
Compact Pseudorandom Functional Encryption
from Evasive LWE

Shweta Agrawal∗ Simran Kumari† Shota Yamada‡

Abstract

We provide the first construction of compact Functional Encryption (FE) for pseudorandom functionalities from
the (private coin) evasive LWE and LWE assumptions. Intuitively, a pseudorandom functionality means that the output
of the circuit is indistinguishable from uniform for every input seen by the adversary. This yields the first compact FE
for a nontrivial class of functions which does not rely on pairings. We demonstrate the power of our new tool by using
it to achieve optimal parameters for both key-policy and ciphertext-policy Attribute Based Encryption (ABE) schemes
for circuits of unbounded depth, from just the LWE and evasive LWE assumptions. This improves prior work along
the twin axes of assumptions and performance. In more detail, this allows to: (i) replace the assumption of circular
evasive LWE used in the work of Hseih, Lin and Luo (FOCS 2023) by plain evasive LWE, (ii) remove the need for
the circular tensor LWE assumption in the work of Agrawal, Kumari and Yamada (CRYPTO, 2024), (iii) improve
parameters obtained by both aforementioned works to achieve asymptotic optimality.

Previously, optimal parameters for ABE schemes were only achieved using compact FE for P (Jain, Lin and Luo,
Eurocrypt 2023) – we show that compact FE for a much weaker class (albeit with incomparable security) suffices.
Thus we obtain the first optimal ABE schemes for unbounded depth circuits which can be conjectured post-quantum
secure. Along the way, we define and construct a new primitive which we term laconic pseudorandom obfuscation
from the same assumptions – this may be of independent interest.
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1 Introduction
Functional encryption (FE) [SW05, BSW11] generalizes public key encryption to support computation of non-trivial
functions on encrypted data, beyond “all or nothing” access. More formally, in FE, a ciphertext is associated with a
vector x, a secret key is associated with a circuit f and decryption enables recovery of f (x) and nothing else. Aside
from its direct relevance to real world applications for computing on encrypted data, FE has proved to be a powerful tool
in the theory of cryptography, and can be used to build a number of advanced primitives. The most prominent amongst
these is Indistinguishability Obfuscation (iO), which is considered essentially “crypto-complete” by virtue of its ability
to instantiate almost every known cryptographic primitive [BGI+01a, GGH+13, JLS21].

For FE to succeed in being bootstrapped all the way to iO, it must satisfy a strong efficiency property known as
compactness – at a high level, this posits that the size of the ciphertext should be sublinear in the size of the circuits
being supported by the scheme. There has been substantial research effort in the community for instantiating FE (or
directly iO) from well-understood assumptions, leading to a sequence of exciting results [JLMS19, GJLS21, Agr19,
APM20, WW21, GP21, DQV+21, JLS21, JLS22, RVV24]. The breakthrough work of Jain, Lin and Sahai [JLS21]
finally obtained the first construction of compact FE for P from standard assumptions. This has been subsequently
improved by [JLS22, RVV24]. However, all these works rely quite crucially on pairings which is dissatisfying. Not only
are pairings quantum insecure, it is also desirable to have alternate pathways for constructing such important primitives
as FE and iO, even for restricted classes of functions. In the realm of conjectured quantum safety, there exist several
candidates from lattices but their security is either based on heuristics, or their underlying assumptions have been broken
[Agr19, APM20, WW21, GP21, DQV+21, HJL21, AJS23]. Thus, an outstanding open question in the area is:

Can we construct compact Functional Encryption for any nontrivial functionality from simple lattice assumptions?

Attribute Based Encryption. A special case of Functional Encryption is the notion of Attribute Based Encryption
(ABE) [SW05, GPSW06]. ABE is similar to FE but with a crucial difference – in ABE the computation is performed
on public attribiutes encoded in the ciphertext, while the burden of privacy is only on an unchanging message. In
more detail, the ciphertext encodes a public attribute x together with a secret message m, the secret key is generated
for a public function f , and decryption outputs m if and only if f (x) = 1. Security is similar to FE, except that x
need not be hidden. This is formalized in an indistinguishability style game which asks that an adversary should be
unable to distinguish between an encryption of (m0, x) and (m1, x), even given secret keys for functions fi so long as
fi(x) = 0 for all i. ABE comes in two avatars – “key-policy” where the function f is encoded in the secret key, or
“ciphertext-policy” where it is encoded in the ciphertext. These are denoted by kpABE and cpABE respectively. An
interesting generalization of ABE is the so-called “Predicate Encryption” (PE) [KSW13] where the attribute x is also
hidden but only against an adversary that does not receive any decrypting key, namely fi(x) = 0 for all fi queried by
the adversary.

Prior Work in ABE. There has been significant progress in constructing ABE for circuits over the last several years
[GPSW06, GVW13, BGG+14, AY20, Wee22, HLL23] from well-understood assumptions. Here, there has been
asymmetry between the key and ciphertext policy variants – while kpABE can be constructed from the standard Learning
With Errors (LWE) assumption, it’s cpABE counterpart additionally requires a relatively new, strong assumption called
Evasive LWE [Wee22, Tsa22].

Recently, an important focus area in ABE research has been to achieve asymptotic optimality for both kpABE and
cpABE schemes [Wee24, JLL23]. The very recent work of Wee [Wee24] constructs kpABE for bounded depth circuits
using a new assumption called L-succinct LWE, which is weaker than evasive LWE. Assuming compact FE, [JLL23]
achieve optimality even for unbounded depth circuits, but this assumption necessitates the reliance on pairings as
discussed above. We summarize the state of the art in Table 1. Thus, an outstanding open question in ABE research is:

Can we construct kp/cp ABE for P with optimal parameters from lattices?
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Reference KP/CP |mpk| |sk| |ct| Depth Assumptions
[JLL23] KP O(1) O(1) O(1) Unbdd Compact FE for P
[JLL23] CP O(1) O(1) O(1) Unbdd Compact FE for P
[HLL23] KP O(L) O(1) O(L) Unbdd evasive circular LWE+ circular LWE

[AKY24a] CP O(L) O(L) O(1) Unbdd LWE + evasive LWE + circular tensor LWE
[Wee24] KP L2 ·O(d) O(d) O(d) Bdd L-succinct LWE
[HLL24] CP O(d) L ·O(d) L ·O(d) Bdd LWE + evasive learning with structured errors

This Work KP O(1) O(1) O(1) Unbdd LWE + evasive LWE
This Work CP O(1) O(1) O(1) Unbdd LWE + evasive LWE

Table 1: Here L denotes the input length and d denotes the depth of the circuit supported by the ABE schemes. O(·)
hides poly(λ) factors. We highlight that L-succinct LWE is a falsifiable assumption.

1.1 Our Results
In this work, we make progress on both the above questions and achieve the following: (i) we provide the first construction
of compact FE from private-coin evasive LWE (and LWE) for a nontrivial class of pseudorandom functionalities, (ii)
we use our new FE to construct kpABE and cpABE achieving optimal parameters for unbounded depth circuits, also
from evasive LWE and LWE. We summarize our results as informal theorems below.

The first theorem shows that we can obtain partially hiding pseudorandom FE (PHprFE) with optimal parameter
sizes. In PHprFE, an input x to the function f is divided into a public part xpub and private part xpriv. While we
consider the same correctness requirement as usual FE, we consider a relaxed security notion where the public part
is allowed to leak to the adversary. The advantage of allowing part of the input to be public is that it leads to shorter
ciphertexts whose size does not depend on the length of xpub, when we follow the convention of ignoring the length of
the public part when measuring ciphertext size.

Theorem 1.1 (Partially Hiding prFE for Unbounded Depth). Assuming LWE and evasive LWE assumptions, there
exists a partially hiding pseudorandom FE scheme, for function class F = { f : {0, 1}Lpub × {0, 1}Lpriv → {0, 1}},
that satisfies very selective security (more accurately, security as per Definition 5.4) whose master public key and the
secret key sizes are fixed polynomial poly(λ). Furthermore, the size of the ciphertext is Lpriv + poly(λ).

Here, very selective security refers to the security notion where the adversary has to choose its challenge query and
key queries before seeing the public parameter.

Note that in particular, this implies a plain FE scheme for pseudorandom functionalities with optimal parameters (by
setting the public part of the input to ⊥). We then leverage the above FE to construct Attribute Based and Predicate
Encryption (ABE and PE respectively) for unbounded depth circuits with optimal parameters, in both the KP and CP
setting. In more detail, we prove the following.

Theorem 1.2 (Optimal KP-ABE). [Theorem 6.1] Under the LWE and Evasive LWE assumptions, there exists very
selectively secure KP-ABE scheme supporting circuits {C : {0, 1}ℓ → {0, 1}} with unbounded depth and message
space {0, 1}λ with

|mpk| = poly(λ), |skC| = poly(λ), |ct| = poly(λ).

Theorem 1.3 (Optimal KP-PE). [Theorem 6.5] Under the LWE and Evasive LWE assumptions, there exists very
selectively secure KP-PE scheme supporting circuits {C : {0, 1}ℓ → {0, 1}} with unbounded depth and message space
{0, 1}λ with

|mpk| = poly(λ), |skC| = poly(λ), |ct| = poly(λ) + |x|

where x ∈ {0, 1}ℓ.
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Theorem 1.4 (Optimal CP-ABE). [Theorem 7.2] Under the LWE and Evasive LWE assumptions, there exists very
selectively secure CP-ABE scheme supporting circuits with unbounded depth {C : {0, 1}ℓ → {0, 1}} and message
space {0, 1}λ with

|mpk| = poly(λ), |skx| = poly(λ), |ct| = poly(λ)

where x ∈ {0, 1}ℓ.

We observe that since our schemes support message space {0, 1}λ, they can be used to support arbitrary message
space by using the hybrid encryption framework. We note that our unbounded CP-ABE scheme Theorem 7.2 and
unbounded KP-ABE scheme Theorem 6.1 can be used to instantiate ABE for Turing Machines ([AKY24a]). We obtain
the following corollary, which improves both the assumptions and the parameters of [AKY24a].

Corollary 1.5 (KP-ABE for TM). [Corollary 7.4] Under the LWE and evasive LWE assumptions, there exists a very
selectively secure ABE for TM with

|mpk| = poly(λ), |sk| = |M| · poly(λ), |ct| = |x| · t · poly(λ)

where the Turing machine M runs on input x for time step t.

In contrast, [AKY24a] uses LWE, evasive LWE and circular tensor LWE and achieves |mpk| = poly(λ), |sk| =
poly(|M|, λ), |ct| = poly(λ, |x|, t).

1.2 Additional Prior Work
The notion of iO for pseudorandom functionalities was considered implicitly by the work of Mathialagan, Peters and
Vaikuntanathan [MPV24a] where they used subexponential LWE and evasive LWE to construct adaptively sound
zero-knowledge SNARKs for UP. In a previous version of their work [MPV24b], which was in private circulation and
shared with us, this notion was defined explicitly and leveraged to obtain unlevelled fully homomorphic encryption.
However, an explicit construction of iO for pseudorandom functionalities was not provided. Moreover, FE or MIFE for
any class of functionalities was not considered.

Our Companion Paper. In a companion work [AKY24b], we bootstrap our compact FE for pseudorandom
functionalities to the multi-input setting. This yields the first multi-input FE for pseudorandom functionalities from
LWE and (a stronger variant of) private-coin evasive LWE. Using the techniques of [AJ15], this multi-input FE can
be naturally deployed to construct the first iO for pseudorandom functionalities. We then leverage our pseudorandom
multi-input FE and iO for applications – we refer the reader to [AKY24b] for details.

In the present work, our construction of ABE with optimal parameters (Section 5) uses a restricted iO (called pPRIO)
as a building block which is developed in the companion work [AKY24b]. This creates a dependence between the two
works. The rationale for our choice is primarily to have the most concise presentation and avoid duplication of content.
We chose to split the papers across the axis of single input and multi-input since this seems most natural. The notion of
pPRIO uses MIFE for constant arity, so fits naturally in the companion work. By not using it in the present work, we
would achieve ABE schemes with sub-optimal parameters which nevertheless outperform the state of the art. We would
then improve these schemes in the companion work, which was undesirable. Another alternative was to provide the
multi-input compiler for constant arity in the present work and generalize this to polynomial arity (from a stronger
assumption) in the companion work. However this would lead to duplicating the MIFE construction in both works.
Therefore, we believe that using the pPRIO black-box as a tool in the ABE application developed here is the best option.

1.3 Recent Attacks on Evasive LWE and Repercussions.
Subsequent to the first online appearance of the present work, some counter-examples for evasive LWE were developed.
We discuss these and their impact on the present work below. To begin, we recall the definition of evasive LWE.
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The evasive LWE assumption [Wee22, Tsa22] roughly says that if(
B, P, sTB + eB, sTP + eP, aux

)
≈c
(

B, P, $, $, aux
)

where $ represents random, then(
B, P, sTB + eB, B−1(P), aux

)
≈c
(

B, P, $, B−1(P), aux
)

Above B−1(P) refers to a low norm matrix, say K, such that BK = P mod q. It is clear that given B−1(P) and
sTB + eB, the adversary can compute sTP + eBK. Evasive LWE intuitively says that the adversary cannot exploit
B−1(P) in any other way. The rationale behind the assumption, discussed at length in [Wee22], is that the final
value obtained by the adversary after decryption, represented above by sTP + eBK, is large and completely avoids the
so-called “zeroizing” regime, namely the situation where the attacker obtains low norm polynomial equations over the
integers and can solve these to obtain harmful leakage. Thus, evasive LWE should allow us to construct schemes where
the decryption yields a pseudorandom output, as required by the pre-condition. Indeed, this is the motivation for the
name “evasive” LWE – it should only support construction of evasive functionalities where decryption of challenge
ciphertexts is not allowed, such as ABE, but not FE/iO.

Evasive LWE has been studied in two main regimes, namely “public-coin” and “private-coin”, where the former
means that the randomness used to sample P and auxiliary information aux, is made available to the adversary, and the
latter means that this information needs to be hidden. The private-coin version was known to have some contrived
counter-examples since the work of [VWW22], but this was not considered too problematic as it relied on highly
unnatural auxiliary information which contained obfuscations that would output secrets given B−1(P) but not otherwise.
No attacks were known in the public-coin setting used by Wee’s original formulation or its extensions, such as the
circular evasive LWE by Hseih, Lin and Luo [HLL23]. Thus, evasive LWE has been seen as a meaningful “middle
point” in the land between LWE on one hand, and lattice assumptions used for iO on the other. The community has tried
to make progress on long standing “evasive” problems in the world of lattice based cryptography using this assumption,
while simultaneously trying to improve the assumption (see for instance [Wee24]).

New Attacks. In a very exciting, very recent development subsequent to the first online posting of the present work,
some surprising new counter-examples against evasive LWE became known [AMYY25, HJL25, DJM+25]. In a nutshell,
these attacks show that the intuition that evasive LWE evades the zeroizing regime is not always true, even in the
public-coin setting. However, by taking suitable precautions, security can be recovered as discussed below.

Malicious Sampler Attacks. The works of [AMYY25, HJL25, DJM+25] demonstrated that the general formulation of
evasive LWE, which allows for arbitrary malicious samplers, is false as stated. In particular, as related to the present
work, the works of [AMYY25, HJL25] showed (via essentially the same attack) that by carefully crafting a contrived
circuit to implement a PRF which is used (non black-box) in our scheme, the pre-condition can still be argued true
while the post-condition can be shown false. Additionally, besides attacking private coin versions of Evasive LWE that
are prevalent in the literature, the attacks by [AMYY25] also affect some public-coin variants, including the “circular,
small-secret evasive LWE” by [HLL23].

We view these attacks as an important step forward in our understanding of evasive LWE. Note that evasive LWE
should be seen as a family of assumptions parametrized by the description of the sampler and choice of error distributions,
which, if invoked in full generality, is now known to be false, even in the public-coin setting. However, as discussed
in [AMYY25], the original intuition by Wee [Wee22] and Tsabary [Tsa22] about the security of evasive LWE can be
recovered by taking precautions to identify and respect a “safe zone” for evasive LWE – thus, by refining/restraining the
formulation of evasive LWE, even the original construction (presented in the first online posting of this work) is secure.
In addition, we modify our original construction of prFE to implement a modulus reduction step, which negates the
effect of choosing contrived circuits in the construction – for this modified construction, we do not even know of any
attack using malicious samplers. We also remark that in the real world, the circuit representation of functions is chosen
by the key generator who is an honest party (it holds the master secret key), and we view the counter-examples emerging
from such circuit choices as indicating the limits of the assumption rather than the security of the existing constructions.
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Contrived Functionality Attacks. The work of [BDJ+24] and [AMYY25] show that there exists a contrived “self-
referential” functionality for which pseudorandom functional encryption or pseudorandom obfuscation cannot exist. As
discussed in [AMYY25], this result may be seen as analogous to the impossibilities known for the random oracle model
[CGH04] or virtual black box (VBB) obfuscation [BGI+01b]. In more detail, despite impossibilities known for ROM
and VBB obfuscation [CGH04, BGI+01b], the meaningfulness of ROM for practical security, and of VBB obfuscation
for restricted functionalities [Wee05, CRV10] is accepted widely. The pseudorandom functionalities that are useful for
our applications, such as computing blind garbled circuits or FE ciphertexts, are quite natural and do not fall prey to
such attacks.

Attacks by withholding information about B or P. The elegant work of [BÜW24] presents attacks against classes
of evasive LWE such that either B or P are not known to the adversary. In our case, both B and P are known to the
adversary – indeed P is publicly computable using auxiliary information.

Our Perspective. The emergence of attacks on any assumption, such as the recent ones on evasive LWE, can be
interpreted in various ways. While counter-examples can (and should) create concern about indiscriminately using the
assumption, one school of thought might be to completely discard the assumption by labeling it false and meaningless.
Another school of thought might be that counter-examples are also progress, and that they shed light on if/how the
assumption should be refined to regain security, and constructions from these refined assumptions are still meaningful
(especially in the absence of alternatives).

Our perspective is that disciplined new conjectures are important to make meaningful progress on problems that have
resisted solutions from standard assumptions. In this context, we believe that the evasive LWE assumption has played a
crucial role in enabling constructions that could not be built from plain LWE despite significant effort by the community
over several years. By examining carefully the nature of counter-examples and seeing whether there are meaningful
lessons to learn, we can hope to arrive at stable versions that allow to expand the boundaries of cryptography. These
constructions and their proofs could yield insights that would eventually enable candidates from standard assumptions
(as happened in the world of pairings, for instance) [Wat12, GWW19, AMY19, GZ21, KLVW23].

Finally, we remark that proposing principled new assumptions, by its very nature, highly non-trivial and it is
unrealistic to expect the perfect formulation in the very first attempt. In our judgment, a balance of caution and risk is
beneficial in this context.

1.4 Technical Overview
In this section, we present the core ideas that we develop in this work. Below X denotes a noisy version of X where the
exact value of noise is not important.

KP-ABE for Unbounded Depth by HLL. The seminal work of Boneh et al. [BGG+14] developed algorithms for
evaluating arithmetic functions on the ciphertext as well as the public key of an ABE scheme, which form the cornerstone
of several subsequent constructions. Their core technique is as follows: given an input x ∈ {0, 1}ℓ, and a matrix
A ∈ Zn×ℓm

q , one can homomorphically evaluate a circuit f : {0, 1}ℓ → {0, 1} on an “input encoding” matrix of form
A− x⊗G by multiplying on the right by a low norm matrix HA, f ,x to obtain the term A f − f (x)G. Here, G is a
special gadget matrix defined as follows. Let g = [1, 2, 22, . . . , 2log q]T and G = I⊗ gT. In key evaluation, one can
homomorphically evaluate a circuit f : {0, 1}ℓ → {0, 1} on A to obtain A f = A ·HA, f for some low norm matrix
HA, f . In ciphertext evaluation, given an attribute x and corresponding attribute encoding of the form sT(A− x⊗G),
which we refer to as BGG+ encoding, right multiplication by HA, f ,x yields sT(A f − f (x)G) without substantially
blowing up the noise in the encoding since HA, f ,x is low norm. Skipping several details, since the key generator can
compute A f = A ·HA, f , it can provide a matching key which allows the decryptor to cancel out the masking term
sTA f and proceed with decryption. We refer to HA, f and HA, f ,x as the PK and CT evaluation matrices respectively.

Providing Advice for Bootstrapping. The essential barrier in supporting circuits of unbounded depth for homomorphic
computation is that the norm of the matrix HA, f ,x grows exponentially with the depth of the circuit being computed,
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causing the the noise in the ciphertext encoding to blow out of control after some number of evaluations. The same
barrier was encountered while constructing fully homomorphic encryption (FHE), to resolve which, Gentry proposed
the beautiful “bootstrapping” idea. Roughly speaking, bootstrapping suggests performing homomorphic evaluation
of the decryption circuit on the large-noise ciphertext – this has the effect of internally throwing away the large noise
accumulated in the ciphertext and “refreshing” it with smaller, more manageable noise. Since this procedure can be
performed every time the ciphertext has accumulated large noise, the evaluator can keep on going! However, to execute
this approach, one needs to assume that the scheme satisfies circular security, namely it should be safe to provide a
ciphertext encrypting the scheme’s own secret key, as this is required for homomorphic decryption described above.

While it has been long known how to use circular security in the context of unbounded depth FHE [Gen09], its
utility in the context of ABE was uncovered only very recently, in an elegant work by Hseih, Lin and Luo [HLL23]
(HLL). In more detail, HLL supports unbounded homomorphism in ABE via two steps: (i) noise removal, and (ii)
bootstrapping. The noise removal step is via modulus reduction à la BV/BGV [BV11, BGV14] which destroys the
algebraic structure of the BGG+ encoding required for further evaluation, while the bootstrapping step makes use of a
circular encoding, or “advice”, which enables to restore the structure of the BGG+ encoding, making it suitable for
further evaluation. In more detail, the HLL advice has the following structure:

S = hcts(s), E = sT(Acirc − S⊗G)

Above, hcts(·) is an FHE ciphertext decryptable by secret key s denoted in the subscript – thus S is a circular FHE
ciphertext, and E is a BGG+ encoding with attribute S and re-using the FHE secret s as the LWE secret! The trick of
reusing the FHE secret as the LWE secret in the BGG+ encoding of attribute hcts(·), was introduced by Brakerski et
al. [BTVW17] and can lead to “automatic decryption” of the FHE ciphertext, as described next. Recall that in the
GSW FHE scheme [GSW13], the secret key is sT, a ciphertext for message yT is a matrix C and decryption computes
sTC to recover (a noisy version of) yT. Brakerski et al. [BTVW17] suggested “vectorizing” the BGG+ ciphertext
evaluation procedure so that homomorphic evaluation on the encoding produces a term of the form sT(A f − hcts(yT))

(i.e. without G). Now, the inner product of s and hcts(yT) causes FHE decryption to occur automatically and we obtain
the encoding sTA f + yT, where the noise in the encoding is low. It turns out that this term is exactly what is needed to
restore the structure of the ill-formed encoding obtained by step (i) of HLL – this allows to create a low noise BGG+

encoding which can be used to evaluate further. Put together, HLL prove the following:

Theorem 1.6. Assuming circular evasive LWE and LWE, there exists a very selectively secure kpABE scheme for
circuits of unbounded depth and attribute length ℓ with |mpk| = poly(λ, ℓ), |skC| = poly(λ), |ct| = poly(λ, ℓ).

Above circular evasive LWE is a new assumption introduced by HLL which “mixes” circularity into the recently
introduced evasive LWE assumption [Wee22, Tsa22].

Randomizing Advice for CP-ABE. Recently, Agrawal, Kumari and Yamada [AKY24a] (AKY) built upon the
construction by HLL to obtain the first ABE for Turing machines from lattice assumptions. A key technical contribution
of the AKY construction is a way to randomize the advice provided in the HLL ciphertext, making it suitable for
integration with Wee’s bounded depth CP-ABE. These techniques led to the first CP-ABE for unbounded depth circuits,
which they further leveraged to construct a (KP-)ABE for Turing machines. In more detail, the AKY transformation
requires computation of the following randomized HLL terms:

Sr = hctsr(sr), Er = sT
r (Acirc − Sr ⊗G)

Above, sr = sT(I⊗ r) where r is chosen by the key generator while s is chosen by the encryptor.
Evidently, neither party can provide the encodings directly, and while randomizing the message inside an FHE

ciphertext from s to sr is easy given knowledge of r, randomizing the secret key of FHE ciphertext is much more
challenging. To get around this difficulty, AKY suggest that the structure of the advice provided by the encryptor be
changed, so that the true power of FHE – which is to transform encoded messages rather than underlying secret keys –
be further leveraged. Thus, they provide:

T = hctt(s, sd), D = t⊺(A1 − (1, bits(T))⊗G)
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where sd is a PRF seed, t is the secret of a fresh FHE scheme and A1 is a public matrix of appropriate dimensions. Now,
one can homomorphically evaluate on the encoding D in bounded depth, using knowledge of T, to obtain

tTA′r + tThctt(Sr, Er) = tTA′r + (Sr, Er)

where A′r is some r dependent matrix and the equality follows by automatic decryption. To get rid of the masking term
tTA′r, the encryptor additionally provides tTC for some fixed matrix C and the key generator provides C−1(A′r) where
C−1(A′r) is not a true matrix inverse but rather a low norm matrix so that C ·C−1(A′r) = A′r. Together these allow the
decryptor to compute the term tTA′r and cancel it out from the encoding above, to recover (Sr, Er) in the clear.

The security of the above construction, relies on evasive LWE (aside from other assumptions), and depends crucially
on the fact that the computed terms (Sr, Er) are pseudorandom. Digging deeper into the AKY proof, the term sTP in
Evasive LWE can be essentially simplified to the advice terms (Sr, Er) which, therefore need to be pseudorandom for
invoking the assumption. Put together, AKY show the following:

Theorem 1.7. [AKY24a][Thm 5.6] Under LWE, circular tensor LWE and evasive LWE, there exists a very selectively
secure ABE for TM with |mpk| = poly(λ), |sk| = poly(λ, |M|), |ct| = poly(λ, |x|, t).

Above M is the Turing machine, x is the input and t is the worst case running time of M on any input. Note that
while the AKY construction does not need the circular evasive LWE assumption used by HLL, they require a circular
tensor assumption which is a new assumption that they introduce.

Compact Functional Encryption for Pseudorandom Functionalities. Our starting point is the observation that
the techniques developed in AKY are quite a bit more general and can be leveraged to compute functionalities beyond
the randomized HLL advice they were developed for. Taking a step back, let us analyze what their technique enables:
the encryptor provides an FHE ciphertext T of a message (say x), and a BGG+ encoding of attribute T with the FHE
secret doubling up as the encoding randomness. Homomorphic evaluation of any function f coupled with automatic
decryption allows to recover a masked version of f (x) and evasive LWE allows to cancel the mask. Thus, this technique
seems to enable computation of any function f on the input x, while keeping it hidden! Intuitively, security follows
from evasive LWE as long as the output of the functionality is pseudorandom, such as their (Sr, Er), but more generally
the output of any pseudorandom function, such as a PRF.

We show that the above intuition can be formalized to yield the first compact FE for pseudorandom functionalities,
namely, functionalities where the output is (pseudo)random for any given input that is seen by the adversary in the security
game. We sketch our construction for prFE below. In the following, f : {0, 1}L → {0, 1}ℓ has the property that the output
of f is pseudorandom for every input seen by the adversary. We also use a PRF : {0, 1}λ × {0, 1}λ → [−q/4, q/4].
The usage of PRF is introduced for the security reasons which we will highlight later.

− The setup algorithm samples matrices Aatt and (B, B−1) of appropriate dimensions and outputs mpk := (Aatt, B)
and msk := B−1. Here, B−1 is the trapdoor for B which allows to compute short preimages B−1(U) for any target
matrix U.

− The encryptor on input x first samples a GSW secret key s and a PRF seed sd ← {0, 1}λ. It then computes a
GSW ciphertext, X = hcts(x, sd), using public key Afhe = (Āfhe s̄⊺Āfhe + e⊺fhe) and randomness R, – followed
by a BGG+ encoding of X using randomness s as c⊺att := s⊺(Aatt − X⊗G) + e⊺att. It additionally computes
c⊺B := s⊺B + e⊺B and outputs the ciphertext ct = (cB, catt, X).

− The key generator on input msk = B−1 and function f does the following.

(a) Samples a nonce r← {0, 1}λ and defines function F[ f , r], with f and r hardwired, as

F[ f , r](x, sd) = f (x) ⌊q/2⌉+ PRF(sd, r).

It then computes the FHE evaluation circuit VEvalF w.r.t. the function F[ f , r] (this can be computed using the
knowledge of F[ f , r]). Note that the circuit VEvalF can be used to compute on a GSW ciphertext encoding an
input, say y, to recover a GSW ciphertext encoding F[ f , r](y).
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(b) Next, it computes the matrix HF
Aatt

for the circuit VEvalF using the public matrix Aatt. Recall that the matrix
HF

Aatt
and HF

Aatt,X (which can be computed given VEvalF, Aatt and X) will satisfy the relation

(Aatt − X⊗G)HF
Aatt,X = AattHF

Aatt − VEvalF(X).

(c) It sets AF = Aatt ·HF
Aatt

, samples K← B−1(AF) and outputs sk f = (K, r).

− The decryption on input sk f = (K, r) and ct = (cB, catt, X) work as follows.

(a) It first computes the matrix HF
Aatt,X for the circuit VEvalF using Aatt and X.

(b) Next, it computes z := c⊺B ·K− c⊺att ·HF
Aatt,X, rounds z co-ordinate wise and output the most significant bits.

To see the correctness of our scheme, we note that

c⊺att ·HF
Aatt,X ≈ s⊺AattHF

Aatt − s⊺(hcts(F(x, sd))) ≈ s⊺AF − F(x, sd), (1)

where the second approximate equality follows by automatic decryption. Now to remove the masking term "s⊺AF" we
compute c⊺B ·K ≈ s⊺AF and thus z ≈ s⊺AF − s⊺AF + F(x, sd) = f (x) ⌊q/2⌉+ PRF(sd, r). Now, rounding gives
us bits of f (x) as long as |PRF(sd, r)| ≤ q/4. The exact decryption error is

e⊺BK + PRF(sd, r)− (e⊺fheRF + e⊺attH
F
Aatt,X) (2)

where VEvalF(bits(X)) = AfheRF − (0 F[ f , r](x, sd))⊺.

Our construction supports functions of bounded polynomial depth dep = poly(λ) and has the following efficiency

|mpk| = L · poly(dep, λ), |sk f | = ℓ · poly(dep, λ), |ct| = L · poly(dep, λ).

As seen above, our construction achieves compactness.

Security. Intuitively, our notion of security says that so long as the output of the functionality is pseudorandom, the
ciphertext is pseudorandom, given all the additional information available to the adversary. We denote this security
notion as prCT security. In more detail, let Samp be a PPT algorithm that on input 1λ, outputs

( f1, . . . , fQkey , x1, . . . , xQmsg , aux ∈ {0, 1}∗)

where Qkey is the number of key queries, Qmsg is the number of message queries. We say that a prFE scheme is secure
if ( mpk, aux, f1, . . . , fQkey ,{

Enc(mpk, xj)
}

j∈[Qmsg ]
, sk f1 , . . . , sk fQkey

)
≈c

( mpk, aux, f1, . . . , fQkey ,{
δj ← CT

}
j∈[Qmsg ]

, sk f1 , . . . , sk fQkey

)

given
(

aux, f1, . . . , fQkey , { fi(xj)}i∈[Qkey ],j∈[Qmsg ]

)
≈c

(
aux, f1, . . . , fQkey , {∆i,j}i∈[Qkey ],j∈[Qmsg ]

)
where (mpk, msk) ← Setup(1λ), sk fi

← KeyGen(msk, fi) for i ∈ [Qkey], CT is the ciphertext space and ∆i,j ←
{0, 1}ℓ for i ∈ [Qkey], j ∈ [Qmsg].

The careful reader may have noticed that the above definition has a multi-challenge flavour, even though the
construction is in the public-key setting. This peculiarity arises because single-challenge security does not generically
imply multi-challenge security for our definition. To see this, recall the standard hybrid argument to prove multi-challenge
security from single-challenge security: the proof follows a sequence of hybrids, where we simulate some of the
ciphertexts honestly, while trying to change a particular honest ciphertext to be random. Now, to generate honest
ciphertexts, we need to know the corresponding plaintexts. However, this could ruin the precondition for invoking
single-challenge security for the target ciphertext, since knowing some inputs may ruin the pseudorandomness of outputs,
if the inputs are correlated to each other.
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We observe that the above definition is incomparable to the standard indistinguishability (IND) security definition
that is used in FE schemes [BSW11]. Indeed, IND style security does not appear meaningful for our functionality.
Recall that in the IND game, the adversary must submit two challenge messages m0 and m1 and request keys for
functions fi such that fi(m0) = fi(m1). However since the output fi(mb) is pseudorandom for b ∈ {0, 1}, the event
fi(m0) = fi(m1) occurs only with negligible probability1. However, our definition has a simulation security flavour
and is very handy for applications, as we will see.

We provide some high level intuition for our proof of security for prFE. For simplicity, we focus here on the single
challenge setting and refer the reader to the main body for the detailed proof in the multi-challenge setting. The proof
begins by invoking evasive LWE with an appropriate sampler – this allows to reduce the reasoning to the distribution of
the pre-condition, which replaces the term K = B−1(AF) with c⊺B ·K = s⊺AF. Now, as we see in Equation (1),

c⊺att ·HF
Aatt,X = s⊺AF − F(x, sd) = s⊺AF − f (x) ⌊q/2⌉ − PRF(sd, r).

This allows to simplify these two terms to s⊺AF and f (x) ⌊q/2⌉+ PRF(sd, r), where the latter term is pseudorandom,
hence simulatable and can be ignored hereafter. The terms that remain can now be handled by relying on LWE using
standard techniques [Wee22, HLL23, AKY24a]. Please see Section 3 for the detailed proof.

Handling Malicious Samplers. As discussed above, subsequent to the initial posting of this work on eprint, [AMYY25]
demonstrated that the general formulation of evasive LWE is false as stated. At a very high level, the attack, building
upon clever ideas by [HJL21], shows a way to create a correlation between the error term resulting from FHE evaluation
(and automatic decryption) with the PRF output by using a contrived circuit to implement the PRF.

As suggested in [AMYY25], there are multiple ways to restrain malicious samplers to prevent such attacks. The
simplest one is to leverage the fact that the secret key is computed by the key generator who is an honest party (it holds
the master secret key) in the real world, and can ensure that the circuit representation of any function f as well as the
PRF can be made canonical by using the universal circuit or a garbled circuit representation. Nevertheless, here, we
present an alternate fix to the scheme which uses modulus reduction to “throw away” the accumulated error after FHE
evaluation, replacing it with rounding error which is no longer correlated with the PRF seed, even for a contrived circuit
chosen by the adversary. To begin, we provide a high level outline of the attack.

The Attack. The adversary, given cB, catt, X, and K, computes c⊺B ·K− c⊺att ·HF
Aatt,X. Simplifying, she obtains

f (x) ⌊q/2⌉+ e⊺BK + PRF(sd, r)− (e⊺fheRF + e⊺attH
F
Aatt,X)

By correctness, the adversary recovers f (x) and can therefore strip it away to obtain PRF(sd, r) + e⊤B K− e⊤fheRF −
e⊤attHF

Aatt,X, as described in Equation (2). Now, in the proof, the error term e⊤B K is replaced by i.i.d error eP and is
used to break any correlation between PRF(sd, r) and e⊤fheRF − e⊤attHF

Aatt,X. This allows us to prove the pre-condition
based on just plain LWE.

However, in the real world, e⊤B K cannot be used to break the dependence between the above two terms. Then, by
choosing the circuit implementing F in some contrived way, the authors set it up so that PRF(sd, r) and e⊤fheRF are
correlated, and in particular cancel each other modulo 2. Note that these terms are small, and do not wraparound modulo
q, so computing mod 2 is well defined. Now we are left with e⊺BK + e⊺attHF

Aatt,X – but these are linear equations with
known coefficients, in the error terms of the original encodings. Using sufficiently many equations, the adversary can
easily recover the error terms. On the other hand, had the term e⊺BK been truly random, such a system of equations
would not admit any solution. This leads to a distinguishing strategy.

Fixing the Scheme. We describe an approach that helps us break the problematic correlation even if the circuit
implementation is chosen in a contrived manner – our idea is to use modulus reduction get rid of the problematic error
terms involving e⊺fheRF so that the correlation is destroyed. Informally, we fix a rounding constant M ∈ Z such that

1A generalization of IND security which requires fi(mb) to be pseudorandom and hence computationally indistinguishable for any b might have
been more suitable.
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∥∥e⊺fheRF
∥∥ < M which implies

⌊
(e⊺fheRF)/M

⌋
= 0. This gets rid of the problematic error, replacing it with rounding

error which is uncorrelated with the PRF seed. For concreteness, we elaborate the changes that must be made to our
prFE construction to incorporate the above fix.

