
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN XXXX-XXXX, Vol. 0, No. 0, pp. 1–24. DOI:XXXXXXXX

OT-PCA: New Key-Recovery Plaintext-Checking
Oracle Based Side-Channel Attacks on HQC with

Offline Templates
Haiyue Dong1 and Qian Guo2

1 Independent Researcher, Lund, Sweden, chelseadong202@gmail.com
2 Lund University, Lund, Sweden, qian.guo@eit.lth.se

Abstract. In this paper, we introduce OT-PCA, a novel approach for conducting
Plaintext-Checking (PC) oracle based side-channel attacks, specifically designed for
Hamming Quasi-Cyclic (HQC). By calling the publicly accessible HQC decoder, we
build offline templates that enable efficient extraction of soft information for hundreds
of secret positions with just a single PC oracle call. Our method addresses critical
challenges in optimizing key-related information extraction, including maximizing
decryption output entropy and ensuring error pattern independence, through the use
of genetic-style algorithms.
Extensive simulations demonstrate that our new attack method significantly reduces
the required number of oracle calls, achieving a 2.4-fold decrease for hqc-128 and
even greater reductions for hqc-192 and hqc-256 compared to current state-of-the-art
methods. Notably, the attack shows strong resilience against inaccuracy in the PC
oracle—when the oracle accuracy decreases to 95%, the reduction factor in oracle
call requirements increases to 7.6 for hqc-128.
Lastly, a real-world evaluation conducted using power analysis on a platform with an
ARM Cortex-M4 microcontroller validates the practical applicability and effectiveness
of our approach.
Keywords: Code-based cryptography · NIST post-quantum cryptography standard-
ization · HQC · Side-channel attacks · KEM

1 Introduction
Post-Quantum Cryptography (PQC) has rapidly become an essential area in modern
cybersecurity, aimed at mitigating the significant threats posed by quantum computers
to existing cryptographic infrastructures. These infrastructures largely depend on the
computational challenges associated with factoring and discrete logarithms—both of which
are susceptible to quantum attacks. In response, the National Institute of Standards
and Technology (NIST) initiated a project in 2016 to identify and standardize quantum-
resistant public-key cryptographic algorithms, focusing primarily on Key Encapsulation
Mechanisms (KEM) and digital signatures. As part of this initiative, the lattice-based
CRYSTALS-Kyber has been adopted as the primary KEM standard [SAB+22]. Neverthe-
less, NIST continues to explore a diverse array of algorithms to ensure a secure and resilient
cryptographic infrastructure. This includes evaluating code-based KEMs such as Classic
McEliece [ABC+22], HQC [AAB+22], and BIKE [ABB+22], as well as the isogeny-based
SIKE [JAC+22], which has been compromised.

Among these, Hamming Quasi-Cyclic (HQC) emerges as a particularly promising
candidate. NIST reports [ACD+22] have highlighted that both BIKE and HQC, built on
structured codes, are apt for general-purpose KEM applications not dependent on lattice

Licensed under Creative Commons License CC-BY 4.0.

https://doi.org/XXXXXXXX
mailto:chelseadong202@gmail.com
mailto:qian.guo@eit.lth.se
http://creativecommons.org/licenses/by/4.0/

2 OT-PCA: New KR-PC-SCAs on HQC with Offline Templates

structures. NIST has indicated that it may choose one of these two for standardization after
the fourth round of evaluation. Given this context, it is crucial to thoroughly assess HQC’s
security credentials and develop robust implementation strategies for various real-world
platforms to ensure its effectiveness and reliability in a post-quantum world.

During the initial rounds of NIST’s evaluation, the implementation security of HQC has
been extensively studied, as documented in significant research efforts [WTBB+19, PT19,
BDH+19, GJN20, XIU+21, SHR+22, GHJ+22, HSC+23, GLG22, GNNJ23, PRJB23,
GMGL24, SGG24]. Among the various threats, Side-Channel Attacks (SCA) have emerged
as particularly critical, necessitating thorough investigations to ensure secure implementa-
tions. These attacks exploit indirect data, such as timing differences, power consumption,
or electromagnetic leaks, to extract sensitive information.

This paper focuses on a pivotal class of side-channel attacks in post-quantum cryptog-
raphy, namely key-recovery Plaintext-Checking (PC) oracle based side-channel attacks
targeting HQC. The objective of these attacks is to recover the security key of HQC by
constructing a PC oracle through side-channel measurements. This PC oracle is capable
of determining whether a specific ciphertext c corresponds to a predetermined message m,
thus facilitating the detection of decryption failures. Such an oracle can bypass Chosen
Ciphertext Attack (CCA) secure transformations like the Fujisaki-Okamoto (FO) transfor-
mation [FO99], compromising the security of Indistinguishability under Chosen Ciphertext
Attack (IND-CCA) secure KEMs.

These attacks are highly effective, exploiting a range of side-channel vulnerabilities
as shown in studies on timing attacks [GJN20, GHJ+22], power and electromagnetic
(EM) attacks [RRCB20, UXT+22, SHR+22], and micro-architecture attacks [WPH+22,
CWS+24, SGG24], including cache timing attacks [HSC+23]. They can leverage both
substantial and minimal leakages, from strong power/EM signals [UXT+22] to subtle
timing variations in high-performance CPUs [SGG24].

Beyond identifying new sources of side-channel leakages for constructing a PC oracle,
a primary research challenge lies in enhancing attack efficiency by minimizing the number
of required PC oracle calls. Each oracle call translates to one or several side-channel
measurements, which often become bottlenecks due to real-time interaction limitations
with the target system. These limitations are imposed by system constraints, security
measures, or other operational factors.

Earlier versions of HQC, prior to the third round of the NIST PQC competition, utilized
a tensor product code that combined repetition codes with BCH codes. Certain parameter
sets of these versions were susceptible to decryption failure attacks, as noted in [GJ20].
From the October 2020 release onward, HQC has shifted to using concatenated codes
that integrate Reed Solomon (RS) and Reed Muller (RM) codes. This shift introduces new
challenges for PC oracle based attacks because the decoding properties of Reed Solomon
and Reed Muller codes are more complex than those of tensor product codes.

Recent advancements [GHJ+22, SHR+22, HSC+23, GNNJ23, SGG24] have significantly
reduced the number of required PC oracle calls for the latest version of HQC. From the
initial report at CHES 2022 [GHJ+22], which required over 800 000 calls for hqc-128,
subsequent works have progressively lowered this figure: to nine thousand at ASIACRYPT
2023 [GNNJ23], and down to one thousand at USENIX Security 2024 [SGG24]. These
reductions mark substantial progress. Yet, there remains the question of whether further
reductions are feasible. Additionally, this research strives to develop algorithms optimized
for practical applications, particularly in settings where constructing a perfectly accurate
PC oracle is challenging, such as in complex environments or when robust security measures
are in place.

Contributions We introduce OT-PCA, a novel approach to key-recovery PC oracle based
side-channel attacks on HQC. We summarize the key contributions as follows.

Haiyue Dong and Qian Guo 3

Our initial conceptual contribution is a novel method for efficiently extracting soft
information representing the likelihood of entries in an HQC key block being non-zero.
This method leverages the publicly available decoder to construct “offline templates”
(OTs). Unlike traditional template attacks targeting specific devices, our OTs exploit the
interaction in the decoding process between predefined error patterns and sparse vectors
sampled from HQC’s secret key distribution. Specifically, adding a sampled sparse vector to
a given error pattern may cause bit flips in the latter, changing the likelihood of decryption
successes or failures. By summarizing the sparse vectors leading to each decryption result,
we empirically estimate position-wise probabilities, representing the probability of each
position in the sparse vector being non-zero conditional on the decryption result. During
the online attack phase, when the decryption result of a new unknown sparse vector—the
key block—is observed, we can thus infer the probability of each of the positions within
the key block being non-zero using the estimated position-wise empirical probabilities, i.e.,
offline templates.

This method enables the extraction of substantial soft information for hundreds of
secret entries with a single oracle call, significantly enhancing the efficiency of PC oracle
based side-channel attacks on HQC for full key recovery.

Our second major contribution tackles the challenge of identifying error patterns for
template construction that maximize information extraction during subsequent attack
stages. The most critical element of this process is the first optimization problem—finding
error patterns that maximize the entropy of the decryption outcomes. By ensuring that
each decryption output—success or failure—is approximately equally probable, our method
effectively enhances the information gain from each future decryption instance. In the
paper, we advance our methodology by employing a set of error patterns instead of an
individual pattern, thereby leveraging the collective information they provide. To ensure
the patterns in the set are as independent as possible, we solve the second optimization
problem—finding the set of error patterns that maximize the sum of pairwise Hamming
distances. We develop simple genetic-style algorithms to efficiently solve these two problems,
refining the error patterns used in constructing offline templates.

