wins the experiment ExpASwNKS

Σ,A (λ) before demonstrating our adversaries. Let
((pk∗i ,m

∗))i∈[n∗] and ((pk∗∗i ,m
∗∗))i∈[n∗∗] be sequences of public keys and mes-

sages with which a signature τ is accepted in the verification. Then, it holds
that AggVrf(pp, ((pk∗i ,m

∗))i∈[n∗], τ) = AggVrf(pp, ((pk∗∗i ,m
∗∗))i∈[n∗∗]) = 1. By

the construction of AggVrf, it holds that e(τ, g2) =
∏n∗

i=1 e(H(m∗
i), pk

∗
i) =∏n∗∗

i=1 e(H(m∗∗
i), pk∗∗i).

10 Yuuki Fujita, Yusuke Sakai, Kyosuke Yamashita, and Goichiro Hanaoka

Theorem 2. The BGLS scheme does not satisfy wNKS.

Proof. We construct an adversary A that breaks wNKS of the BGLS as follows:
Given a public parameter pp as input, it outputs a random integer n∗ ≤ poly(λ).

Next, it takes a sequence of public keys (pk∗i)i∈[n∗] and sets m∗
i

U←− M for all
i ∈ [n∗]. Here M denotes a message space. Then, given a signature τ as in-
put, it sets (m∗∗

i , pk
∗∗
i) ← (m∗

i , pk
∗
i) for all i ∈ [n∗] and pk∗∗n∗+1 ← 1G, chooses

an arbitrary message m∗∗
n∗+1 ∈ M, and outputs (m∗∗

i , pk
∗∗
i)i∈[n∗+1]. Since we

have that e(H(m∗∗
n∗+1), pk

∗∗
n∗+1) = 1, it holds that

∏n∗+1
i=1 e(H(m∗∗

i), pk∗∗i) =

e(H(m∗∗
n∗+1), pk

∗∗
n∗+1)

∏n∗

i=1 e(H(m∗∗
i), pk∗∗i) =

∏n∗

i=1 e(H(m∗
i), pk

∗
i) = e(τ, g2).

Therefore, A breaks wNKS of the BGLS. □

In the case where signers are allowed to sign the same message, we can
provide another proof of the theorem. This extra proof highlights the necessity
of hashing a public key in our modification.

Proof. We construct an adversary A that breaks wNKS of the BGLS as follows:
Given a public parameter pp as input, it outputs a random integer n∗ ≤ poly(λ).

Next, it takes a sequence of public keys (pk∗i)i∈[n∗] and sets m∗
i

U←− M for all
i ∈ [n∗]. Here M denotes a message space. Then, given a signature τ as in-
put, it sets (m∗∗

i , pk
∗∗
i) ← (m∗

i , pk
∗
i) for all i ∈ [n∗ − 1] and m∗∗

n∗ ,m∗∗
n∗+1 ←

m∗
n∗ , computes pk∗∗n∗

U←− G and pk∗∗n∗+1 ← pk∗n∗ ·(pk∗∗n∗)−1, and outputs
(m∗∗

i , pk
∗∗
i)i∈[n∗+1]. Since we have that e(H(m∗∗

n∗+1), pk
∗∗
n∗+1)e(H(m∗∗

n∗), pk∗∗n∗) =
e(H(m∗

n∗), pk∗n∗ ·(pk∗∗n∗)−1)e(H(m∗
n∗), pk∗∗n∗) = e(H(m∗

n∗), pk∗n∗), it holds that∏n∗∗

i=1 e(H(m∗∗
i), pk∗∗i) =

∏n∗+1
i=n∗ e(H(m∗∗

i), pk∗∗i)
∏n∗−1

i=1 e(H(m∗
i), pk

∗
i) =∏n∗

i=1 e(H(m∗
i), pk

∗
i) = e(τ, g2). Thus, A breaks wNKS of the BGLS. □

3.3 Modified BGLS Signature Scheme

We show that the BGLS signature scheme becomes secure against key substitu-
tion attacks with slight modifications even in the case where multiple users sign
the same message. That is, we prohibit pk = 1, and introduce the key-prefixed
BGLS signature scheme (i.e., we let the signing algorithm not only hash a mes-
sage but also a public key). Further, the construction uses proof of possession to
prove the security in the type-III pairing setting. Toward proving the security, we
should introduce an additional computational hardness assumption: the double
pairing (DBP) assumption. It is known that the DBP assumption is implied by
the DDH assumption [1]. Therefore, the additional assumption is a mild one.

Definition 8 (The DBP Assumption). The double pairing (DBP) assump-
tion holds with respect to G if for all PPT algorithms A it holds that

Pr[gk← G(1λ);hr, hz
U←− G1 \ {1}; (r, z)← A(gk, hr, hz) :

e(hz, z)e(hr, r) = 1 ∧ (r, z) ̸= (1, 1)] ≤ negl(λ).

On Key Substitution Attacks against AS and MS 11

We first provide the construction of the modified BGLS signature scheme.
Namely, we do not let the bilinear group generator output an isomorphism, as
we are considering the type-III setting. Then, we demonstrate that it is secure
against key substitution attacks and unforgeable, respectively.

Let H : {0, 1}∗ → G1 and HP : {0, 1}∗ → G1 be random oracles. The
modified BGLS signature scheme ΠBP is constructed as follows.

Setup(1λ): Given a security parameter 1λ, it generates gk =
(p,G1, G2, GT , g1, g2, e)← G(1λ) and sets pp = gk. It outputs pp.

KeyGen(pp): Given a public parameter pp, it chooses x← Z∗
p, computes pk := gx2

and σpop := (HP (pk))
x, and outputs p̂k := (pk, σpop) and sk := x.

Sign(pp, sk,m): Given a public parameter pp, a secret key sk = x, and a message
m, it computes h← H(m ||gx2) and outputs σ := hx.

Vrf(pp, p̂k,m, σ): Given a public parameter pp, a public key p̂k = (pk, σpop), a
message m, and a signature σ, it outputs 1 if e(σ, g2) = e(H(m || pk), pk),
pk ̸= 1, and e(σpop, g2) = e(HP (pk), pk), otherwise 0.

Agg(pp, ((p̂ki,mi, σi))i∈[n]): Given a public parameter pp and a sequence of tu-

ples of public key, message, and signature (p̂ki,mi, σi))i∈[n], it outputs an
aggregate signature τ :=

∏n
i=1 σi ∈ G1.

AggVrf(pp, ((p̂ki,mi))i∈[n], τ): Given a public parameter pp, a sequence of pairs

of public key where p̂ki = (pki, σpop,i) and message ((p̂ki,mi))i∈[n], and an
aggregate signature τ , it outputs 1 if e(τ, g2) =

∏n
i=1 e(H(mi || pki), pki) and

∀i ∈ [n], pki ̸= 1 and e(σpop,i, g2) = e(HP (pki), pki), otherwise 0.

Correctness is immediate. Thus, we focus on the security requirements.

Security against Key Substitution Attacks. We first argue
e(H(m || pk), pk) · e(H(m || pk′), pk′) ̸= e(H(m || pk · pk′), pk · pk′) with
overwhelming probability. For the attack shown in the second proof
of theorem 2 to work successfully, a polynomial time adversary should
find a message m and public keys pk = gx2 and pk′ = gx

′

2 such that
e(H(m || pk), pk) · e(H(m || pk′), pk′) = e(H(m || pk · pk′), pk · pk′). As H is
a random oracle, H(m || pk), H(m || pk′) and H(m || pk · pk′) are mapped to
distinct values, say gz1 , g

z′

1 and gz
∗

1 , respectively. In other words, it should hold
that e(g1, g2)

zx · e(g1, g2)z
′x′

= e(g1, g2)
zx+z′x′

= e(g1, g2)
z∗(x+x′) for the attack

works well. However, the adversary can find such values with probability at
most poly(λ)/p, which is negligible in λ.

Now we prove that the modified BGLS signature scheme satisfies NKS.

Lemma 1. The scheme ΠBP satisfies NKS.

Proof. The proof proceeds as follows. We first introduce an intermediate prob-
lem, and show that if the problem can be solved by a PPT algorithm, then
the DBP assumption is also solved by another PPT adversary. After that, we
demonstrate that if there exists a PPT adversary that violates the security of the

12 Yuuki Fujita, Yusuke Sakai, Kyosuke Yamashita, and Goichiro Hanaoka

modified BGLS signature scheme against key substitution attacks, then there is
a PPT algorithm that solves the intermediate problem.

The intermediate problem is defined by the following experiment:

Pr[gk← G(1λ);h1, . . . , hn ← G1; (r1, . . . , rn)← A(gk, h1, . . . , hn) :∏
i∈[n]

e(hi, ri) = 1 ∧ (r1, . . . , rn) ̸= (1, . . . , 1)]. (1)

Claim. If there is a PPT algorithm A that makes the probability in Eq. (1) non-
negligible, then there exists a PPT adversaryA′ that breaks the DBP assumption
with non-negligible probability.

Proof. We demonstrate how A′ breaks the DBP assumption by simulating A.
Given hr, hz ∈ G1, A′ does the followings: For all i ∈ [n], it chooses ai, bi ∈ Zp

uniformly, and computes ĥi := hai
r · hbiz . Then, A′ simulates the adversary

A by giving ĥ1, · · · , ĥn to obtain (r1, · · · , rn) s.t.
∏

i∈[n] e(ĥi, ri) = 1 and

(r1, · · · , rn) ̸= (1, · · · , 1). Finally, A′ computes r =
∏

i∈[n] r
ai
i and z =

∏
i∈[n] r

bi
i ,

and outputs (r, z).

We show that (r, z) satisfies that e(hr, r)e(hz, z) = 1. If
∏

i∈[n] e(ĥi, ri) = 1,

then it holds that 1 =
∏

i∈[n] e(ĥi, ri) =
∏

i∈[n] e(h
ai
r ·hbiz , ri) = e(hr,

∏
i∈[n] r

ai
i) ·

e(hz,
∏

i∈[n] r
bi
i). Thus, it is sufficient to show that (

∏
i∈[n] r

ai
i ,

∏
i∈[n] r

bi
i) ̸= (1, 1)

for our proof.
Observe that every ĥi that is given to A is independent of ai because bi is

chosen uniformly. Thus, (r1, · · · , rn) and (a1, · · · , an) are independent. As there
is at least one ri s.t. ri ̸= 1 with non-negligible probability,

∏
i∈[n] r

ai
i is uniformly

distributed over G1. Thus, it holds that
∏

i∈[n] r
ai
i = 1 with probability 1/p,

which implies (
∏

i∈[n] r
ai
i ,

∏
i∈[n] r

bi
i) ̸= (1, 1) with non-negligible probability.

This concludes the proof. □

Claim. If there exists a PPT adversary A that violates NKS of the modified
BGLS signature scheme with non-negligible probability, then there is a PPT
algorithm A′ that makes the probability in Eq. (1) non-negligible.

Proof. Let qH be the maximum number of queries that A can make to ran-
dom oracle H : {0, 1}∗ → G1. Given ĥ1, · · · , ĥqH , the algorithm A′ simulates

A as follows. When A queries H(mj || pkj) for the j-th time, A′ gives ĥj as an

answer. Suppose that A outputs ((m∗
i , p̂k

∗
i))i∈[n∗], ((m

∗∗
i , p̂k

∗∗
i))i∈[n∗∗] and an ag-

gregate signature τ where {(m∗
i , p̂k

∗
i)}i∈[n∗] ̸= {(m∗∗

i , p̂k
∗∗
i)}i∈[n∗∗] as multisets,

AggVrf(pp, ((m∗
i , p̂k

∗
i))i∈[n∗], τ) = 1 and AggVrf(pp, ((m∗∗

i , p̂k
∗∗
i))i∈[n∗∗], τ) = 1.

In other words, it holds that

e(τ, g) =

n∗∏
i=1

e(H(m∗
i ∥ pk

∗
i), pk

∗
i) =

n∗∗∏
i=1

e(H(m∗∗
i ∥ pk

∗∗
i), pk∗∗i) (2)

On Key Substitution Attacks against AS and MS 13

and

e(σ∗
pop,i, g2) = e(HP (pk

∗
i), pk

∗
i) (3)

where (pk∗i , σ
∗
pop,i ← p̂k

∗
i for all i ∈ [n∗], and

e(σ∗∗
pop,i, g2) = e(HP (pk

∗∗
i), pk∗∗i) (4)

where (pk∗∗i , σ
∗∗
pop,i)← p̂k

∗∗
i for all i ∈ [n∗∗].

Let t∗j = #{i ∈ [n∗] | (mj , pkj) = (m∗
i , pk

∗
i)} and t∗∗j = #{i ∈ [n∗∗] |

(mj , pkj) = (m∗∗
i , pk

∗∗
i)}. Then A′ outputs (r1, . . . , rqH) where rj = pk

t∗j−t∗∗j
j .

Due to Eq. (2), we have that (r1, . . . , rqH) satisfies
∏

i∈[qH] e(ĥi, ri) = 1.
Let

M∗ = {{(m∗
i , (pk

∗
i , σ

∗
pop,i)) | i ∈ [n∗]}}, (5)

M∗∗ = {{(m∗∗
i , (pk

∗∗
i , σ

∗∗
pop,i)) | i ∈ [n∗∗]}}, (6)

N∗ = {{(m∗
i , pk

∗
i) | i ∈ [n∗]}}, (7)

N∗∗ = {{(m∗∗
i , pk

∗∗
i) | i ∈ [n∗∗]}} (8)

as multisets. Then the winning condition ensures that M∗ ̸=M∗∗. Furthermore,
this inequality ensures that N∗ ̸= N∗∗.

We now prove this. Let us assume that there is an element (m, (pk, σpop)) ∈
M∗ whose multiplicity is m. Then we claim that the element (m, pk) belongs
to N∗ with the same multiplicity n = m. The element (m, (pk, σpop)) appears
m times in M∗ and then (m, pk) appears at least m times in N∗. Moreover,
(m, pk) may appear more frequently, if there is an element (m, (pk, σ′

pop)) where
σ′
pop ̸= σpop in M∗. However, the winning condition ensures that such a pair

(m, (pk, σ′
pop)) never belongs to M∗. This is due to Eq. (3), which ensures that

there is a unique σpop for each pk satisfying e(σpop, g2) = e(HP (pk), pk). This
ensures that n = m. The similar fact holds for M∗∗ and N∗∗. Then, if there are
elements (m∗, (pk∗, σ∗

pop)) ∈M∗ and (m∗∗, (pk∗∗, σ∗∗
pop)) ∈M∗∗ whose multiplic-

ities differ, then the elements (m∗, pk∗) ∈ N∗ and (m∗∗, pk∗∗) ∈ N∗∗ have differ-
ent multiplicities inherited from (m∗, (pk∗, σ∗

pop)) ∈M∗ and (m∗∗, (pk∗∗, σ∗∗
pop)) ∈

M∗∗. This shows that if M∗ ̸=M∗∗, it holds that N∗ ̸= N∗∗.
We claim that at least for some j ∈ [qH], t∗j ̸= t∗∗j . This is due to the

fact that N∗ ̸= N∗∗. Since t∗j and t∗∗j are the multiplicities of (mj , pkj) ∈ N∗

and (mj , pkj) ∈ N∗∗, there are some (mj , pkj) whose multiplicities in N∗ and
N∗∗ differ. We also have that pkj ̸= 1 by the verification condition. Since we
have that t∗j , t

∗∗
j < p for sufficiently large security parameters λ, we have that

−p < t∗j − t∗∗j < p (and t∗j − t∗∗j ̸= 0)). Then, for this j, we have that pk
t∗j−t∗∗j
j ̸= 1

for sufficiently large security parameters. Therefore, we can conclude that A
outputs (r1, . . . , rqH) ̸= (1, . . . , 1) for sufficiently large security parameters. □

Summarizing the above discussion, if the modified BGLS signature scheme
is not NKS, then we can break the DBP assumption in polynomial time. □

14 Yuuki Fujita, Yusuke Sakai, Kyosuke Yamashita, and Goichiro Hanaoka

Unforgeability. We introduce a mild assumption, the co-CDH′ assumption,
and prove unforgeability of ΠBP under the assumption. Due to the space limita-
tion, we put the definition of co-CDH′ assumption and the proof in Appendix B.