1. In setup algorithm, we output M as a part of mpk. The encryption algorithm remains the same.

2. The key generation algorithm has the following changes.

− We parse F[ f , r](x, sd) = f (x) ⌊q/2⌉+ PRF(sd, r) = M · fhigh(x, sd) + flow(x, sd), where fhigh(x, sd) ∈
[0, q/M]ℓ and flow(x, sd) ∈ [0, M− 1]ℓ. Next we define functions Fhigh := M · fhigh and Flow := M · flow,
which on input (x, sd) outputs M · fhigh(x, sd) and M · flow(x, sd), respectively.

− Next, it computes circuits VEvalhigh and VEvallow for the functions Fhigh and Flow, respectively and then uses
these circuits to compute the matrices HFhigh

Aatt
and HFhigh

Aatt
(as described in the previous sketch).

− It sets

AF = M ·

Aatt ·H
Fhigh
Aatt

M

+

⌊
Aatt ·HFlow

Aatt

M

⌋

and outputs sk f = (K, r) where K = B−1(AF).

3. The decryption algorithm is the same except that we compute z differently as

z := c⊺B ·K−

M ·

 c⊺att ·H
Fhigh
Aatt,X

M

+

⌊
c⊺att ·H

Flow
Aatt,X

M

⌋
We expand the correctness of the scheme to see how the above changes helps us get rid of the problematic noise

terms while decryption. Observe that

c⊺att ·H
Fhigh
Aatt,X = (s⊺(Aatt − bits(1, X)⊗G) + e⊺att)H

Fhigh
Aatt,X

= s⊺Ahigh − Fhigh(x, sd) + e⊺fheRhigh + e⊺attH
Fhigh
Aatt,X

=⇒

 c⊺att ·H
Fhigh
Aatt,X

M

 =

 s⊺Ahigh −M · fhigh(x, sd) + e⊺fheRhigh + e⊺attH
Fhigh
Aatt,X

M


=

 s⊺Ahigh + e⊺fheRhigh + e⊺attH
Fhigh
Aatt,X

M

− fhigh(x, sd)

= s⊺
⌊

Ahigh
M

⌋
− fhigh(x, sd) w.h.p.

where we set
∥∥∥e⊺fheRF + e⊺attH

Fhigh
Aatt,X

∥∥∥ ≪ M such that the last equation in the above will hold with high probability.

Similarly, we get

⌊
c⊺att·H

Flow
Aatt ,X

M

⌋
= s⊺

⌊
Alow

M

⌋
− flow(x, sd) w.h.p. The rest of correctness follows from the same

argument as in the previous sketch. Note that the final error obtained now is PRF(sd) + err where (please see
Equation (8))

err = M · e⊺s,high + e⊺s,low + M · errhigh + errlow

= M ·
(

s⊺
⌊

Ahigh
M

⌋
−
⌊

s⊺
Ahigh

M

⌋)
+

(
s⊺
⌊

Alow
M

⌋
−
⌊

s⊺
Alow

M

⌋)
+ M · errhigh + errlow

where errhigh, errlow ∈ {0, 1}ℓ are rounding errors and matrices Ahigh, Alow are publicly computable matrices. We
conjecture flooding for appropriately defined sizes.
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Fixing the Assumption. The authors of the attacks [AMYY25] also suggest multiple ways to refine the assumption to
sidestep malicious samplers that may lead to attacks such as the above. We follow their approach and restrict the sampler
for which evasive LWE is conjectured true. To the best of our understanding, the original intuition of Evasive LWE still
holds if malicious samplers such as the above are avoided, and counter-measures described by [AMYY25] are applied.

Relation to Circular Small-Secret Evasive LWE of HLL23. In Section 3.4, we show that our prFE construction can be
based on a variant of the circular small-secret evasive LWE of [HLL23] – the only difference between the assumption
stated in [HLL23] and the one used in Section 3.4 is that the FHE encoding in [HLL23] only encodes the secret s,
namely S = hcts(s), whereas in our case, this must additionally include x, i.e. S = hcts(s, x). This difference is
created by the distinction between ABE and FE, since the attribute x can be public in the former and must be hidden in
the latter. Hence, in [HLL23], x can be output by the sampler directly, whereas in our case, it cannot.

Whether this fundamentally changes the assumption is a matter of opinion – in any event the [HLL23] version of
circular small-secret evasive LWE is also broken in [AMYY25] by a very similar attack as on the private coin evasive
assumption – but we find the connection interesting since the assumption of [HLL23] is considered public coin. We
show in Section 3.4 that similar refinement of this assumption can also avoid known attacks.

Applications. While it is exciting to have a compact FE scheme for any nontrivial functionality from purely
(conjectured) post-quantum assumptions, we show that our prFE is also surprisingly powerful, and yields important
applications.

Removing Circularity from HLL. We demonstrate the utility of prFE by showing that it can be used to bootstrap a
very weak kpABE scheme into a full fledged one. This enables us to improve the assumptions underlying prior works as
discussed above.

In more detail, our weak kpABE scheme, denoted by 1ABE is a secret key scheme which only supports a single
ciphertext and single secret key query – this object is so simple that it can be constructed merely from one way functions.
This is lifted using prFE to build a full fledged public key ABE scheme supporting unbounded ciphertexts and unbounded
key queries. Our compiler does require 1ABE to satisfy some structural properties:

1. Decomposability: The computation 1ABE.KeyGen(C) can be decomposed into {1ABE.KeyGeni(Ci)}i∈|C|
where Ci denotes the i-th gate of C and has fixed polynomial size. Here, the depth of ABE.KeyGeni is fixed and
independent of the parameters of C. Moreover, output of 1ABE.Enc should be computable by a circuit of fixed
depth, irrespective of the length of x input to 1ABE.Enc.

2. Blindness: The 1ABE ciphertext and secret key should be pseudorandom when decryption is not allowed.

Given the above properties, the core idea is to use prFE to generate randomized versions of bits of 1ABE secret keys and
ciphertexts using randomness generated jointly by the encryptor and the key generator. This is supported by prFE of
fixed depth because of property 1 and respects the constraints imposed by prFE because of property 2. Thus we obtain a
public key scheme which supports unbounded ciphertexts and keys. We outline our compiler below.

− The setup algorithm generates (prFE.msk, prFE.mpk) using prFE.Setup and outputs these as msk and mpk
respectively.

− The encryption algorithm on input mpk, attribute x and message µ computes a prFE ciphertext, prFE.ct, encoding
input (x, µ, sd) where sd← {0, 1}λ is a PRF seed.

− The keygen algorithm on input msk = prFE.msk and circuit C works as follows. It samples nonce r← {0, 1}λ and
defines functions Fkey,i[r, Ci], with r and i-th gate of C hardwired, for i ∈ [|C|] and Fct[r] as follows

(a) Fkey,i[r, Ci] on input (x, µ, sd), first computes 1ABE.msk using the randomness PRF(sd, r), i.e. 1ABE.msk←
1ABE.Setup(1λ; PRF(sd, r)) and then outputs 1ABE.skCi ← 1ABE.KeyGeni(1ABE.msk, Ci).

(b) Fct[r] on input (x, µ, sd), first computes 1ABE.msk as above and then outputs an 1ABE.ct encoding message µ
w.r.t. attribute x.
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It then computes prFE keys {prFE.skkey,i}i∈[|C|] and prFE.skct corresponding to functions {Fkey[r, i]}i∈[|C|] and
Fct[r], respectively. It outputs skC = ({prFE.skkey,i}i∈[|C|], prFE.skct).

− The decryption algorithm on input skC = ({prFE.skkey,i}i∈[|C|], prFE.skct) and ct = prFE.ct first runs the prFE
decryption, using prFE keys and ciphertext prFE.ct, to compute

Fkey,i[r, Ci](x, µ, sd) = 1ABE.skCi , Fct[r](x, µ, sd) = 1ABE.ct.

Finally it sets 1ABE.skC = (1ABE.skC1 , . . . , 1ABE.skC|C|) and outputs the decryption result as 1ABE.Dec(1ABE.skC, 1ABE.ct).

Correctness follows from those of the prFE and 1ABE: By the correctness of prFE, the decryptor recovers the ciphertext
and secret key pair of 1ABE and by the correctness of 1ABE, one can recover the message µ when C(x) = 1. To prove
the security, it suffices to show that ct = prFE.ct is pseudorandom. By the security of prFE, it suffices to show that the
decryption results of the ciphertext using the secret keys are jointly pseudorandom. This follows from the security of
1ABE, since the decryption results are ciphertext and secret key pairs, where the decryption is not possible for each pair.
Please see Appendix B for further details.

Building 1ABE. It remains to instantiate 1ABE with the desired properties. Fortunately, these properties are relatively
weak and easily satisfied. For instance, we can instantiate 1ABE simply by using blind garbled circuits [BLSV18]
(Section 2.6) – here blindness is precisely the property that the garbled circuit and its labels should be pseudorandom,
when the evaluation result of the garbled circuit using the given labels is random. Given a blind garbled circuit, the
labels of the garbled circuit form the 1ABE ciphertext, the set of garbled gates form the 1ABE key, and decomposability
follows from the structure of a garbled circuit, where we can garble each gate independently. Care needs to be taken
to modify the circuit C in the secret key so that when C(x) = 0, it outputs a random string rather than ⊥ so as to be
compatible with our prFE. This yields the following theorem.

Theorem 1.8. Assuming LWE and Evasive LWE, there exists a very selectively secure kpABE scheme for circuits of
unbounded depth and attribute length ℓ with |mpk| = ℓ · poly(λ), |skC| = |C| · ℓ · poly(λ), |ct| = ℓ · poly(λ).

Note that HLL relied on a new assumption called circular evasive LWE, which we replace by simple evasive LWE
above albeit at the cost of larger parameters – in particular the secret key is large and scales with |C|.

Next, we show that by using the abstraction of Attribute Based Laconic Function Evaluation (abLFE) [QWW18],
we can match the parameters by HLL. Intuitively abLFE allows to compress a circuit C into a short digest, which is then
used by an encryptor to compute a ciphertext ct for some attribute, message pair (x, µ). The decryptor, given C, ct can
recover µ if and only if C(x) = 1. For our compiler, we require an abLFE scheme where the encryption algorithm can
be decomposed into an offline and an online phase. The offline encryption algorithm takes as input (x, µ) and outputs
ctoff and a private state st. The online encryption algorithm takes as input (st, digest) and outputs cton. This property
is satisfied by the construction of [HLL23].

At a high level, our kpABE uses the compression of the abLFE to shorten the secret key. The key generation
computes a digest Ĉ for the circuit C, then computes a prFE key for a circuit which outputs the online part of abLFE
ciphertext. The encrypt algorithm computes the offline part of the abLFE ciphertext and the state st using input (x, µ).
It then encrypts st using prFE encryption. Now, prFE decryption allows to recover the online part of the ciphertext, and
abLFE decryption allows to recover µ if C(x) = 1. We refer the reader to Appendix B.4 for details. We prove the
following theorem:

Theorem 1.9. Under the circular LWE assumption and the Evasive LWE assumption, there exists a very selectively
secure kpABE scheme for circuits of unbounded depth and attribute length ℓ with

|mpk| = poly(ℓ, λ), |skC| = poly(λ), |ct| = poly(ℓ, λ).

Above, the parameters achieved match those of HLL and the assumptions are strictly weaker.
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Constructing kpABE for Turing machines from Weaker Assumptions. Next, we turn our attention to kpABE for
Turing machines. We show that using prFE and a kpABE for unbounded depth circuits, we can build a cpABE for
unbounded depth circuits and further a kpABE for Turing machines with parameters matching AKY. The construction
for cpABE is as follows.

− The setup algorithm generates (prFE.msk, prFE.mpk) using prFE.Setup and outputs these as cpABE.msk and
cpABE.mpk respectively.

− The encryption algorithm, given circuit C and message µ, works as follows: It samples randomness Rkey and computes
(kpABE.mpk, kpABE.msk) = kpABE.Setup(1λ, 1ℓ; Rkey). Next, it computes a prFE.ct encoding (Rkey, sd, µ),
where sd is a PRF key, and a kpABE secret key for circuit C as kpABE.skC ← kpABE.KeyGen(kpABE.msk, C).It
outputs cpABE.ct := (prFE.ct, kpABE.mpk, kpABE.skC).

− The key generation algorithm, given msk and attribute x outputs a prFE key, prFE.skF, for the function F[x, r] where
r← {0, 1}λ. It outputs cpABE.skx := prFE.skF.
The function F[x, r] on input (Rkey, sd, µ) first computes (kpABE.mpk, kpABE.msk) using the randomness Rkey
and then outputs a kpABE ciphertext kpABE.ct encoding µ w.r.t. attribute x using randomness PRF(sd, r).

− The decryption algorithm on input secret key prFE.skF and ciphertext cpABE.ct := (prFE.ct, kpABE.mpk, kpABE.skC)
first runs the prFE decryption to obtain F[x, r](Rkey, sd, µ) = kpABE.ct and finally performs kpABE decryption
using kpABE.ct and kpABE.skC.

Correctness follows from those of kpABE and prFE: The decryption of prFE ciphertext using the prFE secret
key yields kpABE ciphertext encrypted under x. This kpABE ciphertext can be decrypted using kpABE.skC when
C(x) = 1. To prove the security, we show prFE.ct is pseudorandom. By the security of prFE, it suffices to show that the
decryption results of prFE.ct are pseudorandom. This follows from the security of kpABE, since the decryption results
are kpABE ciphertexts which cannot be decrypted by kpABE.skC. We finally note that while the above overall proof
strategy works when the underlying kpABE has pseudorandom ciphertext, we have to consider more general case where
underlying kpABE does not necessarily have pseudorandom ciphertext. Therefore, the final construction as well as the
security proof are slightly different. We refer the reader to Section 7 for details. Thus, we obtain the following theorem.

Theorem 1.10. Under the circular LWE assumption and the Evasive LWE assumption, there exists a very selectively
secure cpABE scheme for circuits of unbounded depth and attribute length ℓ with

|cpABE.mpk| = poly(λ), |cpABE.skx| = poly(ℓ, λ), |cpABE.ct| = poly(λ).

We note that the cpABE scheme instantiated as above replaces the reliance on circular tensor LWE and LWE
assumptions used by AKY by simply circular LWE. It also achieves a shorter mpk as compared to that of AKY (which
is poly(λ, ℓ)), other parameters being the same.

AKY provided a compiler that uses kpABE for bounded depth circuits and cpABE for unbounded depth circuits to
achieve kpABE for Turing machines. Plugging our new cpABE into this compiler, we obtain:

Corollary 1.11. Under the circular LWE assumption and evasive LWE assumption, there exists a very selectively secure
ABE for TM with the following parameters:

|mpk| = poly(λ), |sk| = poly(λ, |M|), |ct| = poly(λ, |x|, t).

In terms of parameters, the above theorem matches those of AKY. In terms of assumptions, it provides a strict
improvement, as discussed above. Later, by instantiating the underlying kpABE to be one with optimal parameters
(constructed below), we will obtain a cpABE scheme for unbounded depth circuits with optimal parameters – please see
Section 7 for details.
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1.4.1 The Quest for Optimal Parameters

Achieving optimal parameters is a central open question in the construction of ABE schemes, and one which has received
much attention in the literature [JLL23, Wee24]. Ideally, we wish to obtain optimal parameters for kpABE and cpABE
for unbounded depth circuits and moreover, from the weakest assumptions possible. So far, we do not know how to
step around the usage of evasive LWE either for unbounded depth kpABE or even for bounded depth cpABE, so an
outstanding open question is:

Can we construct kp/cp ABE for unbounded depth circuits with optimal parameters from LWE and evasive LWE?

Below, we answer the above question in the affirmative. To achieve optimality, we will need a result from our companion
paper [AKY24b], which we use black-box below. While reliance on the companion work is not needed to improve the
assumptions and match the parameters from HLL and AKY as discussed above, we are aiming for optimality, which
necessitates this dependence as discussed previously.

Wishful Thinking: Obfuscation to the Rescue? Since we do not wish to rely on any kind of circularity assumption, we
return to our construction of kpABE from 1ABE (which we built using blind garbled circuits) and prFE as a starting point,
and ask if we can compress the parameters. Observe that the kpABE secret key in this case contains prFE secret keys for
outputting the randomized versions of the 1ABE ciphertext and secret key, i.e. skC = {prFE.skkey,i, prFE.skct,j}{i,j}.
As discussed above, this approach crucially relies on the decomposability of the secret key and ciphertext of the underling
1ABE scheme, which allows it to randomize and output these “piece-wise” – gate by gate for the circuit and bit by bit
for the input.

Suppose, as wishful thinking, one could have an obfuscation of a program which, given an index within the 1ABE
ciphertext and secret key, could output the appropriate randomized garbled gate/label – this would allow to make the
secret key and ciphertext size independent of the circuit and attribute size, and allow us to achieve optimal compression.
Can such an approach be realized?

Let us examine the possibility. It is well known [AJ15, BV18] that compact FE for general circuits can be compiled
into compact multi-input FE, which in turn can be compiled into iO for general circuits. Perhaps we can hope that such
a compiler also be applied to our compact prFE to obtain multi-input prFE and iO for pseudorandom functionalities.
Indeed this is true – in our companion work [AKY24b], we show that a similar compiler as [AJ15, BV18] can be made
to work, albeit via a very different proof technique (since our security notion is itself quite different). However, even
assuming the existence of iO for pseudorandom functionalities, the problem is not solved because:

1. The FE to iO compiler suffers exponential loss in the reduction. Therefore, if we use iO, we do not get security
from polynomial assumptions. Since we are finally constructing only ABE schemes, the reliance on exponential
security feels too strong.

2. Even if we use iO, the problem of compression does not get solved because we require the program to “authenticate”
the input and only provide the output for the legitimate input. As an example, it should not be possible to obtain
a ciphertext component for xi = 0 if xi = 1. This would require hardwiring the input x (similarly C) into the
obfuscation which would bring us back to square one!

We resolve these issues by observing that the second issue can, surprisingly, be used to overcome the first. This leaves
us with the second issue, to resolve which, we define a new notion which we call laconic poly-domain obfuscation for
pseudorandom functionalities, which may be of independent interest.

Let us begin with trying to resolve the first issue: observe that the second issue tells us that we need obfuscation for
a very special input domain – one that corresponds to the gates of our particular C or the bits of our particular x, and
that inputs outside this domain should not be accepted. This immediately has the effect of shrinking down the domain
size from exponential to polynomial! While it is as-yet unclear how to force the domain to be restricted to the special
polynomial sized set we require, it at least shows that supporting a polynomial sized domain suffices. We term an
obfuscation for circuit with polynomial sized domain as “Poly-Domain Obfuscation” 2. We define iO for pseudorandom
circuits which have polynomial sized domain (denoted by pPRIO ) as follows.

2The informed reader may wonder about the connection with XIO [LPST16] – note that in XIO, the size of the obfuscated circuit is allowed to be
only slightly sublinear in the size of the truth table. In contrast, the efficiency requirement of our notion is the same as standard iO.
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1. Obf(1λ, C)→ obf. The obfuscation algorithm takes as input the security parameter λ and a circuit C : [N]→ [M]
with size(C) ≤ L for some arbitrary polynomial L = L(λ). It outputs an obfuscation of the circuit obf.

2. Eval(obf, x) → y. The evaluation algorithm takes as input an obfuscated circuit obf and an input x ∈ [N]. It
outputs y ∈ [M].

Security states that Obf(1λ, C) is pseudorandom if the truth table of C is pseudorandom. Please see Section 2.8 for a
formal definition. Restricting the input space to be of polynomial size helps us to avoid the exponential loss of the
transformation as discussed above. We now invoke a theorem from our companion work:

Theorem 1.12 ([AKY24b]). Assuming LWE and evasive LWE assumptions, there exists a secure pPRIO scheme.

We now turn to the second issue, which we resolve by defining a new primitive as described next.

Laconic Poly-Domain Obfuscation for Pseudorandom Functionalities. In pPRIO, we obfuscate circuits with a
polynomial-sized input domain of the form 1, 2, . . . , N. However, we must now find a way to have more control on what
this polynomial set can be, so that we can implement some “authentication” of the inputs without making the size of
the obfuscated circuit grow with the domain size, as discussed above. Towards this, we extend pPRIO to introduce
the new notion of laconic pPRIO, where the input domain can be defined as X := X1, . . . , XN for arbitrary strings
X1, . . . , XN ∈ {0, 1}ℓ, with arbitrary length ℓ. The obfuscated circuit allows for the evaluation of inputs that are in the
set X := {X1, . . . , XN}, but it does not allow evaluation for any inputs outside this set. This is exactly what we want!
Looking ahead, the set X1, . . . , XN will be instantiated with the gates of C or the bits of x in the final construction.

To define laconic pPRIO, we modify the pPRIO syntax so that, in order to obfuscate a circuit with a restricted input
domain X, the obfuscator only needs a short digest of X, whose size does not depend on N, rather than the entire
description of it. This results in a compact obfuscation whose size is independent of N. Now, the evaluation of an input
belonging to X can be performed given the description of X in the clear. We present our definition next.

1. LDigest(1λ, X = {Xi}i∈[N])→ dig. The digest algorithm takes as input the security parameter λ and an input
space X of the form X = {Xi ∈ {0, 1}ℓ}i∈[N] for some ℓ = ℓ(λ) and N ∈N. We assume that X encodes the
information of ℓ and N and one can retrieve them efficiently. It outputs a string dig.

2. LObfuscate(1λ, dig, E)→ Lobf. The encode algorithm takes as input the security parameter λ, string dig and a
circuit E : {0, 1}ℓ → {0, 1}L whose size is S. It outputs a ciphertext Lobf.

3. LEval(X, Lobf) → Y. The decode algorithm takes as input X = {Xi ∈ {0, 1}ℓ}i∈[N] and Lobf. It outputs
Y = {Yi ∈ {0, 1}L}i∈[N].

For efficiency, we need that the size of dig = LDigest(1λ, X) should be bounded by poly(λ, S). In particular, the size
of dig should be independent of N. For security, we require (roughly) that:

If (X, E(X1), . . . , E(XN)) ≈c

(
X, ∆1 ← {0, 1}L, . . . , ∆N ← {0, 1}L

)
then

(
X, LObfuscate(1λ, dig, E)

)
≈c (X, δ← O)

where dig← LDigest(1λ, X = {Xi}i∈[N]) and O denotes the output space of LObfuscate algorithm.

Constructing Laconic Poly-Domain Obfuscation. It remains to build laconic pPRIO. To do so, we use pPRIO in
addition to blind garbled circuits (bGC) and blind batch encryption (BBE). Since pPRIO and bGC have been introduced
earlier, we recall the notion of BBE [BLSV18] here. Intuitively, BBE allows to hash an input x so that encryption is
performed against the hash of x instead of x together with some index i ∈ [|x|], and decryption allows to recover one of
two messages depending on the ith bit of x3.

3The informed reader may notice similarities with laconic oblivious transfer [CDG+17].
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In more detail, a BBE scheme BBE = (Setup, Gen, SingleEnc, SingleDec) is defined as follows: The setup algorithm
on input security parameter λ and key length N outputs a common reference string crs. The Gen algorithm on input crs
and a string x ∈ {0, 1}N (to be used as secret key) outputs a hash value h to be used as a public key. The SingleEnc
algorithm on input (crs, h, i ∈ [N], (m0, m1) ∈ M2) outputs a (single) ciphertext ct. The SingleDec algorithm on
input (crs, x, i ∈ [N], ct) outputs a message m ∈ M. For correctness, it is required that mb is recovered if xi = b and
h is the hash of x. Security requires the other message to remain hidden. The blindness of the scheme states that if the
encrypted message is random then the ciphertext is indistinguishable from random. We give a construction of a BBE
scheme from LWE satisfying these properties in Appendix A.

The basic intuition behind the construction of laconic pPRIO (denoted by LprIO) is as follows. To restrict the
circuit evaluation to a special input domain X, we use the BBE algorithm Gen to generate the hash h of X and output
this as part of the digest. The obfuscate algorithm, given as input a circuit E now provides a pPRIO obfuscation of
another circuit which garbles E and generates BBE encryptions of its labels using the hash. The BBE ciphertext can be
decrypted to recover the appropriate label, using which, the garbled circuit can be executed. In more detail:

1. The setup algorithm compresses the input domain X = {Xi ∈ {0, 1}ℓ}i∈[N] by hashing it using BBE.Gen into a
short hash value h. It outputs dig = h.

2. The obfuscate algorithm LObfuscate(1λ, dig, E) outputs a pPRIO obfuscation, pPRIO.obf, of C[dig, E].
The circuit C[dig, E] on input i ∈ [N] first computes bGC garbled circuit Ẽi and input labels labi,j,b for
j ∈ [ℓ], b ∈ {0, 1} – next, it encrypts the bGC labels (labi,j,0, labi,j,1) using BBE encryption and finally outputs
Ẽi and BBE ciphertexts BBE.cti,j. The BBE ciphertexts are encrypted so that one can retrieve the labels for Xi
for Ẽi if a decryptor knows X.

3. The LEval(X, Lobf) algorithm first runs pPRIO evaluation on pPRIO.obf and i ∈ [N] to obtain bGC garbled
circuit Ẽi and BBE ciphertexts BBE.cti,j for j ∈ [ℓ]. Next it runs BBE decryption using X, index (i− 1)ℓ+ j
(this corresponds to j’th bit of Xi) and BBE.cti,j to get labels {labi,j}j∈[ℓ] corresponding to Xi. Finally, it runs
bGC evaluation using Ẽi and {labi,j}j∈[ℓ] to obtain E(Xi) for all i ∈ [N].

Correctness is immediate given the decryption outline above. We then discuss security. Our goal is to show that
pPRIO.obf is pseudorandom assuming E(X1), . . . , E(XN) are pseudorandom. By the security guarantee of pPRIO, it
suffices to prove that the truth table {C[dig, E](i) = (Ẽi, {BBE.cti,j}j)}i∈[N] of the circuit C[dig, E] is pseudorandom.
To show this, we first replace the labels that are not corresponding to Xi encrypted inside BBE.cti,j with random ones
using the security of BBE. Then, by the security of bGC, we replace the garbled circuit Ẽi and labels corresponding to
Xi with the simulated one, computed from E(Xi). We then replace {E(Xi)}i with random strings, which can be done
by invoking the assumption of the security definition. Then, by the blindness of bGC, Ẽi and labels can be replaced with
random strings. Finally, by the blindness of BBE, we can replace {BBE.cti,j}j with random strings, since they encrypt
random strings.

Unfortunately, the above proof strategy does not work as described. This is because we assumed in our description
above that the output of the pPRIO is pseudorandom, which is required for the security of LprIO to hold. However,
unfortunately, this is not the case. Rather, what we have is that the obfuscation of pPRIO can be divided into online and
offline parts and that the online part of it is pseudorandom, where the offline part is not dependent on the circuit being
obfuscated. Furthermore, the offline part can be reused across invocations. We can show similar property for LprIO,
which will be sufficient for the upcoming application of LprIO to PHprFE. We refer the reader to Section 4 for details.
We will get back to the issue when we discuss the security proof for our PHprFE.

1.4.2 Optimal Parameters at Last.

Using the techniques developed above, we construct a partially hiding compact FE for pseudorandom functionalities,
denoted by PHprFE. The syntax of a PHprFE = (Setup, KeyGen, Enc, Dec) scheme is similar to that of a prFE scheme
where the input to the encryption scheme now consists of a public part and a secret part. In more detail, the encryption
algorithm takes as input (xpub, xpriv) and outputs a ciphertext ct. The ciphertext ct can be decrypted using sk f and xpub
to recover f (xpub, xpriv). The security of the scheme, at a high level, states that if f (xpub, xpriv) is pseudorandom then
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the ciphertext encoding (xpub, xpriv) is indistinguishable from random. We note that a PHprFE scheme implies a prFE
scheme if we set xpub = ⊥. We provide a PHprFE construction that achieves optimal parameters and supports circuits
of unbounded depth. This in turn will be used to construct optimal kpABE and cpABE for unbounded depth circuits.

Partially Hiding Pseudorandom FE. As discussed above, to get parameters independent of sizes of C and xpub, we
compress them using LprIO scheme. Now, instead of letting the prFE keys directly output labels corresponding to the
attribute x or the garbled circuit corresponding to C, we have it output an obfuscation of circuits that compute these
components, as described above. In more detail, we use LprIO, bGC and prFE scheme to construct a PHprFE scheme as
follows.

1. The PHprFE setup algorithm generates (prFE.msk, prFE.mpk) using prFE.Setup and outputs these as msk and
mpk respectively.

2. The PHprFE keygen algorithm, given as input a circuit C, does the following.

− First it uses LprIO scheme to compress C, i.e. compute digC ← LDigest({i, Ci}) where Ci represents the ith

gate of C.
− Next it samples r ← {0, 1}λ and gives prFE.sk for the circuit F[r, digC]. The circuit F[r, digC] on input

(digxpub , xpriv) outputs the following :
– bGC garbled labels corresponding to xpriv.
– Obfuscation, LprIO.obf1, of a circuit that outputs bGC labels corresponding to xpub index by index. We

only require short digest of xpub, digxpub , to compute LprIO.obf1.
– Obfuscation, LprIO.obf2, of a circuit that outputs garbled gates of C, gate by gate. We only require short

digest of C, digC, to compute LprIO.obf2.
− Outputs skC = (r, prFE.sk).

3. The PHprFE encryptor on input mpk and x = (xpub, xpriv) does the following:

− Run digxpub ← LDigest(1λ, {(i, xpub,i)}i∈[Lpub]), where xpub,i ∈ {0, 1} is the i-th bit of xpub.

− Run prFE.ct← prFE.Enc(prFE.mpk, (digxpub , xpriv)).

We note that here the input size of prFE is independent of |xpub|.

4. The PHprFE decryptor does the following:

− It first runs the prFE decryption to obtain garbled labels corresponding to xpriv and obfuscations LprIO.obf1
and LprIO.obf2.

− Next it performs LprIO evaluations using ({i, xpub,i}i, LprIO.obf1) and ({i, Ci}i, LprIO.obf2) to get the
garbled labels corresponding to xpub and garbled circuit of C, respectively. Here xpub,i denotes the i-th bit of
xpub and Ci denotes the i-th gate of C.

− Finally, it uses evaluation of the garbling scheme to evaluate the garbled circuit of C on the labels of
x = (xpub, xpriv).

Correctness of the above scheme follows from the correctness of the underlying ingredients.
For security we want to show that the ct = prFE.ct(digxpub , xpriv) is pseudorandom. The adversary additionally

sees mpk, skC = (r, prFE.sk) and we have the guarantee that C(xpub, xpriv) is pseudorandom. We prove security via
the following three steps.

− First, we invoke prFE security for function F[r, digC]. By security guarantee of a prFE scheme, it suffices to show
pseudorandomness of F[r, digC](digxpub , xpriv) = (labxpriv , LprIO.obf1, LprIO.obf2).
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− Next, we invoke the security of LprIO scheme using which we wish to show the pseudorandomness of LprIO.obf1
and LprIO.obf2. Recall that the security of LprIO scheme states that it suffices to show pseudorandomness of circuit’s
output on the compressed input domain. Thus, it suffices to show the pseudorandomness of labxpub and C̃.
Now, we are left with showing the pseudorandomness of labxpriv , labxpub and C̃.

− Next, we use bGC simulator to output the garbled values. That is (C̃, labxpriv , labxpub)← bGC.Sim(C(xpub, xpriv)).
Now using the fact that C(xpub, xpriv) is pseudorandom, we invoke the blindness of bGC scheme to substitute the
simulated value with a random string. Hence the security.

While the above overview for the security proof conveys the main idea, it does not work as it is, since we do not
have the ideal LprIO whose obfuscated circuit is pseudorandom. Rather, we have an imperfect one, where only the
online part of the obfuscated circuit is pseudorandom. This leads to a mismatch with the security guarantee of prFE,
which requires the decryption result to be pseudorandom. To resolve the above issue, we change the construction so that
the offline part of the LprIO obfuscation, which is not necessarily pseudorandom, is generated during the encryption
and included into the ciphertext. This change is possible since the offline part of the obfuscation is not dependent on
the circuit being obfuscated, which is unknown to the encryptor. Furthermore, the (pseudorandom) online part of the
obfuscated circuit is generated during the decryption, which is aligned with the security guarantee of prFE. A subtlety
that arises here is that this change requires strong security guarantee for LprIO, where pseudorandomness of the online
part should hold even if its offline part is reused across many invocations. Luckily, we can prove such security for LprIO
and thus the entire proof works. We refer the reader to Section 5 for details.

We reason about efficiency next. First we note that it suffices to use a bounded depth prFE scheme supporting circuits
of depth poly(λ, |xpriv|). Next, we note that the size of prFE input and output is also bounded by poly(λ, |xpriv|). Thus
we get a PHprFE scheme with |mpk| = |ct| = |sk| = poly(λ, |xpriv|). The sizes of the master public key, ciphertexts,
and the secret keys of our construction above are all independent from the length of xpub and C. However, they still
depend on the length of xpriv. In Section 5.4 we show how to remove this dependency from the master public key and
the secret keys using a SKE scheme. We get the following theorem.

Theorem 1.13. Assuming LWE and evasive LWE assumptions, there exists a partially hiding pseudorandom FE scheme,
for circuit class C = {C : {0, 1}Lpub × {0, 1}Lpriv → {0, 1}}, that satisfies reusable security (as per Definition 5.4)
whose sizes of the master public key and the secret key are fixed polynomial poly(λ). Furthermore, the size of the
ciphertext is Lpriv + poly(λ).

Optimal kpABE via PHprFE. Finally we are ready to show how to obtain an optimal kpABE scheme using an optimal
PHprFE scheme. The construction is straightforward: we set the attribute as the public input of PHprFE scheme and
the message as private input. Additionally we hardwire a nonce in the circuit C during keygen so that it outputs a
pseudorandom value when C(x) = 0, using some private input sd. In more detail,

1. The setup generates (PHprFE.msk, PHprFE.mpk) using PHprFE.Setup and outputs these as msk and mpk
respectively.

2. The key generator on input msk and a circuit C does the following

− Defines circuit C[r], for r ← {0, 1}λ, which on input (x, µ, sd) outputs µ if C(x) = 1 and PRF(sd, r)
otherwise.

− Computes a PHprFE.sk for circuit C[r].
− Outputs skC := (r, PHprFE.sk).

3. The encryptor on input mpk, x, and µ, first samples a PRF seed sd ← {0, 1}λ, sets xpub = x, xpriv = (µ, sd)
and outputs a PHprFE ciphertext PHprFE.ct← PHprFE.Enc(PHprFE.mpk, xpub, xpriv).

4. The decryptor on input the secret key and the ciphertext simply runs the PHprFE decryption.
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The correctness of the scheme follows in a straightforward manner from the correctness of the PHprFE scheme.
Note that the PHprFE decryption will output C[r](x, µ, sd) = µ for C(x) = 1. Security of the scheme is implied by
the security of the underlying PHprFE scheme and the PRF. To prove security, we need to show the pseudorandomness
of ct = PHprFE.ct when C(x) = 0 – this follows by our usage of a PRF to generate the output, as discussed above.
Finally, from the efficiency of a PHprFE scheme and noting that |xpriv| = 1 + λ, we get the following theorem.

Theorem 1.14 (Optimal KP-ABE). Under the LWE and Evasive LWE assumption, there exists very selectively secure
KP-ABE scheme supporting circuits {C : {0, 1}ℓ → {0, 1}} with unbounded depth and single bit message space with

|mpk| = poly(λ), |skC| = poly(λ), |ct| = poly(λ).

We also obtain a predicate encryption scheme for unbounded depth circuits with optimal parameters, where predicate
encryption allows to hide the entire input of the ciphertext against restricted adversaries. The optimal kpABE implies an
optimal cpABE for unbounded depth circuits as well as optimal kpABE for Turing machines as discussed above. For
more details, please see Section 6.

1.5 Organization of the Paper
We define the preliminaries used in this work in Section 2. In Section 3 we define and construct the notion of
(bounded-depth) compact functional encryption scheme for pseudorandom functionalities (prFE). In Section 4 we
define the notion of laconic pseudorandom poly-domain obfuscation scheme (LprIO) and construct it using a blind
garbling scheme, a blind batch encryption scheme (constructed in Appendix A) and a pPRIO scheme (constructed in
our companion paper [AKY24b]). In Section 5 we define the notion of partially-hiding prFE (denoted as PHprFE) and
construct unbounded-depth PHprFE using a bounded depth prFE and a LprIO. In Section 6, we use unbounded-depth
PHprFE to construct unbounded-depth kpABE and unbounded-depth PE with optimal parameters. In Section 7 we
construct unbounded-depth cpABE with optimal parameters using our optimal kpABE and unbounded-depth prFE (as a
special case of unbounded-depth PHprFE).

In Appendix B we show an alternate pathway to construct an unbounded-depth kpABE scheme with sub-optimal
parameters without using any building block from our companion paper [AKY24b] but still improving the state of the
art.

2 Preliminaries
In this section, we define the notation and provide preliminaries used in our work.

Notation. We use bold letters to denote vectors and the notation [a, b] to denote the set of integers {k ∈N | a ≤ k ≤ b}.
We use [n] to denote the set [1, n]. Concatenation is denoted by the symbol ∥. Throughout the paper, we usually denote
the security parameter by λ. We say a function f (λ) is negligible if it is O(λ−c) for all c > 0, and we use negl(λ)
to denote a negligible function of λ. We say f (λ) is polynomial if it is O(λc) for some constant c > 0, and we use
poly(λ) to denote a polynomial function of λ. We use the abbreviation PPT for probabilistic polynomial-time. We
say an event occurs with overwhelming probability if its probability is 1− negl(λ). For two distributions Xλ and Yλ,
Xλ ≈c Yλ denotes that they are computationally indistinguishable for any PPT algorithm. For a vector x, we let xi
denote its i-th entry. For a set S, we let |S| denote the number of elements in S. For a binary string x, we let |x| denote
the length of x.