To summarize, the complete OT-PCA process begins with selecting several error
patterns and constructing offline templates without calling the PC oracle. Subsequent
online attack steps involve generating chosen ciphertexts, calling the PC oracle to obtain
decryption outputs, and collecting secret information by combining these outputs with the
offline templates. This process is further enhanced by a new, straightforward Information
Set Decoding (ISD) algorithm that leverages soft information for efficient key recovery.

Our simulation results demonstrate the high efficiency of this novel attack. A compar-
ative analysis with previous methods using a perfect oracle (accuracy of 1) is shown in
Table 1, where our method significantly reduces the number of required PC oracle calls.
For hqc-128, our approach achieves a 2.4-fold reduction in calls compared to the state-of-
the-art [SGG24]. For hqc-192 and hqc-256, the reductions are even more substantial, with
improvements of 87 and 137 times, respectively, compared to [SHR+22]. These results
mark major advancements over existing techniques, notably, the work [SGG24], which
struggles with hqc-192.

Furthermore, with a less precise oracle (accuracy of 0.95), the improvement factor
for hqc-128 increases to 7.6 compared to the previous best approach [SGG24]. This
demonstrates the robustness and efficiency of our attack under challenging conditions,
such as exploiting subtle microarchitectural timing leakages [SGG24] or targeting masked
implementations [UXT+22], where constructing a perfect PC oracle is difficult.

The OT-PCA method represents a significant advancement in PC oracle based attacks
(PCA) on HQC, with potential applications beyond side-channel attacks to other domains
such as misuse attacks [BDH+19, HV20] and fault-injection attacks [XIU+21, HPP21],
whenever a PC oracle can be constructed.

4 OT-PCA: New KR-PC-SCAs on HQC with Offline Templates

Table 1: Comparison of our attack with previous works: number of perfect PC oracle calls
required for key recovery attacks against HQC. The symbol ‘—’ indicates that the number
is not provided in the corresponding work.

Work hqc-128 hqc-192 hqc-256

GHJLNS22 [GHJ+22] >800 000 — —
SHRWS22 [SHR+22] 1 152×46 1 920×56 1 920×90
HSCGJ23 [HSC+23] >50 000 — —
SCA-LDPC [GNNJ23] 9 000 — —
Zero-Tester [SGG24] 1 094 — —
Our work 10×46 22×56 14×90

Lastly, we perform a real-world evaluation of our attack using power analysis on a
platform with an ARM Cortex-M4 32-bit RISC core, targeting the PQClean implementation
of hqc-128. The attacks were conducted across 120 different runs, each with a newly
generated key. The outcomes from these real-world tests match our simulation results,
demonstrating the practical effectiveness of our approach.

The source code is available at https://github.com/ot-pca/ot-pca.

Organization The rest of the paper is organized as follows. Section 2 provides the
necessary background on HQC and an overview of PC oracle based side-channel attacks
on HQC, including their threat model and general approaches for recovering the secret
key from the constructed PC oracle. Section 3 details the new attack methodology. In
Section 4, we present simulation results for various accuracy levels of the assumed PC
oracle and validate these findings on a real-world platform. This is followed by a discussion
of the gains and potential extensions of the new attack methods in Section 5. Finally, in
Section 6, we conclude the paper and suggest future research directions.

2 Preliminaries
In this section, we provide the essential background on Hamming Quasi-Cyclic (HQC)
codes and PC oracle based side-channel attacks on HQC. We begin by explaining the
notations used throughout this paper.

2.1 Mathematical Notations
Denote the binary finite field F2, where the operation + is equivalent to the operation −.
We work in HQC within the polynomial ring R = F2[X]/(Xn − 1), where n is a positive
integer. A polynomial h within R can also be viewed as a row vector h of length n, in a
vector space over F2, so we mix the notation if there is no ambiguity. The notion wH (h)
indicates the Hamming weight of h, i.e., the number of non-zero entries in the vector. The
notation [a..b] represents an index set starting from a and ending at b− 1, where a and
b are two positive integers with a < b. Sampling operations are denoted as ←$ (S) for
uniform random sampling from a set S, and ←$ (R, w) for sampling with the constraint
that the elements have a Hamming weight of w. The Bernoulli distribution, denoted by
Berp, assigns the value 1 with probability p and the value 0 with probability 1− p.

2.2 Overview of Hamming Quasi-Cyclic (HQC)
Hamming Quasi-Cyclic (HQC) [AAB+22] is a prominent code-based KEM that secures
communication by relying on the difficulty of decoding random quasi-cyclic codes in the
Hamming metric. Similar to other NIST post-quantum KEM proposals, HQC begins

https://github.com/ot-pca/ot-pca

Haiyue Dong and Qian Guo 5

Table 2: HQC parameter sets as defined in [AAB+22]. The base Reed Muller code used is
the first-order [128, 8, 64] Reed Muller code.

RS-S Duplicated RM

Instance n1 k1 dRS Mult. n2 dRM n1n2 n ω ωr = ωe

hqc-128 46 16 31 3 384 192 17664 17669 66 75
hqc-192 56 24 33 5 640 320 35840 35851 100 114
hqc-256 90 32 49 5 640 320 57600 57637 131 149

with an IND-CPA (Indistinguishability under Chosen Plaintext Attack) secure Public Key
Encryption (PKE) scheme (HQC.CPAPKE) and transitions to an IND-CCA secure KEM
(HQC.CCAKEM) through a CCA transformation. In HQC, this transformation employs
the Hofheinz-Hövelmanns-Kiltz (HHK) method [HHK17].

2.2.1 The Public Key Encryption (PKE) Core in HQC

The PKE core in HQC consists of three procedures: PKE.KeyGen for key generation,
PKE.Encrypt for encryption, and PKE.Decrypt for decryption.

Three Procedures in HQC.CPAPKE During the key generation phase (PKE.KeyGen),
the scheme samples three polynomials: h ←$ R, x ←$ (R, ω), and y ←$ (R, ω). Conse-
quently, we know that wH (x) = wH (y) = ω. These polynomials define the secret key as
(x, y) and the public key as (h, s = x + h · y).

The encryption (PKE.Encrypt) process begins by generating polynomials r1 ←$ (R, ωr),
r2 ←$ (R, ωr), and e ←$ (R, ωe). This sampling process can be made deterministic by
initializing the pseudo-random number generator (PRNG) with a seed θ. These components
are then used to construct the ciphertext (u, v), where u = r1 +h ·r2 and v = mG+s ·r2 +e.
The matrix G represents a generator matrix for the linear code C. In HQC, C is specifically
designed as a concatenated code that combines Reed Muller and Reed Solomon codes.

The decryption procedure (PKE.Decrypt) utilizes a decoder C.Decode(v−u · y). Given
that s = x + h · y, we have:

v − u · y = mG + s · r2 + e− (r1 + h · r2) · y
= mG + e′,

where
e′ = x · r2 − r1 · y + e.

The decoder is designed with a specific error-correcting capability. If the Hamming weight
wH (e′) is sufficiently small, the decoder can correct the error, successfully recovering the
encrypted message m. However, if the Hamming weight exceeds this capability, the decoder
may fail, resulting in a decryption error.

Concatenated Code Construction in HQC The latest HQC specification uses a concate-
nated Reed Muller code and Reed Solomon code. This process encodes an input message m
into a codeword mG, where G is a publicly known generator matrix. The matrix G is
defined in the space Fkm×n1n2

2 , with km set to 8k1.
The encoding process proceeds as follows: First, the message m ∈ Fk1

28 is encoded
into m1 ∈ Fn1

28 using the outer [n1, k1, dRS] Reed Solomon code. Each byte m1,i, where
0 ≤ i < n1, is then encoded by the inner duplicated Reed Muller code into m̄1,i ∈ Fn2

2 .
The resulting codeword is mG = (m̄1,0, . . . , m̄1,n1−1) with a dimension of n1n2. Since
computations in HQC are performed in the ambient space Fn

2 , any excess bits beyond
n1n2 are truncated when necessary.

6 OT-PCA: New KR-PC-SCAs on HQC with Offline Templates

The input to the function C.Decode is the vector V = v − u · y, where V ∈ Fn1n2
2 .

As shown in the decoding process outlined in Figure 1, V is segmented into n1 distinct
blocks, labeled as V = (V0, . . . , Vn1−1), with each block Vi within Fn2

2 and defined as
an ‘inner block’ for 0 ≤ i < n1. Each of these blocks Vi undergoes decoding via the
internal duplicated Reed Muller decoder, resulting in outputs cRS

i each within F8
2 for indices

0 ≤ i < n1. These outputs are subsequently concatenated to form a sequence of 8n1 bits,
represented as cRS = (cRS

0 , . . . , cRS
n1−1), with each cRS

i termed an ‘internal codeword’. This
sequence cRS, now a noisy codeword of the external Reed Solomon code, is decoded into k1
elements within F256 and subsequently translated into a message of k1 bytes.

m

8k1 bits

cRS

8n1 bits

V

n1n2 bits

decodeRS(·)
V0

V1

...
Vn1−1

cRS
0

cRS
1

...
cRS

n1−1

decodeRM (·)
decodeRM (·)

decodeRM (·)

8 bitsn2 bits

Figure 1: Decoding of concatenated Reed Muller and Reed Solomon codes

The three HQC parameter sets, hqc-128, hqc-192, and hqc-256, are presented in Table 2.