Lemma 2. ΠBP is EUF-CMA secure under the co-CDH ′ assumption.

4 Key Substitution Attacks on Sequential Aggregate
Signatures

We first define NKS for sequential aggregate signatures. We then prove that the
sequential aggregate signature scheme from trapdoor permutation (SAfromTDP)
by Lysyanskaya et al. [13] satisfies NKS without modification.

4.1 Non-Key Substitutability

We define NKS of sequential aggregate signature schemes as follows.

Definition 9 (Non-Key Substitutability). A sequential aggregate signature
ΣSAS = (Setup,KeyGen,AggSign,AggVrf) satisfies non-key substitutability if for
all PPT algorithm A, it holds that Pr[ExpSASNKS

ΣSAS ,A(λ) = 1] ≤ negl(λ) where

ExpSASNKS
ΣSAS ,A(λ) is the following experiment:

ExpSASNKS
ΣSAS ,A(λ)

pp← ΣSAS .Setup(1
λ);

(((m∗
i , pk

∗
i))i∈[n∗], ((m

∗∗
i , pk

∗∗
i))i∈[n∗∗], σ)← A(pp) :

Output 1 if ΣSAS .AggVrf(pp, σ, ((m
∗
i , pk

∗
i))i∈[n∗]) = 1

∧ΣSAS .AggVrf(pp, σ, ((m
∗∗
i , pk

∗∗
i))i∈[n∗∗]) = 1

∧((m∗
i , pk

∗
i))i∈[n∗] ̸= ((m∗∗

i , pk
∗∗
i))i∈[n∗∗] (as ordered set);

Otherwise output 0;

4.2 SAfromTDP

We introduce the SAfromTDP, and show that it satisfies NKS. SAfromTDP
consists of the following algorithms (we here assume the domains of permutations
are common among all signers.):

Setup(1λ) → pp: Given a security parameter 1λ, it chooses a trapdoor permu-
tation family Π = (Generate, Evaluate, Invert) over D and a hash function
H : {0, 1}∗ → D and outputs a public parameter pp← (H,Π,D).

KeyGen(pp) → (pk, sk): Given a public parameter pp, it sets (s, t)
U←−

Π.Generate, and outputs a public key pk← s and a secret key sk← (s, t).
AggSign(pp, ski,mi, σi−1, (mj)j∈[i−1], (pkj)j∈[i−1]) → σi: Given a public pa-

rameter pp, a secret key ski, a message mi, an aggregate so far σi−1

(σ0 = 1 for the first signing), a sequence of public keys (pkj)j∈[i−1]

and a sequence of messages (mj)j∈[i−1], it outputs ⊥ if it holds that
AggVrf(pp, (mj)j∈[i−1], σi−1, (pkj)j∈[i−1]) = 0. Otherwise, it computes σi ←
Π.Invert(si, ti, σi−1 ⊙H(s|i1,m|i1) and outputs σi.

On Key Substitution Attacks against AS and MS 15

AggVrf(pp, σi, (mj)j∈[i], (pkj)j∈[i]) → {0, 1}: It takes a public parameter pp,
a signature σi, a sequence of messages (mj)j∈[i] and a sequence of public
keys (pkj)j∈[i] as input. It outputs 0 if there exists j such that sj does not
describe a valid permutation, it holds that ∃j ̸= k ∈ [i], pkj = pkk, or the
number of messages differs from that of public keys. Otherwise, it computes
σj−1 ← Π.Evaluate(sj , σj) ⊙ H(s|j1,m|

j
1)

−1 for j = i, · · · , 1, and then it
outputs 1 if it holds σ0 = 1, otherwise outputs 0.

Theorem 3. SAfromTDP satisfies NKS in the random oracle model.

Proof. We show that there are collisions of random numbers if there exists a PPT
adversary that breaks NKS of the SAfromTDP. Suppose that there exists a PPT
algorithmA that breaks NKS of the SAfromTDP with non-negligible probability.
Let ΣSAS be the SAfromTDP scheme. Let ((pk∗i)i∈[n∗], (m

∗
i)i∈[n∗], (pk

∗∗
i)i∈[n∗∗],

(m∗∗
i)i∈[n∗∗], σ) denote the output of A where it results in ExpSASNKS

ΣSAS ,A(λ) =

1. Let σ∗
n∗−1 and σ∗∗

n∗∗−1 be Evaluate(s∗n∗ , σ) ⊙ H(s∗|n∗

1 ,m∗|n∗

1)−1 and

Evaluate(s∗∗n∗∗ , σ) ⊙ H(s∗∗|n∗∗

1 ,m∗∗|n∗∗

1)−1 respectively. Since Invert is the
inverse map of Evaluate, we observe that σ = Invert(s∗n∗ , t∗n∗ , σ∗

n∗−1 ⊙
H(s∗|n∗

1 ,m∗|n∗

1)) = Invert(s∗∗n∗∗ , t∗∗n∗∗ , σ∗∗
n∗∗−1 ⊙ H(s∗∗|n∗∗

1 ,m∗∗|n∗∗

1)). We show

that Invert(s∗n∗ , t∗n∗ , σ∗
n∗−1 ⊙ H(s∗|n∗

i ,m∗|n∗

i)) and Invert(s∗∗n∗∗ , t∗∗n∗∗ , σ∗∗
n∗∗−1 ⊙

H(s∗∗|n∗∗

i ,m∗∗|n∗∗

i)) are uniformly random and independently distributed.
We first show that Invert(s∗n∗ , t∗n∗ , σ∗

n∗−1⊙H(s∗|n∗

1 ,m∗|n∗

1)) is uniformly ran-
dom. Without loss of generality, we assume that A queries (s∗|k1 ,m∗|k1) for all
k ∈ [n∗−1] before it queries (s∗|n∗

1 ,m∗|n∗

1). In the verification algorithm, for k =
n∗, n∗−1, . . . , 1, it computes σ∗

k−1 = Evaluate(sk, σk)⊙H(s∗|k1 ,m∗|k1)−1, and it
must hold that σ∗

0 = 1 since the verification algorithm accepts the signature σ.
Considering the inverse map, we observe that it holds that σ∗

k = Invert(s∗k, t
∗
k,

σ∗
k−1⊙H(s∗|k1 ,m∗|k1)) for all k ∈ [n∗]. Thus, σ∗

n∗−1 that appears in successful ver-
ification is uniquely determined by (s∗1, s

∗
2, ..., s

∗
n∗−1,m

∗
1,m

∗
2, ...,m

∗
n∗−1). There-

fore, σ∗
n∗−1 has been uniquely determined when A queries (s∗|n

∗−1
i ,m∗|n

∗−1
i)

to the hash oracle before A queries (s∗|n∗

i ,m∗|n∗

i) to the hash oracle. Since
H(s∗|n∗

i ,m∗|n∗

i) is uniformly random, σ∗
n∗−1 ⊙ H(s∗|n∗

i ,m∗|n∗

i) is also uni-
formly random regardless of σ∗

n∗−1. Since the description s∗n∗ of the per-

mutation has been determined before σ∗
n∗−1 ⊙ H(s∗|n∗

i ,m∗|n∗

i) is obtained,

Invert(s∗n∗ , t∗n∗ , σ∗
n∗−1 ⊙H(s∗|n∗

i ,m∗|n∗

i)) is uniformly random.

Likewise, Invert(s∗∗n∗∗ , t∗∗n∗∗ , σ∗∗
n∗∗−1 ⊙ H(s∗∗|n∗∗

i ,m∗∗|n∗∗

i)) is uniformly ran-

dom. From the winning condition of ExpSASNKS
ΣSAS ,A(λ), we have that (m∗

i ,

pk∗i)i∈[n∗] ̸= (m∗∗
i , pk

∗∗
i)i∈[n∗∗]. Thus, the distributions of H(s∗|n∗

i ,m∗|n∗

i) and

H(s∗∗|n∗∗

i ,m∗∗|n∗∗

i) are independent, and hence those of Invert(s∗n∗ , t∗n∗ , σ∗
n∗−1⊙

H(s∗|n∗

i ,m∗|n∗

i)) and Invert(s∗∗n∗∗ , t∗∗n∗∗ , σ∗∗
n∗∗−1 ⊙H(s∗∗|n∗∗

i ,m∗∗|n∗∗

i)) are inde-

pendent. Thus, ExpSASNKS
ΣSAS ,A(λ) = 1 means the collision of the uniformly ran-

dom values.
SinceA is a PPT algorithm, it can query at most polynomial number of times,

and hence the times of trials of collisions is also at most polynomial number.

16 Yuuki Fujita, Yusuke Sakai, Kyosuke Yamashita, and Goichiro Hanaoka

Thus, if such an A exists, we can construct an algorithm that finds collisions of
random numbers chosen from an exponential-size set in polynomial time. □

5 Key Substitution Attacks on Multi-signatures

We first introduce NKS and wNKS of multi-signatures. Then, we show that the
scheme by Bellare and Neven [3] (MS-BN) and MuSig2 [16] satisfy wNKS, but
not NKS. We further improve these schemes so that they achieve NKS.

We here define a group generation algorithm P as a PPT algorithm that
takes a security parameter 1λ as input, and outputs a prime p, a group G of
order p, and a generator g of G.

5.1 Non-Key Substitutability

We define NKS and wNKS of multi-signatures as follows.

Definition 10 (Non-Key Substitutability). A multi-signature Σ =
(Setup,KeyGen,Sign,Vrf) satisfies non-key substitutability if for all PPT algo-
rithm A, it holds that Pr[ExpMSNKS

Σ,A (λ) = 1] ≤ negl(λ) where ExpMSNKS
Σ,A (λ) is

the following experiment:

ExpMSNKS
Σ,A (λ)

pp← Σ.Setup(1λ);
(m∗, {{pk∗i }}i∈[n∗],m

∗∗, {{pk∗∗i }}i∈[n∗∗], σ)← A(pp) :
Output 1 if Σ.Vrf(pp, σ,m∗, {{pk∗i }}i∈[n∗]) = 1

∧Σ.Vrf(pp, σ,m∗∗, {{pk∗∗i }}i∈[n∗∗]) = 1
∧(m∗ ̸= m∗∗ ∨ {{pk∗i }}i∈[n∗] ̸= {{pk∗∗i }}i∈[n∗∗] (asmultiset))

Otherwise output 0

Definition 11 (Weak Non-Key Substitutability). A multi-signature Σ =
(Setup,KeyGen,Sign,Vrf) satisfies weak non-key substitutability if for all state-
ful PPT algorithm A, it holds that Pr[ExpMSwNKS

Σ,A (λ) = 1] ≤ negl(λ) where

ExpMSwNKS
Σ,A (λ) is the following experiment:

ExpMSwNKS
Σ,A (λ)

pp← Σ.Setup(1λ);
n∗ ← A(pp);
(pk∗i , sk

∗
i)← KeyGen(pp) for all i ∈ [n∗];

m∗ ← A({{pk∗i }}i∈[n∗]);

σ ← ⟨{Sign(sk∗i)}n
∗

i=1⟩(pp, {{pk
∗
i }}i∈[n∗],m

∗);
(m∗∗, {{pk∗∗i }}i∈[n∗∗])← A(pp,m∗, σ, {{pk∗i }}i∈[n∗]) :
Output 1 if Σ.Vrf(pp, σ,m∗∗, {{pk∗∗i }}i∈[n∗∗]) = 1

∧(m∗ ̸= m∗∗ ∨ {{pk∗i }}i∈[n∗] ̸= {{pk∗∗i }}i∈[n∗∗] (asmultiset));
Otherwise output 0

On Key Substitution Attacks against AS and MS 17

5.2 MS-BN

MS-BN, proposed by Bellare and Neven [3], is based on Schnorr signatures. It
consists of the four algorithms (Setup,KeyGen,Sign,Vrf) that work as follows:

Setup(1λ)→ pp: Given a security parameter 1λ as input, it obtains (G, p, g) by
running P(1λ) and outputs a public parameter pp← (G, p, g).

KeyGen(pp)→ (pk, sk): Given a public parameter pp as input, it chooses x
U←−

Zp, computes X ← gx, sets sk← x and pk← X, and outputs a public/secret
key pair (pk, sk).

⟨{Sign(ski)}ni=1⟩(pp, {{pki}}i∈[n],m)→ σ: Sign is an interactive protocol among
n = poly(λ) signers which consists of the following four rounds. Each round
is conducted by each signer locally. Each signer considers their own index as
1 and executes each round accordingly.
round1(sk, L = {{Xi}}i∈[n],m) → t1: Given a secret key sk, a multiset of

public keys L and message m, it chooses r1
U←− Zp, computes R1 ← gr1

and t1 ← H0(R1), and sends t1 to the other signers.
round2({{ti|2 ≤ i ≤ n}}) → R1: Given a multiset of hash values
{{ti|2 ≤ i ≤ n}} from the other signers, it sends R1 to the other signers.

round3({{Ri|2 ≤ i ≤ n}}) → s1: Given a multiset of random elements
{{Ri|2 ≤ i ≤ n}} from the other signers, it checks if for all 2 ≤ i ≤ n,
it holds that ti = H0(Ri), otherwise it outputs ⊥ and terminates. If it
continues, then it computes R ←

∏n
i=1Ri, ci ← H1(X1||R||L||m) and

s1 ← x1c1 + r1 mod p, and sends s1 to the other signers.
round4({{si|2 ≤ i ≤ n}}) → σ: Given a multiset of random integers
{{si|2 ≤ i ≤ n}} from the other signers, it computes s←

∑n
i=1 si mod p,

sets σ ← (R, s), and outputs σ.
Vrf(pp, L = {{pki}}i∈[n],m, σ)→ {0, 1}: Given a public parameter pp, a multi-

set of public keys {{pki}}i∈[n] = {{Xi}}i∈[n], a message m, and a signature
σ = (R, s) as input, it computes ci ← H1(Xi||R||L||m) for all 1 ≤ i ≤ n. If
it holds that gs = R

∏n
i=1X

ci
i , then it outputs 1, otherwise outputs 0.

Key Substitution Attacks on MS-BN. We show that MS-BN is not secure
against key substitution attacks with the trivial key.

Theorem 4. MS-BN does not satisfy NKS.

Proof. We provide a PPT adversaryA that breaks NKS of MS-BN as follows. We
first describe how A sets keys, messages, and a signature. LetM be a message
space. The adversary A sets the first multiset of public keys X∗

1 , X
∗
2 ← 1G,

chooses a message m∗ U←− M and an integer s
U←− Zp randomly, computes

R ← gs, and sets a signature σ ← (R, s). It sets the second multiset of public

keys X∗∗
1 , X∗∗

2 , X∗∗
3 ← 1G and chooses the second message m∗∗ U←−M\ {m∗}.

Let c∗i = H1(X
∗
i ||R||{{X∗

1 , X
∗
2}}||m∗) and c∗∗i = H1(X

∗∗
i ||R||{{X∗∗

1 , X∗∗
2 }}

||m∗∗). Observe that it holds that
∏2

i=1(X
∗
i)

c∗i =
∏2

i=1 1
c∗i
G = 1G and

∏3
i=1

(X∗∗
i)c

∗∗
i =

∏3
i=1 1

c∗∗i
G = 1G. Hence, the signature σ is accepted by the verification

algorithm with both ({{X∗
1 , X

∗
2}},m∗) and ({{X∗∗

1 , X∗∗
2 , X∗∗

3 }},m∗∗). □

18 Yuuki Fujita, Yusuke Sakai, Kyosuke Yamashita, and Goichiro Hanaoka

Theorem 5. MS-BN satisfies wNKS in the random oracle model.

Proof. We show that there are collisions of random numbers if there exists a
PPT algorithm that breaks wNKS of the MS-BN. Suppose that there exists
a PPT algorithm A that breaks wNKS of MS-BN with non-negligible proba-
bility. Let ΣMS be the MS-BN scheme. In the experiment ExpMSwNKS

ΣMS,A (λ), let
(m∗, {{pk∗i }}i∈[n∗], (R, s)) be the final input to A and (m∗∗, {{pk∗∗i }}i∈[n∗∗]) be

the final output from A that results in ExpMSwNKS
ΣMS,A (λ) = 1. Since it holds

that ExpMSwNKS
ΣMS,A (λ) = 1, we have that

∏n∗∗

i=1(X
∗∗
i)c

∗∗
i = gs/R. Without loss

of generality, we may assume that A queries (X∗∗
i ||R||{{X∗∗

k }}k∈[n∗∗]||m∗∗)
(1 ≤ i ≤ n∗∗) to the hash oracle before it outputs (m∗∗, {{pk∗∗i }}i∈[n∗∗]). We

show that
∏n∗

i=1(X
∗
i)

c∗i and
∏n∗∗

i=1(X
∗∗
i)c

∗∗
i are uniformly random and indepen-

dently distributed.