Definition 2.1 (Symmetric Key Encryption with Pseudorandom Ciphertext). A symmetric key encryption scheme for
message spaceM = {Mλ}λ∈[N] and key space K = {Kλ}λ∈[N] and ciphertext space CT SKE = {CT SKE,λ}λ∈[N]
has the following syntax:

Setup(1λ)→ sk. The setup algorithm takes as input the security parameter λ and outputs a secret key sk.

Enc(sk, m)→ ct. The encryption algorithm takes as input the secret key sk and a message m ∈ Mλ and outputs a
ciphertext ct.
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Dec(sk, ct)→ m′. The decryption algorithm takes as input a secret key sk and a ciphertext ct and outputs a message
m′ ∈ Mλ.

Correctness: A SKE scheme is said to be correct if there exists a negligible function negl(·) such that for all λ ∈N,
for every message m ∈ Mλ, we have

Pr

 m′ = m :
sk← Setup(1λ);
ct← Enc(sk, m);
m′ = Dec(sk, ct).

 ≥ 1− negl(λ),

Security: A SKE scheme is said to have pseudorandom ciphertext if there exists a negligible function negl(·) such that
for all λ ∈N, for every message m ∈ Mλ, we have∣∣∣∣∣Pr

[
β′ = β : sk← Setup(1λ);

β′ ← AEnc(sk,·),Encβ(sk,·).

]
− 1

2

∣∣∣∣∣ ≤ negl(λ),

where the Enc(sk, ·) oracle, on input a message m, returns Enc(sk, m) and Encβ(sk, ·) oracle, on input a message m,
returns ctβ, where ct0 ← Enc(sk, m) and ct1 ← CT SKE.

2.1 Lattice Preliminaries
Here, we recall some facts on lattices that are needed for the exposition of our construction. Throughout this section,
n, m, and q are integers such that n = poly(λ) and m ≥ n⌈log q⌉. In the following, let SampZ(γ) be a sampling
algorithm for the truncated discrete Gaussian distribution over Z with parameter γ > 0 whose support is restricted to
z ∈ Z such that |z| ≤

√
nγ.

Let
g = (1, 2, ....2⌊log q⌋)⊺ , G = In ⊗ g⊺

be the gadget vector and the gadget matrix. For p ∈ Zn
q , we write G−1(p) for the m-bit vector (bits(p[1]), . . . , bits(p[n]))⊺,

where bits(p[i]) are m/n bits for each i ∈ [n]. The notation extends column-wise to matrices and it holds that
GG−1(P) = P.

Trapdoors. Let us consider a matrix A ∈ Zn×m
q . For all V ∈ Zn×m′

q , we let A−1(V) be an output distribution
of SampZ(γ)m×m′ conditioned on A · A−1(V, γ) = V. A γ-trapdoor for A is a trapdoor that enables one to
sample from the distribution A−1(V, γ) in time poly(n, m, m′, log q) for any V. We slightly overload notation and
denote a γ-trapdoor for A by A−1

γ . The following properties had been established in a long sequence of works
[GPV08, CHKP10, ABB10a, ABB10b, MP12, BLP+13].

Lemma 2.2 (Properties of Trapdoors). Lattice trapdoors exhibit the following properties.

1. Given A−1
τ , one can obtain A−1

τ′ for any τ′ ≥ τ.

2. Given A−1
τ , one can obtain [A∥B]−1

τ and [B∥A]−1
τ for any B.

3. There exists an efficient procedure TrapGen(1n, 1m, q) that outputs (A, A−1
τ0

) where A ∈ Zn×m
q for some

m = O(n log q) and is 2−n-close to uniform, where τ0 = ω(
√

n log q log m).

Useful Lemmata.

Lemma 2.3 (tail and truncation of DZ,γ ). There exists B0 ∈ Θ(
√

λ) such that

Pr
[

x ← DZ,γ : |x| > γB0(λ)
]
≤ 2−λ for all γ ≥ 1 and λ ∈N.
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Lemma 2.4 (Smudging Lemma [WWW22]). Let λ be a security parameter. Take any a ∈ Z where |a| ≤ B. Suppose
γ ≥ Bλω(1). Then the statistical distance between the distributions {z : z ← DZ,γ} and {z + a : z ← DZ,γ} is
negl(λ).

Lemma 2.5 (Leftover Hash Lemma). Fix some n, m, q ∈ N. The leftover hash lemma states that if m ≥ 2n log q,
then for A ← Zn×m

q , x ← {0, 1}m and y ← Zn
q the statistical distance between (A, A · x) and (A, y) is negligible.

More concretely, it is bounded by qn
√

21−m.

2.1.1 Hardness Assumptions

Assumption 2.6 (The LWE Assumption). Let n = n(λ), m = m(λ), and q = q(λ) > 2 be integers and χ = χ(λ) be a
distribution over Zq. We say that the LWE(n, m, q, χ) hardness assumption holds if for any PPT adversary A we have

|Pr[A(A, s⊺A + e⊺)→ 1]− Pr[A(A, v⊺)→ 1]| ≤ negl(λ)

where the probability is taken over the choice of the random coins by the adversary A and A ← Zn×m
q , s ← Zn

q ,
e ← χm, and v ← Zm

q . We also say that LWE(n, m, q, χ) problem is (non-uniformly and) subexponentially hard if
there exists some constant 0 < δ < 1 such that the above distinguishing advantage is bounded by 2−nδ for for all
adversaries A whose running time (resp., size) is 2nδ .

As shown by previous works [Reg09, BLP+13], if we set χ = SampZ(γ), the LWE(n, m, q, χ) problem is as
hard as solving worst case lattice problems such as gapSVP and SIVP with approximation factor poly(n) · (q/γ) for
some poly(n). Since the best known algorithms for 2k-approximation of gapSVP and SIVP run in time 2Õ(n/k), it
follows that the above LWE(n, m, q, χ) with noise-to-modulus ratio 2−nϵ is likely to be (subexponentially) hard for
some constant ϵ.

Next, we define Evasive LWE assumption, with restricted samplers as described in [AMYY25].

Assumption 2.7 (Evasive LWE). [Wee22, ARYY23, AMYY25] Let n, m, t, m′, q ∈N be parameters and λ be a security
parameter. Let χ and χ′ be parameters for Gaussian distributions. For Samp that outputs

S ∈ Zm′×n
q , P ∈ Zn×t

q , aux ∈ {0, 1}∗

on input 1λ and for PPT adversaries A0 and A1, we define the following advantage functions:

AdvPRE
A0

(λ)
def
= Pr

[
A0(B, SB + E, SP + E′, aux) = 1

]
− Pr

[
A0(B, C0, C′, aux) = 1

]
AdvPOST

A1
(λ)

def
= Pr[A1(B, SB + E, K, aux) = 1]− Pr[A1(B, C0, K, aux) = 1]

where
(S, P, aux)← Samp(1λ),

B← Zn×m
q ,

C0 ← Zm′×m
q , C′ ← Zm′×t

q ,

E← Dm′×m
Z,χ , E′ ← Dm′×t

Z,χ′

K← B−1(P) with standard deviation O(
√

m log(q)).

We say that the evasive LWE (EvLWE) assumption with respect to the sampler class SC holds if for every PPT
Samp ∈ SC and A1, there exists another PPT A0 and a polynomial Q(·) such that

AdvPRE
A0

(λ) ≥ AdvPOST
A1

(λ)/Q(λ)− negl(λ) and Time(A0) ≤ Time(A1) ·Q(λ).
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We conjecture that for reasonable class of samplers, the evasive LWE assumption holds. In particular, we conjecture
that our sampler SampprFE(1λ) used for the security proof of our prFE for natural class of functions should be in the
secure class of samplers SC for which the evasive LWE holds.

Remark 2.8. In the above definition, all the LWE error terms are chosen from the same distribution DZ,χ. However,
in our security proof, we often consider the case where some of LWE error terms are chosen from DZ,χ and others
from DZ,χ′ with different χ ≫ χ′. The evasive LWE assumption with such a mixed noise distribution is implied
by the evasive LWE assumption with all LWE error terms being chosen from DZ,χ as above definition, since if the
precondition is satisfied for the latter case, that for the former case is also satisfied. To see this, it suffices to observe that
we can convert the distribution from DZ,χ′ into that from DZ,χ by adding extra Gaussian noise.

In the security proof, we may require the auxiliary information to include terms dependent on S. Furthermore, we
may want to prove the pseudorandomness of such auxiliary information. The following lemma from [ARYY23] enables
this. In the lemma, we separate the auxiliary information into two parts aux1 and aux2, where aux1 is typically the
part dependent on S. The lemma roughly says that aux1 is pseudorandom in the post condition distribution, if it is
pseudorandom in the precondition distribution.

Lemma 2.9 (Lemma 3.4 in [ARYY23]). Let n, m, t, m′, q ∈N be parameters and λ be a security parameter. Let χ
and χ′ be Gaussian parameters. Let Samp be a PPT algorithm that takes as input 1λ and outputs

S ∈ Zm′×n
q , aux = (aux1, aux2) ∈ S × {0, 1}∗ and P ∈ Zn×t

q

for some set S . Furthermore, we assume that there exists a public deterministic poly-time algorithm Reconstruct that
allows to derive P from aux2, i.e. P = Reconstruct(aux2).

We introduce the following advantage functions:

AdvPRE′
A (λ)

def
= Pr

[
A(B, SB + E, SP + E′, aux1, aux2) = 1

]
− Pr

[
A(B, C0, C′, c, aux2) = 1

]
AdvPOST′

A (λ)
def
= Pr[A(B, SB + E, K, aux1, aux2) = 1]− Pr[A(B, C0, K, c, aux2) = 1]

where
(S, aux = (aux1, aux2), P)← Samp(1λ),

B← Zn×m
q

C0 ← Zm′×m
q , C′ ← Zm′×t

q , c← S

E← Dm′×m
Z,χ , E′ ← Dm′×t

Z,χ

K← B−1(P) with standard deviation O(
√

m log(q)).

Then, under the Evasive-LWE (cited above in Assumption 2.7) with respect to a sampler Samp ∈ SC, for a sampler
class SC, if AdvPRE′

A (λ) is negligible for any PPT adversary A, so is AdvPOST′
A (λ) for any PPT adversary A.

2.2 GSW Homomorphic Encryption and Evaluation
We recall the format of the (leveled fully) homomorphic encryption due to [GSW13] and the correctness property. We
adapt the syntax from [HLL23].

Lemma 2.10. The leveled FHE scheme works as follows:

• The keys are

(public) Afhe =

(
Āfhe

s̄⊺Āfhe + e⊺fhe

)
∈ Z

(n+1)×m
q , (secret) s⊺ = (s̄⊺,−1),

where s̄ ∈ Zn,Āfhe ∈ Zn×m
q , and e⊺fhe ∈ Zm.
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• A ciphertext of x ∈ {0, 1} is X = AfheR− xG ∈ Z
(n+1)×m
q , where R ∈ Zm×m is the encryption randomness.

The decryption equation is

s⊺X = −e⊺fheR− xs⊺G ∈ Zm
q ,

which can be used to extract x via multiplication by G−1(⌊q/2⌋ ιn+1), where ιn+1 is the n + 1-th unit vector.

Lemma 2.11. (homomorphic evaluation for vector-valued functions [HLL23]) There is an efficient algorithm

MakeVEvalCkt(1n, 1m, q, C) = VEvalC

that takes as input n, m, q and a vector-valued circuit C : {0, 1}L → Z1×m′
q and outputs a circuit

VEvalC(X1, ..., XL) = C,

taking L ciphertexts as input and outputting a new ciphertext C of different format.

• The depth of VEvalC is d ·O(log m log log q) + O(log2 log q) for C of depth d.

• Suppose Xℓ = AfheRℓ − x[ℓ]G for ℓ ∈ [L] with x ∈ {0, 1}L, then

C = AfheRC −
(

0n×m′

C(x)

)
∈ Z

(n+1)×m′
q ,

where
∥∥R⊺

C

∥∥ ≤ (m + 2)d ⌈log q⌉maxℓ∈[L]
∥∥R⊺

ℓ

∥∥.
The new decryption equation is

s⊺C = −e⊺fheRC + C(x) ∈ Z1×m′
q .

2.3 Homomorphic Evaluation Procedures
In this section we describe the properties of the attribute encoding and its homomorphic evaluation. We adapt the syntax
from [HLL23].

• For L-bit input, the public parameter is Aatt ∈ Z
(n+1)×(L+1)m
q .

• The encoding of x ∈ {0, 1}L is
s⊺(Aatt − (1, x⊺)⊗G) + e⊺att,

where s⊺ = (s̄⊺,−1) with s̄ ∈ Zn and e⊺att ∈ Z(L+1)m.

• There are efficient deterministic algorithms [BTVW17]

MEvalC(Aatt, C) = HC and MEvalCX(Aatt, C, x) = HC,x

that take as input Aatt, a matrix-valued circuit C : {0, 1}L → Z
(n+1)×m′
q , and (for MEvalCX) some x ∈ {0, 1}L,

and output some matrix in Z(L+1)m×m′ .

– Suppose C is of depth d, then
∥∥H⊺

C

∥∥, ∥H⊺∥C,x ≤ (m + 2)d ⌈log q⌉.
– The matrix encoding homomorphism is (Aatt − (1, x⊺)⊗G)HC,x = AattHC − C(x).

Dual-Use Technique and Extension. In [BTVW17], the attribute encoded with secret s⊺ is FHE ciphertexts under
key s⊺ (the same, "dual-use") and the circuit being MEvalCX’ed is some HEvalC. This leads to automatic decryption.
Let C be a vector-valued circuit, with codomain Z1×m′

q , then VEvalC is Z
(n+1)×m′
q -valued and

(s⊺(Aatt − (1, bits(X))⊗G) + e⊺att) ·HVEvalC ,X

= s⊺AattVEvalC − s⊺VEvalC(X) + (e′)⊺ (MEvalCX)
= s⊺AattVEvalC − C(x) + (e′′)⊺. (VEval decryption )
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2.4 Attribute Based Encryption
We define both ciphertext policy attribute-based encryption (cpABE) and key policy attribute-based encryption (kpABE)
in a unified form below.

Let R = {Rλ : Aλ × Bλ → {0, 1}}λ∈N be a relation where Aλ and Bλ denote “ciphertext attribute" and “key
attribute” spaces. An attribute-based encryption (ABE) scheme for R and a message spaceM = {Mλ}λ∈N is defined
by the following PPT algorithms:

Setup(1λ)→ (mpk, msk). The setup algorithm takes as input the unary representation of the security parameter λ
and outputs a master public key mpk and a master secret key msk.

Enc(mpk, X, µ)→ ct. The encryption algorithm takes as input a master public key mpk, a ciphertext attribute X ∈ Aλ,
and a message µ ∈ Mλ. It outputs a ciphertext ct.

KeyGen(msk, Y)→ skY. The key generation algorithm takes as input the master secret key msk and a key attribute
Y ∈ Bλ. It outputs a private key skY.

Dec(mpk, skY, Y, ct, X)→ µ or ⊥. The decryption algorithm takes as input the master public key mpk, a private key
skY, private key attribute Y ∈ Bλ, a ciphertext ct and ciphertext attribute X ∈ Aλ. It outputs the message µ or ⊥
which represents that the ciphertext is not in a valid form.

Definition 2.12 (Correctness). An ABE scheme for relation family R is correct if for all λ ∈ N, X ∈ Aλ, Y ∈ Bλ

such that R(X, Y) = 1, and for all messages µ ∈ Mλ,

Pr


(mpk, msk)← Setup(1λ),
skY ← KeyGen(msk, Y),
ct← Enc(mpk, X, µ) :

Dec
(

mpk, skY, Y, ct, X
)
̸= µ

 = negl(λ)

where the probability is taken over the coins of Setup, KeyGen, and Enc.

Definition 2.13 (Sel-IND security for ABE). For an ABE scheme ABE = {Setup, Enc, KeyGen, Dec} for a relation
family R = {Rλ : Aλ × Bλ → {0, 1}}λ∈[N] and a message space {Mλ}λ∈N and an adversary A, let us define
Sel-IND security game as follows.

1. A outputs the challenge ciphertext attribute X⋆ ∈ Aλ.

2. Setup phase: On input 1λ, the challenger samples (mpk, msk)← Setup(1λ) and gives mpk to A.

3. Query phase: During the game, A adaptively makes the following queries, in an arbitrary order. A can make
unbounded many key queries, but can make only single challenge query.

(a) Key Queries: A chooses an input Y ∈ Bλ. For each such query, the challenger replies with skY ←
KeyGen(msk, Y).

(b) Challenge Query: At some point, A submits a pair of equal length messages (µ0, µ1) ∈ M2 to the
challenger. The challenger samples a random bit b← {0, 1} and replies toA with ct← Enc(mpk, X⋆, µb).

We require that R(X⋆, Y) = 0 holds for any Y such that A makes a key query for Y in order to avoid trivial
attacks.

4. Output phase: A outputs a guess bit b′ as the output of the experiment.

We define the advantage AdvSel-IND
ABE,A (1λ) of A in the above game as

AdvSel-IND
ABE,A (1λ) :=

∣∣∣Pr
[
ExpABE,A(1

λ) = 1|b = 0
]
− Pr

[
ExpABE,A(1

λ) = 1|b = 1
]∣∣∣ .

The ABE scheme ABE is said to satisfy Sel-IND security (or simply selective security) if for any stateful PPT adversary
A, there exists a negligible function negl(·) such that AdvSel-IND

ABE,A (1λ) = negl(λ).

26



We can consider the following stronger version of the security where we require the ciphertext to be pseudorandom.

Definition 2.14 (Sel-INDr security for ABE). We define Sel-INDr security game similarly to Sel-IND security game
except that the adversary A chooses single message µ instead of (µ0, µ1) at the challenge phase and the challenger
returns ct← Enc(mpk, X⋆, µ) if b = 0 and a random ciphertext ct← CT from a ciphertext space CT if b = 1. Here,
we assume that uniform sampling from the ciphertext space CT is possible without any parameter other than the security
parameter λ. We define the advantage AdvSel-INDr

ABE,A (1λ) of the adversary A accordingly and say that the scheme satisfies
Sel-INDr security if the quantity is negligible.

We also consider the very selective notion of security.

Definition 2.15 (VerSel-IND security for ABE). We define VerSel-IND security game similarly to Sel-IND security
game except that the adversary A outputs the key queries Y1, . . . , YQ, where Q is the number of key queries made by
A, along with the challenge ciphertext attribute X⋆ in the beginning of the security game. We define the advantage
AVerSel-IND

ABE,A (1λ) of the adversary A accordingly and say that the scheme satisfies VerSel-IND security if the quantity is
negligible.

Definition 2.16 (VerSel-INDr security for ABE). We define VerSel-IND security game similarly to Sel-INDr security
game except that the adversary A outputs the key queries Y1, . . . , YQ, where Q is the number of key queries made by
A, along with the challenge ciphertext attribute X⋆ in the beginning of the security game. We define the advantage
AVerSel-INDr

ABE,A (1λ) of the adversary A accordingly and say that the scheme satisfies VerSel-INDr security if the quantity
is negligible.

In the following, we recall definitions of various ABEs by specifying the relation.
Ciphertext-policy Attribute Based encryption (cpABE). We define cpABE for circuit class {Cℓ(λ),d(λ)}λ by
specifying the relation. Here, Cℓ(λ),d(λ) is a set of circuits with binary output whose input length is ℓ(λ) and the depth
is at most d(λ). Note that we do not pose any restriction on the size of the circuits. We define AcpABE

λ = Cℓ(λ),d(λ) and
BcpABE

λ = {0, 1}ℓ. Furthermore, we define the relation RcpABE
λ as

RcpABE
λ (C, x) = C(x).

Key-policy Attribute Based encryption (kpABE). To define kpABE for circuits, we simply swap key and ciphertext
attributes in cpABE for circuits. More formally, to define kpABE for circuits, we define AkpABE

λ = {0, 1}ℓ and
BkpABE

λ = Cℓ(λ),d(λ). We also define RkpABE
λ : AkpABE

λ × BkpABE
λ → {0, 1} as

RkpABE
λ (x, C) = C(x).

The above relations also holds for circuit class {Cℓ(λ)}λ which is the set of circuits with binary output whose input
length is ℓ(λ) and the depth is unbounded.

2.5 Predicate Encryption
In this section we define predicate encryption (PE) scheme. The syntax and correctness is same as that of the
ABE scheme in Section 2.4 except that we do not input the ciphertext attribute into the decryption algorithm, i.e
Dec(mpk, skY, Y, ct) → µ or ⊥. We set Aλ = {0, 1}ℓ and Bλ = Cℓ(λ),d(λ). We also define Rλ : AkpABE

λ ×
BkpABE

λ → {0, 1} as
Rλ(x, C) = C(x).

The above relations also holds for circuit class {Cℓ(λ)}λ which is the set of circuits with binary output whose input
length is ℓ(λ) and the depth is unbounded.

27



Definition 2.17 (Sel-IND security for PE). For a PE scheme PE = {Setup, Enc, KeyGen, Dec} for a relation family
R = {Rλ : Aλ× Bλ → {0, 1}}λ∈[N] and a message space {Mλ}λ∈N and an adversaryA, the Sel-IND security game
is defined exactly as in Definition 2.13 except thatA outputs two challenge attributes (X∗0 , X∗1 ) in Step 1 and the challenger
returns ct← Enc(mpk, X∗b , µb) in Step 3(a) of the security game. We require that R(X⋆

0 , Y) = R(X⋆
1 , Y) = 0 holds

for any Y such that A makes a key query for Y in order to avoid trivial attacks. We define the advantage AdvSel-IND
PE,A (1λ)

of A in the above game as

AdvSel-IND
PE,A (1λ) :=

∣∣∣Pr
[
ExpPE,A(1

λ) = 1|b = 0
]
− Pr

[
ExpPE,A(1

λ) = 1|b = 1
]∣∣∣ .

The PE scheme is said to satisfy Sel-IND security (or simply selective security) if for any stateful PPT adversary A,
there exists a negligible function negl(·) such that AdvSel-IND

PE,A (1λ) = negl(λ).

Definition 2.18 (VerSel-IND security for PE). We define VerSel-IND security game similarly to Sel-IND security game
except that the adversary A outputs the key queries Y1, . . . , YQ, where Q is the number of key queries made by A,
along with the challenge ciphertext attribute (X∗0 , X∗1 ) in the beginning of the security game. We define the advantage
AVerSel-IND

PE,A (1λ) of the adversary A accordingly and say that the scheme satisfies VerSel-IND security if the quantity is
negligible.

2.6 Blind Garbled Circuit
Here we provide the definition of a garbling scheme for circuit class C = {C : {0, 1}ℓin → {0, 1}ℓout}. A garbling
scheme for circuit class C consists of three algorithms (Garble, Eval, Sim) with the following syntax.

Garble(1λ, 1ℓin , 1ℓout , C)→ (lab, C̃). The garbling algorithm takes as input the security parameter λ, the input length
ℓin and output length ℓout for circuit C, the description of the circuit C, and a random value st ∈ {0, 1}λ and
outputs the labels for input wire of the garbled circuit lab = {labj,b}j∈[ℓin],b∈{0,1} where each labj,b ∈ {0, 1}λ

and the garbled circuit C̃.

Eval(1λ, C̃, labx)→ y. The evaluation algorithm takes as input the garbled circuit C̃ and labels corresponding to an
input x ∈ {0, 1}ℓin , labx = {labi,xi}i∈[ℓin] where xi denotes the i-th bit of x, and it outputs y ∈ {0, 1}ℓout .

Sim(1λ, 1|C|, 1ℓin , y) is a PPT algorithm that takes as input the security parameter, the description length of C, an input
length ℓin and a string y ∈ {0, 1}ℓout , and outputs a simulated garbled circuit C̄ and labels ¯lab.

A garbling scheme satisfies the following properties.

Definition 2.19 (Correctness). A garbling scheme is said to be correct if for any circuit C ∈ C and any input
x ∈ {0, 1}ℓin , the following holds

Pr
[

y = C(x) : (lab, C̃)← Garble(1λ, 1ℓin , 1ℓout , C); y← Eval(C̃, labx)
]
= 1.

Definition 2.20 (Simulation Security). A garbling scheme is said to satisfy simulation security if for any circuit C ∈ C
and any input x ∈ {0, 1}ℓin , the following holds

{(C̃, labx) | (lab, C̃)← Garble(1λ, 1ℓin , 1ℓout , C)} ≈c {(C̄, ¯lab) | (C̄, ¯lab)← Sim(1λ, 1|C|, 1ℓin , C(x))}

where lab = {labj,b}j∈[ℓin],b∈{0,1} and labx = {labi,xi}i∈[ℓin].

Definition 2.21 (Blindness). [BLSV18] A garbling scheme (Garble, Eval, Sim) is called blind if the distribution
Sim(1λ, 1|C|, 1ℓin , y) for y← {0, 1}ℓout , representing the output of the simulator on a completely uniform output, is
indistinguishable from a completely uniform bit string. (Note that the distinguisher must not know the random output
value that was used for the simulation.)
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Definition 2.22 (Decomposability). We note that the Garble(1λ, 1ℓin , 1ℓout , C) algorithm can be decomposed, using
shared randomness st, as follows : (i) Garblei(1λ, Ci; st) for i ∈ [|C|], where Garblei(1λ, Ci) outputs the garbling of
i-th gate of the circuit C (denoted by Ci) and (ii) Garbleinp(1λ, 1ℓin , 1ℓout ; st) = lab which outputs 2 · ℓin labels.

Note that information of a single gate Ci of C can be represented by a binary string of length at most 4λ for example,
since it suffices to encode its index, indices of its two incoming wires, and the truth table of the gate.

Theorem 2.23. [BLSV18] Assume that one-way function exists. Then, there exists a blind garbled circuits scheme.

2.7 Blind Batch Encryption
Here we provide the definition of a batch encryption scheme largely adapted from [BLSV18]. A batch encryption
scheme with the message spaceM = {Mλ}λ consists of the following algorithms.

Setup(1λ, 1N)→ crs. The setup algorithm takes as input the security parameter λ and key length N, and outputs a
common reference string crs.

Gen(crs, x)→ h. The generation algorithm takes as input the common reference string crs and a secret key x ∈ {0, 1}N .
It outputs a public key h.

SingleEnc(crs, h, i, (m0, m1)) → ct. The encryption algorithm takes as input a common reference string crs, the
public key h, an index i ∈ [N], and a message (m0, m1) ∈ M2 and outputs a (single) ciphertext ct.

SingleDec(crs, x, i, ct)→ m. The encryption algorithm takes as input a common reference string crs, the secret key x,
an index i ∈ [N], and a (single) ciphertext ct and outputs a message m ∈ M.

In [BLSV18], they define additional algorithms Enc and Dec, which can be defined using SingleEnc and SingleDec
above. We omit the definition of these algorithms since they are not used in our paper.

Definition 2.24 (Correctness.). A batch encryption scheme is said to be correct if for any λ, N ∈ N, secret key
x ∈ {0, 1}N , i ∈ [N], (m0, m1) ∈ M2, crs← Setup(1λ, 1N), and h← Gen(crs, x) it holds that

Pr[m = mxi | m = SingleDec (crs, x, i, SingleEnc(crs, h, i, (m0, m1)))] = 1,

where xi is the i-th bit of x.

Definition 2.25 (Succinctness). A batch encryption scheme is α-succinct if letting crs ← Setup(1λ, 1N), h =
Gen(crs, x) for some x ∈ {0, 1}N , it holds that |h| ≤ αN. It is said fully succinct if |h| ≤ p(λ) for some fixed
polynomial p(λ).

Definition 2.26 (Security). A batch encryption scheme is said to be secure if for any PPT adversary A, there exists a
negligible function negl(·) such that the following holds

Pr

 β′ = β :

(1N , x ∈ {0, 1}N , i ∈ [N])← A(1λ);
crs← Setup(1λ, 1N);(

m(0) = (m(0)
0 , m(0)

1 ), m(1) = (m(1)
0 , m(1)

1 )
)
← A(crs);

h← Gen(crs, x), β← {0, 1}, ctβ ← SingleEnc(crs, h, i, m(β));
β′ ← A(crs, ctβ)

 ≤
1
2
+ negl(λ)

where we require that m(0), m(1) ∈ M2 and m(0)
xi = m(1)

xi .

We require somewhat stronger blindness condition than that defined in [BLSV18].
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Definition 2.27 (Strong Blindness). A batch encryption scheme is said to satisfy blindness if for any PPT adversary A,
there exists a negligible function negl(·) such that the following holds

Pr

 β′ = β :

(1N , x ∈ {0, 1}N , i ∈ [N])← A(1λ);
crs← Setup(1λ, 1N), h← Gen(crs, x);
m←M2, β← {0, 1};
ct0 ← SingleEnc(crs, h, i, m), ct1 ← CT ;
β′ ← A(crs, ctβ)

 ≤ 1
2
+ negl(λ)

where CT is the ciphertext space of the scheme.

Remark 2.28. Here, we compare strong blindness defined above with the blindness defined in [BLSV18]. In [BLSV18],
they divide a ciphertext ct into an “offline part" subct1 and “online part" subct2, where subct1 only depends on the
encryption randomness and the CRS, whereas subct2 may depend on h, i, and m additionally. They then define
blindness as the security notion that essentially requires that subct2 is pseudorandom, whereas subct1 may not be. The
above security notion is stronger than theirs in that we require the entire ciphertext to be pseudorandom rather than part
of it. In other words, we can see our definition as more stringent version of their blindness notion where we require
subct1 to be an empty string.

2.8 Poly-Input Obfuscation for Pseudorandom Functionalities
In this section we give the definition of poly-input indistinguishability obfuscation for pseudorandom functionalities
(pPRIO), adapted from [AKY24b].

Syntax A pPRIO scheme consists of the following algorithms.

Obf(1λ, C)→ obf. The obfuscation algorithm takes as input the security parameter λ and a circuit C : [N]→ [M]
with size(C) ≤ L for some arbitrary polynomial L = L(λ). It outputs an obfuscation of the circuit obf.
We consider a definition where the Obf algorithm can be decomposed into the following two phases.

ObfOff(1λ, 1L)→ (obfoff , st). The offline obfuscation algorithm takes as input the security parameter λ and
the circuit size bound L. It outputs obfoff and st.

ObfOn(st, C)→ obfon. The online obfuscation algorithm takes as input the security parameter st and the circuit
C and outputs obfon.

The final output of Obf is obf = (obfoff , obfon).

Eval(obf, x)→ y. The evaluation algorithm takes as input an obfuscated circuit obf and an input x ∈ [N]. It outputs
y ∈ [M].

Next, we define the properties of a pPRIO scheme.

Definition 2.29 (Correctness). For all security parameters λ ∈ N, for any C : [N] → [M], L = L(λ) such that
size(C) ≤ L and every input x ∈ [N], we have that:

Pr
[
Eval(obf, x) = C(x) | obf = (obfoff , obfon), (obfoff , st)← ObfOff(1λ, 1L), obfon ← ObfOn(st, C)

]
= 1

where the probability is taken over the coin-tosses of the obfuscator Obf.

Definition 2.30 (Security ). Let Samp be a PPT algorithm that on input 1λ, outputs(
1N1+N2+···NQ , 1L, aux, C1, . . . , CQ

)
, where Ci : [Ni]→ [Mi], size(Ci) ≤ L

30



where we enforce Samp to output 1N1+N2+···NQ to make sure that all Ni are bounded by poly(λ). We say that a pPRIO
scheme is secure with respect to the sampler class SC if for every PPT sampler Samp ∈ SC the following holds.

If
(

aux, {C1(i)}i∈[N1]
, . . . , {CQ(i)}i∈[NQ ]

)
≈c

(
aux, {∆1

i }i∈[N1]
, . . . , {∆Q

i }i∈[NQ ]

)
then

(
aux, obfoff , obf1

on, . . . , obfQ
on

)
≈c

(
aux, obfoff , δ1 ← CT 1 . . . , δQ ← CT Q

)
,

where ∆j
i ← [Mj] for j ∈ [Q], i ∈ [Nj], (obfoff , st)← ObfOff(1λ, 1L), obf j

on ← ObfOn(st, Cj) for j ∈ [Q], and CT j

denotes the set of binary strings of the same length as the output of obfon(st, Cj) algorithm.

Remark 2.31. It is shown in [AMYY25, BDJ+24] that there is no pPRIO scheme satisfying the above security for all
general samplers. Therefore, when we use the security of pPRIO, we invoke the security with respect to a specific
sampler class that is induced by the respective applications. For simplicity, we sometimes will treat as if there was
pPRIO that is secure for all the samplers.

Theorem 2.32 ([AKY24b]). Assuming LWE and evasive LWE assumptions, there exists a secure pPRIO scheme
satisfying

|obfoff | = poly(L, λ), |obfon| = poly(L, λ)

where (obfoff , obfon)← Obf(1λ, C) for circuit C : [N]→ [M] whose size is bounded by L = L(λ).

3 Functional Encryption for Pseudorandom Functionalities
3.1 Definition
In this section we give the definitions for functional encryption for pseudorandom functionalities. Consider a function
family {Fprm = { f : Xprm → Yprm}}prm for a parameter prm = prm(λ). Each function f ∈ Fprm takes as input a
string x ∈ Xprm and outputs f (x) ∈ Yprm.

Syntax. A functional encryption scheme prFE for pseudorandom functionalities Fprm consists of four polynomial
time algorithms (Setup, KeyGen, Enc, Dec) defined as follows.

Setup(1λ, prm) → (mpk, msk). The setup algorithm takes as input the security parameter λ and a parameter prm
and outputs a master public key mpk and a master secret key msk4.

KeyGen(msk, f ) → sk f . The key generation algorithm takes as input the master secret key msk and a function
f ∈ Fprm and it outputs a functional secret key sk f .

Enc(mpk, x)→ ct. The encryption algorithm takes as input the master public key mpk and an input x ∈ Xprm and
outputs a ciphertext ct ∈ CT , where CT is the ciphertext space.

Dec(mpk, sk f , f , ct)→ y. The decryption algorithm takes as input the master public key mpk, secret key sk f , function
f and a ciphertext ct and outputs y ∈ Yprm.

Definition 3.1 (Correctness). A prFE scheme is said to satisfy perfect correctness if for all prm, any input x ∈ Xprm
and function f ∈ Fprm, we have

Pr

[
(mpk, msk)← Setup(1λ, prm) , sk f ← KeyGen(msk, f ),

Dec
(
mpk, sk f , f , Enc(mpk, x)

)
= f (x)

]
= 1.

We define our security notion next. At a high level, our notion says that so long as the output of the functionality is
pseudorandom, the ciphertext is pseudorandom. For notational brevity, we denote this by prCT security.

4We assume w.l.o.g that msk includes mpk.
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Definition 3.2 (prCT Security). For a prFE scheme for function family {Fprm = { f : Xprm → Yprm}}prm, parameter
prm = prm(λ), let Samp be a PPT algorithm that on input 1λ, outputs

( f1, . . . , fQkey , x1, . . . , xQmsg , aux ∈ {0, 1}∗)

where Qkey is the number of key queries, Qmsg is the number of message queries, and fi ∈ Fprm, xj ∈ Xprm for all
i ∈ [Qkey], j ∈ [Qmsg].
We define the following advantage functions:

AdvPRE
A0

(λ)
def
= Pr

[
A0

(
aux, { fi, fi(xj)}i∈[Qkey ],j∈[Qmsg ]

)
= 1

]
− Pr

[
A0( aux, { fi, ∆i,j ← Yprm}i∈[Qkey ],j∈[Qmsg ]) = 1

]

AdvPOST
A1

(λ)
def
= Pr

[
A1(mpk, aux, { fi, Enc(mpk, xj), sk fi

}i∈[Qkey ],j∈[Qmsg ]) = 1
]

− Pr
[
A1(mpk, aux, { fi, δj ← CT , sk fi

}i∈[Qkey ],j∈[Qmsg ]) = 1
]

where ( f1, . . . , fQkey , x1, . . . , xQmsg , aux ∈ {0, 1}∗) ← Samp(1λ), (mpk, msk) ← Setup(1λ, prm) and CT is the
ciphertext space. We say that a prFE scheme for function family Fprm satisfies prCT security with respect to the sampler
class SC if for every PPT sampler Samp ∈ SC there exists a polynomial Q(·) such that for every PPT adversary A1,
there exists another PPT A0 such that

APRE
A0

(λ) ≥ APOST
A1

(λ)/Q(λ)− negl(λ)

and Time(A0) ≤ Time(A1) ·Q(λ).

Remark 3.3. It is shown in [AMYY25] that there is no prFE that satisfies prCT security for all general samplers.
Therefore, when we use the security of prFE, we invoke the security with respect to a specific sampler class that is
induced by the respective applications. For simplicity, we sometimes will treat as if there was prFE that is secure for all
the samplers.