2.2.2 Key Encapsulation Mechanism (KEM) in HQC

The enhanced KEM variant of HQC, extending its PKE core, incorporates two crucial hash
functions, G and K. The process for constructing the IND-CCA secure KEM, denoted as
HQC.CCAKEM, is illustrated in Figure 2. This construction includes a de-randomization
of the encryption process via a seed θ, which is derived by hashing the message m, the
public key, and a random 128-bit salt. The decapsulation phase features a re-encryption
step designed to validate the authenticity of the ciphertext.

Require: pk
Ensure: K, c = (u, v), salt

1: m←$(Fkm
2)

2: salt←$ (F128
2)

3: θ ← G(m∥pk∥salt)
4: c←PKE.Encrypt (pk, m, θ)
5: K ← K(m, c)

(a) KEM.Encaps

Require: sk = (x, y), c = (u, v), salt
Ensure: K

1: m′ ←PKE.Decrypt (sk, c)
2: θ

′ ← G(m′∥pk∥salt)
3: c

′ ←PKE.Encrypt (pk, m′, θ′)
4: if m′ =⊥ ∨ c ̸= c′ then
5: K ← K(σ, c)
6: else
7: K ← K(m′, c)
8: end if

(b) KEM.Decaps

Figure 2: HQC.CCAKEM

2.3 Overview of PC Oracle Based Side-Channel Attacks on HQC
We describe the threat model of PC oracle based side-channel attacks (SCA) on the HQC
KEM and provide an overview of the key recovery process.

Haiyue Dong and Qian Guo 7

The Threat Model This paper focuses on side-channel-assisted chosen-ciphertext attacks
targeting the decapsulation procedure of the HQC KEM. In our model, an attacker can
choose both the ciphertext c and the message vector m, feeding them into the decapsulation
algorithm on a specific device. The attacker leverages measurable side-channel leakages
from this device.

Central to our threat model is the construction of a PC oracle, denoted as Oρ
PC. This

oracle [BDH+19] utilizes side-channel leakage to assess whether PKE.Decrypt(sk, c) = m.
The oracle’s accuracy, ρ, indicates the probability of a correct decision, with 1 − ρ
representing the probability of an error.

The capability to construct such a PC oracle from side-channel leakage allows the
attacker to exploit various types of side-channel leakages reported in the literature. This
includes, but is not limited to, timing attacks [GJN20, GHJ+22], power and electro-
magnetic (EM) attacks [RRCB20, UXT+22, SHR+22, SCZ+23], and micro-architecture
attacks [WPH+22, CWS+24, SGG24] such as cache timing attacks [HSC+23]. Such attacks
demonstrate the vulnerability of various post-quantum KEMs, including those based on
lattice, coding, and isogeny theories (cf., [UXT+22]).

This study assumes a general PC oracle, allowing for broad applicability of our new
attack methodology beyond the specific power leakages detailed in Section 4.2. Conse-
quently, our approach is adaptable to multiple forms of side-channel leakages once such a
PC oracle can be constructed.

Moreover, the PC oracle based chosen ciphertext attacks are extensible to fault-injection
attacks [XIU+21, HPP21], including techniques like RowHammer [MKB+24], enhancing
the applicability of the newly developed method.

Overview of HQC Key Recovery Methods In the attack model, the attacker primarily
gains information on decryption failures through a PC oracle constructed from side-channel
leakages. To achieve full key recovery, the attacker must correlate this information with
the hidden secret keys y and x.

Research (e.g., [GHJ+22, HSC+23, GNNJ23, SGG24]) reveals a strategic approach by
attackers: the careful selection of polynomials m, r1, r2, and e to craft ciphertexts (u, v)
with specific properties essential for extracting secret keys. Central to this approach is the
dependency of decryption outcomes on the input to the decoder, v − u · y. This approach
ensures that decoding results are closely linked to the secret vector y, and indirectly to
vector x, through the public parameter h and the relationship s = x + h · y.

These attack strategies assume that sufficient errors have already been introduced to
push the outer Reed Solomon decoder to its limit for correct decoding. Consequently,
corrupting even a single additional Reed Muller block results in a decryption failure.

3 The New Attack
In this section, we present the new attack methodology, OT-PCA, which significantly
reduces the number of oracle calls required in a PC oracle based attack against HQC.
This reduction is achieved by constructing offline templates using the publicly available
decoder for the concatenated code. We begin with a brief description of the key novel
ideas behind this approach and then provide a detailed explanation of each step in the
OT-PCA method.

3.1 Novel Idea
The Basic Setting Huang et al. [HSC+23] pioneered a new strategy to reduce online PC
oracle queries by leveraging the publicly available decoding function C.Decode(·). This
approach was further refined in the study [SGG24] presented at Usenix Security 2024. In

8 OT-PCA: New KR-PC-SCAs on HQC with Offline Templates

these studies, the attacker strategically selects r1 as a polynomial with a Hamming weight
of one, specifically Xk, where k is an integer, while setting r2 to zero. This manipulation
yields the ciphertext components u = Xk and v = mG + e. The polynomial fed to the
decoding function C.Decode(·) during the decapsulation is

v − u · y = mG + e−Xk · y.

Alternatively, by setting r2 = Xk and r1 to zero, a different ciphertext configuration
emerges: u = Xk ·h and v = mG+s ·Xk +e. The polynomial fed to the decoding function
C.Decode(·) during the decapsulation is

v − u · y = mG + s ·Xk + e−Xk · h · y = mG + x ·Xk + e,

assuming the relationship s = x + h · y. With these chosen r1 and r2, the attacker can
ascertain information about one length-n2 block of the secret polynomials x and y by
designing specific forms of e. The chosen e should have δ = ⌊dRS

2 ⌋ blocks flipped to all
ones, to ensure the outer Reed Solomon decoding depends on the decoding output of the
target Reed Muller block. The decoding output of the target Reed Muller block is sensitive
to the values of certain positions in the secret polynomials x or y, since they act as a
perturbation of the vector e and together they are the input to the decoder.

Without loss of generality, the attacker can place the target length-n2 block as the
first block from position 0 to 383 by choosing a suitable value of k for Xk. For instance,
by choosing k = −384, the block with the index set [384..768] is shifted to the first block
starting with position 0. A default setting for m is 0.

Constructing Offline Templates Building upon the basic settings proposed in [HSC+23]
and [SGG24], we design a more efficient approach for selecting the first length-n2 block of
e and extracting secret information from the constructed PC oracle. The key idea is that
for a given vector e, the decryption result depends on the overall error of e + Xk · y (or
e + Xk · x). The vector Xk · y (or Xk · x) is sparse and adding it to e causes flips in e at
positions where the corresponding positions in Xk · y (or Xk · x) are one. A flip in certain
positions will increase the weight of the vector fed to the decoder, thereby increasing the
likelihood of a failure. Conversely, a flip in other positions can decrease the weight and
thus the likelihood of failure. Therefore, conditional on the received decryption result,
either ‘Success’ or ‘Failure’, the probability of a certain position in the first block of Xk · y
(or Xk · x) being one can be either higher or lower than the a-priori probability. This soft
information can be obtained by calling the publicly available decoding function C.Decode(·)
and can be exploited for efficient full key recovery.

We begin by outlining the construction of the template given a selected error pattern
e and a message m, denoted as Te,m. Specifically, we generate 1 000 000 low-weight
vectors u of length n2, sampled according to their frequency in the secret key distribution.
Initially, each vector element has a probability pa = ω

n of being one, which for hqc-128, is
approximately 3.74 × 10−3. The vector sum mGRM + e + u, where GRM is a generator
matrix of the Reed Muller code, is then input into the Reed Muller decoder to derive the
decoding output, ‘Success’ or ‘Failure’, representing whether the decoder outputs the
selected message m. To this output, we add a Boolean variable sampled from a Bernoulli
distribution Ber1−ρ to emulate the behavior of the imprecise PC oracle Oρ

PC, which exhibits
a decision error probability of 1− ρ.

Given knowledge of the sampled vector u, we can estimate the empirical conditional
probability Pr(ui = 1 | Oρ

PC) for i ∈ [0..n2]. This represents the likelihood that the
ith position in the block is one, conditioned on the Reed Muller decoding outcome. To
determine this probability, we categorize u into two groups based on the decoding results.
We then compute the frequency of the ith position being one within each group and
normalize this by the total count of vectors in the respective group. This probability acts
as an offline template Te,m, providing soft information crucial for further analysis.