First, we show that it holds that ∃i ∈ [n∗∗], x∗∗i ̸= 0. Suppose for the first
case that ∀i ∈ [n∗∗], x∗∗i = 0. As the verification succeeds, we have that gs/R =∏n∗∗

i=1(X
∗∗
i)c

∗∗
i = 1G. Also, we have that

∏n∗

i=1(X
∗
i)

c∗i = g
∑n∗

i=1 x∗
i c

∗
i = gs/R =

1G. However, x∗i and c∗i are chosen uniformly randomly, so the probability that∑n∗

i=1 x
∗
i c

∗
i ≡ 0 (mod p) is negligible. Therefore, the probability that it holds

ExpMSwNKS
ΣMS,A (λ) = 1 is negligible unless ∃i ∈ [n∗∗], x∗∗i ̸= 0.

Then, we can assume that ∃i ∈ [n∗∗], x∗∗i ̸= 0. For some 1 ≤ j ≤ n∗∗ such
that x∗∗j ̸= 0, we denote the multiplicity in the set {{X∗∗

i }}i∈[n∗∗] by t
∗∗
j = ♯{X ∈

{{X∗∗
i }}i∈[n∗∗]|X = gx

∗∗
j }. For all 1 ≤ i ≤ n∗∗, we have that c∗∗i ← H1(X

∗∗
i ||R||

{{X∗∗
k }}k∈[n∗∗]||m∗∗), so {{X∗∗

k }}k∈[n∗∗] has been uniquely determined before
c∗∗i is determined. For all 1 ≤ k ≤ n∗∗, x∗∗k is uniquely determined such that
X∗∗

k = gx
∗∗
k whenX∗∗

k is determined. Thus, c∗∗i is determined after {{x∗∗k }}k∈[n∗∗]

and t∗∗i are determined. Since c∗∗j is chosen uniformly randomly, t∗∗j c
∗∗
j x

∗∗
j is also

uniformly random. For I = {i ∈ [n∗∗]|xi ̸= xj},
∑n∗∗

i=1 c
∗∗
i x

∗∗
i = t∗∗j c

∗∗
j x

∗∗
j +∑n∗∗

i∈I c
∗∗
i x

∗∗
i is uniformly random. Therefore,

∏n∗∗

i=1(X
∗∗
i)c

∗∗
i = g

∑n∗∗
i=1 c∗∗i x∗∗

i =

gt
∗∗
j c∗∗j x∗∗

j +
∑n∗∗

i∈I c∗∗i x∗∗
i is uniformly random.

Let c∗i ← H1(X
∗
i ||R||{{X∗

k}}k∈[n∗]||m∗), and we have gs/R =
∏n∗

i=1(X
∗
i)

c∗i =

g
∑n∗

i=1 x∗
i c

∗
i . Since x∗i and c∗i are chosen uniformly randomly,

∏n∗

i=1(X
∗
i)

c∗i is also
uniformly random. The distributions of c∗i and c∗∗i are independent because
it holds that {{X∗

i }}i∈[n∗] ̸= {{X∗∗
i }}i∈[n∗∗]. Therefore, ExpMSwNKS

ΣMS,A (λ) = 1

means the collision of
∏n∗

i=1(X
∗
i)

c∗i and
∏n∗∗

i=1(X
∗∗
i)c

∗∗
i whereas they are uniformly

random and independently distributed.

SinceA is a PPT algorithm, it can query at most polynomial number of times.
Thus, if such an A exists, we can construct an algorithm that finds collisions of
random numbers chosen from an exponential-size set in polynomial time. □

5.3 Modified MS-BN

We modify KeyGen and Vrf to prohibit the trivial key so MS-BN has NKS.

On Key Substitution Attacks against AS and MS 19

KeyGen(pp)→ (pk, sk): Given a public parameter pp as input, it chooses x
U←−

Zp \ {0}, computes X ← gx, sets sk ← x and pk ← X, and outputs a
public/secret key pair (pk, sk).

Vrf(pp, L = {{pki}}i∈[n],m, σ)→ {0, 1}: It takes a public parameter pp, a mul-
tiset of public keys {{pki}}i∈[n] = {{Xi}}i∈[n], a message m, and a signature
σ = (R, s) as input. It outputs 0 if it holds that ∃i(1 ≤ i ≤ n), Xi = 1. Oth-
erwise, it computes ci ← H1(Xi||R||L||m) for all 1 ≤ i ≤ n. If it holds that
gs = R

∏n
i=1X

ci
i , then it outputs 1, otherwise outputs 0.

Security against Key Substitution Attacks. We can prove the modified
MS-BN has NKS in almost the same way as wNKS of original MS-BN.

Theorem 6. Modified MS-BN satisfies NKS in the random oracle model.

Due to the space limitation, we put the proof in Appendix D.

Unforgeability. The difference in input distribution between the original one
and the modified one is negligibly small, so unforgeability of the modified one
can be reduced to that of the original one.

Theorem 7. Modified MS-BN satisfies the UF-MS security if MS-BN satisfies
the UF-MS security.

Due to the space limitation, we put the proof in Appendix E.

5.4 MuSig2

MuSig2 is proposed to be used as a replacement for Schnorr signatures in Bitcoin
[16]. It consists of the four algorithms (Setup,KeyGen,Sign,Vrf) that work as
follows:

Setup(1λ)→ pp: Given a security parameter 1λ as input, it obtains (G, p, g) by
running P(1λ), chooses three hash functionsHagg, Hnon, Hsig : {0, 1}∗ → Zp,
and outputs a public parameter pp← (G, p, g,Hagg, Hnon, Hsig).

KeyGen(pp)→ (pk, sk): Given a public parameter pp as input, it chooses x
U←−

Zp, computes X ← gx, sets sk← x and pk← X, and outputs a public/secret
key pair (pk, sk).

KeyAgg(pp, L = {{Xi}}i∈[n])→ X̃: Given a public parameter pp and a multiset
of public keys L = {{Xi}}i∈[n] as input, it computes ai ← Hagg(L,Xi) for

i ∈ [n] and X̃ ←
∏n

i=1X
ai
i , and outputs X̃.

⟨{Sign(ski)}ni=1⟩(pp, {{pki}}i∈[n],m)→ σ: Sign is an interactive protocol among
n = poly(λ) signers which consists of the following five rounds. Each round
is conducted by each signer locally. Each signer considers their own index as
1 and executes each round accordingly.
Round1(pp) → (out1, state1) : Given a public parameter pp, it computes

r1,j
U←− Zp, R1,j ← gr1,i for all j ∈ [v], sets out1 ← (R1,1, · · · , R1,v) and

state1 ← (r1,1, · · · , r1,v), and outputs out1 and state1.

20 Yuuki Fujita, Yusuke Sakai, Kyosuke Yamashita, and Goichiro Hanaoka

Round1Agg(pp, {{outi}}i∈[n]) → out : Given a public parameter pp and
a multiset of a sequence of group elements {{outi}}i∈[n], it computes
Rj ←

∏n
i=1Ri,j , and outputs out← (Rj)j∈[v].

Round2(state1, out, sk1,m, {{pki}}2≤i≤n) → (state′1, out
′
1) : Given integers

state1, a sequence of group elements out, a secret key sk1, a message
m, and a multiset of public keys {{pki}}2≤i≤n, it sets (r1,j)j∈[v] ←
state1, x1 ← sk1, X1 ← gx1 , {{Xi}}2≤i≤n ← {{pki}}2≤i≤n, and L ←
{{Xi}}i∈[n], computes a1 ← Hagg(L,X1), X̃ ← KeyAgg(L), (Ri)i∈[v] ←
out, b ← Hnon(X̃, (Rj)j∈[v],m), R ←

∏v
j=1R

bj−1

j , c ← Hsig(X̃, R,m),

and s1 ← (ca1x1+
∑v

j=1 r1,jb
j−1) mod p, sets state′1 ← R and out′1 ← s,

and outputs state′1 and out′1.
Round2Agg({{out′i}}i∈[n]) → out′ : Given a multiset of integers
{{si}}i∈[n] ← {{out′i}}i∈[n] as input, it computes s ←

∑n
i=1 si mod p,

and outputs out′ ← s.
Round3(state′1, out

′)→ σ : Given state′1 and out′, it computes R ← state′1
and s← out′, and outputs a signature σ ← (R, s).

Vrf(pp,KeyAgg(pp, L = {{Xi}}i∈[n]),m, σ)→ {0, 1}: Given a public parameter

pp, an aggregated public key X̃, a message m, and a signature σ = (R, s)
as input, it computes c← Hsig(X̃, R,m). If it holds that gs = RX̃c then it
outputs 1, otherwise outputs 0.

Key Substitution Attacks on MuSig2. We show MuSig2 is not secure
against key substitution attacks with the trivial key in almost the same way
as MS-BN.

Theorem 8. MuSig2 does not satisfy NKS.

Due to the space limitation, we put the proof in Appendix F.

Theorem 9. MuSig2 satisfies wNKS in the random oracle model.

Due to the space limitation, we put the proof in Appendix G.

5.5 Modified MuSig2

We modify KeyGen to prohibit the trivial key so that MuSig2 satisfies NKS.

KeyGen(pp)→ (pk, sk): Given a public parameter pp as input, it chooses x
U←−

Zp \ {0}, computes X ← gx, sets sk ← x and pk ← X, and outputs a
public/secret key pair (pk, sk).

Security against Key Substitution Attacks.

Theorem 10. Modified MuSig2 satisfies NKS in the random oracle model.

Due to the space limitation, we put the proof in Appendix H.

On Key Substitution Attacks against AS and MS 21

Unforgeability. We can prove the unforgeability of the modified MuSig2 in the
exact same way as MS-BN.

Theorem 11. Modified MuSig2 satisfies the UF-MS security if MuSig2 satisfies
the UF-MS security.

6 Key Substitution Attacks on BGOY OMS

We first define NKS and wNKS of ordered multi-signatures. Then, we introduce
the construction of a multi-signature scheme by Boldyreva et al. [6] (BGOY
OMS), and demonstrate that it does not satisfy wNKS. Finally, we modify the
scheme and upgrade the security to wNKS.

Definition 12 (Non-Key Substitutability). An ordred multi-signature
ΣOMS = (Setup,KeyGen,OSign,OVrf) satisfies the non-key substitutability if it
holds that Pr[ExpOMSNKS

ΣOMS ,A(λ) = 1] ≤ negl(λ) for all PPT algorithms A where

ExpOMSNKS
ΣOMS ,A(λ) is the following experiment:

ExpOMSNKS
ΣOMS ,A(λ)

pp← ΣOMS .Setup(1
λ);

(m∗, (pk∗i)i∈[n∗],m
∗∗, (pk∗∗i)i∈[n∗∗], σ)← A(pp) :

Output 1 if ΣOMS .OVrf(pp,m
∗, σ, (pk∗i)i∈[n∗]) = 1

∧ΣOMS .OVrf(pp,m
∗∗, σ, (pk∗∗i)i∈[n∗∗]) = 1

∧(m∗, (pk∗i)i∈[n∗]) ̸= (m∗∗, (pk∗∗i)i∈[n∗∗]) (as ordered set);
Otherwise output 0

Definition 13 (Weak Non-Key Substitutability).
An ordered multi-signature ΣOMS = (Setup,KeyGen,OSign,OVrf) satisfies

the weak non-key substitutability if it holds that Pr[ExpOMSwNKS
ΣOMS ,A(λ) = 1] ≤

negl(λ) for any stateful PPT algorithms A where ExpOMSwNKS
ΣOMS ,A(λ) is the fol-

lowing experiment:

ExpOMSwNKS
ΣOMS ,A(λ)

pp← ΣOMS .Setup(1
λ);

n∗ ← A(pp);
(pk∗i , sk

∗
i)← KeyGen(pp) for all i ∈ [n∗];

m∗ ← A((pk∗i)i∈[n∗]);
σi ← ΣOMS .OSign(pp, sk

∗
i ,m

∗, σi−1, (pk
∗
k)k∈[i]) for all i ∈ [n∗];

(m∗∗, (pk∗∗i)i∈[n∗∗])← A(pp,m∗, σn∗ , (pk∗i)i∈[n∗]) :
Output 1 if ΣOMS .OVrf(pp,m

∗∗, σn∗ , (pk∗∗i)i∈[n∗∗]) = 1
∧(m∗, (pk∗i)i∈[n∗]) ̸= (m∗∗, (pk∗∗i)i∈[n∗∗]) (as ordered set);

Otherwise output 0

6.1 BGOY

We discuss the scheme BGOY OMS proposed by Boldyreva et al. [6] as a con-
crete instantiation of the ordered multi-signature. As for a bilinear map, we here

22 Yuuki Fujita, Yusuke Sakai, Kyosuke Yamashita, and Goichiro Hanaoka

consider type-I or type-II setting. Recall that we write G1 and G2 simply as G
in type-I or type-II setting for simplicity.

Definition 14 (BGOY OMS). BGOY OMS consists of the four algorithms
(Setup,KeyGen,OSign,OVrf) that work as follows.

Setup(1λ)→ pp: Given a security parameter 1λ as input, it obtains (p,G,GT , e)
by running G(1λ), choose a random generator g ∈ G∗ and a hash function
H : {0, 1}∗ → G, and outputs a public parameter pp = (p,G,GT , e, g,H).

KeyGen(pp) → (pk, sk): Given a public parameter pp as input, it chooses three

integers s, t, u
U←− Zp, computes S ← gs, T ← gt and U ← gu, sets pk ←

(S, T, U) and sk← (s, t, u), and outputs a public/secret key pair (pk, sk).
OSign(pp, ski,m, σi−1, (pkj)j∈[i−1]) → σi: It takes a public parameter pp, a

secret key ski, a message m, a signature-so-far σi−1 = (Qi−1, Ri−1) (set
σ0 = (1, 1) for the first signing), and a sequence of public keys (pkj)j∈[i−1]

as input. It outputs ⊥ if OVrf(pp,m, σi−1, (pkj)j∈[i−1]) = 0. Otherwise, it

chooses an integer r
U←− Zp, computes Ri ← Ri−1 · gr, Xi ← Rti+iui

i , Yi ←
(
∏i−1

j=1 Tj(Uj)
j)r, and Qi ← H(m)si ·Qi−1 ·Xi · Yi, and outputs a signature

σi ← (Qi, Ri).
OVrf(pp,m, σi, (pkj)j∈[i]) → {0, 1}: Given a public parameter pp, a signature
σi = (Q,R), a message m, and a sequence of public keys (pkj)j∈[i] as input,

it outputs 1 if e(Q, g) = e(H(m),
∏i

j=1 Sj) · e(
∏i

j=1 Tj(Uj)
j , R), otherwise

outputs 0.

Theorem 12. BGOY does not satisfy wNKS.

Due to the space limitation, we put the proof in Appendix J.

6.2 Modified BGOY OMS

We add the following three modifications on the BGOY OMS so that it satisfies
wNKS (it does not satisfy NKS though). First, we prohibit si = 0 for a secret
key in the key generation algorithm. Second, we change the usage of hash from
H(m)si to H(m|| pki)isi in the signing algorithm. Third, we modify the verifica-
tion algorithm according to the signing algorithm. We do not change the setup
algorithm. The modified BGOY OMS works as follows:

KeyGen(pp)→ (pk, sk): Given a public parameter pp as input, it chooses random
integers t, u← Zp and s← Zp\{0}, computes S ← gs, T ← gt, and U ← gu,
and outputs a public key pk← (S, T, U) and a secret key sk← (s, t, u).