Remark 3.4. We note that the above security definition is in the multi-challenge flavor. One may wonder whether
single-challenge version of the definition where Qmsg = 1 implies the multi-challenge version or not. However, unlike
the standard security notions for public key primitives (e.g., indistinguishability security for functional encryption
[GGH+16]), this does not seem to be the case. This is because the standard hybrid argument to prove the multi-challenge
security from the single challenge security where we replace the ciphertext to be random one-by-one fails. To see why,
recall that in these hybrids, we simulate some of the ciphertexts honestly, while we try to change a particular honest
ciphertext to be a random one. To generate honest ciphertexts, we may have to know the corresponding plaintexts.
However, this may ruin the precondition for invoking the single challenge security for the target ciphertext, since
knowing some of the inputs (say, x1) may make the output (say, f1(x2)) not pseudorandom any more when the inputs
are correlated with each other.

Definition 3.5 (Compactness). A prFE scheme is said to be compact if for any input message x ∈ X , the running time
of the encryption algorithm is polynomial in the security parameter and the size of x. In particular, it does not depend
on the circuit description size or the output length of any function f supported by the scheme.

3.2 Construction
In this section, we provide our construction of a functional encryption scheme for pseudorandom functionalities
for function family FL(λ),ℓ(λ),dep(λ) = { f : {0, 1}L → {0, 1}ℓ}, where the depth of a function f ∈ F is at most
dep(λ) = poly(λ). We denote the information of the parameters representing the supported class of the circuits by
prm = (1L(λ), 1ℓ(λ), 1dep(λ)).
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Ingredients. Our construction needs a pseudorandom function PRF : {0, 1}λ×{0, 1}λ → [−q/4+ B, q/4− B]1×ℓ

that can be evaluated by a circuit of depth at most dep(λ) = poly(λ). Here B is chosen to be exponentially smaller
than q/4. We note that for our choice of B the statistical distance between the uniform distribution over [−q/4, q/4]
and [−q/4 + B, q/4− B] is negligible.

Setup(1λ, prm)→ (mpk, msk). The setup algorithm parses prm = (1L(λ), 1ℓ(λ), 1dep(λ)) and does the following.

− Sample appropriate parameters q, n, m, τ, σ, σB, B and M such that M divides q, as in Equation (3)5.
− Samples appropriate parameters as in Equation (3).

− Set LX = m(λ+L)(n+ 1) ⌈log q⌉, sample Aatt ← Z
(n+1)×(LX+1)m
q and (B, B−1

τ )← TrapGen(1n+1, 1mw, q),
where w ∈ O(log q).

− Output mpk := (Aatt, B, M) and msk := B−1
τ .

KeyGen(msk, f )→ sk f . The key generation algorithm parses msk = B−1
τ and does the following.

− Sample r← {0, 1}λ and define function F = F[ f , r] with f , r hardwired as follows6:
On input (x, sd), compute and output f (x) ⌊q/2⌉+ PRF(sd, r) ∈ Z1×ℓ

q .

− Parse F[ f , r](x, sd) = M · fhigh(x, sd) + flow(x, sd), where fhigh(x, sd) ∈ [0, q/M]ℓ and flow(x, sd) ∈
[0, M− 1]ℓ.Using the fact that the PRF and f (x) can be computed by a circuit of depth at most dep(λ) =
poly(λ), the function F[ f , r] can be computed by a circuit of depth at most d = poly(dep).

− Define functions Fhigh := M · fhigh and Flow := M · flow, which on input (x, sd) outputs M · fhigh(x, sd)
and M · flow(x, sd), respectively. We note that these functions can be computed by a circuit of depth at most
d = poly(dep).

− Define VEvalhigh = MakeVEvalCkt(n, m, q, Fhigh) and VEvallow = MakeVEvalCkt(n, m, q, Flow). From
Lemma 2.11, the depth of VEvalhigh and VEvallow is bounded by (dO(log m log log q) + O(log2 log q)).

− Compute HFhigh
Aatt

= MEvalC(Aatt, VEvalhigh), HFlow
Aatt

= MEvalC(Aatt, VEvallow) ∈ Z
(LX+1)m×ℓ
q .

− Compute Ahigh = Aatt ·H
Fhigh
Aatt

and Alow = Aatt ·HFlow
Aatt

.
− Compute

AF = M ·
⌊

Ahigh
M

⌋
+

⌊
Alow

M

⌋
and sample K← B−1

τ (AF).

− Output sk f = (K, r).

Enc(mpk, x)→ ct. The encryption parse mpk = (Aatt, B, M) algorithm does the following.

− Sample s̄← Dn
Z,σs

and set s = (s̄⊺,−1)⊺.

− Sample eB ← Dmw
Z,σB

and compute c⊺B := s⊺B + e⊺B.

− Sample sd ← {0, 1}λ, Āfhe ← Zn×m
q , efhe ← Dm

Z,σ, R ← {0, 1}m×m(λ+L) and compute a GSW
encryption as follows.

Afhe :=
(

Āfhe
s̄⊺Āfhe + e⊺fhe

)
, X = AfheR− (x, sd)⊗G ∈ Z

(n+1)×m(λ+L)
q .

Let LX = m(λ + L)(n + 1) ⌈log q⌉ be the bit length of X.

5We assume these parameters to be part of the mpk.
6The circuit representation of the function F is the universal circuit with F hardwired.
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− Compute a BGG+ encoding as follows.

eatt ← D(LX+1)m
Z,σ , c⊺att := s⊺(Aatt − bits(1, X)⊗G) + e⊺att.

− Output ct = (cB, catt, X).

Dec(mpk, sk f , f , ct)→ y. The decryption algorithm does the following.

− Parse mpk = (Aatt, B, M), sk f = (K, r) and ct = (cB, catt, X).

− Compute HFhigh
Aatt,X = MEvalCX(Aatt, VEvalhigh, X) and HFlow

Aatt,X = MEvalCX(Aatt, VEvallow, X) for circuits
VEvalhigh and VEvallow as defined in KeyGen algorithm.

− Compute

z := c⊺B ·K−

M ·

 c⊺att ·H
Fhigh
Aatt,X

M

+

⌊
c⊺att ·H

Flow
Aatt,X

M

⌋ .

− For i ∈ [ℓ], set yi = 0 if zi ∈ [−q/4, q/4) and yi = 1 otherwise, where zi is the i-th coordinate of z.
− Output y = (y1, . . . , yℓ).

Parameters. We set our parameters as follows.

β = 2O(dep·log λ), q = 212λβ, M = 24λβ, n = poly(λ, dep), m = O(n log q), B = 210λβ,

τ = O
(√

(n + 1) log q
)

σs = σ = 22λ, σB = 29λβ, σ1 = 28λ+O(1)β/poly(λ). (3)

Efficiency. Using the above set parameters, we have

|mpk| = L · poly(dep, λ), |sk f | = ℓ · poly(dep, λ), |ct| = L · poly(dep, λ).

Correctness We analyze the correctness of our scheme below.

− First, we note that

c⊺att ·H
Fhigh
Aatt,X = (s⊺(Aatt − bits(1, X)⊗G) + e⊺att)H

Fhigh
Aatt,X

= s⊺AattH
Fhigh
Aatt
− s⊺VEvalhigh(bits(X)) + e⊺attH

Fhigh
Aatt,X

= s⊺Ahigh − Fhigh(x, sd) + e⊺fheRhigh + e⊺attH
Fhigh
Aatt,X

=⇒

 c⊺att ·H
Fhigh
Aatt,X

M

 =

 s⊺Ahigh −M · fhigh(x, sd) + e⊺fheRhigh + e⊺attH
Fhigh
Aatt,X

M


=

 s⊺Ahigh + e⊺fheRhigh + e⊺attH
Fhigh
Aatt,X

M

− fhigh(x, sd) (4)

where VEvalhigh(bits(X)) = AfheRhigh −
(

0n×ℓ
Fhigh(x, sd)

)
. Using Lemma 2.11, we have

∥∥∥R⊺
high

∥∥∥ ≤ (m + 2)d ⌈log q⌉ ·m = (m + 2)d ⌈log q⌉ · 3(n + 1) ⌈log q⌉

≤ (m + 2)dO(log q) ≤ β.
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and using the depth bound from Section 2.3,∥∥∥(HFhigh
Aatt,X

)⊺∥∥∥ ≤ (m + 2)dVEvalhigh ⌈log q⌉ ≤ 2d·O(log λ) ≤ β

where dVEvalhigh denotes the depth of the circuit VEvalhigh. So we have∥∥∥e⊺fheRhigh + e⊺attH
Fhigh
Aatt,X

∥∥∥ ≤ 22λ+1
√

λβ ≤ 23λβ < M. Using this in Equation (4), c⊺att ·H
Fhigh
Aatt,X

M

 =

⌊
s⊺Ahigh

M

⌋
− fhigh(x, sd) + errhigh

= s⊺
⌊

Ahigh
M

⌋
+ e⊺s,high − fhigh(x, sd) + err⊺high (5)

where err⊺high ∈ {0, 1}ℓ, is the rounding error which is 1 if
∥∥∥(s⊺Ahigh)

⊺ + e⊺fheRhigh + e⊺attH
Fhigh
Aatt,X

∥∥∥ ≥ M

and 0 otherwise, and
∥∥es,high

∥∥ ≤ (n + 1) · ∥s∥. To see the latter, we use the fact that ⌊s⊺X⌋ − s⊺⌊X⌋ =

⌊s⊺X− s⊺⌊X⌋⌋ = ⌊s⊺(X− ⌊X⌋)⌋, where X− ⌊X⌋ < 1. So e⊺s,high =
⌊

s⊺
(

Ahigh
M −

⌊
Ahigh

M

⌋)⌋
and

∥∥es,high
∥∥ ≤

∥s∥
∥∥∥(Ahigh

M −
⌊

Ahigh
M

⌋)⊺∥∥∥ < (n + 1)∥s∥.

Using a similar analysis as to obtain Equation (5), we get⌊
c⊺att ·H

Flow
Aatt,X

M

⌋
= s⊺

⌊
Alow

M

⌋
+ e⊺s,low − flow(x, sd) + err⊺low (6)

where err⊺low ∈ {0, 1}ℓ and ∥es,low∥ ≤ (n + 1) · ∥s∥. Using Equation (5) and Equation (6), we get

M ·

 c⊺att ·H
Fhigh
Aatt,X

M

+

⌊
c⊺att ·H

Flow
Aatt,X

M

⌋

= s⊺
(

M ·
⌊

Ahigh
M

⌋
+

⌊
Alow

M

⌋)
− (M · fhigh(x, sd) + flow(x, sd)) + err

= s⊺
(

M ·
⌊

Ahigh
M

⌋
+

⌊
Alow

M

⌋)
− F[ f , r](x, sd) + err (7)

where

err = M · e⊺s,high + e⊺s,low + M · errhigh + errlow

= M ·
(

s⊺
⌊

Ahigh
M

⌋
−
⌊

s⊺
Ahigh

M

⌋)
+

(
s⊺
⌊

Alow
M

⌋
−
⌊

s⊺
Alow

M

⌋)
+ M · errhigh + errlow (8)

where errhigh, errlow ∈ {0, 1}ℓ are rounding errors and matrices Ahigh, Alow are publicly computable matrices and

∥err∥ ≤M · ((n + 1) · ∥s∥+ 1) + (n + 1) · ∥s∥+ 1 ≤ 2M · ((n + 1) · ∥s∥+ 1)

=24λ+1β
(
(n + 1) · 22λ+1

√
λ
)
≤ 27λβ

− Next, we note that

c⊺B ·K = s⊺
(

M ·
⌊

Ahigh
M

⌋
+

⌊
Alow

M

⌋)
+ c⊺B ·K. (9)

where
∥∥(c⊺B ·K)⊺

∥∥ ≤ 29λβ
√

λ · τ from our parameter setting.
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− Using Equations (7) and (9), we get

z = c⊺B ·K−

M ·

 c⊺att ·H
Fhigh
Aatt,X

M

+

⌊
c⊺att ·H

Flow
Aatt,X

M

⌋
= F[ f , r](x, sd) + e⊺B ·K− err
= f (x) ⌊q/2⌉+ PRF(sd, r) + e⊺B ·K− err

where ∥∥PRF(sd, r) + e⊺B ·K− err
∥∥ ≤ ∥PRF(sd, r)∥+ 29λβ

√
λ · τ + 27λβ

≤ ∥PRF(sd, r)∥+ 29λ+1β
√

λ · τ < q/4− B + B < q/4

Hence the last step of decryption outputs y correctly with probability 1.

3.3 Security Proof for Pseudorandom Functionalities
Theorem 3.6. Let SCprFE be a sampler class for prFE. Assuming LWE (Assumption 2.6) and private coin Evasive
LWE (Assumption 2.7) with respect to the sampler class that contains all Sampevs(1λ) induced by SampprFE ∈ SCprFE
as defined in Figure 1, our prFE scheme satisfies prCT security with respect to SCprFE as defined in Definition 3.2.

Proof. Consider a sampler SampprFE that generates the following:

1. Key Queries. It issues Qkey number of functions f1, . . . , fQkey for key queries.

2. Ciphertext Queries. It issues Qmsg ciphertext queries x1, . . . , xQmsg .

3. Auxiliary Information. It outputs the auxiliary information auxA.

To prove the prCT security as per Definition 3.2, we show


mpk = (Aatt, B, M), auxA, CB = SB + EB,

{Xj = Afhe,jRj − (xj, sdj)⊗G}j∈[Qmsg ],

{c⊺att,j = s⊺j (Aatt − bits(1, Xj)⊗G) + e⊺att,j}j∈[Qmsg ],

{Kk, rk}k∈[Qkey ]

 ≈c


mpk = (Aatt, B, M), auxA, CB ← Z

Qmsg×mw
q ,

{Xj ← Z
(n+1)×m(λ+L)
q }j∈[Qmsg ],

{catt,j ← Z
(LX+1)m
q }j∈[Qmsg ],

{Kk, rk}k∈[Qkey ]


(10)

where

S =

 s⊺1
...

s⊺Qmsg

, EB =

 e⊺B,1
...

e⊺B,Qmsg

 ,

(auxA, { fk}k∈[Qkey ], {xj}j∈[Qmsg ])← SampprFE(1
λ)

and for j ∈ [Qmsg], sj, eB,j, Afhe,j, Rj, sdj, eatt,j are sampled as in the construction, for k ∈ [Qkey], we have rk ← {0, 1}λ,
Fk = F[ fk, rk] and AFk is as defined in the construction, and Kk = B−1

τ (AFk )

assuming we have

(1λ, auxA, { fk, fk(xj)}j∈[Qmsg ],k∈[Qkey ]) ≈c (1λ, auxA, { fk, ∆j,k ← {0, 1}ℓ}j∈[Qmsg ],k∈[Qkey ]).
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Sampevs(1λ)

The sampler does the following.
− Runs the prFE sampler SampprFE to obtain ({ fk}k∈Qkey , {xj}j∈[Qmsg ], auxA) where fk : {0, 1}L → {0, 1}ℓ, xj ∈
{0, 1}L and auxA ∈ {0, 1}⋆.

− Set appropriate parameters as in Equation (3)a.
− Samples sdj ← {0, 1}λ, Āfhe,j ← Zn×m

q , efhe,j ← Dm
Z,σ, Rj ← {0, 1}m×m(λ+L) and computes Xj = Afhe,jRj −

(xj, sdj)⊗G for j ∈ [Qmsg] where Afhe,j =

(
Āfhe,j

s̄⊺Āfhe,j + e⊺fhe,j

)
∀ j ∈ [Qmsg].

− Samples s̄j ← Dn
Z,σs

, eatt,j ← D
(LX+1)m
Z,σ , sets sj = (s̄⊺j ,−1)⊺ and computes c⊺att,j = s⊺j (Aatt − bits(1, Xj)⊗G) +

e⊺att,j ∀ j ∈ [Qmsg].

− Samples rk ← {0, 1}λ, defines F[ fk, rk] and computes AFk , for k ∈ [Qkey], as in the key generation algorithm.
− It outputs

S =


s⊺1
...

s⊺Qmsg

 , P = [AF1 || . . . ||AFQkey
]

aux1 =
(
{Xj = Afhe,jRj − (xj, sdj)⊗G}j∈[Qmsg ], {c

⊺
att,j = s⊺j (Aatt − bits(1, Xj)⊗G) + e⊺att,j}j∈[Qmsg ]

)
,

aux2 = ( f1, . . . , fQkey , auxA, r1, . . . , rQkey , Aatt, M).

aWe assume the parameters to be output as a part of aux2, even though we do not explicitly write so.

Figure 1: Description of the Sampler for Evasive LWE

We invoke evasive LWE assumption for a matrix B with the private coin sampler Sampevs that outputs (S, P, aux =

(aux1, aux2)) with private coin coinsSampevs
priv = {sdj, Rj, eatt,j, Afhe,j}j∈[Qmsg ], defined as follows.

By Lemma 2.9, to prove Equation (10) assuming evasive LWE, it suffices to show


aux2, B, CB = SB + EB,

{Xj = Afhe,jRj − (xj, sdj)⊗G}j∈[Qmsg ],

{c⊺att,j = s⊺j (Aatt − bits(1, Xj)⊗G) + e⊺att,j}j∈[Qmsg ],

CP = SP + EP

 ≈c


aux2, B, CB ← Z

Qmsg×mw
q ,

{Xj ← Z
(n+1)×m(λ+L)
q }j∈[Qmsg ],

{catt,j ← Z
(LX+1)m
q }j∈[Qmsg ],

CP ← Z
Qmsg×ℓ·Qkey
q

 (11)

where EP ← D
Qmsg×ℓ·Qkey
Z,σ1

. Using the representation

CB =

 c⊺B,1 = s⊺1 B + e⊺B,1
...

c⊺B,Qmsg
= s⊺Qmsg

B + e⊺B,Qmsg

 = {c⊺B,j}j∈[Qmsg ], (12)

CP =


c⊺P,1 = s⊺1 AF1 + e⊺P,1,1|| . . . ||s⊺1 AFQkey

+ e⊺P,1,Qkey
...

c⊺P,Qmsg
= s⊺Qmsg

AF1 + e⊺P,Qmsg,1|| . . . ||s⊺Qmsg
AFQkey

+ e⊺P,Qmsg,Qkey

 = {c⊺P,j,k}j∈[Qmsg ],k∈[Qkey ], (13)
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we rewrite Equation (11) as follows.
aux2, B, {c⊺B,j = s⊺j B + e⊺B,j}j∈[Qmsg ],

{Xj = Afhe,jRj − (xj, sdj)⊗G}j∈[Qmsg ],

{c⊺att,j = s⊺j (Aatt − bits(1, Xj)⊗G) + e⊺att,j}j∈[Qmsg ],

{c⊺P,j,k = s⊺j AFk + e⊺P,j,k}j∈[Qmsg ],k∈[Qkey ]

 ≈c


aux2, B, {cB,j ← Zmw

q }j∈[Qmsg ],

{Xj ← Z
(n+1)×m(λ+L)
q }j∈[Qmsg ],

{catt,j ← Z
(LX+1)m
q }j∈[Qmsg ],

{cP,j,k ← Zℓ
q}j∈[Qmsg ],k∈[Qkey ]

 (14)

where eP,j,k ← Dℓ
Z,σ1

. Now, to prove Equation (10) it suffices to show Equation (14).
We prove Equation (14) via the following sequence of hybrids.

Hyb0. This is L.H.S distribution of Equation (14).

Hyb1. This hybrid is same as Hyb0, except we compute c⊺P,j,k as

c⊺P,j,k = M ·

 c⊺att,j ·H
Fhigh,k
Aatt,Xj

M

+

 c⊺att,j ·H
Flow,k
Aatt,Xj

M

+ fk(xj) ⌊q/2⌉+ PRF(sdj, rk) + e⊺P,j,k

where eP,j,k ← Dℓ
Z,σ1

. We claim that Hyb0 and Hyb1 are statistically indistinguishable. To see this, we observe
the following.

− From Equation (7) we note that

M ·

 c⊺att,j ·H
Fhigh,k
Aatt,Xj

M

+

 c⊺att,j ·H
Flow,k
Aatt,Xj

M

+ fk(xj) ⌊q/2⌉+ PRF(sdj, rk) + e⊺P,j,k

= s⊺j

(
M ·

⌊
Ahigh,k

M

⌋
+

⌊
Alow,k

M

⌋)
+ errj,k + e⊺P,j,k

= s⊺j AFk + errj,k + e⊺P,j,k

where
∥∥∥errj,k

∥∥∥ ≤ 27λβ.

− Next, we note that
∥∥∥errj,k

∥∥∥ ≤ 28λ+O(1)β/poly(λ) = χ1 =
∥∥∥eP,j,k

∥∥∥. Thus by noise flooding (Lemma 2.4)
we have e⊺P,j,k ≈s errj,k + e⊺P,j,k with a statistical distance of poly(λ)2−λ.

From the above, we have

∆(Hyb0, Hyb1) =
Qkey ·Qmsg · poly(λ)

2λ
.

Thus, it suffices to show pseudorandomness of the following distribution given aux2
B, {c⊺B,j = s⊺j B + e⊺B,j}j∈[Qmsg ]

{Xj = Afhe,jRj − (xj, sdj)⊗G}j∈[Qmsg ],
{c⊺att,j = s⊺j (Aatt − bits(1, Xj)⊗G) + e⊺att,j}j∈[Qmsg ],

{F̃j,k = fk(xj) ⌊q/2⌉+ PRF(sdj, rk) + e⊺P,j,k}j∈[Qmsg ],k∈[Qkey ].


Hyb2. This hybrid is same as Hyb1 except that for all j ∈ [Qmsg] we sample cB,j ← Zmw

q , catt,j ← Z
(LX+1)m
q and

Afhe,j ← Z
(n+1)×m
q , where Afhe,j is the fhe public key used to compute Xj. We have Hyb1 ≈c Hyb2 using LWE.

To prove this we consider sub-hybrids Hyb1.i for i ∈ [Qmsg], where in Hyb1.i we sample cB,j ← Zmw
q , catt,j ←

Z
(LX+1)m
q and Afhe,j ← Z

(n+1)×m
q for 1 ≤ j ≤ i. We set Hyb1 = Hyb1.0 and Hyb2 = Hyb1.Qmsg . Next, we

prove that for all i ∈ [Qmsg], Hyb1.i−1 ≈c Hyb1.i via the following claim.
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Claim 3.7. Hyb1.i−1 ≈c Hyb1.i, for i ∈ [Qmsg], assuming the security of LWE.

Proof. We show that if there exists an adversary A who can distinguish between the two hybrids with non-
negligible advantage, then there is a reduction B that breaks LWE security with non-negligible advantage. The
reduction is as follows.

1. The adversary A sends the function queries f1, . . . , fQkey , message queries x1, . . . , xQmsg and auxiliary
input auxA to the reduction.

2. B initiates the LWE security game with the LWE challenger. The challenger sends ALWE ∈ Z
n×mw+m+(LX+1)m
q

and b ∈ Z
mw+m+(LX+1)m
q to B.

3. B parses ALWE = (B′, Âfhe, A′att), where B′ ∈ Zn×mw
q , Âfhe ∈ Zn×m

q , A′att ∈ Z
n×(LX+1)m
q and

b⊺ = (b⊺
B, b⊺

fhe, b⊺
att). For j ∈ [Qmsg], it computes cB,j, catt,j and Afhe,j as follows.

• For 1 ≤ j < i: B samples cB,j ← Zmw
q , catt,j ← Z

(LX+1)m
q and Afhe,j ← Z

(n+1)×m
q .

• For j = i: B does the following.

− Samples b← Zmw
q and sets B =

(
B′

b⊺

)
and c⊺B,i := b⊺

B − b⊺.

− Sets Afhe,i :=
(

Âfhe
b⊺

fhe

)
and computes Xi = Afhe,iRi − (xi, sdi)⊗G as in the construction.

− Sets Āatt = A′att + bits(1, Xi) ⊗ Ḡ, Aatt =

(
Āatt
a⊺att

)
, where aatt ← Z

(LX+1)m
q , and c⊺att,i =

b⊺
att − (a⊺att − bits(1, Xi)⊗G), where Ḡ and G denotes the first n rows and n + 1-th row of the

gadget matrix G ∈ Z
(n+1)×m
q , respectively.

• For j > i: B computes c⊺B,j, Xj and c⊺att,j as in the construction, where c⊺att,j is computed using

Aatt =

(
Āatt
a⊺att

)
.

4. B sets aux2 = ( f1, . . . , fQkey , auxA, r1, . . . , rQkey , Aatt, M) where rk ← {0, 1}λ and computes F̃j,k as in
Hyb1. It sends (aux2, {c⊺B,j, Xj, c⊺att,j, F̃j,k}) to the adversary.

5. A outputs a bit β′. B forwards the bit β′ to the LWE challenger.

We note that if the LWE challenger sent b = s̄ALWE + eLWE, then B simulated Hyb1,i−1 with A else if LWE

challenger sent random b← Z
mw+m+(LX+1)m
q then B simulated Hyb1,i with A.

To see the former case, we note that if b = s̄ALWE + e⊺LWE = s̄(B′, Âfhe, A′att) + (e⊺B, e⊺fhe, e⊺att), then
bB = s̄B′ + e⊺B, bfhe := s̄Âfhe + e⊺fhe, and batt := s̄A′att + e⊺att. Thus we have

c⊺B,i = (s̄,−1)
(

B′

b⊺

)
+ e⊺B, Afhe,i =

(
Âfhe

s̄Âfhe + e⊺fhe

)
, c⊺att,i = (s̄,−1)

((
Āatt
a⊺att

)
− bits(1, Xi)⊗G

)
+ e⊺att

To see the latter case, we note that if b← Z
mw+m+(LX+1)m
q then it implies bB ← Zmw

q , bfhe ← Zm
q , batt ←

Z
(LX+1)m
q . This implies the following.

− Randomness of bB implies the randomness of c⊺B,i := b⊺
B − b⊺.

− Randomness of bfhe implies Afhe,i ← Z
(n+1)×m
q .

− Randomness of batt implies randomness of c⊺att,i = b⊺
att − (a⊺att − bits(1, Xi)⊗G).
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Thus, it suffices to show pseudorandomness of the following distribution given aux2 B, {cB,j ← Zmw
q }j∈[Qmsg ], {Xj = Afhe,jRj − (xj, sdj)⊗G}j∈[Qmsg ],

{catt,j ← Z
(LX+1)m
q }j∈[Qmsg ], {F̃j,k = fk(xj) ⌊q/2⌉+ PRF(sdj, rk) + e⊺P,j,k}j∈[Qmsg ],k∈[Qkey ].


where Afhe,j ← Z

(n+1)×m
q .

Hyb3. This hybrid is same as Hyb2 except that for j ∈ [Qmsg] we sample Xj ← Z
(n+1)×m(λ+L)
q . We have

Hyb2 ≈s Hyb3 using leftover hash lemma. By leftover hash lemma (Lemma 2.5) we have that the statistical
distance between Afhe,jRj and a uniform matrix U ← Z

(n+1)×m(λ+L)
q is m(λ + L)/2n. This implies that the

statistical distance between Xj = Afhe,jRj − (xj, sdj)⊗G and Xj ← Z
(n+1)×m(λ+L)
q is m(λ + L)/2n and we

have
∆(Hyb2, Hyb3) ≤

Qmsg ·m(λ + L)
2n ≤ Qmsg · poly(λ)

2λ
.

Thus, it suffices to show pseudorandomness of the following distribution given aux2B, {cB,j ← Zmw
q , Xj ← Z

(n+1)×m(λ+L)
q , catt,j ← Z

(LX+1)m
q }j∈[Qmsg ],

{F̃j,k = fk(xj) ⌊q/2⌉+ PRF(sdj, rk) + e⊺P,j,k}j∈[Qmsg ],k∈[Qkey ].


Hyb4. This hybrid is the same as the previous one except that we replace PRF(sdj, ·) with the real random function

Rj(·) for each j ∈ [qmsg]. Since sdj is not used anywhere else, we can use the security of PRF to conclude that
this hybrid is computationally indistinguishable from the previous one.

Hyb5. This hybrid is same as the previous one except that we output a failure symbol if the set {rk}k∈[Qkey ], in aux2,
contains a collision. We prove that the probability with which there occurs a collision is negligible in λ. To
prove this it suffices to show that there is no k, k′ ∈ [Qkey] such that k ̸= k′ and rk = rk′ . The probability of this
happening can be bounded by Q2

key/2λ by taking the union bound with respect to all the combinations of k, k′.
Thus the probability of outputting the failure symbol is Q2

key/2λ which is negl(λ).

Hyb6. In this hybrid we compute F̃j,k as

F̃j,k = fk(xj) ⌊q/2⌉+ Rj,k + e⊺P,j,k

for all j ∈ [Qmsg], k ∈ [Qkey]. Namely, we use fresh randomness Rj,k ← [−q/4 + B, q/4− B]1×ℓ instead of
deriving the randomness by Rj(rk). We claim that this change is only conceptual. To see this, we observe that
unless the failure condition introduced in Hyb5 is satisfied, every invocation of the function Rj is with respect to a
fresh input and thus the output can be replaced with a fresh randomness.
Thus, it suffices to show pseudorandomness of the following distribution given aux2B, {cB,j ← Zmw

q , Xj ← Z
(n+1)×m(λ+L)
q , catt,j ← Z

(LX+1)m
q }j∈[Qmsg ],

{F̃j,k = fk(xj) ⌊q/2⌉+ Rj,k + e⊺P,j,k}j∈[Qmsg ],k∈[Qkey ].


Hyb7. This hybrid is same as the previous one except we sample Rj,k ← [−q/4, q/4]1×ℓ. We note that Hyb6 ≈s Hyb7.

To see this note that the statistical distance between the uniform distributions U1 = [−q/4 + B, q/4− B] and
U2 = [−q/4, q/4] is

∆(U1, U2) =
1
2

∣∣∣∣ 2
q− 4B

− 2
q

∣∣∣∣ ≤ 4B
q
≤ poly(λ)

2λ
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by our parameter setting. Therefore,

∆(Hyb2, Hyb3) ≤
Qkey ·Qmsg · poly(λ)

2λ
.

Hyb8. This hybrid is same as the previous one except we sample F̃j,k ← Zℓ
q. This follows from the pseudorandomness

of { fk(xj)}j,k. To see this note that we have

(1λ, auxA, { fk, fk(xj)}j∈[Qmsg ],k∈[Qkey ]) ≈c (1λ, auxA, { fk, ∆j,k ← {0, 1}ℓ}j∈[Qmsg ],k∈[Qkey ])

which implies

(1λ, auxA, { fk, F̃j,k = fk(xj) ⌊q/2⌉+ Rj,k + e⊺P,j,k}j∈[Qmsg ],k∈[Qkey ]) (15)

≈c (1λ, auxA, { fk, F̃j,k ← Zℓ
q}j∈[Qmsg ],k∈[Qkey ])

where Rj,k ← [−q/4, q/4]1×ℓ and eP,j,k ← Dℓ
Z,σ1

.
Thus, using Equation (15) and noting that adding random strings does not make the task of distinguishing the two
distributions any easier, we achieve the following distributionauxA, B, {cB,j ← Zmw

q , Xj ← Z
(n+1)×m(λ+L)
q , catt,j ← Z

(LX+1)m
q }j∈[Qmsg ],

{F̃j,k ← Zℓ
q}j∈[Qmsg ],k∈[Qkey ].


which is the R.H.S distribution of Equation (14), hence the proof.

3.4 Basing Security on Variant of Circular Evasive LWE ([HLL23]
In this section, we provide our construction of a functional encryption scheme for pseudorandom functionalities for
function family FL(λ),ℓ(λ),dep(λ) = { f : {0, 1}L → {0, 1}ℓ} basing the security on a variant of the circular evasive
assumption introduced by [HLL23], which is considered public-coin.

3.4.1 Assumptions

Here, we state the assumptions used in this section.

Assumption 3.8 (Circular Small Secret LWE). [HLL23] Let n, m, m′, q, χ, χ′ be functions of λ and

Āfhe ← Zn×m
q , Ā′ ← Zn×m′

q , r← Dn
Z,χ, s← (r⊺,−1)⊺, efhe ← Dm

Z,χ, e′ ← Dm′
Z,χ′ ,

R← {0, 1}m×(n+1)⌈log2 q⌉m, δfhe ← Zm
q , δ′ ← Zm′

q , ∆← Z
(n+1)×(n+1)⌈log2 q⌉m
q

The circular small-secret LWE assumption csLWEn,m,m′ ,q,χ,χ′ states that{(
1λ,
(

Āfhe
r⊺Āfhe + e⊺fhe

)
,
(

Āfhe
r⊺Āfhe + e⊺fhe

)
R− bits(s)⊗G, Ā′, r⊺Ā′ + (e′)⊺

)}
λ∈N

≈
{(

1λ,
(

Āfhe
δ⊺fhe

)
, ∆, Ā′, (δi)

⊺
)}

λ∈N

Next, we define a variant of evcsLWE assumption introduced by [HLL23] further refined to avoid the attacks as
discusses in [AMYY25].
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Assumption 3.9 (evcsLWE). Let S(1λ; aux) be an algorithm that, given randomness aux, outputs

Acirc ← Z
(n+1)×(m(n+1)2⌈log2 q⌉2+1)m
q , Ā′ ∈ Zn×m′

q , P ∈ Z
n×J
q , σ, σ′, σ−1, σpost, σpre

where m ≥ m0(n, q) and σ−1 ≥ σ0(n, m) and σpost ≥ σpre. Suppose

Āfhe ← Zn×m
q , (B, τ)← TrapGen(1n, 1m, q), K← B−1(P),

efhe ← Dm
Z,σ, ecirc ← D

(m(n+1)2⌈log2 q⌉2+1)m
Z,σ′ , e′ ← Dm′

Z,σ′ , eB ∈ Zm, eP ∈ ZJ ,

δfhe ← Zm
q , δcirc ← Z

(m(n+1)2⌈log2 q⌉2+1)m
q , δ′ ← Zm′

q , δB ← Zm
q , δP ← Z

J
q,

r← Dn
Z,σ, s← (r⊺,−1)⊺, R← {0, 1}m×(n+1)⌈log2 q⌉m, ∆← Z

(n+1)×(n+1)⌈log2 q⌉m
q ,

S =

(
Āfhe

r⊺Āfhe + e⊺fhe

)
R− (x, bits(s))⊗G for x ∈ {0, 1}L

In the precondition, the entries of eB, eP are independent and follow DZ,σpre , and evcsLWESpre states that
 1λ, aux, Āfhe, B, r⊺Āfhe + e⊺fhe, S,

s⊺(Acirc − (1, bits(S))⊗G) + e⊺circ
r⊺Ā′ + (e′)⊺, r⊺B + e⊺B, r⊺P + e⊺P




λ∈N

≈


1λ, aux, Āfhe, B, δ⊺fhe, ∆,

δ⊺circ,
(δ′)⊺, δ⊺B, δ⊺P




λ∈N

.

In the postcondition, the entries of eB are independent and follow DZ,σpost , and evcsLWESpost states that
 1λ, aux, Āfhe, B, r⊺Āfhe + e⊺fhe, S,

s⊺(Acirc − (1, bits(S))⊗G) + e⊺circ
r⊺Ā′ + (e′)⊺, r⊺B + e⊺B, K




λ∈N

≈


1λ, aux, Āfhe, B, δ⊺fhe, ∆,

δ⊺circ,
(δ′)⊺, δ⊺B, K




λ∈N

.

The evasive circular small-secret LWE assumption with respect to the sampler class SC states that evcsLWESpre implies
evcsLWESpost for all efficient samplers S .
We conjecture that for reasonable class of samplers, the evasive LWE assumption holds. In particular, we conjecture
that our sampler SampprFE(1λ) used for the security proof of our prFE for natural class of functions should be in the
secure class of samplers SC for which the evasive LWE holds.

Remark 3.10. In our assumption, the FHE encoding encode the attribute x, whereas the one in [HLL23] it only encode
the FHE secret key. This is created by the difference between ABE and FE, since the attribute x can be public in the
former and must be hidden in the latter.

3.4.2 Construction

The construction is same as in Section 3.2 except the following changes.

1. We use a concrete pseudorandom function PRF, PRF : Z(n+1)×m′ ×Zn+1 → [−q/4+ B, q/4− B]1×ℓ defined
as PRF(A, s) = [GqG−1

p (⌊(s⊺A)⊺⌋p)]B. Here m′ = ⌈ℓ(⌈log q⌉ / ⌈log p⌉)⌉, Gq = Iℓ⊗ (1, 2, 22, . . . , 2⌈log2 q⌉−1),
G−1

p (x) for a vector x ∈ Zm′ is (bits(x[1]), . . . , bits(x[m′]))⊺, where bits(x[i]) ∈ {0, 1}log p and [x]B for any
x ∈ Zℓ

q represents truncating the range to [−q/2 + B, q/2− B]ℓ by mapping the out-of-range values to 0. Here
B is chosen to be exponentially smaller than q/4. We note that for our choice of B the statistical distance between
the uniform distribution over [−q/4, q/4] and [−q/4 + B, q/4− B] is negligible. We show how to set p later.

