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Abstract. Private Set Intersection (PSI) allows two mutually untrusted
parties to compute the intersection of their private sets without revealing
additional information. In general, PSI operates in a static setting, where
the computation is performed only once on the input sets of both par-
ties. Badrinarayanan et al. initiated the study of Updatable PSI (UPSI),
which extends this capability to dynamically updating sets, enabling
both parties to securely compute the intersection as their sets are mod-
ified while incurring significantly less overhead than re-executing a con-
ventional PSI. However, existing UPSI protocols either do not support
arbitrary deletion of elements or incur high computational and commu-
nication overhead. This work combines asymmetric PSI with Private Set
Union (PSU) to present a novel UPSI protocol, which supports arbi-
trary additions and deletions of elements, offering a flexible approach
to update sets. Furthermore, our protocol enjoys efficient performance
compared to previous work. Specifically, we implement our protocol and
compare it against state-of-the-art conventional PSI and UPSI proto-
cols. Experimental results demonstrate that our UPSI protocol achieves
up to three orders of magnitude reduction in computational overhead
and incurs 190 ∼ 707× less communication overhead than the state-of-
the-art UPSI protocol that supports arbitrary additions and deletions.
Our implementation is available at: https://github.com/ShallMate/upsi.

1 Introduction

Private Set Intersection (PSI) has found broad application in a variety of scenar-
ios, such as data mining on private data [1], measuring ad conversion rates [2],
and private contact discovery [3]. Over the past decade, PSI has made remark-
able progress, with many efficient PSI protocols having been proposed [4–8]. The
most efficient PSI [8] can compute the intersection in about one second for input
sizes around one million, requiring only tens of megabytes of communication.

Despite the significant performance breakthroughs achieved by these efficient
PSI protocols, they are restricted to a static setting. That is, if the set of either
party updates, even by a single element, a complete PSI execution is required
to obtain the updated intersection. However, in some practical applications, the
sets are often subject to continuous updates, and the intersection is computed
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multiple times as the sets grow or shrink over time. For example, a typical
application of PSI is sample alignment before vertical federated learning [9],
and the training data on both parties may need to be updated continuously or
periodically. If each update to the sets requires re-executing the PSI, it would
significantly waste resources.

A recent work by Badrinarayanan et al. [10] initiated the study of Updatable
PSI (UPSI), which enables two parties to securely compute the intersection of
updated sets without re-executing a conventional PSI. However, this protocol
only supports adding elements, while deletions are implemented through a pe-
riodic refresh mechanism, referred to as “weak deletion.” Very recently, Badri-
narayanan et al. [11] proposed a revised version, which supports adding and
deleting elements. However, from the experimental results in Table 4 of [11],
this protocol introduces new challenges: expensive computational and communi-
cation overhead. Specifically, it only outperforms a re-execution of the efficient
PSI protocol [8] under particular conditions, namely when the total input is
very large (i.e., 222), the update set is minimal (i.e., 24), and the available band-
width is significantly constrained (i.e., 5 Mbps). This means that, unless under
the aforementioned particular conditions, executing this UPSI protocol [11] that
supports deletion will take more time than re-executing the conventional PSI [8].
Therefore, this raises a natural question:

Could we construct a UPSI protocol that supports arbitrary additions and
deletions of elements while ensuring faster performance than re-executing a
conventional PSI in most cases, rather than being limited to highly specific

parameters/bandwidths?

1.1 Our Results

This work addresses the above question by constructing a new UPSI protocol.
To our knowledge, our work is the first UPSI protocol to provide comprehensive
experimental results, an open-source implementation, and support for adding
and deleting elements while guaranteeing efficient performance. Furthermore,
we present our main results in experiments, computation, communication, and
end-to-end.

• Experiments. We provide a comprehensive report on the performance of
our protocol under various input sizes, update set sizes, and bandwidth condi-
tions. Moreover, we also compare our protocol with the state-of-the-art UPSI [11]
and conventional PSI [8]. Finally, we evaluate the update size threshold at which
re-executing the conventional PSI becomes more efficient than our UPSI proto-
col, which is an important experiment that has been overlooked in previous
works [10,11].

•Computation. Our UPSI protocol reduces computation overhead by 255 ∼
1061× compared to [11] that supports both addition and deletion and most 16×
faster compared to the version that supports only addition.

• Communication. Our protocol reduces communication overhead by a
factor of 190 ∼ 707 compared to [11] that supports both addition and deletion.
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Additionally, it achieves a 2 ∼ 6× reduction compared to the version that sup-
ports only addition. Additionally, our protocol has a communication overhead
that is 8 ∼ 42× less than that of the conventional PSI protocol [8] in all settings.

• End-to-End. Our UPSI demonstrates an advantage in the end-to-end
running time with all bandwidth settings. For example, our UPSI protocol can be
up to 974× faster than the state-of-the-art UPSI protocol [11] that supports both
addition and deletion with a bandwidth of 200 Mbps. Furthermore, our protocol
can be 5 ∼ 24× faster than the state-of-the-art conventional PSI protocol [8]
with a bandwidth of 5 Mbps.

1.2 Technical Overview

Our UPSI is inspired by the UPSI framework based on structured encryption [12]
proposed by Agarwal et al. [13]. However, our UPSI protocol does not rely on
structured encryption but instead borrows the idea of asymmetric PSI (i.e.,
unbalanced PSI) and requires any efficient Private Set Union (PSU) protocol.
Furthermore, the UPSI protocol [13] provides only a complexity analysis, with
neither experimental results nor code implementation available, leaving its con-
crete performance unclear. Let us introduce the core content of our UPSI proto-
col step by step. Note that certain specific computational steps are omitted here
(but are required in the actual protocol) to maintain clarity.