OSign(pp, ski,m, σi−1, (pkj)j∈[i−1]) → σi: It takes a public parameter pp,
a secret key ski, a message m, a so-far signature σi−1 = (Qi−1, Ri−1),
and a sequence of public keys (pkj)j∈[i−1] as input. It outputs ⊥ if
OVrf(pp,m, σi−1, (pkj)j∈[i−1]) = 0. Otherwise, it chooses a random integer

r ← Zp, computes Ri ← Ri−1 · gr, Xi ← Rti+iui
i , Yi ← (

∏i−1
j=1 Tj(Uj)

j)r,

Qi ← H(m|| pki)isi ·Qi−1 ·Xi · Yi, and outputs a signature σi = (Qi, Ri).

On Key Substitution Attacks against AS and MS 23

OVrf(pp,m, σi, (pkj)j∈[i]) → {0, 1}: Given a public parameter pp, a signa-
ture σi = (Q,R), a message m, and a sequence of public keys (pkj)j∈[i]

as input, if (∀j ∈ [i], Sj ̸= 1) ∧ e(Q, g) = {
∏i

j=1 e(H(m|| pkj), (Sj)
j)} ·

e(
∏i

j=1 Tj(Uj)
j , Rn), then it outputs 1, otherwise outputs 0.

Theorem 13. Modified BGOY OMS satisfies the correctness.

Due to the space limitation, we put the proof in Appendix K.

Key Substitution Attacks on Modified BGOY OMS.

Theorem 14. Modified BGOY OMS does not satisfy NKS.

Due to the space limitation, we put the proof in Appendix L.

Theorem 15. Modified BGOY OMS satisfies wNKS in the random oracle model
under the DBP assumption.

Due to the space limitation, we put the proof in Appendix M.

Unforgeability. Unforgeability of Modified BGOY OMS can be proven in al-
most the same way as the original one [6].

Theorem 16. Modified BGOY OMS satisfies the UF-OMS security in the ran-
dom oracle model under the CDH assumption.

Due to the space limitation, we put the proof in Appendix N.

7 Conclusion

In this paper, we explored security against key substitution attacks of a wide
range of aggregate signature schemes and multi-signer signature schemes, and if
not secure, we proposed new schemes. It remains to consider additional proper-
ties such as message-bound and non re-signability of multi-signer signatures.

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
Advances in Cryptology – CRYPTO 2010. pp. 209–236. Springer Berlin Heidelberg,
Berlin, Heidelberg (2010)

2. An, Y., Lee, H.S., Lee, J., Lim, S., D’Antonio, S.: Key substitution attacks on
lattice signature schemes based on sis problem. Sec. and Commun. Netw. 2018,
8525163:1–8525163:13 (jan 2018)

3. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a gen-
eral forking lemma. In: Proceedings of the 13th ACM Conference on Computer
and Communications Security. p. 390–399. CCS ’06, Association for Computing
Machinery, New York, NY, USA (2006)

24 Yuuki Fujita, Yusuke Sakai, Kyosuke Yamashita, and Goichiro Hanaoka

4. Blake-Wilson, S., Menezes, A.: Unknown key-share attacks on the station-to-
station (sts) protocol. In: Public Key Cryptography. pp. 154–170. Springer Berlin
Heidelberg, Berlin, Heidelberg (1999)

5. Bohli, J.M., Röhrich, S., Steinwandt, R.: Key substitution attacks revisited: Taking
into account malicious signers. International Journal of Information Security 5, 30–
36 (2005)

6. Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: Ordered multisignatures and
identity-based sequential aggregate signatures, with applications to secure routing.
In: Proceedings of the 14th ACM Conference on Computer and Communications
Security. p. 276–285. CCS ’07, Association for Computing Machinery, New York,
NY, USA (2007)

7. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) Advances in Cryptology —
EUROCRYPT 2003. pp. 416–432. Springer Berlin Heidelberg, Berlin, Heidelberg
(2003)

8. Boneh, D., Gorbunov, S., Wahby, R.S., Wee, H., Wood, C.A., Zhang, Z.: Bls sig-
natures. Internet Draft draft-irtf-cfrg-bls-signature-05 (dec 2022)

9. Brendel, J., Cremers, C., Jackson, D., Zhao, M.: The provable security of ed25519:
Theory and practice. In: 2021 IEEE Symposium on Security and Privacy (SP). pp.
1659–1676 (2021)

10. Cremers, C.J.F., Düzlü, S., Fiedler, R., Fischlin, M., Janson, C.: Buffing signature
schemes beyond unforgeability and the case of post-quantum signatures. 2021 IEEE
Symposium on Security and Privacy (SP) pp. 1696–1714 (2021)

11. Jackson, D., Cremers, C., Cohn-Gordon, K., Sasse, R.: Seems legit: Automated
analysis of subtle attacks on protocols that use signatures. In: Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security. p.
2165–2180. CCS ’19, Association for Computing Machinery, New York, NY, USA
(2019)

12. Knapp, E.: On Pairing-Based Signature and Aggregate Signature Schemes. Mas-
ter’s thesis, University of Waterloo (2008)

13. Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate signa-
tures from trapdoor permutations. In: Cachin, C., Camenisch, J.L. (eds.) Advances
in Cryptology - EUROCRYPT 2004. pp. 74–90. Springer Berlin Heidelberg, Berlin,
Heidelberg (2004)

14. Menezes, A., Smart, N.: Security of signature schemes in a multi-user setting. Des.
Codes Cryptography 33, 261–274 (11 2004)

15. Nick, J., Ruffing, T., Jin, E.: Musig2 for bip340-compatible multi-signatures.
BIP327 (mar 2022)

16. Nick, J., Ruffing, T., Seurin, Y.: Musig2: Simple two-round schnorr multi-
signatures. In: Advances in Cryptology – CRYPTO 2021: 41st Annual Interna-
tional Cryptology Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021,
Proceedings, Part I. p. 189–221. Springer-Verlag, Berlin, Heidelberg (2021)

17. Park, S., Sealfon, A.: It wasn’t me! repudiability and unclaimability of ring sig-
natures. In: Annual International Cryptology Conference. pp. 159–190. Springer
(2019)

18. Pornin, T., Stern, J.P.: Digital signatures do not guarantee exclusive ownership. In:
Ioannidis, J., Keromytis, A., Yung, M. (eds.) Applied Cryptography and Network
Security. pp. 138–150. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

19. Richard, B., Jacob, H.A., James, K.: Automatic certificate management environ-
ment (ACME) (2015)

On Key Substitution Attacks against AS and MS 25

20. Sakai, Y., Schuldt, J.C.N., Emura, K., Hanaoka, G., Ohta, K.: On the security of
dynamic group signatures: Preventing signature hijacking. In: Fischlin, M., Buch-
mann, J., Manulis, M. (eds.) Public Key Cryptography – PKC 2012. pp. 715–732.
Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

21. Yamashita, K., Hara, K., Watanabe, Y., Yanai, N., Shikata, J.: Designated verifier
signature with claimability. In: Proceedings of the 10th ACM Asia Public-Key
Cryptography Workshop. p. 21–32. APKC ’23 (2023)

26 Yuuki Fujita, Yusuke Sakai, Kyosuke Yamashita, and Goichiro Hanaoka

A Assumptions

We use the following computational hardness assumption in this paper.

Definition 15 (The DDH assumption). The decisional Diffie-Hellman
(DDH) assumption in G1 holds with respect to G if for all PPT algorithms A, it
holds that

|Pr[gk← G(1λ); a, b U←− Zp : A(gk, ga1 , gb1, gab1) = 1]

− Pr[gk← G(1λ); a, b, c, U←− Zp : A(gk, ga1 , gb1, gc1) = 1]| ≤ negl(λ).

Definition 16 (The CDH assumption). The computational Diffie-Hellman
(CDH) assumption in G1 holds with respect to G if for all PPT algorithms A, it
holds that

Pr[gk← G(1λ); g1
U←− G∗; a, b

U←− Zp : gab1 = A(gk, g1, ga1 , gb1)] ≤ negl(λ)

Definition 17 (The co-CDH assumption). The co-computational Diffie-
Hellman (co-CDH) assumption holds with respect to G if for all PPT algorithms
A it holds that

Pr[gk← G(1λ);h U←− G1; a
U←− Zp : A(gk, h, ga2) = ha] ≤ negl(λ).

B Proof of Lemma 2: Unforgeability of Modified BGLS

B.1 Requirements of Aggregate Signature Schemes

An aggregate signature scheme ΣAS = (Setup,KeyGen,Sign,Vrf,Agg,AggVrf)
satisfies correctness if the following conditions are satisfied.

– For any λ ∈ N and any m, it holds that Vrf(pp, pk,m, σ) = 1 where pp ←
Setup(1λ), (pk, sk) ← KeyGen(pp), and σ ← Sign(pp, sk,m).

– For any λ ∈ N, any n = poly(λ), and any m1, . . . ,mn, it holds
that AggVrf(pp, ((pki,mi))i∈[n], τ) = 1 where pp ← Setup(1λ), ∀i ∈
[n], (pki, ski) ← KeyGen(pp), σi ← Sign(pp, ski,mi), and τ ←
Agg(pp, ((pki,mi, σi))i∈[n]).

Unforgeability of an aggregate signature scheme is defined as follows.

Definition 18 (EUF-CMA security). An aggregate signature scheme ΣAS

= (Setup,KeyGen,Sign,Vrf,Agg,AggVrf) satisfies existentially unforgeability un-
der chosen-message attacks (EUF-CMA) if for any n = poly(λ), and any
PPT adversary A, it holds that Pr[ExpASEUF -CMA

ΣAS,A (λ) = 1] ≤ negl(λ) where

On Key Substitution Attacks against AS and MS 27

ExpASEUF -CMA
ΣAS,A (λ) is the following experiment:

ExpASEUF -CMA
ΣAS,A (λ)

pp← ΣAS.Setup(1
λ);

(pk, sk)← ΣAS.KeyGen(pp);Q := ∅;
(n, (mi)i∈[n], τ, (pki)i∈[n])← AΣAS. Sign(pp,sk,·)(pp, pk) :
Output 1 if ∃i ∈ [n]: (pki = pk and mi /∈ Q)
∧ΣAS.AggVrf(pp, ((pki,mi))i∈[n], τ) = 1;

Otherwise output 0

where when A makes a query m to the oracle ΣAS.Sign(pp, sk1, ·), it computes
σ ← ΣAS.Sign(pp, sk1,m), returns σ to A, and sets Q← Q ∪ {m}.

B.2 The co-CDH′ Assumption

Definition 19. The co-CDH′ assumption holds with respect to G if for all PPT
algorithms A it holds that

Pr[gk← G(1λ); a, b U←− Zp : A(gk, ga1 , ga2 , gb2) = gab1] ≤ negl(λ).

It is known that the co-CDH′ assumption is equivalent to the CDH assumption
in type-I setting, and to the co-CDH assumption in type-II setting [12].

B.3 Proof of Lemma 2

First, we provide an overview of the proof. We prove Lemma 3 and Lemma 4,
that are necessary as we prohibit pk = 1. Then, by Lemma 5, we construct a PPT
adversary A′ against the co-CDH′ assumption and show that it indeed breaks
the co-CDH′ assumption with non-negligible probability if there exists a PPT
adversary A that violates unforgeability of ΠBP with non-negligible probability.

Assume for contradiction that there exists a PPT adversary A that breaks
the EUF-CMA security of ΠBP with non-negligible probability ϵ. We construct
a PPT adversary A′ that breaks the co-CDH′ assumption with non-negligible
probability, if such A exists. Let n = poly(λ) be the maximum size of a multiset
in a forgery by A. We assume that A makes at most qS = poly(λ) queries to the
signing oracle.

We construct an algorithm A′ that solves the following modified version of
the co-CDH′ problem:

Pr[gk← G(1λ); a← Zp; b← Zp \ {0} : A(gk, ga1 , gb1, gb2) = gab1].

We claim that if we assume the co-CDH′ assumption, then the above probability
is negligible for any adversary A.

Lemma 3. Assume the co-CDH′ assumption. For any PPT adversary A, it
holds that

Pr[gk← G(1λ); a← Zp; b← Zp \ {0} : A(gk, ga1 , gb1, gb2) = gab1] ≤ negl(λ).

28 Yuuki Fujita, Yusuke Sakai, Kyosuke Yamashita, and Goichiro Hanaoka

Proof: Given an adversary A, we consider the following distinguisher that dis-

tinguishes the uniform distributions b
U←− Zp and b

U←− Zp \ {0}: Given a sample
b, the distinguisher simulates the co-CDH′ experiment except for using the given
b for the exponent b in the experiment; if A terminates, the distinguisher checks
whether the winning condition is satisfied; if the winning condition is satisfied,
the distinguisher outputs 1 and outputs 0 otherwise. The distinguisher’s advan-
tage is equal to the absolute difference between the probabilities that A wins
in the original or modified co-CDH′ experiments. Furthermore, the advantage
is smaller than or equal to the statistical distance between two uniform distri-
butions, which is equal to 1/p. Thus, the winning probabilities of the two ex-
periments are negligibly close, and one of them is negligible by the assumption.
Then the other is also negligible. □

To construct an algorithm A′ that solves the above variant of the
co-CDH′ problem, we consider an experiment which is a modification of
ExpASEUF -CMA

ΠBP,A (λ) where the random oracle HP returns a uniformly random

element in G\{1}. We denote this modified experiment by ExpASEUF -CMA′

ΠBP,A (λ).
Since the statistical distance between the uniformly random variables over G
and G \ {1} is 1/p, by a hybrid argument, the statistical distance between two
experiments is bounded by qHP

/p.

Lemma 4. For any PPT A, it holds that

|Pr[ExpASEUF -CMA
ΠBP,A (λ) = 1]− Pr[ExpASEUF -CMA′

ΠBP,A (λ) = 1]|

is negligible.

Proof: Since the statistical distance between the uniform distributions
h

U←− G1 and h
U←− G1 \ {1} is 1/p, the statistical distance between the uniform

distributions h⃗
U←− (G1)

qHP and h⃗
U←− (G1 \ {1})qHP is smaller than or equal

to qHP
/p, by a hybrid argument. Then, the difference |Pr[ExpASEUF -CMA

ΠBP,A (λ) =

1]−Pr[ExpASEUF -CMA′

ΠBP,A (λ) = 1]| is smaller than or equal to qHP
/p, if we let qHP

be the maximum number of A’s hash queries to HP . Since qHP
/p is negligible,

the lemma holds. □
Then we describe an algorithm A′ that interacts with A by simulating the

modified experiment ExpASEUF -CMA′

ΠBP,A (λ). We assume that before issuing a sign-
ing query m, A issues an H query m ∥ pk and that before outputting a forgery

({(mi, p̂ki)}i∈[n], σ), A issues an HP queries pki where (pki, σpop,i)← p̂ki.

– Setup. The algorithm A′ is given as input (gk, ga1 , g
b
1, g

b
2). The algorithm

A′ maintains two hash lists for H and HP , which are initialized as empty.

Then A′ sets pk∗ ← gb2, chooses z
U←− Zp \ {0}, records (pk∗, z) to the hash

list for HP , and computes σ∗
pop ← (gb1)

z. Finally, A′ sets pp ← gk and

p̂k
∗
← (pk∗, σ∗

pop) and runs A(pp, p̂k
∗
).

– H query. Given an H query m ∥ pk, if pk ̸= pk∗, then A′ searches for an
entry (m ∥ pk, w,⊥) for some w in the hash list forH. If not found,A′ chooses

On Key Substitution Attacks against AS and MS 29

w
U←− Zp and records (m ∥ pk, w,⊥) to the hash list for H. Then A′ returns

gw1 . If pk = pk∗, then A′ searches for an entry (m ∥ pk∗, w, c) for some w and

c in the hash list for H. If not found, A′ chooses w
U←− Zp and c ∈ {0, 1}

which is 0 with probability 1/(qS + n) and 1 otherwise. Then A′ records
(m ∥ pk∗, w, c) to the hash list for H. If b = 0, A′ returns ga1g

w
1 . If b = 1, A′

returns gw1 .
– HP query. Given an HP query pk, if there is an entry (pk, z) for some z in

the hash list for HP , then A′ returns gz1 . If there is no entry of this form,

A′ chooses z
U←− Zp \ {0}, records (pk, z) to the hash list for HP . Then A′

returns gz1 .
– Signing query. Given a signing query m, A′ retrieves an entry

(m ∥ pk∗, w, b) and checks if b = 1. If not, A′ terminates the simulation
and output ⊥. If b = 1, A′ returns (gb1)

w.
– Forgery. When A outputs a forgery ({(mi, p̂ki)}i∈[n], σ), A′ verifies the

winning condition. If the winning condition is not satisfied, A′ terminates
and outputs ⊥. Then A′ finds some i∗ ∈ [n] satisfying that mi∗ is not issued

as a signing query, A′ parses p̂ki as (pki, σpop,i) and computes the following
three sets

I = {i ∈ [n] | mi = mi∗ ∧ pki = pk∗},
J = {i ∈ [n] | mi ̸= mi∗ ∧ pki = pk∗},
K = {i ∈ [n] | pki ̸= pk∗}.