Haiyue Dong and Qian Guo 9

(a) ρ = 1 (b) ρ = 0.9

Figure 3: Constructed offline templates for hqc-128 using a chosen error vector e0 with the
message set to 0. The x-axis represents the position within an Reed Muller block, and the
y-axis represents the simulated empirical probability.

Example of Constructed Offline Templates for hqc-128 Figure 3 presents two offline
templates for hqc-128, derived from a specific error vector e0 with the message set to 0.
Figure 3a illustrates the case using a perfect oracle (ρ = 1), and Figure 3b displays results
from an oracle with 90% accuracy (O0.9

PC). In both graphs, the red horizontal line indicates
the a-priori probability pa ≈ 3.74× 10−3, reflecting the initial likelihood of any position
being one before decoding outputs are known.

The x-axis of each graph denotes the position within a Reed Muller block, while the
y-axis measures the simulated empirical conditional probability of a bit being 1 given the
decryption outcome. The decryption outcomes are labeled ‘Success’ or ‘Failure’. With
such decryption information, as shown in Figure 3, many positions are significantly more
likely to be zero or one. Notably, the comparison between the two panels highlights that
a perfect oracle discloses more information, as evidenced by the greater deviations of
the conditional probabilities from the a-priori probability pa. This illustrates a reduced
number of required PC oracle calls when utilizing a more accurate PC oracle.

Maximizing Extracted Information by Selecting Appropriate Error Patterns In the
previous example, we demonstrated that the empirical conditional probability Pr(ui = 1 |
Oρ

PC) for i ∈ [0..n2] diverges from the a-priori probability pa once decryption results are
disclosed. The attacker selects a suitable message m, compiles a list of t error patterns
E = {e1, e2, . . . , et}, collects the corresponding decryption outputs o = (o1, o2, . . . , ot), and
performs a posteriori estimation by calculating:

Pr(ui = 1 | o) ∝
t∏

j=1
Pr(ui = 1 | oj), (1)

assuming independence among decryption outputs. Since our objective is to rank these
probabilities for the secret bits, we focus on calculating the right-hand side of Equation 1.
The probability Pr(ui = 1 | oj) can be read from the t constructed offline templates Tej ,m,
for i ∈ [0..n2] and j ∈ [1..t + 1].

A key challenge is determining which error patterns to choose in our attacks, which
involves solving two optimization problems.

• Maximizing Decryption Output Entropy: Firstly, the PC oracle reveals a
Boolean output that can be viewed as a binary random variable. Our goal is to
make this random variable as uniform as possible, achieving an entropy close to
1. The binary entropy function H(pd) is defined as H(pd) = −pd log2(pd) − (1 −
pd) log2(1−pd), where pd is the probability of decryption failures. By maximizing the

10 OT-PCA: New KR-PC-SCAs on HQC with Offline Templates

entropy, we ensure that the information obtained from one oracle call is maximized,
in accordance with information theory.

• Making the Errors Different: Secondly, to maximize information gain from
multiple oracle queries, we aim to maximize the sum of Hamming distances:∑

1≤i<j≤t

wH (ei + ej) .

To address the first optimization problem, we implement a heuristic algorithm inspired
by mutation fuzzers. Our objective is to fine-tune an error pattern such that the Reed Muller
decoding result yields uniformly distributed outputs after introducing minor perturbations
determined by the secret distribution of y.

We begin with an initial error pattern eini of dimension n2, which is randomly sampled
to meet the condition:

⌊θ0 · n2⌋ ≤ wt(eini) ≤ ⌊θ1 · n2⌋,

where wt(eini) denotes the Hamming weight of eini, and θ0 and θ1 are parameters specific
to the target HQC parameter sets. For hqc-128, we choose θ0 = 0.42 and θ1 = 0.44, while
for hqc-192 and hqc-256, we select θ0 = 0.435 and θ1 = 0.460. These parameters are
determined experimentally to ensure that the algorithm starts with an effective pattern,
allowing it to quickly reach a near-optimal solution.

Next, we employ a simple genetic-style algorithm to refine the error pattern. During
the mutation phase, the error pattern is dynamically adjusted by flipping one or two bits,
based on the evaluation function F(·), which calculates the binary entropy function of the
output distribution from the Reed Muller decoder. The input to the Reed Muller decoder
is the current binary error pattern ê XORed with a perturbation vector that follows the
HQC secret key distribution.

If the entropy is below a specified threshold, two bits are flipped to increase search
diversity; otherwise, a single bit is flipped for finer adjustments. Each mutated pattern at
iteration k is denoted as ê(k). The optimization criterion is applied as follows:

ê(k+1) = arg max
ê′∈Mutate(ê(k))

F(ê′),

where Mutate(·) represents the bit-flipping operation.
The algorithm iteratively updates and evaluates each generation, refining the error

pattern to maximize fitness until reaching the predetermined number of generations. This
process is executed concurrently across hundreds of threads, yielding a long list of optimized
ei. After this procedure, we retain a list of the patterns with binary entropy greater than
a threshold, which is set to be 0.999 in our experiments.

The second optimization goal is to identify a set of t vectors from the list that maximize
the sum of pairwise Hamming distances. A genetic algorithm with multiple random
initializations is applied. Specifically, the algorithm starts with a randomly selected set
of t vectors ei and employs a genetic algorithm that iteratively evolves this set. In each
generation, mutations are produced by randomly substituting one vector from the set with
a non-duplicate from the list. The set demonstrating the highest fitness is selected as the
parent set for the subsequent generation. This process continues until a predefined number
of generations is reached, ultimately yielding the optimal set of vectors. To robustly explore
the solution space and avoid local optima, we repeat the entire process across numerous
random initializations, each independently seeking the optimal combination of vectors.
The final output is the set of t vectors that demonstrates the maximum sum of pairwise
Hamming distances observed across all iterations.

While the second optimization goal is maintained, it provides only marginal gains.
This minimal impact is due to the fact that the two randomly selected elements, ei and

Haiyue Dong and Qian Guo 11

ej , already possess a relatively large Hamming distance following the first optimization.
Therefore, the additional benefits from this subsequent optimization step are minor.

The offline optimization phase is independent of a specific attack instance. Notably, if
these pre-computed error vectors were publicly accessible, they could facilitate the launch
of an OT-PCA attack by any adversary.

3.2 Online Attack
Following the ciphertext selection method described in Section 3.1, we feed the selected
ciphertexts to the constructed PC oracle to obtain decryption results. The pseudocodes of
the online attack phase for this new PC oracle based attack are provided in Figure 4.

In this attack, we define an integer k = −384× i for i ∈ [0..n1] to shift each of the Reed
Muller blocks to the first block. For each shift, we obtain t measurements for the n2 secret
entries in each block. After n1 shifts, we gather soft information for the first n1 · n2 secret
entries of x and y, respectively. By concatenating these 2n1 · n2 secret entries, we form a
new vector z. Consequently, the total number of required online PC oracle calls is 2 · t · n1.

Using the constructed offline template, we rank the conditional probability Pr(zi = 1 | o)
by computing the product

∏t
i=1 Pr(zi = 1 | oi), for 0 ≤ i < 2n1n2. This product provides

soft reliability information about the secret entries. A lower value of this product indicates
a higher likelihood that the corresponding secret entry is 0, based on the decryption
outputs from the PC oracle.

3.3 Full Key Recovery from ISD with Soft Information
During the online attack phase, we collect the reliability information for 2n1n2 positions of
the secret (x, y). This enables us to select the most reliable n + l positions for performing
Information Set Decoding (ISD) with soft information, where l is a small positive integer.
We ensure that the allowable post-processing cost is comparable to Gaussian elimination,
facilitating a fair comparison with [SGG24]. We propose a modified Stern-style algorithm
with simplified complexity estimation. Alternatively, for improved performance, one might
consider adopting a more advanced ISD algorithm with soft information, such as the
SoftStern algorithm described in [GJMW19].

For an n× 2n parity-check matrix, the cost of Gaussian elimination, denoted as CGauss,
is O

(
n3)

. According to an analysis in [Meu13], the concrete cost of a simple implementation
can be estimated as 243, 246, and 248 for hqc-128, hqc-192, and hqc-256, respectively.

Quasi-Standard Form We describe a new but simple approach to exploit the soft infor-
mation to accelerate the ISD algorithm. Suppose we have a system of linear equations

[
In rot(h)

] [
x
y

]
= s, (2)

which is obtained from the public key s = x + h · y, where rot(h) represents the circulant
matrix induced by h. In this matrix, h is placed as the first column, and each subsequent
column is a cyclic shift of the previous one.

Finiasz and Sendrier in [FS09] first proposed a general ISD framework—choosing
a permutation of the positions and transforming the matrix

[
In rot(h)

]
into a quasi-

standard form
H̃ :=

(
Q′ 0
Q′′ In−ℓ

)
,

where Q′ is a ℓ× (n + ℓ) matrix, Q′′ is a (n− ℓ)× (n + ℓ) matrix, and 0 is a ℓ× (n− ℓ)
zero matrix.