2. In the setup algorithm, we set LX = m(L + (n + 1) ⌈log q⌉)(n + 1) ⌈log q⌉ and replace the notation Aatt with
Acirc to match the notation of the underlying assumption.
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3. The KeyGen(msk, f ) algorithm has the following changes.

− It samples A′ ← Z
(n+1)×m′
q where m′ = ⌈ℓ(⌈log q⌉ / ⌈log p⌉)⌉ instead of r← {0, 1}λ.

− It defines function F[ f , A′] (instead of F = F[ f , r]), with f , A′ hardwired, as follows:
On input (x ∈ {0, 1}L, bits(s) ∈ {0, 1}(n+1)⌈log q⌉), first recover s ∈ Zn+1 from bits(s) and then compute
and output f (x) ⌊q/2⌉+ PRF(A′, s) ∈ Z1×ℓ

q .

The rest of the algorithm remains as it is. It outputs sk f = (K, A′).

4. The encryption algorithm has the following changes

− It samples R differently as R← {0, 1}m×m(L+(n+1)⌈log q⌉) and computes X = AfheR− (x, bits(s))⊗G ∈
Z

(n+1)×m(L+(n+1)⌈log q⌉)
q .

− We also change the notation of catt and denote this as c⊺circ = s⊺(Acirc − bits(1, X) ⊗ G) + e⊺circ for
ecirc ← D(LX+1)m

Z,σ .

The rest of the algorithm remains as it is.

The above modified prFE scheme satisfies correctness. This can be argued using same steps as for the construction in
Section 3.2.

3.4.3 Security

Theorem 3.11. Let SCprFE be a sampler class for prFE. Assuming circular small-secret LWE (Assumption 3.8) and
evasive circular small-secret LWE (Assumption 3.9) with respect to the sampler class that contains all Sampevcs(1λ)
induced by SampprFE ∈ SCprFE as defined in Figure 2, our prFE scheme satisfies prCT security with respect to SCprFE
as defined in Definition 3.2.

Proof. For a prFE sampler SampprFE as defined in the proof for Theorem 3.6, we show
mpk = (Acirc, B, M), auxA, CB = SB + EB,
{Xj = Afhe,jRj − (xj, bits(sj))⊗G}j∈[Qmsg ],

{c⊺circ,j = s⊺j (Acirc − bits(1, Xj)⊗G) + e⊺circ,j}j∈[Qmsg ],

{Kk, A′k}k∈[Qkey ]

 (16)

≈c


mpk = (Acirc, B, M), auxA, CB ← Z

Qmsg×mw
q ,

{Xj ← Z
(n+1)×m(L+(n+1)⌈log q⌉)
q }j∈[Qmsg ],

{ccirc,j ← Z
(LX+1)m
q }j∈[Qmsg ],

{Kk, A′k}k∈[Qkey ]


where

S =

 s⊺1
...

s⊺Qmsg

, EB =

 e⊺B,1
...

e⊺B,Qmsg

 ,

(auxA, { fk}k∈[Qkey ], {xj}j∈[Qmsg ])← SampprFE(1
λ)

and for j ∈ [Qmsg], sj, eB,j, Afhe,j, Rj, sdj, ecirc,j are sampled as in the construction, for k ∈ [Qkey], we have

A′ ← Z
(n+1)×m′
q , Fk = F[ fk, A′k] and AFk is as defined in the construction, and Kk = B−1

τ (AFk )
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assuming we have

(1λ, auxA, { fk, fk(xj)}j∈[Qmsg ],k∈[Qkey ]) ≈c (1λ, auxA, { fk, ∆j,k ← {0, 1}ℓ}j∈[Qmsg ],k∈[Qkey ]).

Consider the evcsLWE sampler Sampevcs(1λ, aux) as defined in Figure 2. To prove Equation (16), assuming evcsLWE

Sampevcs(1λ, aux)

The sampler does the following.

− Parse aux = (auxA, { fk}k∈[Qkey ], {A
′
k ← Z

(n+1)×m′
q }k∈[Qkey ], auxSamp).

− Sample parameters as in Equation (3). Additionally set p = q/(2λσ
√

λ)a.

− Samples Acirc ← Z
(n+1)×(LX+1)m
q using the randomness auxSamp.

− Defines Fk[ fk, A′k] and computes AFk as in the construction. AFk is publicly computable given fk, A′k, M and Acirc.
− It outputs

Acirc, P = [AF1 || . . . ||AFQkey
], aux = (auxSamp, auxprFE, {A′k}k∈[Qkey ]

)

aWe assume the parameters to be part of the output of Sampevcs, even though we do not explicitly write so.

Figure 2: Description of the Sampler for circular small-secret evasive LWE

assumption (Assumption 3.9) with sampler Sampevcs it suffices to show
aux1, B, CB = SB + EB,

{Xj = Afhe,jRj − (xj, bits(sj))⊗G}j∈[Qmsg ],

{c⊺circ,j = s⊺j (Acirc − bits(1, Xj)⊗G) + e⊺circ,j}j∈[Qmsg ],

CP = SP + EP

 ≈c


aux1, B, CB ← Z

Qmsg×mw
q ,

{Xj ← Z
(n+1)×m(L+(n+1)⌈log q⌉)
q }j∈[Qmsg ],

{ccirc,j ← Z
(LX+1)m
q }j∈[Qmsg ],

CP ← Z
Qmsg×ℓ·Qkey
q


(17)

where aux1 = (aux, M) and EP ← D
Qmsg×ℓ·Qkey
Z,σ1

. Using the representation in Equations (12) and (13), we rewrite the
Equation (17) as

aux1, B, {c⊺B,j = s⊺j B + e⊺B,j}j∈[Qmsg ],

{Xj = Afhe,jRj − (xj, bits(sj))⊗G}j∈[Qmsg ],

{c⊺circ,j = s⊺j (Acirc − bits(1, Xj)⊗G) + e⊺circ,j}j∈[Qmsg ],

{c⊺P,j,k = s⊺j AFk + e⊺P,j,k}j∈[Qmsg ],k∈[Qkey ]

 ≈c


aux1, B, {cB,j ← Zmw

q }j∈[Qmsg ],

{Xj ← Z
(n+1)×m(L+(n+1)⌈log q⌉)
q }j∈[Qmsg ],

{ccirc,j ← Z
(LX+1)m
q }j∈[Qmsg ],

{cP,j,k ← Zℓ
q}j∈[Qmsg ],k∈[Qkey ]


(18)

where eP,j,k ← Dℓ
Z,σ1

.

We prove Equation (18) using the following sequence of hybrids.

Hyb0. This is L.H.S distribution of Equation (18).

Hyb1. This hybrid is same as Hyb0, except we compute c⊺P,j,k as

c⊺P,j,k = M ·

 c⊺circ,j ·H
Fhigh,k
Acirc,Xj

M

+

 c⊺circ,j ·H
Flow,k
Acirc,Xj

M

+ fk(xj) ⌊q/2⌉+ PRF(A′k, sj) + e⊺P,j,k
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where eP,j,k ← Dℓ
Z,σ1

. The proof of Hyb0 ≈s Hyb1 is exactly the same as the proof of Hyb0 ≈s Hyb1 in
Theorem 3.6, hence we omit it. So it suffices to show pseudorandomness of the following distribution given aux1

B, {c⊺B,j = s⊺j B + e⊺B,j}j∈[Qmsg ]

{Xj = Afhe,jRj − (xj, bits(sj))⊗G}j∈[Qmsg ],
{c⊺circ,j = s⊺j (Acirc − bits(1, Xj)⊗G) + e⊺circ,j}j∈[Qmsg ],

{F̃j,k = fk(xj) ⌊q/2⌉+ [GqG−1
p (⌊(s⊺j A′k)

⊺⌋p)]B + e⊺P,j,k}j∈[Qmsg ],k∈[Qkey ].


where we write PRF(A′k, sj) =

[
GqG−1

p

(⌊
(s⊺j A′k)

⊺
⌋

p

)]
B
.

Hyb2: This hybrid is same as Hyb1 except that for all j ∈ [Qmsg], k ∈ [Qkey], we compute the PRF differently. We

compute PRF(A′k, sj) =

[
GqG−1

p

(⌊
(s̄⊺j Ā′k − (a′k)

⊺ + e⊺k )
⊺
⌋

p

)]
B

for ek ← Dℓ
Z,σ, where Ā′k denotes the

first n rows and a′k denotes the last row of the matrix A′k . We claim that Hyb1 ≈s Hyb2 with all but negligible
probability. To see this, we note the following.

− The statistical distance between (s̄⊺j Ā′k − (a′k)
⊺ + e⊺k )

⊺ and (s̄⊺j Ā′k − (a′k)
⊺)⊺ is bounded by ∥ek∥ ≤ σ

√
λ.

− So, Pr
[⌊

(s̄⊺j Ā′k − a′k)
⊺)⊺
⌋

p
̸=
⌊
(s̄⊺j Ā′k − a′k)

⊺ + e⊺k )
⊺
⌋

p

]
≤ σ
√

λp/q = 1/2λ due to our parameter

setting.
− Taking the probability over all k ∈ [Qkey], we get Hyb1 ≈s Hyb2 with all but Qkey/2λ probability.

So it suffices to show pseudorandomness of the following distribution given aux1
B, {c⊺B,j = s⊺j B + e⊺B,j}j∈[Qmsg ]

{Xj = Afhe,jRj − (xj, bits(sj))⊗G}j∈[Qmsg ],
{c⊺circ,j = s⊺j (Acirc − bits(1, Xj)⊗G) + e⊺circ,j}j∈[Qmsg ],

{F̃j,k = fk(xj) ⌊q/2⌉+ [GqG−1
p (⌊(s̄⊺j Ā′k − (a′k)

⊺ + e⊺k )
⊺⌋p)]B + e⊺P,j,k}j∈[Qmsg ], k ∈ [Qkey].


Hyb3: This hybrid is same as Hyb2 except that for all j ∈ [Qmsg] we sample cB,j ← Zmw

q , ccirc,j ← Z
(LX+1)m
q ,

Xj ← Z
(n+1)×m(L+(n+1)⌈log q⌉)
q and Rj,k ← Zℓ

q, where Rj,k = GqG−1
p (⌊(s̄⊺j Ā′k − (a′k)

⊺ + e⊺k )
⊺⌋p) in Hyb2 .

We have Hyb1 ≈c Hyb2 assuming the hardness of circular small secret LWE.
To prove this we consider sub-hybrids Hyb1.i for i ∈ [Qmsg], where in Hyb1.i we sample cB,j ← Zmw

q , catt,j ←
Z

(LX+1)m
q , Xj ← Z

(n+1)×m(L+(n+1)⌈log q⌉)
q and Rj,k ← Zℓ

q for 1 ≤ j ≤ i. We set Hyb1 = Hyb1.0 and
Hyb2 = Hyb1.Qmsg . We prove that for all i ∈ [Qmsg], Hyb1.i−1 ≈c Hyb1.i in Claim 3.12. Thus, it suffices to
show pseudorandomness of the following distribution given aux2 B, {cB,j ← Zmw

q }j∈[Qmsg ], {Xj ← Z
(n+1)×m(L+(n+1)⌈log q⌉)
q }j∈[Qmsg ],

{ccirc,j ← Z
(LX+1)m
q }j∈[Qmsg ], {F̃j,k = fk(xj) ⌊q/2⌉+ [Rj,k]B + e⊺P,j,k}j∈[Qmsg ],k∈[Qkey ].

 .

Hyb4. This hybrid is same as the previous one except we sample F̃j,k ← Zℓ
q. This follows from the pseudorandomness

of { fk(xj)}j,k. Thus we achieve the following distributionauxA, B, {cB,j ← Zmw
q , Xj ← Z

(n+1)×m(L+(n+1)⌈log q⌉)
q , ccirc,j ← Z

(LX+1)m
q }j∈[Qmsg ],

{F̃j,k ← Zℓ
q}j∈[Qmsg ],k∈[Qkey ].


which is the R.H.S distribution of Equation (14), hence the proof.
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Claim 3.12. Hyb1.i−1 ≈c Hyb1.i.

Proof. We show that if there exists an adversary A who can distinguish between the two hybrids with non-negligible
advantage, then there is a reduction B that breaks csLWE security with non-negligible advantage. The reduction is as
follows.

1. The adversary A sends the function queries f1, . . . , fQkey , message queries x1, . . . , xQmsg and auxiliary input
auxA to the reduction.

2. B initiates the csLWE security game with the csLWE challenger. The csLWE challenger samples a bit β← {0, 1}
and does the following

− It samples Āfhe,j ← Zn×m
q , Ā′j ← Z

n×(mw+(LX+1)m+m′ ·Qkey)
q , s̄j ← Dn

Z,σs
, efhe,j ← Dm

Z,σ, e′j ←

Dmw+(LX+1)m+m′ ·Qkey
Z,σ , Rj ← {0, 1}m×(n+1)⌈log2 q⌉m, δfhe,j ← Zm

q , δ′j ← Z
mw+(LX+1)m+m′ ·Qkey
q , ∆j ←

Z
(n+1)×(n+1)⌈log2 q⌉m
q . It sets sj = (s̄⊺j ,−1)⊺.

− If β = 0, it sets b⊺
fhe,j := s̄⊺j Āfhe,j + e⊺fhe,j, Sj :=

(
Āfhe,j

s̄⊺j Āfhe,j + e⊺fhe,j

)
Rj − bits(sj) ⊗G, and (b′j)

⊺ =

s̄⊺j Ā′j + (e′j)
⊺.

− If β = 1, it sets bfhe,j := δfhe,j, Sj := ∆j, and b′j := δ′j.

− It returns
(

Afhe,j = (Āfhe,j b⊺
fhe,j)

⊺, Sj, Ā′j, (b
′
j)
⊺
)

to the reduction.

3. B does the following.

− For 1 ≤ j < i: B samples cB,j ← Zmw
q , ccirc,j ← Z

(LX+1)m
q , Xj ← Z

(n+1)×m(L+(n+1)⌈log q⌉)
q and

Rj,k ← Zℓ
q.

− For j = i, it does as follows.
(a) It samples R′j ← {0, 1}m×mL, computes Cj := Afhe,jR′j − xj ⊗G, sets Xj = Sj + Cj.

(b) It parses Ā′j = [B̄, Ā′circ,j, Ā′j,1, . . . Ā′j,Qkey
], where B̄ ∈ Zn×mw

q , Ā′circ,j ∈ Z
n×(LX+1)m
q , Ā′j,k ∈

Zn×m′
q , and similarly (b′j)

⊺ =
(
(bj)

⊺, (b′circ,j)
⊺, (b′j,1)

⊺, . . . , (b′j,Qkey
)⊺
)

, where bj ∈ Zmw
q , b′circ,j ∈

Z
(LX+1)m
q and b′j,k ∈ Zm′

q for k ∈ [Qkey].

(c) It samples b ← Zmw
q , acirc,j ← Z

(LX+1)m
q and sets cB,j := (bj)

⊺ − b⊺ and c⊺circ,j := (b′circ,j)
⊺ −

(a⊺circ,j − bits(1, Xj)⊗G).

(d) For k ∈ [Qkey], it samples a′k ← Zm′
q and sets Rj,k = (b′j,k)

⊺ − (a′k)
⊺.

− For j > i, it computes cB,j, ccirc,j, Xj and Rj,k as in Hyb2.

4. It sets aux1 = (aux, M), B = (B̄ b⊺)⊺ and F̃j,k = fk(xj) ⌊q/2⌉+ [GqG−1
p (⌊(Rj,k)

⊺⌋p)]B + e⊺P,j,k and sends
(aux1, B, cB,j, Xj, ccirc,j, F̃j,k) for all j ∈ [Qmsg] and k ∈ [Qkey] to A.

5. A outputs a bit β′. B forwards the bit β′ to the csLWE challenger.

We note that if the csLWE challenger choose β = 0 then B simulated Hyb1,i−1 with A else it simulated Hyb1,i with
A.
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4 Laconic Pseudorandom Poly-Domain Obfuscation
In this section, we introduce the notion of laconic pPRIO and construct it from several ingredients, which are all implied
by the evasive LWE and LWE. The construction of laconic pPRIO will be used in Section 5. Since the intuition for this
notion was discussed in Section 1, we proceed directly to the formal definition.

4.1 Definition
Syntax. A laconic pPRIO scheme supporting any circuit consists of the following algorithms.

LDigest(1λ, X = {Xi}i∈[N]) → dig. The digest algorithm takes as input the security parameter λ and an input
space X of the form X = {Xi ∈ {0, 1}ℓ}i∈[N] for some ℓ = ℓ(λ) and N ∈N. We assume that X encodes the
information of ℓ and N and one can retrieve them efficiently. It outputs a string dig.

LObfuscate(1λ, dig, E) → Lobf. The obfuscate algorithm takes as input the security parameter λ, string dig and a
circuit E : {0, 1}ℓ → {0, 1}L whose size is S. It outputs a ciphertext Lobf.
We decompose this algorithm into two phases.

LObfOff(1λ, 1S)→ (Lobfoff , st). The offline obfuscate algorithm takes as input the security parameter λ and
the circuit size S. It outputs Lobfoff and a state st.

LObfOn(st, dig, E)→ Lobfon. The online obfuscate algorithm takes as input the state st, string dig and circuit
E. It outputs Lobfon.

With the above decomposition, the obfuscate algorithm outputs Lobf = (Lobfoff , Lobfon).

LEval(X, Lobf) → Y. The evaluation algorithm takes as input X = {Xi ∈ {0, 1}ℓ}i∈[N] and Lobf. It outputs
Y = {Yi ∈ {0, 1}L}i∈[N].

Definition 4.1 (Compactness). For all ℓ, N ∈ N and X = {Xi ∈ {0, 1}ℓ}i∈[N], we need that the size of dig =

LDigest(1λ, X) should be bounded by poly(λ). In particular, the size of dig should be independent of N.

Definition 4.2 (Correctness). For all ℓ, N ∈ N, X = {Xi ∈ {0, 1}ℓ}i∈[N], and circuit E : {0, 1}ℓ → {0, 1}L such
that |E| ≤ S for an arbitrary polynomial S = S(λ), we have

Pr

LEval (X, (Lobfoff , Lobfon)) = {E(Xi)}i∈[N] :
LDigest(1λ, X = {Xi}i∈[N])→ dig

LObfOff(1λ, 1S)→ (Lobfoff , st)
LObfOn(st, dig, E)→ Lobfon

 = 1.

Remark 4.3. We note that the above correctness requirement implies that for the correctness to hold, LObfOff only has
to know the upper bound S on the size of the circuit E that is going to be input to LObfOn and does not have to know
anything else.

Definition 4.4 (Security). Let Samp be a PPT algorithm that on input 1λ, outputs(
aux, 1S, X1 = {X1

i }i∈[N1], . . . , XQ = {XQ
i }i∈[NQ ], E1, . . . , EQ

)
where for all for k ∈ [Q], i ∈ [Nk], Xk

i ∈ {0, 1}ℓk , Ek : {0, 1}ℓk → {0, 1}Lk and |Ek| ≤ S. We say that a laconic
pPRIO scheme is secure with respect to the sampler class SC if for every PPT sampler Samp ∈ SC the following holds.

If
(

aux, 1S, X1, . . . , XQ, {E1(X1
i )}i∈[N1], . . . , {EQ(XQ

i )}i∈[NQ ],
)
≈c

(
aux, 1S, X1, . . . , XQ, {∆1

i }i∈[N1], . . . , {∆Q
i }i∈[NQ ]

)
then

(
aux, X1, . . . , XQ, Lobfoff , Lobf1

on, . . . , LobfQ
on

)
≈c

(
aux, X1, . . . , XQ, Lobfoff , δ1 . . . , δQ

)
,
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where

∆k
i ← {0, 1}Lk

for k ∈ [Q], i ∈ [Nk],

(Lobfoff , st)← LObfOff(1λ, 1S), digk ← LDigest(1λ, Xk), Lobfk
on ← LObfOn(digk, Ek),

δk ← Oon for k ∈ [Q], where Oon is the co-domain of LObfOn algorithm.

Remark 4.5. It is shown in [AMYY25, BDJ+24] that there is no laconic pPRIO scheme satisfying the above security for
all general samplers. Therefore, when we use the security of laconic pPRIO, we invoke the security with respect to a
specific sampler class that is induced by the respective applications. For simplicity, we sometimes will treat as if there
was laconic pPRIO that is secure for all the samplers.

4.2 Construction
In this section we construct a laconic pPRIO scheme for any circuit.

Building Blocks. Below, we list the ingredients for our construction.

1. A pseudorandom function PRF : {0, 1}λ × {0, 1}λ → {0, 1}λ with key space, input space and output space as
{0, 1}λ. The input to the PRF will be in the form of (i∥j∥b) where i ∈ [N], j ∈ [ℓ], and b ∈ {0, 1}. Here, N
and ℓ are some polynomial functions in λ. Since we have 2λ > poly(λ), the input space of the PRF is large
enough to accommodate such inputs with an appropriate encoding. It is known that PRF can be constructed from
one-way functions.

2. A blind garbling scheme bGC = (Garble, bGC.Eval, bGC.Sim) (defined in Section 2.6) for any circuit. Without
loss of generality, we assume the labels are in {0, 1}λ. We also assume the randomness space of Garble algorithm
to be {0, 1}λ. If longer randomness is required by the algorithm, we can expand it by using a PRF. We require
the scheme to be secure as per Definition 2.20 and Definition 2.21. We can construct bGC with the required
properties assuming one-way functions (See Theorem 2.23).

3. A pPRIO scheme pPRIO.(ObfOff, ObfOn, Eval). We require the scheme to be secure as per Definition 2.30. We
can construct pPRIO with the required properties assuming evasive LWE and LWE (See Theorem 2.32).

4. A blind batch encryption scheme BBE = BBE.(Setup, Gen, SingleEnc, SingleDec) with message space {0, 1}λ.
We assume the randomness space of SingleEnc algorithm to be {0, 1}λ and denote the ciphertext space by
CT BBE = {0, 1}ℓct

BBE . We require the scheme to secure as per Definition 2.26 and Definition 2.27. We also
require that the CRS is a uniformly random string. As for the efficiency requirement, we need the size of the CRS
to be |crs| = poly(λ, log N, log ℓ) and the size of the single ciphertext to be |BBE.ct| = poly(λ, log N, log ℓ).
We can construct BBE with the required properties assuming the LWE assumption (See Theorem A.5).

Now, we describe our construction.

LDigest(1λ, X = {Xi}i∈[N]). The digest algorithm does the following.

− Retrieve N and ℓ from the input and run crs← BBE.Setup(1λ, 1ℓN).
− Compute h := BBE.Gen(crs, X1∥ · · · ∥XN), where X1∥ · · · ∥XN ∈ {0, 1}ℓN is the concatenation of the bit

strings X1, . . . , XN ∈ {0, 1}ℓ.
− Output dig := (crs, h, N, ℓ).

LObfOff(1λ, 1S). The offline obfuscate algorithm does the following.

− Generate (pPRIO.obfoff , pPRIO.st)← pPRIO.ObfOff(1λ, 1size) where size = poly(S, λ) is the maximum
size of the circuit C[dig, E, sd] defined in Figure 3 when the size of E is bounded by S.

− Output Lobfoff := pPRIO.obfoff and st := pPRIO.st.

48



LObfOn(st, dig, E). The online obfuscate algorithm does the following.

− Parse dig = (crs, h, N, ℓ) and st = pPRIO.st.
− Sample a PRF key sd← {0, 1}λ.
− Construct a circuit C[dig, E, sd] as in Figure 3 and compute pPRIO.obfon ← pPRIO.ObfOn(pPRIO.st, C[dig, E, sd]).
− Output Lobfon := (crs, pPRIO.obfon).

LEval(X, Lobf). The evaluation algorithm does the following.

− Parse X = {Xi}i∈[N] and Lobf = (Lobfoff = pPRIO.obfoff , Lobfon = (crs, pPRIO.obfon)).

− Set pPRIO.obf := (pPRIO.obfoff , pPRIO.obfon) and run pPRIO.Eval(pPRIO.obf, i)→ yi for i ∈ [N].
− Parse yi = ({BBE.cti,j}j∈[ℓ], Ẽi) for each i ∈ [N].

− Compute labi,j ← BBE.SingleDec(crs, X, ℓ(i − 1) + j, BBE.cti,j) for each i ∈ [N] and j ∈ [ℓ] and set
labi := {labi,j}.

− Compute zi = bGC.Eval(labi, Ẽi) for i ∈ [N].
− Output {zi}i∈[N].

Circuit C[dig, E, sd](i):

Hardwired constant: dig = (crs, h, N, ℓ), circuit E, and PRF seed sd.
Given input i ∈ [N], do the following:

1. Compute Ri := PRF(sd, i∥1∥0) and Si,j := PRF(sd, i∥j∥1) for j ∈ [ℓ].

2. ({labi,j,b}j∈[ℓ],b∈{0,1}, Ẽi)← Garble(1λ, E; Ri).

3. Compute BBE.cti,j ← BBE.SingleEnc(crs, h, (i− 1)ℓ+ j, (labi,j,0, labi,j,1); Si,j) for j ∈ [ℓ].

4. Output ({BBE.cti,j}j∈[ℓ], Ẽi).

Figure 3: The circuit C garbles input circuit E and provides BBE encryptions of its labels.

Correctness. For X = {Xi}i∈[N] and Lobf = (Lobfoff = pPRIO.obfoff , Lobfon = (crs, pPRIO.obfon)), we have
pPRIO.obfon ← pPRIO.ObfOn(pPRIO.st, C[dig, E, sd]). From the correctness of pPRIO and the definition of
C[dig, E, sd], for each i ∈ [N] we get

pPRIO.Eval(pPRIO.obf, i) = yi = ({BBE.cti,j}j∈[ℓ], Ẽi)

where BBE.cti,j ← BBE.SingleEnc(crs, h, (i− 1)ℓ+ j, (labi,j,0, labi,j,1); Si,j) for ({labi,j,b}j∈[ℓ],b∈{0,1}, Ẽi)← Garble(1λ, Ei; Ri).
Next, from the perfect correctness of the BBE scheme we get

BBE.SingleDec(crs, X, ℓ(i− 1) + j, BBE.cti,j) = labi,j for i ∈ [N], j ∈ [ℓ]

Next, we set labi := {labi,j}, which are the labels corresponding to input Xi for i ∈ [N]. Now, from the correctness of
the bGC scheme and definition of Ei, for each i ∈ [N] we get

bGC.Eval(labi, Ẽi) = E(Xi)

and hence the correctness.
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Efficiency. First, we note the following.

1. Instantiating the BBE scheme as in Theorem A.5, we have |crs| = poly(λ, log N, log ℓ) and |BBE.ct| =
poly(λ, log N, log ℓ), which are bounded by a fixed polynomial poly(λ) for any polynomially bounded N and ℓ.

2. Instantiating the pPRIO scheme as in Theorem 2.32, we have |pPRIO.obfoff | = poly(S, λ), |obfon| =
poly(S, λ).

From the above observations, our laconic pPRIO scheme satisfies

|dig| = O(λ), |Lobfoff | = poly(S, λ), |Lobfon| = poly(S, λ).

We formalise the instantiation using the following theorem. The security of our laconic pPRIO will be proven in
Theorem 4.7.

Theorem 4.6. Assuming LWE and evasive LWE assumptions, there exists a secure (Definition 4.4) laconic pPRIO
scheme satisfying

|dig| = O(λ), |Lobfoff | = poly(S, λ), |Lobfon| = poly(S, λ).

where dig ← LDigest(1λ, X = {Xi}i∈[N]), (Lobfoff , Lobfon) ← LObfuscate(1λ, dig, E) for circuit E : {0, 1}ℓ →
{0, 1}L whose size is bounded by S = S(λ).

4.3 Security Proof
Theorem 4.7. Let SC l-pPRIO be a sampler class for laconic pPRIO. Assume pPRIO is secure (Definition 2.30) with
respect to the sampler class that contains all SamppPRIO(1λ), induced by Sampl-pPRIO ∈ SC l-pPRIO, as defined in
Equation (20), BBE satisfies security (Definition 2.26) and strong blindness (Definition 2.27), bGC satisfies security
(Definition 2.20) and blindness (Definition 2.21) and PRF is secure. Then the above construction of laconic pPRIO
satisfies security as defined in Definition 4.4.

Proof. Let us consider a sampler Sampl-pPRIO that outputs(
aux, {Xk = {Xk

i ∈ {0, 1}ℓk}i∈[Nk ]}k∈[Q], {Ek}k∈[Q]

)
.

To prove the theorem, we show that(
aux, Lobfoff = pPRIO.obfoff , {Xk, Lobfk

on = (crsk, pPRIO.obfk
on)}k∈[Q]

)
≈c

(
aux, Lobfoff = pPRIO.obfoff , {Xk, δk ← Oon}k∈[Q]

)
holds assuming (

aux, {Xk, {Ek(Xk
i )}i∈[Nk ]}k∈[Q]

)
≈c

(
aux, {Xk, {∆k

i ← {0, 1}Lk}i∈[Nk ]}k∈[Q]

)
(19)

where Oon is the co-domain of LObfOn algorithm. Recalling that each crsk is a random strting, it suffices to prove that
{pPRIO.obfk

on}k is pseudorandom.
We invoke the security of pPRIO scheme with respect to a sampler SamppPRIO(1λ) that outputs(

1N1+···+NQ
, auxpPRIO = (aux, {crsk}k∈[Q], {Xk}k∈[Q]),

{
Ck[digk, Ek, sdk]

}
k∈[Q]

)
(20)

where crsk ← BBE.Setup(1λ, 1ℓ
k Nk

), hk = BBE.Gen(crsk, Xk
1∥ · · · ∥Xk

Nk ), digk = (crsk, hk, Nk, ℓk), and sdk ←
{0, 1}λ. From the security of pPRIO, we can see that it suffices to prove(

aux, {crsk}k∈[Q], {Xk}k∈[Q],
{

Ck[digk, Ek, sdk](i)
}

k∈[Q],i∈[Nk ]

)
≈c

(
aux, {crsk}k∈[Q], {Xk}k∈[Q],

{
γk

i

}
k∈[Q],i∈[Nk ]

)
(21)
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where Ck[digk, Ek, sdk](i) = ({BBE.ctk
i,j}j∈[ℓk ], Ẽk

i ) for i ∈ [Nk], k ∈ [Q] and γk
i ← CT

ℓk

BBE × {0, 1}ℓk
bGC . Here,

ℓk
bGC is the length of the binary string Ẽk

i . To prove Equation (21), we consider the following sequence of games.

Hyb0. This is the LHS distribution of Equation (21). Rearranging the terms and recalling the definition of the circuit,
we can rewrite the distribution as(

aux,
{

crsk, Xk,
{
{BBE.ctk

i,j}j∈[ℓk ], Ẽk
i

}
i∈[Nk ]

}
k∈[Q]

)

where ({labk
i,j,b}j∈[ℓk ],b∈{0,1}, Ẽk

i )← Garble(1λ, Ek; Rk
i ) and BBE.ctk

i,j ← SingleEnc(crs, hk, (i− 1)ℓk + j, (labk
i,j,0,

labk
i,j,1); Sk

i,j) for Rk
i := PRF(sdk, i∥1∥0) and Sk

i,j := PRF(sdk, i∥j∥1).

Hyb1. This hybrid is same as the previous one except that we compute each Rk
i and Sk

i,j differently. Concretely, we
sample Rk

i , Sk
i,j ← {0, 1}λ for all j ∈ [ℓk], i ∈ [Nk] and k ∈ [Q]. This hybrid is computationally indistinguishable

from the previous one due to the security of PRF.

Hyb2. In this hybrid, we change how we compute BBE.ctk
i,j. Namely, we set

BBE.ctk
i,j ← SingleEnc(crs, hk, (i− 1)ℓk + j, (labk

i,j,0, labk
i,j,1)) where labk

i,j,b

{
= labk

i,j,b if b = Xk
i,j

← {0, 1}λ otherwise
.

In the above, Xk
i,j is the j-th bit of Xk

i . By the security of BBE, this hybrid is computationally indistinguishable
from the previous one. To see this, observe that the decryption outputs the labels corresponding to the j-th bit of
Xk

i and we only substitute labk
i,j,b ← {0, 1}λ when b ̸= Xk

i,j.

Hyb3. In this hybrid, we change how we compute Ẽk
i and labk

i,j,b. Namely, we set

({labk
i,j}j∈[ℓk ], Ẽk

i )← bGC.Sim(1λ, 1|E
k |, 1ℓ

k
, Ek(Xk

i )) and labk
i,j,b

{
= labk

i,j if b = Xk
i,j

← {0, 1}λ otherwise
.

By the simulation security of bGC (Definition 2.20), this hybrid is computationally indistinguishable from the
previous one. To see this, it suffices to observe that only the information of {labk

i,j,Xi,j
}i,j,k is necessary for

simulating Hyb2 and the labels {labk
i,j,1−Xi,j

}i,j,k are not necessary.

Hyb4. In this hybrid, we change how we compute Ẽk
i and labk

i,j. Namely, we set

({labk
i,j}j∈[ℓ], Ẽk

i )← bGC.Sim(1λ, 1|E
k |, 1ℓ, ∆k

i ),

where ∆k
i ← {0, 1}Lk is chosen uniformly at random. This hybrid is computationally indistinguishable from

the previous one by Equation (19). To see this note that Equation (19) implies {Ek(Xk
i )}i∈[Nk ] ≈c {∆k

i ←
{0, 1}Lk}i∈[Nk ], for k ∈ [Q], given aux, {Xk}k∈[Q].

Hyb5. In this hybrid, we sample labk
i,j and Ẽk

i as random strings. In particular, we sample labk
i,j ← {0, 1}λ

and Ẽk
i ← {0, 1}ℓk

bGC . By the blindness of bGC scheme (Definition 2.21), this hybrid is computationally
indistinguishable from the previous one. To see this, note that in the previous hybrid the simulator bGC.Sim takes
as input ∆k

i which is a uniformly random string and thus by the blindness property of bGC we can replace the
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output of bGC.Sim by a completely random string.
The view of the adversary in this hybrid is as follows.(

aux,
{

crsk, Xk,
{
{BBE.ctk

i,j}j∈[ℓ], Ẽk
i

}
i∈[Nk ]

}
k∈[Q]

)

where BBE.ctk
i,j ← SingleEnc(crs, hk, (i− 1)ℓk + j, (labk

i,j,0, labk
i,j,1)) for labk

i,j,0 ← {0, 1}λ, labk
i,j,1 ← {0, 1}λ

and Ẽk
i ← SIMcirc.

Hyb6. In this hybrid, we replace BBE.ctk
i,j with a random string. Namely, we sample BBE.ctk

i,j ← CT BBE for all i, j, k.
This hybrid is indistinguishable from previous one by strong blindness (Definition 2.27) property of the BBE
scheme. To see this, note that BBE.ctk

i,j encrypts random strings labk
i,j,0, labk

i,j,1 ← {0, 1}λ in the previous hybrid
and thus the blindness property allows us to replace each BBE.ctk

i,j with a random string.
The view of the adversary in this hybrid is as follows.(

aux,
{

crsk, Xk,
{
{BBE.ctk

i,j ← CT BBE}j∈[ℓ], Ẽk
i ← {0, 1}ℓk

bGC
}

i∈[Nk ]

}
k∈[Q]

)
.

Rearranging the terms, we can observe that the distribution in Hyb6 corresponds to the RHS distribution of Equation (21).
This concludes the proof of Theorem 4.7.

5 Partial-Hiding prFE for Unbounded Depth with Optimal Parameters
In this section, we extend the notion of prFE to introduce partially-hiding prFE, where the part of the input to the circuit
can be public. We then construct partially hiding prFE with short parameter size in this section from several ingredients,
which are all implied by evasive LWE and LWE. Our construction of partially hiding prFE will be used in Section 6 and
7.

5.1 Definition
In this section we give the definitions for partial-hiding functional encryption for pseudorandom functionalities. Consider
a circuit class {Cprm = {C : Xpub ×Xpriv → Y}}prm where C ∈ Cprm takes as input a string x = (xpub, xpriv) ∈
Xpub ×Xpriv and outputs C(x) ∈ Y .

Syntax. A partial-hiding functional encryption for parameterized circuits Cprm by prm consists of four polynomial
time algorithms (Setup, KeyGen, Enc, Dec) defined as follows.

Setup(1λ, prm) → (mpk, msk). The setup algorithm takes as input the security parameter λ and a parameter prm
and outputs a master public key mpk and a master secret key msk. We assume w.l.o.g that msk includes mpk. We
also assume that prm is implicitly input to all the algorithms below.

KeyGen(msk, C) → skC. The key generation algorithm takes as input the master secret key msk and a circuit
C ∈ Cprm and it outputs a functional secret key skC.

Enc(mpk, x = (xpub, xpriv))→ ct. The encryption algorithm takes as input the master public key mpk and an input
x ∈ Xprm and outputs a ciphertext ct ∈ CT , where CT is the ciphertext space.
For the purpose of some applications, we consider a variant where the Enc algorithm can be decomposed into the
following two phases.

EncOff(mpk)→ (ctoff , st). The offline encryption algorithm takes as input the security parameter λ and outputs
offline part of the ciphertext ctoff and the state st.
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EncOn(st, x)→ cton. The online encryption algorithm takes as input the state st and the input x and outputs
the online part of the ciphertext cton.