Then A′ lets l be the modular inverse of |I| modulo p. If l is a multiple of
p, then A′ terminates and outputs ⊥. For all i ∈ J , A′ confirms that c = 1
where (mi ∥ pk∗, w, c) is in the hash list for H. If some i ∈ J does not satisfy
this, then A′ terminates and outputs ⊥. If all i ∈ J satisfy this, then A′

computes
σi ← (gb1)

w.

For all i ∈ K, A′ computes

σi ← (σpop,i)
w/z

where (mi ∥ pki, w,⊥) is in the hash list for H and (pki, z) is in the hash list
for HP . Finally, A′ confirms that c = 0 where (mi∗ ∥ pk∗, w, c) is in the hash
list for H. If not, A′ terminates and outputs ⊥. If it is, A′ computes

h←
(
σ

∏
i∈J∪K

σ−1
i

)l

(gb1)
−w

and outputs h.

We claim that if A′ does not output ⊥, then the output h is equal to gab1 .
Firstly we claim that for all i ∈ J ∪ K, it holds that e(σi, g2) =

e(H(mi ∥ pki), pki). For i ∈ J , if (mi ∥ pk∗, w, c) is in the hash list for H, it
holds that

e(σi, g2) = e((gb1)
w, g2) = e(gw1 , g

b
2) = e(H(mi ∥ pki), pk

∗).

30 Yuuki Fujita, Yusuke Sakai, Kyosuke Yamashita, and Goichiro Hanaoka

For i ∈ K, if (mi ∥ pki, w,⊥) is in the hash list for H and (pki, z) is in the hash
list for HP , then it holds that

e(σi, g2) = e((σpop,i)
w/z, g2) = e(σpop,i, g2)

w/z

= e(HP (pki), pki)
w/z = e(H(mi ∥ pki), pki).

Then we claim that

e
((
σ

∏
i∈J∪K

σ−1
i

)l

, g2

)
= e(H(mi∗ ∥ pk∗), pk∗).

We have that

e(σ, g2) =
∏
i∈[n]

e(H(mi ∥ pki), pki)

=
∏
i∈I

e(H(mi∗ ∥ pk∗), pk∗)
∏

i∈J∪K

e(H(mi ∥ pki), pki).

As for all i ∈ J ∪ K, it holds that e(σi, g2) = e(H(mi ∥ pki), pki), the above
equation is equivalent to

e(σ, g2) = e(H(mi∗ ∥ pk∗), pk∗)|I|
∏

i∈J∪K

e(σi, g2).

Since l · |I| ≡ 1 mod p, we have that

e
((
σ

∏
i∈J∪K

σ−1
i

)l

, g2

)
= e(H(mi∗ ∥ pk∗), pk∗).

We claim that the output h of A′ is equal to gab1 . We have that

e
((
σ

∏
i∈J∪K

σ−1
i

)l

, g2

)
= e(H(mi∗ ∥ pk∗), pk∗) = e(ga1g

w
1 , g

b
2)

where (mi∗ ∥ pk∗, w, c) is in the hash list for H. Thus we have

e
((
σ

∏
i∈J∪K

σ−1
i

)l

(gb2)
−w, g2

)
= e(ga1 , g

b
2) = e(gab1 , g2).

Due to the non-degenerateness of e, we have that h = gab1 .
Finally, we prove an upper bound on the probability that A wins by the

probability that A′ outputs h ̸= ⊥. Let ϵ′ be the probability that A′ outputs
h ̸= ⊥.

To this end, we first argue that |I| is not a multiple of p for sufficiently
large security parameters. This is because |I| is polynomially large and p is
exponentially large. From now on, we assume that |I| is not a multiple of p.

Then we define the following events.

On Key Substitution Attacks against AS and MS 31

– E1. The algorithm A′ does not terminate due to A’s signing queries.
– E2. The adversary A satisfies the winning condition.
– E3. The event E2 occurs. In addition, H(mi∗ ∥ pk∗) is responded with c = 0,

and H(mi ∥ pk∗) for i ∈ J is responded with c = 1.

The algorithm A′ successfully outputs h ̸= ⊥ if all the events happen. The
probability ϵ′ = Pr[E1 ∧ E2 ∧ E3] = Pr[E1 ∧ E3] is equal to

Pr[E1 ∧ E3] = Pr[E1] Pr[E2 | E1] Pr[E3 | E1 ∧ E2].

We give a lower bounds for each term.

Lemma 5. The probability that A′ does not terminate by A’s signing queries is
at least (1− 1/(qS + n))qS .

Proof: Without loss of generality, we can assume that A does not repeat the
same signing query twice. We prove by induction that after k signing queries,
the probability that A′ does not terminate by the signing query is at least (1−
1/(qS +n))k. For k = 0, the statement is clearly true. For the k-th query m, the
probability that A′ does not terminates before this query is (1− 1/(qS + n))k−1

by the induction hypothesis. At the k-th query, A′ terminates if and only if the
bit c for m ∥ pk∗ is 0. This happens with probability 1/(qS+n). The distribution
of c is independent of A’s view because H(m ∥ pk∗) is distributed independently
of c. Then, after k-th query, A′ does not terminates with probability at least
(1 − 1/(qS + n))k. Since A issues at most qS signing queries, the probability
Pr[E1] is at least (1− 1/(qS + n))qS . □

Lemma 6. If A′ does not terminates by A’s signing queries, A’s view is
identical to that of the (modified) unforgeability game. Hence, we have that
Pr[E2 | E1] = ϵ.

Proof: The public key given to A is identically distributed as that in the (mod-
ified) unforgeability game. Responses to the random oracles and the signing
oracle is also identically distributed conditioned on that A′ does not terminates
by signing queries. Then, the output of A interacting with A′ is not equal to ⊥
with probability ϵ. Hence we have that Pr[E2 | E1] = ϵ. □

Lemma 7. After A outputs a successful forgery, it causes the event E3 with
probability at least (1− 1/(qS + n))n−1 · 1/(qS + n).

Proof: Let (mi∗ ∥ pk∗, w, c) be in the hash list for H and (mi ∥ pk∗, wi, ci) be
in the hash list for H for i ∈ J . For the event E3 to occur, we need c = 0 and
ci = 1 for all i ∈ J . Since the bit c is independent of A’s view, c = 0 with
probability 1/(qS + n). Regarding ci, it is independent if mi is not issued as a
signing query. In that case, ci = 1 with probability 1−1/(qS +n). If mi is issued
as a signing query, then with probability 1, it holds that ci = 1. In any case,
with probability at least 1− 1/(qS + n), it holds that ci = 1. Therefore, it holds
that Pr[E3 | E1 ∧ E2] ≥ (1− 1/(qS + n))n−11/(qS + n). □

32 Yuuki Fujita, Yusuke Sakai, Kyosuke Yamashita, and Goichiro Hanaoka

Finally, we bound the probability ϵ. From the lemmas, we have that

ϵ′ ≥
(
1− 1

qS + n

)qS

· ϵ ·
(
1− 1

qS + n

)n−1

· 1

qS + n

=

(
1− 1

qS + n

)qS+n−1

· 1

qS + n
· ϵ

=

(
qS + n− 1

qS + n

)qS+n−1

· 1

qS + n
· ϵ

=

(
qS + n

qS + n− 1

)−(qS+n−1)

· 1

qS + n
· ϵ

=

(
1 +

1

qS + n− 1

)−(qS+n−1)

· 1

qS + n
· ϵ

≥ ϵ

e(qS + n)
.

This inequality holds for all sufficiently large λ. This fact proves the theorem. □

C Requirements of Unforgeability of Multi-Signatures

A multi-signature scheme ΣMS = (Setup,KeyGen,Sign,Vrf) satisfies correctness
if the following conditions are satisfied.

– For any λ ∈ N, any n = poly(λ), and any m, it holds that
Vrf(pp, {{pki}}i∈[n],m, σ) where pp ← Setup(1λ), ∀i ∈ [n], (pki, ski) ←
KeyGen(pp), σ ← ⟨{Sign(sk∗i)}n

∗

i=1⟩(pp, {{pk
∗
i }}i∈[n∗],m

∗).

Definition 20 (UF-MS). A multi-signature Σ = (Setup,KeyGen,Sign,Vrf)
satisfies existentially unforgeability under chosen-message attacks (UF-MS) if
for any PPT algorithm A, it holds that Pr[ExpMSUF−MS

Σ,A (λ) = 1] ≤ negl(λ)

where ExpMSUF−MS
Σ,A (λ) is the following experiment.

ExpMSUF−MS
Σ,A (λ)

Q← ∅;
pp← Σ.Setup(1λ);

(pk∗, sk∗)
R←− KeyGen(pp);

(L = {{pki}}ni=1,m, σ)← ASign(pp,sk∗,·,·)(pp, pk∗);
Output 1 if Σ.Vrf(pp, σ,m,L) = 1 ∧ pk∗ ∈ L ∧ (L,m) ̸∈ Q;
Otherwise output 0

An adversary A can interact with the signing oracle Sign(pp, sk∗, ·, ·) to obtain
a signature σ by making a query (L′,m′) where L′ is the set of public keys
that includes pk∗. It can run an arbitrary number of sessions to the signing
oracle concurrently. When A makes a query (L′,m′) to the signing oracle, it
sets Q← Q ∪ {(L′,m′)}.

On Key Substitution Attacks against AS and MS 33

D Proof of Theorem 6 : NKS of Modified MS-BN

We show that there are collisions of random numbers if there exists a
PPT algorithm A that breaks NKS of the modified MS-BN. Suppose that
there exists a PPT algorithm A that breaks NKS of modified MS-BN. Let
ΣMS be the modified MS-BN scheme. In the experiment ExpMSNKS

ΣMS,A(λ), let
(m∗, {{pk∗i }}i∈[n∗],m

∗∗, {{pk∗∗i }}i∈[n∗∗], σ) be the output of A where it results

in ExpMSNKS
ΣMS,A(λ) = 1. Without loss of generality, we may assume thatA queries

(X∗
i ||R||{{X∗

i }}i∈[n∗]||m∗) (1 ≤ i ≤ n∗) to the hash oracle before outputting a

signature. We show that
∏n∗

i=1(X
∗
i)

c∗i and
∏n∗∗

i=1(X
∗∗
i)c

∗∗
i are uniformly random

and independently distributed.

Let j be an arbitrary number in [n∗]. we denote the multiplicity in the set
{{X∗

i }}i∈[n∗] by t∗j = ♯{X ∈ {{X∗
i }}i∈[n∗]|X = gx

∗
j }. For all 1 ≤ i ≤ n∗,

we have that c∗i ← H1(X
∗
i ||R||{{X∗

k}}k∈[n∗]||m∗), so {{X∗
k}}k∈[n∗] has been

uniquely determined before c∗i is determined. For all 1 ≤ k ≤ n∗, x∗k is uniquely
determined such that X∗

k = gx
∗
k when X∗

k is determined. Thus, c∗i is determined
after {{x∗k}}k∈[n∗] and t

∗
i are determined. Since c∗j is chosen uniformly randomly,

t∗jc
∗
jx

∗
j is uniformly random. If we let I denote {i ∈ [n∗]|xi ̸= xj},

∑n∗

i=1 c
∗
i x

∗
i =

t∗jc
∗
jx

∗
j +

∑n∗

i∈I c
∗
i x

∗
i is uniformly random. Therefore,

∏n∗

i=1(X
∗
i)

c∗i = g
∑n∗

i=1 c∗i x
∗
i =

gt
∗
j c

∗
jx

∗
j+

∑n∗
i∈I c∗i x

∗
i is uniformly random. We can show that

∏n∗∗

i=1(X
∗∗
i)c

∗∗
i is also

uniformly random in the same manner.

Since we have {{pk∗i }}i∈[n∗] ̸= {{pk∗∗i }}i∈[n∗∗], the distributions of (c∗i)i∈n∗

and (c∗∗i)i∈n∗∗ are independent, and hence the distributions of t∗jx
∗
jc

∗
j and

t∗∗j x
∗∗
j c

∗∗
j are also independent. Therefore, ExpMSNKS

ΣMS,A(λ) = 1 means the colli-

sion of
∏n∗

i=1(X
∗
i)

c∗i and
∏n∗∗

i=1(X
∗∗
i)c

∗∗
i whereas they are uniformly random and

independently distributed.

SinceA is a PPT algorithm, it can query at most polynomial number of times,
and hence the times of trials of collisions is also at most polynomial number.
Thus, if such an A exists, we can construct an algorithm that finds collisions of
random numbers chosen from an exponential-size set in polynomial time. □

E Proof of Theorem 7 : Unforgeability of Modified
MS-BN

Here let Σ be the MS-BN scheme and Π be the modified MS-BN scheme. Let
AdvMSUF−MS

Σ,A (λ) denote an adversary A’s advantage in the ExpMSUF−MS
Σ,A (λ)

experiment against the MS-BN scheme. Then we introduce a modified

ExpMSUF−MS
Σ,A (λ) experiment, denoted by the ExpMSUF−MS′

Σ,A (λ) experiment, in

which the way to choose a challenge key is changed from sk∗
U←− Zp, pk

∗ ← gx to

sk∗
U←− Zp \ {0}, pk∗ ← gx. Let AdvMSUF−MS′

Σ,A (λ) denote A’s advantage in the

ExpMSUF−MS′

Σ,A (λ) experiment against the MS-BN scheme.

34 Yuuki Fujita, Yusuke Sakai, Kyosuke Yamashita, and Goichiro Hanaoka

We show that the modified MS-BN scheme is unforgeable if the MS-BN
scheme is unforgeable by proving that for any PPT algorithm A, the following
two inequations hold:

|AdvMSUF−MS
Σ,A (λ)− AdvMSUF−MS′

Σ,A (λ)| ≤ negl(λ),

AdvMSUF−MS
Π,A (λ) ≤ AdvMSUF−MS′

Σ,A (λ).

The only difference between the ExpMSUF−MS
Σ,A (λ) experiment and the

ExpMSUF−MS′

Σ,A (λ) experiment is the distribution of secret keys. Let p be the
size of a secret key space. Since the distribution of output does not change with
regard to the same input, the following inequation holds:

|AdvMSUF−MS
Σ,A (λ)− AdvMSUF−MS′

Σ,A (λ)|
≤ 1

2

∑p−1
i=0 |Pr[x = i : x

U←− Zp]− Pr[x = i : x
U←− Zp \ {0}]|

= 1
2 (|

1
p − 0|+

∑p−1
i=1 |

1
p −

1
p−1 |) =

1
2 (

1
p + (p− 1) 1

p(p−1)) =
1
2 (

1
p + 1

p) =
1
p .

Next, we compare the ExpMSUF−MS
Π,A (λ) experiment on the modified MS-

BN with the ExpMSUF−MS′

Σ,A (λ) experiment on MS-BN. In the ExpMSUF−MS
Π,A (λ)

experiment on the modified MS-BN, an adversary cannot include pk = 1G in
a sequence of public keys with which a forged signature σ is accepted by the
verification algorithm. The two experiments are otherwise same. Thus, for all

PPT algorithm A, it holds that AdvMSUF−MS
Π,A (λ) ≤ AdvMSUF−MS′

Σ,A (λ).