12 OT-PCA: New KR-PC-SCAs on HQC with Offline Templates

Algorithm 1: New PC Oracle Based Attack on HQC.

Data: h from the public key, a suitable message m and salt, the t error
patterns E = {e1, e2, . . . , et}, the constructed offline templates
Tei,m for the selected m and ei, for i ∈ [1..t+ 1], and scheme
parameters

Result: Reliability information
1 Reliability information Ri,j ← 1.0 ∀i ∈ {“X”, “Y”}, j ∈ [0..n1n2]
2 for itmp ∈ [0..n1] do
3 k = −384× itmp

4 for i ∈ {“X”, “Y”} do
5 for pattern ∈ the error patterns E do

6 Configure the error e by flipping δ = ⌊dRS

2 ⌋ Reed Muller code
blocks, ensuring that the corruption of the first block results
in a Reed Solomon decoder failure.

7 set the first block of e to the used pattern
8 if i = “X” then
9 r2 ← Xk

10 u← Xk · h
11 else if i = “Y” then
12 r2 ← 0

13 u← Xk

14 end
15 construct ciphertext c as (u,mG+ s · r2 + e, salt)
16 OutputPC ← Oρ

PC(c)
17 for j ∈ [0..n2] do
18 Ri,j−k = Ri,j−k × Pr(uj = 1 | OutputPC)
19 This probability Pr(uj = 1 | OutputPC) is derived from

the constructed offline template Tpattern,m for the
selected m and pattern.

20 end

21 end

22 end

23 end
24 return Reliability information Ri,j ∀i ∈ {“X”, “Y”}, j ∈ [0..n1n2]

Figure 4: The online phase of the new OT-PCA attack on HQC.

New ISD Exploiting Soft Information Instead of randomly choosing n + ℓ positions to
form the matrix Q′ as in standard ISD algorithms [Meu13], we leverage the soft information
obtained from the online decryption oracle calls. Specifically, we reorder the index set
[0..2n1n2] in increasing order according to the probability of the secret entries being 1 and
select the top n + ℓ positions with the smallest probabilities.

Given that the top positions can have very low probabilities of being 1, we introduce
two algorithm parameters, T0 and T1. We draw T1 positions from the T0 positions with
the smallest probabilities of being 1, and assume that these T1 positions are all zero. These
positions are then removed from H̃. After removing the selected T1 positions from the
n + ℓ positions with the smallest probabilities, we denote the resulting index set as I.

Next, we adopt a collision procedure that splits the index set I into two parts of
equal size n+ℓ−T1

2 , denoted by IA and IB, respectively. The parameter ℓ is picked to
ensure that n + ℓ − T1 is an even number. We then build two lists to enumerate bit
patterns of length n+ℓ−T1

2 with Hamming weight bounded by w0. We include the syndrome
information in one list to find collisions that meet the partial syndrome of ℓ positions in

Haiyue Dong and Qian Guo 13

the Finiasz-Sendrier framework. To ensure that the overall complexity of the new ISD is
not much larger than one Gaussian elimination, we only consider w0 values of 2 or 3. The
complexity of generating the two lists is thus

Clist = 2w0 · ℓ ·
(n+ℓ−T1

2
w0

)
. (3)

The collision procedure will output a list of potential candidates that need to be verified
to ensure that Equation 2 is satisfied. We choose ℓ to be sufficiently large, making the
cost of this verification step negligible.

Summary Our method involves performing one Gaussian elimination process and niter

inner rounds, with niter set to 16 by default. The dominant part of the complexity
is max{CGauss, niter · Clist}. The concrete cost will be calculated in Section 4.1, where
experimental parameters determine the success probability. When w0 is set to 3, the
added cost is comparable to Gaussian elimination; when w0 is set to 2, the added cost is
significantly lower than one Gaussian elimination. For the n + ℓ positions with the smallest
probabilities of being 1, the algorithm will succeed if, during one of the niter inner rounds,
both (1) the T1 positions set to zero are error-free, and (2) no more than w0 errors occur in
the positions in the index sets IA and IB , respectively. We denote this success probability
as Psuccess. The suitable values for parameters T0 and T1 are determined empirically.

4 Results
In this section, we present the results of our attack methodology, obtained from extensive
simulations and real-world evaluations. The results are divided into two subsections: the
first details the success probability of the attack obtained through simulations, considering
a general PC oracle constructed from side-channel measurements with varying levels
of accuracy. The second describes the real-world evaluation using power traces from a
platform equipped with an ARM Cortex-M4 core.

4.1 Simulation Results
We begin with the simulation results, assuming a general PC oracle that can be constructed
from side-channel measurements. Extensive simulations were conducted to evaluate the
performance of the new attack with 10 000 random keys tested in each instance. These
results are organized into two parts: one focusing on hqc-128, and the other on hqc-192
and hqc-256. Given that hqc-128 has been the primary focus in previous research, we
conduct a detailed investigation of its attack performance across oracle accuracies of 1,
0.995, 0.95, and 0.9. This comprehensive analysis allows us to predict the performance of
our methodology in various scenarios where an accurate PC oracle is difficult to obtain.
For hqc-192 and hqc-256, we limit our study to a PC oracle accuracy of 1. While this study
primarily focuses on hqc-128, there are no inherent limitations preventing the application
of our methodology to hqc-192 and hqc-256 with less accurate oracles.

4.1.1 Targeting hqc-128

In our attack, we aim to shift the ones in the secret key towards the end of the vector
after reordering based on the soft information obtained. Non-zero values within the first n
positions of this reordered sequence are considered errors. Figure 5 shows the simulated
number of errors for different oracle accuracies ρ across various numbers of PC oracle
calls per length-n2 block. Consequently, the total number of PC oracle calls needs to be
multiplied by a factor of 2n1, which is 92 for hqc-128.

14 OT-PCA: New KR-PC-SCAs on HQC with Offline Templates

Figure 5: Number of measurements vs. number of errors for hqc-128 with various oracle
accuracies, based on 10 000 random keys tested in each scenario. The number of errors
in the first n positions of the reordered z vector decreases as the number of side-channel
measurements per length-n2 block increases. The whiskers represent the 5th and 95th
percentiles. The small circles denote the mean number of errors, which are close to the
median values indicated by the central line in each box.

It is evident that the number of simulated errors in the first n positions of the reordered
vector z decreases as the number of side-channel measurements increases. We observed in
simulation that when the mean error numbers are no more than 5, we achieve a success
rate Psuccess higher than 50% when w0 = 3.

Post-Processing Complexity vs. Success Rate In the post-processing phase for hqc-128,
we apply our new ISD algorithm with parameters ℓ = 51, T0 = 12 000, T1 = 10 000, and
niter = 16. Consequently, the cost of niter · Clist is approximately 245 for w0 = 3, and
234 for w0 = 2. The list sizes for the two lists in the collision search are 233 for w0 = 3
and 223 for w0 = 2. The simulated success probability Psuccess is presented in Table 3. We
observe that the success probability increases drastically as the number of PC oracle calls
per length-n2 block, denoted by t, increases.

Although ideally templates should be tailored to specific oracle precisions, our experi-
ments demonstrate the robustness of a single template constructed using a perfect oracle.
This template exhibits consistent effectiveness across various accuracy levels with minimal
performance degradation. For instance, when applied to oracles with ρ = 0.9, ω0 = 3,
and t ranging from 11 to 14, the success probabilities remained consistently high (65.95%,
75.18%, 82.97%, and 87.02% respectively), closely aligning with the results from Table 3.

Comparison with Previous Works Table 4 compares our results with the state-of-the-art
as represented by SCA-LDPC [GNNJ23] and Zero-Tester [SGG24], over a range of oracle
accuracies ρ. Both studies report the median number of oracle calls, so for a fair comparison,

Haiyue Dong and Qian Guo 15

Table 3: Simulated success rates Psuccess for hqc-128, illustrating the influence of oracle
accuracy (ρ) and the number of PC oracle calls per length-n2 block (t). The parameter
w0 is defined in Section 3.3. 10 000 random keys are tested in each scenario.

ρ t w0 = 2 w0 = 3

1 5 43.42% 65.10%
6 70.18% 83.53%
7 85.45% 92.60%

0.995 5 36.65% 59.25%
6 65.10% 80.61%
7 82.13% 91.80%

0.95 7 36.03% 57.45%
8 57.48% 76.27%
9 68.23% 83.72%
10 80.12% 90.02%

0.9 11 48.44% 67.58%
12 58.79% 76.40%
13 68.05% 83.37%
14 75.60% 87.55%

we report the number of oracle calls required to achieve a success rate (Psuccess) greater
than 50%, indicating that at least half of the attack instances are successful.