Initialization. Let PX and PY denote the parties holding the original sets
X and Y , respectively. PX and PY can execute an existing PSI protocol as a
base protocol, such as [5–8], to obtain the intersection I = X ∩ Y . Let X0 = X,
Y0 = Y , and I0 = I. The execution process of the i-th UPSI is as follows.

Deletion. Let PX and PY intend to delete the sets X−
i and Y −

i , respectively.
Addition. Let PX and PY intend to add the sets X+

i and Y +
i , respectively.

Compute the intermediate intersection. Let the updated sets of PX

and PY be denoted as Xi and Yi, respectively, where Xi = (Xi−1 \X−
i ) ∪X+

i

and Yi = (Yi−1 \ Y −
i ) ∪ Y +

i . PX and PY execute the asymmetric PSI protocol
using Xi and Y +

i , with PY obtaining Ti = Y +
i ∩ Xi. Similarly, PX and PY

execute the asymmetric PSI protocol again using X+
i and Yi, with PX obtaining

Vi = X+
i ∩ Yi.

Compute the intermediate union. PX and PY use Vi and Ti as inputs,
respectively, and invoke the PSU protocol, with both parties obtaining Ui =
Ti ∪ Vi. Subsequently, PX and PY locally compute X−

i ∩ Ii−1 and Y −
i ∩ Ii−1,

respectively. Both parties invoke the PSU protocol again, and each receives U ′
i =

(X−
i ∩ Ii−1) ∪ (Y −

i ∩ Ii−1).
Compute the updated intersection. Finally, each party can locally com-

pute Ii = (Ii−1\U ′
i) ∪ Ui as the result of Xi ∩ Yi.

Our UPSI protocol requires executing a conventional PSI protocol as the
base PSI in the initialization phase. After both parties update their sets, the
UPSI protocol can be executed repeatedly by following the same steps (except
for initialization).

Remark. Our UPSI protocol is a fair UPSI, meaning that both parties obtain
the intersection. Therefore, our work may not be suitable for scenarios where
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only one party obtains the intersection. However, this does not imply that our
protocol is without value. In Appendix A, we provide some applications for our
UPSI protocol.

2 Related Work

We provide a brief review of PSI, asymmetric PSI, PSU, and UPSI, with the
first three serving as foundational components needed for this work, while UPSI
is the goal we aim to achieve.

PSI. Pinkas et al. [4] constructed an efficient PSI protocol based on the
Oblivious Transfer (OT) extension [14]. Since then, many efficient PSI protocols
[5, 6] have been proposed. However, compared to DH-based PSI protocols [15,
16], these protocols sacrifice communication efficiency in exchange for higher
computational efficiency. Fortunately, this changed with the advent of OKVS
[17], which provides a convenient way to represent private sets and facilitates
subsequent intersection calculations. The communication overhead of the first
OKVS-based PSI protocols was high. Garimella et al. [18] addressed this issue,
and Rindal et al. [7] subsequently combined OKVS with a VOLE protocol [19] to
create an efficient PSI protocol with very low communication. Shortly afterwards,
Raghuraman et al. [8] improved the OKVS in [7] and combined it with a more
efficient VOLE protocol [20], resulting in a state-of-the-art PSI protocol.

Asymmetric PSI. Asymmetric PSI, also known as unbalanced PSI, is a
special case of PSI where the set held by one party is significantly smaller than
the set held by the other. The current asymmetric PSI protocols are primarily
constructed based on fully homomorphic encryption [21]. Chen et al. [22] intro-
duced optimizations to reduce the multiplicative depth of the function evaluated
homomorphically, thereby enhancing efficiency. Furthermore, Chen et al. [23],
and Cong et al. [24] employ a combination of OPRF and fully homomorphic
encryption, building upon [22].

PSU. We primarily focus on OT-based PSU protocols due to their high
efficiency. Kolesnikov et al. [25] proposed the first efficient PSU protocol, which
features good practical performance and is several orders of magnitude faster
than previous PSU protocols. Subsequently, Garimella et al. [26] proposed a
new PSU protocol based on oblivious switching. Jia et al. [27] also proposed two
shuffle-based PSU protocols built on the oblivious switching, called the Permute
+ Share subprotocol. Consequently, the performance of their protocols is similar
to that of [26]. Recently, Zhang et al. [28] proposed two general constructions
for PSU protocols with linear computational and communication complexity.

UPSI. Research on UPSI has only begun in the past two years, initially
proposed and defined by Badrinarayanan et al. [10]. The UPSI protocol in [10]
essentially only supports the addition of elements, while deletion is achieved
through a periodic refreshing method, which they refer to as weak deletion.
Furthermore, Abadi et al. [29] proposed a delegated UPSI protocol, but this
requires the involvement of a third-party cloud server. Recently, Badrinarayanan
et al. [11] appeared to address this issue by proposing new UPSI protocols that
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support adding and deleting elements. However, their protocols only demonstrate
an advantage under very restrictive conditions, i.e., very low bandwidth, tiny
update set sizes, and large input sets. Around the same time, Agarwal et al. [13]
also proposed a UPSI protocol. However, they did not provide experimental
results and code, only theoretical analysis.