F Proof of Theorem 8 : Key Substitution Attacks on
MuSig2

Proof. We provide a PPT adversaryA that breaks NKS of MuSig2 as follows. We
first describe how A sets keys, messages, and a signature. LetM be a message
space. The adversary A sets the first sequence of public keys X∗

1 , X
∗
2 ← 1G,

chooses a message m∗ U←− M and an integer s
U←− Zp randomly, computes

R ← gs, and sets a signature σ ← (R, s). It sets the second sequence of public

keys X∗∗
1 , X∗∗

2 , X∗∗
3 ← 1G and chooses the second message m∗∗ U←− M/{m∗}

randomly.

Let a∗i be Hagg(L
∗, X∗

i) and a
∗∗
i be Hagg(L

∗∗, X∗∗
i), and then we observe that

two aggregated public keys are as below:

X̃∗ = (X∗
1)

a∗
1 (X∗

2)
a∗
2 = 1G

X̃∗∗ = (X∗∗
1)a

∗∗
1 (X∗∗

2)a
∗∗
2 (X∗∗

3)a
∗∗
3 = 1G.

Observe that it holds that gs = R · 1G = R(X̃∗)Hsig(X̃
∗,R,m∗) and gs = R · 1G =

R(X̃∗∗)Hsig(X̃
∗∗,R,m∗∗). Hence, the signature σ is accepted by the verification

algorithm with both ({{X∗
1 , X

∗
2}},m∗) and ({{X∗∗

1 , X∗∗
2 , X∗∗

3 }},m∗∗). □

On Key Substitution Attacks against AS and MS 35

G Proof of Theorem 9 : wNKS of MuSig2

Proof. We show that there are collisions of random numbers if there exists
a PPT algorithm A that breaks wNKS of MuSig2. Suppose that there ex-
ists A that breaks wNKS of MuSig2. Let ΣMS be MuSig2. In the experiment
ExpMSwNKS

ΣMS,A (λ), let m∗, L∗ = {{X∗
i }}i∈[n∗] = {{pk∗i }}i∈[n∗], and σ = (R, s) be

the final input to A, and m∗∗ and L∗∗ = {{X∗∗
i }}i∈[n∗∗] = {{pk∗∗i }}i∈[n∗∗]

be the final output from A where it results in ExpMSwNKS
ΣMS,A (λ) = 1. Let

a∗i ← Hagg(L
∗, X∗

i), a
∗∗
i ← Hagg(L

∗∗, X∗∗
i), c∗ ← Hsig(X̃

∗, R,m∗) and c∗∗ ←
Hsig(X̃

∗∗, R,m∗∗). For aggregated keys, we have that X̃∗ ← KeyAgg(pp,

{{pk∗i }}i∈[n∗]) =
∏n∗

i=1(X
∗
i)

a∗
i =

∏n∗

i=1 g
x∗
i a

∗
i = g

∑n∗
i=1 x∗

i a
∗
i and X̃∗∗ ←

KeyAgg(pp, {{pk∗∗i }}i∈[n∗]) = g
∑n∗∗

i=1 x∗∗
i a∗∗

i . Also, let {{x∗i }}i∈[n∗], {{x∗∗i }}i∈[n∗∗]

and r be the elements in Zp such that gx
∗
i = X∗

i , g
x∗∗
i = X∗∗

i and R = gr. We

show that c∗
∑n∗

i=1 x
∗
i a

∗
i and c∗∗

∑n∗∗

i=1 x
∗∗
i a

∗∗
i are uniformly random and inde-

pendently distributed.
Since the signature σ is accepted in the verification with (m∗, L∗), we have

gs = R(X̃∗)a
∗
i = grgc

∗ ∑n∗
i=1 x∗

i a
∗
i , and thus it holds that s − r ≡ c∗

∑n∗

i=1 x
∗∗
i a

∗
i

(mod p). We can show that s − r ≡ c∗∗
∑n∗∗

i=1 x
∗∗
i a

∗∗
i (mod p) in the same way.

Therefore, it holds that c∗
∑n∗

i=1 x
∗
i a

∗
i ≡ c∗∗

∑n∗∗

i=1 x
∗∗
i a

∗∗
i (mod p).

First, we show that it holds that ∃i ∈ [n∗∗], x∗∗i ̸= 0. Suppose the case where

it holds that ∀i ∈ [n∗∗], x∗∗i = 0. We have c∗∗
∑n∗∗

i=1 x
∗∗
i a

∗∗
i = 0. As the veri-

fication succeeds, we have that c∗
∑n∗

i=1 x
∗
i a

∗
i ≡ c∗

∑n∗∗

i=1 x
∗∗
i a

∗∗
i (mod p). How-

ever, x∗i , a
∗
i and c∗ are chosen uniformly randomly, so the probability that it

holds that c∗
∑n∗

i=1 x
∗
i a

∗
i mod p = 0 is negligible. Therefore, the probability

that ExpMSwNKS
ΣMS,A (λ) = 1 is negligible unless ∃i ∈ [n∗∗], x∗∗i ̸= 0.

Then, we can assume that ∃i ∈ [n∗∗], x∗∗i ̸= 0. For some 1 ≤ j ≤ n∗∗

such that x∗∗j ̸= 0, we denote the multiplicity in the set {{X∗∗
i }}i∈[n∗∗] by

t∗∗j = ♯{X ∈ {{X∗∗
i }}i∈[n∗∗]|X = gx

∗∗
j }. For all 1 ≤ i ≤ n∗∗, we have that

a∗∗i ← Hagg(L
∗∗, X∗∗

i), so {{X∗∗
k }}k∈[n∗∗] has been uniquely determined be-

fore c∗∗i is determined. For all 1 ≤ k ≤ n∗∗, x∗∗k is uniquely determined
such that X∗∗

k = gx
∗∗
k when X∗∗

k is determined. Thus, a∗∗i is determined af-
ter {{x∗∗k }}k∈[n∗∗] and t∗∗i are determined. Since a∗∗j is chosen uniformly ran-
domly, t∗∗j a

∗∗
j x

∗∗
j is uniformly random. If we let I denote {i ∈ [n∗∗]|xi ̸=

xj},
∑n∗∗

i=1 a
∗∗
i x

∗∗
i = t∗∗j a

∗∗
j x

∗∗
j +

∑n∗∗

i∈I a
∗∗
i x

∗∗
i is uniformly random. Therefore,

X̃∗ =
∏n∗∗

i=1(X
∗∗
i)a

∗∗
i = g

∑n∗∗
i=1 a∗∗

i x∗∗
i = gt

∗∗
j a∗∗

j x∗∗
j +

∑n∗∗
i∈I a∗∗

i x∗∗
i is uniformly

random. Then, c∗∗i = Hsig(X̃
∗, R,m∗) is also uniformly random, and hence

c∗∗
∑n∗∗

i=1 x
∗∗
i a

∗∗
i is uniformly random.

Since we have {{X∗
i }}i∈[n∗] ̸= {{X∗∗

i }}i∈[n∗∗], the distributions of a∗i and

a∗∗i are independent. If X̃∗∗ ̸= X̃∗, the distributions of c∗ and c∗∗ are also in-

dependent. Therefore, ExpMSwNKS
ΣMS,A (λ) = 1 means the collision of c∗

∑n∗

i=1 x
∗
i a

∗
i

and c∗∗
∑n∗∗

i=1 x
∗∗
i a

∗∗
i whereas they are uniformly random and independently dis-

tributed.

36 Yuuki Fujita, Yusuke Sakai, Kyosuke Yamashita, and Goichiro Hanaoka

SinceA is a PPT algorithm, it can query at most polynomial number of times,
and hence the times of trials of collisions is also at most polynomial number.
Thus, if such an A exists, we can construct an algorithm that finds collisions of
random numbers chosen from an exponential-size set in polynomial time. □

H Proof of Theorem 10 : NKS of Modified MuSig2

Proof. We show that there are collisions of random numbers if there exists a PPT
algorithm that breaks NKS of modified MuSig2. Suppose that there exists a PPT
algorithm A that breaks NKS of modified MuSig2. Let ΣMS be the modified
MuSig2. Let m∗, L∗ = {{X∗

i }} = {{pk∗i }},m∗∗, L∗∗ = {{X∗∗
i }} = {{pk∗∗i }}

and σ = (R, s) be the output of A where it holds that ExpMSNKS
ΣMS,A = 1. Let

a∗i ← Hagg(L
∗, X∗

i), a
∗∗
i ← Hagg(L

∗∗, X∗∗
i), c∗ ← Hsig(X̃

∗, R,m∗) and c∗∗ ←
Hsig(X̃

∗∗, R,m∗∗). Let {{x∗i }}i∈[n∗], {{x∗∗i }}i∈[n∗∗] and r be the elements in Zp

such that gx
∗
i = X∗

i , g
x∗∗
i = X∗∗

i and R = gr. We show that c∗
∑n∗

i=1 x
∗
i a

∗
i and

c∗∗
∑n∗∗

i=1 x
∗∗
i a

∗∗
i are uniformly random and independently distributed.

Since the signature σ is accepted in the verification with (m∗, L∗), we have

that gs = R(X̃∗)c
∗
= grgc

∗ ∑n∗
i=1 x∗

i a
∗
i , and hence we have s− r ≡ c∗

∑n∗

i=1 x
∗∗
i a

∗
i

(mod p). We can also show that s − r ≡ c∗∗
∑n∗∗

i=1 x
∗∗
i a

∗∗
i (mod p) in the same

way. Therefore, it holds that c∗
∑n∗

i=1 x
∗
i a

∗
i ≡ c∗∗

∑n∗∗

i=1 x
∗∗
i a

∗∗
i (mod p).

Let j be an arbitrary number in [n∗]. we denote the multiplicity in the set
{{X∗

i }}i∈[n∗] by t
∗
j = ♯{X ∈ {{X∗

i }}i∈[n∗]|X = gx
∗
j }. For all 1 ≤ i ≤ n∗, we have

that a∗i = Hagg(L
∗, X∗

i), so {{X∗
k}}k∈[n∗] has been uniquely determined before

a∗i is determined. For all 1 ≤ k ≤ n∗, x∗k is uniquely determined such that X∗
k =

gx
∗
k when X∗

k is determined. Thus, a∗i is determined after {{x∗k}}k∈[n∗] and t
∗
i are

determined. Since a∗j is chosen uniformly randomly, t∗ja
∗
jx

∗
j is uniformly random.

If we let I denote {i ∈ [n∗]|xi ̸= xj},
∑n∗

i=1 a
∗
i x

∗
i = t∗ja

∗
jx

∗
j +

∑n∗

i∈I a
∗
i x

∗
i is uni-

formly random. Therefore, X̃∗ =
∏n∗

i=1(X
∗
i)

a∗
i = g

∑n∗
i=1 a∗

i x
∗
i = gt

∗
ja

∗
jx

∗
j+

∑n∗
i∈I a∗

i x
∗
i

is uniformly random. Then, c∗∗i = Hsig(X̃
∗, R,m∗) is also uniformly ran-

dom. If X̃∗∗ ̸= X̃∗, c∗∗
∑n∗∗

i=1 x
∗∗
i a

∗∗
i is uniformly random. We can show that

X̃∗∗ =
∏n∗∗

i=1(X
∗∗
i)a

∗∗
i is also uniformly random in the same manner.

Since we have {{X∗
i }} ̸= {{X∗∗

i }}, the distributions of a∗i and a∗∗i are
independent, and hence those of c∗ and c∗∗ are independent. Therefore,

ExpMSNKS
ΣMS,A(λ) = 1 means the collision of c∗

∑n∗

i=1 x
∗
i a

∗
i and c∗∗

∑n∗∗

i=1 x
∗∗
i a

∗∗
i

whereas they are uniformly random and independently distributed.

SinceA is a PPT algorithm, it can query at most polynomial number of times,
and hence the times of trials of collisions is also at most polynomial number.
Thus, if such an A exists, we can construct an algorithm that finds collisions of
random numbers chosen from an exponential-size set in polynomial time. □

On Key Substitution Attacks against AS and MS 37

I Requirements of Unforgeability of Ordered
Multi-Signatures

An ordered multi-signature scheme ΣOMS = (Setup,KeyGen,OSign,OVrf) satis-
fies correctness if the following conditions are satisfied.

– For any λ ∈ N, any n = poly(λ), and any m, it holds that
OVrf(pp,m, σn, (pki)i∈[n]) where pp ← Setup(1λ), ∀i ∈ [n], (pki, ski) ←
KeyGen(pp), σi ← OSign(pp, ski,m, σi−1, (pkk)k∈[i]).

We next introduce unforgeability of ordered multi-signatures. It means not
only the usual unforgeability but also the impossibility of reordering the signing
order.

Definition 21 (UF-OMS). An ordered multi-signature ΣOMS =
(Setup,KeyGen,OSign,OVrf) satisfies existentially unforgeability under chosen-
message attacks (UF-OMS) if it holds that Pr[ExpOMSUF−OMS

ΣOMS ,A (λ) = 1] ≤
negl(λ) for all PPT algorithms A where ExpOMSUF−OMS

ΣOMS ,A (λ) is the following
experiment:

ExpOMSUF−OMS
ΣOMS ,A (λ)

K ← ∅;Q← ∅;
pp← ΣOMS .Setup(1

λ); (pk∗, sk∗)← ΣOMS .KeyGen(pp);
((pk∗∗i)i∈[n∗∗],m

∗∗, σ∗∗)← AOOSign(pp,sk
∗,·,·,·),OReg(·,·,·)(pp, pk∗) :

Output 1 if OVrf(pp,m∗∗, σ∗∗, (pk∗∗i)i∈[n]) = 1
∧∃i∗∗, (pk∗∗i∗∗ = pk∗ ∧(∀(m,σ, L) ∈ Q, |L| ≠ i∗∗ − 1 ∨m ̸= m∗∗)
∧(∀j ∈ [n∗∗], j = i∗∗ ∨ (∃(pk, sk, c) ∈ K, pkj = pk)));

Otherwise output 0

An adversary A can query (m,σ, (pki)i∈[n]) to the signing oracle OOSign(pp,
sk∗, ·, ·, ·). Given a query, the oracle responds σ′ ← ΣOMS .OSign(pp, sk

∗,m, σ,
(pki)i∈[n]) to A, and sets L ← (pki)i∈[n] and Q ← Q ∪ {(m,σ, L)}. An ad-
versary A can also query to the key registration oracle OReg(·, ·, ·) a key pair
(pk, sk) and the random tape c to generate the key pair with. The oracle sets
K ← K ∪ {(pk, sk, c)} if it obtains (pk, sk) by running KeyGen(1λ) with the ran-
dom tape c. It returns nothing to the adversary.

J Proof of Theorem 12 : Key Substitution Attacks on
BGOY OMS

We first observe the form of a signature before the proof. Let h∗ be the discrete
logarithm of H(m∗) to the base g and (ri)i∈[n∗] be random numbers. When
n∗ signers sign on a message m∗ with corresponding secret keys (sk∗i)i∈[n∗] =
(s∗i , t

∗
i , u

∗
i)i∈[n∗], the form of the signature is as below:

σ = (Q,R) = (H(m∗)
∑n∗

i=1 s∗i g(
∑n∗

i=1 ri)·(
∑n∗

i=1 t∗i +iu∗
i), g

∑n∗
i=1 ri)

= (gh
∗·(

∑n∗
i=1 s∗i)+(

∑n∗
i=1 ri)·(

∑n∗
i=1 t∗i +iu∗

i), g
∑n∗

i=1 ri).

38 Yuuki Fujita, Yusuke Sakai, Kyosuke Yamashita, and Goichiro Hanaoka

If the signature is accepted in the verification with a message m∗∗

and a sequence of public keys (pk∗∗i)i∈[n∗∗] = (S∗∗
i , T ∗∗

i , U∗∗
i)i∈[n∗∗] =

(gs
∗∗
i , gt

∗∗
i , gu

∗∗
i)i∈[n∗∗], the equation below holds:

e(Q, g) = e(H(m∗∗),

n∗∗∏
i=1

S∗∗
i) · e(

n∗∗∏
i=1

T ∗∗
i (U∗∗

i)i, g
∑n∗

i=1 ri).

Therefore, for the discrete logarithm h∗∗ of H(m∗∗) to the base g, we observe
that

h∗(

n∗∑
i=1

s∗i) + (

n∗∑
i=1

ri)(

n∗∑
i=1

t∗i + iu∗i)

≡ h∗∗(
n∗∗∑
i=1

s∗∗i) + (

n∗∑
i

ri)(
n∗∗∑
i=1

t∗∗i + iu∗∗i) (mod p).