The final output of ct is ct = (ctoff , cton).

Dec(mpk, xpub, skC, C, ct)→ y. The decryption algorithm takes as input the master public key mpk, the public input
xpub, secret key skC, circuit C and a ciphertext ct and outputs y ∈ Yprm.

Definition 5.1 (Correctness). A PHprFE scheme is said to satisfy perfect correctness if for all prm, any input
x = (xpub, xpriv) ∈ Xpub ×Xpriv and circuit C ∈ Cprm, we have

Pr

[
(mpk, msk)← Setup(1λ, prm) , skC ← KeyGen(msk, C),

Dec
(
mpk, xpub, skC, C, Enc(mpk, x)

)
= C(x)

]
= 1.

Definition 5.2 (Security). For a PHprFE scheme for circuit class {Cprm = {C : Xpub×Xpriv → Y}}prm parameterized
by prm = prm(λ), let Samp be a PPT algorithm that on input 1λ, outputs

(C1, . . . , CQ, x = (xpub, xpriv), aux ∈ {0, 1}∗)

where Q is the number of key queries, Ck ∈ Cprm for k ∈ [Q], x = (xpub, xpriv) ∈ Xpub ×Xpriv.
We define the following advantage functions:

AdvPRE
A0

(λ)
def
= Pr

[
A0

(
aux, {Ck, xpub, Ck(x)}k∈[Q]

)
= 1

]
− Pr

[
A0

(
aux, {Ck, xpub, ∆k ← Y}k∈[Q]

)
= 1

]
AdvPOST

A1
(λ)

def
= Pr

[
A1(mpk, aux, {Ck, xpub, Enc(mpk, x), skCk}k∈[Q]) = 1

]
− Pr

[
A1(mpk, aux, {Ck, xpub, δ← Sim(1λ), skCk}k∈[Q]) = 1

]
where (C1, . . . , CQ, x = (xpub, xpriv), aux ∈ {0, 1}∗) ← Samp(1λ), (mpk, msk) ← Setup(1λ, prm) and CT is the
ciphertext space. We say that a PHprFE scheme for circuit class Cprm is secure with respect to the sampler class SC if
for every PPT sampler Samp ∈ SC, A1 and Sim, there exists another PPT A0 such that

APRE
A0

(λ) ≥ APOST
A1

(λ)/Q(λ)− negl(λ)

and Time(A0) ≤ Time(A1) ·Q(λ).

Remark 5.3 (prFE as a special PHprFE). We remark that prFE is a special case of PHprFE with xpub = ⊥.

Next, we define the security notion that we require for the PHprFE variant where we decompose the Enc algorithm as
Enc = (EncOff, EncOn) and reuse the same state output by EncOff multiple times for generating the online part of the
ciphertexts. We require the online part of the ciphertexts to be pseudorandom, whereas the offline part may not be.

Definition 5.4 (Reusable Security). For a PHprFE scheme for circuit class {Cprm = {C : Xpub ×Xpriv → Y}}prm
parameterized by prm = prm(λ), let Samp be a PPT algorithm that on input 1λ, outputs(

C1, . . . , CQkey , x1 = (x1
pub, x1

priv), . . . , xQmsg = (xQmsg
pub , xQmsg

priv ), aux ∈ {0, 1}∗
)

where Qkey and Qmsg are the number of key queries and messages respectively, xj = (xj
pub, xj

priv) ∈ Xpub ×Xpriv for
j ∈ [Qmsg], Ck ∈ Cprm for k ∈ [Q].
We define the following advantage functions:

AdvPRE
A0

(λ)
def
= Pr

[
A0

(
aux, {Ck, xj

pub, Ck(xj)}j∈[Qmsg ],k∈[Qkey ]

)
= 1

]
− Pr

[
A0

(
aux, {Ck, xj

pub, ∆j,k ← Y}j∈[Qmsg ],k∈[Qkey ]

)
= 1

]
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AdvPOST
A1

(λ)
def
= Pr

[
A1(mpk, aux, ctoff , {xj

pub, ctj
on}j∈[Qmsg ], {C

k, skCk}k∈[Qkey ]) = 1
]

− Pr
[
A1(mpk, aux, ctoff , {xj

pub, δj}j∈[Qmsg ], {C
k, skCk}k∈[Qkey ]) = 1

]
where (C1, . . . , CQkey , x1 = (x1

pub, x1
priv), . . . , xQmsg = (xQmsg

pub , xQmsg
priv ), aux ∈ {0, 1}∗)← Samp(1λ), (mpk, msk)←

Setup(1λ, prm), (ctoff , st)← EncOff(1λ), ctj
on ← EncOn(st, xj), δj ← CT on for j ∈ [Qmsg] and CT on is the online

part of the ciphertext space. We say that a PHprFE scheme for circuit class Cprm is secure with respect to the sampler
class SC if for every PPT sampler Samp ∈ SC and A1, there exists another PPT A0 such that

APRE
A0

(λ) ≥ APOST
A1

(λ)/Q(λ)− negl(λ)

and Time(A0) ≤ Time(A1) ·Q(λ).

Remark 5.5. Similar to Remark 3.3, when we use the security of PHprFE, we invoke the security with respect to a
specific sampler class that is induced by the respective applications. For simplicity, we sometimes will treat as if there
was PHprFE that is secure for all the samplers.

Remark 5.6. We remark that Definition 5.4 is stronger security notion than Definition 5.2, since the former collapses to
the latter if we restrict the adversary so that Qmsg = 1 and set the simulator so that it runs EncOff(mpk)→ (ctoff , st),
samples δ← CT on, and outputs (ctoff , δ).

Remark 5.7. We remark that Definition 5.4 is in the single-challenge flavor in that only single offline part of the challenge
ciphertext is given to the adversary (though multiple online part of the ciphertext is given to it). While it does not seem
to imply multi-challenge flavor of the security definition (See Remark 3.4), we only define this simpler version of the
definition since it suffices for our applications and leave the extension to the multi-challenge flavor for the future work.

5.2 Construction
In this section we provide our construction of a PHprFE scheme for circuit family CLpub,Lpriv = {C : {0, 1}Lpub(λ) ×
{0, 1}Lpriv(λ) → {0, 1}}. Namely, the construction supports a class of circuits whose public and private input lengths
are fixed and output is binary, but its size and depth are unbounded.

Building Blocks. Below, we list the ingredients for our construction.

1. A blind garbling scheme bGC = (Garble, Eval, bGC.Sim) (defined in Section 2.6) with decomposability (defined
in Definition 2.22). Without loss of generality, we assume the labels are in {0, 1}λ and the random coins used by
the algorithm {Garblei}i is in {0, 1}λ. The latter is for the sake of notational convenience and can be achieved by
using a PRF to derive longer (pseudo-)random coins if needed. We also use CT i

bGC to denote the co-domain
of {Garblei}i algorithm. We can construct bGC with the required properties assuming one-way functions (See
Theorem 2.23).

2. A pseudorandom function PRF : {0, 1}λ × {0, 1}λ → {0, 1}λ with key space, input space and output space as
{0, 1}λ. It is known that PRF can be constructed from one-way functions.

3. A laconic pPRIO scheme LprIO = (LDigest, LObfOff, LObfOn, LEval). Without loss of generality, the random
coins used by LObfOn is in {0, 1}λ and the state output by LObfOff is in {0, 1}λ. The former can be satisfied
by using a PRF. The latter can be achieved in two steps. We first let the state Lst to be the randomness used by
LObfOff and then replace it with a string in {0, 1}λ, which can be done by using a PRF. The length of the digest
is of fixed polynomial in the security parameter and we denote it by LLDigest(λ). As we show in Theorem 4.6,
such a laconic pPRIO can be constructed by assuming evasive LWE and LWE.
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4. A prFE scheme prFE = prFE.(Setup, KeyGen, Enc, Dec) for circuit class Cinp(λ),dep(λ),out(λ) consisting of
circuits with input length inp(λ) = Lpriv + LLDigest(λ) + 4λ, maximum depth dep(λ) and output length out(λ).
We set the maximum depth and output length so that the circuit class supports the circuits F0[r], F1[r], and
F2[r, digC] defined as Figure 4, 5, and 6, respectively. We denote the information (1inp(λ), 1dep(λ), 1out(λ))

specifying the circuit class by prm and the ciphertext space of the prFE scheme by CT prFE = {0, 1}ℓ
ct
prFE .

Assuming LWE and evasive LWE, we can construct prFE with the required parameters (See Theorem 3.6).

For our construction, we set the following parameters

Setup(1λ, 1Lpub , 1Lpriv). The setup algorithm does the following.

− Run (prFE.mpk, prFE.msk)← prFE.Setup(1λ, prm).
− Output mpk := prFE.mpk and msk := prFE.msk.

KeyGen(msk, C). The key generation algorithm does the following.

− Parse msk = prFE.msk.
− Sample a string r← {0, 1}λ.
− Run digC ← LDigest({(i, Ci)}i∈[|C|]), where Ci is the description of the i-th gate of C and |C| is the number

of gates in C. The description of Ci can be encoded into a string of length at most 4λ since it suffices to
encode its index, two indices of the incoming wires, and the type of the gate.

− Construct circuits F0[r], F1[r], and F2[r, digC] as in Figure 4, 5, and 6 respectively.
− Run prFE.sk0 ← prFE.KeyGen(prFE.msk, F0[r]), prFE.sk1 ← prFE.KeyGen(prFE.msk, F1[r]), and prFE.sk2 ←

prFE.KeyGen(prFE.msk, F2[r, digC]).
− Output skC := (r, prFE.sk0, prFE.sk1, prFE.sk2).

Enc(mpk, x = (xpub, xpriv)). The encryption algorithm does the following. We divide the algorithm into the following
two steps.

EncOff(mpk). It takes as input mpk = prFE.mpk and does the following.
− Run (Lobfoff , Lst) ← LObfOff(1λ, 1S), where S is the maximum size of the circuits Epub[R0] and

Ecir[R0] defined in Figure 5 and Figure 6, respectively.
− Output st := (Lst, prFE.mpk) and ctoff := Lobfoff .

EncOn(st, x = (xpub, xpriv)). It does the following.
− Parse the input as st→ (Lst, prFE.mpk).
− Sample sd0, sd1, sd2 ← {0, 1}λ.
− Run digxpub ← LDigest(1λ, {(i, xpub,i)}i∈[Lpub]), where xpub,i ∈ {0, 1} is the i-th bit of xpub.
− Run prFE.ct← prFE.Enc(prFE.mpk, (digxpub , xpriv, Lst, sd0, sd1, sd2)).
− Output cton := prFE.ct.
The final output of Enc(mpk, x) is ct := (Lobfoff , prFE.ct).

Dec(mpk, xpub, skC, C, ct). It parses the input as mpk = prFE.mpk, ct := (Lobfoff , prFE.ct), skC = (r, prFE.sk0, prFE.sk1,
prFE.sk2) and does the following.

− Compute prFE.Dec(prFE.mpk, prFE.sk0, F0[r], prFE.ct) and parse the output as {lab′i}i∈[Lpub+1,Lpub+Lpriv ].

− Compute Lobfon,1 = prFE.Dec(prFE.mpk, prFE.sk1, F1[r], prFE.ct).
− Compute Lobfon,2 = prFE.Dec(prFE.mpk, prFE.sk1, F2[r, digC], prFE.ct).
− Set Lobf1 := (Lobfoff , Lobfon,1) and compute {l̃abi}i∈[Lpub] = LEval({(i, xpub,i)}i∈[Lpub], Lobf1).

− Set Lobf2 := (Lobfoff , Lobfon,2) and compute C̃ = {C̃i}i∈[|C|] = LEval({(i, Ci)}i∈|C|, Lobf2).
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− Set labi :=

{
l̃abi if i ∈ [Lpub]

lab′i if i ∈ [Lpub + 1, Lpub + Lpriv]
for i ∈ [Lpub + Lpriv].

− Compute z = Eval(C̃, {labi}i∈[Lpub+Lpriv ]).
− Output z.

Circuit F0[r]:

• Parse the input as (dig, xpriv, Lst, sd0, sd1, sd2).

• Compute R0 := PRF(sd0, r).

• Compute (labi,0, labi,1)← Garbleinp,i(1λ; R0) for i ∈ [Lpub + 1, Lpub + Lpriv].

• Output {labi,xpriv,i−Lpub
}i∈[Lpub+1,Lpub+Lpriv ].

Figure 4: Circuit to compute garbled labels corresponding to xpriv.

Circuit F1[r]:

• Parse the input as (dig, xpriv, Lst, sd0, sd1, sd2).

• Compute R0 := PRF(sd0, r) and R1 := PRF(sd1, r).

• Compute Lobfon,1 ← LObfOn(Lst, dig, Epub[R0]; R1), where Epub[R0] is a circuit that works as
follows.

– Take (i, b) ∈ [Lpub]× {0, 1} as an input.

– Compute (labi,0, labi,1)← Garbleinp,i(1λ; R0).
– Output labi,b.

• Output Lobfon,1.

Figure 5: F1[r] computes an obfuscation of a circuit computing bGC labels for xpub.

Correctness. We make the following observations.
− From the perfect correctness of prFE scheme and definition of F0[r], F1[r], F2[r, digC], we get

{labi,xpriv,i−Lpub
}i∈[Lpub+1,Lpub+Lpriv ] = prFE.Dec(prFE.mpk, prFE.sk0, F0[r], prFE.ct)

= F0[r](digxpub , xpriv, Lst, sd0, sd1, sd2)

= {Garbleinp,i(1λ; R0)}i∈[Lpub+1,Lpub+Lpriv ]

Lobfon,1 = prFE.Dec(prFE.mpk, prFE.sk1, F1[r], prFE.ct)
= F1[r](digxpub , xpriv, Lst, sd0, sd1, sd2)

= LObfOn(Lst, digxpub , Epub[R0]; R1),

Lobfon,2 = prFE.Dec(prFE.mpk, prFE.sk2, F2[r, digC], prFE.ct)
= F2[r, digC](digxpub , xpriv, Lst, sd0, sd1, sd2)

= LObfOn(Lst, digC, Ecir[R0]; R2),
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Circuit F2[r, digC]:

• Parse the input as (dig, xpriv, Lst, sd0, sd1, sd2).

• Compute R0 := PRF(sd0, r) and R2 := PRF(sd2, r).

• Compute Lobfon,2 ← LObfOn(Lst, digC, Ecir[R0]; R2), where Ecir[R0] is a circuit that works as
follows.

– Take (i, G) ∈ [|C|]× {0, 1}4λ as an input, where G encodes the information of a gate.
– Compute G̃ ← Garblei(1λ, G; R0).
– Output G̃.

• Output Lobfon,2.

Figure 6: Circuit F2[r, digC] computes an obfuscation of a circuit computing bGC labels for C.

where Rb := PRF(sdb, r) for b ∈ {0, 1, 2} and Epub[R0] and Ecir[R0] are the circuits as defined in Figure 5 and
Figure 6, respectively.

− Next, parsing Lobf1 := (Lobfoff , Lobfon,1), we get

{l̃abi}i∈[Lpub] = LEval({(i, xpub,i)}i∈[Lpub], Lobf1)

=
{

Epub[R0](i, xpub,i)
}

i∈[Lpub]

= labi,xpub,i

where (labi,0, labi,1)← Garbleinp,i(1λ; R0) and

C̃ = {C̃i}i∈[|C|]

= LEval({(i, Ci)}i∈|C|, Lobf2)

= {Ecir[R0](i, Ci)}i∈|C|

= {Garblei(1λ, Ci; R0)}i∈|C|

from the perfect correctness of the laconic pPRIO scheme and the definition of Epub[R0] and Ecir[R0].

− Next, from the perfect correctness of the garbling scheme bGC, we have, for labi = (labxpub , labxpriv),

Eval(C̃, {labi}i∈[Lpub+Lpriv ]) = C(xpub, xpriv)

and hence the perfect correctness of the PHprFE scheme.

Efficiency Here, we show

|mpk| = poly(λ, Lpriv), |skC| = poly(λ, Lpriv), |ct| = poly(λ, Lpriv).

To do so, we first show that the sizes of the circuits F0[r], F1[r], and F2[r, digC] are all bounded by poly(λ, Lpriv).

• In F0[r], the computation of the PRF and Garbleinp,i are performed, where both of them can be implemented by
circuits of size poly(λ). Since the latter is repeated for Lpriv times, the overall size of F0[r] is poly(λ, Lpriv).

57



• To bound the size of F1[r], we first bound the size of Epub[R0]. Epub[R0] performs the computation of Garbleinp,i
on input i ∈ [Lpub] (in binary), which can be implemented by a circuit of size poly(log Lpub, λ). This can be
further bounded by poly(λ) since Lpub ≤ 2λ. We then observe that F1[r] consists of the evaluation of two
PRF values and LObfOn on input Lst, dig, and Epub[R0]. We can bound the input length to LObfOn by a fixed
polynomial, since we have |Lst| = λ and |dig| = poly(λ) and LObfOn runs in polynomial time in the input
length, its size is bounded by poly(λ). Therefore, the overall size of F1[r] is poly(λ, Lpriv), where we take into
account the input xpriv, which is ignored in the computation.

• To bound the size of F2[r, digC], we first bound the size of Ecir[R0]. Ecir[R0] performs the computation of Garblei
on input i ∈ [|C|] (in binary) and G ∈ {0, 1}4λ, which can be implemented by a circuit of size poly(log |C|, λ).
This can be further bounded by poly(λ), since |C| ≤ 2λ. Similarly to the case of F1[r], the size of F2[r] can be
bounded by poly(λ, Lpriv).

We then move to discuss the size of the parameters.

• We can bound |mpk| = |prFE.mpk| by poly(λ, inp, dep, out), since it is output by prFE.Setup(1λ, prm =
(1inp, 1dep, 1out)). We have inp(λ) ≤ Lpriv + LLDigest(λ) + 4λ ≤ poly(λ, Lpriv) and dep(λ) and out(λ) are
bounded by the maximum size of the circuits Ecir and Epub, which in turn is bounded by poly(λ, Lpriv). We
therefore have |mpk| = poly(λ, Lpriv).

• We have |skC| = λ + |prFE.sk0| + |prFE.sk1| + |prFE.sk2|. We can bound the size of |prFE.sk0| by
poly(λ, Lpriv), since it is generated by prFE.KeyGen(prFE.msk, F0[r]), where the input length to prFE.KeyGen
is bounded by poly(λ, Lpriv). Similarly, we can bound |prFE.sk1| and |prFE.sk2| by poly(λ, Lpriv). Therefore,
we have |skC| = poly(λ, Lpriv).

• We have |ct| = |Lobfoff | + |prFE.ct|. We first bound |Lobfoff |. From the above discussion, we have S =
max{|Epub[R0]|, |Ecir[R0]|} = poly(λ, Lpriv). This implies |Lobfoff | = poly(λ, Lpriv), since Lobfoff is output
by LObfOff(1λ, 1S). We then bound |prFE.ct|, which is output by prFE.ct← prFE.Enc(prFE.mpk, (digxpub , xpriv,
Lst, sd0, sd1, sd2)). Since the input length of prFE.Enc is inp(λ) = Lpriv + LLDigest(λ) + 4λ = poly(λ, Lpriv).
We therefore have |ct| = |Lobfoff |+ |prFE.ct| = poly(λ, Lpriv).

5.3 Security
Before proving the security of our scheme, we prove the following useful lemma. The lemma essentially says that if
a part of the auxiliary information is pseudorandom in the pre-condition distribution, then it is pseudorandom in the
corresponding post-condition distribution where we apply laconic pPRIO security. A conceptually similar lemma is
proven in Lemma 3.4 of [ARYY23] in the context of evasive LWE.

Lemma 5.8. Let LprIO = (LDigest, LObfuscate, LEval) be a laconic pPRIO scheme and Samp be a PPT algorithm
that takes as input 1λ and outputs(

aux = (aux1, aux2) ∈ {0, 1}∗ ×X , 1S, X1 = {X1
i }i∈[N1], . . . , XQ = {XQ

i }i∈[NQ ], E1, . . . , EQ
)

for some set X . Here Xk
i ∈ {0, 1}ℓk , Ek : {0, 1}ℓk → {0, 1}Lk and |Ek| ≤ S for k ∈ [Q], i ∈ [Nk].

Let us assume that (
(aux1, aux2), 1S, X1, . . . , XQ, {E1(X1

i )}i∈[N1], . . . , {EQ(XQ
i )}i∈[NQ ],

)
≈c

(
(aux1, x), 1S, X1, . . . , XQ, {∆1

i }i∈[N1], . . . , {∆Q
i }i∈[NQ ]

)
holds for x ← X , ∆k

i ← {0, 1}Lk for k ∈ [Q], i ∈ [Nk] and also assume the security of LprIO with respect to Samp.
We then have(

(aux1, aux2), X1, . . . , XQ, Lobfoff , Lobf1
on, . . . , LobfQ

on

)
≈c

(
(aux1, x), X1, . . . , XQ, Lobfoff , δ1 . . . , δQ

)
,
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where (Lobfoff , st)← LObfOff(1λ, 1S), digk ← LDigest(1λ, Xk), Lobfk
on ← LObfOn(digk, Ek), δk ← Oon for k ∈

[Q].

Proof. From the assumption, we have(
(aux1, aux2), 1S, X1, . . . , XQ, {Ej(X j

i )}i∈[N j ],j∈[Q]

)
≈c

(
(aux1, x), 1S, X1, . . . , XQ, {∆j

i}i∈[N j ],j∈[Q]

)
(22)

which implies (aux1, aux2, 1S, X1, . . . , XQ) ≈c (aux1, x, 1S, X1, . . . , XQ). This further implies

(aux1, aux2, 1S, X1, . . . , XQ, {∆j
i}i∈[N j ],j∈[Q]) ≈c (aux1, x, 1S, X1, . . . , XQ, {∆j

i}i∈[N j ],j∈[Q]) (23)

since adding independently sampled random terms ∆j
i does not make the task of distinguishing the distributions easier.

Equation (22) and Equation (23) implies

(aux1, aux2, 1S, X1, . . . , XQ, {Ej(X j
i )}i∈[N j ],j∈[Q]) ≈c (aux1, aux2, 1S, X1, . . . , XQ, {∆j

i}i∈[N j ],j∈[Q]).

Applying LprIO security definition with respect to Samp, we get(
aux1, aux2, X1, . . . , XQ, Lobfoff , Lobf1

on, . . . , LobfQ
on

)
≈c

(
aux1, aux2, X1, . . . , XQ, Lobfoff , δ1 . . . , δQ

)
. (24)

Next, from (aux1, aux2, 1S, X1, . . . , XQ) ≈c (aux1, x, 1S, X1, . . . , XQ) we have(
aux1, aux2, X1, . . . , XQ, Lobfoff , δ1 . . . , δQ

)
≈c

(
aux1, x, X1, . . . , XQ, Lobfoff , δ1 . . . , δQ

)
, (25)

since Lobfoff can be sampled using 1S and {δj}j∈[Q] can be sampled independently.

From Equation (24) and Equation (25) we deduce(
aux1, aux2, X1, . . . , XQ, Lobfoff , Lobf1

on, . . . , LobfQ
on

)
≈c

(
aux1, x, X1, . . . , XQ, Lobfoff , δ1 . . . , δQ

)
.

hence the lemma.

The following theorem asserts the security of our construction of PHprFE scheme. This in particular implies that
the construction satisfies the security notion as per Definition 5.2.

Theorem 5.9. The above construction satisfies reusable security as per Definition 5.4.

Proof. Consider a sampler Samp that generates the following:

1. Key Queries. It issues Qkey key queries C1, . . . , CQkey .

2. Ciphertext Queries. It issues messages x1 = (x1
pub, x1

priv), . . . , xQmsg = (xQmsg
pub , xQmsg

priv ).

3. Auxiliary Information. It outputs the auxiliary information aux.

To prove the security as per Definition 5.4, we prove
mpk = prFE.mpk, aux,

{
Ck
}

k∈[Qkey ]
,{

skk := (rk, prFE.skk
0, prFE.skk

1, prFE.skk
2)
}

k∈[Qkey ]
,

Lobfoff ,
{

xj
pub, prFE.ctj

}
j∈[Qmsg ]

 ≈c


mpk = prFE.mpk, aux,

{
Ck
}

k∈[Qkey ]
,{

skk := (rk, prFE.skk
0, prFE.skk

1, prFE.skk
2)
}

k∈[Qkey ]
,

Lobfoff ,
{

xj
pub, δj ← CT prFE

}
j∈[Qmsg ]


(26)
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assuming we have

(1λ, aux, {xj
pub, Ck, Ck(xj)}j∈[Qmsg ],k∈[Qkey ]) ≈c (1λ, aux, {xj

pub, Ck, ∆j,k ← {0, 1}}j∈[Qmsg ],k∈[Qkey ]) (27)

where (
{Ck}k∈[Qkey ], {x

j = (xj
pub, xj

priv)}j∈[Qmsg ], aux ∈ {0, 1}∗
)
← Samp(1λ),

(prFE.mpk, prFE.msk)← prFE.Setup(1λ, prm),

rk ← {0, 1}λ, prFE.skk
0 ← prFE.KeyGen(prFE.msk, F0[rk]), for F0[rk] as defined in Figure 4,

prFE.skk
1 ← prFE.KeyGen(prFE.msk, F1[rk]), forF1[rk, digCk ] as defined in Figure 5

digCk ← LDigest({(i, Ck
i )}i∈|Ck |)

prFE.skk
2 ← prFE.KeyGen(prFE.msk, F2[rk, digCk ]), for F2[rk, digCk ] as defined in Figure 6,

(Lobfoff , Lst)← LObfOff(1λ, 1S),

dig
xj

pub
← LDigest(1λ, {(i, xj

pub,i)}i∈[Lpub]), sdj
0, sdj

1, sdj
2 ← {0, 1}λ,

prFE.ctj ← prFE.Enc(prFE.mpk, (dig
xj

pub
, xj

priv, Lst, sdj
0, sdj

1, sdj
2)) for j ∈ [Qmsg].

We invoke the security of prFE with sampler SampprFE that outputs
Functions:

{
F0[rk], F1[rk], F2[rk, digCk ]

}
k∈[Qkey ]

,

Inputs:
{

xj
prFE :=

(
dig

xj
pub

, xj
priv, Lst, sdj

0, sdj
1, sdj

2

)}
j∈[Qmsg ]

,

Auxiliary Information: auxprFE :=
(

aux,
{

xj
pub

}
j∈[Qmsg ]

, Lobfoff , {Ck, rk, }k∈[Qkey ]

)


By the security guarantee of prFE with sampler SampprFE, Equation (26) holds if


F0[rk](xj

prFE) =

{
labj,k

i,xj
priv,i−Lpub

}
i∈[Lpub+1,Lpub+Lpriv ]

F1[rk](xj
prFE) = Lobf j,k

on,1

F2[rk, digCk ](x
j
prFE) = Lobf j,k

on,2


j∈[Qmsg ],k∈[Qkey ]

,

aux, {xj
pub}j∈[Qmsg ], Lobfoff , {Ck, rk}k∈[Q]



≈c




{

δ
j,k
0,i

}
i∈[Lpriv ]

δ
j,k
1

δ
j,k
2


j∈[Qmsg ],k∈[Qkey ]

,

aux, {xj
pub}j∈[Qmsg ], Lobfoff , {Ck, rk}k∈[Qkey ]

 , (28)

where

Rj,k
b := PRF(sdj

b, rk) for b = 0, 1, 2,

(labj,k
i,0, labj,k

i,1) = Garbleinp,i(1λ; Rj,k
0 ) for i ∈ [Lpub + 1, Lpub + Lpriv],

(Lobfoff , Lst)← LObfOff(1λ, 1S)

Lobf j,k
on,1 = LObfOn(Lst, dig

xj
pub

, Epub[R
j,k
0 ]; Rj,k

1 )

Lobf j,k
on,2 = LObfOn(Lst, digCk , Ecir[R

j,k
0 ]; Rj,k

2 ) for j ∈ [Qmsg], k ∈ [Qkey].
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Therefore, it suffices to prove Equation (28). We observe that it suffices to prove a variant of Equation (28) where
Rj,k

0 , Rj,k
1 , Rj,k

2 are replaced with independently chosen truly random strings, since (the original version of) Equation (28)
then follows. This can be seen by the following indistinguishability:{

Rj,k
b = PRF(sdj

b, rk) : sdj
b ← {0, 1}λ, rk ← {0, 1}λ

}
b∈{0,1,2},j∈[Qmsg ],k∈[Qkey ]

≈s

{
Rj,k

b = PRF(sdj
b, rk) : sdj

b ← {0, 1}λ, rk ← {0, 1}λ\{r1, . . . , rk−1}
}

b∈{0,1,2},j∈[Qmsg ],k∈[Qkey ]

≈c

{
Rj,k

b ← {0, 1}λ
}

b∈{0,1,2},j∈[Qmsg ],k∈[Qkey ]
,

where in the second distribution, {rk}k∈[Qkey ] is distributed uniformly at random over ({0, 1}λ)Qkey with the constraint
that there is no collision among them. We observe that the first indistinguishability holds since there is a colliding pair
in {rk}k∈[Qkey ] with probability at most Q2

key/2λ in the first distribution and the second indistinguishability holds by

the security of PRF, since each Rj,k
b is generated by fresh pair of seed and input. We then invoke the security of LprIO

with sampler SampLprIO that outputs

Inputs:
{

X j,k := {X j,k
i := (i, Ck

i )}i∈[|Ck |], X̄ j,k := {X̄ j,k
i := (i, xj

pub,i)}i∈[Lpub]

}
j∈[Qmsg ],k∈[Qkey ]

Functions:
{

Ej,k := Ecir[R
j,k
0 ], Ēj,k := Epub[R

j,k
0 ]
}

j∈[Qmsg ],k∈[Qkey ]
,

Auxiliary Information: auxLprIO,1 :=

{
labj,k

i,xj
priv,i−Lpub

}
i∈[Lpub+1,Lpub+Lpriv ],j∈[Qmsg ],k∈[Qkey ]

,

auxLprIO,2 :=
(

aux, {xj
pub}j∈[Qmsg ], {C

k, rk}k∈[Qkey ]

)


,

where we consider 2QmsgQkey inputs and functions. For simplifying the notations, we use two indices j ∈ [Qmsg] and
k ∈ [Qkey] and consider barred and unbarred symbols to represent different variables instead of using the single index
for inputs and functions. In the rest of the proof, we prove({

Ej,k(X j,k
i ) = C̃j,k

i

}
j∈[Qmsg ],k∈[Qkey ],i∈[|Ck |]

,
{

Ēj,k(X̄ j,k
i ) = labj,k

i,xj
pub,i

}
j∈[Qmsg ],k∈[Qkey ],i∈[Lpub]

, auxLprIO,1, auxLprIO,2

)

≈c

({
γ

j,k
i

}
j∈[Qmsg ],k∈[Qkey ],i∈[|Ck |]

,
{

γ̄
j,k
i

}
j∈[Qmsg ],k∈[Qkey ],i∈[Lpub]

, α, auxLprIO,2

)
(29)

where γ
j,k
i ← CT

i
bGC for j ∈ [Qmsg], k ∈ [Qkey], i ∈ [|Ck|], γ̄

j,k
i ← {0, 1}λ for j ∈ [Qmsg], k ∈ [Qkey], i ∈ [Lpub],

and α← {0, 1}λLprivQmsgQkey . Note that the length of α is the same as that of auxLprIO. Here CT i
bGC is the co-domain

of Garblei algorithm. This suffices to conclude the proof, since Equation (29) implies Equation (28) by the security of
LprIO and Lemma 5.8.

To prove Equation (29), we introduce the following sequence of hybrids.

Hyb1. This is the LHS distribution of Equation (29). By unrolling the definition of the functions and rearranging the
terms, we can see that this is equivalent to the following distribution:{{labj,k

i,xj
i

}
i∈[L]

, C̃j,k

}
j∈[Qmsg ],k∈[Qkey ]

, aux, {xj
pub}j∈[Qmsg ], {C

k, rk}k∈[Qkey ]


where ({labj,k

i,b}i∈[L],b∈{0,1}, C̃j,k) ← Garble(1λ, Ck; Rj,k
0 ), rk ← {0, 1}λ for j ∈ [Qmsg] and k ∈ [Qkey],

(aux, {xj
pub}j, {Ck}k) ← Samp(1λ), and xj

i is the i-th bit of xj = (xj
pub, xj

priv). Note that here, we merge the
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process of generating {C̃j,k
i }i, {labj,k

i,xpub,i
}i, and {labj,k

i,xpriv,i
}i into a single process of running Garble(1λ, Ck; Rj,k

0 ).
This does not change the distribution due to the decomposability of bGC, since the former processes are run on
input the common randomness Rj,k

0 for each j and k.

Hyb2. This hybrid is same as the previous one except that we compute the labels and the garbled circuits using the
simulation algorithm. Namely, the view of the adversary in this hybrid is({

{labj,k
i }i∈[L], C̃j,k

}
j∈[Qmsg ],k∈[Qkey ]

, aux, {xj
pub}j∈[Qmsg ], {C

k, rk}k∈[Qkey ]

)
where we compute (C̃j,k, {labj,k

i }i∈[L])← bGC.Sim(1λ, 1L, Ck(xj)) for all j ∈ [Qmsg], k ∈ [Qkey]. Due to the
simulation security of bGC, this hybrid is computationally indistinguishable from the previous one.

Hyb3. This hybrid is same as the previous one except that we input random strings into the simulator of the blind
garbled circuit. Namely, we compute (C̃j,k, {labj,k

i }i∈[L]) as (C̃j,k, {labj,k
i }i∈[L]) ← bGC.Sim(1λ, 1L, ∆j,k),

where ∆j,k ← {0, 1} for all j and k. We can see that this hybrid is indistinguishable from the previous one by
Equation (27).

Hyb4. This hybrid is same as the previous one except that we replace the output of the simulator for bGC with random
strings. By the blindness of bGC, this game is indistinguishable from the previous hybrid.

By rearranging the terms, we can see that the distribution in Hyb4 is equivalent to that of the RHS of Equation (29). We
therefore have that the LHS and RHS of Equation (29). This completes the proof of Theorem 4.7.

5.4 Reducing the Dependency on Private Input Length
The sizes of the master public key, ciphertexts, and the secret keys of our construction in Section 5.2 are all independent
from the length of xpub and C. However, they still depend on the length of xpriv. Here, we show a simple conversion that
removes this dependency from the sizes of the master public key and secret key. The size of the ciphertext inherently
depends on the length of the private input since it should be hidden, but we can make this dependency minimal if we
start from the scheme with the ciphertext size being independent of the length of the public input. In particular, the
size of the ciphertext only additively depends on the length of xpriv. By applying the conversion in this section to our
construction in Section 5.2, we obtain a construction of partial-hiding FE with the optimal parameter size.

Building Blocks. We use the following ingredients for our construction.

1. A secret key encryption scheme SKE = (SKE.Setup, SKE.Enc, SKE.Dec) with the message space {0, 1}Lpriv

with pseudorandom ciphertext space as per Definition 2.1. We denote the ciphertext space of the scheme by
CT SKE and the key space of the scheme by KSKE. Without loss of generality, we assume KSKE = {0, 1}λ.
Furthermore, we assume that the ciphertext space of SKE is CT SKE = {0, 1}Lpriv+λ. Such a construction can be
obtained by using PRF for example.

2. A PHprFE scheme PHprFE = (Setup, KeyGen, Enc = (EncOff, EncOn), Dec) whose sizes of the master public
key, ciphertext, and secret key are all poly(λ, Lpriv). We can construct such a scheme assuming LWE and evasive
LWE as is shown in Section 5. We denote the online part of the ciphertext space by CT PHprFE = {0, 1}ℓ

cton
PHprFE .

We describe the new scheme PHprFE′ = (Setup′, KeyGen′, Enc′ = (EncOff ′, EncOn′), Dec′) for circuit class
C : {0, 1}Lpub × {0, 1}Lpriv → {0, 1} in the following.

Setup′(1λ, 1Lpub , 1Lpriv). It does the following.

− Run Setup(1λ, 1Lpub+Lpriv+λ, 1λ)→ (mpk, msk).
− Output the master public key mpk and the master secret key msk.
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KeyGen′(msk, C). It does the following.

− Define the circuit C′ as follows.
On input (SKE.sk, xpub, SKE.ct), output

C′(xpub, SKE.ct, SKE.sk) = C(xpub, SKE.Dec(SKE.sk, SKE.ct)).

− It runs KeyGen(msk, C′)→ skC′ and outputs skC′ .

Enc′(mpk, x = (xpub, xpriv)). The encryption algorithm does the following. We divide the algorithm into the
following two steps.

EncOff ′(mpk). It runs EncOff(mpk)→ (ctoff , st) and outputs the offline part of the ciphertext ctoff and state
st.

EncOn′(st, x = (xpub, xpriv)). It does the following.
− Run SKE.Setup(1λ)→ SKE.sk.
− Run SKE.Enc(SKE.sk, xpriv)→ SKE.ct.
− Set y := (xpub, SKE.ct) and z := SKE.sk and run EncOn(mpk, (y, z))→ cton.
− Output cton′ := (SKE.ct, cton).

The final output of Enc′(mpk, x = (xpub, xpriv)) is ct′ := (ctoff , SKE.ct, cton).