3 Preliminaries

3.1 Notation

Let κ denote the computational security parameter, and consider a group G and
a finite field F. We define random oracles H : {0, 1}∗ → G and F : {0, 1}∗ → F.
The parties PX and PY hold the original sets X and Y , respectively. During
the i-th execution of the UPSI protocol, the two parties update their sets by
adding elements X+

i and Y +
i and removing elements X−

i and Y −
i , respectively.

Consequently, the updated sets are expressed as Xi = (Xi−1 \ X−
i ) ∪ X+

i and
Yi = (Yi−1 \ Y −

i ) ∪ Y +
i . We denote the input size and the update size for both

parties by Ni and Nu
i , respectively.

3.2 Updatable Private Set Intersection

UPSI is a variant of PSI that allows both parties to compute the intersection
on dynamically updating sets. The concept of UPSI was recently introduced by
Badrinarayanan et al. [10], who also provided an improved version [11]. In this
work, we define the UPSI protocol that supports both addition and deletion oper-
ations in Figure 1. In our definition, we require an ideal PSI to perform the initial
intersection between both parties. In other words, in each updated intersection
computation, the UPSI protocol essentially operates on the updated input sets
and the intersection obtained from the most recent intersection computation.

FUPSI

There are two parties, PX and PY , who hold initial private sets X and Y ,
respectively. Both parties have obtained I = X ∩ Y using an ideal FPSI. Let
X0 = X, Y0 = Y , and I0 = I. In the i-th update:

– PX updates its set to Xi = (Xi−1 \X−
i ) ∪X+

i ;
– PY updates its set to Yi = (Yi−1 \ Y −

i ) ∪ Y +
i ;

– Both parties receive the updated intersection Ii = Xi ∩ Yi as the output.

Fig. 1: Ideal functionality FUPSI.
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4 UPSI from Asymmetric PSI and PSU

In this section, we describe our UPSI protocol, which supports arbitrary addi-
tions and deletions based on our asymmetric PSI and any efficient PSU protocol.

4.1 Component Description

We begin by introducing the individual components and then combine them to
form our UPSI protocol.

Base PSI. We require a conventional PSI protocol to perform the initial
intersection between the two parties. For efficiency in the overall protocol, we
recommend using [8] to accomplish this task. Note that the performance of the
base PSI is independent of the performance of the subsequent updated intersec-
tion computations, and the base PSI only needs to be executed once. Therefore,
other efficient PSI protocols [5–7] can also be used, which only results in a cer-
tain performance loss during the initial intersection computation and does not
affect the performance of subsequent updated intersection computations.

Asymmetric PSI. Note that if we directly apply the asymmetric PSI [24],
our UPSI will be insecure. For example, if PX adds a certain x+ during one
update, deletes it in a subsequent UPSI, and then adds it again, PY would be
able to detect this fact because the mask for this x+ remains the same during
the OPRF generation. To avoid such leakage, we should ensure that even for
the same x+, its mask is different in each execution of the UPSI. The same
applies to PY . Specifically, PX and PY should generate the secret values kx,i
and ky,i in each execution of UPSI, as this prevents both parties from learning
additional information aboutX+ and Y + across multiple executions of the UPSI.
Therefore, we modify the OPRF generation in [24] to the multi-round OPRF
generation as shown in Figure 3 to avoid this leakage.

We briefly review the query phase of [24]. Suppose PY is the receiver, PX is
the sender, and Y ≪ X. Before proceeding with the query phase, PY and PX

need to compute {F(kx, y) | y ∈ Y } and {F(kx, x) | x ∈ X}, respectively, with
respect to the OPPF key kx. Note that in our UPSI, this step is replaced by
the protocol in Figure 3. Before proceeding with the query phase, PX and PY

need to compute F(kx, x) and F(kx, y), respectively, with respect to the OPPF
key kx. Note that in our UPSI, this step is replaced by the protocol in Figure 3.
PY inserts {F(kx, y)} into a cuckoo hashing BY of length N ′

Y , while PX inserts
{F(kx, x)} into a simple hashing BX of the same length. X ∩Y can be computed
as follows:

{F(kx, y)} ∩ {F(kx, x)} =

N ′
Y⋃

i=1

BY [i] ∩BX [i].

Subsequently, PX and PY need to evaluate the polynomial:

P (BY [i]) =
∏

x∈BX [i]

(BY [i]− x)
?
= 0
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for all i ∈ {1, · · · , N ′
Y } based on homomorphic encryption. Various optimization

techniques are also applied, including SIMD packing, partitioning, and window-
ing. For details, see [24].

PSU. To instantiate our UPSI protocol, we recommend employing the PSU
protocol by Zhang et al. [28] due to its linear computational complexity. However,
using other PSU protocols [25–27, 30] to instantiate our UPSI protocol is also
feasible, as they have linear communication costs and do not result in significant
performance loss. We will mention later that instantiating our UPSI using the
PSU protocol by Kolesnikov et al. [25] is already very efficient.

4.2 Multi-Round OPRF

We define a multi-round OPRF to prevent information leakage caused by parties
using the same elements during the multi-round updates in the UPSI protocol.

FMROPRF

Without loss of generality, we let PX be the sender, and PY be the receiver. In
the i-th update:

– PY uses Y +
i as input;

– PY receives F(k, y+
i ) for all y+

i ∈ Y +
i as the output, and PX learns nothing.

Fig. 2: Ideal functionality FMROPRF.

Note that we impose no restrictions on the Y +
i in the multi-round updates.