The verification succeeds if these three equations below hold:

h∗ ≡ h∗∗ (mod p)

n∗∑
i=1

s∗i ≡
n∗∗∑
i=1

s∗∗i (mod p)

n∗∑
i=1

(t∗i + iu∗i) ≡
n∗∗∑
i=1

(t∗∗i + iu∗∗i) (mod p).

The three equations above hold if the following three equations hold:

m∗ = m∗∗

n∗∏
i=1

S∗
i ≡

n∗∗∏
i=1

S∗∗
i (mod p)

n∗∏
i=1

(T ∗
i (U

∗
i)

i) ≡
n∗∗∏
i=1

(T ∗∗
i (U∗∗

i)i) (mod p).

Therefore, we can break the weak non-key substitutability if we set m∗∗

and (S∗∗
i , T ∗∗

i , U∗∗
i)i∈[n∗∗] so that the equations above hold. We give a concrete

example.

Proof. Let ΣOMS be the BGOY OMS. We can construct a PPT algorithm A that
breaks wNKS of ΣOMS as follows: Given a signature σ, a message m∗ and a se-
quence of public keys (pk∗i)i∈[n∗] = (S∗

i , T
∗
i , U

∗
i)i∈[n∗] as input, A sets m∗∗ ← m∗

and S∗∗
1

U←− G\{S∗
1}, computes S∗∗

2 ← {
∏n∗

i=1 S
∗
i }/S∗∗

1 mod p, T ∗∗
1 , U∗∗

1 , U∗∗
2

U←−
G, and T ∗∗

2 ← {
∏n∗

i=1(T
∗
i (U

∗
i)

i)}/(T ∗∗
1 U∗∗

1 (U∗∗
2)2), and outputs a message m∗∗

and a sequence of public keys (pk∗∗1 = (S∗∗
1 , T ∗∗

1 , U∗∗
1), pk∗∗2 = (S∗∗

2 , T ∗∗
2 , U∗∗

2)).

Then, we have that m∗ = m∗∗,
∏n∗

i=1 S
∗
i ≡ S∗∗

1 S∗∗
2 , and

∏n∗

i=1(T
∗
i (U

∗
i)

i) ≡
T ∗∗
1 U∗∗

1 T ∗∗
2 (U∗∗

2)2 (mod p). It holds that (pk∗i)i∈[n∗] ̸= (pk∗∗1 , pk
∗∗
2) since S∗∗

1 ̸=
S∗
1 , so it results in ExpOMSwNKS

ΣOMS,A(λ) = 1. □

On Key Substitution Attacks against AS and MS 39

K Proof of Theorem 13 : Correctness of Modified BGOY
OMS

The form of a signature is written as below:

σ = ({
n∏

i=1

(H(m|| pki)isi)}(g
∑n

i=1 ti+iui)
∑n

i=1 ri , g
∑n

i=1 ri).

Let (hi)i∈[n] be an element in Zp where it holds that ghi = H(m|| pki). Then,
we have that

e(Q, g)
= e({

∏n
i=1H(m|| pki)isi}(g

∑n
i=1 ti+iui)

∑n
i=1 ri , g)

= e({
∏n

i=1 g
ihisi}(g

∑n
i=1 ti+iui)

∑n
i=1 ri , g)

= e(g
∑n

i=1 ihisi · g(
∑n

i=1 ri)
∑n

i=1 ti+iui , g)
= e(g

∑n
i=1 ihisi+(

∑n
i=1 ti+iui)

∑n
i=1 ri , g)

= e(g, g)
∑n

i=1 ihisi+(
∑n

i=1 ti+iui)
∑n

i=1 ri

= e(g, g)
∑n

i=1 ihisi · e(g, g)(
∑n

i=1 ti+iui)
∑n

i=1 ri

=
∏n

i=1{e(g, g)ihisi} · e(g
∑n

i=1 ti+iui , g
∑n

i=1 ri)
=

∏n
i=1{e(ghi , gisi)} · e(

∏n
i=1 g

ti+iui , g
∑n

i=1 ri)
=

∏n
i=1{e(H(m|| pki), (Si)

i)} · e(
∏n

i=1 Ti(Ui)
i, Rn),

so the signature σ is accepted in the verification with m and (pkj)j∈[i].

L Proof of Theorem 14: Key Substitution Attacks on
Modified BGOY OMS

Although Rn is usually determined randomly, by setting Rn to a specific value,
we can create a signature that is accepted in the verification with two sequences
of public keys corresponding to two arbitrary sequences of secret keys. We pro-
vide observations before the formal proof.

We set the values that our adversary uses during the attack. Let n∗

and n∗∗ be the numbers of keys. Let two sequences of secret keys be
(sk∗i)i∈[n∗] = (s∗i , t

∗
i , u

∗
i)i∈[n∗] and (sk∗∗i)i∈[n∗∗] = (s∗∗i , t

∗∗
i , u

∗∗
i)i∈[n∗∗]. We de-

note corresponding sequences of public keys by (pk∗i)i∈[n∗] = (S∗
i , T

∗
i , U

∗
i) =

(gs
∗
i , gt

∗
i , gu

∗
i)i∈[n∗], and (pk∗∗i)i∈[n∗∗] = (S∗∗

i , T ∗∗
i , U∗∗

i) = (gs
∗∗
i , gt

∗∗
i , gu

∗∗
i)i∈[n∗∗].

Let m∗ and m∗∗ be two arbitrary messages. If we sign a message m∗ us-
ing a sequence of secret keys (sk∗i)i∈[n∗], we have that σ = (Q,R) =

({
∏n∗

i=1H(m∗|| pk∗i)is
∗
i }g

∑n∗
i=1 ri

∑n∗
i=1(t

∗
i +iu∗

i), g
∑n∗

i=1 ri). Let (h∗i)i∈[n∗], (h
∗∗
i)i∈[n∗∗]

denote sequences of discrete logarithms where it holds that gh
∗
i =

H(m∗|| pk∗i), gh
∗∗
i = H(m∗∗|| pk∗∗i).

If the signature σ is accepted in the verification with (pk∗∗i)i∈[n∗∗] and m
∗∗,

we have that

e(Q, g) =

n∗∗∏
i=1

{e(H(m∗∗|| pk∗∗i), (S∗∗
i)i)} · e(

n∗∗∏
i=1

T ∗∗
i (U∗∗

i)i, R).

40 Yuuki Fujita, Yusuke Sakai, Kyosuke Yamashita, and Goichiro Hanaoka

We can convert the left side on the equation as follows: e(Q, g) =

e(g
∑n∗

i=1 ih∗
i s

∗
i +

∑n∗
i=1 ri

∑n∗
i=1(t

∗
i +iu∗

i), g) = e(g, g)
∑n∗

i=1 ih∗
i s

∗
i +

∑n∗
i=1 ri

∑n∗
i=1(t

∗
i +iu∗

i).
Also, we can convert the right side on the equation as follows:

{
∏n∗∗

i=1 e(H(m∗∗|| pk∗∗i), (S∗∗
i)i)} · e(

∏n∗∗

i=1 T
∗∗
i (U∗∗

i)i, R)

= {
∏n∗∗

i=1 e(g
h∗∗
i , gis

∗∗
i)} · e(

∏n∗∗

i=1 g
t∗∗i +iu∗∗

i , g
∑n∗

i=1 ri)

= {
∏n∗∗

i=1 e(g, g)
ih∗∗

i s∗∗i } · e(g
∑n∗∗

i=1 (t
∗∗
i +iu∗∗

i), g
∑n∗

i=1 ri)

= e(g, g)
∑n∗∗

i=1 ih∗∗
i s∗∗i · e(g, g)

∑n∗
i=1 ri

∑n∗∗
i=1 (t

∗∗
i +iu∗∗

i)

= e(g, g)
∑n∗∗

i=1 ih∗∗
i s∗∗i +

∑n∗
i=1 ri

∑n∗∗
i=1 (t

∗∗
i +iu∗∗

i).
Due to the non-degenerateness of the bilinear map e, we have that

e(g, g) ̸= 1GT
. Thus, we observe that

∑n∗

i=1 ih
∗
i s

∗
i +

∑n∗

i=1 ri
∑n∗

i=1(t
∗
i + iu∗i) ≡∑n∗∗

i=1 ih
∗∗
i s

∗∗
i +

∑n∗

i=1 ri
∑n∗∗

i=1(t
∗∗
i + iu∗∗i) (mod p). We further convert the con-

gruence equation as follows:
∑n∗

i=1 ri ≡ (
∑n∗∗

i=1 ih
∗∗
i s

∗∗
i −

∑n∗

i=1 ih
∗
i s

∗
i)/(

∑n∗

i=1(t
∗
i +

iu∗i) −
∑n∗∗

i=1(t
∗∗
i + iu∗∗i)) (mod p). Since g ∈ G is a generator, σ is accepted in

the verification with (pk∗∗i)i∈[n∗∗] and m
∗∗ if it holds that

g(
∑n∗

i=1 ri) = g(
∑n∗∗

i=1 ih∗∗
i s∗∗i −

∑n∗
i=1 ih∗

i s
∗
i)/(

∑n∗
i=1(t

∗
i +iu∗

i)−
∑n∗∗

i=1 (t
∗∗
i +iu∗∗

i))

R = (g
∑n∗∗

i=1 ih∗∗
i s∗∗i /g

∑n∗
i=1 ih∗

i s
∗
i)1/(

∑n∗
i=1(t

∗
i +iu∗

i)−
∑n∗∗

i=1 (t
∗∗
i +iu∗∗

i))

= {
∏n∗∗

i=1H(m∗∗|| pk∗∗i)is
∗∗
i /∏n∗

i=1H(m∗|| pk∗i)is
∗
i }1/(

∑n∗
i=1(t

∗
i +iu∗

i)−
∑n∗∗

i=1 (t
∗∗
i +iu∗∗

i)).

Proof. Let ΣOMS be the modified BGOY OMS scheme. An adversary chooses
n∗ + n∗∗ secret keys arbitrarily, and let (sk∗i)i∈[n∗] = (s∗i , t

∗
i , u

∗
i)i∈[n∗] and

(sk∗∗i)i∈[n∗∗] = (s∗∗i , t
∗∗
i , u

∗∗
i)i∈[n∗∗] be two sequences of secret keys. It

computes two sequences of public keys (pk∗i)i∈[n∗] and (pk∗∗i)i∈[n∗∗] that
correspond to the two sequences of secret keys. Let m∗ and m∗∗ be
two messages chosen arbitrarily from a message space. Then, it obtains
hash values H∗

i ← H(m∗|| pk∗i) and H∗∗
i ← H(m∗∗|| pk∗∗i), computes

R ← (
∏n∗∗

i=1(H
∗∗
i)is

∗∗
i /

∏n∗

i=1(H
∗
i)

is∗i)1/(
∑n∗

i=1(t
∗
i +iu∗

i)−
∑n∗∗

i=1 (t
∗∗
i +iu∗∗

i)) and Q ←
H(m∗|| pk∗i)is

∗
iR

∑n∗
i=1(t

∗
i +iu∗

i), and sets a signature σ ← (Q,R). The signature σ
is accepted with (pk∗∗i)i∈[n∗∗] and m

∗∗. Due to the correctness of the scheme, the
signature σ is also accepted with (pk∗i)i∈[n∗] and m

∗. Therefore, if an adversary

outputs (m∗, (pk∗i)i∈[n∗],m
∗∗, (pk∗∗i)i∈[n∗∗]), it holds that ExpOMSNKS

ΣOMS,A(λ) = 1.

M Proof of Theorem 15 : wNKS of Modified BGOY
OMS

Proof. Suppose that there exists a PPT adversary B that breaks wNKS of the
modified BGOY OMS. Then we can construct a PPT algorithm A that makes
the probability in Eq. (1) non-negligible using B, which means we can solve the
intermediate problem (but here the index of random input starts from 0). Let
ΣOMS be the modified BGOY OMS scheme. Given input of the intermediate
problem pp and h0, ..., hn, an algorithm A simulates ExpOMSwNKS

ΣOMS,A(λ), takes

On Key Substitution Attacks against AS and MS 41

a response from B, and can output the answer to the intermediate problem.
An adversary B can use the hash oracle whenever it wants to, and A responds
to these queries by simulating the random oracle. Let qH ≤ poly(λ) be the
maximum number of hash queries from B. First, A obtains n∗ by giving pp to B.
Without loss of generality, we can set n = n∗ + qH since both A and B are PPT
algorithms. A uses the input of the intermediate problem h0, ..., hn∗+qH to create
a challenge signature σ∗ and to respond to B’s hash queries. Since h0, ..., hn∗+qH

are uniformly random, A can simulate the random oracle and the challenger in
ExpOMSwNKS

ΣOMS,A(λ) against B.
Setup Phase

First, A obtains n∗ from B by giving pp to B. An adversary B can make
hash queries whenever it wants to. We will afterward describe how A responds
to these queries.

Next, A creates a sequence of secret keys (sk∗i)i∈[n∗] = (s∗i , t
∗
i , u

∗
i)i∈[n∗] and a

sequence of public keys (pk∗i)i∈[n∗] = (gs
∗
i , gt

∗
i , gu

∗
i)i∈[n∗] by running KeyGen(1λ).

It obtains a message m∗ from B by giving the sequence of public keys (pk∗i)i∈[n∗]

to B.
Afterward, A embeds h0 into a signature as a random number by set-

ting R∗ ← h0. Also, A embeds the input of the intermediate prob-
lem into H(m∗|| pk∗i) as we will discuss later, and it computes Q∗ ←
H(m∗|| pk∗i)

∑n∗
i=1 is∗i (R∗)

∑n∗
i=1(t

∗
i +iu∗

i). It sets a signature σ∗ ← (Q∗, R∗), and runs
B by giving this signature σ∗ and a sequence of public keys (pk∗i)i∈[n∗]. Since
R∗ is uniformly random, the distribution of R∗ is the same as that of Rn in the
signature created by running OSign repeatedly, so B cannot distinguish between
the signature σ∗ and one given in the experiment ExpOMSwNKS

ΣOMS,A(λ).

Response to Hash Queries from B
The algorithm A responds to hash queries using H-List. Using the index j

starting from 1, H-List stores values of the form ((mj , pkj), hj). When A receives
a query (m|| pk), it searches H-List for the same (mj , pkj) and proceeds as follows:
If it finds the same (mj , pkj), then it returns hj . Otherwise, let j be the minimum
index not used in H-List, and it stores ((m, pk), hj) in H-List and returns hj .

When creating a signature to give B using a message m∗ and a sequence of
public keys (pk∗i)i∈[n∗], A determines H(m∗|| pk∗i) in the same way as it responds
to hash queries: It searches H-List for (mj , pkj) and proceeds as follows. If it
finds the same (mj , pkj), then it sets H(m∗, pk∗i)← hj . Otherwise, let j be the
minimum index not used in H-List, and it stores ((m, pk), hj) in H-List and sets
H(m∗, pk∗i)← hj .

Since (hj)j∈[n∗+qH] are chosen uniformly randomly in the intermediate prob-
lem, when A determines hash values as described above, B cannot distinguish
between A’s replies and the random oracle’s replies.