Our approach demonstrates remarkable improvements, consistently requiring fewer
oracle calls across all tested accuracies, thereby showing substantial efficiencies. The
improvement factor is particularly striking, reaching as high as 58.8 compared to SCA-
LDPC and 7.6 against Zero-Tester as the oracle accuracy decreases.

Furthermore, our method’s performance advantage becomes more pronounced with
decreasing oracle accuracy, showing its effectiveness in challenging scenarios. This robust-
ness is essential for practical applications, especially in security-sensitive contexts where
effective countermeasures are deployed and perfect oracles are rare.

Table 4: Comparison of median oracle calls. For our work, we report the required number of
oracle calls needed to achieve a success rate greater than 50%, indicating that at least half of
the attack instances are successful. Our results are compared with SCA-LDPC [GNNJ23]
and Zero-Tester [SGG24] for various oracle accuracies ρ. Ratio A shows the ratio of oracle
calls for SCA-LDPC to our method, and Ratio B shows the ratio for Zero-Tester to our
method, highlighting our approach’s efficiency.

ρ 1 0.995 0.95 0.9

SCA-LDPC [GNNJ23] 9 000 18 000 35 250 59 500
Zero-Tester [SGG24] 1 094 2 246 4 922 6 951

Our Work 5×92 5×92 7×92 11×92
Ratio A 19.6 39.1 54.7 58.8
Ratio B 2.4 4.9 7.6 6.9

4.1.2 Targeting hqc-192 and hqc-256

Figure 6 shows the number of errors from simulations for hqc-192 and hqc-256. This
analysis varies the number of PC oracle calls per length-n2 block, assuming a perfect PC
oracle has been constructed. For these scenarios, the total number of PC oracle calls also

16 OT-PCA: New KR-PC-SCAs on HQC with Offline Templates

Figure 6: Number of measurements vs. number of errors for hqc-192 and hqc-256 with a
perfect oracle, based on 10 000 random keys tested in each scenario. The number of errors
in the first n positions of the reordered z vector decreases as the number of side-channel
measurements per length-n2 block increases. The whiskers represent the 5th and 95th
percentiles. The small circles denote the mean number of errors, which are close to the
median values indicated by the central line in each box.

Table 5: Simulated success rates Psuccess for hqc-192 and hqc-256, assuming a perfect PC
oracle. The number of PC oracle calls per length-n2 block is denoted by t. Parameter w0
is detailed in Section 3.3. 10 000 random keys are tested in each scenario.

t w0 = 2 w0 = 3

hqc-192 11 47.90% 68.38%
12 61.93% 78.06%
13 72.47% 84.81%

hqc-256 7 49.45% 73.01%
8 70.93% 87.51%
9 81.37% 92.47%

needs to be adjusted by a factor of 2n1, which translates to 112 for hqc-192 and 180 for
hqc-256. Similar to hqc-128, the number of simulated errors in the initial n positions of
the reordered secret vector decreases steadily as the number of measurements increases.

Post-Processing Complexity vs. Success Rate During the post-processing phase for
hqc-192, we implement our novel ISD algorithm with parameters ℓ = 61, T0 = 24 000,
T1 = 20 000, and niter = 16. For hqc-256, the parameters are adjusted to ℓ = 61,
T0 = 40 000, T1 = 30 000, and niter = 16. This phase reveals that the added computational
cost for hqc-192, calculated as niter · Clist, reaches approximately 249 when w0 = 3, and
drops to 237 with w0 = 2. The sizes of the two lists used in the collision search are 236 and
225 for w0 = 3 and w0 = 2, respectively. In contrast, for hqc-256, these costs increase to
about 251 for w0 = 3 and 238 for w0 = 2, with the corresponding list sizes at 239 and 227.
Tabel 5 showcases the simulated success rates, Psuccess. Mirroring trends observed with
hqc-128, there is a marked increase in success probability as the number of PC oracle calls
per length-n2 block (t) increases.

Comparison with Previous Works In the context of key-recovery PC oracle based side-
channel attacks against hqc-192 and hqc-256, the fewest number of required PC oracle
calls were documented by Schamberger et al. [SHR+22], which is 1920× 56 for hqc-192

Haiyue Dong and Qian Guo 17

and 1920× 90 for hqc-256. Our OT-PCA method achieves significant reductions with only
minor post-processing costs—22×56 for hqc-192 and 14×90 for hqc-256. These reductions
translate to remarkable factors of 87 for hqc-192 and 137 for hqc-256, demonstrating a
major improvement in efficiency.

Additionally, while Schröder et al. in [SGG24] have noted challenges in applying the
Zero-Tester method to hqc-192, our methodology, as discussed in Section 5.1, provides
robust performance for hqc-192.

4.2 Real-World Validation
We demonstrate the feasibility and effectiveness of our newly proposed attack methodology
by conducting a power analysis attack on a real-world platform.

Experimental Setup Our experimental setup consists of the ChipWhisperer Husky, the
CW313 base-board, and an ATSAM4S2A microcontroller target with an ARM Cortex-M4
32-bit RISC core. The operating frequency is set to 24 MHz, with a sampling rate of 24
MS/sec. We target the PQClean implementation of hqc-128. Specifically, we incorporate
trigger functions to capture the waveform during the execution of the PQCLEAN_HQC128_-
CLEAN_code_encode function, which is a crucial part in the re-encryption phase of HQC
decapsulation KEM.Decaps. This function calculates the encoding m′G for the decrypted
message m′. The implementation is compiled using arm-none-eabi-gcc with the highest
optimization level -O3.

(a) TVLA leakage analysis: The red line represents the t-test threshold at ±4.5.

(b) Mean traces and the difference of mean traces.

Figure 7: Leakage analysis for the encoding function during re-encryption in KEM.Decaps.
Each figure was plotted using data from 200 power traces per group. Only partial traces are
shown, starting after 300 000 clock cycles. Figure 7a includes a total of 130 000 consecutive
data points, while Figure 7b includes 6 000 consecutive data points.

18 OT-PCA: New KR-PC-SCAs on HQC with Offline Templates

Table 6: CNN hyperparameters (adapted from [UXT+22])
Operator Activation function Batch normalization Pooling Stride

Conv1 conv1d (3) SELU Yes Avg (2) 2
Conv2 conv1d (3) SELU Yes Avg (2) 2
Conv3 conv1d (3) SELU Yes Avg (2) 2
Conv4 conv1d (3) SELU Yes Avg (2) 2
Conv5 conv1d (3) SELU Yes Avg (2) 2
Conv6 conv1d (3) SELU Yes Avg (2) 2
FLT flatten - - - -
FC1 dense SELU No No -
FC2 dense SELU No No -
FC3 dense Sigmoid No No -

Leakage Detection Previous studies have identified several sources of power leakage that
could be utilized to construct the required PC oracle for HQC. Notable examples include
power side-channel leakages during hash function computation in the re-encryption process,
as reported in [UXT+22], and from the Reed Solomon decoder, as detailed in [SHR+22]. Our
research focuses on power traces from the Reed Muller Reed Solomon encoding procedures
during the re-encryption of HQC’s decapsulation KEM.Decaps phase. This extensive
computation phase, primarily dependent on the input m′, provides significant leakages,
making it ideal for constructing a PC oracle to ascertain decryption outcomes.

In our experiments, the complete trace of this Reed Muller Reed Solomon encoding
process during HQC re-encryption spans over 800 000 clock cycles. We analyze 130 000
data points starting from the 300 000th timestamp for each trace. To pinpoint leakage
and identify the most significant leakage points, we conduct the Test Vector Leakage
Assessment (TVLA) on 200 traces of decryption successes (decrypting to all zeros) and
200 traces of decryption failures. The TVLA results are illustrated in Figure 7a, with a
detailed analysis of the initial 6 000 data points presented in Figure 7b to highlight the
trace differences. We select sample positions exhibiting t-values greater than 16 in the
TVLA test as the strongest leakage points, resulting in 1 280 points per trace.

Experimental Results We employ a convolutional neural network (CNN) architecture,
as outlined in Table 6, to train a model capable of classifying whether decryption is
successful. This model is adapted from [UXT+22], with adjustments made to the input
size accordingly. We capture traces and retain only the 1 280 data points corresponding to
positions that exhibit a t-value greater than 16 in our TVLA test, resulting in an input
vector of dimension 1 280.

During the training phase, we collect traces from 80 runs of the attack, each using
a different newly generated key pair and seven predefined patterns (i.e., t = 7). Each
key pair produces 644 traces, calculated as 46 × 7 × 2, so we collect a total of 51 520
traces. We separate the dataset into training, validation, and testing sets consisting of
30 418, 10 138, and 10 138 traces, respectively. To ensure balanced samples between the
groups of decryption success and decryption failure, some traces are excluded based on the
decrypted messages as ground truth. We train the model over 100 epochs. The trained
model achieves an accuracy of 1 on the test set, indicating no classification errors on the
10 138 test traces. The model training is performed on a MacBook Pro laptop with a
10-core M1 Pro CPU, a 14-core built-in GPU, and 32GB of RAM.