At the same time, PX learns no information in each round. In other words, to
achieve the ideal functionality shown in Figure 2, even if identical elements exist
in Y +

i and Y +
j , PX should not be able to observe this fact, where i ̸= j.

ΠMROPRF

PX randomly samples kx. The execution process of the i-th UPSI is as follows.

– PY randomly samples ky,i and computes Q
Y +
i

= {H(y+
i )ky,i} for all y+

i ∈
Y +
i and sends Q

Y +
i

to PX ;

– PX computes E
Y +
i

= {qkx} for all q ∈ Q
Y +
i

and returns it to PY ;

– PY computes F
Y +
i

= {F(ek
−1
y,i )} for all e ∈ E

Y +
i

as output.

Fig. 3: Our ΠMROPRF protocol.
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Correctness. The correctness of ΠMROPRF is straightforward. It suffices to
ensure that, for any two distinct elements y+ and y+′, we have F(∗, y+) ̸=
F(∗, y+′). According to [7], we can easily ensure this condition by directly re-
quiring |F| ≥ 2κ. In our implementation, we adopt the same setting.

Security. The security of ΠMROPRF relies on the DDH assumption.

Theorem 1. The protocol ΠMROPRF realizes FMROPRF against a semi-honest ad-
versary.

Proof. This requires a separate discussion for a corrupted PY and a corrupted
PX .

Corrupted PY . PY will receive EY +
i

from PX in the i-th execution. There-

fore, the view of PY can be represented as ViewY = {{Y +
i }, {ky,i}, {EY +

i
}, {FY +

i
}},

where Y +
i , ky,i, and FY +

i
are the input, random tape, and output of the i-th ex-

ecution, respectively. Using a sequence of hybrid arguments, we show that the
corrupted PY cannot distinguish the elements in {EY +

i
} from random elements

in G.
H0: This is the view of PY in the real execution when it receives EY +

i
.

H1,j : For j ∈ {1, · · · , Nu}, the same as H0 except that we replace qkx in
EY +

i
with a random gj ∈ G.

H2: The view of PY as output by the simulator when it finishes receiving
EY +

i
.

We argue that H1,j−1 and H1,j are indistinguishable to PY . If any PPT
adversary A can distinguish the two hybrids, we devise a challenger C who can
break the DDH assumption. C is given (g, ga, gb, gc) and needs to decide whether
c is random or c = ab. C can program H(·) to return gb on input q, and we let
ga = gkx . C receives the challenge mask ϵ. Note that C does not know that
ϵ belongs to H1,j−1 or H1,j . C sends ϵ to A, and then A determines whether
ϵ belongs to H1,j−1 or H1,j . If c = ab, the mask ϵ = gc, otherwise ϵ = gj
(since gj is random). If A judges that ϵ belongs to H1,j−1, then C outputs that
c = ab; otherwise outputs that c is random. Therefore, we can see that if A can
distinguish the mask part of two hybrids, then C can break the DDH assumption
with the same probability.

Corrupted PX . PX will receive QY +
i

from PY in the i-th execution. There-

fore, the view of PX can be represented as ViewX = {kx, {QY +
i
}}. The proof is

similar to that of PY , and we omit the details for brevity.

4.3 Our UPSI

We combine all the components mentioned earlier to construct our UPSI proto-
col, as illustrated in Figure 4.

Correctness. Proving the correctness of our protocol essentially involves
demonstrating that the intersection Ii = (Ii−1 \ U ′

i) ∪ Ui holds for Xi and Yi,
where Ui = Ti∪Vi, Ti = Y +

i ∩Xi, V = X+
i ∩Yi, and U ′

i = (X−
i ∩Ii−1)∪(Y −

i ∩Ii−1).
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ΠUPSI

Initialization:

– PX and PY randomly sample kx and ky, respectively.
– PX and PY locally compute HX = {F(H(x)kx)} and HY = {F(H(y)ky )} for

all x ∈ X and y ∈ Y , respectively.
– PX and PY invoke an ideal FPSI, and both parties receive I = X ∩ Y .

Let X0 = X, Y0 = Y , and I0 = I. The process of the i-th UPSI is as follows.
Deletion:

– If X−
i ̸= ∅, then PX computes D

X−
i

= {F(H(x−
i )

kx)} for all x−
i ∈ X−

i , and

then updates HX = HX\D
X−

i
.

– If Y −
i ̸= ∅, then PY computes D

Y −
i

= {F(H(y−
i )ky )} for all y−

i ∈ Y −
i , and

then updates HY = HY \D
Y −
i
.

Addition:

– If X+
i ̸= ∅, then PX computes A

X+
i

= {F(H(x+
i )

kx)} for all x+
i ∈ X+

i , and

then updates HX = HX ∪A
X+

i
.

– If Y +
i ̸= ∅, then PY computes A

Y +
i

= {F(H(y+
i )ky )} for all y+

i ∈ Y +
i , and

then updates HY = HY ∪A
Y +
i
.

Compute the intermediate intersection:

– PY invokes the i-th round of ΠMROPRF as the receiver with input Y +
i , and

PX acts as the sender. Subsequently, PY receives F
Y +
i

as output.

– PY and PX use the query phase of the asymmetric PSI protocol [24] with
F
Y +
i

and HX as inputs. As a result, PY receives Ti = Y +
i ∩Xi.

– Similarly, PX can obtain Vi = X+
i ∩ Yi.