A’s response to the intermediate problem

Suppose that B outputs a message m∗∗ and a sequence of public keys
(pk∗∗i)i∈[n∗∗] where it results in ExpOMSwNKS

ΣOMS,A(λ) = 1. Without loss of gen-
erality, we may assume that B queries (m∗∗|| pk∗∗i) before B outputs m∗∗ and
(pk∗∗i)i∈[n∗∗]. Considering the verification equation, A can solve the intermedi-

42 Yuuki Fujita, Yusuke Sakai, Kyosuke Yamashita, and Goichiro Hanaoka

ate problem by reordering two sequences of public keys ((pk∗i)i∈[n∗], (pk
∗∗
i)i∈[n∗∗])

from the order in sequences to the order in hash queries.
We first observe what equation holds with regard to m∗∗, (pk∗∗i)i∈[n∗∗] and

σ∗. The sequence of secret keys (sk∗∗i)i∈[n∗∗] = (s∗∗i , t
∗∗
i , u

∗∗
i)i∈[n∗∗] is uniquely

determined by the sequence of public keys (pk∗∗i)i∈[n∗∗] even if B itself does
not know them. Let (d∗i)i∈[n∗] and (d∗∗i)i∈[n∗∗] denote discrete logarithms of

hash values to the base g as follows: it holds that gd
∗
i = H(m∗|| pk∗i), gd

∗∗
i =

H(m∗∗|| pk∗∗i). As the verification succeeds, we have the following equation.

e(Q∗, g) = {
∏n∗∗

i=1 e(H(m∗∗|| pk∗∗i), (S∗∗
i)i)}e(

∏n∗∗

i=1 T
∗∗
i (U∗∗

i)i, R∗)

e(g, g)
∑n∗

i=1 id∗
i s

∗
i +r∗

∑n∗
i=1(t

∗
i +iu∗

i) = e(g, g)
∑n∗∗

i=1 id∗∗
i s∗∗i +r∗

∑n∗∗
i=1 (t

∗∗
i +iu∗∗

i)

e(g, g)r
∗{

∑n∗
i=1((−t∗i)+i(−u∗

i))+
∑n∗∗

i=1 (t
∗∗
i +iu∗∗

i)}

·e(g, g)
∑n∗

i=1 id∗
i (−s∗i)+

∑n∗∗
i=1 id∗∗

i s∗∗i = 1

e(R∗, g
∑n∗

i=1((−t∗i)+i(−u∗
i))+

∑n∗∗
i=1 (t

∗∗
i +iu∗∗

i))

·{
∏n∗

i=1 e(g, g)
id∗

i (−s∗i)} · {
∏n∗∗

i=1 e(g, g)
id∗∗

i s∗∗i } = 1

e(h0, {
∏n∗∗

i=1 T
∗∗
i (U∗∗

i)i}/{
∏n∗

i=1 T
∗
i (U

∗
i)

i})
·
∏n∗

i=1 e(H(m∗|| pk∗i), g)−is∗i ·
∏n∗∗

i=1 e(H(m∗∗|| pk∗∗i), g)is
∗∗
i = 1

We convert the product of the sequence in the equation above by con-
sidering the order in H-List rather than the order in the sequence of pub-
lic keys. With regard to two messages m∗ and m∗∗ and two sequences of
public keys (pk∗i)i∈[n∗], (pk

∗∗
i)i∈[n∗∗], A searches H-List for (mj , pkj), and it

sets (c∗j)j∈[n∗+qH], (c
∗∗
j)j∈[n∗+qH] so that it holds that hj = H(m∗|| pk∗c∗j) and

hj = H(m∗∗|| pk∗∗c∗∗j). If it cannot find matching value (mj , pkj), then it sets

c∗j = 0 and c∗∗j = 0. We define pk∗0 = (S∗
0 , T

∗
0 , U

∗
0) = (1, 1, 1) and pk∗∗0 =

(S∗∗
0 , T ∗∗

0 , U∗∗
0) = (1, 1, 1). Then, we have that∏n∗

i=1 e(H(m∗|| pk∗i), g)−is∗i ·
∏n∗∗

i=1 e(H(m∗∗|| pk∗∗i), g)is
∗∗
i

=
∏n∗+qH

j=1 e(hj , g)
−c∗j s

∗
c∗
j · e(hj , g)

c∗∗j s∗∗c∗∗
j

=
∏n∗+qH

j=1 e(hj , g)
−c∗j s

∗
c∗
j
+c∗∗j s∗∗c∗∗

j =
∏n∗+qH

j=1 e(hj , g
−c∗j s

∗
c∗
j
+c∗∗j s∗∗c∗∗

j)

=
∏n∗+qH

j=1 e(hj , g
c∗∗j s∗∗c∗∗

j /g
c∗j s

∗
c∗
j) =

∏n∗+qH
j=1 e(hj , S

∗∗
c∗∗j

c∗∗j /S∗
c∗j

c∗j).

We next demonstrate how to determine (ri)i∈[n∗+qH] where it

holds that
∏n∗+qH

i=0 e(hi, ri) = 1. As discussed above, we have that

e(h0, {
∏n∗∗

i=1 T
∗∗
i (U∗∗

i)i}/{
∏n∗

i=1 T
∗
i (U

∗
i)

i}) ·
∏n∗+qH

j=1 e(hj , S
∗∗
c∗∗j

c∗∗j /S∗
c∗j

c∗j) = 1.

Therefore, by setting r0 ← {
∏n∗∗

i=1 T
∗∗
i (U∗∗

i)i}/{
∏n∗

i=1 T
∗
i (U

∗
i)

i} and

rj ← S∗∗
c∗∗j

c∗∗j /S∗
c∗j

c∗j for 1 ≤ j ≤ n∗ + qH , we have that
∏n∗+qH

i=0 e(hi, ri) = 1. We

next show that it holds that (r0, ..., rn∗+qH) ̸= (1, ..., 1) for (ri)i∈[n∗+qH].
First, we consider the case where the two sequences of public keys (pk∗i)i∈[n∗]

and (pk∗∗i)i∈[n∗∗] are different as unordered set. There exists a public key included
in only either (pk∗i)i∈[n∗] or (pk

∗∗
i)i∈[n∗∗]. Assume there exists such a public key

pk∗c∗j in (pk∗i)i∈[n∗]. Since c
∗∗
j = 0, we have that S∗∗

c∗∗j
= 1, and it holds that

rj = S∗∗
c∗∗j
/S∗

c∗j
= 1/S∗

c∗j
̸= 1. If there exists a public key pk∗∗c∗∗j included only

On Key Substitution Attacks against AS and MS 43

in (pk∗∗i)i∈[n∗∗], we have that S∗
c∗j

= 1 because of c∗j = 0, and it holds that

rj = S∗∗
c∗∗j
/S∗

c∗j
= S∗∗

c∗∗j
̸= 1.

Next, we consider the case where (pk∗∗i)i∈[n∗∗] can be obtained by reordering
(pk∗i)i∈[n∗]. Considering the public key reordered, it holds that pk∗c∗j = pk∗∗c∗∗j and

c∗j ̸= c∗∗j . We thus have that S∗
c∗j

= S∗∗
c∗∗j

, and it holds that S∗∗
c∗∗j
̸= 1 due to

the prohibition of the trivial key. Therefore, we have that rj = S∗∗
c∗∗j

c∗∗j /S∗
c∗j

c∗j =

S∗∗
c∗∗j

c∗∗j −c∗j ̸= 1. As discussed above, (ri)i∈[n∗+qH] is the solution to the interme-

diate problem.
The algorithm A can always perform the operations described above if it

obtains B’s output such that ExpOMSwNKS
ΣOMS,A(λ) = 1. Therefore, the probability

that A solves the intermediate problem is the same as the probability that B
satisfies the winning condition of the ExpOMSwNKS

ΣOMS,A(λ) experiment.

N Proof of Theorem 16 : Unforgeability of Modified
BGOY OMS

Proof. Suppose that there exists a PPT adversary B that breaks the UF-OMS
security of the modified BGOY OMS. We show that using B, we can construct a
PPT algorithm A that breaks the CDH assumption. Let ΣOMS be the modified
BGOY OMS scheme. Given input of the CDH problem from a challenger, A
simulates the experiment ExpOMSUF−OMS

ΣOMS,B (λ), takes a response from B, and can
output the solution to the CDH problem in non-negligible probability. According
to the definition of the experiment ExpOMSUF−OMS

ΣOMS,B (λ), B can make queries to
the key registration oracle and the signing oracle. Simulating these oracles, A
replies to these queries. Since we adopt the random oracle model, B can also
make hash queries, and A replies to these queries by simulating the random
oracle. Without loss of generality, we may assume that B does not repeat the
same query.
Setup Phase

We describe howA behaves before running B. First,A takes input of the CDH
problem (p,G,GT , e, g, g

a, gb). It initializes arrays K,D,H and E, and chooses

k∗
U←− [nmax] and t0, u0

U←− Zp. Here nmax denotes the maximum number of
signers. The adversary A computes S∗ ← ga, T ∗ ← (ga)−u0k

∗
gt0 and U∗ ←

(ga)u0 and sets a challenge key pk∗ ← (S∗, T ∗, U∗). Here let s∗, t∗ and u∗ be the
elements in Zp where it holds that S∗ = gs

∗
, T ∗ = gt

∗
and U∗ = gu

∗
. Finally, it

runs B by giving pk∗ and (p,G,GT , e, g).
A’s behavior to key registration queries

We describe A’s behavior when B queries to the key registration oracle a
public key pk, a secret key sk and the random tape c used to generate the key
pair. First, A confirms that it can obtain the key pair (pk, sk) with random tape
c. If so, it sets K[pk] ← sk so that it can refer to the secret key sk using pk as
an index afterward. If not, it does nothing and continues.
A’s replies to hash queries

44 Yuuki Fujita, Yusuke Sakai, Kyosuke Yamashita, and Goichiro Hanaoka

We describe howA responds when B queries a messagem and a public key pki
to the hash oracle. It chooses E[m|| pki]

U←− Zp. Then, it sets D[m|| pki]← 1 with
probability δ, and D[m|| pki]← 0 with probability 1−δ. If D[m|| pki] = 1, then it
computesH[m|| pki]← gE[m|| pki], otherwise computesH[m|| pki]← gbgE[m|| pki].
Finally, it replies H[m|| pki] to B. Since gE[m|| pki] is uniformly random, B cannot
distinguish if the reply is from A or the random oracle.
A’s replies to signing queries

We show how A responds when B queries to the signing oracle a message
m, a signature σ = (Q,R) and a sequence of public keys L = (pk1, ..., pki−1).
If there exists z ∈ [i − 1] such that K[pkz] is not registered, or it holds that
ΣOMS .OVrf(pp,m, σ, L) = 0, then A outputs ⊥. If it holds that σ[m|| pk∗] = 0
and i = k∗, A halts. Without loss of generality, we may assume that B queries
m|| pk1, ...,m|| pki−1,m|| pk

∗ to the hash oracle before B makes the signing query.

We describe how A computes a response. It chooses r
U←− Zp.

It sets K[pkz] = (sz, tz, uz) for all z ∈ [i − 1]. If we have that
D[m|| pk∗] = 1, then it computes Q′ ← (ga)iE[m|| pk∗]((ga)−u0k

∗
gt0(ga)iu0)r,

R′ ← gr and Q′′ ← Q′ ∏i−1
j=1(g

E[m|| pkj])jsj (R′)(tj+juj), and returns

(Q′′, R′). If we have that D[m|| pk∗] = 0, then it computes Q′ ←
(ga)iE[m|| pk∗](gb)−it0/(u0(i−k∗))((ga)−u0k

∗
gt0(ga)iu0)r, R′ ← gr(gb)i/(u0(k

∗−i))

and Q′′ ← Q′ ∏i−1
k=1(g

bgE[m|| pkk])ksk(R′)(tk+kuk), and returns (Q′′, R′). The dis-
tribution of this reply is the same as that of the signing oracle’s reply from B’s
view. Since r ∈ Zp is chosen uniformly randomly, gr and gr(gb)i/(u0(k

∗−i)) are
also uniformly random.
The Answer to the CDH Problem

We next describe how A answers to the CDH problem after B outputs (L∗∗ =
(pk∗∗1 , ..., pk

∗∗
n∗∗),m∗∗, σ∗∗ = (Q∗∗, R∗∗)) and halts. Without loss of generality, we

may assume that B queriesm|| pk1, ...,m|| pki−1,m|| pk
∗ to the hash oracle before

it outputs (L∗∗,m∗∗, σ∗∗). First, A checks if it holds that ExpOMSUF−OMS
ΣOMS,B (λ) =

1, otherwise it halts. Here let pk∗∗i∗∗ be pk∗. If we have that D[m∗∗|| pk∗] = 1
or i∗∗ ̸= k∗, it halts. Otherwise, it sets K[pkz] = (sz, tz, uz) for all z ∈ [i −
1], computes Q ← Q∗∗/(

∏
j ̸=k∗(H[m|| pkj]jsj (R∗∗)tj+juj), and outputs Z ←

(Q/((R∗∗)t0(ga)k
∗E[m∗∗|| pk∗]))1/k

∗
as the answer to the CDH problem. Unless A

halts before outputting the answer, Z is the correct answer to the CDH problem;
Since σ∗ is accepted, we have that

Q∗∗ =
∏n∗∗

j ̸=k∗ H[m∗∗|| pk∗∗j]jsj (R∗∗)tj+juj) ·H[m∗∗|| pk∗]k∗s∗(R∗∗)t
∗+k∗u∗

,

Q = H[m∗∗|| pk∗]k∗s∗(R∗∗)t
∗+k∗u∗

= (gbgE[m∗∗|| pk∗])k
∗a(R∗∗)−au0k

∗+t0+au0k
∗
=

gk
∗ab+k∗aE[m∗∗|| pk∗](R∗∗)t0 , and Z = (gk

∗ab)1/k
∗
= gab.

The Probability That A Can Answer to the CDH Problem Correctly
The advantage of A to the CDH problem AdvCDH

G,A (λ) is non-negligible. Let qS

be the maximum number of signing queries, and AdvOMSUF−OMS
ΣOMS,B (λ) be the

probability that B satisfies the winning condition of the ExpOMSUF−OMS
ΣOMS,B (λ)

experiment. Then we show the following equation holds:

AdvCDH
G,A (λ) >

1

e
· 1

qS + 1
· 1

nmax
· AdvOMSUF−OMS

ΣOMS,B (λ)

On Key Substitution Attacks against AS and MS 45

Since A is a PPT algorithm, qS and nmax are polynomials of λ, so AdvCDH
G,A (λ)

is non-negligible if AdvOMSUF−OMS
ΣOMS,B (λ) is non-negligible.

Splitting the event that A solves the CDH problem to several events, we
consider the probability and independence of these events. We define E1 as the
event that A does not halt by B’s queries, E2 as the event that B breaks the
UF-OMS security of the scheme, and E3 as the event that A does not halts
before it outputs the answer to the CDH problem. Then we can write the event
that A answers to the CDH problem correctly as E1 ∧ E2 ∧ E3. we have the
equation below:

AdvCDH
G,A (λ) =Pr[E1∧E2∧E3]=Pr[E3|E1∧E2] · Pr[E2|E1] · Pr[E1].

The event E1 occurs when B has never queried m and (pk1, ..., pki−1) such
that D[m|| pk∗] = 0 and i = k∗. Even though we cannot know the number of B’s
key registration queries, at least A does not halt if D[m|| pk∗] = 1 holds with
regard to any queried message m. Since the maximum number of queries is qS ,
A checks if D[m|| pk∗] = 1 holds at most qS times even if every queried message
is different. Therefore, we have that Pr[E1] ≥ δqS .

The event E2 occurs independently of E1. The replies of A are uniform
randomly distributed regardless of D[m|| pk∗], so B cannot distinguish the replies
are from A or the true oracles. Therefore, we have that Pr[E2|E1] = Pr[E2] =
AdvOMSUF−OMS

ΣOMS,B (λ).
The event E3 occurs when we have that i∗∗ = k∗ and D[m∗∗|| pk∗] = 0.

Since k∗ ∈ [nmax] and the responses to signing queries are uniformly random,
the responses are independent of B’s output. Also, according to the definition
of the experiment ExpOMSUF−OMS

ΣOMS,B (λ), (m∗∗, (pk1, ..., pkk∗−1)) is not queried
to the signing oracle when B breaks the UF-OMS security of the scheme.
Therefore, regardless of whether B makes queries including m∗∗ or not, E1

occurs independently of whether D[m∗∗|| pk∗] = 1 holds. Thus, we have that
Pr[E3|E1 ∧ E2] =

1
nmax

· (1− δ).
Finally we decide the value δ to maximize AdvCDH

G,A (λ). As discussed above,

we have that AdvCDH
G,A (λ) ≥ δqS ·(1−δ)·AdvOMSUF−OMS

ΣOMS,B (λ)· 1
nmax

. At δ = qs
qS+1 ,

δqS · (1 − δ) reaches its maximum value 1
qS+1 · (

qS
qS+1)

qS > 1
qS+1 ·

1
e . Therefore,

we have that AdvCDH
G,A (λ) > 1

e ·
1

qS+1 ·
1

nmax
· AdvOMSUF−OMS

ΣOMS,B (λ).