We then apply the trained model to 77 280 traces collected from 120 newly generated
random key pairs to ascertain decryption outcomes. Using the classification results, we
employ the offline template designed for a perfect oracle (ρ = 1) to compute the conditional
probabilities of each secret entry being 1, similar to our earlier simulations. Subsequently,
the bits are ranked based on these probabilities. The average number of errors and the
success rates of the attack are presented in Table 7, alongside the simulation results. The

Haiyue Dong and Qian Guo 19

Table 7: Comparison of simulation and real-world validation with seven PC oracle calls
per length-n2 block (t = 7) for hqc-128. The validation includes 120 real-world tests, each
conducted with a different newly generated key pair.

Mean Number
of Errors

Success Rate (Psuccess)
w0 = 2 w0 = 3

Simulation (ρ = 1) 2.25 85.45% 92.60%
Real-world validation 2.35 84.17% 92.50%

results from the real-world validation and the simulations align perfectly.

5 Discussion
In this section, we discuss the gains of our attack methodology compared to the state-of-
the-art Zero-Tester method, and its potential use in constructing multi-value or parallel
PC oracle based side-channel attacks on HQC.

5.1 More on Comparison with the Zero-Tester Method
In Section 4.1, we demonstrated that our new method requires significantly fewer oracle
calls compared to the previous best, the Zero-Tester method [SGG24]. Additionally, our
method is more robust to the inaccuracy in the constructed PC oracle.

Another notable advantage of our approach over the Zero-Tester method is its ability
to address a limitation discussed in Section 6.3 of [SGG24]. The effectiveness of the
Zero-Tester method depends on identifying long sequences of consecutive zero entries
between two ones in the secret polynomials x and y. Even with an increased number of
side-channel measurements, the Zero-Tester method is effective for only a small proportion
(approximately 15%) of keys for hqc-192, where the likelihood of finding an all-zero block
of length n2 within the secret vectors x and y is low.

As shown in Figure 8, our method effectively reduces the number of decision errors in
the first n positions of the reordered z vector as the number of side-channel measurements
increases for hqc-192. The x-axis represents the number of measurements per Reed
Muller block (t). Detailed information on sample complexity, post-processing complexity,
and the probability of full key recovery for hqc-192 with an oracle accuracy of ρ = 1 is
provided in Section 4.1.

5.2 Extension to Multi-value or Parallel PC oracle
Rajendran et al. [RRD+23] and Tanaka et al. [TUX+23] were the first to propose side-
channel attacks based on multi-value or parallel PC oracles. In [RRD+23], the oracle is
referred to as a parallel PC oracle, while in [TUX+23], it is termed a multi-value oracle.
The concept behind these oracles is that, in specific scenarios such as unprotected software
implementations on low-end platforms, power or EM leakages are substantial enough to
construct a multi-value classifier. This allows a multi-value or parallel PC oracle to leak
more than one bit of information, thereby significantly reducing the number of required
traces. While these attacks have limited applications, they are more powerful than binary
PC oracle based attacks when a multi-value or parallel PC oracle can be built. As noted by
Tanaka et al. in [TUX+23], constructing such attacks for HQC remains an open problem.

The new OT-PCA method can be extended to address this open problem by creating
different offline templates for more than two decrypted messages. Preliminary investiga-
tions have demonstrated gains compared to binary PC oracle based side-channel attacks.
However, extensive experiments are necessary to evaluate and optimize these concrete

20 OT-PCA: New KR-PC-SCAs on HQC with Offline Templates

Figure 8: The number of errors in the first n positions of the reordered z vector decreases
as the number of side-channel measurements per length-n2 block increases for hqc-192 with
an oracle accuracy of ρ = 1. The plot is based on testing 10 000 random keys for each
scenario. The whiskers represent the 5th and 95th percentiles. The blue line connects the
mean number of errors.

performance gains. We leave this research problem for future work because multi-value or
parallel PC oracles are important oracles that deserve further and separate investigation.

6 Concluding Remarks
We have introduced OT-PCA, a novel key-recovery PC oracle based side-channel attack
against HQC, utilizing templates constructed from offline access to the publicly available
decoding function of Reed Muller codes. These templates provide valuable soft information
for the post-processing stage. Our method requires minimal post-processing costs, compa-
rable to Gaussian elimination. Simulation results show that OT-PCA significantly reduces
the required number of PC oracle calls compared to state-of-the-art attacks. Furthermore,
this new attack is more robust to inaccuracy in the PC oracle and performs significantly
better than the method in [SGG24] on hqc-192. The effectiveness of this approach has
also been validated through real-world tests using power traces on a ChipWhisperer Husky
platform equipped with an ARM Cortex-M4 CPU, confirming the simulation results and
showcasing the practical relevance of our method.

Countermeasures like constant-time implementation, masking, or shuffling can make
constructing accurate PC oracles difficult or infeasible, thus hardening the attack. Future
work includes a comprehensive evaluation of multi-value or parallel PC oracle based
side-channel attacks using the OT-PCA method on HQC to understand its efficiency
and potential limitations. Additionally, evaluating software PC oracle based side-channel
attacks, such as GoFetch [CWS+24], against HQC will be valuable. Last, extending the
OT-PCA method to Kyber and other lattice-based cryptographic schemes will provide
insights into the implementation security of various lattice-based proposals.

Acknowledgement
This work was supported by the Swedish Research Council (grant numbers 2021-04602
and 2023-03654), the Swedish Civil Contingencies Agency (grant number 2020-11632),
the Swedish Foundation for Strategic Research (grant number RIT17-0005), the Crafoord
Foundation, and the Wallenberg AI, Autonomous Systems and Software Program (WASP),
funded by the Knut and Alice Wallenberg Foundation. The computations and simulations
were partly enabled by resources provided by LUNARC.

Haiyue Dong and Qian Guo 21

References
[AAB+22] Carlos Aguilar-Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier

Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti,
Gilles Zémor, Jurjen Bos, Arnaud Dion, Jerome Lacan, Jean-Marc Robert,
and Pascal Veron. HQC. Technical report, National Institute of Standards
and Technology, 2022. available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/round-4-submissions.

[ABB+22] Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loic Bidoux, Olivier Blazy,
Jean-Christophe Deneuville, Phillipe Gaborit, Shay Gueron, Tim Guneysu,
Carlos Aguilar-Melchor, Rafael Misoczki, Edoardo Persichetti, Nicolas
Sendrier, Jean-Pierre Tillich, Gilles Zémor, Valentin Vasseur, Santosh Ghosh,
and Jan Richter-Brokmann. BIKE. Technical report, National Institute
of Standards and Technology, 2022. available at https://csrc.nist.gov/
Projects/post-quantum-cryptography/round-4-submissions.

[ABC+22] Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher,
Tanja Lange, Varun Maram, Ingo von Maurich, Rafael Misoczki, Ruben
Niederhagen, Kenneth G. Paterson, Edoardo Persichetti, Christiane Peters,
Peter Schwabe, Nicolas Sendrier, Jakub Szefer, Cen Jung Tjhai, Martin Tom-
linson, and Wen Wang. Classic McEliece. Technical report, National Institute
of Standards and Technology, 2022. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-4-submissions.

[ACD+22] Gorjan Alagic, David Cooper, Quynh Dang, Thinh Dang, John M. Kelsey,
Jacob Lichtinger, Yi-Kai Liu, Carl A. Miller, Dustin Moody, Rene Per-
alta, Ray Perlner, Angela Robinson, Daniel Smith-Tone, and Daniel Apon.
Status report on the third round of the nist post-quantum cryptography
standardization process, 2022-07-05 04:07:00 2022.

[BDH+19] Ciprian Băetu, F. Betül Durak, Loïs Huguenin-Dumittan, Abdullah Talayhan,
and Serge Vaudenay. Misuse attacks on post-quantum cryptosystems. In
Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume
11477 of LNCS, pages 747–776. Springer, Cham, May 2019.

[CWS+24] Boru Chen, Yingchen Wang, Pradyumna Shome, Christopher W. Fletcher,
David Kohlbrenner, Riccardo Paccagnella, and Daniel Genkin. Gofetch:
Breaking constant-time cryptographic implementations using data memory-
dependent prefetchers. In USENIX Security, 2024.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. In Michael J. Wiener, editor, CRYPTO’99,
volume 1666 of LNCS, pages 537–554. Springer, Berlin, Heidelberg, August
1999.

[FS09] Matthieu Finiasz and Nicolas Sendrier. Security bounds for the design of
code-based cryptosystems. In Mitsuru Matsui, editor, ASIACRYPT 2009,
volume 5912 of LNCS, pages 88–105. Springer, Berlin, Heidelberg, December
2009.