Compute the intermediate union:

– PX and PY invoke an ideal FPSU, and both parties then receive Ui = Vi∪Ui.
– PX and PY locally compute X−

i ∩ Ii−1 and Y −
i ∩ Ii−1, respectively.

– PX and PY invoke an ideal FPSU, and both parties then receive U ′
i =

(X−
i ∩ Ii−1) ∪ (Y −

i ∩ Ii−1).

Compute the updated intersection:

– PX and PY can locally compute Ii = (Ii−1\U ′
i) ∪ Ui.

Fig. 4: Our complete UPSI protocol.
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We demonstrate this by proving both inclusions:

Ii ⊆ (Ii−1 \ U ′
i) ∪ Ui, (Ii−1 \ U ′

i) ∪ Ui ⊆ Ii.

Ii ⊆ (Ii−1 \ U ′
i) ∪ Ui: For ∀z ∈ Ii, we have z ∈ Xi and z ∈ Yi.

Case 1: If z ∈ Ii−1, then z ∈ Xi−1 and z ∈ Yi−1. Since z ∈ Xi, it must either
not be deleted from Xi−1 (i.e., z /∈ X−

i ) or be re-added (i.e., z ∈ X+
i ). Similarly,

z ∈ Yi implies z /∈ Y −
i or z ∈ Y +

i . Since z ∈ Ii−1 and z ∈ Ii, z ∈ Ii−1 \ U ′
i holds

if z /∈ U ′
i (i.e., z /∈ X−

i and z /∈ Y −
i ).

Case 2: If z /∈ Ii−1, then for z ∈ Xi ∩ Yi while z /∈ Ii−1, it must be the case
that z was added to at least one of the sets: If z ∈ Y +

i and z ∈ Xi, then z ∈ Ti.
If z ∈ X+

i and z ∈ Yi, then z ∈ Vi. Therefore, z ∈ Ui = Ti ∪ Vi.
Combining both cases, we have z ∈ (Ii−1 \ U ′

i) ∪ Ui.
(Ii−1 \U ′

i)∪Ui ⊆ Ii: For ∀z ∈ (Ii−1 \U ′
i)∪Ui, we have z ∈ Ii−1 \U ′

i or z ∈ Ui.
Case 1: If z ∈ Ii−1 \ U ′

i , then z ∈ Ii−1 and z /∈ U ′
i hold. Therefore, z /∈ X−

i

and z /∈ Y −
i due to z /∈ U ′

i , implying z ∈ Xi and z ∈ Yi. Hence, z ∈ Ii.
Case 2: If z ∈ Ui, then z ∈ Ti or z ∈ Vi due to Ui = Ti ∪ Vi. If z ∈ Ti =

Y +
i ∩ Xi, then z ∈ Y +

i implies z ∈ Yi, and z ∈ Xi. If z ∈ Vi = X+
i ∩ Yi, then

z ∈ X+
i implies z ∈ Xi, and z ∈ Yi.

Combining both subcases, we have z ∈ Ii.
Since both inclusions hold, we conclude that: Ii = (Ii−1 \ U ′

i) ∪ Ui.

4.4 Complexity Analysis

We conduct a detailed analysis of the complexities at each phase of the UPSI
protocol to determine its overall complexity. This analysis does not include the
initialization phase, as it comprises a base PSI and preparatory steps that can
be implemented using an efficient conventional PSI protocol, such as [5,6,8]. The
repeated execution of the remaining phases alone constitutes our UPSI protocol.
For the sake of discussion, we assume |X| = |Y | = N and |X+

i | = |Y +
i | = |X−

i | =
|Y −

i | = Nu.
Deletion. The complexity of this phase is O(Nu + Nu logN). This phase

incurs no communication overhead.
Addition. The computational complexity of this phase is the same as that

of the deletion phase, with no communication overhead.
Compute the intermediate intersection. This phase consists of two in-

vocations of ΠMROPRF and two query phases of the asymmetric PSI [24]. Clearly,
both the computational and communication complexities of ΠMROPRF areO(Nu).
Moreover, the computational and communication complexities of the query phase
are O(

√
N) and O(log2 N), respectively. Therefore, the overall computational

and communication complexities for this entire phase are O(Nu +
√
N) and

O(Nu + log2 N), respectively.
Compute the intermediate union. This phase mainly involves two invo-

cations of the PSU protocol. Note that the input size for these two PSU protocol
invocations is at most Nu in the worst case. Therefore, according to the existing
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efficient PSU protocols [25–28, 30], the computational complexity and commu-
nication complexity of this phase are O(Nu) (or possibly O(Nu · logNu)) and
O(Nu), respectively.

Compute the updated intersection. The computational cost for both
parties in this step is O(Nu), with no communication cost required.

In summary, the computational complexity and communication complexity
of our UPSI can be summarized as O(Nu · logN +

√
N) and O(Nu + log2 N),

respectively.

4.5 Updatable PSI Security Proof

It is evident that the sizes of the update sets for each party, i.e., |X+|, |Y +|,
|Y −|, and |X−|, are revealed. This might be an unavoidable form of leakage, as
it has been a persistent issue in previous UPSI protocols [10,11,13].

Theorem 2. The protocol ΠUPSI realizes FUPSI against a semi-honest adversary.

Proof. Our UPSI protocol ΠUPSI is obviously secure if there exist ideal func-
tionalities FPSI, FPSU, and FMROPRF, while the messages exchanged in the query
phase of [24] are encrypted ciphertexts of homomorphic encryption.