Dec′(mpk, xpub, skC′ , C, ct′). It does the following.

− Parse ct′ → (ctoff , SKE.ct, cton) and set y := (xpub, SKE.ct) and ct := (ctoff , cton).
− Define C′ as in the key generation algorithm.
− Run Dec(mpk, y, skC, C′, ct)→ w and output w.

Correctness. We make the following observations.
− From the perfect correctness of underlying PHprFE scheme, with public input y = (xpub, SKE.ct) and private

inpute SKE.sk, we have

Dec(mpk, y, skC′ , C′, ct) = C′(y, SKE.sk)
= C′(xpub, SKE.ct, SKE.sk)
= C(xpub, SKE.Dec(SKE.sk, SKE.ct)) ( by definition of C′)

− Next, from the perfect correctness of the SKE scheme, we have

SKE.Dec(SKE.sk, SKE.ct) = SKE.Dec(SKE.sk, SKE.Enc(SKE.sk, xpriv)) = xpriv

Thus Dec(mpk, y, skC′ , C′, ct) = C(xpub, SKE.Dec(SKE.sk, SKE.ct)) = C(xpub, xpriv) and hence the correctness.

Efficiency. Here, we show

|mpk| = poly(λ), |skC′ | = poly(λ), |ct′| = poly(λ) + Lpriv.

Given that the length of the private input for the underlying PHprFE is λ, it is straightforward to see the first two
equations above hold by the efficiency of PHprFE. To bound the length of the ciphertext ct′, we first observe that
ct′ = (ctoff , SKE.ct, cton), where ct := (ctoff , cton) constitutes a ciphertext of the underlying PHprFE encrypting
(y, z). We have |ct| = poly(λ, |z|) = poly(λ) and |SKE.ct| = poly(λ) + Lpriv. Therefore, the last equation above
follows as well.

We therefore have the following theorem. The security of the scheme is proven in Theorem 5.12.
Theorem 5.10. Assuming LWE and evasive LWE assumptions, there exists a partially hiding pseudorandom FE scheme,
for circuit class C = {C : {0, 1}Lpub × {0, 1}Lpriv → {0, 1}}, that satisfies reusable security (as per Definition 5.4)
whose sizes of the master public key and the secret key are fixed polynomial poly(λ). Furthermore, the size of the
ciphertext is Lpriv + poly(λ).
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Optimal prFE. Using Remark 5.3, we get a prFE scheme as a special case of PHprFE, for xpub = ⊥ and xpriv = x.
Next, observing the fact that (1) with xpub = ⊥ the security of PHprFE (Definition 5.2) is equivalent to single-challenge
security of prFE (Definition 3.2, with Qmsg = 1) and (2) Definition 5.2 is implied by Definition 5.4, we get a prFE
scheme with optimal parameters. We formalise this in the following theorem.

Theorem 5.11. Assuming LWE and evasive LWE assumptions, there exists a prFE scheme, for circuit class C = {C :
{0, 1}Linp → {0, 1}}, that satisfies security (as per Definition 3.2, with Qmsg = 1) and efficiency

|mpk| = poly(λ), |skC| = poly(λ), |ct| = Linp + poly(λ).

Security The following theorem asserts the security of the construction.

Theorem 5.12. The above construction PHprFE′ satisfies reusable security as per Definition 5.4 if so does PHprFE and
SKE is secure as per Definition 2.1.

Proof. Consider a sampler SampPHprFE′ that generates the following:

1. Key Queries. It issues Qkey key queries C1, . . . , CQkey .

2. Ciphertext Queries. It issues messages x1 = (x1
pub, x1

priv), . . . , xQmsg = (xQmsg
pub , xQmsg

priv ).

3. Auxiliary Information. It outputs the auxiliary information auxA.

To prove the security as per Definition 5.4, we prove
mpk, aux, {Ck}k∈[Qmsg ]

,{
skk := skC′k

}
k∈[Qmsg ]

,

Lobfoff ,
{

xj
pub, SKE.ctj, ctj

on
}

j∈[Qmsg ]

 ≈c


mpk, aux, {Ck}k∈[Qmsg ]

,{
skk := skC′k

}
k∈[Qmsg ]

,

Lobfoff ,
{

xj
pub, γj, δj

}
j∈[Qmsg ]

 (30)

where γj ← CT SKE and δj ← CT PHprFE for j ∈ [Qmsg], assuming we have

(1λ, aux, {xj
pub, Ck, Ck(x

j)}j∈[Qmsg ],k∈[Qkey ]) ≈c (1λ, aux, {xj
pub, Ck, ∆j

k ← {0, 1}}j∈[Qmsg ],k∈[Qkey ]) (31)

where (
{Ck}k∈[Qkey ], {x

j = (xj
pub, xj

priv)}j∈[Qmsg ], aux ∈ {0, 1}∗
)
← SampPHprFE′(1

λ),

SKE.sk← SKE.Setup(1λ), SKE.ctj ← SKE.Enc(SKE.sk, xj
priv),

(mpk, msk)← Setup(1λ, 1Lpub+Lpriv+λ, 1λ),

skk ← KeyGen(msk, C′k) for k ∈ [Qkey], where C′k is defined from Ck as in the construction,
(ctoff , st)← EncOff(mpk),

cton
j ← EncOn(st, xj

priv) for j ∈ [Qmsg].

We invoke the security of PHprFE with sampler SampPHprFE that outputs
Functions:

{
C′k
}

k∈[Qkey ]
,

Inputs:
{

Xj :=
(

X j
pub := (xj

pub, SKE.ctj), X j
priv := SKE.skj

)}
j∈[Qmsg ]

,

Auxiliary Information: auxprFE :=
(

aux, {Ck}k∈[Qkey ]

)
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By the security guarantee of PHprFE with sampler SampPHprFE,
mpk, aux, {Ck}k∈[Qkey ]

,{
skk := skC′k

}
k∈[Qkey ]

,

Lobfoff ,
{

X j
pub = (xj

pub, SKE.ctj), ctj
on
}

j∈[Qmsg ]

 ≈c


mpk, aux, {Ck}k∈[Qkey ]

,{
skk := skC′k

}
k∈[Qkey ]

,

Lobfoff ,
{

X j
pub = (xj

pub, SKE.ctj), δj
}

j∈[Qmsg ]

 (32)

holds if (
aux,

{
Ck, X j

pub, C′k(X j)
}

j∈[Qmsg ],k∈[Qkey ]

)
≈c

(
aux,

{
Ck, X j

pub, ∆j
k

}
j∈[Qmsg ],k∈[Qkey ]

)
. (33)

We first observe that Equation (32) implies Equation (30), since we can invoke the security of SKE to conclude that
mpk, aux, {Ck}k∈[Qkey ]

,{
skk := skC′k

}
k∈[Qkey ]

,

Lobfoff ,
{

xj
pub, SKE.ctj, δj

}
j∈[Qmsg ]

 ≈c


mpk, aux, {Ck}k∈[Qkey ]

,{
skk := skC′k

}
k∈[Qkey ]

,

Lobfoff ,
{

xj
pub, γj, δj

}
j∈[Qmsg ]


holds by noting that SKE.skj is used only for computing SKE.ctj and not used anywhere else.

Therefore, it suffices to prove Equation (33) to conclude the proof. We have(
aux,

{
Ck, X j

pub = (xj
pub, SKE.ctj), C′k(X j)

}
j,k

)
=

(
aux,

{
Ck, xj

pub, SKE.ctj, Ck(x
j)
}

j,k

)
≈c

(
aux,

{
Ck, xj

pub, γj ← CT SKE, Ck(x
j)
}

j,k

)
≈c

(
aux,

{
Ck, xj

pub, γj ← CT SKE, ∆j
k ← {0, 1}

}
j,k

)
≈c

(
aux,

{
Ck, xj

pub, SKE.ctj, ∆j
k ← {0, 1}

}
j,k

)
where the first line follows from the definition of C′k and X j, the second from the security of SKE noting that SKE.skj is
used only for computing SKE.ctj and not used anywhere else, the third from Equation (31), noting that adding random
string {γj}j to the distributions in Equation (31) does not make the task of distinguishing the distributions any easier,
and the fourth from the security of SKE again. This proves Equation (33) and therefore completes the proof.

5.5 Handling Longer Output
So far we have only considered the case where C is a circuit that outputs a single-bit string. Here, we discuss more
general case where the output of the circuit C is longer. To handle such circuits in the construction, we only change the
key generation algorithm. To generate a secret key for C : {0, 1}L → {0, 1}out, we first consider circuits {Cj}j∈[out],
where Cj is the circuit that outputs the j-th bit of C’s output and then generate secret keys for {Cj}j. It is then easy to
see that the all bits of C(x) can be recovered by using the secret keys for {Cj}j by decrypting a ciphertext encrypting x.
This does not change the size of the master public key and ciphertext, but makes the secret key linearly dependent on the
output length of C. Thus, we get the following theorems.
Theorem 5.13. Assuming LWE and evasive LWE assumptions, there exists a PHprFE scheme, for circuit class
C = {C : {0, 1}Lpub × {0, 1}Lpriv → {0, 1}out}, that satisfies reusable security (as per Definition 5.4) and efficiency

|mpk| = poly(λ), |skC| = out · poly(λ), |ct| = Lpriv + poly(λ).

Theorem 5.14. Assuming LWE and evasive LWE assumptions, there exists a prFE scheme, for circuit class C = {C :
{0, 1}Linp → {0, 1}}, that satisfies security (as per Definition 3.2, with Qmsg = 1) and efficiency

|mpk| = poly(λ), |skC| = out · poly(λ), |ct| = Linp + poly(λ).
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6 KP-ABE/PE for Unbounded Depth Circuits with Optimal Parameters
Here we construct KP-ABE and KP-PE schemes supporting unbounded depth circuits and achieving optimal parameters.

6.1 Construction of KP-ABE with Optimal Parameters
In this section we construct an ABE scheme kpABE = (Setup, KeyGen, Enc, Dec) for message space {0, 1} and circuit
family Cℓ consisting of circuits with input space {0, 1}ℓ and output space {0, 1}. For the purpose of application in
Section 7, we consider a decomposed encryption algorithm as Enc = (EncOff, EncOn) in our construction where
EncOff(mpk)→ (ctoff , st), EncOn(st, x, µ)→ cton and Enc outputs (ctoff , cton).

Building Blocks. We require the following building blocks for our construction.

1. A PHprFE scheme PHprFE = PHprFE.(Setup, KeyGen, Enc = (EncOff, EncOn), Dec) from Section 5.4
for circuit family {Cprm = {C : Xpub × Xpriv → Y}}prm where Xpub = {0, 1}ℓ,Xpriv = {0, 1}λ+1 and
Y = {0, 1}. We denote the online part of the ciphertext space by PHprFE.CT on. We require the PHprFE
scheme to satisfy reusable security (Definition 5.4). As we show in Theorem 5.10, such a PHprFE scheme can be
constructed assuming LWE and evasive LWE assumptions.

2. A PRF scheme PRF : {0, 1}λ × {0, 1}λ → {0, 1}. It is known that PRF can be constructed from one-way
functions.

Now, we describe our construction.

Setup(1λ, 1ℓ). The setup algorithm does the following.

− Generate (PHprFE.msk, PHprFE.mpk)← PHprFE.Setup(1λ, (1ℓ, 1λ+1)).
− Output msk = PHprFE.msk and mpk = PHprFE.mpk.

KeyGen(msk, C)→ skC. The key generation algorithm does the following.

− Parse msk = PHprFE.msk.
− Sample r← {0, 1}λ and define the circuit C[r], with r hardwired, as follows.

On input (x, µ, sd),

C[r](x, µ, sd) =
{

µ if C(x) = 0
PRF(sd, r) otherwise.

− Compute PHprFE.sk← PHprFE.KeyGen(PHprFE.msk, C[r]).
− Output skC = (PHprFE.sk, r).

Enc(mpk, x, µ). The encryption algorithm works as follows.

EncOff(mpk). The offline phase of encryption does the following.
− Parse mpk = PHprFE.mpk.
− Compute (PHprFE.ctoff , PHprFE.st)← PHprFE.EncOff(PHprFE.mpk).
− Output ctoff = PHprFE.ctoff and st = PHprFE.st.

EncOn(st, x, µ). The online phase of encryption does the following.
− Parse st = PHprFE.st.
− Sample sd← {0, 1}λ, set Xpub = x and Xpriv = (µ, sd).
− Compute PHprFE.cton ← PHprFE.Enc(PHprFE.st, Xpub, Xpriv).
− Output cton := PHprFE.cton.
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Output ct := (ctoff , cton).

Dec(mpk, skC, C, ct, x). The decryption algorithm does the following.

− Parse mpk = PHprFE.mpk, skC = (PHprFE.sk, r) and ct = (ctoff , cton) = (PHprFE.ctoff , PHprFE.cton).
− Compute y = PHprFE.Dec(PHprFE.mpk, x, PHprFE.sk, C[r], PHprFE.ct), where C[r] is as defined in the

key generation algorithm.
− Output y.

Correctness. For skC = (PHprFE.sk, r) and ct = (ctoff , cton) = (PHprFE.ctoff , PHprFE.cton) = PHprFE.ct, we
have

PHprFE.Dec(PHprFE.mpk, x, PHprFE.sk, C[r], PHprFE.ct) = C[r](x, µ, sd)

=

{
µ if C(x) = 1
PRF(sd, r) otherwise.

from the correctness of PHprFE scheme. Now, if C(x) = 1, then from the definition of C[r], we get C[r](x, µ, sd) = µ
and hence the decryption outputs y = µ correctly.

Efficiency. Instantiating the PHprFE scheme from Section 5.4 with |PHprFE.mpk| = poly(λ), |PHprFE.skC| =
poly(λ), |PHprFE.ct| = poly(λ) + |xpriv|, our kpABE scheme satisfies

|mpk| = poly(λ), |skC| = poly(λ), |ct| = poly(λ).

We formalise this instantiation using the following theorem. The security is proved in Section 6.2.

Theorem 6.1. Under the LWE and Evasive LWE assumption, there exists very selectively secure KP-ABE scheme
supporting circuits {C : {0, 1}ℓ → {0, 1}} with unbounded depth and single bit message space with

|mpk| = poly(λ), |skC| = poly(λ), |ct| = poly(λ). (34)

6.2 Security of KP-ABE
For our application in Section 7, we introduce the following security notion.

Definition 6.2 (VerSel-INDr Reusable Security). A kpABE scheme for circuit family Cℓ = {C : {0, 1}ℓ → {0, 1}} is
said to satisfy VerSel-IND reusable security if for all stateful PPT adversary A, the following holds

Pr

 β′ = β :

(auxA, C1, . . . , CQkey , x1, . . . , xQmsg , µ)← A(1λ);
(mpk, msk)← Setup(1λ, 1ℓ);
(ctoff , st)← EncOff(mpk);
{ctj

on,0 ← EncOn(st, xj, µ), ctj
on,1 ← CT on}j∈[Qmsg ], β← {0, 1};

β′ ← A(auxA, mpk, {Ck, skCk}k∈Qkey , ctoff , {xj, ctj
on,β}j∈[Qmsg ])

 ≤
1
2
+ negl(λ)

where CT on is the ciphertext space of EncOn. We require that for all key queries C1, . . . , CQkey and challenge attribute
queries x1, . . . , xQmsg we have Ck(xj) = 0.

Remark 6.3. We note that the above security definition implies more standard VerSel-IND security for ABE. This can be
seen by considering the case of Qmsg = 1 and recalling that ct = (ctoff , cton). The above security definition in this
special case implies that the message carrying part of the ciphertext is pseudorandom in VerSel-IND security game.
This immediately implies VerSel-IND security.

We prove the above security of our scheme using the following theorem.
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Theorem 6.4. Assume the PHprFE scheme satisfies reusable security (Definition 5.4) w.r.t. the sampler class containing
the sampler Samp as defined in Eq. 36 and PRF is secure. Then the above construction of kpABE scheme is secure
(Definition 6.2).

Proof. Consider a PPT adversary A that outputs coinsA, C1, . . . , CQkey , x1, . . . , xQmsg , µ. To prove reusable security
as per Definition 6.2, we show

coinsA, mpk = PHprFE.mpk,

{skk = (PHprFE.skk, rk), Ck}k∈[Qkey ],

PHprFE.ctoff , {xj, PHprFE.ctj
on}j∈[Qmsg ]

 ≈c


coinsA, mpk = PHprFE.mpk,

{skk = (PHprFE.skk, rk), Ck}k∈[Qkey ],

PHprFE.ctoff , {xj, δj ← PHprFE.CT on}j∈[Qmsg ]

 (35)

Also for all the key queries C1, . . . , CQkey and challenge attribute queries x1, . . . , xQmsg issued by the adversary, we
have Ck(xj) = 0.
We invoke the security of PHprFE scheme with sampler Samp that outputs circuits: {Ck[rk]}k∈[Qkey ],

Inputs: {X j
pub = xj, X j

priv = (µ, sdj)}j∈[Qmsg ],
Auxiliary Information: auxA = (coinsA, C1, . . . , CQkey , r1, . . . , rQkey , coinsA)

 (36)

Using the guarantee of PHprFE scheme with sampler Samp we have that
auxA, PHprFE.mpk, {Ck[rk]}k∈[Qkey ],

{PHprFE.skk}k∈[Qkey ],

PHprFE.ctoff , {X j
pub, PHprFE.cton

j}j∈[Qmsg ]

 ≈c


auxA, PHprFE.mpk, {Ck[rk]}k∈[Qkey ],

{PHprFE.skk}k∈[Qkey ],

PHprFE.ctoff , {X j
pub, δj}j∈[Qmsg ]

 (37)

if
(

auxA, {Ck[rk]}k∈[Qkey ], {X
j
pub}j∈[Qmsg ], {C

k[rk](X j
pub, X j

priv)}k∈[Qkey ],j∈[Qmsg ]

)
≈c

(
auxA, {Ck[rk]}k∈[Qkey ], {X

j
pub}j∈[Qmsg ], {∆k,j ← {0, 1}λ}k∈[Qkey ],j∈[Qmsg ]

)
(38)

where X j
pub = xj, X j

priv = (µ, sdj) for sdj ← {0, 1}λ, j ∈ [Qmsg],

(PHprFE.mpk, PHprFE.msk)← PHprFE.Setup(1λ, (1ℓ, 1λ+1)),

PHprFE.skk ← PHprFE.KeyGen(PHprFE.msk, Ck[rk]), for rk ← {0, 1}λ,
(PHprFE.ctoff , PHprFE.st)← PHprFE.EncOff(PHprFE.mpk),

PHprFE.cton
j ← PHprFE.Enc(PHprFE.st, X j

pub, X j
priv),

δj ← PHprFE.CT on for j ∈ [Qmsg] where PHprFE.CT on is the ciphertext space of PHprFE.EncOn.

First we note that rearranging the terms of Equation (37), it is same as distribution in Equation (35). Thus, to prove
Equation (35), it suffices to prove Equation (38).
Equation (38) holds from the security of the underlying PRF scheme. To see this note that

Ck[rk](X j
pub, X j

priv) = Ck[rk](xj, µ, sdj) =

{
µ if Ck(xj) = 1
PRF(sdj, rk) otherwise.

By the admissibility of the adversary into the kpABE security game, we have Ck(xj) = 0 for all k ∈ [Qkey], j ∈ [Qmsg].
So, we get

Ck[rk](xj, µ, sdj) = PRF(sdj, rk)

≈c ∆j,k ← {0, 1}

where the last equation follows from the security of the PRF scheme.
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6.3 Predicate Encryption with Optimal Parameters
In this section we sketch out the construction of a PE scheme PE = (Setup, KeyGen, Enc, Dec) supporting unbounded
depth circuits and achieving optimal parameters. The construction is same as that in Section 6.1 with the following
changes.

1. In the building blocks we use a PHprFE scheme with Xpub = {⊥},Xpriv = {0, 1}ℓ+λ+1 and Y = {0, 1}.

2. In KeyGen(msk, C) algorithm the circuit C[r] is defined as follows.
On input (⊥, x, µ, sd),

C[r](⊥, x, µ, sd) =
{

µ if C(x) = 1
PRF(sd, r) otherwise.

3. In EncOn algorithm we set xpub = ⊥ and xpriv = (x, µ, sd).

4. In Dec(mpk, skC, C, ct)7, we compute y = PHprFE.Dec(PHprFE.mpk,⊥, PHprFE.sk, C[r], PHprFE.ct).

It is easy to see that the above PE scheme satisfies correctness. The PE scheme also satisfies VerSel-INDr reusable
security as defined in Definition 6.2 with a similar security proof as in Section 6.2 with the above specified changes. Note
that since the online part of the encryption EncOn(st, x, µ) encodes both the attribute and the message µ, replacing it
with a random string hides the information of x and µ and thus it satisfies the security requirement for a PE scheme. As
for the efficiency, since we encode x into the private part of the input, the ciphertext size is |x|+ poly(λ). Summarizing
the above discussion, we have the following theorem.

Theorem 6.5. Under the LWE and Evasive LWE assumption, there exists very selectively secure KP-PE scheme
supporting circuits {C : {0, 1}ℓ → {0, 1}} with unbounded depth with and single bit message space with

|mpk| = poly(λ), |skC| = poly(λ), |ct| = poly(λ) + |x|. (39)

where x ∈ {0, 1}ℓ.

6.4 Extending the Message Space
Our construction of ABE and PE only allows us to encrypt a single-bit message. Here, we explain how to extend the
message space while maintaining the optimal parameter size. In both cases, it suffices to encrypt message of length λ,
since this allows us to employ the hybrid encryption approach, where we encrypt a secret key SKE.sk ∈ {0, 1}λ of an
SKE scheme and then use this to encrypt the message.

In the case of ABE, we simply encrypt each bit of SKE.sk, which blows up the ciphertext size by a factor of λ, but
this still results in the optimal parameter size of Equation (34). In the case of PE, this approach leads to a ciphertext
of size poly(λ) + λ|x|, which ruins the optimal ciphertext size of only additively depending on the length of the
attribute. Instead, we change the construction of PE from PHprFE by setting xpub = ⊥ and xpriv = (x, SKE.sk, sd)
and considering a circuit C[i, r] for i ∈ [λ] that is defined as

C[i, r](⊥, x, SKE.sk, sd) =
{

SKE.ski if C(x) = 1
PRF(sd, ri) otherwise

,

where SKE.ski is the i-th bit of SKE.sk. For generating a secret key of PE for circuit C, we generate PHprFE secret keys
for C[i, ri] for all i ∈ [λ] with freshly chosen ri. This allows the decryptor to recover SKE.sk in a bit-by-bit manner. It is
not difficult to see that the construction achieves optimal parameter size of Equation (39) and still maintains the security.

7Here we do not give x as an input.
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7 Compiling KP-ABE to CP-ABE using prFE
In this section we give a compiler that converts kpABE scheme for circuits of unbounded depth to a cpABE scheme
for circuits of unbounded depth using a prFE scheme for pseudorandom functionality. In particular, if we start from a
kpABE scheme with optimal parameter size, the resulting cpABE scheme achieves the optimal parameter size as well.
By combining the kpABE and cpABE, we obtain an ABE scheme for Turing machines from LWE and evasive LWE.
This improves [AKY24a] in terms of the assumption, which requires the non-standard tensor circular LWE assumption
additionally.

7.1 Construction
Building Blocks. We require the following building blocks for our construction.

1. A key-policy ABE scheme kpABE = kpABE.(Setup, KeyGen, EncOff, EncOn, Dec) for circuit class Cℓ(λ) =
{C : {0, 1}ℓ → {0, 1}} consisting of circuits with input length ℓ(λ) that satisfies VerSel-INDr reusable security
(Definition 6.2). We require that the scheme satisfies optimal parameter size, namely, the size of the master public
key, secret keys, and ciphertexts are all fixed polynomial. We denote the online ciphertext space of kpABE scheme
by CT on := {0, 1}ℓon , online ciphertext size by ℓon. We also assume that the randomness used by kpABE.EncOn
is of length λ without loss of generality. If it requires longer randomness, we can derive it by a PRF. We can
instantiate such kpABE scheme by our construction in Section 6.1.

2. A FE scheme for pseudorandom functionality prFE = (prFE.Setup, prFE.KeyGen, prFE.Enc, prFE.Dec) for
circuit class C = {C : {0, 1}L → {0, 1}ℓon}. Here, the depth of the circuit is unbounded, but the input and the
output lengths are fixed. For our compiler, we set L(λ) = poly(λ) for some fixed polynomial poly(·). We
require the size of the master public key and the ciphertext to be fixed polynomial in λ and the size of the secret
key to be ℓon · poly(λ). Such a construction can be obtained by applying the conversion described in Section 5.5
to our construction of PHprFE in Section 5.4. We use CT prFE to denote the ciphertext space of the scheme and
prm = (1L, 1ℓon) to denote the parameters describing the circuit class.

3. A pseudorandom function PRF : {0, 1}λ × {0, 1}λ → {0, 1}λ. It is known that PRF can be constructed from
one-way functions.

Now, we describe our compiler for constructing a ciphertext-policy ABE scheme cpABE = (Setup, KeyGen, Enc, Dec)
for circuits of unbounded depth with attribute length ℓ.

Setup(1λ, 1ℓ)→ (cpABE.mpk, cpABE.msk). The setup algorithm does the following.

− Run (prFE.mpk, prFE.msk)← prFE.Setup(1λ, prm).
− Set cpABE.mpk = prFE.mpk and cpABE.msk = prFE.msk. Output (cpABE.mpk, cpABE.msk).

KeyGen(cpABE.msk, x)→ cpABE.skx. The key generation algorithm does the following.

− Parse cpABE.msk = prFE.msk and sample r← {0, 1}λ.
− Define circuit F[x, r], with x, r hardwired, as follows.

On input (kpABE.st, sd, µ):
– Compute and output kpABE.cton

where kpABE.cton = kpABE.EncOn(kpABE.st, x, µ; PRF(sd, r)).
− Compute prFE.sk← prFE.KeyGen(prFE.msk, F[x, r]).
− Output cpABE.skx := (r, prFE.sk).

Enc(cpABE.mpk, C, µ)→ cpABE.ct. The encryption algorithm does the following.

− Parse cpABE.mpk = prFE.mpk and sample a PRF key sd← {0, 1}λ.
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− Generate (kpABE.mpk, kpABE.msk)← kpABE.Setup(1λ, 1ℓ).
− Generate (kpABE.ctoff , kpABE.st)← kpABE.EncOff(kpABE.mpk).
− Compute prFE.ct← prFE.Enc(prFE.mpk, (kpABE.st, sd, µ)).
− Compute kpABE.skC ← kpABE.KeyGen(kpABE.msk, C).
− Output cpABE.ct := (prFE.ct, kpABE.mpk, kpABE.ctoff , kpABE.skC).

Dec(cpABE.mpk, cpABE.skx, x, cpABE.ct, C). The decryption algorithm does the following.

− Parse cpABE.mpk = prFE.mpk, cpABE.skx = prFE.sk, and cpABE.ct = (prFE.ct, kpABE.mpk,
kpABE.ctoff , kpABE.skC).

− Compute y = prFE.Dec(prFE.mpk, prFE.sk, F[x, r], prFE.ct).
− Compute and output kpABE.Dec(kpABE.mpk, kpABE.skC, C, (kpABE.ctoff , y), x).

Correctness. We prove the correctness of our scheme using the following theorem.

Theorem 7.1. Assume kpABE is perfectly correct. Then the above construction of cpABE scheme is correct.

Proof. From the correctness of prFE scheme, with probability 1 we have

y = F[x, r](kpABE.st, sd, µ) = kpABE.cton

where kpABE.cton = kpABE.EncOn(kpABE.st, x, µ; PRF(sd, r)). Next, from the correctness of kpABE, if C(x) = 1,
it follows that kpABE.Dec(kpABE.mpk, kpABE.skC, C, kpABE.ct, x) = µ, where kpABE.ct = (kpABE.ctoff , kpABE.cton).

Efficiency. Our cpABE scheme satisfies

|cpABE.mpk| = poly(λ), |cpABE.skx| = poly(λ), |cpABE.ct| = poly(λ).

To see the above we make the following observations:

1. Instantiating kpABE scheme as in Section 6.1, we have |kpABE.mpk| = poly(λ), |kpABE.skC| = poly(λ),
|kpABE.ctoff | = |kpABE.cton| = poly(λ)

2. Instantiating prFE scheme as in Theorem 5.14, we have |prFE.mpk| = poly(λ), |prFE.sk| = ℓonpoly(λ) =
poly(λ), |prFE.ct| = Linp + poly(λ), where Linp is the input length of the prFE scheme. In our construction
Linp = |kpABE.st|+ |sd|+ |µ| = poly(λ).

Using the above we note that

− |cpABE.mpk| = |prFE.mpk| = poly(λ).

− |cpABE.skx| = |r|+ |prFE.sk| = λ + poly(λ) = poly(λ).

− |cpABE.ct| = |prFE.ct|+ |kpABE.mpk|+ |kpABE.ctoff |+ |kpABE.skC| = poly(λ).

We formalise the instantiation using the following theorem.

Theorem 7.2. Under the LWE and Evasive LWE assumption, there exists very selectively secure CP-ABE scheme
supporting circuits with unbounded depth {C : {0, 1}ℓ → {0, 1}} and single bit message space with

|mpk| = poly(λ), |skx| = poly(λ), |ct| = poly(λ)

where x ∈ {0, 1}ℓ.
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7.2 Security
We prove the security of our scheme via the following theorem.

Theorem 7.3. If the prFE scheme is secure (Definition 3.2, with Qmsg = 1), with respect to the sampler class containing
the sampler Samp as defined in Eq. 41 , kpABE scheme satisfies VerSel-INDr reusable security (Definition 6.2) then
the construction of cpABE satisfies VerSel-IND security.

Proof. Suppose the adversary A with randomness coinsA queries for C, µ, x1, . . . xQ. We want to prove coinsA, cpABE.mpk = prFE.mpk,
{F[xk, rk]}k∈[Q], cpABE.skxk = {prFE.skk}k∈[Q],

cpABE.ct = (prFE.ct, kpABE.mpk, kpABE.ctoff , kpABE.skC)

 ≈c

 coinsA, cpABE.mpk = prFE.mpk,
{F[xk, rk]}k∈[Q], cpABE.skxk = {prFE.skk}k∈[Q],

cpABE.ct = (∆, kpABE.mpk, kpABE.ctoff , kpABE.skC)


(40)

where ∆ ← CT prFE, assuming we have C(xk) = 1 for all the key queries x1, . . . , xQ and the challenge circuit C
issued by the adversary. Observe that the equation on the left is the view of the adversary in the real world and that
on the right is the view of the adversary in the ideal world8. Here F[xk, rk] denotes the functions corresponding to
k-th key query xk as defined in the KeyGen algorithm, prFE.skk ← prFE.KeyGen(prFE.msk, F[xk, rk]) for k ∈ [Q],
(kpABE.ctoff , kpABE.st) ← kpABE.EncOff(kpABE.mpk), prFE.ct ← prFE.Enc(prFE.mpk, (kpABE.st, sd, µ)) for
sd← {0, 1}λ and kpABE.skC ← kpABE.KeyGen(kpABE.msk, C).
We invoke the security of prFE with sampler Samp that outputs Functions: {F[xk, rk]}k∈[Q],

Input: (kpABE.st, sd, µ),
Auxiliary

Information: aux = ({xk, rk}k∈[Q], kpABE.mpk, kpABE.skC, kpABE.ctoff , coinsA)

 (41)

By the security guarantee of prFE with sampler Samp we have that

if
(

aux, {F[xk, rk], F[xk, rk](kpABE.st, sd, µ)}k∈[Q]

)
≈c

(
aux, {F[xk, rk], δk ← {0, 1}ℓon}k∈[Q]

)

then

(
prFE.mpk, aux, {F[xk, rk], prFE.skk}k∈[Q]

prFE.ct← prFE.Enc(prFE.mpk, (kpABE.st, sd, µ))

)
≈c

(
prFE.mpk, aux, {F[xk, rk], prFE.skk}k∈[Q]

∆← CT prFE

)
,

where one can see that the latter equation is equivalent to Equation (40). Thus to prove Equation (40), it suffices to prove(
aux, {xk, rk}k∈[Q], {kpABE.cton,k = F[xk, rk](kpABE.st, sd, µ)}k∈[Q], kpABE.skC

)
≈c

(
aux, {xk, rk}k∈[Q], {δk ← {0, 1}ℓon}k∈[Q], kpABE.skC

)
. (42)

For clarity in the further steps of security proof we write the equation on L.H.S. of the above equation as(
coinsA, {xk, rk}k∈[Q], kpABE.mpk, kpABE.skC,

kpABE.ctoff , {kpABE.cton,k := kpABE.EncOn(kpABE.st, xk, µ; PRF(sd, rk))}k∈[Q]

)
, (43)

where we unroll aux and F[xk, rk](kpABE.st, sd, µ) based on their definitions. We prove the pseudorandomness of
{kpABE.cton,k}k in Equation (43) via the following sequence of hybrids.

Hyb0. This is the distribution in Equation (43).

8Note that the information about µ is encoded in prFE.ct.
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Hyb1. This hybrid is same as the previous one except that we output a failure symbol if the set {rk}k∈[Q] contains a
collision. We prove that the probability with which there occurs a collision is negligible in λ. To prove this it
suffices to show that there is no k, k′ ∈ [Q] such that k ̸= k′ and rk = rk′ . The probability of this happening
can be bounded by Q2/2λ by taking the union bound with respect to all the combinations of k, k′. Thus the
probability of outputting the failure symbol is Q2/2λ which is negl(λ).

Hyb2. This hybrid is same as the previous hybrid except that we change all the PRF values {PRF(sd, rk)}k to truly
random values {Rk ← {0, 1}λ}k. By the change introduced in the previous hybrid, PRF(sd, ·) is invoked on
fresh input for each k. Therefore, we can replace {PRF(sd, rk)}k with truly random {Rk}k by the security of
PRF without being noticed by the adversary. We now consider the following distribution:(

coinsA, {xk, rk}k∈[Q], kpABE.mpk, kpABE.skC,
kpABE.ctoff , {kpABE.cton,k ← kpABE.EncOn(kpABE.st, xk, µ)}k∈[Q]

)
,

Hyb3. In this hybrid we invoke the reusable security of kpABE scheme to switch {kpABE.cton,k}k to be random
strings in {0, 1}ℓon .
We claim that an adversary A who can distinguish Hyb2 and Hyb3 can be used to break reusable security of
kpABE. The reduction B works as follows.

− A sends coinsA, C, x1, . . . , xQ, µ to the reduction.
− B sends (C, {xk}k, µ) to the kpABE challenger. The challenger does the following.

– Generates (kpABE.mpk, kpABE.msk)← kpABE.Setup(1λ, 1ℓ).
– Computes kpABE.skC ← kpABE.KeyGen(1λ, C) and (kpABE.ctoff , kpABE.st)← kpABE.EncOff(kpABE.mpk).
– Computes kpABE.ct0

on,k ← kpABE.Enc(kpABE.st, xk, µ) and kpABE.ct1
on,k ← {0, 1}ℓon for all k ∈

[Q].
– Samples a bit β← {0, 1} and returns (kpABE.mpk, kpABE.skC, kpABE.ctoff , {kpABE.ctβ

on,k}k∈[Q]) to
B

− B returns
(

coinsA, {xk, rk}k∈[Q], kpABE.mpk, kpABE.skC, kpABE.ctoff , {kpABE.ctβ
on,k}k∈[Q]

)
to A.

− A outputs a guess bit β′. B outputs the same bit as its guess.

We note that if the challenger samples β = 0, then B simulates Hyb2 with adversary else it simulates Hyb3.

Admissibility of B. Observe that by the admissibility of cpABE, A sends challenge queries C, x1, . . . , xQ, µ
such that C(xk) = 0 for all k ∈ [Q]. Thus the query (C, {xk}k, µ) sent by B to the kpABE challenger satisfies
C(xk) = 0 for all k ∈ [Q]. This establishes the admissibility of B.

We observe that the view of the adversary in Hyb3 is the same as the R.H.S of Equation (42) and hence the proof.

Implications to ABE for Turing Machines. We note that our unbounded CP-ABE scheme Theorem 7.2 and
unbounded KP-ABE scheme Theorem 6.1 can be used to instantiate ABE for Turing Machines ([AKY24a]).

Corollary 7.4. Under the LWE and evasive LWE assumptions, there exists a very selectively secure ABE for TM with

|mpk| = poly(λ), |sk| = |M| · poly(λ), |ct| = |x| · t · poly(λ)

where the Turing machine M runs on input x for time step t.

[AKY24a] uses the LWE , evasive LWE and circular tensor LWE assumptions for their construction with
|mpk| = poly(λ), |sk| = poly(|M|, λ), |ct| = poly(λ, |x|, t).
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A Blind Batch Encryption from LWE
In this section, we construct a blind batch encryption scheme from LWE that is required for the construction of the
laconic pseudorandom poly-domain obfuscation scheme in Section 4.

A.1 Basic Scheme from LWE
Here, we provide the construction of basic blind batch encryption under LWE assumption. The construction is a slight
variant of the hash encryption scheme proposed in [DGHM18], where we modify the construction so that it has perfect
correctness and satisfies our notion of strong blindness (Definition 2.27). The construction here does not satisfy the
efficiency requirement required in Section 4. However, we can bootstrap the construction to satisfy the requirement
using the conversion in Appendix A.2.
In the following, we use the rounding function ⌊·⌉2 : Zq → Z2 defined as ⌊x⌉2

def
=
⌊

2
q · x

⌉
mod 2.