[GHJ+22] Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander
Nilsson, and Robin Leander Schröder. Don’t reject this: Key-recovery
timing attacks due to rejection-sampling in HQC and BIKE. IACR TCHES,
2022(3):223–263, 2022.

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions

22 OT-PCA: New KR-PC-SCAs on HQC with Offline Templates

[GJ20] Qian Guo and Thomas Johansson. A new decryption failure attack against
HQC. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020,
Part I, volume 12491 of LNCS, pages 353–382. Springer, Cham, December
2020.

[GJMW19] Qian Guo, Thomas Johansson, Erik Mårtensson, and Paul Stankovski Wagner.
Some cryptanalytic and coding-theoretic applications of a soft stern algorithm.
Advances in Mathematics of Communications, 13(4), 2019.

[GJN20] Qian Guo, Thomas Johansson, and Alexander Nilsson. A key-recovery timing
attack on post-quantum primitives using the Fujisaki-Okamoto transforma-
tion and its application on FrodoKEM. In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages
359–386. Springer, Cham, August 2020.

[GLG22] Guillaume Goy, Antoine Loiseau, and Philippe Gaborit. A new key recovery
side-channel attack on HQC with chosen ciphertext. In Jung Hee Cheon and
Thomas Johansson, editors, Post-Quantum Cryptography - 13th International
Workshop, PQCrypto 2022, Virtual Event, September 28-30, 2022, Proceed-
ings, volume 13512 of Lecture Notes in Computer Science, pages 353–371.
Springer, 2022.

[GMGL24] Guillaume Goy, Julien Maillard, Philippe Gaborit, and Antoine Loiseau.
Single trace HQC shared key recovery with SASCA. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2024(2):64–87, 2024.

[GNNJ23] Qian Guo, Denis Nabokov, Alexander Nilsson, and Thomas Johansson. SCA-
LDPC: A code-based framework for key-recovery side-channel attacks on
post-quantum encryption schemes. In Jian Guo and Ron Steinfeld, editors,
ASIACRYPT 2023, Part IV, volume 14441 of LNCS, pages 203–236. Springer,
Singapore, December 2023.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis
of the Fujisaki-Okamoto transformation. In Yael Kalai and Leonid Reyzin,
editors, TCC 2017, Part I, volume 10677 of LNCS, pages 341–371. Springer,
Cham, November 2017.

[HPP21] Julius Hermelink, Peter Pessl, and Thomas Pöppelmann. Fault-enabled
chosen-ciphertext attacks on kyber. In Avishek Adhikari, Ralf Küsters, and
Bart Preneel, editors, Progress in Cryptology - INDOCRYPT 2021 - 22nd
International Conference on Cryptology in India, Jaipur, India, December
12-15, 2021, Proceedings, volume 13143 of Lecture Notes in Computer Science,
pages 311–334. Springer, 2021.

[HSC+23] Senyang Huang, Rui Qi Sim, Chitchanok Chuengsatiansup, Qian Guo, and
Thomas Johansson. Cache-timing attack against HQC. IACR TCHES,
2023(3):136–163, 2023.

[HV20] Loïs Huguenin-Dumittan and Serge Vaudenay. Classical misuse attacks on
NIST round 2 PQC - the power of rank-based schemes. In Mauro Conti,
Jianying Zhou, Emiliano Casalicchio, and Angelo Spognardi, editors, ACNS
20International Conference on Applied Cryptography and Network Security,
Part I, volume 12146 of LNCS, pages 208–227. Springer, Cham, October
2020.

Haiyue Dong and Qian Guo 23

[JAC+22] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello,
Luca De Feo, Basil Hess, Amir Jalali, Brian Koziel, Brian LaMac-
chia, Patrick Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev,
David Urbanik, Geovandro Pereira, Koray Karabina, and Aaron Hutchin-
son. SIKE. Technical report, National Institute of Standards and
Technology, 2022. available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/round-4-submissions.

[Meu13] Alexander Meurer. A coding-theoretic approach to cryptanalysis. PhD thesis,
Verlag nicht ermittelbar, 2013.

[MKB+24] Puja Mondal, Suparna Kundu, Sarani Bhattacharya, Angshuman Karmakar,
and Ingrid Verbauwhede. A practical key-recovery attack on LWE-based key-
encapsulation mechanism schemes using rowhammer. In Christina Pöpper
and Lejla Batina, editors, ACNS 24International Conference on Applied
Cryptography and Network Security, Part III, volume 14585 of LNCS, pages
271–300. Springer, Cham, March 2024.

[PRJB23] Thales Paiva, Prasanna Ravi, Dirmanto Jap, and Shivam Bhasin. Et tu,
brute? SCA assisted CCA using valid ciphertexts - A case study on HQC
KEM. Cryptology ePrint Archive, Report 2023/1626, 2023.

[PT19] Thales Bandiera Paiva and Routo Terada. A timing attack on the HQC
encryption scheme. In Kenneth G. Paterson and Douglas Stebila, editors,
SAC 2019, volume 11959 of LNCS, pages 551–573. Springer, Cham, August
2019.

[RRCB20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam
Bhasin. Generic side-channel attacks on CCA-secure lattice-based PKE and
KEMs. IACR TCHES, 2020(3):307–335, 2020.

[RRD+23] Gokulnath Rajendran, Prasanna Ravi, Jan-Pieter D’Anvers, Shivam Bhasin,
and Anupam Chattopadhyay. Pushing the limits of generic side-channel
attacks on LWE-based KEMs - parallel PC oracle attacks on Kyber KEM
and beyond. IACR TCHES, 2023(2):418–446, 2023.

[SAB+22] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike
Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck,
Gregor Seiler, Damien Stehlé, and Jintai Ding. CRYSTALS-
KYBER. Technical report, National Institute of Standards and
Technology, 2022. available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022.

[SCZ+23] Muyan Shen, Chi Cheng, Xiaohan Zhang, Qian Guo, and Tao Jiang. Find
the bad apples: An efficient method for perfect key recovery under imperfect
SCA oracles - A case study of Kyber. IACR TCHES, 2023(1):89–112, 2023.

[SGG24] Robin Leander Schröder, Stefan Gast, and Qian Guo. Divide and surrender:
Exploiting variable division instruction timing in HQC key recovery attacks.
In USENIX Security. USENIX Association, 2024.

[SHR+22] Thomas Schamberger, Lukas Holzbaur, Julian Renner, Antonia Wachter-Zeh,
and Georg Sigl. A Power Side-Channel Attack on the Reed-Muller Reed-
Solomon Version of the HQC Cryptosystem. In Jung Hee Cheon and Thomas
Johansson, editors, Post-Quantum Cryptography - 13th International Work-
shop, PQCrypto 2022, Virtual Event, September 28-30, 2022, Proceedings,

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

24 OT-PCA: New KR-PC-SCAs on HQC with Offline Templates

volume 13512 of Lecture Notes in Computer Science, pages 327–352. Springer,
2022.

[TUX+23] Yutaro Tanaka, Rei Ueno, Keita Xagawa, Akira Ito, Junko Takahashi, and
Naofumi Homma. Multiple-valued plaintext-checking side-channel attacks
on post-quantum KEMs. IACR TCHES, 2023(3):473–503, 2023.

[UXT+22] Rei Ueno, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi, and
Naofumi Homma. Curse of re-encryption: A generic power/EM analysis on
post-quantum KEMs. IACR TCHES, 2022(1):296–322, 2022.

[WPH+22] Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Hovav Shacham,
Christopher W. Fletcher, and David Kohlbrenner. Hertzbleed: Turning
power side-channel attacks into remote timing attacks on x86. In Kevin R. B.
Butler and Kurt Thomas, editors, USENIX Security 2022, pages 679–697.
USENIX Association, August 2022.

[WTBB+19] Guillaume Wafo-Tapa, Slim Bettaieb, Loic Bidoux, Philippe Gaborit, and
Etienne Marcatel. A practicable timing attack against HQC and its counter-
measure. Cryptology ePrint Archive, Report 2019/909, 2019.

[XIU+21] Keita Xagawa, Akira Ito, Rei Ueno, Junko Takahashi, and Naofumi Homma.
Fault-injection attacks against NIST’s post-quantum cryptography round
3 KEM candidates. In Mehdi Tibouchi and Huaxiong Wang, editors, ASI-
ACRYPT 2021, Part II, volume 13091 of LNCS, pages 33–61. Springer,
Cham, December 2021.

	Introduction
	Preliminaries
	Mathematical Notations
	Overview of Hamming Quasi-Cyclic (HQC)
	Overview of PC Oracle Based Side-Channel Attacks on HQC

	The New Attack
	Novel Idea
	Online Attack
	Full Key Recovery from ISD with Soft Information

	Results
	Simulation Results
	Real-World Validation

	Discussion
	More on Comparison with the Zero-Tester Method
	Extension to Multi-value or Parallel PC oracle

	Concluding Remarks