5 Evaluation

We provide a comprehensive evaluation of our work, including the performance of
our UPSI protocol under different network environments and various parameters,
a comparison with state-of-the-art protocols, and the threshold for the update set
size at which both parties should re-execute the base PSI protocol, considering
different network environments and various input sizes.

5.1 Experimental Setup

We used two Docker containers on the workstation with Intel(R) Xeon(R) Gold
6230R CPU @ 2.10 GHz, 52 cores, and 128 GB RAM to simulate PX and PY .
The experiment runs on the CentOS system. Our UPSI protocols is implemented
using the YACL1, which is a C++ library that contains common cryptography,
network and I/O modules. The computational security parameter is set to κ =
128, and performance is evaluated under LAN and WAN settings. The LAN
connection is simulated with a 0.2 ms RTT network latency and 1 Gbps network
bandwidth. For the WAN connection, the Linux “tc” command is used, and
the bandwidth is configured following the setup of Badrinarayanan et al. [11],
with results presented at 200 Mbps, 50 Mbps, and 5 Mbps, along with an RTT
latency of 80 ms. The group G is instantiated using the FourQ curve [31], and
SHA-512 is employed for H, while BLAKE3 is used for F. All protocols in our
experiments are evaluated using 128-bit elements. Regarding asymmetric PSI,

1 https://github.com/secretflow/yacl

https://github.com/secretflow/yacl
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we use the APSI library2, which is the official implementation of [24]. We use
the PSU protocol proposed by Kolesnikov et al. [25] to instantiate our UPSI
instead of the linear-computation-cost PSU [28], as their provided source code
is written in Java3, which makes it inconvenient for us to integrate with it.
Nevertheless, we observe that our protocol remains highly efficient using [25]
based on the experimental results. Note that if the PSU protocol by Zhang et
al. [28] were used, the performance of our protocol might be even better than
what is demonstrated in this paper. For the base PSI used to compute the initial
intersection between both parties, we choose the state-of-the-art two-party PSI
proposed by Raghuraman et al. [8]. For the sake of presenting the results, we
assume |X| = |Y | = N and |X+

i | = |Y +
i | = |X−

i | = |Y −
i | = Nu.

5.2 The Performance of Our UPSI

First, we present the costs of our UPSI protocol during the initialization phase,
which is a pre-computation phase that can only be executed once. The costs of
this phase depend only on N and are linear. This phase primarily requires a
single execution of the base PSI protocol and pre-computation by both parties
for the masks used in the asymmetric PSI.

We present the costs of the initialization phase of our UPSI under different
values of N and various network environments in Table 1. Since the initialization
phase requires executing the base PSI, it can become relatively slow when the
bandwidth is low due to the significant communication overhead it incurs. For
example, when N = 222 and the bandwidth is 5 Mbps, the initialization phase
takes 417.57 seconds to complete. Fortunately, this phase is essentially a setup
phase and only needs to be executed once. Therefore, we do not need to worry
too much about the costs in this phase. We also do not include the costs of the
initialization phase in the subsequent UPSI evaluations. Note that the commu-
nication overhead for the base PSI is slightly higher than executing a one-way
PSI protocol by Raghuraman et al. [8], as the party receiving the intersection
needs to send it to the other party.

Table 1: Communication cost (in MB) and running time (in seconds) of the
initialization phase under different values of N and various network bandwidths.

N Comm. (MB)
Total Running Time (s)

LAN 200Mbps 50Mbps 5Mbps

218 11.19 6.74 7.7 9.38 29.53
220 43.89 19.6 22.19 28.77 107.77
222 174.78 67.62 76.75 102.97 417.57

2 https://github.com/microsoft/APSI
3 https://github.com/alibaba-edu/mpc4j

https://github.com/alibaba-edu/mpc4j
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Next, in Table 2, we present the costs of our protocol under different values
of N and Nu and various network environments. With a bandwidth of 5 Mbps,
both parties can complete the UPSI protocol in 4.05 seconds when N = 220 and
Nu = 210. When dealing with large-scale data, our protocol can also quickly
complete the computation of the updated intersection. For example, when N =
222 and Nu = 210, our UPSI protocol completes the intersection computation
in 9.14, 9.81, 10.6, and 20.09 seconds under LAN, 200 Mbps, 50 Mbps, and 5
Mbps WAN settings, respectively. Moreover, our protocol remains efficient even
when the size of the update sets is relatively large. Specifically, when N = 222

and Nu = 213, our protocol requires only 77.09, 78.92, 83.2, and 134.6 seconds
under LAN, 500 Mbps, 50 Mbps, and 5 Mbps WAN settings, respectively.

Table 2: Communication cost (in MB) and running time (in seconds) of our
protocol under different values of N and Nu, and various network environments.

N Nu Comm. (MB)
Total Running Time (s)

LAN 200Mbps 50Mbps 5Mbps

218

29 2.72 1.99 2.53 2.93 7.84
210 4.25 4.51 5.12 5.76 13.4
211 5.34 9.15 9.82 10.62 20.22
212 8.27 14.69 15.5 16.74 31.62

220

210 5.21 5.22 5.88 6.66 16.04
211 9.07 7.79 8.64 10.0 26.33
212 12.58 16.35 17.38 19.27 41.9
213 20.71 27.76 29.2 32.3 69.58

222

210 5.27 9.14 9.81 10.6 20.09
211 8.09 14.66 15.46 16.68 31.23
212 13.38 37.41 38.48 40.48 64.56
213 28.55 77.09 78.92 83.2 134.6

5.3 Comparison with State-of-The-Art Protocols

We compare our UPSI protocol with the state-of-the-art conventional PSI proto-
col [8] and UPSI protocol [11]. We present the communication cost and running
time of our protocol in comparison with [8, 11] in Table 3.