Setup(1λ, 1N). The setup algorithm does the following.

− Sample uj,b ← Zn
q for j ∈ [N] and b ∈ {0, 1}.

− Output crs := {uj,b}j∈[N],b∈{0,1}.

Gen(crs, X ∈ {0, 1}N). The generation algorithm does the following.

− Parse crs = {uj,b}j∈[N],b∈{0,1}.
− Compute h := ∑j∈[N] uj,Xj ∈ Zn

q where Xj ∈ {0, 1} is the j-th bit of X.
− Output h.

SingleEnc(crs, h, i, (µ0, µ1)). The single encryption algorithm, for i ∈ [N] and messages (µ0, µ1) ∈ {0, 1}2, does
the following.

− Parse crs = {uj,b}j∈[N],b∈{0,1}.

− Sample s← Zn
q , ej,b ← DZ,σ for j ∈ [N]\{i} and b ∈ {0, 1}, and e′i,0, e′i,1 ← DZ,γ.

− Compute cj,b := s⊤uj,b + ej,b for j ∈ [N]\{i} and b ∈ {0, 1}.
− Compute

ci,b :=
⌊

s⊤ (h− ui,b) + e′i,b
⌉

2
⊕ µb

for b ∈ {0, 1}.
− Check whether s⊤(h− ui,b) ∈ [q/4− B, q/4 + B] ∪ [3q/4− B, 3q/4 + B] holds for b = 0 or b = 1. If

so, replace each of {cj,b}j∈[N],b∈{0,1} with ⊥ and set ci,b = µb for b ∈ {0, 1} and some B > 09. Otherwise,
do nothing.

− Output ct := {cj,b}j∈[N],b∈{0,1}.

SingleDec(crs, X, i, ct). The single decryption algorithm, for X ∈ {0, 1}N and i ∈ [N], does the following.

− Parse crs = {uj,b}j∈[N],b∈{0,1}, ct → ({cj,b}j∈[N],b∈{0,1}) where cj,b ∈ Zq ∪ {⊥} for j ∈ [N]\{i} and
ci,b ∈ {0, 1} for b ∈ {0, 1}.

− If cj,b = ⊥ for some j, b, set µ′ := ci,Xi .
− Otherwise, compute

µ′ := ci,Xi ⊕

 ∑
j∈[N]\{i}

cj,Xj


2

.

9We introduce this step to remove the correctness error.
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− Output µ′.

Remark A.1. We note that the crs in the above scheme is a uniformly random bit string.

Parameter. We set q to be a power of 2, so that a random string over Zq can be interpreted as a binary random string.
We set γ super-polynomially larger than σ so that the smudging is possible.

q = 25λ, B = 23λ, , σ = 22λ/N, , γ = 22λλω(1)

Succinctness. We can see that the hash is of fixed length and thus the construction is fully succinct.

Correctness. With the above set parameters, we show that our scheme achieves perfect correctness.

− If cj,b = ⊥ for some j ∈ [N]\{i} and b ∈ {0, 1}, then µ′ := ci,Xi = µXi with probability 1 and hence the
correctness.

− If cj,b ̸= ⊥ for any j ∈ [N]\{i} and b ∈ {0, 1}, we compute

µ′ = ci,Xi ⊕

 ∑
j∈[N]\{i}

cj,Xj


2

=
⌊

s⊤
(
h− ui,Xi

)
+ e′i,Xi

⌉
2
⊕ µXi ⊕

 ∑
j∈[N]\{i}

s⊤uj,Xj + ej,Xj


2

=

s⊤

 ∑
j∈[N]

uj,Xj − ui,Xi

+ e′i,Xi


2

⊕ µXi ⊕

 ∑
j∈[N]\{i}

s⊤uj,Xj + ej,Xj


2

=

 ∑
j∈[N]\{i}

s⊤uj,Xj + e′i,Xi


2

⊕ µXi ⊕

 ∑
j∈[N]\{i}

s⊤uj,Xj + ej,Xj


2

= µXi

where the last equality follows from our parameter setting, |e′i,Xi
| < B and ∑j∈[N]\{i} |ej,Xj | ≤ B and the guarantee

that ∑j∈[N]\{i} s⊤uj,Xj is sufficiently far, from the second to the last step of the encryption algorithm, from the
"unsafe zone" where small noise can change the rounded value (i.e., [q/4− B, q/4 + B] ∪ [3q/4− B, 3q/4 + B]).

Security. Next, we prove the security of our scheme.

Theorem A.2. The above construction satisfies SingleEnc security (Definition 2.26 ) under the LWE assumption.

Proof. We consider the following sequence of hybrids.

Hyb0. Real game.

Hyb1. Change the encryption algorithm so that it never sets cj,b = ⊥ (i.e., we erase the branch of the computation
introduced to eliminate the possibility of the decryption error). Since s⊤(h − ui,0) and s⊤(h − ui,1) are
distributed uniformly at random over Zq, the probability of ⊥ being output is bounded by 4B/q. Therefore, this
hybrid is statistically indistinguishable from the previous one.
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Hyb2. In this hybrid we compute ci,Xi as

ci,Xi =

 ∑
j∈[N]\{i}

cj,Xj + e′i,Xi


2

⊕ µXi .

By the smudging lemma, this hybrid is statistically close to the previous hybrid. To see this, we note the following.

− In Hyb1 we have
ci,Xi

:=
⌊

s⊤
(
h− ui,Xi

)
+ e′i,Xi

⌉
2
⊕ µXi

− Substituting h = ∑j∈[N] uj,Xj , we get

ci,Xi =

s⊤ ∑
j∈[N]\{i}

uj,Xj + e′i,Xi


2

⊕ µXi . (44)

− From our parameter setting we have |∑j∈[N]\{i} ej,Xj | ≤ λω(1) ∑j∈[N]\{i} |ej,Xj | ≤ |e
′
i,Xi
| where ej,b ∈ DZ,σ

and e′i,Xi
∈ DZ,γ. Thus using noise flooding (Lemma 2.4) and Equation (44) we have

ci,Xi =

s⊤ ∑
j∈[N]\{i}

uj,Xj + ∑
j∈[N]\{i}

ej,Xj + e′i,Xi


2

⊕ µXi

=

 ∑
j∈[N]\{i}

(s⊤uj,Xj + ej,Xj) + e′i,Xi


2

⊕ µXi

=

 ∑
j∈[N]\{i}

cj,Xj + e′i,Xi


2

⊕ µXi

with overwhelming probability.

Hyb3. To compute ci,1−Xi , we set it as

ci,1−Xi =
⌊

s⊤
(
h− ui,1−Xi

)
+ ei,1−Xi + e′i,1−Xi

⌉
2
⊕ µ1−Xi ,

where ei,1−Xi ← DZ,σ. By the smudging lemma, this hybrid is statistically close to the previous hybrid.
To see this, we note that initially we have

ci,1−Xi =
⌊

s⊤
(
h− ui,1−Xi

)
+ e′i,1−Xi

⌉
2
⊕ µ1−Xi (45)

where e′i,1−Xi
∈ DZ,γ. Next, from our parameter setting, we have λω(1)|ei,1−Xi | ≤ |e

′
i,1−Xi

| where ei,1−Xi ←
DZ,σ. Thus using noise flooding (Lemma 2.4), we can write Equation (45) as

ci,1−Xi =
⌊

s⊤
(
h− ui,1−Xi

)
+ ei,1−Xi + e′i,1−Xi

⌉
2
⊕ µ1−Xi .

Hyb4. Replace {cj,b}j ̸=i,b∈{0,1} and s⊤
(
h− ui,1−Xi

)
+ ei,1−Xi computed for ci,1−Xi with random elements in Zq.

This game is computationally indistinguishable from the previous one by LWE.

Hyb5. Now, ci,1−Xi is sampled as ci,1−Xi ← {0, 1}. This game is statistically close to the previous game, since the
value inside the round function is already uniformly random over Zq.
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Theorem A.3. The above construction satisfies strong blindness as per Definition 2.27 under the LWE assumption.

Proof. The proof is almost the same as that of Theorem A.2, where we consider the same sequence of the hybrids. We
can skip Hyb2, since ci,Xi is already random by the definition of the blindness security game. In Hyb5, the ciphertext is
a random string. Therefore, we can conclude the proof of the theorem.

A.2 Bootstrapping the Basic Scheme
Our construction of BBE in Appendix A.1 has large CRS size and single ciphertext size, both of which linearly depend
on N. However, we require a BBE scheme whose sizes of these parameters are independent of N in Section 4. Here, we
obtain a scheme with the required properties from LWE by applying the conversion from [BLSV18] to our construction
in Appendix A.1.

Theorem A.4 (Adapted from Appendix A.2 of [BLSV18]). Assuming that there exists a 1/2-succinct BBE scheme
(defined in Definition 2.25) whose CRS size is poly(λ, N) and single-ciphertext size is poly(λ, N). Then, the
construction can be converted into a fully-succinct BBE scheme with CRS size poly(λ, log N) and single-ciphertext
size poly(λ, log N). Furthermore, the conversion preserves strong blindness property.

Sketch of proof. Since the above theorem is not explicitly shown in [BLSV18], we provide an explanation on how to
extract the above theorem from their result. There, they show a construction of fully-succinct BBE scheme starting from
a 1/2-succinct BBE scheme. They only provide the description of the encryption algorithm, but it is easy to extract a
description of single encryption algorithm from it. For the reference for the readers, we sketch their construction and
explain how to obtain the single encryption algorithm out of it.

To setup the system, they generate d = log(N/λ) number of CRSes, all of which are generated by Setup(1λ, 12λ).
Each CRS string is assigned to each layer of the tree. To compute a hash value on input X ∈ {0, 1}N , they consider
a Merkle tree of depth d. The leaves of the tree consist of N/λ nodes and X is evenly split and assigned to the
corresponding node. Then, we assign hash values to the internal nodes of the tree starting from the layer of the tree right
above the leaves to the root. To define a hash value hv associated to a node v, we hash the values associated with its
children, namely, hv∥0 and hv∥1, where we use the CRS corresponding to that layer. The final output of the hash (i.e.,
Gen(crs, X)) is the hash value hϵ assigned to the root node ϵ.

We then explain how the encryption algorithm works. For each node v, they generate subct1 part of the underlying
BBE ciphertext and a garbled circuit.10 We denote the former by subctv,1 and the latter C̃v. For the garbled circuit
corresponding to the root node, we additionally provide the input labels labhϵ

that corresponds to hϵ. The garbled
circuits associated with internal nodes are obtained by garbling a circuit that takes as input hv and outputs subct2 part of
the BBE ciphertext that encrypts the labels of the garbled circuits corresponding to its children under the public key hv.
For the leaf nodes, the garbled circuits encrypt the messages instead of the labels.

To decrypt a ciphertext, for each leaf v, we traverse the hash tree from the root to v and obtain the message
corresponding to Xv as follows. We first obtain subctϵ,2 by evaluating C̃ϵ on labels labhϵ

. Then, combined with subctϵ,1,
this recovers the entire BBE ciphertext corresponding to the root node ϵ that encrypts the labels of the garbled circuits of
the next layer. This BBE ciphertext can be decrypted by using the string that concatenates h0 and h1. This in particular
gives the labels labhv1

corresponding to hv1 , where v1 is the first bit of v. This then allows us to recover subctv1,2 by
evaluating the garbled circuit. We traverse down the tree in this way until we reach at the leaf node v, where we recover
the corresponding message.

We then explain how we define the single encryption algorithm. To encrypt a message for a position i, we consider
the leaf node v corresponding to the index i. We then run the encryption algorithm and remove the ciphertext components
that are not necessary for traversing down the tree to the leaf node v. Namely, we only include labhϵ

and subctw,1, C̃w
for all w that is an ancestor of v in the ciphertext. We can see that these components are sufficient for the decryption to
work correctly.

Now, we can see that the construction achieves CRS size of poly(λ, log N), since there are d = log(N/λ) number
of CRSes of the base BBE. Similarly, the single-ciphertext size is of poly(λ, log N), since there are d number of garbled

10We refer to Remark 2.28 for the explanation on subct1 and subct2.
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circuits and subctv,1, each of which is of fixed polynomial size. We also observe that the conversion preserves the strong
blindness. In [BLSV18], they show that the ciphertext is pseudorandom except for {subctw,1}w:w is an ancestor of v. If the
underlying BBE satisfies strong blindness, subctw,1 is an empty string for all w. This indicates that the entire ciphertext
of the final scheme is pseudorandom, as desired. This holds even if we consider single-ciphertext, since the single
ciphertext is obtained by removing some part of the ciphertext.

By applying the conversion to our construction in Appendix A.1, we obtain the following theorem.

Theorem A.5. There exists a fully-succinct BBE scheme with CRS size of poly(λ, log N) and single-ciphertext size of
poly(λ, log N) from LWE where N denotes the length of the keys supported by the scheme

B Bootstrapping AB-LFE to KP-ABE with unbounded depth using prFE
In this section, we show a formal description of the construction of kpABE for unbounded circuits using 1ABE sketched
in Section 1.4. This provides an alternative pathway to obtain kpABE for unbounded depth circuits different from that
given in Section 6. Instead of 1ABE, our construction is formally described using abLFE, but this turns out to be almost
equivalent, as discussed later in this section. We can instantiate the abLFE by the recent construction by [HLL23] or
blind garbled circuit [BLSV18]. The former instantiation leads to more efficient construction than the latter, but it
introduces an additional assumption of circular LWE in addition to LWE and evasive LWE. Compared with Section 6,
the constructions obtained here are simpler, though their parameter sizes are sub-optimal. Importantly, we do not rely
on the result regarding pPRIO from our companion paper [AKY24b] in this section.

B.1 Attribute Based Laconic Functional Encryption
Syntax. An attribute based laconic function evaluation (abLFE) scheme for a circuit class {Cprm = {C :
Xprm → {0, 1}}}prm for a parameter prm = prm(λ) and a message space M consists of four algorithms
(crsGen, Compress, Enc, Dec) defined as follows.

crsGen(1λ, prm) → crs. The generation algorithm takes as input the security parameter 1λ and circuit parameters
prm and outputs a uniformly sampled common reference string crs.

Compress(crs, C) → digest. The compress algorithm takes as input the common random string crs and a circuit
C ∈ C and outputs a digest digest.

Enc(crs, digest, (x, µ))→ ct. The encryption algorithm takes as input the common random string crs, a digest digest,
an attribute x ∈ Xprm and a message µ ∈ M and outputs a ciphertext ct.

Dec(crs, C, ct)→ µ/⊥. The decryption algorithm takes as input the common random string crs, a circuit C, digest
and a ciphertext ct and outputs a message µ ∈ M or ⊥.

Definition B.1 (Correctness). An abLFE scheme for circuit family Cprm is correct if for all prm, C ∈ Cprm, x ∈ Xprm
such that C(x) = 1, and for all messages µ ∈ M,

Pr


crs← crsGen(1λ, prm),
digest = Compress(crs, C),
ct← Enc(crs, digest, (x, µ)) :
Dec(crs, C, ct) ̸= µ

 = negl(λ)

where the probability is taken over the coins of Setup, KeyGen, and Enc.

Definition B.2 (Pseudorandom Ciphertext Security). For a abLFE scheme and an adversary A, we define the
experiment for security ExptabLFE

β,A (1λ) as follows.

1. Run A to receive circuit parameters prm. Run crs← crsGen(1λ, prm) and send crs to A.

83



2. A chooses C ∈ Cprm, x ∈ Xprm and µ ∈ M. Run digest = Compress(crs, C), sample β ← {0, 1}. If β = 0,
it computes ct0 ← Enc(crs, digest, (x, µ)) else if β = 1, it computes ct1 ← CT abLFE, where CT abLFE is the
ciphertext space of abLFE. It sends digest, ctβ to A.

3. A outputs a guess bit β′ as the output of the experiment.

We define the advantage AdvabLFE
A (λ) of A in the above game as

AdvabLFE
A (λ) :=

∣∣∣Pr
[
ExptabLFE

0,A (1λ) = 1
]
− Pr

[
ExptabLFE

1,A (1λ) = 1
]∣∣∣ .

We say that a abLFE scheme is adaptive pseudorandom ciphertext secure if for every admissible PPT adversary A, we
have AdvabLFE

A (λ) ≤ negl(λ), where A is said to be admissible if C(x) = 0.
The selective (resp. very selective) notion of the security requires the adversary A to choose x (resp. x, C) along with
prm before it receives crs.

Definition B.3 (Decomposability). We say that a abLFE scheme for a circuit class {Cprm = {C : Xprm →
{0, 1}}}prm satisfies decomposability if for any crs ← crsGen(1λ, prm) and digest ← Compress(crs, C), we have
digest = {digesti}i∈[qC ]

for some polynomial qC, which may depend on C, and size(digesti) ≤ poly(λ). Further-
more, we have that Enc(crs, digest, (x, µ)) = {Enci(crs, digesti, (x, µ))}i∈[qC ]

where size of the encryption circuit
size(Enci(·, ·, (·, ·))) ≤ poly(λ, |x|).

Remark B.4. Here, we do not require the digest to be much smaller than the circuit description C, unlike the usual
convention in the context of abLFE. This relaxation allows us to instantiate abLFE using blind garbled circuits, which
do not have compact digests.

B.2 Construction of kpABE with Unbounded Depth
Building Blocks. We require the following building blocks for our construction.

1. An attribute-based laconic function evaluation scheme abLFE = abLFE.(crsGen, Compress, Enc, Dec) for circuit
class Cℓ(λ), consisting of circuits with input length ℓ(λ) and with unbounded depth and size. We let ℓabLFE

ct and
CT abLFE = {0, 1}ℓabLFE

ct denote the ciphertext length and the ciphertext space of the scheme, respectively. We
assume that the abLFE scheme is decomposable (Definition B.3), i.e., we have abLFE.Enc = {abLFE.Enci}i∈[qC ]

for some qC and use dabLFE to denote the maximum depth of a circuit required to compute {abLFE.Enci}i∈[qC ]
.

2. A FE scheme for pseudorandom functionality prFE = (prFE.Setup, prFE.KeyGen, prFE.Enc, prFE.Dec) for
circuit class CL(λ),dprFE(λ),ℓabLFE

ct
consisting of circuits with input length L(ℓ, λ), maximum depth dprFE(λ) and

output length ℓabLFE
ct . We denote by prm the parameters (1L(λ), 1dprFE(λ), 1ℓ

abLFE
ct ) that specifies the function class

being supported. We also denote the ciphertext space of the scheme by CT prFE.

3. A PRF function PRF : {0, 1}λ×{0, 1}λ → {0, 1}Rlen where Rlen is the length of randomness used in abLFE.Enc.
We assume that PRF can be computed by a circuit of depth at most dprFE.

We assume that uniform sampling from the ciphertext space is possible without any parameter other than the security
parameter λ.

Now, we describe our compiler for constructing a key-policy ABE scheme kpABE = (Setup, KeyGen, Enc, Dec) for
circuits of unbounded depth with attribute length ℓ(λ). We denote the ciphertext space of the scheme by CT kpABE. For
our construction, we have CT kpABE = CT prFE.

Setup(1λ, 1ℓ)→ (mpk, msk). The setup algorithm does the following.

− Run (prFE.msk, prFE.mpk)← prFE.Setup(1λ, prm) and crs← abLFE.crsGen(1λ).
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− Set msk = prFE.msk11 and mpk = (prFE.mpk, crs). Output (msk, mpk).

KeyGen(msk, C)→ skC. The key generation algorithm does the following.

− Parse msk = prFE.msk and sample r← {0, 1}λ.
− Compute digest = abLFE.Compress(crs, C). Parse digest = {digesti}i∈[qC ]

.

− For i ∈ [qC], define circuit F[crs, digesti, r], with crs, digesti, r hardwired, as follows
On input (sd, x, µ):

– Compute abLFE.cti := abLFE.Enci(crs, digesti, (x, µ); PRF(sd, r)).
– Output abLFE.cti.

− For i ∈ [qC] compute prFE.ski ← prFE.KeyGen(prFE.msk, F[crs, digesti, r]).

− Output skC :=
(
{digesti, prFE.ski}i∈[qC ]

, r
)

.

Enc(mpk, x, µ)→ ct. The encryption algorithm does the following.

− Parse mpk = (prFE.mpk, crs) and sample a PRF key sd← {0, 1}λ.
− Compute prFE.ct← prFE.Enc(prFE.mpk, (sd, x, µ)).
− Output ct := prFE.ct.

Dec(mpk, skC, C, ct, x)→ y. The decryption algorithm does the following.

− Parse mpk = (prFE.mpk, crs), skC =
(
{digesti, prFE.ski}i∈[qC ]

, r
)

and ct = prFE.ct.

− For all i ∈ [qC], compute yi = prFE.Dec(prFE.mpk, prFE.ski, F[crs, digesti, r], prFE.ct).
− Set y = (y1, . . . , yqC ) and output abLFE.Dec(crs, C, y).

Correctness. We prove the correctness of our scheme using the following theorem.

Theorem B.5. Assume abLFE and prFE schemes are correct, and PRF is secure. Then the above construction of kpABE
scheme is correct.

Proof. From the correctness of prFE scheme we have

yi =F[crs, digesti, r](sd, x, µ)

=abLFE.cti = abLFE.Enci(crs, digesti, (x, µ); PRF(sd, r))

for i ∈ [qC] with probability 1. Thus we have y = {abLFE.cti}i∈[qC ]
= abLFE.ct. Next, by the correctness of abLFE

scheme it follows that, if C(x) = 1,

abLFE.Dec(crs, C, y) = abLFE.Dec(crs, C, abLFE.ct) = µ

with all but negligible probability.

Security. We prove the security of our scheme via the following theorem.

Theorem B.6. Assume that the prFE scheme is secure (Definition 3.2) with respect to the sampler class containing
the sampler Samp as defined in Eq. 47, abLFE scheme satisfies very selective pseudorandom ciphertext security
(Definition B.2). Then our construction of kpABE scheme satisfies VerSel-INDr security (Definition 2.16).

11W.L.O.G we assume that msk contains mpk.

85



Proof. Suppose the adversary A with randomness coinsA queries for x, µ, C1, . . . CQ. To prove the security of kpABE
scheme as per Definition 2.16, we show

coinsA, mpk = (prFE.mpk, crs),
{F[crs, digestk,i, rk]}k∈[Q],i∈[qCk

],

skCk = {prFE.skk,i}k∈[Q],i∈[qCk
],

ct = prFE.ct← prFE.Enc(prFE.mpk, (sd, x, µ))

 ≈c


coinsA, mpk = (prFE.mpk, crs),
{F[crs, digestk,i, rk]}k∈[Q],i∈[qCk

],

skCk = {prFE.skk,i}k∈[Q],i∈[qCk
],

ct = δ← CT prFE

 (46)

where F[crs, digestk,i, rk] denotes the functions corresponding to k-th key query Ck as defined in the KeyGen algorithm
and prFE.skk,i ← prFE.KeyGen(prFE.msk, F[crs, digestk,i, rk]) for k ∈ [Q], i ∈ [qCk ]. Also for all the key queries
C1, . . . , CQ and the challenge attribute x issued by the adversary, we have Ck(x) = 0.
We invoke the security of prFE with sampler Samp that outputs Functions: {F[crs, digestk,i, rk]}k∈[Q],i∈[qCk

],
Input: (sd, x, µ),

Auxiliary Information: aux = (coinsA, {crs, Ck, digestk,i, rk}k∈[Q],i∈[qCk
])

 (47)

By the security guarantee of prFE with sampler Samp we have(
prFE.mpk, aux, {F[crs, digestk,i, rk], prFE.skk,i}k∈[Q],i∈[qCk

]

prFE.ct← prFE.Enc(prFE.mpk, (sd, x, µ))

)

≈c

(
prFE.mpk, aux, {F[crs, digestk,i, rk], prFE.skk,i}k∈[Q],i∈[qCk

]

∆← CT prFE

)

if (
aux, {F[crs, digestk,i, rk], abLFE.ctk,i}k∈[Q],i∈[qCk

]

)
(48)

≈c

(
aux, {F[crs, digestk,i, rk], (δk,1, . . . , δk,qCk

)← {0, 1}ℓabLFE
ct }k∈[Q]

)
where abLFE.ctk,i = F[crs, digestk,i, rk](sd, x, µ) = abLFE.Enci(crs, digestk,i, (x, µ); PRF(sd, rk)) for k ∈ [Q], i ∈
[qC].
Thus to prove Equation (46), it suffices to prove Equation (48). We prove Equation (48) via the following sequence of
hybrids.

Hyb0. This is the LHS distribution of Equation (48).(
aux,

{
F[crs, digestk,i, rk], abLFE.ctk,i = abLFE.Enci(crs, digestk,i, (x, µ); PRF(sd, rk))

}
k∈[Q],i∈[qCk

]

)
.

We can rewrite the above distribution as(
aux,

{
F[crs, digestk,i, rk], abLFE.ctk = abLFE.Enc(crs, digestk, (x, µ); PRF(sd, rk))

}
k∈[Q],i∈[qCk

]

)
.

where digestk = {digestk,i}i∈[qCk
] and abLFE.ctk = {abLFE.ctk,i}i∈[qCk

] for all k ∈ [Q].

Hyb1. This hybrid is same as the previous one except that we output a failure symbol if the set {rk}k∈[Q], in aux,
contains a collision. We prove that the probability with which there occurs a collision is negligible in λ. To
prove this it suffices to show that there is no k, k′ ∈ [Q] such that k ̸= k′ and rk = rk′ . The probability of this
happening can be bounded by Q2/2λ by taking the union bound with respect to all the combinations of k, k′.
Thus the probability of outputting the failure symbol is Q2/2λ which is negl(λ).
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Hyb2. In this hybrid we change all the PRF values computed using sd to random. Namely, we replace PRF(sd, rk)
with true randomness Rk. Since PRF is invoked for fresh input for each k ∈ [Q], this hybrid is indistinguishable
from the previous hybrid. We now consider the following distribution:(

aux, {F[crs, digestk,i, rk], abLFE.ctk = abLFE.Enc(crs, digestk, (x, µ))}k∈[Q],i∈[qCk
]

)
Hyb3. In this hybrid we invoke the security of abLFE scheme to switch abLFE.ctk to random for all k ∈ [Q]. Namely,

the distribution is now: (
{F[crs, digestk,i, rk], abLFE.ctk ← CT abLFE}k∈[Q],i∈[qCk

]

)
By the admissibility of the adversary and very selective pseudorandom ciphertext security of abLFE, this hybrid
is indistinguishable from the previous one.

This completes the proof.

B.3 AB-LFE (or 1ABE) from Blind Garbled circuits.
In this section we give a construction of abLFE = (crsGen, Compress, Enc, Dec) for a circuit class C = {C : {0, 1}L →
{0, 1}} and message space {0, 1} from blind garbled circuits. Our construction supports circuits of unbounded depth
and input length. Our construction can equivalently be seen as constructing a 1ABE scheme.

Building Blocks. A blind garbled circuit scheme bGC = (bGC.Eval, bGC.Garble, bGC.SIM) scheme for circuit class
C.

Construction. We describe our construction for abLFE scheme abLFE = (crsGen, Compress, Enc, Dec) below.

crsGen(1λ)→ crs. The crs generation algorithm outputs crs := ⊥.

Compress(crs, C)→ digest. The Compress algorithm outputs digest = C.

Enc(crs, digest, x, µ)→ ct. The encryption algorithm does the following.

− Parse digest = C, sample R← {0, 1} and define circuit C[R], with R hardwired, as follows

C[R](x, µ) =

{
µ if C(x) = 1,
R if C(x) = 0.

.

− Compute ({labj,b}j∈[L+1],b∈{0,1}, C̃[R])← bGC.Garble(1λ, 1L+1, C[R], 11).

− Output ct =
(

C̃[R], labx,µ

)
where labx,µ = (lab1,x1 , . . . , labL,xL , labL+1,µ).

Dec(crs, C, ct)→ µ/⊥. The decryption algorithm does the following.

− Parse ct =
(

C̃[R], labx,µ

)
.

− Output µ′ = bGC.Eval(C̃[R], labx,µ).

Correctness. The correctness of the scheme follows directly from the correctness of the underlying bGC scheme. We
prove it using the following theorem.

Theorem B.7. Assume that the blind bGC is correct (Definition 2.19). Then the abLFE scheme is correct (Definition B.1).

Proof. For ct =
(

C̃[R], labx,µ

)
where labx,µ = (lab1,x1 , . . . , labL,xL , labL+1,µ), we have

bGC.Eval(C̃[R], labx,µ) = µ

if C(x) = 1 from the correctness of bGC scheme with probability 1. This implies the correctness.
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Efficiency. The abLFE scheme has the following efficiency properties.

|digest| = |C|, |ct| = O(|C|, L, λ).

Decomposability. The decomposability follows from the decomposability of the blind garbled circuits. In particular
we can parse digest = {digesti}i∈[|C|], where digesti = Ci for i ∈ [|C|] and Ci denotes the i-th gate of C in topological

order. We can also parse ct = {cti}i∈[|C|] where we can set ct1 = (C̃1[R], labx,µ) and cti = C̃i[R] for i ∈ [2, |C|]
where Ci[R] denotes the i-th gate of Ci[R] and C̃i[R] is the corresponding garbling. Note that here |digesti| = poly(λ)
and |cti| ≤ poly(λ, L).

Security. The security of the scheme follows from the simulation security and the blindness of the underlying bGC
scheme. We prove this using the following theorem.

Theorem B.8. Assume that the bGC scheme satisfies simulation security (Definition 2.20) and blindness (Definition 2.21).
Then the abLFE scheme satisfies adaptive pseudorandom ciphertext security (Definition B.2).

Proof. Suppose the adversary after receiving crs = ⊥ from the challenger outputs the challenge circuit C and the
challenge inputs (x, µ). To prove the security of the abLFE scheme, we consider the following sequence of hybrids.

Hyb0. This hybrid corresponds to the real-world game where the ciphertext is computed honestly using the Enc
algorithm.

Hyb1. This hybrid is same as the previous hybrid except that the challenger computes
(

C̃, l̃ab
)
← bGC.SIM(1λ,

1|C[R]|, 1L+1, R) where R← {0, 1}.
Noting that C[R](x, µ) = R by the admissibility of the adversary, Hyb0 ≈c Hyb1 follows by the simulation
security of the bGC scheme.

Hyb2. This hybrid is same as the previous hybrid except that the challenger samples uniformly random string (C̃, l̃ab)
such that |(C̃, l̃ab)| = |bGC.SIM(1λ, 1L+1, 1|C[R]|, R)| and returns digest = C, ct = (C̃, l̃ab) to the adversary.
Hyb1 ≈c Hyb2 using the blindness of the bGC scheme.

Note that in Hyb2, the adversary is given a random string. Therefore, the adaptive pseudorandom ciphertext security
follows.

Equivalence of 1ABE and abLFE from Blind Garbled Circuits. We show that the abLFE scheme instantiated from
blind garbled circuits is in fact equivalent to the instantiation of 1ABE using BGC– which we bootstrap to a full fledged
KP-ABE using prFE in the technical overview (Section 1.4).

First, we roughly outline the instantiation of 1ABE using BGC : 1) Setup: set msk = RbGC, where RbGC is the
randomness required to compute bGC components. 2) Encrypt: To encrypt (x, µ) using msk = RbGC, we simply
generate bGC labels corresponding to (x, µ) using randomness RbGC. 3) Keygen : To generate a key for circuit C using
msk we first sample some randomness R ← {0, 1} and generate bGC garbled circuit corresponding to C[R], where
C[R] is defined exactly as in the above construction, using randomness RbGC. This secret-key 1ABE is (1-key,1-ct)
secure and has random keys and random ciphertexts.

Next, we note that this 1ABE is equivalent to abLFE from bGC except for minor syntactical differences. Both
primitives essentially generate the components of a bGC scheme, the only difference being that 1ABE generates the
garbed circuit and garbled labels in KeyGen and Enc separately using the same randomness, while abLFE generates
both in Enc(crs, digest, (x, µ)) since digest = C is provided as input. So, when bootstrapping a 1ABE to kpABE, we
let the prFE output both 1ABE.sk and 1ABE.ct as described in technical overview. This is the only difference from the
construction of kpABE using abLFE.

Instantiating the abLFE scheme as above, and using a prFE scheme supporting dprFE = poly(λ) depth circuits
with input length L = ℓ+ λ + 1, we obtain the following theorem.
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Theorem B.9. Under the LWE assumption and the Evasive LWE assumption, there exists a very selectively secure
kpABE scheme for circuits of unbounded depth and attribute length ℓ with

|mpk| = ℓ · poly(λ), |skC| = |C| · ℓ · poly(λ), |ct| = ℓ · poly(λ).

We note that the kpABE scheme instantiated as above has longer secret keys but is not based on any circular
assumptions.

B.4 Using the abLFE from HLL
We can directly instantiate the abLFE in Appendix B.2 with the construction shown by [HLL23] (HLL henceforth).
For this instantiation, we do not assume decomposability of abLFE since the HLL construction has succinct digest,
i.e. qC = 1 for any C and |digest| = O(1). This instantiation leads to the parameter size of |mpk| = poly(ℓ, λ),
|skC| = poly(ℓ, λ), and |ct| = poly(ℓ, λ), which is already better than the previous instantiation.

By adding a twist to the construction in Appendix B.2 exploiting the structural property of HLL, we can improve the
secret key size so that its dependency on ℓ can be removed. To do so, we exploit the online-offline structure of the
abLFE.Enc algorithm which can be split as abLFE.Enc = (abLFE.EncOff, abLFE.EncOn). Here, abLFE.EncOff takes
as input crs and x and outputs the offline part of the ciphertext abLFE.ctoff and short state st and abLFE.EncOn takes as
input digest and st and outputs online part of the ciphertext abLFE.cton. Formally, HLL proved the following theorem:

Theorem B.10 ([HLL23]). Under the circular LWE assumption, there exists a very selectively secure abLFE scheme
for circuit class C = {C : {0, 1}ℓ → {0, 1}ℓ′} satisfying

|crs| = O(ℓ, λ), |digest| = O(λ), |st| = O(λ), |ctoff | = O(ℓ, λ), |cton| = O(ℓ′, λ)

We make slight modifications to our construction of kpABE scheme to optimize the secret key size. The high level
idea is very simple. Instead of letting the prFE decryption recover the entire abLFE ciphertext, we recover only the
online part of it. We then put the offline part of abLFE ciphertext into the ciphertext of kpABE so that the decryptor can
recover the entire abLFE ciphertext during the decryption. This eliminates the necessity of hardwiring crs to the prFE
secret key, since the online part can be computed only from the short state and digest. This leads to the improvement on
the efficiency, since the state and digest are of fixed polynomial size, while crs is of size O(ℓ). Concretely, we modify
the KeyGen, Enc, Dec algorithm of Appendix B.2 as follows.

KeyGen(msk, C). This is same as the KeyGen algorithm in Appendix B.2 except the following.

− Define circuit F[digest, r] (instead of F[crs, digesti, r]) , with digest, r hardwired, as follows
On input (sd, st):

– Compute abLFE.cton := abLFE.EncOn(st, digest; PRF(sd, r)).
– Output abLFE.cton.

− Compute prFE.sk← prFE.KeyGen(prFE.msk, F[digest, r]).
− Output skC = (digest, prFE.sk, r).

Enc(mpk, x, µ). The encryption algorithm does the following.

− Parse mpk = (prFE.mpk, crs) and sample a PRF key sd← {0, 1}λ.
− Compute (abLFE.ctoff , st)← abLFE.EncOff(crs, (x, µ)).
− Compute prFE.ct← prFE.Enc(prFE.mpk, (sd, st)).
− Output ct := (abLFE.ctoff , prFE.ct).

Dec(mpk, skC, C, ct, x). The decryption algorithm does the following.

− Parse mpk = (prFE.mpk, crs), skC = (digest, prFE.sk, r) and ct = (abLFE.ctoff , prFE.ct).
− Compute abLFE.cton = prFE.Dec(prFE.mpk, prFE.sk, F[digest, r], prFE.ct).
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− Set y = (abLFE.ctoff , abLFE.cton) and output abLFE.Dec(crs, C, y).

We note that even with the above changes the correctness and security arguments are same as that of Appendix B.2.

For this instantiation, we have dEncOn
abLFE = poly(λ) where dEncOn

abLFE is the maximum depth of a circuit required to
compute abLFE.EncOn and hence we use a prFE scheme supporting dprFE = poly(λ) depth circuits with input length
L = poly(λ). We formalise this using the following theorem.

Theorem B.11. Under the circular LWE assumption and the Evasive LWE assumption, there exists a very selectively
secure kpABE scheme for circuits of unbounded depth and attribute length ℓ with

|mpk| = poly(ℓ, λ), |skC| = poly(λ), |ct| = poly(ℓ, λ).

We note that the kpABE scheme instantiated as above has succinct keys and ciphertexts. Our scheme achieves the
same parameters as the unbounded depth KP-ABE scheme by [HLL23] but does not make use of the circular evasive
LWE assumption as they do.
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