We summarize our experimental results in terms of communication improve-
ment, computation improvement, and end-to-end running time.

Communication Improvement. Our protocol outperforms RR22 [8] by
8 ∼ 42× in all settings. When N = 222 and Nu = 210, the communication cost
of RR22 is 206.65 MB, whereas our protocol requires only 5.27 MB. Furthermore,
our protocol achieves a 2 ∼ 6× reduction compared to the version that supports
only addition in [11]. When N = 220 and Nu = 210, it requires 29.61 MB of
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Table 3: Communication cost (in MB) and running time (in seconds) of our
protocol in comparison with prior work. If the existing work is optimal, we
highlight it in green; if our work is optimal, we highlight it in red. We did not
record experimental results with a running time exceeding two hours.

N Nu Protocol Comm. (MB)
Total Running Time (s)

LAN 200Mbps 50Mbps 5Mbps

220

- RR22 [8] 43.88 1.7 4.3 10.88 89.87

28

BMS+24 [11]
7.57 22.8 23.58 24.71 38.34

29 14.87 43.9 45.04 47.27 74.04
210 (addition-only) 29.61 87.6 89.48 93.92 147.22

28

BMS+24 [11]
922 1398.4 1445.25 1584.6 3256.8

29 1845 2696 2788.65 3065.4 6386.4
210 (addition & deletion) 3687 5543.5 5727.75 6280.8 -

28

Ours
4.21 3.13 3.74 4.37 11.95

29 4.86 4.95 5.59 6.32 15.07
210 5.21 5.22 5.88 6.66 16.04

222

- RR22 [8] 206.65 8.17 18.87 49.77 420.57

28

BMS+24 [11]
8.03 23.6 24.4 25.61 40.06

29 15.97 47.2 48.4 50.79 79.54
210 (addition-only) 31.5 92.4 94.38 99.1 155.8

28

BMS+24 [11]
927 1603.7 1650.45 1789.5 3458.1

29 1855 3305 3398.15 3676.4 -
210 (addition & deletion) 3711 6874 7059 - -

28

Ours
4.89 7.11 7.76 8.49 17.29

29 5.01 7.8 8.45 9.2 18.22
210 5.27 9.14 9.81 10.6 20.09

communication, whereas our UPSI needs only 5.27 MB. Our protocol reduces
communication overhead by 190 ∼ 707× compared to [11] that supports both
addition and deletion. When N = 220 and Nu = 210, it requires 3687 MB of
communication, whereas our UPSI still needs only 5.21 MB.

Computation Improvement. Our protocol achieves up to a 16× reduction
in computation overhead compared to the version that supports only addition
in [11]. Specifically, when N = 220 and Nu = 210, it takes 87.6 seconds to
complete the protocol, whereas our UPSI protocol requires only 5.22 seconds in
the LAN setting. Furthermore, our protocol reduces computation overhead by
255 ∼ 1061× compared to [11] that supports both addition and deletion. For
example, when N = 222 and Nu = 210, it takes 6874 seconds to complete the
protocol, whereas our UPSI protocol still requires only 9.14 seconds.

End-to-End. Our protocol can be 3 ∼ 9× faster than the version that
supports only addition in [11]. For example, when N = 220 and Nu = 210, the
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latter requires 89.48, 93.92, and 147.22 seconds to complete the protocol under
200 Mbps, 50 Mbps, and 5 Mbps, respectively, whereas our protocol only needs
5.88, 6.66, and 16.04 seconds under the same bandwidths. Our protocol can be
up to 974× faster than [11] that supports both addition and deletion when the
bandwidth is 200 Mbps. Specifically, when N = 220 and Nu = 210, it takes
5727.75 seconds to complete the intersection computation, whereas our UPSI
requires only 5.88 seconds with a bandwidth of 200 Mbps. Furthermore, our
UPSI also has an advantage in overall running time compared to [8] in most
settings. When the bandwidth is 5 Mbps, our protocol can be 5 ∼ 24× faster
than [8]. Specifically, when N = 222 and Nu = 210, [8] takes 420.57 seconds to
complete the intersection computation, whereas our UPSI requires only 17.29
seconds.

5.4 The Threshold of Nu

In many real-world applications, the updated sets can be small compared to the
entire sets. However, determining the threshold at which Nu grows large enough
that running UPSI becomes less efficient than executing a conventional PSI with
updated inputs is crucial, and previous works [10,11,13] seem to have overlooked
this aspect. We experiment with different values of N and Nu to evaluate the
threshold of Nu at which our UPSI protocol becomes less efficient than directly
re-executing the conventional two-party PSI protocol [8].

(a) N = 218 (b) N = 220 (c) N = 222

Fig. 5: Comparison with the state-of-the-art conventional PSI [8] under different
bandwidths and updated set sizes when N ∈ {218, 220, 222}.

As shown in Figure 5, we present a comparison of our UPSI protocol with [8]
under different bandwidths and updated set sizes when N ∈ {218, 220, 222}. From
Figures 5a to 5c, we can see that the performance of our protocol under different
N shows a consistent increasing trend as Nu increases. Let Nu

t be a threshold for
Nu, beyond which it becomes more efficient to re-run [8] rather than executing
our UPSI protocol. We can determine the different values of Nu

t under various
bandwidths by observing when the running time of our UPSI exceeds that of [8]
under the same bandwidth. After knowing the value ofNu

t , if both parties need to
update a set larger than Nu

t , they should re-execute the conventional PSI instead
of continuing with the proposed UPSI. For example, when N = 222, as long as
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|N+| ≤ 215 and |N−| ≤ 215, executing our UPSI protocol with a bandwidth of 5
Mbps will definitely be faster than executing the conventional PSI [8]. We would
like to emphasize that although 215 still has a significant gap compared to 222,
this is an impressive result compared to previous works. Specifically, the current
state-of-the-art UPSI [11] that supports addition and deletion has an actual Nu

t

of only 24 under the same parameters. In other words, we have expanded this
threshold by at least 211 (2048) times in this setting. Even in the setting of 200
Mbps, the Nu

t for this configuration is 211, while [11] is only efficient compared
to [8] under very low bandwidth and small update set sizes. Moreover, we can
observe that as N increases, Nu

t also tends to increase in a certain pattern.
For example, when N is fixed, the value of Nu

t is approximately N/27 under a
bandwidth of 5 Mbps. Since Nu is generally much smaller than N , our protocol
is sufficient to handle most cases, meaning it is faster than conventional PSI in
most scenarios where both parties update their sets.

6 Conclusion

In this work, we construct a UPSI protocol that supports arbitrary additions
and deletions of elements, offering faster performance compared to re-executing a
conventional PSI in most cases without being restricted to highly specific param-
eters/bandwidths. Our UPSI protocol can be proven secure in the semi-honest
model. Experimental results demonstrate that our UPSI protocol is substantially
more efficient than the existing state-of-the-art UPSI protocol and the most ef-
ficient conventional PSI protocol, achieving two to three orders of magnitude
improvements in both computational and communication costs. We also point
out some limitations of our UPSI protocol for further research. Finally, we also
provide some applications of the proposed UPSI protocol to demonstrate how
our protocol can play a significant role in practical scenarios.
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A Applications

In this section, we present three application scenarios for our UPSI protocol to
illustrate its practical role.

Vertical Federated Learning. Vertical federated learning [9] is a highly
favored approach for joint model training in the industry. It refers to multiple
companies possessing different feature spaces for the same set of samples, aiming
to improve model accuracy through feature expansion. The prerequisite for ver-
tical federated learning is achieving privacy-preserving entity alignment, which
involves identifying the common sample IDs across all companies. In fact, this
task is typically accomplished using a PSI protocol. However, in practice, data is
not stable and actually requires continuous updates. Here we cite a passage from
Meta’s paper [32]: “But a typical scenario is for one party’s dataset of records
to be large and stable for some time, while the other party’s dataset arrives in a
streaming fashion and in small batches. For example, parameters of a machine
learning model can be continuously updated as new batches of records arrive.”
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This means that if we use a conventional PSI protocol, we would need to exe-
cute it multiple times to continually perform privacy-preserving entity alignment.
Although they also use a PSI variant called streaming PSI to attempt to address
this issue, this construction is not efficient due to the expensive homomorphic
encryption involved (taking up to about two hours to complete the intersection
computation for input sizes less than 224 on a c5.18xlarge AWS instance). As
shown in Table 2, with our protocol, the entire computation can be completed
in less than 20 seconds for an update size of 212 (4096), even taking only around
56 seconds under a 5 Mbps bandwidth. Furthermore, in the vertical federated
learning scenario, all participating parties need to obtain the intersection (oth-
erwise, they cannot know which samples are involved in model training). Thus,
our UPSI protocol is well-suited for vertical federated learning.

Medical Data Sharing. PSI is also frequently used for privacy-preserving
medical data sharing [33, 34]. At the same time, we know that medical data,
such as epidemic monitoring and case tracking, requires frequent data updates.
For example, during the COVID-19 pandemic, the number of new hospital cases
and test results can change rapidly. The updatable feature of the UPSI protocol
enables hospitals to quickly add the latest data to the intersection, assisting
relevant departments and hospitals in obtaining real-time analyses. Furthermore,
the capability for dynamic updates also facilitates long-term collaborative case
analysis. Suppose a hospital identifies a new case or updates test data. In that
case, it can swiftly integrate the new information into the intersection via the
UPSI protocol, ensuring that all collaborating parties receive the most timely
information. If multiple hospitals identify cases of the same patient with a specific
disease, the parties can conduct in-depth analyses based on the intersection data
to explore information such as causes and treatment options. This cross-hospital
collaboration facilitates knowledge sharing and enhances overall diagnostic and
treatment outcomes. Due to the considerable performance advantages of our
UPSI compared to previous works, it can assist hospitals in quickly performing
these frequently updated intersection computations.

Social Network Analysis. PSI has been widely used in social networks
[35–37]. Social platforms can identify overlapping users and update their social
graphs without disclosing user privacy, thereby providing users with a richer
social experience and cross-platform services. When building user social graphs
across multiple social platforms, each platform has a large user base, making it
relatively expensive to perform a PSI protocol. However, the friend lists and in-
terests of these users may change frequently. Therefore, using a conventional PSI
protocol would result in significant resource waste. Each platform can use UPSI
to address this issue. Moreover, since each platform needs to update its own
social graph, they all require to obtain the intersection. As a result, our UPSI
protocol is a viable solution worth considering for this scenario, as it demon-
strates highly efficient performance compared to previous works in a setting
that requires updating sets.
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